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We report the results of lattice numerical studies of the Spð4Þ gauge theory coupled to fermions
(hyperquarks) transforming in the fundamental and two-index antisymmetric representations of the
gauge group. This strongly coupled theory is the minimal candidate for the ultraviolet completion of
composite Higgs models that facilitate the mechanism of partial compositeness for generating the top-
quark mass. We measure the spectrum of the low-lying, half-integer spin, bound states composed of two
fundamental and one antisymmetric hyperquarks, dubbed chimera baryons, in the quenched approxi-
mation. In this first systematic, nonperturbative study, we focus on the three lightest parity-even chimera-
baryon states, in analogy with QCD, denoted as ΛCB, ΣCB (both with spin 1=2), and Σ�

CB (with spin 3=2).
The spin-1=2 such states are candidates of the top partners. The extrapolation of our results to the
continuum and massless-hyperquark limit is performed using formulas inspired by QCD heavy-baryon
Wilson chiral perturbation theory. Within the range of hyperquark masses in our simulations, we find that
ΣCB is not heavier than ΛCB.

DOI: 10.1103/PhysRevD.109.094512

I. INTRODUCTION

The discovery of the Higgs boson [1,2] has exacer-
bated the need for a deeper understanding of the origin
of electroweak symmetry breaking (EWSB). On the one
hand, no firm experimental evidence has been found of
violations of the standard model (SM) predictions. On
the other hand, a plethora of considerations, in particular
the triviality of the scalar sector [3–14] (and most likely
of the whole Higgs-Yukawa sector [15–17]) implies that
the SM cannot be a fundamental theory, but it rather
provides an effective field theory (EFT) description,
valid up to some large, but finite, ultraviolet (UV) cut-
off scale, beyond which the SM has to be completed.
The challenge is that any theory serving as the UV
completion of the SM must contain a light scalar state
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that can be interpreted as the observed Higgs boson,
while also reproducing the observed SM phenomenol-
ogy, up to the TeV scale, and down to the current (high)
level of precision.
Composite Higgs models (CHMs) [18–20], for

example those in Refs. [21–30]—see also the reviews in
Refs. [31–36]—have been attracting attention in recent
years, because they can naturally accommodate a light
Higgs boson. In these models, a novel strongly coupled
sector is introduced, based upon an asymptotically free
gauge theory coupled to fermions (hyperquarks). At vari-
ance with technicolor models, the SM Higgs boson
emerges as one of the pseudo-Nambu-Goldstone bosons
(PNGBs), associated with a global symmetry of the new
strong interaction, to provide a UV completion for the
standard model. The global symmetry is broken both
spontaneously (by the condensates forming dynamically)
and explicitly, hence the PNGBs develop a potential due to
(small) symmetry breaking effects. Such effects may arise
either within the strong-coupling sector itself (e.g., hyper-
quark mass terms) or due to its coupling to external
fields (e.g., couplings to SM fields). As the Higgs fields
are identified with a subset those that describe the
PNGBs in the low-energy EFT description of the theory,
EWSB is triggered by the interplay among different
symmetry-breaking effects, along the lines of vacuum
alignment analysis [37] and radiative EWSB [38]—for
recent studies in the context of CHMs, see for instance
Refs. [21,22,31,39–42].
Since CHMs involve strongly coupled dynamics requir-

ing a nonperturbative treatment, it is natural to rely on
lattice calculations for their investigation. Our collaboration
has been performing such calculations for a particular UV-
completion that is built with the Spð4Þ gauge theory
containing two flavors (Nf ¼ 2) of Dirac fermions in the
fundamental, (f), representation [23,27]. We denote these
fundamental hyperquarks by Qia, where a ¼ 1;…; 4 is the
hypercolor index and i ¼ 1, 2 the flavor one. Because
of the pseudoreality of this representation of the gauge
group, the approximate global symmetry acting on the (f)
hyperquarks is SUð4Þ, which is broken spontaneously to
Spð4Þ [37]. This results in five PNGBs, four of which can
be interpreted as the SM complex scalar doublet, provided
the SUð2Þ ×Uð1Þ SM gauge group is chosen as an
appropriate subgroup of the components of SUð4Þ. The
SUð4Þ=Spð4Þ coset leads to the minimal CHM amenable to
lattice treatment, in the sense that it gives candidates for the
SM Higgs doublet with only one additional Goldstone
mode. Previous publications [43–45] reported on the
meson spectra of this theory obtained from both quenched
and dynamical lattice simulations. An extended study of
meson spectra computed in the quenched approximation,
for various Spð2NÞ groups, and matter fields transforming
in several different representations of the group, is in
preparation [46].

It is possible to extend CHMs to address the flavor
problem, or at least its most challenging aspect: to generate
the large mass for the SM top quark, without spoiling the
SM successful description of flavor-changing neutral cur-
rent processes and precision electroweak observables. To
address this challenge, the idea of (top) partial composite-
ness was introduced in Ref. [47] (see also the discussions in
Refs. [48–52]). If one couples the theory to hyperquarks
transforming in two different representations of the gauge
group, and embeds the SM gauge group as an appropriate
subgroup of the global symmetry of the new sector, some of
the bound states formed by hyperquarks in different
representations can be arranged to carry the same quantum
numbers as the top quark. Such bound states can be
identified as top partners. The top quark then acquires
its mass by mixing with the top partners. In the Spð4Þ
gauge theory with Nf ¼ 2 (f) hyperquarks, top partial
compositeness can be achieved by adding to the theory
nf ¼ 3 Dirac fermions in the two-index antisymmetric,
ðasÞ, representation of the gauge group [27,53]. We
denoted the ðasÞ hyperquarks by Ψkab, with k ¼ 1, 2, 3
the flavor index. Because the ðasÞ representation is real, the
global symmetry for three flavors is SUð6Þ, spontaneously
broken to SOð6Þ [37]–see also the CHMs in Refs. [54,55].
One can gauge the SUð3Þ subgroup of the unbroken SOð6Þ,
and identify it with the QCD gauge group [23,27]. We call
chimera baryons the hypercolor singlet bound states
formed by one Ψ and two Q fields. Spin-1=2 chimera
baryons can then act as candidate top partners. See
Refs. [56–61] for recent work on candidate top partners
in other gauge theories.
For the purposes of this paper, we consider the strongly

coupled theory in isolation, hence there are no SM fields
nor interactions. We present our measurements of the
masses of chimera baryons sourced by the following
operators:

Oijk;5
ρ ≡Qia

α ðCγ5ÞαβQjb
β ΩadΩbcΨkcd

ρ ; ð1Þ

Oijk;μ
ρ ≡Qia

α ðCγμÞαβQjb
β ΩadΩbcΨkcd

ρ ; ð2Þ

where a, b, c, d are hypercolor indices, α, β, ρ are spinor
indices, i, j, k are flavor indices, γ5 and γμ are 4 × 4 Dirac
matrices, and C is the charge conjugation matrix. The
symplectic matrix, Ω, is defined as

Ω≡

0
BBB@

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

1
CCCA: ð3Þ

We restrict our attention to operators for which the
SUð4Þ index is off-diagonal, i ≠ j. For mesons this require-
ment ensures that there is no disconnected contraction in
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computing two-point correlation functions.1 For chimera
baryons it removes from the calculations diagrams involv-
ing (f)-type contractions within the initial and final state.
The operator O5 annihilates spin-1=2 composite states.
Following an analogy with the Λ baryon in QCD, to which
we return later in this section, we denote the lightest state of
this type as ΛCB. The operator in Eq. (2),Oμ, overlaps with
both spin-1=2 and 3=2 states, and we denote the lightest
ones by ΣCB and Σ�

CB, respectively. Both ΛCB and ΣCB

baryons can be candidate top partners [65,66]. We report
the quantum numbers of the three chimera baryons in
Table I, together with some of the properties of the
analogous particle in QCD.2 Our lattice calculations of
the masses of ΛCB, ΣCB and Σ�

CB are performed in the
quenched approximation. The determination of these
masses is of importance in constructing a viable UV-
complete composite Higgs model with partial composite-
ness, because it affects both the mass of the top quark, and
direct and indirect new physics searches for top partners.
The mechanism by which SM fermions (the top quark in

particular) acquire a mass via their coupling to chimera
baryon operators of the strongly coupled sector is rather
different from that provided by the Yukawa couplings in the
standard model, as well as from the coupling to the meson
operators adopted in extended technicolor [69,70] and
walking technicolor [71–73] theories. In particular, the
value of the dynamically generated scaling dimension of
the chimera baryon operators enters nontrivially into the
estimates of the resulting SM fermion masses—see for
example the discussion in Secs. IV B and V B of Ref. [51],
in the studies reported in Refs. [74–76], in Sec. 2.4.2 of the
review [36], and references therein. Measuring these
scaling dimensions is an ambitious task that requires
dedicated methodology—see Ref. [77] for recent progress
along these lines, but in a different theory—and that we

leave for the future, as it goes far beyond the reach of the
quenched approximation we adopt here.
Yang-Mills theories have a well-defined limit for a large

number of colors [78]. SUðNcÞ theories coupled to a finite
number of fermions give, in the large-Nc limit, a good
description of important properties of strong interactions,
such as Zweig’s rule, or vector meson dominance [79].
Furthermore, baryons can be realized as solitons, in agree-
ment with Skyrme’s picture [80,81]. If one naively expects
baryons in Spð2NÞ gauge theories to be well-defined in the
large-N limit, yet baryons made of 2N fundamental hyper-
quarks are unstable, decaying into N mesons, since the
totally antisymmetric tensor can be decomposed into
products of symplectic structures, schematically written as

ϵa1a2���a2N ¼ Ωa1a2Ωa3a4 � � �Ωa2N−1a2N � � � � : ð4Þ

One can still have a well-defined limit in two ways. Either
one generalizes the rank-2 antisymmetric hyperquark to the
antisymmetric rank-N hyperquark, transforming as the
Pfaffian of Spð2NÞ, to form a color-singlet with N
fundamental hyperquarks. As an alternative, one can also
consider the singlet state obtained with one (conjugate)
antisymmetric fermion and two fundamental ones: this state
exists for both SUðNcÞ and SpðNc ¼ 2NÞ theories, the two
largeNc limits yielding a common, finite mass, and one can
show that in SUð3Þ this is an ordinary baryon. Because in
the following the two species of fermions have different
masses, we can make an analogy for the heavier, conjugate
antisymmetric fermions with the strange quark and for the
fundamental fermions with the up and down quarks,
leading to the aforementioned association of the states of
interest in this paper with the Λ, Σ, and Σ� states in QCD—
see for instance Ref. [82] for a discussion within SUðNcÞ
gauge theories.
This paper is organized in the following way. In Sec. II,

we describe lattice field theory basic definitions, such as the
simulation algorithm and the correlation functions that
enter our measurements of chimera baryon masses.
Section III describes our data analysis procedure in the
extraction of the chimera-baryon masses. It also details the
strategy applied to the continuum and massless extrapola-
tions of these masses. We then summarize our findings

TABLE I. The chimera baryons of interest in this paper, the interpolating operators that source them, their
quantum numbers—spin, J, and irreducible representation of the unbroken, global symmetry groups, Spð4Þ and
SOð6Þ—and the properties of the analogous QCD state—mass in MeV (rounded to unit), strangeness, S, isospin, I,
spin, J [67]. See also Refs. [36,53,68].

Chimera baryon Interpolating operator J Spð4Þ SOð6Þ QCD analogy

ΛCB O5, Eq. (1) 1=2 5 6 Λð1116Þ, S ¼ −1, I ¼ 0, J ¼ 1=2
ΣCB Oμ, Eq. (2) 1=2 10 6 Σð1193Þ, S ¼ −1, I ¼ 1, J ¼ 1=2
Σ�
CB Oμ, Eq. (2) 3=2 10 6 Σ�ð1379Þ, S ¼ −1, I ¼ 1, J ¼ 3=2

1Pioneering lattice studies of the flavor-singlet meson sector of
candidate completions for CHMs can be found for example in
Refs. [62–64].

2Other exotic hypercolor-singlet bound states can exist in the
Spð4Þ gauge theory. However, these states are expected to be
unstable and heavier than the chimera baryons. Furthermore,
given our primary focus on spin-1=2 states as top partners, we
only study those chimera baryons in this work.
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in Sec. IV. More technical details are relegated to the
Appendices.

II. LATTICE NUMERICAL CALCULATIONS

Lattice field theory enables to perform first-principle
nonperturbative computations in quantum field theory.
Since little is known about chimera baryon spectra in
Spð4Þ gauge theories [53], we adopt the quenched approxi-
mation, which significantly reduces the demands on com-
puting resources, while allowing the exploration of
parameter space, independent of the number of fields,
Nf and nf. Based upon experience gained from quenched
calculations of the spectrum of QCD, we envisage that this
approximation gives reasonably accurate results in some of
the regions of parameter space of interest, in which the
number of fermions is not too large, or their mass is not too
small. Furthermore, performing this first study in the
quenched approximation facilitates an extensive scan of
the space of bare parameter, to yield benchmarking
information for our future computations involving dynami-
cal hyperquarks.
This section describes the lattice action and provides

technical details necessary to reproduce our calculations.
More details, such as the specific features of our imple-
mentation of the heat bath algorithm for Spð4Þ gauge
theory and the scale-setting procedure based on the gradient
flow, can be found in Refs. [43,45,83,84]. We also define
the interpolating operators and correlation functions rel-
evant for this work, in Sec. II C. Some additional technical
details can be found in the Appendixes, in particular
pertaining to our use of smearing.

A. Lattice action

We discretize the four-dimensional Spð4Þ gauge theory
on a spatially isotropic Euclidean lattice. The dynamics of
the gauge degrees of freedom is described by the standard
Wilson plaquette action, Sg, given by

Sg ≡ β
X
x

X
μ<ν

�
1 −

1

4
ReTrPμν

�
; ð5Þ

where β≡ 8=g2 is the bare lattice coupling. The plaquette,
Pμν, is defined as

PμνðxÞ≡UμðxÞUνðxþ μ̂ÞU†
μðxþ ν̂ÞU†

νðxÞ; ð6Þ

with the link variable, UμðxÞ∈ Spð4Þ, transforming in the
adjoint representation of the gauge group. The action Sg is
used in our Monte Carlo computations to generate gauge-
field ensembles.
The hyperquarks, constituents of the chimera baryons,

are fermions whose dynamics is described by the Wilson-
Dirac lattice action

Sf ≡ a4
XNf

i¼1

X
x

QiðxÞDðfÞ
m QiðxÞ

þ a4
Xnf
j¼1

X
x

ΨjðxÞDðasÞ
m ΨjðxÞ; ð7Þ

where a is the lattice spacing, while i and j are flavor
indices—hypercolor and spinor indexes are understood.
Explicitly, we write the following, with R ¼ ðfÞ for
fermions transforming in the fundamental representation,
and R ¼ ðasÞ in the case of the 2-index antisymmetric
representation:

ψRjðxÞDR
mψ

RjðxÞ≡ ψRjðxÞð4=aþmR
0 ÞψRjðxÞ

−
1

2a

X
μ

ψRjðxÞfð1 − γμÞUR
μ ðxÞψRj

× ðxþ μ̂Þ þ ð1þ γμÞUR†
μ ðx − μ̂Þ

× ψRjðx − μ̂Þg; ð8Þ

with ψ ðfÞj ¼ Qj, ψ ðasÞj ¼ Ψj, and UðfÞ
μ ¼ Uμ. The con-

struction of the antisymmetric gauge link, UðasÞ
μ , is detailed

in Ref. [53]. The symbol mR
0 denotes the flavor diagonal

(degenerate) bare mass of hyperquarks, ψR
j , transforming in

the corresponding representation, R, of the gauge group.

