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Abstract: A key part of interpreting, visualizing, and monitoring the surface conditions of remote-
sensing images is enhancing the quality of low-light images. It aims to produce higher contrast,
noise-suppressed, and better quality images from the low-light version. Recently, Retinex theory-
based enhancement methods have gained a lot of attention because of their robustness. In this
study, Retinex-based low-light enhancement methods are compared to other state-of-the-art low-light
enhancement methods to determine their generalization ability and computational costs. Different
commonly used test datasets covering different content and lighting conditions are used to compare
the robustness of Retinex-based methods and other low-light enhancement techniques. Different
evaluation metrics are used to compare the results, and an average ranking system is suggested to
rank the enhancement methods.

Keywords: low-light image enhancement; retinex theory; deep learning; remote-sensing

1. Introduction

Low-light enhancement methodologies try to recover buried details, remove the
noise, restore the color details, and increase the dynamic range and contrast of the low-
light images. Low light has inescapable effects on remote monitoring equipment and
computer vision tasks. Low signal-to-noise ratio (SNR) causes severe noise in low-light
imaging and makes it difficult to extract features for interpreting remote-sensing via
computer vision tasks, whereas the performance of computer vision tasks entirely depends
on accurate feature extraction [1]. Remote-sensing image enhancement has a wide range of
applications in object detection [2,3], object tracking [4–7], video surveillance [8,9], military
applications, daily life [10–14], atmospheric sciences [15], driver assistance systems [16],
and agriculture. Earth is continuously being monitored by analyzing the images taken
by satellites. Analyzing remotely taken images to help in fire detection, flood prediction,
and understanding other environmental issues. Low-light enhancement of these images
is playing a vital role in understanding these images in a better way. Even the accuracy
of other remote sensing algorithms, such as classification and object detection, depends
entirely on the image’s quality. In the literature, different methodologies exist for enhancing
such degraded low-light images. Retinex theory-based enhancement methods are widely
accepted among these enhancement methodologies due to their robustness. The main
purpose of this study is to compare the Retinex-based methods with other non-Retinex-
based enhancement methods experimentally. For comparison, we have categorized all
the enhancement methods into two major groups (i.e., Retinex-based and non-Retinex-
based methods). The Retinex group includes classical and deep learning-based Retinex
enhancement methods. Meanwhile, the non Retinex group includes histogram equalization,
gamma correction, fusion, and deep learning-based enhancement methods.

According to Retinex theory [17], an image can be decomposed into reflectance and
illumination component. The reflectance component is considered an intrinsic component
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of the image and remains consistent under any lighting condition, whereas the illumination
component represents the different lighting conditions. Later on, different Retinex theory
based methods, such as single-scale retinex (SSR), [18] multiscale retinex with color restora-
tion (MSRCR) [19], simultaneous reflectance and illumination estimation (SRIE) [20], and
low-light illumination map estimation (LIME) [21] were developed for low-light enhance-
ment. These methods produce promising results but may require fine-tuning of parameters
and may fail to decompose the image correctly into reflectance and illumination parts.
Wei et al. is the first one to introduce a real low/normal-light LOw-Light (LOL) dataset
and Retinex theory-based deep network (Retinex-Net) in [22]. Retinex-Net comprises
Decom-Net for decomposing the image into reflectance and illumination parts and an
Enhance-Net for illumination adjustment. Later on, different Retinex theory-based deep
learning methods were developed for low-light image enhancement algorithm [22–25].

Non-Retinex method such as histogram equalization is one of the simplest methods
for enhancing low-light images. It flattens the distribution of pixel values throughout
the image to improve contrast. In addition, using entire histogram information may over
brighten some regions of the image, deteriorate its visual quality and introduce some arti-
facts in it. Different histogram-based methods such as local histogram equalization [26] and
dynamic histogram equalization [27] were introduced to address these issues. However,
these methods require higher computation power, the quality of the output depends on
the fine-tuning of parameters, and in case of severe noise, it may produce artifacts. On
the other hand, gamma correction based methods [28–30] apply the pixel-wise nonlinear
operation to enhance the image. The main drawback of these methods is that each pixel
is considered an individual entity, and their relationship with neighbor pixels is entirely
ignored. Due to this, the output may be inconsistent with real scenes. Lore et al. [31] is the
first to propose a learning-based enhancement network named LLNet using a synthetic
dataset. Later on, different low-light training datasets (e.g., LOL [22], SID [32], SICE [33],
VV (https://sites.google.com/site/vonikakis/datasets (accessed on 7 July 2021)), TM-
DIED (https://sites.google.com/site/vonikakis/datasets (accessed on 7 July 2021)), and
LLVIP [34]) were developed in order to assist the development of learning-based architec-
tures [35–38].

Wang et al. [39] present a technical evaluation of different methods for low-light
imaging. Most of the methods reviewed are classical, and comparing evaluations on five
images is quite unfair. Later on, Qi et al. , in [40], provide an overview of low-light
enhancement techniques, whereas the quantitative analysis of a few methods only on the
synthetic dataset (without noise) is provided. Noise is the most critical part of low-light
enhancement and a single synthetic low-light dataset cannot compare performance. In [41],
Li et al. propose a low-light image and video dataset to examine the generalization of
existing deep learning-based image and video enhancement methods. In sum, low-light
enhancement has a wide range of applications and is one of the most important image
processing fields. To the best of our knowledge, no such study paper is present in the
literature mentioned above that extensively provides the technical evaluation of low-light
enhancement methods.

The main purpose of this research is to fairly compare the performance of Retinex-
based enhancement methods with non-Retinex enhancement methods on a wide range of
test datasets covering different contents and lighting conditions. For a fair comparison, the
experimental evaluation criteria are defined first, and then all the methods are compared
based on the criteria. In addition, an average ranking system is suggested to rank the
enhancement methods based on their robustness. Computational complexity analysis of
methods is also carried out on four different image sizes for real-time application. This
experimental comparison and suggested ranking system of enhancement methods help the
research community to understand their shortcomings and to design more robust models
in the future.

The main contribution of this research can be summarized as follows:

https://sites.google.com/site/vonikakis/datasets
https://sites.google.com/site/vonikakis/datasets
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• A comprehensive literature review is presented for Retinex-based and non-Retinex
methods.

• A detailed experimental analysis is provided for a variety of Retinex-based and non-
Retinex methods on a variety of publicly available test datasets using well-known
image quality assessment metrics. Experimental results provide a holistic view of this
field and provide readers with an understanding of the advantages and disadvantages
of existing methodologies. In addition, the inconsistency of commonly used evaluation
metrics is pointed out.

• An analysis of the computational effectiveness of enhancement methods is also con-
ducted on images of different sizes. As a result of this computation cost, we can
determine which enhancement methods are more suitable for real-time applications.

• Publicly available low-light test datasets were ranked based on experimental analysis.
In developing more robust enhancement methods, the reader will benefit from this
ranking of benchmarking test datasets.

The rest of the paper is organized as follows. Section 2 presents the relevant back-
ground knowledge of non-Retinex-based, and Retinex-based classical and advanced low-
light enhancement methodologies. Section 3 presents the objectives of overall paper. In
Section 4, experimental setup is defined, a detailed discussion of the qualitative, quanti-
tative, and computational analysis of the classical and advanced low-light enhancement
methodologies are provided. Section 5, reports the challenges and the future trends. Finally,
the conclusion is drawn in Section 6.

2. Fundamentals

A thorough review of the literature related to Retinex-based and non-Retinex-based
classical and advanced learning-based low-light enhancement methods is presented in this
section. The following subsections contain literature on each of the categories mentioned above.

2.1. Retinex-Based Methods

Classical Retinex-based methods: The Retinex theory was developed by Land after
he studied the human retina-and-cortex system in detail [17]. According to the presented
theory, an image can be decomposed into two parts: reflectance and illumination. Re-
flectance is considered an intrinsic property and remains the same regardless of the lighting
condition. Illumination is determined by the intensity of light. The following representation
can be used to explain it:

S(x, y) = R(x, y) ◦ I(x, y), (1)

where S, R and I represent the source image, reflectance and illumination, respectively
and the operator ◦ denotes the element-wise multiplication between R and I. As time
progressed, different implementations of Retinex theory were proposed in the literature.
Path-based implementation of the Reinex [42–47] uses different geometry to calculate the
relative brightness of adjacent pixels to obtain the reflection component. Marini and Rizzi
proposed a biologically inspired implementation of Retinex for dynamic adjustment and
color constancy in their article [45]. In [44], the authors examine the different path-wise
approaches in detail and propose a mathematical formula to analyze these approaches.
It is worth noting that the number of paths has a significant impact on the accuracy of
the results. As a result, these path-wise implementations of Retinex theory suffer from
a high degree of dependency on the path and sampling noise, as well as a high cost of
computation when fine-tuning parameters.