B. Numerical strategy

For this work we use the open source HiRep code [85],
with the add-ons we developed in the context of earlier
publications in order to implement Spð4Þ [43]—see also
the first lattice study of symplectic gauge group [86] and
the recent implementation of Spð2NÞ in the Grid environ-
ment [87–91]. Gauge field ensembles are generated using
one-plus-four combinations of heat bath plus over-relaxa-
tion update algorithms. Two successive configurations in
the Markov chain are separated by twelve such updates of
the whole lattice. More details of the implementation of this
procedure can be found in Ref. [43]. Also, in every Markov
chain, the initial 600 configurations are treated as thermal-
ization steps and discarded from the measurements of
physical observables. For each ensemble, we generate
200 configurations. We monitor the topological charge
and its evolution, to ascertain that there is no evidence of
topological freezing. We denote the dimensionless lattice
volume as Nt × N3

s , where Nt and Ns are the temporal and
spatial lattice extents, respectively. Periodic boundary
conditions are imposed on gauge fields, in all directions.
For hyperquark fields, periodic and antiperiodic boundary
conditions are implemented in spatial and temporal direc-
tions, respectively.
We generate five ensembles with different values of the

lattice bare coupling β. We summarize in Table II the
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defining properties of each ensemble. We set the scale of
dimensionful physical observables by employing the gra-
dient-flow method [92–94]. The procedure outlined in
Ref. [95] yields the quantity w0=a, where w0 has dimension
of an inverse mass. This scale-setting exercise was already
carried out and reported in detail in previous publications—
see Table II of Ref. [45], as well as the extensive dis-
cussions in Ref. [84]—hence we borrow results for w0=a
from Ref. [45]. We notice that, in respect to Eq. (2.3) of
Ref. [95], we use the different reference value W0 ¼ 0.35,
rather than 0.30. The information presented in Table II
shows that the spread of our choices of the lattice bare
coupling corresponds to a variation of the lattice spacing
roughly by a factor of two, which allows us to perform a
first extrapolation of our results toward the continuum
limit. In this work, when a dimensional quantity is
expressed in units of w0, the corresponding dimensionless
quantity is denoted with the caret symbol. For instance,
â≡ a=w0 and m̂≡ w0m, where m stands for a generic
mass. The lattice parameters being identical, the relevant
autocorrelation times can be found in Table III in Ref. [45].

C. Interpolating operators and correlation functions

Following the notation introduced in Ref. [53], we
denote the generic structure of the chimera baryon inter-
polating operators, built out of two (f) and one ðasÞ
hyperquarks, as

OCB;ρðxÞ≡ ðQia
αðxÞΓ1 αβQjb

βðxÞÞΩadΩbcΓ2 ρσΨkcd
σðxÞ;

ð9Þ

where Γ1;2 are gamma matrices and Ω is the 4 × 4
symplectic matrix defined in Eq. (3), with a, b, c, d being
Spð4Þ-hypercolor, i, j, k flavor, and α, β, σ, ρ spinor
indices. Operators given in Eqs. (1) and (2) are special
cases of this generic structure. The Dirac conjugate
operator of OCB;ρðxÞ is

OCB;ρðxÞ≡Ψkcd
σðxÞΩcbΩdaΓ2σρðQjb

βðxÞΓ1 βαQia
αðxÞÞ:

ð10Þ

The zero momentum, two-point correlation functions of
interest, restricted to consider only i ≠ j, are written as

CCB;σρðtÞ≡
X
x⃗

hOCB;σðxÞOCB;ρð0Þi

¼ −
X
x⃗

ðΓ2SkcdΨ c0d0 ðx; 0ÞΓ2ÞσρΩcbΩb0c0ΩadΩd0a0

× Tr½Γ1SbQ b0 ðx; 0ÞΓ1SaQ a0 ðx; 0Þ�; ð11Þ
where x≡ ðt; x⃗Þ, while Γ̄≡ γ0Γ†γ0. The trace is taken over
the spinor indices. The hyperquark propagators are

SiaQbαβ
ðx; yÞ ¼ hQia

αðxÞQib
βðyÞi; and

SkabΨ cd αβðx; yÞ ¼ hΨk ab
αðxÞΨk cd

βðyÞi: ð12Þ

We are interested in operators with ðΓ1;Γ2Þ ¼ ðCγ5; 1Þ
and ðCγμ; 1Þ. The former overlaps with the ΛCB state, while
the latter sources both ΣCB and Σ�

CB baryons. The chimera
baryon interpolating operators in Eq. (9) generally couple
to states with both even and odd parity. In order to facilitate
the investigation of the spectrum of ΛCB, ΣCB, and Σ�

CB
chimera baryons, which are all parity-even, we apply
appropriate projection operators, as detailed in Sec. III.
Our main objective is to study how the mass of the

chimera baryons changes in response to the variation of the
hyperquark masses, in particular because it would be

interesting to explore the limits in which mðfÞ
0 and mðasÞ

0

approach zero. The methodology we apply to the extraction
of these hadronic masses is described in Sec. III. We

perform our calculations with several choices of amðfÞ
0 and

amðasÞ
0 , on each available ensemble, and report our results

in Appendix A.
For sufficiently light hyperquarks, we expect the square

of the pseudoscalar meson mass to depend linearly on the
hyperquark mass. Information on the meson spectrum
hence allows us to perform a combined extrapolation to
continuum and massless-hyperquark limit. As this is a
quenched calculation, the results of the extrapolation
toward the massless-hyperquark limit have to be taken
with a grain of salt [96,97]. Yet, they provide useful input
for future dynamical calculations—see Figs. 17 and 18 in
Ref. [44] for examples of the difference in mesons mass
between quenched and dynamical fermions in the case of
the fundamental representation. We can also monitor the
ratio between the masses of pseudoscalar and vector
mesons, as an indicator of the relative size of explicitly
breaking of the global symmetry in the theory.
The meson interpolating operators for (f) and ðasÞ

hyperquarks are

OðfÞ
M ðxÞ ¼ Qia

αðxÞΓαβ
MQjb

βðxÞ; and

OðasÞ
M ðxÞ ¼ Ψkab

αðxÞΓαβ
MΨmcd

βðxÞ; ð13Þ

TABLE II. Gauge ensembles generated for the Spð4Þ theory.
We report the bare coupling β, the lattice size, Nt × N3

s , the
average plaquette hPi, and the gradient-flow scale w0=a. The
gradient-flow scales are taken from Ref. [45].

Ensemble β Nt × N3
s hPi w0=a

QB1 7.62 48 × 243 0.6018898(94) 1.448(3)
QB2 7.7 60 × 483 0.6088000(35) 1.6070(19)
QB3 7.85 60 × 483 0.6203809(28) 1.944(3)
QB4 8.0 60 × 483 0.6307425(27) 2.3149(12)
QB5 8.2 60 × 483 0.6432302(25) 2.8812(21)
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respectively. We can set ΓM ¼ γ5 for the pseudoscalar, and
ΓM ¼ γμ for the vector mesons. Imposing the restriction
i ≠ j and k ≠ m, no disconnected diagrams contribute to
the two-point correlation function, which read

CðfÞ
M ðtÞ≡X

x⃗

hOðfÞ
M ðxÞOðfÞ†

M ð0Þi

¼ −
X
x⃗

Tr½γ5ΓMSiaQa0 ðx; 0ÞΓ̄Mγ
5Sib†Q b0 ðx; 0Þ�; ð14Þ

for mesons made with (f) hyperquarks, and

CðasÞ
M ðtÞ≡X

x⃗

hOðasÞ
M ðxÞOðasÞ†

M ð0Þi

¼ −
X
x⃗

Tr½γ5ΓMSkabΨ a0b0 ðx; 0ÞΓ̄Mγ
5Smcd†

Ψ c0d0 ðx; 0Þ�;

ð15Þ

for ðasÞ hyperquarks. The traces are taken over spinor
indices. The propagators of (f) and ðasÞ hyperquarks are
given in Eq. (12).
The masses of the mesons are extracted from the large-t

behavior of correlation functions. For convenience, we
label the pseudoscalar meson masses as mPS and mps and
the masses of the vector meson as mV and mv, with upper
case subscripts referring to (f) hyperquarks and lower case
one to ðasÞ hyperquarks. It is well known that numerical
results of lattice computations of quantities involving
baryons are noisy, and in this work we resort to modifying
the correlation functions and the propagators used for
chimera baryons and mesons, by applying two smearing
techniques: the Wuppertal smearing [98] for the hyper-
quark fields and the APE smearing [99] for the gauge fields.
We describe in Appendix B our implementation of these
smearing procedures.

III. DATA ANALYSIS AND NUMERICAL RESULTS

In this section, we discuss the strategy of our analysis
and report numerical results for the spectrum of the low-
lying chimera baryons. In Sec. III A, we describe how we
extract ground-state masses with definite spin and parity
quantum numbers, by applying appropriate spin and parity
projections on the correlation functions. In Sec. III B we
report our measurements of the masses of the pseudoscalar
and vector mesons, for both (f) and ðasÞ hyperquarks. We
then apply relations inspired by Wilson chiral perturbation
theory to analyze the spectra for various hyperquark
masses, and we extrapolate to the continuum and mass-
less-hyperquark limit. The process and our results are
presented in Sec. III C. We employ the Akaike information
criterion (AIC) [100] to optimize for the best analysis
procedure over various fitting Ansätze and different selec-
tions of the data points to be included in this investigation.

In addition, we also manually check the results, to
demonstrate the correctness of the automated analysis.
We anticipate here that throughout this work, in the

data analysis of correlation functions, estimates of the
statistical errors are obtained via the bootstrap method. For
each measurement we generate 800 bootstrap samples.
Technical details on the intermediate steps are relegated to
the Appendix. In particular, fit results of the ground-state
masses are presented in Appendix A, while the choices of
smearing parameters are reported in Appendix C.

A. Spin and parity projection

Correlation functions involving the (chimera) baryon
operators in Eqs. (9) and (10) can be further decomposed
into components with different spin and parity quantum
numbers [53,68,101]. We denote by Oμ

CB;ρ the operator
with Dirac matrix structure ðΓ1;Γ2Þ ¼ ðCγμ; 1Þ, with μ
running from 1 to 3. It overlaps with both spin-1=2 and 3=2
states. The corresponding two-point function with vanish-
ing momentum, p⃗ ¼ 0⃗, can be written as

Cμν
CB;σρðtÞ≡

X
x⃗

hOμ
CB;σðxÞOν

CB;ρð0Þi: ð16Þ

The lightest baryons dominate the large Euclidean-time
behaviors of the spin-1=2 and 3=2 components of Cμν

CB;σρ,
and we identify them with ΣCB and Σ�

CB (see Sec. I),
respectively. We define the following two correlation
functions:

CΣCB;σρðtÞ≡ ½P1=2
μν Cμν

CBðtÞ�σρ and

CΣ�
CB;σρ

ðtÞ≡ ½P3=2
μν Cμν

CBðtÞ�σρ; ð17Þ

where the spin projectors [102] are (for μ; ν ¼ 1, 2, 3)

P1=2
μν ≡ 1

3
γμγν and P3=2

μν ≡ δμν −
1

3
γμγν: ð18Þ

We define asO5
CB;ρ the operator obtained from Eq. (9) by

considering ðΓ1;Γ2Þ ¼ ðCγ5; 1Þ. This operator only over-
laps with spin-1=2 states, the ground state of which is the
ΛCB introduced in Sec. I. Therefore, we define

CΛCB;σρðtÞ≡
X
x⃗

hO5
CB;σðxÞO5

CB;ρð0Þi: ð19Þ

For notational simplicity, in the rest of this article we will
not write explicitly the spinor indices, σ and ρ, in the
correlation functions in Eqs. (17) and (19), but leave them
understood. Furthermore, we use the symbol CCBðtÞ to
denote generically CΛCB

ðtÞ, CΣCB
ðtÞ, or CΣ�

CB
ðtÞ.

The chimera baryon interpolating operators, O5
CB;ρ and

Oμ
CB;ρ, couple to both even- and odd-parity states. At large
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Euclidean time, due to the use of antiperiodic boundary
conditions in the temporal direction for hyperquark fields,
the two-point correlation function of a chimera baryon,
following the convention in Ref. [103], behaves asymp-
totically as

CCBðtÞ ⟶
0≪t≪T

Pþ½cþe−mþt − c−e−m
−ðT−tÞ�

þ P−½c−e−m−t − cþe−m
þðT−tÞ�; ð20Þ

where the parity projectors are

P� ≡ 1� γ0

2
; ð21Þ

while m� are the masses of the even- and odd-parity states,
and c� the corresponding baryon-to-vacuum matrix ele-
ments. We define even- and odd-parity correlation func-
tions, Cþ

CBðtÞ and C−
CBðtÞ, by applying the P� projectors:

C�
CBðtÞ≡ P�CCBðtÞ: ð22Þ

For finite but large extent of the temporal lattice, T, we
therefore find that the projected correlation functions at
large Euclidean time, 0 ≪ t ≪ T, behave as

C�
CBðtÞ ⟶ c�e−m

�t − c∓e−m
∓ðT−tÞ: ð23Þ

To improve statistics, in the analysis we employ the
averaged correlator,

C̄�
CBðtÞ ¼

C�
CBðtÞ − C∓

CBðT − tÞ
2

; ð24Þ

which exhibits the same asymptotic behavior as in Eq. (23).
For both even- and odd-parity states, we define the

effective masses as

am�
eff;CBðtÞ ¼ ln

�
C̄�
CBðtÞ

C̄�
CBðtþ 1Þ

�
; ð25Þ

and restrict our attention to ranges of Euclidean time
0 ≪ t < T=2. From Eqs. (23) and (24), one expects that
am�

eff;CBðtÞ, when plotted against time, will asymptotically
display a plateau dominated by either the even-parity or
odd-parity ground states, in C̄þ

CBðtÞ and C̄−
CBðtÞ, respec-

tively. By studying and comparing the resulting effective
mass plots, we determine the parity of the lowest-
lying chimera baryon state for each choice of spin and
global symmetry quantum numbers of interest, as listed in
Table I. As a cross-check of our results, we consider also
the effective mass computed with unprojected correlation
functions, CCB. In analogy with Eq. (25), for 0 ≪ t < T=2,
we define it as

ameff;CBðtÞ ¼ ln

�
CCBðtÞ

CCBðtþ 1Þ
�
: ð26Þ

Given the asymptotic behavior expected in Eq. (20),
the value of the plateau in ameff;CBðtÞ should appear at a
value compatible with the lightest between amþ

eff;CBðtÞ
and am−

eff;CBðtÞ.
In order to graphically illustrate how projectors affect the

effective mass extraction, we present in Fig. 1(a) the parity-
projected correlation functions, C�

ΛCB
ðtÞ, obtained from the

ensemble QB1 (see Table II) with the bare hyperquark
masses in the Wilson-Dirac action set to amf

0 ¼ −0.77 and
amas

0 ¼ −1.05. Notice the logarithm scale on the vertical
axis. The lattice used to generate this ensemble has
Euclidean time extent T=a ¼ 48. By comparing the slopes
with the behavior expected in Eq. (20), one can infer that
the parity-even state is lighter than its parity-odd partner,
and hence that the ΛCB chimera baryon (a candidate top
partner) has even parity.
Figure 1(b) shows the effective masses, am�

eff;ΛCB
,

extracted with and without applying parity projectors.
For the ΛCB state, the plot clearly demonstrates that
mþ

eff;ΛCB
< m−

eff;ΛCB
. Furthermore, examination of the effec-

tive mass extracted from the unprojected correlator,
ameff;ΛCB

, confirms the hierarchy between the masses of
the two parity eigenstates. It is worthy of notice that in
Fig. 1(b) we can clearly discern the emergence of a plateau
for am−

eff;ΛCB
at smaller t=a. This negative-parity ground

state happens to be substantially heavier, but not para-
metrically so. It would be interesting to perform a system-
atic study of the spectra of this and other heavy baryons, but
doing so would go beyond the purposes of the present
study, and requires the use of dedicated numerically
strategies to optimize the signal. We postpone such a study
to the future.
Following the same procedure, applied to the correlation

functions involving the operator Oμ
CB;ρ, we also demon-

strate that mþ
eff;ΣCB

< m−
eff;ΣCB

, as well as that mþ
eff;Σ�

CB
<

m−
eff;Σ�

CB
. Therefore, it is established that ΛCB, ΣCB, and Σ�

CB

are all parity even, and we only discuss their masses
(denoted as mΛCB

, mΣCB
and mΣ�

CB
) in the rest of this paper.