The new method, random spray Retinex (RSR), was developed by Provenzi after
replacing the paths with 2-D pixels sprays in [48]. When paths are replaced with 2-D
random points distributed across the image, it is possible to determine the locality of
color perception. Even though this approach is faster, the spray radius, radial density
function, number of sprays, and pixels per spray must be adjusted. Jobson et al. , in [18],
used a single-scale Retinex (SSR) to implement Retinex for color constancy, and lightness
and color rendition of grayscale images. It is not possible for the SSR to provide both
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dynamic range compression (small scale) and tonal rendition (large scale) simultaneously.
However, it can only perform one of these tasks. Later, the authors of SSR extended their
idea to multiscale retinex with color restoration (MSRCR) [19]. As a result of MSRCR,
dynamic range compression, color consistency, and tonal rendition can be provided. SSR
and MSRCR both improve lighting and scene restoration for digital images, but halo
artifacts are visible near edges [49]. The majority of Retinex-based algorithms ignore the
illumination component and only extract the reflection component as an enhanced result,
but this results in unnaturalness. Enhancing an image is not just about enhancing details
but also about maintaining its natural appearance. To solve the unnatural appearance,
Wang et al. [50] make three contributions: (1) lightness-order-error metrics are proposed
to measure objective quality, (2) bright-pass filters decompose images into reflectance and
illumination, and (3) bi-log transformations to map illumination while maintaining the
balance between details and naturalness.

Zosso et al. reviewed Retinex-based methods and classified them into five broad
categories in [51]. Additionally, a two-step non-local unifying framework is proposed to
enhance the results and address the Retinex problem. In the first step, a quasi gradient
filter is obtained which satisfies gradient-sparsity and gradient-fidelity prior constraints.
As a second step, additional constraints are applied to the calculated quasi-gradient filter
in order to make it fit the reflectance data. Guo et al. devised a method named low-
light illumination map estimation (LIME) [21] to estimate the illumination of each pixel
first; then, apply a structure to that illumination map and use it as the final illumination
map. A variational based framework (VF) was introduced for Retinex for the first time
by Kimmel et al. [52]. In accordance with previous methods, the objection function is
based on the assumption that the illumination field is smooth. On the other hand, this
model lacks information regarding reflectance. Later on, different variational approaches
to Retinex theory are presented [53–55]. In [56], a total variational model (TVM) for Retinex
is proposed, assuming spatial smoothness of illumination and piecewise continuity of
reflection. In order to minimize TVM, a split Bregman iteration is used. VF and TVM differ
primarily in that TVM also takes into account reflection.

Fu et al. proposed a linear domain probabilistic method for simultaneous illumination
and reflectance estimation (PM-SIRE) [49]. By using an alternating direction multiplier
method, maximum a posteriori (MAP) is employed to estimate illumination and reflectance
effectively. Later, Fu et al. presented a weighted variational model for simultaneous il-
lumination and reflectance estimation (WV-SIRE) [20]. A WV-SIRE model is capable of
preserving more details about the estimated reflectance as well as suppressing noise more
effectively than a log-transformed model. The PM-SIRE and WV-SIRE both assume that illu-
mination changes smoothly over time, which may lead to incorrect illumination estimation.
Based on the luminous source, different surfaces are illuminated in different directions.

A fusion-based method for enhancing weakly illuminated images is proposed in [57].
This fusion method decomposes a weakly illuminated image into a reflectance map and an
illumination map. By using sigmoid and adaptive histogram equalization functions, the
illumination map is further decomposed into luminance-improved and contrast-enhanced
versions, and two weights are designed for each. Finally, an enhanced image is obtained
by combining the luminance-improved and contrast-improved versions with their corre-
sponding weights in a multi-scale manner. For the purpose of preserving intrinsic and
extrinsic priors, Cai et al. proposed a joint intrinsic-extrinsic prior (JieP) model [58]. In
JieP, shape prior is used to preserve structure information, texture prior is used to estimate
illumination with fine details, and illumination prior is used to capture luminous infor-
mation. Ying et al. [59] simulate the camera response model (CRM) by investigating the
relationship between two different exposure images and use the illumination estimation
to estimate the exposure ratio map. Later, the CRM and exposure ratio map are used to
produce the enhanced image. According to the CRM algorithm, some dark parts of the
body, such as the hair, are misinterpreted as dark backgrounds, and they are over-enhanced
as well.
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Advanced Retinex-based methods: The robustness of Retinex theory makes it appli-
cable to deep learning methods as well. Wei et al. were the first to combine the idea of
Retinex theory with deep learning by proposing the Retinex-Net network. Retinex-Net
consists of a Decom-Net for decomposing the image into reflectance and illumination
parts and an Enhance-Net for adjusting illumination. Furthermore, they introduce a real
low/normal-light Low-Light (LOL) dataset [22]. As a further development of the Retinex
theory, Zhang et al. proposed the kindling the darkness (KinD) network in [36]. There are
three components of KinD: layer decomposition, reflectance restoration, and illumination
adjustment. As a result of layer decomposition, the input image is divided into reflectance
and illumination elements, the reflectance part is improved by reflecting restoration and
the illumination part is smoothed piece-by-piece by illumination adjustment. By combin-
ing the outputs of the reflectance and illumination modules, the final result is achieved.
Artifacts, overexposure, and uneven lighting are common problems with KinD outputs.
For mitigating these effects, Zhange et al. proposed an improved version of KinD in [60].
This improved version of KinD implements a multi-scale illumination attention module,
known as KinD++. KinD++ has improved the quality of output images, but it has a lower
computational efficiency than KinD. In [61], a Retinex-based real-low to real-normal net-
work (R2RNet) was proposed. R2RNet consists of a decomposition network, a denoise
network, and a relight network, each of which is trained separately using decomposition
loss, denoise loss, and relight loss, respectively. As a result of decomposition, illumina-
tion and reflectance maps are produced. The denoise-net uses the illumination map as
a constraint to reduce the noise in the reflectance map, and the relight-net utilizes the
denoised illumination map and reflectance map in order to produce an enhanced output.
It is noteworthy that three separately trained networks are utilized to solve the low-light
enhancement problem, which is not an optimal strategy. Decomposing an image into
illumination and reflectance is a computationally inefficient process. Retinex-based transfer
functions were introduced by Lu and Zhange in [23] to solve this decomposition problem.
As opposed to decomposing the image, the network learn the transfer function to obtain
the enhanced image. Liu et al. [62] introduces reference free Retinex-inspired unrolling
with architecture search (RUAS) to reduce computational burden and construct lightweight
yet effective enhancement. First, RAUS exploits the intrinsic underexposed structure of
low-light images; then, it unrolls the optimization process to establish a holistic propaga-
tion model. Wang et al. [63] presents paired seeing dynamic scene in the dark (SDSD)
datasets. A self-supervised end-to-end framework based on Retinex is also proposed in
order to simultaneously reduce noise and enhance illumination. This framework consists
of modules for progressive alignment, self-supervised noise estimation, and illumination
map prediction. With progressive alignment, temporal information is utilized to produce
blur-free frames, self-supervised noise estimation estimates noise from aligned feature
maps of the progressive module, and illumination estimation estimates illumination maps
consistent with frame content.

Retinex theory is also used in semi-supervised and zero-shot learning-based tech-
niques for enhancing low light visibility. In Zhang et al. [24], a self-supervised maximum
entropy Retinex (ME-Retinex) model is presented. In the ME-Retinex model, a network
for enhancing image contrast is coupled with a network for re-enhancing and denois-
ing. Zhao et al. [64] proposed a zero-reference framework named RetinexDIP that draws
inspiration from the concept of a deep image prior (DIP). The Retinex decomposition is
carried out in a generative manner in RetinexDIP. From random noises as input, RetinexDIP
generates both reflectance and illumination maps simultaneously, and enhances the illumi-
nation map resulting from this process. The proposed model generalizes well to various
scenes, but producing an illumination map requires hundreds of iterations. This iterative
learning approach consumes a lot of time to produce optimized results. The robust retinex
decomposition network (RRDNet) is a three-branch zero-shot network that is proposed
in RRDNet [25] to decompose low-light input images into illumination, reflectance, and
noise. RRDNet weights are updated by a zero-shot scheme using a novel non-reference
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loss function. In the proposed loss function, there are three components: the first part
reconstructs the image, the second part enhances the texture of the dark region, and the
third part suppresses noise in the dark regions. Qu et al. , in [65], segmented an image
into sub-images, applied deep reinforcement learning to learn the local exposure for each
sub-image and finally adversarial learning is applied to approximate the global aesthetic
function. It is also proposed to learn discriminators asynchronously and reuse them as
value functions.

2.2. Non-Retinex Methods

Histogram equalization (HE) [66] is one of the earlier methods used for enhancing the
dynamic range of low-light images. It is a well-known method due to its simplicity. When
the entire image histogram is balanced, the visual quality of the image is deteriorated,
false contours are introduced, and annoying artifacts are introduced into the image [67].
As a result, some uniform regions become saturated with very bright and very dark
intensities [68]. Gamma correction [69] is a non-linear classical technique that is used for
image enhancement. It increases the dark portion of the image while suppressing the bright
portion. During gamma correction, each pixel is treated as an individual. It is possible that
some regions of the image will be under- or over-enhanced due to a single transformation
function used for each pixel.

In later years, deep learning has been applied to my field of study. Lore et al. [31]
were the first one to use a stacked sparse based autoencoder approach called LLNet for
joint enhancement and noise reduction. There is evidence that deeper networks perform
better than non-deeper networks; however, deeper networks suffer from gradient vanishing
problems. To use a deeper network and solve the gradient vanishing problem, Tao et al.
in LLCNN [70] proposed a special module to utilize multiscale feature maps for low-light
enhancement. A multi-branch low-light enhancement network (MBLLEN) is designed by
Lv et al. in [71] to extract features of different levels, enhance these multi-level features,
and fuse them in order to produce an enhanced image. Additionally, Lv et al. also
propose a novel loss function that takes into account the structure information, context
information, and regional differences of the image. Wang et al. , in [72], propose the
global illumination-aware and detail-preserving network (GLADNet). In the first step,
GLADNet uses an encoder-decoder network to estimate the global illumination and then
reconstructs the details lost during the rescaling process. The major disadvantage of LLNet,
LLCN, MBBLEN and GLADNet is that they were trained on synthetically darkened and
noise-added datasets. Chen et al. [32] used a Unet based pipeline for enhancing and
denoising extremely low-light images using the RAW training see-in-the-dark (SID) dataset.
This Unet-based pipeline is designed specifically for images in RAW format. Practically,
the most common image format is sRGB. The majority of previous methods have used
pixel-wise reconstruction losses and failed to provide effective regularization of the local
structure of the image, which in turn undermines the network’s performance. The pixel-to-
pixel deterministic mapping results in improperly exposed regions, introduces artifacts,
and fails to describe the visual distance between the reference and the enhanced image.
A flow-based low-light enhancement method (LLFlow) has been proposed by Wang et
al. [38] to address this pixel-to-pixel mapping issue. It is possible to map multi-modal
image manifolds into latent distributions using the normalizing flow. Effectively enhanced
manifolds can be constructed using the latent distribution.

Getting low-light and normal-light images paired can be difficult, expensive, or im-
practical. An unpaired low-light enhancement method called EnlightenGAN is proposed by
Jiang et al. [73] to eliminate the need for paired training datasets. A global-local discrimina-
tor structure and an easy-to-use attention U-net generator are proposed in EnlightenGAN.
By designing the attention U-net only to enhance the dark regions more, the image is neither
overexposed nor underexposed. A dual global-local discriminator strategy contributes to
the balance between local and global enhancement of low-light images. Xiong et al. [74]
considered low-light enhancements as two subtasks: illumination enhancement and noise
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reduction. A two-stage framework referred to as decoupled networks is proposed for
handling each task. In decoupled networks, there are two encoder-decoder architectures,
the first architecture enhances illumination, and the second architecture suppresses noise by
taking the original input along with the enhanced output from stage one. To facilitate unsu-
pervised learning, an adaptive content loss and pseudo triples are proposed. Xia et al. [75]
used two images of the scene taken in quick succession (with and without a flash) to
generate a noise-free and accurate display of ambient colors. Using a neural network, an
image taken without flash is analyzed for color and mood, while an image taken with a
flash is analyzed for surface texture and details. One of the major disadvantages of this
method is that paired images with and without flash are not generally available.

The camera sensors on mobile phones perform poorly in low-light conditions. An
improved face verification method using a semisupervised decomposition and recon-
struction network is proposed in [76] to improve accuracy for low-light images of faces.
Yang et al. [77] proposes a deep semi-supervised recursive band network (DRBN) to ad-
dress the decreased visibility, intensive noise, and biased color of low-light images. DRBN
learns in two stages, the first stage involves learning the linear band representation by
comparing low- and normal-light images, and the second stage involves recomposing the
linear band representation from the first stage to fit the visual properties of high-quality
images through adversarial learning. Further improvement of the DRBN is impeded
by the separation of supervised and unsupervised modules. Qiao et al. [78] further
improved DRBN performance by introducing a joint training based semi-supervised al-
gorithm. Wu et al. [79] proposed the lightweight two stream method to overcome the
limitations of the training data due to sample bias and the hurdle of the large number
of parameters in real-time deployment. Additionally, a self-supervised loss function is
proposed to overcome the sample bias of the training data.

Guo et al. [80] proposes zero-reference deep curve estimation (Zero-DCE) rather than
performing image-to-image mapping. In order to preserve the contrast of the neighboring
pixels, Zero-DCE creates high-order curves from low-light images and then adjusts low-
light images pixel-by-pixel using these high-order curves. It is superior to existing GAN-
based methods since it does not require paired or unpaired data for its training. Enhanced
images are produced with four non-reference loss functions: spatial consistency loss,
exposure control loss, color constancy loss, and illumination smoothness loss. The re-design
and reformulation of the network structure were subsequently carried out by Li et al. , who
introduced Zero-DCE++, which is an accelerated and lighter version of Zero-DCE.

3. Objectives of Experimental Study

This research study aims to address the following questions:

1. It has been noted that although there have been a large number of algorithms de-
veloped for low-light enhancement, Retinex theory-based models are gaining more
attention due to their robustness. Retinex theory is even used in deep learning-based
models. Specifically, this paper attempts to compare the performance of Retinex
theory-based classical and deep learning low-light enhancement models with other
state-of-the-art models.

2. Several low-light enhancement methods perform well on some test datasets but fail
in real-world scenarios. An extensive range of real-world images should be used to
test the robustness of the low-light enhancement models. As a means of assessing
the robustness of enhancement methods in real-world scenarios, various test datasets
spanning a wide range of lighting conditions and contents need to be selected, and
the performance of Retinue-based models needs to be compared with that of other
enhancement techniques on these test datasets.

3. The trend of real-time cellphone night photography is increasing day by day. There-
fore, analyzing the computational costs associated with low-light enhancement meth-
ods is necessary. Comparison of not only the parameters of these methods but also the
processing time for the images of four different sizes (i.e., 400 × 600 × 3, 640 × 960 × 3,
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2304× 1728× 3 and 2848× 4256× 3) is required. A computational analysis of different
sizes of images will enable the researchers to determine whether the computational
cost increases linearly or exponentially as the image size increases.

4. The quality of low-light enhancement methods needs to be evaluated using a vari-
ety of image quality assessment (IQA) methods. Every metric aims to identify the
particular quality of the predicted image. The LOE measures the naturalness of the
image, whereas the information entropy measures the information contained in the
image. What is the most effective method of comparing the robustness of low-light
enhancement methods when comparing results based on these evaluation metrics?

4. Quantitative and Qualitative Analysis

This subsections of this section present the experimental setup for farily comparing
the methods, qualitative, quantitative comparison, and computational cost analysis of
enhancement methods. In addition, it also discusses the evaluation metrics and test
datasets.