These baryon masses are extracted by performing single-
exponential fits of the data for C̄þ

CB to Eq. (23) in the
interval 0 ≪ t ≤ T=2. The choice of fit range is guided by
the range of the plateau of the effective mass, and can be
optimized by tracking the value of χ2=Nd:o:f:
Besides parity, we perform also spin projections, as

defined in Eq. (17), for the correlator Cμν
CBðtÞ. By doing

so, we can discriminate between ΣCB and Σ�
CB states.

Figure 1(c) displays the effective masses computed from
Cμν;þ
CB ðtÞ measured on ensemble QB1 with spin projections

and same hyperquark masses as in Figs. 1(a) and 1(b).
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This plot shows the expected hierarchy, mΣCB
< mΣ�

CB
.

Furthermore, we also display the effective mass obtained
from Cμν

CBðtÞ with neither spin nor parity projections. As
expected, the plateau value is compatible with that of the
ΣCB baryon, but contamination with the heavier states
results in some deterioration of the signal quality.

B. Mass hierarchy and hyperquark-mass dependence
of chimera baryons

One interesting feature we observe is the hierarchy
between the ground-state chimera baryons in the three

channels of interest. Figure 2 shows ameff;ΛCB
ðtÞ,

ameff;ΣCB
ðtÞ, and ameff;Σ�

CB
ðtÞ for two representative

choices of bare hyperquark masses, ðamðfÞ
0 ; amðasÞ

0 Þ ¼
ð−0.6;−0.81Þ and ðamðfÞ

0 ; amðasÞ
0 Þ ¼ ð−0.69;−0.81Þ, as

measured in the ensemble QB4 (see Table II). In the
former case, we find convincing evidence that ΣCB is the
lightest among these states. In the latter case, the (f)-type

bare hyperquark mass is reduced to amðfÞ
0 ¼ −0.69, and as

shown in the right panel of Fig. 2, ΛCB and ΣCB become
almost degenerate, their masses cannot be discriminated
with given present uncertainties. For all choices we make of

FIG. 2. Effective masses of the lightest, even-parity chimera baryons measured in the ensemble QB4, for two representative choices of

hyperquark masses, amðasÞ
0 ¼ −0.81 and (a) amðfÞ

0 ¼ −0.6, or (b) amðfÞ
0 ¼ −0.69.

FIG. 1. Illustrative examples of chimera baryon correlation functions, (a), and effective mass plots, (b) and (c), obtained on the

ensemble QB1 with hyperquark masses amðfÞ
0 ¼ −0.77 and amðasÞ

0 ¼ −1.1. (a) the parity-projected correlators, C�
ΛCB

ðtÞ. (b) effective
masses, ameff , extracted from correlation function obtained with, C�

ΛCB
ðtÞ, and without parity projection, CΛCB

ðtÞ. (c) effective masses,
ameff , extracted from correlation functions upon which spin and parity projections are applied, Cþ

ΣCB
ðtÞ and Cþ

Σ�
CB
ðtÞ, or without any

projection, CCB;μνðtÞ.

ED BENNETT et al. PHYS. REV. D 109, 094512 (2024)

094512-8



bare hyperquark masses, and in all available ensembles
in Table II, Σ�

CB is always the heaviest among the three
lowest-lying parity-even baryon states, and ΛCB is never
lighter than ΣCB. More detailed investigations of the
hierarchy in the chimera-baryon masses, in particular its
dependence on the hyperquark masses, will be discussed in
this and the next subsections.
In Ref. [45], the mass spectrum of the lightest mesons

composed of (f) and ðasÞ hyperquark constituents has
been reported, based upon measurements using the same
quenched ensembles as in Table II, while varying the
hyperquark bare masses. For this work, starting from the

same choices of bare masses as in Ref. [45], we extend the
parameter space into the regimes of lighter as well as
heavier hyperquarks. The inclusion of data points with
smaller hyperquark masses makes the massless extrapola-
tion more reliable. It also enables access to a wide range of
the value of the ratio between (f) and ðasÞ hyperquark
masses. Our aim is to better understand the interplay
between these hyperquark masses and the hierarchy among
mΛCB

,mΣCB
andmΣ�

CB
. To this purpose, we find it convenient

to use the square of the mass of the pseudoscalar meson
as a reference scale, as in Ref. [45], denoting the masses
of the pseudoscalar mesons composed of (f) and ðasÞ

FIG. 3. Masses of chimera baryons as functions of m̂2
PS and m̂2

ps. In panels (a)–(c), the values of m̂ΛCB
, m̂ΣCB

, and m̂Σ�
CB

are plotted
against m̂2

PS, while color-coding is used to denote m̂
2
ps. In panels (d)–(f), the horizontal axis is m̂2

ps, while color-coding denotes m̂2
PS. The

plot markers represent different ensembles, characterized by the β values indicated in the legend.
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hyperquarks bymPS andmps, respectively. For light masses
we then expect ðmPS;psÞ2 ∼mðfÞ;ðasÞ.
At large Euclidean time, the meson two-point correlation

functions in Eqs. (14) and (15) are expected to behave as

CR
MðtÞ⟶

t=a≫1
A½e−mR

Mt þ e−m
R
MðT−tÞ�; ð27Þ

where mR
M is the mass of the ground-state meson, M,

composed of hyperquarks transforming in the representation
R, and A is the relevant matrix element. Following Eq. (27),
the meson effective mass can be computed through

amR
eff;MðtÞ≡ cosh−1

�
CR
Mðtþ 1Þ þ CR

Mðt − 1Þ
2CR

MðtÞ
�
; ð28Þ

in the range of Euclidean time 0 < t < T − 1. We then
determine the fit interval for extracting the meson mass by
performing a correlated fit of CR

MðtÞ to Eq. (27), by
identifying a suitable plateau in amR

eff;MðtÞ.
In Figs. 3(a)–3(c), we display m̂ΛCB

, m̂ΣCB
and m̂Σ�

CB
as a

function of m̂2
PS. For clarity of presentation, the value

of m̂2
ps is color-coded. Conversely, in Figs. 3(d)–3(f), the

horizontal axis is m̂2
ps, and the color coding corresponds

to the value of m̂2
PS. The data points shown in these

six plots are obtained on the five available ensembles
listed in Table II, and are distinguished by the shape
of the markers. The meson masses take values in the
range m̂PS ∈ ½0.28; 1.03� and m̂ps ∈ ½0.35; 1.84�. The plots

illustrate how chimera-baryon masses decrease as either
m̂2

PS or m̂
2
ps is reduced, approaching a nonvanishing limit for

m̂2
PS → 0 or m̂2

ps → 0. To further demonstrate the depend-
ence on both sources of explicit symmetry breaking
(hyperquark masses and lattice spacing), we show all the
data points together in the 3-dimensional plot in Fig. 4 with
m̂ΛCB

as an example. These baryon masses measured at
different values of hyperquark masses lie on a surface for
each value of β, and slightly decrease as we increase β.
To study how the mass hierarchy depends on the

hyperquark masses, we conduct a thorough exploration
across a wide range of m̂2

PS and m̂
2
ps. The left panel of Fig. 5

shows that the ratio between mΛCB
and mΣCB

decreases at
increasing m̂ps, and tends to unity in the large-m̂2

ps regime.
The right panel of Fig. 5 exhibits a similar trend with
respect to the variation of m2

PS. Yet, mΛCB
=mΣCB

is never
consistent with 1 in the region where the mass of the PS
meson is large. When the ðasÞ hyperquark is heavy
(denoted by purple markers in the right panel of Fig. 5),
the ratio between mΛCB

and mΣCB
shows a mild dependence

on m2
PS. In this regime, mΛCB

=mΣCB
depends primarily on

m̂2
ps. Within our whole range of hyperquark masses, ΛCB is

never lighter than ΣCB.
We conduct a similar, systematic investigation of the

ratio between m̂ΣCB
and m̂Σ�

CB
, and the results are presented

in Fig. 6. We find that ΣCB is always lighter than Σ�
CB, their

mass gap decreasing as m̂2
PS and m̂2

ps increase. This feature
can be interpreted in terms of heavy-hyperquark spin

FIG. 4. A 3-dimensional plot as an example that shows the chimera-baryon masses as functions of m̂2
PS and m̂

2
ps. Different colors refer

to different β values, as listed in the legend.
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symmetry [104]. As the hyperquark masses increase, the
effects of spin, which account for the mass difference
between ΣCB and Σ�

CB, are suppressed.

C. Mass extrapolations and cross checks

We now discuss our extrapolation toward the continuum
and the massless-hyperquark limit. Inspired by baryon
chiral perturbation theory for QCD [105,106], and for its

lattice realization [107], we introduce the following Ansatz
and use it to carry out uncorrelated fits of our measurements
of the chimera-baryon masses in terms of polynomial
functions of m̂PS and m̂ps, as well as the lattice spacing, â,

m̂CB ¼ m̂χ
CB þ F2m̂2

PS þ A2m̂2
ps þ L1â

þ F3m̂3
PS þ A3m̂3

ps þ L2Fm̂2
PSâþ L2Am̂2

psâ

þ F4m̂4
PS þ A4m̂4

ps þ C4m̂2
PSm̂

2
ps; ð29Þ

FIG. 6. Left: ratio between the masses of ΣCB and Σ�
CB, plotted against m̂

2
ps, with m̂2

PS color-coded. Right: the same ratio plotted against
m̂2

PS, while color-coding m̂2
ps. Different markers denote different β values as listed in the legend.

FIG. 5. Left: ratio between the masses of ΛCB and ΣCB, plotted against m̂2
ps, with the value of m̂2

PS color-coded. Right: same ratio
plotted against m̂2

PS while color-coding m̂2
ps. Different markers denote different β values as listed in the legend.
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where CB ¼ ΛCB, ΣCB or Σ�
CB, and all the hatted dimen-

sionful quantities are expressed in units of the gradient flow
scale, w0. Here m̂χ

CB represents the mass of the chimera
baryon in the continuum and massless-hyperquark limit.
As anticipated, the pseudoscalar meson mass squared

plays the role of the hyperquark mass in each representa-
tion. We call Fj and Aj the low energy constants (LECs)
associated with the corrections to m̂CB appearing at the jth
power in m̂PS and m̂ps, respectively. As we are limited by
the number of available lattice spacings and by the
statistics, we retain terms up to the fourth power in the
meson mass. The coefficient C4 controls the cross-term
proportional to m̂2

PSm̂
2
ps. The L1, L2F, and L2A LECs are

associated with the finite lattice spacing, â, for which we
only consider the leading-order, linear in â, as expected for
Wilson-Dirac fermions. Note that the LECs, m̂χ

CB, Fj, Aj,
Lj and C4, take different values for different chimera
baryons.
Chiral perturbation theory predicts the existence of terms

logarithmic in the hyperquark masses, which we do not
include in Eq. (29). These additional terms have discernible
effects only for light enough hyperquark masses (typically
in the regime where the vector meson is more than twice
heavier than the pseudoscalar meson), which is beyond
the scope of this study. Furthermore, the quenched approxi-
mation results in diverging terms that in the limit where
m̂PS or m̂ps approaches zero [96,97]. Therefore, we only
investigate polynomial dependence of m̂CB on pseudoscalar
meson masses in our analysis.
Figure 3 shows clear evidence of a dependence of

chimera-baryon masses on hyperquark masses and lattice
spacing in our measurements. The result of a naive first
attempt to fit ourwhole dataset—tabulated inAppendixA—
to Eq. (29) is poor, as indicated by a large value of χ2=Nd:o:f:,
and hence we do not report it here. The truncated expansion
in Eq. (29) is expected to be valid only for light enough
hyperquarks. To test the possibility that a portion of our data
points lie outside the range of validity of the expansion, we
consider the effect of excluding data points collected at the
largest available masses. To this purpose, we proceed
systematically, according to
(1) We start by placing cuts, m̂PS;cut ¼ m̂ps;cut ¼ 0.52,

and remove data points with m̂PS > m̂PS;cut or
m̂ps > m̂ps;cut, on all the five ensembles in Table II.
The value, 0.52, is chosen such that there remain 13
data points in total. We verify by inspection that
all these 13 measurements satisfy the condition
amPS < 1 and amps < 1. A fit to determine the
11 parameters in Eq. (29) is then performed.

(2) After increasing m̂PS;cut and m̂ps;cut, independently, in
steps of 0.05, the above selection and fitting pro-
cedure is repeated. At each step, measurements for
which amPS > 1 or amps > 1 are also removed.
We stop when m̂PS;cut ¼ 1.07 and m̂ps;cut ¼ 1.87, at

which point all the data points in Appendix A have
been considered.

The above procedure results in 263 distinct datasets,
and 263 fitting analyses, each characterized by an
unacceptably large χ2=Nd:o:f: Furthermore, diffferent
choices of initial values of the fit parameters lead to
different results of the minimized χ2=Nd:o:f: We interpret
this result as evidence that the modeling of our dataset
encapsulated by Eq. (29) is too general, so that the
minimization of the χ2=Nd:o:f: with 11 fitting parameters
is not well converged. Hence, some of the LECs cannot
be determined by the available data. In view of this, in
this article, we do not report results obtained by fitting
our data to Eq. (29). Instead, we explore a different
numerical approach that allows for a variation of the set
of free parameters included in the analysis, besides
changing the number of incorporated measurements.
We summarize in Table III the five fit Ansätze included in

our analysis. They are all based upon Eq. (29), but are
obtained by restricting the set of terms used in the fit, while
setting the others to zero, to reduce the number of fitting
parameters. The first fit Ansatz, dubbed M2, includes the
polynomial terms in the first line of Eq. (29), i.e., m̂χ

CB and
corrections quadratic in pseudoscalar-meson masses or
linear in lattice spacing. In M3, we also incorporate
corrections up to the cubic terms in the pseudoscalar-
meson masses, as well as the lattice-spacing corrections,
m̂2

PSâ and m̂2
psâ. We further include the three highest-order

terms in Eq. (29), one by one, in MF4, MA4, and MC4,
corresponding to the addition of only F4m̂4

PS, A4m̂4
ps, or

C4m̂2
PSm̂

2
ps, respectively.