4.1. Experimental Criteria for Enhancement Methods Comparison

To conduct a fair comparison to analyze the enhancement methods generalization, we
have selected the nine different publicly available test datasets widely used in the literature for
comparing the performance of enhancement methods [64,73,81]. The selected datasets include
LIME [21], LOL [22], DICM [82], VV (https://sites.google.com/site/vonikakis/datasets
(accessed on 7 July 2021)), MEF [83], NPE [50], LSRW [61], SLL [84] and ExDark [85]. The
main purpose of selecting these different nine test datasets is to cover diversified scenes,
camera devices, lighting conditions (i.e., weak lighting, under exposure, twilight, dark),
and contents. In summary, each test dataset covers a different aspect of low-lighting,
scene or content. Therefore, these test datasets are useful to compare the performance of
enhancement methods from different aspects.

The four most commonly used no-reference metrics for the quantitative evalua-
tion of low-light enhancement methods are used. These metrics include entropy [86],
BRISQUE [87], NIQE [88], and LOE [50]. The entropy measures the information content
of an image. a higher value of entropy indicates richer details and a higher contrast level
of an image. Blind/referenceless image spatial quality evaluator (BRISQUE) is another
commonly used model to quantify the quality of low-light enhancement methods. It does
not compute the distortion specific feature, but instead it uses the scene statistics to quantify
the loss of naturalness in an image due to the presence of distortion. BRISQIE uses a space
vector machine (SVM) regressor to predict the quality of the image. Natural image quality
evaluator (NIQE) quantifies the quality of the distorted image by measuring the distance of
natural scene statistic (NSS) feature model and the multivariate Gaussian (MVG) feature
model of distorted image. Lightness order error (LOE) is designed to measure the order of
lightness. The order of lightness represents the direction of the light source and helps to
quantify the naturalness preservation. LOE can be defined as follows:

LOE =
1

m ∗ n

m

∑
x=1

n

∑
y=1

(U(Q(i, j), Q(x, y))⊕ U(Qr(i, j), Qr(x, y))), (2)

where U(x, y) is a unit step function. It returns 1 if x > y and returns 0 otherwise. m, n
represents height and width of the image, respectively. Moreover, Q(i, j) and Qr(i, j) are
maximum values among the three color channels at location (i, j) for the original image
and enhanced image, respectively.

In this study, the performance of 17 Retinex-based methods and 17 non-Retinex will
be compared. We consider the publicly available codes and recommended settings of these
methods to have a fair comparison. The higher value of entropy indicates better quality
and for the other three methods (i.e., LOE, NIQE, and BRISQUE) lower values of entropy
indicate the better image quality. To show a better understanding the comparison, average

https://sites.google.com/site/vonikakis/datasets
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ranking has been suggested to enhancement methods based on these IQA methods. For
example, the enhancement methods that got the highest average score of entropy on all test
datasets are given rank 1 and vice versa. Similarly, the enhancement methods show the
lowest average score according to LOE or NIQE or BRISQUE are assigned rank 1 and the
highest average score is assigned the highest rank. Rank 1 indicates the best performance
and the rank with higher value indicates the worst performance.

In addition, we compare the computational complexity of classical methods on images
of four different sizes. The classical codes computational complexity is computed on CPU,
whereas those of deep learning-based methods on NVIDIA Titan Xp GPU.

4.2. Qualitative Evaluation of Enhancement Methods

In this section, we provide a detailed description of the qualitative evaluation of
enhancement methods. The comparative visual results of the top ten classical and advanced
methods on six publicly available test datasets are shown in Figures 1 and 2, respectively.
These figures’ first to sixth columns indicate the enhancement results of different methods
on LIME, LARW, DICM, ExDark, LOL, and SLL datasets, respectively. For simplicity, deep
learning and classical methods are discussed one by one. It is encouraged to zoom in to
compare the results.

Zero-shot learning-based methods (i.e., ZeroDCE and RetinexDIP) produce darker and
noisy images compared to other methods. The results of GLADNet, TBEFN, and LLFlow
are more realistic, sharper, less noisy, and have accurate color rendition. The output images
of MBLLEN are over-smoothed and darker but less dark than ZeroDCE. GLADNet, TBEFN,
LLFlow, MBLLEN, and KinD are trained on paired data. The supervised learning-based
models achieved the appropriate restoration of color and textures, noise suppression, and
better generalization. However, no method has produced good results on all the datasets.
For example, GLADNet results on DICM are too noisy and produce artifacts on the ExDark
image. Similarly, strange artifacts on DICM images are produced by TBEFN. LLFLow
produces greenish color around the edges of LSRM image. As it can be seen, StableLLVE
has a lighter washed-out effect and smoothed edges on all the results. KinD results look
realistic, but some parts of the image look too dark, such as the background chairs in the
LOL image. SS-Net produces a good result on the VV test image but produces poor results
on DICM and ExDark. Moreover, the strange pattern, missing color information, and other
details can be observed easily on the ExDark image. The results of Retinex-based methods
(i.e., TBEFN, KinD, SS-Net, RetinexDIP) look more natural and real.

The classical methods (i.e., CVC, DHE, BIMEF, IAGC, and AGCWD) shown in the
Figure 2 belong to the non-Retinex category, and PM-SIRE, WV-SRIE, JieP, EFF, and NPE
belongs to Retinex theory. If we closely observe their visual results, one thing that is
common among majority of these methods is noise. Except for BIMEF and EFF, most
results can easily observe noise. The average brightness of BIMEF is too low and does not
enhance the overall image. On the other hand, EFF produces higher brightness results,
but the image’s details are not too sharp. CVC and IAGC do not accurately render the
color information, making their results look black and white. Although some classical
methods’ results quality is good, their results are still darker than deep learning-based
methods. The results produced by BIMEF, IAGE, and CVC are darker as compared to
other classical methods. Over-enhancement, severe noise and loss of color information can
be seen in the results of DHE. The results of CVC are not only darker but also lost color
information. AGCWD produces low contrast and less bright images, and some parts of
the image are too dark (for example background buildings in the LIME test image and the
background wall in the LOL test image). Gamma correction-based methods (i.e., AGCWD
and IAGC) enhance some parts of the image while darker parts become darker. Strange
artifacts around the fire can be easily seen in the IAGC result on the ExDark image.
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Figure 1. A visual representation of results from top ten deep learning methods on six datasets.
The rows are showing the results produced by different algorithms, whereas the columns are
showing datasets.
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Figure 2. A visual representation of results from top ten classical methods on six datasets. The rows
are showing the results produced by different algorithms, whereas the columns are showing datasets.
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The results of Retinex-based methods (NPE and WV-SIRE) enhance the image’s bright-
ness, contrast, and sharpness, but fail to suppress the noise. The major issue with the
majority of traditional methods is noise suppression. Histogram-based methods work to
balance the histogram of the image to increase the brightness and contrast, but there is no
such mechanics to remove the noise. Meanwhile, gamma correction-based methods treat
each pixel individually and fail to exploit their relationship with neighbor pixels, which
results in different artifacts and noise. In contrast, Retinex theory-based methods create
different algorithms for successfully decomposing low-light images into reflectance and
illumination components. In the case of severe noise, decomposing the image becomes
difficult. The noise is not considered a major factor in any of these approaches. Therefore,
noise dominates the visual results of these methods. When Figures 1 and 2 are compared,
it is evident that deep learning-based methods produce brighter, sharper, cleaner, and
higher contrast results. There is still some noise in some results, but compared to traditional
methods, it is very low. Contrary to this, traditional visual results have many shortcomings.
For example, some results have a lower average brightness, a lesser contrast level, a lesser
degree of sharpness, failure to remove noise, and serious color shifts. Some of them enhance
the image and the noise associated with it.

4.3. Quantitative Comparison of Enhancement Methods

Four non-reference evaluation metrics were used for the quantitative comparison.
There are two reasons for using no-reference-based IQA metrics: (1) the majority of widely
used test datasets are no-reference, and (2) unsupervised methods are emerging. Metrics
adopted for evaluation include NIQE [88], BRISQUE [87], LOE [50], and Entropy. Low
NIQE, BRISQIE, and LOE values indicate better image quality. In contrast, higher values
of entropy indicate richer information. Tables 1–4 provide quantitative results for these
metrics. Red indicates the best scores obtained on each dataset, while blue and green
indicate the second and third best scores. The LOE indicates that non-Retinex methods
perform better, whereas the other three metrics show that performance is uniform across
both categories (i.e., Retinex and non-Retinex). Each method is evaluated by four metrics.
There is no winner on all four metrics. To determine which method generalizes well,
the enhancement methods score on all test data is averaged. The last column of the
aforementioned tables represents the average score of enhancement methods on all test
datasets. Based on averaged score, ranking number is assigned to each method and we
summarize these rankings in Figure 3. Ranking 1 goes to the method with the best average
score, and ranking 31 to the method with the worst average score. Different metrics rank
enhancement methods differently. For instance, AGCWD ranked first according to LOE
metric, whereas the same method is ranked as fifth, eighteenth, and twenty-ninth according
to BRISQIE, NIQE, and entropy, respectively. Instead of analyzing the enhancement
methods based on different metrics, we have taken the average of the ranking assigned
based on the mentioned metrics and discussed the results of this average ranking.
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Table 1. Quantitative comparison of enhancement algorithms on nine test datasets using LOE metric.
A lower value of the LOE metric indicates better performance. The first, second, and third best scores
are highlighted with red, blue, and green colors, respectively.

Methods
Datasets LIME LOL DICM VV MEF NPE LSRW SLL ExDark Average

N
on

-R
et

in
ex

M
et

ho
ds

HE [89] 290.280 423.910 283.980 280.750 406.930 184.590 122.84 753.990 408.76 358.222
DHE [27] 7.663 22.227 75.608 21.013 7.852 23.974 13.930 10.177 138.049 35.610

BPDHE [68] 6.960 125.046 14.936 4.110 5.480 7.643 5.985 382.146 134.774 76.342
CVC [90] 99.386 286.840 135.324 91.217 97.464 131.478 124.946 324.260 189.896 164.534

CLAHE [91] 183.094 397.432 386.183 209.867 224.280 379.588 242.572 504.013 252.236 308.807
AGCWD [29] 10.075 0.1325 57.482 14.777 6.046 31.432 1.463 6.132 137.990 31.932

IAGC [92] 63.028 170.190 53.502 55.943 66.710 41.488 77.123 278.054 165.790 113.600
BIMEF [93] 136.898 141.159 239.271 102.891 155.616 225.588 117.777 480.848 237.563 212.589

MBLLEN [71] 122.188 302.577 176.580 79.013 131.243 123.871 168.128 484.809 190.384 207.076
GLADNet [72] 123.603 349.720 285.239 145.034 199.632 203.488 204.887 518.189 262.524 254.702

DLN [81] 132.594 264.065 404.673 325.572 189.831 - 176.527 528.411 212.723 -
Zero-DCE [80] 135.032 209.426 340.803 145.435 164.262 312.392 219.127 539.673 315.084 280.775

Exposure Correction [94] 242.461 438.420 362.552 220.876 275.476 314.833 288.659 588.132 307.881 349.604
StableLLVE [95] 134.130 267.686 476.374 192.262 198.069 394.811 179.101 344.573 248.400 287.660
LightenNet [96] 681.834 387.204 772.380 328.510 896.201 714.390 930.978 924.638 636.000 698.788
White-box [97] 90.876 125.682 195.516 124.115 96.704 120.687 84.279 370.972 135.606 156.695

LLFlow [38] 365.530 367.153 563.765 300.058 430.534 538.078 685.344 764.261 445.274 511.808

R
et

in
ex

-b
as

ed
M

et
ho

ds

LIME [21] 559.618 404.114 818.660 460.440 618.480 870.215 434.485 1103.98 575.987 649.553
NPE [50] 300.505 317.399 264.604 352.294 344.953 257.010 435.676 293.158 358.018 327.889
JieP [58] 249.137 314.798 287.305 137.026 292.798 305.435 216.597 690.829 345.754 323.818

PM-SIRE [49] 113.631 73.558 152.779 113.031 166.640 104.945 143.945 189.09 193.194 142.148
WV-SRIE [20] 106.308 83.806 162.224 69.480 210.261 155.683 131.724 236.846 220.823 158.856
MSRCR [19] 842.029 1450.95 1185.11 1280.68 973.893 1252.07 893.216 1211.11 676.415 1115.43

CRM [59] 271.652 21.818 450.102 174.751 285.250 534.275 119.712 619.537 352.672 314.419
EFF [98] 136.898 141.159 239.271 102.891 155.616 255.588 117.777 480.848 237.563 207.512

pmea [99] 491.663 725.647 477.792 318.569 679.002 610.183 418.046 1005.66 529.189 595.511
RetinexNet [22] 472.189 770.105 636.160 391.745 708.250 838.310 591.278 950.895 548.905 679.456

KinD [36] 214.893 434.595 261.771 134.844 275.474 241.221 379.899 479.139 308.869 303.412
RetinexDIP [64] 767.042 1084.35 852.782 396.417 926.948 1099.39 572.429 1283.77 633.489 856.197

RRDNet [25] 72.917 21.438 261.429 168.601 100.735 - 136.011 380.747 1.100 -
KinD++ [60] 573.877 720.025 493.882 258.744 629.841 - 727.695 555.363 484.989 -

IBA [100] 14.657 0.1616 445.574 169.714 12.823 364.810 137.727 21.758 284.333 179.613
Self-supervised Network [24] 241.639 322.628 737.847 282.273 311.342 581.691 261.280 467.892 333.842 412.349

TBEFN [23] 289.754 464.947 617.100 271.871 419.666 527.675 386.583 859.878 389.558 492.160

Average 178.196 342.070 387.311 227.201 313.656 378.930 286.698 548.053 320.401 -



Remote Sens. 2022, 14, 4608 14 of 25

Table 2. Quantitative comparison of enhancement algorithms on nine test datasets using NIQE
metric. A lower value of the NIQE metric indicates better performance. The first, second, and third
best scores are highlighted with red, blue, and green colors, respectively.

Methods
Datasets LIME LOL DICM VV MEF NPE LSRW SLL ExDark Average

N
on

-R
et

in
ex

M
et

ho
ds

Input 4.357 6.748 4.274 3.524 4.263 3.717 5.391 5.358 5.128 4.800
HE [89] 3.884 8.413 3.850 2.662 3.870 3.535 3.963 6.438 4.752 4.685

DHE [27] 3.914 8.987 3.780 2.648 3.518 3.510 3.626 6.292 4.518 4.610
BPDHE [68] 3.827 NaN 3.786 2.857 3.902 3.531 3.935 NaN 4.727 -

CVC [90] 4.029 8.014 3.823 2.692 3.636 3.498 4.127 5.828 4.662 4.535
CLAHE [91] 3.907 7.268 3.792 2.784 3.606 3.461 4.581 5.756 4.734 4.490
AGCWD [29] 4.032 7.528 3.868 2.970 3.629 3.544 3.733 5.660 4.582 4.434

IAGC [92] 3.951 7.418 4.015 3.012 3.652 3.598 3.963 5.740 4.557 4.494
BIMEF [93] 3.859 7.515 3.845 2.807 3.329 3.540 3.879 5.747 4.514 4.397

MBLLEN [71] 4.513 4.357 4.230 4.179 4.739 3.948 4.722 3.979 4.478 4.329
GLADNet [72] 4.128 6.475 3.681 2.790 3.360 3.522 3.397 5.066 3.767 4.009

DLN [81] 4.341 4.883 3.789 3.228 4.022 - 4.419 4.376 4.415 -
Zero-DCE [80] 3.769 7.767 3.567 3.216 3.283 3.582 3.720 5.998 3.917 4.381

Exposure Correction [94] 4.215 7.886 3.588 3.078 4.456 3.414 3.820 4.942 4.357 4.443
StableLLVE [95] 4.234 4.372 4.061 3.420 3.924 3.486 4.367 4.185 4.053 3.984
LightenNet [96] 3.731 7.323 3.539 2.995 3.350 3.407 3.583 5.453 4.025 4.209
White-box [97] 4.598 7.819 4.630 3.558 4.622 4.004 4.314 7.138 5.534 5.202