By combining the 5 fit Ansatz with the 263 datasets
generated by imposing cuts on the datasets, we are left with
263 × 5 ¼ 1315 different analysis procedures. Following
the ideas in Ref. [108], we select the best one by applying
the Akaike information criterion (AIC). For each analysis
procedure, one computes the quantity

AIC≡ χ2 þ 2kþ 2Ncut; ð30Þ

where χ2 is the standard chi-square, k is the number of fit
parameters, and Ncut is the number of data points removed
by the introduction of the cuts m̂PS;cut and m̂ps;cut.

TABLE III. List of the terms in Eq. (29) that are included in the
choices of fit ansatz used in our analysis.

Fit ansatz m̂χ
CB m̂2

PS m̂2
ps m̂3

PS m̂3
ps m̂4

PS m̂4
ps m̂2

PSm̂
2
ps â m̂2

PSâ m̂2
psâ

M2 ✓ ✓ ✓ � � � � � � � � � � � � � � � ✓ � � � � � �
M3 ✓ ✓ ✓ ✓ ✓ � � � � � � � � � ✓ ✓ ✓

MF4 ✓ ✓ ✓ ✓ ✓ ✓ � � � � � � ✓ ✓ ✓

MA4 ✓ ✓ ✓ ✓ ✓ � � � ✓ � � � ✓ ✓ ✓

MC4 ✓ ✓ ✓ ✓ ✓ � � � � � � ✓ ✓ ✓ ✓
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The corresponding probability weight is expected to be

W ¼ 1

N
exp

�
−
1

2
AIC

�
; ð31Þ

where N is a normalization factor that ensures the sum of
W over all 1315 analysis procedures equals to one.
Maximizing the W over Ansätze and datasets is equivalent
to minimizing the AIC. We note that a smaller χ2 value can
normally be obtained by considering more fit parameters,
or by excluding data points that are not well described by
the Ansatz, e.g., points in the region of heavy hyperquark
masses in our case. These correspond to the last two
terms on the right-hand side of Eq. (30). They introduce a
penalty by increasing the value of AIC, hence reducing W.

In Ref. [108], the aim was to estimate a measured quantity
by averaging over results from all analysis procedures with
their probability weights. The χ2 therein was augmented to
account for prior information. In this work, we focus on the
standard χ2, with the aim of selecting the best analysis
procedure.
Figures 7–9 show, in heat-map format, the m̂PS;cut- and

m̂ps;cut-dependence of the χ2=Nd:o:f:, the probability weight,
W, in Eq. (31), and the fitted m̂χ

CB, for measurements of
the masses of ΛCB, ΣCB, and Σ�

CB, respectively. In each
row of a given figure, we display the results for the five
distinct fitting strategies, M2, M3, MF4, MA4, and MC4,
listed in Table III. In all the plots, the horizontal and vertical
axes correspond to m̂PS;cut and m̂ps;cut, respectively. The
center of each pixel in a heat map represents a set of

FIG. 7. Heat-map plots of χ2=Nd:o:f:, W and m̂χ
CB (top to bottom) for the analysis of m̂ΛCB

using different fit Ansätze in Table III. The
horizontal and vertical axes are m̂PS;cut and m̂ps;cut, respectively.
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cuts ðm̂PS;cut; m̂ps;cutÞ. Notice that changing the values of
m̂PS;cut and m̂ps;cut does not correspond to removing or
including data points. Therefore, in each heat map, the
336 pixels constituting the panel represent only 263 distinct
datasets. This redundancy does not affect the normalization
factor, N , in Eq. (31).
In Tables IV–VI, we display the optimal choices of

m̂PS;cut and m̂ps;cut, as well as the corresponding value of
χ2=Nd:o:f:, AIC and W, for all fitting methods in analyzing
data of m̂ΛCB

, m̂ΣCB
, and m̂Σ�

CB
, respectively. From these

tables, as well as by inspection of Figs. 7–9, we conclude
that the best analysis procedure for the continuum and
massless-hyperquark extrapolation of m̂ΛCB

is the use of
MC4 fit Ansatz, with m̂PS;cut ¼ 1.07 and m̂ps;cut ¼ 1.87,

while that of m̂ΣCB
is MC4 with m̂PS;cut ¼ 0.77 and

m̂ps;cut ¼ 1.47. Regarding m̂Σ�
CB
, we find the optimal pro-

cedure to be the M3 Ansatz with m̂PS;cut ¼ 0.82 and
m̂ps;cut ¼ 1.17. It is noteworthy that the χ2=Nd:o:f values
corresponding to the optimal fit, as determined through the
minimization of the AIC, exhibit close proximity to unity in
a posteriori examination.
Our results of the estimates of the LECs from the best

analysis procedures are presented in Table VII. We notice
for example that Fi and Ai are not compatible for at least
ΛCB and ΣCB chimera baryons, confirming the necessity of
using separate expansions in m̂PS and m̂ps. Moreover, the
L1 coefficient for m̂Σ�

CB
is significantly larger than that for

m̂ΛCB
and m̂ΣCB

, indicating that lattice artifacts are expected

FIG. 8. Heat-map plots of χ2=Nd:o:f:, W and m̂χ
CB (top to bottom) for the analysis of m̂ΣCB

using different fit Ansätze in Table III. The
horizontal and vertical axes are m̂PS;cut and m̂ps;cut, respectively.
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to be more sizeable in this baryon mass, which is the
heaviest of the three.
To demonstrate the robustness of the AIC-driven analy-

sis, we perform cross checks by fitting the data obtained by
fixing lattice spacing and mass of the pseudoscalar meson
in one of the representations. We first consider fixing the
value of m̂ps and the lattice spacing. In this case, the fit
function, Eq. (29), reduces to

m̂CB ¼ m̃χ
CB þ F̃2m̂2

PS þ F̃3m̂3
PS: ð32Þ

We can then choose our data points at particular fixed m̂ps,
â, and fit them to Eq. (32) to determine m̃χ

CB, F̃2 and F̃3.
Comparing with Eq. (29), it is anticipated that these three

parameters depend on the chosen values of m̂ps and â.
Nevertheless, we expect that for small enough values of m̂ps

and â, we should see that m̃χ
CB approaches mχ

CB determined
from the global fit discussed above (MC4 for m̂ΛCB

and
m̂ΣCB

, and M3 for m̂Σ�
CB
). Similar expectations apply to F̃2

and F̃3. Also, the m̂ps-dependence in F̃2 should primarily
be accounted by the cross term, C4m̂2

PSm̂
2
ps.

Analogously, Eq. (29), for fixed m̂PS and â, reduces to

m̂CB ¼ m̃χ
CB þ Ã2m̂2

ps þ Ã3m̂3
ps: ð33Þ

Here m̃χ
CB, Ã2 and Ã3 depend on the chosen values of m̂PS

and â. They are expected to approach the appropriate LECs
from the global fit when m̂PS and â are small. These cross

FIG. 9. Heat-map plots of χ2=Nd:o:f:, W and m̂χ
CB (top to bottom) for the analysis of m̂Σ�

CB
using different fit Ansätze in Table III. The

horizontal and vertical axes are m̂PS;cut and m̂ps;cut, respectively.
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checks serve as examinations of our analyses using the
fitting strategies listed in Table III.
In Fig. 10, we present results of the fitted m̃χ

CB, F̃2 and F̃3

in Eq. (32) for three values of lattice spacing, corresponding
to β ¼ 7.62, 7.7 and 8.0 listed in Table II. As discussed
above, these three parameters should depend upon m̂ps and
the lattice spacing. The plots in Fig. 10 indicate that lattice
artifacts are small. Yet, notice that most results presented in
this figure are from the coarsest lattice (β ¼ 7.62). This is
because the number of data points in the other two
ensembles, when fixing m̂ps, is small and in many cases
does not allow us to carry out this exercise. This is also the
reason why we cannot perform the cross check on the other
two ensembles (β ¼ 7.85 and 8.2) listed in Table II.
The plots in Fig. 10 demonstrate that m̃χ

CB and F̃2 have
non-negligible m̂ps-dependence. The bands in each plot
represent the global fit results, namely mχ

CB, F2, and F3,
respectively, obtained from the best analysis procedures in
Table VII. The height and width of each band correspond to
the size of the statistical error and the value of m̂ps;cut,
respectively. It can be seen that m̃χ

CB is compatible with the
value of mχ

CB obtained from the best global-fit analysis
procedure for m̂ΛCB

and m̂ΣCB
in the small-m̂ps regime. This

is not the case for m̂Σ�
CB
, for which we find a larger value of

L1 (see Table VII), indicating the presence of more
significant lattice artifacts. We further observe that results
of F̃2 for m̂ΛCB

and m̂ΣCB
show non-negligible dependence

upon the chosen value of m̂ps, indicating the need to include
the cross term, C4m̂2

PSm̂
2
ps, in the global-fit analysis.

Analogously, we conduct a similar cross check by fixing
the value of m̂PS, as described by Eq. (33). Results of this
process are displayed in Fig. 11, which show similar
features to those we discussed in commenting on
Fig. 10. Since this work is the first exploratory study of
the spectrum of the chimera baryons in the Spð4Þ gauge
theory, we do not attempt to estimate systematic errors
affecting our results. It has to be emphasized that the
current calculation is performed in the quenched approxi-
mation, and we are interested in the qualitative feature of
the spectrum at this stage. More precise, dynamical
computations are deferred to future work.

TABLE IV. The optimal choices of m̂PS;cut and m̂ps;cut for each
fit ansatz in the continuum and massless-hyperquark extrapola-
tion of m̂ΛCB

. Also shown are the corresponding value of
χ2=Nd:o:f:, AIC and W.

ΛCB

Ansatz m̂PS;cut m̂ps;cut χ2=Nd:o:f: AIC W

M2 0.77 0.97 0.56 199.76 ∼10−38
M3 1.07 1.87 0.85 136.16 ∼10−10
MF4 1.07 1.87 0.85 138.16 ∼10−11
MA4 1.07 1.87 0.83 134.97 ∼10−9
MC4 1.07 1.87 0.67 114.91 0.63

TABLE V. The optimal choices of m̂PS;cut and m̂ps;cut for each fit
Ansatz in the continuum and massless-hyperquark extrapolation
of m̂ΣCB

. Also shown are the corresponding value of χ2=Nd:o:f:,
AIC and W.

ΣCB

Ansatz m̂PS;cut m̂ps;cut χ2=Nd:o:f: AIC W

M2 0.62 0.72 0.67 235.41 ∼10−29
M3 0.62 1.37 0.77 218.29 ∼10−22
MF4 0.57 1.82 0.77 219.74 ∼10−22
MA4 0.57 1.87 0.65 209.31 ∼10−18
MC4 0.77 1.47 0.78 169.92 0.97

TABLE VI. The optimal choices of m̂PS;cut and m̂ps;cut for each
fit Ansatz in the continuum and massless-hyperquark extrapola-
tion of m̂ΣCB

. Also shown are the corresponding value of
χ2=Nd:o:f:, AIC and W.

Σ�
CB

Ansatz m̂PS;cut m̂ps;cut χ2=Nd:o:f AIC W

M2 0.82 0.87 1.05 233.08 ∼10−9
M3 0.82 1.17 1.01 214.42 0.64
MF4 0.82 1.17 1.05 218.5 0.01
MA4 0.82 1.67 1.4 217.59 0.03
MC4 0.82 1.17 1.01 215.53 0.21

TABLE VII. Low-energy constants in Eq. (29) for each chimera baryon, as determined by the best analysis procedure selected from
those presented in Tables IV–VI. The missing coefficients are set to zero, as a result of the AIC-driven analysis.

CB Ansatz m̂χ
CB F2 A2 L1 F3 A3 L2F L2A C4

ΛCB MC4 1.003(30) 0.691(66) 0.383(13) −0.14ð47Þ −0.14ð35Þ −0.091ð48Þ 0.091(76) 0.002(14) −0.024ð63Þ
ΣCB MC4 0.840(21) 0.801(83) 0.558(13) −0.13ð33Þ −0.23ð67Þ −0.161ð83Þ 0.190(66) −0.02ð17Þ −0.079ð66Þ
Σ�
CB M3 1.259(35) 0.36(10) 0.394(32) −0.33ð55Þ −0.06ð85Þ −0.13ð19Þ 0.334(84) 0.007(31) � � �
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Using the results summarized in Table VII, for the LECs
denoted as m̂χ

CB, F2;3, and A2;3, we present the dependence
on m̂2

PS and m̂2
ps of the chimera-baryon masses in the

continuum limit, in Fig. 12. That is, the plots in this figure
are generated using Eq. (29) with â ¼ 0. The left (right)
panel of this figure shows the evolution of m̂ΛCB

, m̂ΣCB
, and

m̂ΣCB
as a function of m̂PS (m̂ps) in the limit where m̂ps ¼ 0

(m̂PS ¼ 0). The color bands represent the statistical errors,
and they straddle in the horizontal direction from 0 to the
values m̂PS ¼ m̂PS;cut (left) and m̂ps ¼ m̂ps;cut (right). The
mass hierarchy,

m̂ΣCB
≲ m̂ΛCB

< m̂Σ�
CB
; ð34Þ

emerges in the whole range of hyperquark masses inves-
tigated in this work. The masses m̂ΛCB

and m̂ΣCB
become

compatible with one another only in the regime of heavier
ðasÞ hyperquarks. The hierarchy in Eq. (34) can have

nontrivial implications in constructing viable models for
top partial compositeness [66].
It is interesting to compare the masses of the chimera

baryons with those of other states in the theory, as we do in
Fig. 13. Meson and glueball masses are taken from our
previous measurements in the quenched approximation
[45,109] (see also Refs. [110,111] for related studies). In
this figure, mesons denoted by capital letters are those
composed of (f) hyperquarks, while those expressed by
lowercase letters contain ðasÞ hyperquarks only. All the
masses presented in the plot have been extrapolated to the
continuum and massless-hyperquark limit, and are shown
in both gradient-flow units (vertical axis on the left-hand
side), as well as in units of the fundamental pseudoscalar
meson decay constant [45] (vertical axis on the right-hand
side). The height of the bands represents statistical errors.
As shown in the figure, we find that the masses of the top-
partner candidates, ΛCB and ΣCB, are comparable to those
of the ðasÞ vector mesons.

FIG. 10. Result of the cross checks based upon Eq. (32). The horizontal axis denotes the value of m̂ps. As indicated in the legend below
the plots, different markers stand for measurements performed on different ensembles, and the bands represent results of m̂χ

CB, F2 and F3

from the best global-fit analysis procedures (see Table VII). The height and the width of each band correspond to the size of the statistical
error and the value of m̂ps;cut, respectively.
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The spectrum of CHMs with top partial compositeness
has also been studied using other methods, such as
Schwinger-Dyson equations, Nambu-Jona-Lasinio models,
or in the framework of holography [112–117]. To facilitate
comparison with these as well as other future studies,
and in view of possible phenomenological applications, we
express our final results for the massless-hyperquark and
continuum extrapolations for the chimera baryon states in
units of the mass, mv, of the lightest vector meson with
ðasÞ-type constituents. We find

mΛCB
=mv ¼ 1.234ð32Þ; mΣCB

=mv ¼ 1.016ð25Þ; and

mΣ�
CB
=mv ¼ 1.576ð47Þ; ð35Þ

where the quoted error is statistical errors without including
systematic effects, for example due to the quenched
approximation.

IV. SUMMARY AND OUTLOOK

The strongly interacting Spð4Þ gauge theory coupled
to Nf ¼ 2 fundamental, (f), and nf ¼ 3 two-index anti-
symmetric, ðasÞ, Dirac fermions (hyperquarks) is the
minimal model amenable to lattice investigations that
can provide a UV completion of CHMs with top partial
compositeness [27]. Chimera baryons are composite states
formed by two (f) and one ðasÞ hyperquarks, and are
sourced by the operators O5 in Eq. (1) and Oμ in Eq. (2).
The lightest state sourced by O5 is the spin-1=2 chimera
baryon, ΛCB, while Oμ can source spin-1=2 and −3=2
baryons, and we denote by ΣCB and Σ�

CB, respectively, the
two lightest states with definite spin. Either ΛCB or ΣCB
are candidate top partners [66].
Because this is the first systematic lattice calculation of

the chimera baryon spectrum in the Spð4Þ gauge theory, we
perform it in the quenched approximation, in which the
hyperquark determinant in the path integral is set to a

FIG. 11. Result of the cross checks based upon Eq. (33). The horizontal axis denotes the value of m̂ps. As indicated in the legend below
the plots, different markers stand for measurements performed on different ensembles, and the bands represent results of m̂χ

CB, A2 and A3

from the best global-fit analysis procedures (see Table VII). The height and the width of each band correspond to the size of the statistical
error and the value of m̂PS;cut, respectively.
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constant—see Ref. [53] for pioneering work on the
theory with Nf ¼ 2 (f)-type and nf ¼ 3 ðasÞ-type
dynamical fermions. Working in the quenched approxi-
mation not only makes the numerical computation
significantly less demanding, but it also allows us to
scan a large region of parameter space and gather useful
information for future dynamical calculations. The inter-
polating operators, O5 and Oμ, source states with both
even and odd parity. As discussed in Sec. III A, having
established that states with even parity are lighter, we
implement projections to the parity-even states in our
analysis. Furthermore, spin projectors are introduced to
distinguish between ΣCB and Σ�

CB states, that are sourced
by the same operator, Oμ.
The main focus of this study is the hyperquark-mass

dependence of the chimera baryon masses. As we use the
Wilson-Dirac formulation for hyperquark fields, we find it
convenient to express this dependence in terms of the mass
of the pseudoscalar mesons, which we denote as m̂PS and
m̂ps, respectively, for mesons built of (f)-type and ðasÞ-
type hyperquarks. As is expected, the three chimera baryon
masses approach one another when increasing m̂PS and m̂ps.
Working under the assumption that the hyperquark masses
are sufficiently light to make it viable, we use an effective
description inspired by baryon chiral EFT [105,118].

We include only polynomial terms in the continuum and
massless-hyperquark extrapolations. In the range of hyper-
quark masses probed in this work, we find the mass
hierarchy m�

ΣCB
> mΛCB

≳mΣCB
. Our measurements show

that the ratiomΛCB
=mΣCB

decreases whenmps increases, and
that, for the heaviest available values of mps, this ratio is
compatible with unity. These findings suggest that the
hierarchy may not hold true in other regimes of hyperquark
masses, which warrants further, more extensive future
investigations.
The use of EFT-inspired relations also enables the

extrapolation to the continuum limit, by including
effects of lattice-artifact that break the global symmetries
of the system explicitly [107]. As explained in detail in
Sec. III C, we implement various Ansätze for this simulta-
neous continuum and massless-hyperquark extrapolation.
Leveraging the AIC [100,108] to assess the fit quality
and performing cross checks by fixing the pseudoscalar-
meson masses in each of the representations, we find
the optimal choice of the fit procedure for the chimera
baryons in our analysis. The evolution of the chimera
baryon masses as a function of the pseudoscalar masses in
the continuum limit are displayed in Fig. 12. Furthermore,
in Fig. 13 we display the complete ground state spectrum of
the theory in the limit of vanishing hyperquark masses,

FIG. 12. Dependence on m̂2
PS (left) and m̂2

ps (right) of the mass of three chimera baryons, ΛCB, ΣCB, and Σ�
CB, in the limit where the

lattice spacing vanishes, while m̂2
ps ¼ 0 (left) and m̂2

PS ¼ 0 (right). These plots are generated using the best-fit LECs in Table VII, with
the bands representing the statistical errors. These bands straddle in the horizontal direction between zero and the optimal choices of
m̂2

PS;cut (left) and m̂2
ps;cut (right).
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displaying together with chimera baryon results also meson
and glueball masses taken from our earlier studies [45,109].
This investigation of chimera baryon mass spectra sets

the stage for lattice simulations with dynamical matter
fields. Understanding the intricate mass relations between
chimera baryons and hyperquarks is pivotal for navigating
the multifaced lattice parameter space and constructing
physically meaningful models. However, due to the
quenching effects, especially the lack of fermion dynamics,
it does not describe the validity of the fully dynamical
two-representation Spð4Þ model as a viable composite
Higgs model. This result should be taken cautiously
when applied to particle phenomenology. In particular,
to study the anomalous dimension, the fermion dyna-
mics are essential to make the theory (near-)conformal.
Nevertheless, it is encouraging that the lightest chimera
baryon is as light as the vector meson in the antisymmetric
representation. The commitment to precise and accurate
physics is central to our quest for a deeper understanding
of composite Higgs and top partial compositeness models
and their potential implications for particle physics. We
here established a robust analysis framework, that will be
crucial in future high-precision studies, particularly when

confronting computationally demanding calculations that
require control over the numerous lattice inputs.

The data generated for this manuscript can be down-
loaded in machine-readable format from Ref. [119].
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APPENDIX A: EXTRACTED MASSES OF
MESONS AND CHIMERA BARYONS

In this appendix, we provide a comprehensive summary
of the choices of bare hyperquark masses we used in the
measurements we made, along with the resulting masses of
composite states, all expressed in lattice units. Our dataset
includes the masses of pseudoscalar mesons composed of
(f) and ðasÞ hyperquarks, which we denote asmPS andmps,
respectively, as well as the masses of the chimera baryons
ΛCB, ΣCB, and Σ�

CB. We also report the mass ratios between
pseudoscalar and vector mesons, which serves as an
indicator of the amount of explicit breaking of the global
symmetry of the theory. We have organized the data into
tables based on the ensemble in which the measurements
were performed, individual ensembles differing both by
the lattice coupling β and the volume (see Table II).
Specifically, Tables VIII–XII correspond to measurements
on ensembles QB1–QB5, respectively. All numbers pre-
sented here are available in machine-readable format in the
data release associated with this work [119]. The software
workflow used to analyze the data and prepare the plots and
tables are made available in Ref. [121]. Further technical
details, such as smearing parameters, fitting ranges applied
to the mass extraction, and values of the resulting χ2=Nd:o:f:,
are presented in Appendix C.

TABLE VIII. Numerical values of the bare masses, amðfÞ
0 and amðasÞ

0 , used in the measurements on the ensemble QB1, that has
gradient flow scale w0=a ¼ 1.448ð3Þ. For each set of bare masses, we present the pseudoscalar meson mass, amPS and amps, the mass
ratio between pseudoscalar and vector mesons in both representations, mPS=mV and mps=mv, and the chimera-baryon masses amΛCB

,
amΣCB

and amΣ�
CB
.

amðfÞ
0 amðasÞ

0 amPS mPS=mV amps mps=mv amΛCB
amΣCB

amΣ⋆
CB

−0.7 −0.8 0.55051(63) 0.8814(14)

1.14239(68) 0.96157(30)

1.3165(30) 1.3033(27) 1.3418(33)
−0.73 −0.8 0.48083(59) 0.8431(18) 1.2643(34) 1.2505(31) 1.2914(38)
−0.75 −0.8 0.43054(60) 0.8061(23) 1.2294(40) 1.2143(36) 1.2575(45)
−0.77 −0.8 0.37585(69) 0.742(11) 1.1937(57) 1.1786(47) 1.2213(63)
−0.79 −0.8 0.31357(79) 0.6802(35) 1.1613(70) 1.1427(61) 1.1889(70)

−0.7 −0.9 0.55051(63) 0.8814(14)

0.96083(76) 0.93732(66)

1.2251(28) 1.2047(26) 1.2539(33)
−0.73 −0.9 0.48083(59) 0.8431(18) 1.1705(31) 1.1498(29) 1.2023(38)
−0.75 −0.9 0.43054(60) 0.8061(23) 1.1343(36) 1.1129(32) 1.1680(45)
−0.77 −0.9 0.37585(69) 0.742(11) 1.0984(46) 1.0757(41) 1.1331(51)
−0.79 −0.9 0.31357(79) 0.6802(35) 1.0633(49) 1.0427(47) 1.0918(76)

−0.7 −0.95 0.55051(63) 0.8814(14)

0.86018(70) 0.91745(72)

1.1759(27) 1.1510(26) 1.2069(32)
−0.73 −0.95 0.48083(59) 0.8431(18) 1.1208(29) 1.0947(27) 1.1541(39)
−0.75 −0.95 0.43054(60) 0.8061(23) 1.0841(33) 1.0570(29) 1.1197(45)
−0.77 −0.95 0.37585(69) 0.742(11) 1.0470(38) 1.0195(37) 1.0845(52)
−0.79 −0.95 0.31357(79) 0.6802(35) 1.0093(51) 0.9838(46) 1.0483(66)

(Table continued)
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TABLE VIII. (Continued)

amðfÞ
0 amðasÞ

0 amPS mPS=mV amps mps=mv amΛCB
amΣCB

amΣ⋆
CB

−0.7 −1.0 0.55051(63) 0.8814(14)

0.74972(70) 0.88675(95)

1.1264(30) 1.0940(26) 1.1599(34)
−0.73 −1.0 0.48083(59) 0.8431(18) 1.0689(28) 1.0363(26) 1.1049(38)
−0.75 −1.0 0.43054(60) 0.8061(23) 1.0314(31) 0.9977(29) 1.0704(41)
−0.77 −1.0 0.37585(69) 0.742(11) 0.9935(36) 0.9591(36) 1.0352(47)
−0.79 −1.0 0.31357(79) 0.6802(35) 0.9551(47) 0.9220(44) 0.9996(61)

−0.7 −1.05 0.55051(63) 0.8814(14)

0.62516(68) 0.8347(19)

1.0689(28) 1.0311(24) 1.1048(34)
−0.73 −1.05 0.48083(59) 0.8431(18) 1.0109(31) 0.9718(25) 1.0518(38)
−0.75 −1.05 0.43054(60) 0.8061(23) 0.9720(35) 0.9318(30) 1.0168(42)
−0.77 −1.05 0.37585(69) 0.742(11) 0.9325(45) 0.8914(34) 0.9817(47)
−0.79 −1.05 0.31357(79) 0.6802(35) 0.8935(60) 0.8517(43) 0.9472(61)

−0.7 −1.1 0.55051(63) 0.8814(14)

0.47811(61) 0.7401(26)

1.0070(30) 0.9624(24) 1.0521(31)
−0.73 −1.1 0.48083(59) 0.8431(18) 0.9495(32) 0.9011(25) 1.0002(34)
−0.75 −1.1 0.43054(60) 0.8061(23) 0.9105(33) 0.8593(27) 0.9655(34)
−0.77 −1.1 0.37585(69) 0.742(11) 0.8708(37) 0.8165(29) 0.9309(37)
−0.79 −1.1 0.31357(79) 0.6802(35) 0.8295(48) 0.7724(35) 0.8966(43)

−0.77 −1.12 0.37585(69) 0.742(11)
0.40811(66) 0.6845(26)

0.8420(37) 0.7821(30) 0.9004(50)
−0.78 −1.12 0.34593(72) 0.7200(43) 0.8214(41) 0.7594(33) 0.8829(53)
−0.79 −1.12 0.31357(79) 0.6802(35) 0.8003(47) 0.7362(35) 0.8655(60)

−0.77 −1.14 0.37585(69) 0.742(11)
0.32632(76) 0.5944(38)

0.8133(41) 0.7461(31) 0.8763(50)
−0.78 −1.14 0.34593(72) 0.7200(43) 0.7926(46) 0.7223(33) 0.8582(52)
−0.79 −1.14 0.31357(79) 0.6802(35) 0.7713(52) 0.6972(38) 0.8401(57)

−0.7 −1.15 0.55051(63) 0.8814(14)

0.27757(81) 0.5289(31)

0.9399(34) 0.8842(29) 0.9908(44)
−0.73 −1.15 0.48083(59) 0.8431(18) 0.8804(37) 0.8190(30) 0.9314(71)
−0.75 −1.15 0.43054(60) 0.8061(23) 0.8400(39) 0.7737(31) 0.8953(80)
−0.77 −1.15 0.37585(69) 0.742(11) 0.7989(46) 0.7266(34) 0.8689(46)
−0.79 −1.15 0.31357(79) 0.6802(35) 0.7564(56) 0.6765(40) 0.8275(62)

TABLE IX. Numerical values of the bare masses, amðfÞ
0 and amðasÞ

0 , used in the measurements on the ensemble QB2, that has gradient
flow scale w0=a ¼ 1.6070ð19Þ. For each set of bare masses, we present the pseudoscalar meson mass, amPS and amps, the mass ratio
between pseudoscalar and vector mesons in both representations, mPS=mV and mps=mv, and the chimera-baryon masses amΛCB

, amΣCB

and amΣ�
CB
.

amðfÞ
0 amðasÞ

0 amPS mPS=mV amps mps=mv amΛCB
amΣCB

amΣ⋆
CB

−0.7 −0.89 0.46136(51) 0.8541(12)

0.89541(64) 0.93561(91)

1.0912(38) 1.0745(27) 1.1190(37)
−0.72 −0.89 0.41055(54) 0.8151(16) 1.0522(46) 1.0363(29) 1.0833(42)
−0.74 −0.89 0.35509(61) 0.7649(27) 1.0166(42) 0.9981(37) 1.0468(50)
−0.77 −0.89 0.25517(63) 0.6240(41) 0.9622(74) 0.9407(61) 0.9867(82)

−0.72 −0.91 0.41055(54) 0.8151(16)
0.85430(49) 0.92741(77)

1.0350(29) 1.0154(25) 1.0656(42)
−0.74 −0.91 0.35509(61) 0.7649(27) 0.9964(34) 0.9761(28) 1.0299(50)
−0.77 −0.91 0.25517(63) 0.6240(41) 0.9400(58) 0.9161(43) 0.9726(76)

−0.72 −0.92 0.41055(54) 0.8151(16)
0.83312(49) 0.92381(87)

1.0243(29) 1.0034(25) 1.0555(41)
−0.74 −0.92 0.35509(61) 0.7649(27) 0.9855(34) 0.9644(28) 1.0197(49)
−0.77 −0.92 0.25517(63) 0.6240(41) 0.9290(57) 0.9042(43) 0.9625(74)

−0.7 −0.93 0.46136(51) 0.8541(12)

0.81140(63) 0.9182(11)

1.0494(36) 1.0302(26) 1.0788(37)
−0.72 −0.93 0.41055(54) 0.8151(16) 1.0135(32) 0.9916(24) 1.0429(41)
−0.74 −0.93 0.35509(61) 0.7649(27) 0.9748(36) 0.9526(28) 1.0063(49)
−0.76 −0.93 0.29175(62) 0.6873(44) 0.9362(45) 0.9129(36) 0.9677(63)
−0.77 −0.93 0.25517(63) 0.6240(41) 0.9185(56) 0.8923(41) 0.9462(78)

(Table continued)
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TABLE IX. (Continued)

amðfÞ
0 amðasÞ

0 amPS mPS=mV amps mps=mv amΛCB
amΣCB

amΣ⋆
CB

−0.76 −0.97 0.29175(62) 0.6873(44) 0.72046(63) 0.8930(14) 0.8906(43) 0.8626(32) 0.9254(62)