LLFlow [38] 3.956 5.445 3.765 3.026 3.441 3.498 3.564 4.722 4.094 3.944

R
et

in
ex

-b
as

ed
M

et
ho

ds

LIME [21] 4.109 8.129 3.860 2.494 3.576 3.658 3.655 6.372 4.588 4.542
NPE [50] 3.578 8.158 3.736 2.471 3.337 3.426 3.576 5.771 4.220 4.337
JieP [58] 3.719 6.872 3.678 2.765 3.390 3.522 4.015 5.622 4.215 4.260

PM-SIRE [49] 4.050 7.506 3.978 3.010 3.450 3.531 3.984 5.435 4.383 4.410
WV-SRIE [20] 3.786 7.286 3.898 2.849 3.474 3.450 3.826 5.453 4.241 4.310
MSRCR [19] 3.939 8.006 3.948 2.814 3.688 3.780 3.872 5.574 4.904 4.573

CRM [59] 3.854 7.686 3.801 2.617 3.264 3.562 3.721 6.008 4.525 4.391
EFF [98] 3.859 7.515 3.845 2.807 3.329 3.540 3.879 5.747 4.514 4.390

pmea [99] 3.843 8.281 3.836 2.573 3.431 3.598 3.694 6.237 4.296 4.493
RetinexNet [22] 4.597 8.879 4.415 2.695 4.410 4.464 4.150 7.573 4.551 5.142

KinD [36] 4.763 4.709 4.150 3.026 3.876 3.557 3.543 4.450 4.340 3.956
RetinexDIP [64] 3.735 7.096 3.705 2.496 3.245 3.638 4.081 5.8828 4.234 4.297

RRDNet [25] 3.936 7.436 3.637 2.814 3.508 - 4.126 5.524 4.010 -
KinD++ [60] 4.385 4.616 3.804 2.660 3.738 - 3.354 5.090 4.343 -

IBA [100] 4.062 7.884 3.723 3.310 3.536 3.630 3.728 5.837 4.273 4.490
Self-supervised Network [24] 4.819 3.753 4.717 3.548 4.351 4.602 4.061 5.400 4.048 4.310

TBEFN [23] 3.954 3.436 3.503 2.884 3.227 3.292 3.478 4.648 3.621 3.511

Average 3.935 6.728 3.889 2.956 3.698 3.626 3.933 5.409 4.403 -
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Table 3. Quantitative comparison of enhancement algorithms on nine test datasets using entropy [86]
metric. A higher value of the entropy metric indicates better performance. The first, second, and
third best scores are highlighted with red, blue, and green colors, respectively.

Methods
Datasets LIME LOL DICM VV MEF NPE LSRW SLL ExDark Average

N
on

-R
et

in
ex

M
et

ho
ds

Input 6.148 4.915 6.686 6.715 6.075 7.017 5.415 5.616 5.744 6.023
HE [89] 7.342 7.184 7.221 7.383 7.118 7.756 6.874 6.662 6.708 7.113

DHE [27] 7.097 6.749 7.141 7.225 6.913 7.512 6.531 6.741 6.613 6.930
BPDHE [68] 6.610 5.932 6.968 6.977 6.420 7.348 6.260 5.191 6.188 6.413

CVC [90] 6.875 6.409 7.055 7.216 6.755 7.402 6.318 6.549 6.465 6.772
CLAHE [91] 6.764 5.679 7.088 7.056 6.583 7.408 6.033 6.591 6.302 6.595
AGCWD [29] 6.792 6.415 6.925 7.021 6.648 7.398 6.394 6.278 6.248 6.666

IAGC [92] 6.991 6.247 7.015 7.193 6.878 7.351 6.318 6.698 6.554 6.782
BIMEF [93] 7.006 6.145 7.029 7.243 6.898 7.311 6.516 6.452 6.464 6.760

MBLLEN [71] 7.164 7.303 7.255 7.333 7.081 7.386 7.236 7.197 7.132 7.240
GLADNet [72] 7.502 7.356 7.404 7.447 7.408 7.452 7.393 7.581 7.250 7.412

DLN [81] 7.121 7.277 7.250 7.535 7.255 - 7.202 7.576 7.129 -
Zero-DCE [80] 7.166 6.531 7.224 7.572 7.093 7.402 7.035 6.545 6.932 7.042

Exposure Correction [94] 7.112 7.244 7.256 6.962 6.955 7.531 7.039 7.247 6.907 7.142
StableLLVE [95] 7.227 6.625 7.010 7.385 7.241 7.042 6.846 7.439 7.129 7.090
LightenNet [96] 7.234 6.119 7.263 7.411 7.308 7.398 7.599 6.130 6.688 6.990
White-box [97] 5.984 5.925 6.051 5.475 5.391 7.380 6.352 5.460 5.275 5.914

LLFlow [38] 7.468 7.462 7.425 7.565 7.366 7.564 7.343 7.304 7.125 7.394

R
et

in
ex

-b
as

ed
M

et
ho

ds

LIME [21] 7.315 7.129 6.946 7.395 7.139 7.332 7.279 6.418 6.582 7.031
NPE [50] 7.368 6.971 7.208 7.550 7.405 7.446 7.318 6.418 6.772 7.139
JieP [58] 7.087 6.443 7.218 7.457 7.104 7.427 6.794 6.473 6.631 6.943

PM-SIRE [49] 7.006 6.322 7.084 7.309 6.894 7.404 6.696 6.325 6.441 6.812
WV-SRIE [20] 6.999 6.348 7.088 7.401 6.942 7.386 6.663 6.190 6.463 6.812
MSRCR [19] 6.563 6.841 6.677 6.957 6.455 6.762 6.895 5.936 6.319 6.605

CRM [59] 6.487 4.971 6.640 6.559 6.203 7.026 5.494 6.068 5.921 6.115
EFF [98] 7.006 6.145 7.029 7.243 6.898 7.311 6.516 6.452 6.464 6.760

pmea [99] 7.284 6.824 7.220 7.479 7.273 7.449 7.074 6.638 6.725 7.088
RetinexNet [22] 7.489 7.233 7.413 7.575 7.448 7.463 7.243 7.385 7.273 7.379

KinD [36] 7.388 7.017 7.211 7.498 7.328 7.435 7.209 7.408 6.905 7.251
RetinexDIP [64] 6.974 5.375 7.214 7.557 6.661 7.381 6.352 6.213 6.668 6.678

RRDNet [25] 6.646 5.457 7.142 7.275 6.453 - 6.775 6.077 6.426 -
KinD++ [60] 7.486 7.065 7.332 7.627 7.463 - 7.316 7.452 7.034 -

IBA [100] 5.905 4.913 6.826 7.255 5.749 7.035 7.146 5.465 6.971 6.420
Self-supervised Network [24] 7.497 7.404 6.675 7.298 7.469 6.997 7.397 7.484 7.296 7.253

TBEFN [23] 7.436 6.875 7.328 7.507 7.383 7.366 7.047 7.519 7.313 7.292

Average 7.000 6.481 7.072 7.247 6.904 7.340 6.798 6.605 6.659 -
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Table 4. Quantitative comparison of enhancement algorithms on nine test datasets using BRISQUE
metric. A lower value of the BRISQUE metric indicates better performance. The first, second, and
third best scores are highlighted with red, blue, and green colors, respectively.

Methods
Datasets LIME LOL DICM VV MEF NPE LSRW SLL ExDark Average

N
on

-R
et

in
ex

M
et

ho
ds

Input 25.142 21.929 28.115 29.380 29.066 26.673 32.726 25.304 34.015 28.401
HE [89] 21.411 39.559 25.359 18.937 25.313 25.444 28.219 40.015 29.034 28.985

DHE [27] 22.336 37.866 25.993 24.380 21.466 27.008 26.477 38.248 28.951 28.719
BPDHE [68] 21.728 NaN 25.0972 25.183 22.345 26.425 25.129 NaN 27.417 -

CVC [90] 22.589 27.101 24.620 21.766 19.285 25.693 26.808 29.007 26.979 25.126
CLAHE [91] 23.274 29.463 24.248 23.480 22.701 25.368 29.570 31.579 28.543 26.825
AGCWD [29] 21.964 28.421 24.725 23.961 19.420 26.4117 23.367 29.740 26.161 25.276

IAGC [92] 24.314 24.058 27.026 26.617 21.843 26.044 23.854 32.813 27.429 26.211
BIMEF [93] 23.135 27.651 26.811 22.542 20.220 25.504 24.077 34.982 27.910 26.174

MBLLEN [71] 30.386 23.078 31.603 35.076 32.389 29.423 30.328 22.103 29.012 29.127
GLADNet [72] 22.286 26.073 26.253 24.068 22.908 24.969 22.802 33.754 24.765 25.657

DLN [81] 27.715 28.985 26.914 29.782 28.378 - 33.597 26.798 31.187 -
Zero-DCE [80] 23.334 30.305 30.653 30.786 25.484 30.159 25.827 36.572 26.761 29.568

Exposure Correction [94] 27.483 28.357 29.847 31.694 29.597 26.768 26.391 28.632 32.520 29.204
StableLLVE [95] 28.885 32.194 28.150 28.295 28.475 25.662 30.563 25.850 27.749 28.367
LightenNet [96] 19.523 28.062 28.791 23.502 21.469 27.667 25.144 28.055 25.924 26.077
White-box [97] 28.807 31.721 33.212 35.733 33.599 26.671 25.081 39.450 37.429 32.862

LLFlow [38] 22.856 29.709 25.072 23.157 25.673 25.392 22.011 28.041 26.133 25.649

R
et

in
ex

-b
as

ed
M

et
ho

ds

LIME [21] 23.572 33.973 27.137 25.394 25.158 28.576 27.658 35.829 28.704 28.986
NPE [50] 22.506 33.858 25.493 24.654 22.320 24.986 27.195 33.861 28.452 27.539
JieP [58] 22.193 27.087 23.633 22.941 21.214 25.498 23.421 30.207 25.309 24.914

PM-SIRE [49] 24.659 27.694 27.597 24.287 24.321 27.342 25.345 30.014 26.676 26.635
WV-SRIE [20] 24.181 27.611 27.698 24.434 22.088 25.760 24.700 28.281 26.750 25.894
MSRCR [19] 19.384 30.345 25.799 19.282 19.091 24.189 25.789 30.300 25.415 24.957

CRM [59] 23.477 29.599 26.601 22.368 20.716 25.726 24.396 37.723 28.733 26.939
EFF [98] 23.135 27.651 26.811 22.542 20.220 25.504 24.077 34.982 27.910 26.174

pmea [99] 21.390 32.913 25.832 24.972 21.756 26.358 25.358 38.132 28.321 27.874
RetinexNet [22] 26.101 39.586 26.656 22.459 26.036 29.086 29.021 41.506 30.170 30.565

KinD [36] 26.773 26.645 30.696 28.887 30.438 27.753 26.763 30.539 29.256 28.872
RetinexDIP [64] 21.723 19.679 25.199 25.338 23.605 26.671 25.081 32.618 32.175 26.296

RRDNet [25] 24.499 26.834 29.621 23.396 17.750 - 27.100 29.205 27.606 -
KinD++ [60] 20.025 25.086 27.852 28.164 30.024 - 26.973 34.978 31.775 -

IBA [100] 24.336 31.117 32.103 34.646 23.748 29.933 25.826 32.537 26.639 29.569
Self-supervised Network [24] 30.192 19.768 29.529 30.183 28.355 29.159 26.205 32.016 27.990 27.901

TBEFN [23] 25.720 17.346 23.606 23.651 24.435 24.0355 22.929 30.676 25.064 23.968

Average 23.009 27.752 27.267 25.841 24.312 26.621 26.280 31.267 28.425 -

The red line in Figure 3 represents the average ranking achieved by enhancement
methods on all test datasets. The average ranking puts GLADNet, TBEFN, and LLFlow in
first, second, and third, respectively. GLADNet generalizes well despite being trained on
5000 synthetic images using L1 loss. Retinex-based methods TBEFN, WV-SIRE, JieP, and
KinD also generalized well and received the 2nd, 4th, 5th, and 6th rankings, respectively.
TBEFN [23] is trained on a mixture of 14,531 patches collected from SICE [33] and LOL [22]
datasets using SSIM, total variation, and VGG loss. KinD is based on Retinex theory and
trained on LOL. A self-supervised network and a zero-shot-based Retinex method (i.e., self-
supervised network and RetinexDIP) ranked 12th and 21st, respectively. MBLLEN is also a
supervised learning-based networks and ranked 10th. Meanwhile, MBLLEM is a multi-
branch fusion network trained on the PASCAL VOC dataset [101]. Zero-shot learning-based
methods such as Zero-DCE got 19th. Among all deep learning-based methods, the top
six methods are supervised learning-based methods. It is also worth noticing that among
the top ten methods, five are Retinex-based methods and 5 are non-Retinex methods.
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4.4. Computational Complexity Analysis of Enhancement Methods

The computational complexity analysis of classical methods and deep learning-based
methods is presented in Tables 5 and 6, respectively. The analysis is conducted on four
different test datasets (i.e., LOL, LSRW, VV, and SID). Tables 5 and 6 report the average time
taken and the resolution of a single image for each dataset. For each of these tables, red,
blue, and green colors are used to indicate the best, second best, and third best performance,
respectively. Results shown in Table 5 have been obtained using a CPU, while results
shown in Table 6 have been obtained using an NVIDIA Titan Xp GPU. HE has the shortest
runtime of all classical methods. HE just takes around 20.3ms to process an image of
resolution 2848 × 4256 × 3. The majority of HE-based methods, such as BPDHE, WAHE,
LDR, CVC, and BiHE, are time-efficient, except for DHE. DHE continuously divides an
image into several sub-histogram units in order to avoid leaving a dominant portion in
newly created sub-histograms. Due to the continual dividing process, this method is the
slowest of all the HE-based methods mentioned. Gamma correction-based methods also
have good computational efficiency. IAGC takes relatively longer than other methods
because it truncates an image’s cumulative distribution function (CDF) and adaptively
corrects each truncated CDF.

Furthermore, Retinex-based methods are more computationally expensive than HE
and gamma correction-based methods. NPE, PM-SIRE, and WV-SRIE are among the
Retinex-based methods that experience significant increases in computation costs with
increasing image size. These methods are computationally inefficient due to their iterative
approach to finding the optimal solution and use of Gaussian filtering operations. The
efficiency of deep learning-based methods depends on the number of parameters that are
used. Zero-DCE is the fastest deep learning-based method due to its simplest network
architecture and fewer parameters. The majority of deep learning-based methods’ average
runtime is between 1.7 ms and 2.57 s. RRDNet iteratively minimizes the error to produce the
final enhanced output. The number of iterations varies for different inputs. The iteratively
solving the problem makes it the slowest among all the networks. RetinexDIP is another
zero-shot learning-based method and performs 300 iterations on each input to produce the
final output. The iteratively solving problem makes RetinexDIP and RRDNet the slowest
methods. A scatter plot of methods’ performance versus time taken on CPU and GPU
is shown in Figures 4 and 5, respectively. We consider CPU methods with less than 1s
processing time and GPU methods with less than 0.5s. Methods closer to the origin have a
lower computational cost and better performance.
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Figure 3. Different IQA metrics are used to rank the enhancement methods. Rank values range from
1 to 31. A rank value of 1 indicates the highest performance based on a particular IAQ method, and a
rank value of 1 indicates the worst performance. The average rank is shown in red.

Figure 4. Avg. ranking versus Time is shown for each enhancement method. Only the methods
take less than 1 s on CPU (Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz 3.41 GHz) with 16 GB RAM
to process the image of size 400 × 600 × 3 is shown in the figure. Red dots represent non-Retinex
methods, while blue dots represent Retinex methods.

Figure 5. Avg. ranking versus Time is shown for each enhancement method. Only the methods take
less than 0.5 s on GPU (NVIDIA Titan Xp GPU) to process the image of size 400 × 600 × 3 is shown in
the figure. Red dots represent non-Retinex methods, while blue dots represent Retinex methods.
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Table 5. Computational time of classical methods in terms of seconds on CPU is reported. The
red, blue, and green colors are used to indicate the best, second best, and third best performance,
respectively.

Methods
Image Size 400 × 600 × 3 640 × 960 × 3 2304 × 1728 × 3 2848 × 4256 × 3 Avg.