−0.76 −1.01 0.29175(62) 0.6873(44) 0.62049(64) 0.8545(17) 0.8397(41) 0.8077(30) 0.8810(61)

−0.72 −1.09 0.41055(54) 0.8151(16)
0.36948(65) 0.6720(49)

0.8171(33) 0.7688(22) 0.8615(44)
−0.74 −1.09 0.35509(61) 0.7649(27) 0.7750(35) 0.7237(24) 0.8250(53)
−0.76 −1.09 0.29175(62) 0.6873(44) 0.7322(45) 0.6768(29) 0.7898(69)

−0.72 −1.1 0.41055(54) 0.8151(16)

0.32806(68) 0.6275(56)

0.8026(34) 0.7518(28) 0.8495(48)
−0.74 −1.1 0.35509(61) 0.7649(27) 0.7603(38) 0.7061(30) 0.8130(57)
−0.76 −1.1 0.29175(62) 0.6873(44) 0.7175(47) 0.6573(27) 0.7780(78)
−0.77 −1.1 0.25517(63) 0.6240(41) 0.6965(39) 0.6326(31) 0.7618(58)

−0.72 −1.11 0.41055(54) 0.8151(16)

0.28138(69) 0.5674(75)

0.7883(38) 0.7351(35) 0.8352(55)
−0.74 −1.11 0.35509(61) 0.7649(27) 0.7458(42) 0.6858(26) 0.8040(52)
−0.76 −1.11 0.29175(62) 0.6873(44) 0.7027(50) 0.6369(28) 0.7707(63)
−0.77 −1.11 0.25517(63) 0.6240(41) 0.6810(43) 0.6114(31) 0.7493(61)

−0.72 −1.12 0.41055(54) 0.8151(16)

0.22629(62) 0.4959(61)

0.7737(43) 0.7140(26) 0.8269(50)
−0.74 −1.12 0.35509(61) 0.7649(27) 0.7309(49) 0.6655(27) 0.7904(56)
−0.76 −1.12 0.29175(62) 0.6873(44) 0.6875(57) 0.6152(30) 0.7549(64)
−0.77 −1.12 0.25517(63) 0.6240(41) 0.6650(48) 0.5888(33) 0.7371(68)

TABLE X. Numerical values of the bare masses, amðfÞ
0 and amðasÞ

0 , used in the measurements on the ensemble QB3, that has gradient
flow scale w0=a ¼ 1.944ð3Þ. For each set of bare masses, we present the pseudoscalar meson mass, amPS and amps, the mass ratio
between pseudoscalar and vector mesons in both representations, mPS=mV and mps=mv, and the chimera-baryon masses amΛCB

, amΣCB
,

and amΣ�
CB
.

amðfÞ
0 amðasÞ

0 amPS mPS=mV amps mps=mv amΛCB
amΣCB

amΣ⋆
CB

−0.66 −0.85 0.41447(68) 0.8644(16)

0.83372(63) 0.94174(74)

0.9889(30) 0.9742(22) 1.0151(21)
−0.68 −0.85 0.36183(67) 0.8229(21) 0.9465(30) 0.9335(19) 0.9789(24)
−0.7 −0.85 0.30299(59) 0.7545(24) 0.9071(41) 0.8938(22) 0.9449(35)
−0.72 −0.85 0.23505(56) 0.6485(35) 0.8641(58) 0.8538(31) 0.9103(55)

−0.66 −0.87 0.41447(68) 0.8644(16)

0.79115(62) 0.93379(83)

0.9682(28) 0.9509(16) 0.9959(24)
−0.68 −0.87 0.36183(67) 0.8229(21) 0.9275(33) 0.9107(18) 0.9599(27)
−0.7 −0.87 0.30299(59) 0.7545(24) 0.8854(40) 0.8701(21) 0.9243(34)
−0.72 −0.87 0.23505(56) 0.6485(35) 0.8421(57) 0.8295(31) 0.8897(54)

−0.66 −0.9 0.41447(68) 0.8644(16)

0.72422(62) 0.9187(10)

0.9335(25) 0.9146(16) 0.9626(20)
−0.68 −0.9 0.36183(67) 0.8229(21) 0.8923(29) 0.8738(18) 0.9259(23)
−0.7 −0.9 0.30299(59) 0.7545(24) 0.8497(37) 0.8326(21) 0.8895(27)
−0.72 −0.9 0.23505(56) 0.6485(35) 0.8079(55) 0.7917(29) 0.8528(39)

−0.66 −0.93 0.41447(68) 0.8644(16)

0.65283(65) 0.8979(12)

0.9008(27) 0.8772(16) 0.9312(25)
−0.68 −0.93 0.36183(67) 0.8229(21) 0.8594(31) 0.8356(18) 0.8949(27)
−0.7 −0.93 0.30299(59) 0.7545(24) 0.8165(38) 0.7934(20) 0.8590(34)
−0.72 −0.93 0.23505(56) 0.6485(35) 0.7719(52) 0.7510(30) 0.8244(50)

−0.72 −0.97 0.23505(56) 0.6485(35)
0.54933(59) 0.8575(14)

0.7203(54) 0.6921(27) 0.7770(52)
−0.73 −0.97 0.19352(66) 0.5635(45) 0.6953(68) 0.6705(37) 0.7610(72)

−0.72 −0.99 0.23505(56) 0.6485(35)
0.49152(59) 0.8256(17)

0.6926(53) 0.6599(26) 0.7516(53)
−0.73 −0.99 0.19352(66) 0.5635(45) 0.6667(69) 0.6376(35) 0.7350(72)

−0.72 −1.01 0.23505(56) 0.6485(35)
0.42835(59) 0.7811(23)

0.6634(53) 0.6253(26) 0.7247(57)
−0.73 −1.01 0.19352(66) 0.5635(45) 0.6366(72) 0.6021(32) 0.7073(79)

(Table continued)
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TABLE X. (Continued)

amðfÞ
0 amðasÞ

0 amPS mPS=mV amps mps=mv amΛCB
amΣCB

amΣ⋆
CB

−0.72 −1.03 0.23505(56) 0.6485(35)
0.35724(59) 0.7152(29)

0.6326(57) 0.5879(26) 0.6962(61)
−0.73 −1.03 0.19352(66) 0.5635(45) 0.6051(75) 0.5634(30) 0.6774(89)

−0.7 −1.04 0.30299(59) 0.7545(24)
0.31740(54) 0.6741(25)

0.6652(37) 0.6183(21) 0.7192(34)
−0.71 −1.04 0.27064(52) 0.7087(28) 0.6409(44) 0.5938(23) 0.6999(36)
−0.72 −1.04 0.23505(56) 0.6485(35) 0.6155(54) 0.5689(25) 0.6808(42)

−0.7 −1.05 0.30299(59) 0.7545(24)
0.27275(51) 0.6150(30)

0.6498(39) 0.5986(23) 0.7042(41)
−0.71 −1.05 0.27064(52) 0.7087(28) 0.6254(47) 0.5735(25) 0.6847(44)
−0.72 −1.05 0.23505(56) 0.6485(35) 0.6000(54) 0.5481(27) 0.6653(53)

−0.7 −1.06 0.30299(59) 0.7545(24)
0.22070(52) 0.5309(37)

0.6341(43) 0.5776(23) 0.6900(47)
−0.71 −1.06 0.27064(52) 0.7087(28) 0.6089(49) 0.5516(25) 0.6704(52)
−0.72 −1.06 0.23505(56) 0.6485(35) 0.5821(60) 0.5248(27) 0.6508(63)

TABLE XI. Numerical values of the bare masses, amðfÞ
0 and amðasÞ

0 , used in the measurements on the ensemble QB4, that has gradient
flow scale w0=a ¼ 2.3149ð12Þ. For each set of bare masses, we present the pseudoscalar meson mass, amPS and amps, the mass ratio
between pseudoscalar and vector mesons in both representations, mPS=mV and mps=mv, and the chimera-baryon masses amΛCB

, amΣCB

and amΣ�
CB
.

amðfÞ
0 amðasÞ

0 amPS mPS=mV amps mps=mv amΛCB
amΣCB

amΣ⋆
CB

−0.6 −0.81 0.44096(43) 0.9122(14)

0.79148(42) 0.95387(47)

0.9475(18) 0.9379(16) 0.9643(18)
−0.62 −0.81 0.39299(44) 0.8899(19) 0.9071(21) 0.8981(17) 0.9269(20)
−0.64 −0.81 0.34160(44) 0.8518(24) 0.8655(25) 0.8580(19) 0.8890(22)
−0.66 −0.81 0.28512(43) 0.7896(23) 0.8245(28) 0.8182(21) 0.8508(26)
−0.68 −0.81 0.21852(47) 0.6825(38) 0.7817(43) 0.7788(28) 0.8153(36)
−0.69 −0.81 0.17780(57) 0.5922(49) 0.7651(45) 0.7609(35) 0.7988(48)
−0.7 −0.81 0.12461(75) 0.4505(96) 0.7486(68) 0.7409(54) 0.7818(90)

−0.62 −0.82 0.39299(44) 0.8899(19)

0.77014(45) 0.95136(50)

0.8963(21) 0.8867(17) 0.9164(20)
−0.64 −0.82 0.34160(44) 0.8518(24) 0.8547(25) 0.8464(19) 0.8784(21)
−0.68 −0.82 0.21852(47) 0.6825(38) 0.7700(42) 0.7680(29) 0.8051(35)
−0.7 −0.82 0.12461(75) 0.4505(96) 0.7370(67) 0.7287(53) 0.7713(91)

−0.62 −0.84 0.39299(44) 0.8899(19)

0.72632(46) 0.94418(57)

0.8743(21) 0.8633(17) 0.8950(19)
−0.64 −0.84 0.34160(44) 0.8518(24) 0.8326(24) 0.8227(18) 0.8567(21)
−0.68 −0.84 0.21852(47) 0.6825(38) 0.7475(41) 0.7433(28) 0.7830(34)
−0.7 −0.84 0.12461(75) 0.4505(96) 0.7132(63) 0.7036(51) 0.7498(89)

−0.64 −0.91 0.34160(44) 0.8518(24)
0.55722(50) 0.9003(11)

0.7493(22) 0.7324(17) 0.7750(26)
−0.66 −0.91 0.28512(43) 0.7896(23) 0.7064(25) 0.6903(20) 0.7371(25)

−0.64 −0.93 0.34160(44) 0.8518(24)
0.50263(48) 0.8779(13)

0.7234(21) 0.7039(17) 0.7504(27)
−0.66 −0.93 0.28512(43) 0.7896(23) 0.6804(25) 0.6610(20) 0.7122(24)

−0.64 −0.95 0.34160(44) 0.8518(24)
0.44385(51) 0.8466(17)

0.6949(22) 0.6738(17) 0.7237(28)
−0.66 −0.95 0.28512(43) 0.7896(23) 0.6525(26) 0.6298(19) 0.6865(26)

−0.66 −0.99 0.28512(43) 0.7896(23)
0.30571(47) 0.7232(25)

0.5948(23) 0.5603(18) 0.6347(28)
−0.68 −0.99 0.21852(47) 0.6825(38) 0.5478(31) 0.5117(24) 0.5965(34)

−0.66 −1.01 0.28512(43) 0.7896(23)
0.21414(43) 0.5735(32)

0.5627(26) 0.5198(20) 0.6063(31)
−0.68 −1.01 0.21852(47) 0.6825(38) 0.5148(35) 0.4677(24) 0.5688(40)

−0.66 −1.015 0.28512(43) 0.7896(23)

0.18561(39) 0.5161(38)

0.5536(30) 0.5099(21) 0.5993(34)
−0.67 −1.015 0.25347(60) 0.7468(39) 0.5295(34) 0.4836(22) 0.5814(45)
−0.68 −1.015 0.21852(47) 0.6825(38) 0.5056(41) 0.4567(25) 0.5623(40)
−0.69 −1.015 0.17780(57) 0.5922(49) 0.4826(56) 0.4290(30) 0.5475(60)
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APPENDIX B: SMEARING TECHNIQUES

Wuppertal smearing [98] and APE smearing [99] are
well-developed lattice techniques, which are normally
applied simultaneously, to improve the overlap of a
ground state. The former amounts to a modification of
the operators used to define the 2-point functions, in
particular on the position of the hyperquarks constituting
mesons and chimera baryons. The latter consists of a
smoothening of the gauge configurations, that removes
short-distance fluctuations.
In calculations involving point sources, a hyperquark

propagator, SR, involving fermions transforming in the R
representation of the gauge group, is obtained by solving
the Dirac equation

DR
aα;bβðx; yÞSbβR cγðyÞ ¼ δx;0δαγδac; ðB1Þ

where DR
aα;bβ is the Wilson-Dirac operator in Eq. (8).

Smearing of the source is obtained by replacing the spatial
delta function, δx;0, by a new source, qðnÞðxÞ, constructed
with the Wuppertal smearing function, which is defined
recursively by the relation

qðnþ1ÞðxÞ ¼ 1

1þ 6ε

�
qðnÞðxÞ þ ε

X�3

μ¼�1

UμðxÞqðnÞðxþ μ̂Þ
�
;

ðB2Þ

with n ¼ 0;…; NW. The initial condition is qð0ÞðxÞ ¼ δx;0
refers to a point source. The tunable parameters, ε and NW,
are referred to as step size and number of iterations,
respectively. The smearing of the sink is obtained by
replacing qð0Þ with a hyperquark propagator SR.
We supplement Wuppertal smearing by smoothening

gauge links with APE smearing. The smearing function is

Uðnþ1Þ
μ ðxÞ ¼ P

�
ð1 − αÞUðnÞ

μ ðxÞ þ α

6
SðnÞμ ðxÞ

�
; ðB3Þ

where Sμ denotes the staple operator, defined as

SμðxÞ ¼
X
�ν≠μ

UνðxÞUμðxþ ν̂ÞU†
νðxþ μ̂Þ: ðB4Þ

The iteration number, n ¼ 0;…; NAPE, and step size, α,
are tunable parameters. Because of the summation over
neighboring gauge links in Eq. (B3), the smeared gauge
links should be projected back to the group. A project P is
provided by the resymplectization algorithm in the HB
calculations, which inherits the numerical stability of the
Gram-Schmidt process. It takes advantage of the symplec-
tic structure of Spð2NÞ: once the firstN columns, colj, with
j ¼ 1;…; N, of the Spð2NÞmatrix are given, the remaining
ones are given by

coljþN ¼ −Ωcol�j ðB5Þ
Having normalized the first column, the (N þ 1)th one is
obtained algebraically. The second column is computed by
orthonormalizing the first and the (N þ 1)th. By repeating
the process for every column, one arrives at a complete
Spð2NÞ matrix.
In previous work [43–45], we used stochastic wall

sources [122] for the meson calculations. To improve the
signal of chimera baryons, in this study, we apply
Wuppertal and APE smearing simultaneously to obtain
(f) and ðasÞ hyperquark propagators. Wuppertal smearing
step sizes are chosen differently for (f) and ðasÞ hyper-
quark propagators, and we denote them as ϵðfÞ and ϵðasÞ,
respectively. We fix the number of iterations at the
source, and select individually the number of iterations
at the sink that display the optimal plateau for each meson
and each chimera baryon. Our choices of the Wuppertal
smearing parameters are presented in Appendix C.