N
on

-R
et

in
ex

M
et

ho
ds

HE [89] 0.00079 0.0014 0.0071 0.0203 0.00742
DHE [27] 23.590 59.625 409.628 1253.897 436.685

BPDHE [68] 0.078 0.338 1.630 3.318 1.341
CVC [90] 0.086 0.230 1.150 3.533 1.250

CLAHE [91] 0.00033 0.00099 0.0058 0.0226 0.00743
AGCWD [29] 0.031 0.053 0.344 1.079 0.377

IAGC [92] 0.038 0.155 1.025 2.253 0.867
BIMEF [93] 0.123 0.359 1.811 5.101 1.848

Exposure Correction [94] 0.721 0.778 0.903 18.501 5.226
LightenNet [96] 3.091 7.126 45.990 137.835 48.510

LLFlow [38] 24.740 60.022 363.281 1403.92 462.991

R
et

in
ex

-b
as

ed
M

et
ho

ds

LIME [21] 0.090 0.296 1.506 4.650 1.635
NPE [50] 13.061 31.025 213.168 648.832 226.522
JieP [58] 0.646 0.874 2.307 6.597 2.606

PM-SIRE [49] 0.402 1.340 28.948 28.423 14.778
WV-SRIE [20] 0.915 3.136 40.701 182.267 56.755
MSRCR [19] 0.322 0.704 2.787 8.531 3.086

CRM [59] 0.166 0.436 2.626 8.134 2.840
EFF [98] 0.136 0.407 1.973 5.422 1.984

pmea [99] 0.646 0.874 2.307 6.597 2.606
IBA [100] 0.032 0.0829 0.512 1.385 0.503

Table 6. The computation time (seconds) and number of parameters (millions) for deep learning-
based methods on GPUs (NVIDIA TITAN Xp) are reported. The red, blue, and green colors are used
to indicate the best, second best, and third best performance, respectively.

Methods
Image Size 400 × 600 × 3 640 × 960 × 3 2304 × 1728 × 3 2848 × 4256 × 3 Avg. Parameters.

N
on

-R
et

in
ex

StableLLVE [95] 0.0047 0.005 0.0076 0.097 0.028 4.310 M
MBLLEN [71] 0.240 0.327 1.601 8.133 2.575 0.450 M
GLADNet [72] 0.147 0.161 0.676 2.772 0.939 0.930 M
White-box [97] 6.040 6.483 9.833 15.200 9.389 8.560 M

DLN [81] 0.009 0.015 0.058 0.197 0.070 0.700 M
Zero-DCE [80] 0.0025 0.0026 0.021 0.043 0.017 0.079 M

R
et

in
ex

RetinexNet [22] 0.155 0.162 0.591 1.289 0.549 0.440 M
KinD [36] 0.334 0.604 3.539 5.213 2.423 0.255 M

RetinexDIP [64] 33.924 37.015 63.443 112.545 61.732 0.707 M
RRDNet [25] 59.479 128.217 893.0 3003.5 1021.1 0.128 M
KinD++ [60] 0.337 0.857 5.408 19.746 6.587 8.275 M

Self-supervised Net [24] 0.022 0.054 0.366 1.212 0.414 0.485 M
TBEFN [23] 0.171 0.166 0.550 0.887 0.444 0.490 M

4.5. Difficulty Analysis of Test Datasets

Results of enhancement methods have also been used to rank the nine test datasets.
The last row of Tables 1–4 shows the average score of different enhancement methods on
the test datasets based on LOE, NIQE, Entropy, and BRISQUE, respectively. Figure 6 shows
the difficulty rank for each dataset across IQA methods. A red line shows the average of all
rankings in Figure 6. As determined by the average ranking score, VV is the easiest test
dataset, while SLL is the most challenging. SLL is the synthetic dataset with severe noise
added. There is too much noise to remove and produce better results. Meanwhile, VV has
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a lower noise level, making it the easiest dataset. LOL and ExDark are the second and third
most difficult datasets. A test dataset’s difficulty level is determined by its noise level. The
higher the noise level, the harder it is to recover color details and other information.

Figure 6. Each test dataset has been ranked based on its difficulty. Rank values range from 1 to 9. A
lower rank indicates less difficulty, a higher rank indicates more difficulty.

4.6. Evaluation IQA methods

To analyze the objective quality of different enhancement methods, we have used
LOE, NIQE, Entropy, and BRISQUE as described in Tables 1–4, respectively. We can easily
identify the differences in the evaluations of these metrics if we compare their values
among themselves. The best result was produced by the BPDHE enhancement method,
according to LOE and NIQE, whereas BRISQUE evaluated MSRCR and Entropy evaluated
GLADnet as best methods. Each metric measures a different aspect of the predicted image,
which makes their results different. To easily depict and analyze the overall performance
of enhancement methods, we have suggested the average rank from 1 to 31 (depending on
how many methods are compared) to compare their performance. The best performance
is ranked 1, and the worst performance is ranked 31. These rankings can be seen in
Figure 3, where the x-axis represents the enhancement methods, and the y-axis represents
the ranking. Green, dotted black, blue, and yellow lines in Figure 3 show the rankings of
enhancement methods based on LOE, NIQE, BRISQUE, and Entropy metrics, respectively.
Moreover, the red line in Figure 3 represents the average of all the rankings mentioned
earlier (given based on different metrics). The best method can be chosen based on this
average ranking system.

5. Discussion

In this section, we summarize the results obtained and the findings of the overall paper.

i The enhancement methods are evaluated using four evaluation metrics. No method
has emerged as the clear winner on all four metrics (LOE, entropy, NIQE, BRISQUE).
This is due to the fact that each evaluation method measures a different aspect of
enhancement methods (e.g., LOE measures naturalness, entropy measures informa-
tion content, and NIQE measures distortion). A suggested average ranking system
is found to be the most reliable method of comparing the overall performance of
enactment methods.

ii In the average ranking system, it has been observed that the three most success-
ful enhancement methods (GLADNet, TBEFN, LLFlow) are based on supervised
learning. Among the top ten methods, five are based on Retinex. In comparison to
classical, advanced self-supervised, and zero-short learning methods, supervised
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learning is more effective. Denosing is the most challenging part in enhancement.
Noise can be observed in the visual results of outperforming methods.

iii There is no Retinex-based method among the top three fastest methods. As a
result of the image decomposition, these methods are more time consuming. As
the size of the image increases, the computational time of classical Retinex-based
methods increases dramatically. Zero-DCE is the fastest learning-based method,
taking approximately 0.017 s to process an image of size 2848 × 4256 × 3. However,
it ranks 20th in terms of performance. GLADNet, on the other hand, is ranked first,
but it takes approximately 2.772 s to process an image of the same size.

iv The average ranking of all enhancement methods is observed in a broader sense.
The results indicate that five methods in the top ten are based on Retinex theory (i.e.,
TBEFN, WV-SRIE, JieP, KinD, and PM-SIRE). The remaining five fall into different
categories (i.e., HE, gamma correction, deep learning). When it comes to real-world
scenarios, Retinex theory algorithms are more robust. In contrast, decomposing
the image into illumination and reflectance makes them more computationally
intensive and, therefore, slower. Computational complexity is the bottleneck for
their development in real-world scenarios.

6. Conclusions

In this study, we present an experimental comparison of Retinex-based methods with
other non-Retinex methods on nine diversified datasets. According to this study, five out of
the top 10 methods are based on Retinex. Researchers are aiming to develop methods that
can be generalized and produce enhanced, denoised, color rendered results in real time.
Based on the comparisons, ZeroDCE is considered to be the fastest method for processing
high-resolution images within 17 milliseconds. However, ZeroDCE ranked 19th and its
results were darker and noisy. In contrast, Retinex-based methods have a greater degree
of robustness and generalization. The decomposition of the image is a time-consuming
process and is a bottleneck in the processing time of Retinex-based methods. Based on the
overall ranking, supervised learning methods (e.g., GLADNet, TBEFN, LLFLow) perform
better than all other methods. Training images for GLADNet and patches for TBEFN
are 5000 images and 14,531 patches, respectively. Both GLADNet and TBEFN are able to
generalize well due to their large training data, as well as their Unet architecture which
makes them more efficient as compared to other heavy network designs. Moreover, this
research evaluated the results of enhancement methods on four different metrics and
suggested a method for ranking enhancement methods according to their performance.
This research study may help the research community develop more robust and lightweight
models for real-time photography and video shooting.
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