TABLE XII. Numerical values of the bare masses, amðfÞ
0 and amðasÞ

0 , used in the measurements on the ensemble QB5, that has gradient
flow scale w0=a ¼ 2.8812ð21Þ. For each set of bare masses, we present the pseudoscalar meson mass, amPS and amps, the mass ratio
between pseudoscalar and vector mesons in both representations, mPS=mV and mps=mv, and the chimera-baryon masses amΛCB

, amΣCB

and amΣ�
CB
.

amðfÞ
0 amðasÞ

0 amPS mPS=mV amps mps=mv amΛCB
amΣCB

amΣ⋆
CB

−0.62 −0.95 0.25078(68) 0.8158(29)
0.22264(47) 0.6751(34)

0.4901(28) 0.4600(17) 0.5203(31)
−0.64 −0.95 0.18239(82) 0.6997(57) 0.4371(37) 0.4061(21) 0.4779(40)
−0.646 −0.95 0.15759(89) 0.6397(76) 0.4203(45) 0.3897(24) 0.4660(45)

−0.62 −0.956 0.25078(68) 0.8158(29)
0.19303(45) 0.6200(42)

0.4792(29) 0.4469(18) 0.5111(33)
−0.64 −0.956 0.18239(82) 0.6997(57) 0.4251(40) 0.3918(22) 0.4682(42)
−0.646 −0.956 0.15759(89) 0.6397(76) 0.4078(47) 0.3749(25) 0.4562(49)

−0.62 −0.961 0.25078(68) 0.8158(29)
0.16488(48) 0.5568(52)

0.4693(37) 0.4350(20) 0.5033(35)
−0.64 −0.961 0.18239(82) 0.6997(57) 0.4145(52) 0.3781(25) 0.4601(46)
−0.646 −0.961 0.15759(89) 0.6397(76) 0.3971(61) 0.3605(29) 0.4481(52)
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The APE smearing parameters are fixed in all the calcu-
lations to be α ¼ 0.4 and NAPE ¼ 50.
The same techniques are also applied to our study on the

spectrum of Spð4Þ gauge theory with nf ¼ 3 antisymmetric
fermions [123], particularly for the calculation of the first
excited state of the vector and tensor mesons. Additionally,
these techniques have been utilized as a cross-verification in
the excited state subtraction method applied to the compu-
tation of a singlet meson—see Appendix B of Ref. [64].

APPENDIX C: DETAILS ABOUT FITTING
PROCEDURES

In this appendix, we tabulate numerical information
relevant to the mass extractions for mesons and chimera
baryons. In Table XIII, we list values of the smearing

parameters of Wuppertal smearing, the fitting interval for
the mass extraction of mesons made of (f) hyperquark
constituents and the corresponding χ2=Nd:o:f: of the fits.
Similar information for mesons made of ðasÞ hyper-
quarks is presented in Table XIV. For chimera baryons,
we provide the relevant details separately for each ensem-
ble in Tables XV–XIX, where the number of iterations of
Wuppertal smearing at the source and sink, the fitting
intervals imposed to fit the correlation functions, as well as
the resulting χ2=Nd:o:f: are displayed. While we set the
number of iterations to be the same for both (f) and ðasÞ
hyperquarks, we set the step size differently for each type of
hyperquark. All parameters presented are also available in
machine-readable format in the data release associated with
this publication [119].

TABLE XIII. Technical details about the computation of the masses of the pseudoscalar and vector mesons constituted by hyperquarks
in (f) representation. For Wuppertal smearing, we denote the step size by ϵðfÞ, the number of iterations at the source by Nsource

W and the
number of iterations at the sink by Nsink

W . The APE smearing parameters α and NAPE are fixed to 0.4 and 50, respectively, in all the

calculations. For each choice of bare mass, amðfÞ
0 , and each meson, we show the fitting intervals as Euclidean time I ¼ ½ti; tf�, between

the initial time ti and the final time tf. We perform a correlated fit with standard χ2-minimization to the function in Eq. (27). We report
the values of χ2 normalized by the number degrees of freedom, χ2=Nd:o:f:

PS V

Ensemble amðfÞ
0 ϵðfÞ Nsource

W Nsink
W I χ2=Nd:o:f: Nsource

W Nsink
W I χ2=Nd:o:f:

QB1 −0.7 0.05 100 0 [13 24] 0.97 100 0 [15 23] 0.99
−0.73 0.2 100 0 [13 24] 1.13 100 0 [15 23] 0.94
−0.75 0.2 100 0 [13 24] 1.22 100 0 [15 23] 0.82
−0.77 0.18 60 0 [14 24] 1.32 60 20 [15 23] 0.37
−0.78 0.18 60 0 [14 24] 1.37 60 40 [10 22] 0.52
−0.79 0.18 60 0 [14 24] 1.4 60 40 [8 22] 0.92

QB2 −0.7 0.18 50 0 [13 29] 0.74 50 0 [12 29] 1.71
−0.72 0.18 50 0 [13 29] 0.67 50 0 [12 25] 1.67
−0.74 0.18 50 0 [19 29] 0.59 50 0 [12 20] 1.16
−0.76 0.18 50 0 [19 29] 0.5 50 50 [12 20] 0.98
−0.77 0.18 50 0 [19 29] 0.42 50 0 [12 20] 1.87

QB3 −0.66 0.18 50 0 [19 26] 0.28 50 0 [21 30] 0.78
−0.68 0.18 50 0 [19 26] 0.43 50 0 [21 30] 0.88
−0.7 0.18 50 0 [19 30] 0.8 50 0 [14 26] 0.48
−0.71 0.18 50 0 [18 30] 0.61 50 0 [14 26] 0.54
−0.72 0.18 50 0 [20 30] 0.6 50 0 [14 26] 0.68
−0.73 0.18 50 0 [22 30] 0.52 50 0 [14 29] 1.13

QB4 −0.6 0.18 100 40 [19 30] 1.27 100 40 [23 30] 1.16
−0.62 0.18 60 40 [18 30] 1.21 60 20 [18 28] 0.95
−0.64 0.18 60 40 [18 30] 1.21 60 10 [18 28] 0.76
−0.66 0.18 50 0 [15 28] 2.1 50 0 [18 29] 1.1
−0.67 0.18 50 20 [23 30] 1.29 50 0 [22 30] 0.94
−0.68 0.18 50 0 [15 28] 1.6 50 0 [18 29] 0.45
−0.69 0.18 50 0 [15 28] 1.13 50 0 [18 29] 0.47
−0.7 0.18 50 0 [15 28] 1.04 50 0 [18 27] 1.04

QB5 −0.62 0.18 50 0 [25 30] 0.26 50 0 [25 30] 0.15
−0.64 0.18 50 0 [25 30] 0.41 50 0 [25 30] 0.77
−0.646 0.18 50 0 [25 30] 0.42 50 20 [23 30] 0.9
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TABLE XIV. Technical details about the computation of the masses of the pseudoscalar and vector mesons constituted by hyperquarks
in ðasÞ representation. For Wuppertal smearing, we denote the step size by ϵðasÞ, the number of iterations at the source by Nsource

W and the
number of iterations at the sink by Nsink

W . The APE smearing parameters α and NAPE are fixed to 0.4 and 50, respectively, in all the

calculations. For each choice of bare mass, amðasÞ
0 , and each meson, we show the fitting intervals as Euclidean time I ¼ ½ti; tf�, between

the initial time ti and the final time tf. We perform a correlated fit with standard χ2-minimization to the function in Eq. (27). We report
the values of χ2 normalized by the number degrees of freedom, χ2=Nd:o:f:

ps v

Ensemble amðasÞ
0 ϵðasÞ Nsource

W Nsink
W I χ2=Nd:o:f: Nsource

W Nsink
W I χ2=Nd:o:f:

QB1 −0.8 0.01 100 0 [8 24] 0.57 100 0 [8 24] 0.65
−0.9 0.01 100 20 [15 23] 0.32 100 20 [8 24] 0.44
−0.95 0.01 100 0 [14 23] 0.48 100 0 [10 24] 0.61
−1.0 0.01 100 0 [14 23] 0.63 100 0 [10 24] 0.82
−1.05 0.01 100 0 [10 23] 0.44 100 0 [15 24] 0.6
−1.1 0.08 100 0 [12 24] 0.46 100 0 [12 24] 1.52
−1.12 0.18 60 0 [12 24] 0.64 60 0 [9 20] 1.33
−1.14 0.18 60 0 [12 24] 0.83 60 0 [9 20] 0.68
−1.15 0.1 100 0 [10 24] 0.82 100 0 [7 18] 0.53

QB2 −0.89 0.02 50 0 [24 30] 0.84 50 20 [16 28] 1.27
−0.91 0.02 50 0 [17 29] 1.42 50 0 [14 25] 1.5
−0.92 0.02 50 0 [17 29] 1.41 50 0 [17 27] 1.58
−0.93 0.02 50 0 [23 29] 0.79 50 0 [16 25] 1.33
−0.97 0.02 50 0 [24 30] 0.64 50 0 [16 25] 0.85
−1.01 0.02 50 0 [24 30] 0.63 50 0 [16 25] 0.54
−1.09 0.12 50 0 [24 30] 1.11 50 0 [16 25] 0.45
−1.1 0.12 50 0 [23 30] 0.78 50 0 [15 23] 0.51
−1.11 0.14 50 0 [23 30] 0.61 50 0 [15 23] 0.49
−1.12 0.2 50 0 [18 29] 1.33 50 0 [12 21] 0.58

QB3 −0.85 0.01 50 0 [21 29] 0.33 50 0 [19 29] 0.47
−0.87 0.01 50 0 [21 29] 0.38 50 0 [19 29] 0.48
−0.9 0.01 50 0 [21 29] 0.49 50 0 [19 28] 0.57
−0.93 0.01 50 0 [21 29] 0.65 50 0 [19 29] 0.61
−0.97 0.01 50 0 [16 25] 0.32 50 0 [15 26] 0.75
−0.99 0.01 50 0 [16 25] 0.28 50 0 [15 26] 0.92
−1.01 0.01 50 0 [16 25] 0.27 50 0 [15 26] 1.0
−1.03 0.01 50 0 [15 25] 0.29 50 0 [14 26] 0.83
−1.04 0.16 50 0 [15 25] 0.39 50 0 [12 21] 0.73
−1.05 0.18 50 0 [15 25] 0.42 50 0 [12 21] 0.78
−1.06 0.2 50 0 [15 29] 0.93 50 0 [12 23] 0.95

QB4 −0.81 0.1 50 0 [18 30] 1.0 50 0 [19 30] 1.61
−0.82 0.01 60 0 [19 30] 0.88 60 0 [19 30] 1.32
−0.84 0.01 60 0 [18 30] 0.76 60 0 [19 30] 1.33
−0.91 0.01 60 0 [18 30] 0.69 60 0 [19 30] 1.06
−0.93 0.01 60 0 [18 30] 0.77 60 0 [19 30] 1.08
−0.95 0.01 60 0 [18 30] 0.92 60 0 [19 30] 1.18
−0.99 0.16 50 0 [17 30] 1.55 50 0 [16 30] 0.84
−1.01 0.16 50 0 [14 30] 1.52 50 0 [12 28] 2.11
−1.015 0.2 50 20 [11 30] 0.9 50 40 [11 25] 2.01

QB5 −0.95 0.2 50 0 [20 30] 0.76 50 0 [17 29] 1.07
−0.956 0.2 50 0 [18 30] 1.12 50 0 [17 29] 1.16
−0.961 0.2 50 0 [18 30] 1.14 50 0 [17 29] 1.16
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TABLE XV. Technical details about the computation of the masses of ΛCB, ΣCB, and Σ�
CB, with bare masses amðfÞ

0 and amðasÞ
0 , on

ensemble QB1. For Wuppertal smearing parameters, we represent the number of iterations at the source as Nsource
W and at the sink as

Nsink
W . For each chimera baryon, we select the number of sink iterations to present the optimal plateau, considering both its length and

error size. APE smearing parameters α and NAPE are 0.4 and 50, respectively, for all the calculations. For each set of bare masses and
each chimera baryon, we report the fitting intervals as the Euclidean time I ¼ ½ti; tf�, between the initial time ti and the final time tf. We
perform a correlated fit with the standard χ2-minimization to the function Eq. (24). We report the values of χ2 normalized by the degrees
of freedom, χ2=Nd:o:f:

ΛCB ΣCB Σ�
CB

amðfÞ
0 amðasÞ

0 ϵðfÞ ϵðasÞ Nsource
W Nsink

W I χ2=Nd:o:f: Nsource
W Nsink

W I χ2=Nd:o:f: Nsource
W Nsink

W I χ2=Nd:o:f:

−0.7 −0.8 0.05 0.01 100 10 [12 24] 0.45 100 0 [12 24] 0.37 100 0 [12 24] 0.68
−0.73 −0.8 0.05 0.01 100 0 [12 24] 0.53 100 0 [12 24] 0.37 100 0 [12 24] 0.64
−0.75 −0.8 0.05 0.01 100 0 [12 24] 0.59 100 0 [14 24] 0.26 100 0 [12 24] 0.54
−0.77 −0.8 0.05 0.01 100 0 [12 20] 1.03 100 0 [14 22] 0.42 100 0 [14 20] 0.26
−0.79 −0.8 0.05 0.01 100 0 [12 24] 0.91 100 0 [14 24] 0.57 100 0 [12 24] 0.38

−0.7 −0.9 0.05 0.01 100 0 [12 24] 0.35 100 0 [14 24] 0.23 100 0 [12 24] 0.71
−0.73 −0.9 0.08 0.01 100 0 [12 24] 0.34 100 0 [14 24] 0.25 100 0 [12 24] 0.66
−0.75 −0.9 0.08 0.01 100 0 [12 24] 0.4 100 0 [14 24] 0.28 100 0 [12 24] 0.57
−0.77 −0.9 0.08 0.01 100 0 [12 24] 0.54 100 0 [14 24] 0.42 100 0 [12 24] 0.46
−0.79 −0.9 0.08 0.01 100 0 [10 24] 0.73 100 0 [12 24] 0.83 100 0 [14 24] 0.4

−0.7 −0.95 0.05 0.01 100 0 [12 24] 0.33 100 0 [14 24] 0.24 100 0 [12 24] 0.69
−0.73 −0.95 0.2 0.01 100 0 [10 24] 0.5 100 0 [12 24] 0.47 100 0 [12 24] 0.64
−0.75 −0.95 0.2 0.01 100 0 [10 24] 0.62 100 0 [12 24] 0.5 100 0 [12 24] 0.59
−0.77 −0.95 0.2 0.01 100 0 [10 24] 0.76 100 0 [12 24] 0.65 100 0 [12 24] 0.53
−0.79 −0.95 0.2 0.01 100 0 [10 24] 0.86 100 0 [12 24] 0.97 100 0 [12 24] 0.5

−0.7 −1.0 0.05 0.01 100 0 [10 20] 0.68 100 0 [12 22] 0.53 100 0 [11 20] 1.03
−0.73 −1.0 0.1 0.01 100 0 [10 24] 0.43 100 0 [12 24] 0.46 100 0 [12 24] 0.58
−0.75 −1.0 0.1 0.01 100 0 [10 24] 0.49 100 0 [12 24] 0.54 100 0 [12 24] 0.5
−0.77 −1.0 0.1 0.01 100 0 [10 24] 0.64 100 0 [12 24] 0.74 100 0 [12 24] 0.4
−0.79 −1.0 0.1 0.01 100 0 [10 24] 0.83 100 0 [12 24] 1.07 100 0 [12 24] 0.41

−0.7 −1.05 0.05 0.01 100 0 [12 24] 0.65 100 0 [12 24] 0.45 100 0 [12 24] 0.55
−0.73 −1.05 0.08 0.01 100 0 [12 24] 0.5 100 0 [12 24] 0.49 100 0 [12 24] 0.48
−0.75 −1.05 0.08 0.01 100 0 [12 24] 0.53 100 0 [12 24] 0.59 100 0 [12 24] 0.4
−0.77 −1.05 0.08 0.01 100 0 [12 24] 0.71 100 0 [12 24] 0.78 100 0 [12 24] 0.33
−0.79 −1.05 0.08 0.01 100 0 [12 24] 1.06 100 0 [12 24] 1.02 100 0 [12 24] 0.41

−0.7 −1.1 0.05 0.08 100 0 [10 20] 1.23 100 0 [12 22] 0.51 100 0 [10 20] 0.87
−0.73 −1.1 0.05 0.08 100 0 [10 20] 1.16 100 0 [12 22] 0.5 100 0 [10 20] 0.82
−0.75 −1.1 0.05 0.08 100 0 [10 20] 1.08 100 0 [12 22] 0.51 100 0 [10 20] 0.82
−0.77 −1.1 0.05 0.08 100 0 [10 20] 1.01 100 0 [12 22] 0.52 100 0 [10 20] 0.85
−0.79 −1.1 0.05 0.08 100 0 [10 20] 0.96 100 0 [12 22] 0.51 100 0 [10 20] 0.78

−0.77 −1.12 0.18 0.18 60 0 [10 22] 1.36 60 0 [12 24] 0.51 60 0 [12 20] 0.57
−0.78 −1.12 0.18 0.18 60 0 [10 22] 1.28 60 0 [12 24] 0.52 60 0 [12 20] 0.56
−0.79 −1.12 0.18 0.18 60 0 [10 22] 1.21 60 0 [12 24] 0.54 60 0 [12 20] 0.52

−0.77 −1.14 0.18 0.18 60 0 [10 22] 1.2 60 0 [12 24] 0.6 60 0 [11 20] 0.59
−0.78 −1.14 0.18 0.18 60 0 [10 22] 1.12 60 0 [12 24] 0.59 60 0 [11 20] 0.53
−0.79 −1.14 0.18 0.18 60 0 [10 20] 1.33 60 0 [12 22] 0.7 60 0 [11 20] 0.48

−0.7 −1.15 0.05 0.1 100 0 [10 20] 1.49 100 0 [12 22] 0.53 100 0 [11 20] 0.98
−0.73 −1.15 0.05 0.1 100 0 [10 20] 1.26 100 0 [12 22] 0.59 100 0 [14 20] 0.19
−0.75 −1.15 0.05 0.1 100 0 [10 20] 1.08 100 0 [12 22] 0.65 100 0 [14 20] 0.21
−0.77 −1.15 0.05 0.1 100 0 [10 20] 0.96 100 0 [12 22] 0.73 100 0 [10 20] 0.85
−0.79 −1.15 0.05 0.1 100 0 [10 20] 0.87 100 0 [12 22] 0.82 100 0 [11 20] 0.54
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TABLE XVI. Technical details about the computation of the masses of ΛCB, ΣCB, and Σ�
CB, with bare masses amðfÞ

0 and amðasÞ
0 , on

ensemble QB2. For Wuppertal smearing parameters, we represent the number of iterations at the source as Nsource
W and at the sink as

Nsink
W . For each chimera baryon, we select the number of sink iterations to present the optimal plateau, considering both its length and

error size. APE smearing parameters α and NAPE are 0.4 and 50, respectively, for all the calculations. For each set of bare masses and
each chimera baryon, we report the fitting intervals as the Euclidean time I ¼ ½ti; tf�, between the initial time ti and the final time tf. We
perform a correlated fit with the standard χ2-minimization to the function Eq. (24). We report the values of χ2 normalized by the degrees
of freedom, χ2=Nd:o:f:

ΛCB ΣCB Σ�
CB

amðfÞ
0 amðasÞ

0 ϵðfÞ ϵðasÞ Nsource
W Nsink

W I χ2=Nd:o:f: Nsource
W Nsink

W I χ2=Nd:o:f: Nsource
W Nsink

W I χ2=Nd:o:f:

−0.7 −0.89 0.18 0.02 50 0 [17 29] 0.57 50 0 [17 28] 0.52 50 0 [17 25] 0.25
−0.72 −0.89 0.18 0.02 50 0 [17 29] 0.75 50 0 [17 28] 0.33 50 0 [17 25] 0.29
−0.74 −0.89 0.18 0.02 50 0 [15 29] 0.94 50 0 [17 28] 0.24 50 0 [17 25] 0.34
−0.77 −0.89 0.18 0.02 50 0 [15 29] 0.9 50 0 [17 28] 1.01 50 0 [17 25] 0.29

−0.72 −0.91 0.18 0.02 50 0 [14 27] 0.64 50 0 [14 30] 0.38 50 0 [16 25] 0.5
−0.74 −0.91 0.18 0.02 50 0 [14 27] 0.75 50 0 [14 28] 0.28 50 0 [16 25] 0.61
−0.77 −0.91 0.18 0.02 50 0 [14 27] 0.86 50 0 [14 28] 0.88 50 0 [16 25] 0.53

−0.72 −0.92 0.18 0.02 50 0 [14 27] 0.64 50 0 [14 28] 0.36 50 0 [16 25] 0.51
−0.74 −0.92 0.18 0.02 50 0 [14 27] 0.75 50 0 [14 28] 0.28 50 0 [16 25] 0.62
−0.77 −0.92 0.18 0.02 50 0 [14 27] 0.85 50 0 [14 28] 0.88 50 0 [16 25] 0.54

−0.7 −0.93 0.18 0.02 50 0 [17 28] 0.5 50 0 [17 29] 0.6 50 0 [17 26] 0.24
−0.72 −0.93 0.18 0.02 50 0 [14 25] 0.66 50 0 [14 27] 0.36 50 0 [17 26] 0.28
−0.74 −0.93 0.18 0.02 50 0 [14 25] 0.75 50 0 [14 27] 0.3 50 0 [17 26] 0.35
−0.76 −0.93 0.18 0.02 50 0 [14 26] 0.81 50 0 [14 26] 0.46 50 0 [17 24] 0.44
−0.77 −0.93 0.18 0.02 50 0 [14 25] 1.0 50 0 [14 27] 0.64 50 0 [17 24] 0.35

−0.76 −0.97 0.18 0.02 50 0 [14 26] 0.75 50 0 [14 26] 0.47 50 0 [17 24] 0.47

−0.76 −1.01 0.18 0.02 50 0 [13 26] 0.73 50 0 [14 26] 0.48 50 0 [17 25] 0.51

−0.72 −1.09 0.18 0.12 50 0 [12 22] 0.8 50 0 [14 24] 0.9 50 0 [16 25] 0.37
−0.74 −1.09 0.18 0.12 50 0 [12 22] 0.61 50 0 [14 24] 0.89 50 0 [16 25] 0.39
−0.76 −1.09 0.18 0.12 50 0 [12 22] 0.45 50 0 [14 24] 0.85 50 0 [16 25] 0.47

−0.72 −1.1 0.18 0.12 50 0 [12 23] 0.76 50 0 [17 24] 1.05 50 0 [16 26] 0.48
−0.74 −1.1 0.18 0.12 50 0 [12 23] 0.56 50 0 [17 24] 0.92 50 0 [16 26] 0.5
−0.76 −1.1 0.18 0.12 50 0 [12 23] 0.41 50 0 [14 26] 0.79 50 0 [16 25] 0.46
−0.77 −1.1 0.2 0.18 50 0 [9 22] 0.38 50 0 [14 28] 0.8 50 0 [12 23] 0.72

−0.72 −1.11 0.18 0.14 50 0 [12 23] 0.76 50 0 [18 25] 1.02 50 0 [16 24] 0.37
−0.74 −1.11 0.18 0.14 50 0 [12 23] 0.55 50 0 [14 26] 0.92 50 0 [14 23] 0.72
−0.76 −1.11 0.18 0.14 50 0 [12 23] 0.42 50 0 [14 26] 0.88 50 0 [14 23] 0.69
−0.77 −1.11 0.2 0.18 50 0 [9 22] 0.42 50 0 [14 28] 0.85 50 0 [12 23] 0.77

−0.72 −1.12 0.18 0.2 50 0 [12 23] 0.66 50 0 [14 26] 1.01 50 0 [12 23] 0.62
−0.74 −1.12 0.18 0.2 50 0 [12 23] 0.48 50 0 [14 26] 0.97 50 0 [12 23] 0.61
−0.76 −1.12 0.18 0.2 50 0 [12 23] 0.4 50 0 [14 26] 0.97 50 0 [12 23] 0.71
−0.77 −1.12 0.2 0.18 50 0 [9 22] 0.46 50 0 [14 28] 0.97 50 0 [12 23] 0.81
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TABLE XVII. Technical details about the computation of the masses of ΛCB, ΣCB, and Σ�
CB, with bare masses amðfÞ

0 and amðasÞ
0 , on

ensemble QB3. For Wuppertal smearing parameters, we represent the number of iterations at the source as Nsource
W and at the sink as

Nsink
W . For each chimera baryon, we select the number of sink iterations to present the optimal plateau, considering both its length and

error size. APE smearing parameters α and NAPE are 0.4 and 50, respectively, for all the calculations. For each set of bare masses and
each chimera baryon, we report the fitting intervals as the Euclidean time I ¼ ½ti; tf�, between the initial time ti and the final time tf. We
perform a correlated fit with the standard χ2-minimization to the function Eq. (24). We report the values of χ2 normalized by the degrees
of freedom, χ2=Nd:o:f:

ΛCB ΣCB Σ�
CB

amðfÞ
0 amðasÞ

0 ϵðfÞ ϵðasÞ Nsource
W Nsink

W I χ2=Nd:o:f: Nsource
W Nsink

W I χ2=Nd:o:f: Nsource
W Nsink

W I χ2=Nd:o:f:

−0.66 −0.85 0.18 0.01 50 0 [19 27] 1.17 50 0 [19 29] 1.69 50 0 [16 30] 0.78
−0.68 −0.85 0.18 0.01 50 0 [17 30] 1.0 50 0 [16 30] 1.13 50 0 [16 28] 0.78
−0.7 −0.85 0.18 0.01 50 0 [17 25] 0.37 50 0 [16 27] 1.03 50 0 [18 28] 0.62
−0.72 −0.85 0.18 0.01 50 0 [17 25] 0.35 50 0 [16 27] 0.74 50 0 [18 28] 0.6

−0.66 −0.87 0.18 0.01 50 0 [17 25] 0.88 50 0 [16 27] 1.55 50 0 [18 28] 0.62
−0.68 −0.87 0.18 0.01 50 0 [17 25] 0.66 50 0 [16 27] 1.4 50 0 [18 28] 0.6
−0.7 −0.87 0.18 0.01 50 0 [17 25] 0.39 50 0 [16 27] 1.08 50 0 [18 28] 0.59
−0.72 −0.87 0.18 0.01 50 0 [17 25] 0.37 50 0 [16 27] 0.76 50 0 [18 28] 0.56

−0.66 −0.9 0.18 0.01 50 0 [17 27] 1.13 50 0 [16 29] 1.43 50 0 [16 30] 0.85
−0.68 −0.9 0.18 0.01 50 0 [17 27] 1.01 50 0 [16 29] 1.3 50 0 [16 30] 1.04
−0.7 −0.9 0.18 0.01 50 0 [17 27] 1.12 50 0 [16 29] 0.99 50 0 [16 30] 1.19
−0.72 −0.9 0.18 0.01 50 0 [17 25] 0.4 50 0 [16 25] 0.52 50 0 [16 26] 0.68

−0.66 −0.93 0.18 0.01 50 0 [17 25] 1.02 50 0 [16 27] 1.67 50 0 [18 28] 0.57
−0.68 −0.93 0.18 0.01 50 0 [17 25] 0.79 50 0 [16 27] 1.52 50 0 [18 28] 0.5
−0.7 −0.93 0.18 0.01 50 0 [17 25] 0.5 50 0 [16 27] 1.19 50 0 [18 28] 0.46
−0.72 −0.93 0.18 0.01 50 0 [17 25] 0.45 50 0 [16 27] 0.78 50 0 [18 28] 0.41

−0.72 −0.97 0.18 0.01 50 0 [17 25] 0.56 50 0 [16 27] 0.75 50 0 [18 28] 0.3
−0.73 −0.97 0.18 0.01 50 0 [17 25] 0.69 50 0 [16 27] 0.67 50 0 [18 28] 0.4

−0.72 −0.99 0.18 0.01 50 0 [17 25] 0.61 50 0 [16 27] 0.71 50 0 [18 28] 0.28
−0.73 −0.99 0.18 0.01 50 0 [17 25] 0.76 50 0 [16 27] 0.62 50 0 [18 28] 0.35

−0.72 −1.01 0.18 0.01 50 0 [17 25] 0.66 50 0 [16 27] 0.67 50 0 [18 28] 0.3
−0.73 −1.01 0.18 0.01 50 0 [17 25] 0.79 50 0 [16 27] 0.58 50 0 [18 28] 0.34

−0.72 −1.03 0.18 0.01 50 0 [17 25] 0.71 50 0 [16 27] 0.66 50 0 [18 28] 0.38
−0.73 −1.03 0.18 0.01 50 0 [17 25] 0.79 50 0 [16 27] 0.61 50 0 [18 28] 0.36

−0.7 −1.04 0.18 0.16 50 0 [17 25] 0.92 50 0 [17 27] 1.08 50 0 [15 27] 0.58
−0.71 −1.04 0.18 0.16 50 0 [17 25] 0.82 50 0 [17 27] 0.91 50 0 [15 27] 0.44
−0.72 −1.04 0.18 0.16 50 0 [17 25] 0.92 50 0 [17 27] 0.76 50 0 [15 27] 0.36

−0.7 −1.05 0.18 0.18 50 0 [16 25] 0.87 50 0 [17 27] 1.13 50 0 [16 27] 0.6
−0.71 −1.05 0.18 0.18 50 0 [16 25] 0.76 50 0 [17 27] 0.99 50 0 [16 27] 0.47
−0.72 −1.05 0.18 0.18 50 0 [16 25] 0.77 50 0 [17 27] 0.88 50 0 [16 27] 0.41

−0.7 −1.06 0.18 0.2 50 0 [16 30] 0.8 50 0 [16 30] 1.13 50 0 [16 28] 0.5
−0.71 −1.06 0.18 0.2 50 0 [16 30] 0.8 50 0 [16 30] 1.19 50 0 [16 28] 0.41
−0.72 −1.06 0.18 0.2 50 0 [16 30] 0.86 50 0 [16 30] 1.28 50 0 [16 28] 0.38
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TABLE XVIII. Technical details about the computation of the masses of ΛCB, ΣCB, and Σ�
CB, with bare masses amðfÞ

0 and amðasÞ
0 , on

ensemble QB4. For Wuppertal smearing parameters, we represent the number of iterations at the source as Nsource
W and at the sink as

Nsink
W . For each chimera baryon, we select the number of sink iterations to present the optimal plateau, considering both its length and

error size. APE smearing parameters α and NAPE are 0.4 and 50, respectively, for all the calculations. For each set of bare masses and
each chimera baryon, we report the fitting intervals as the Euclidean time I ¼ ½ti; tf�, between the initial time ti and the final time tf. We
perform a correlated fit with the standard χ2-minimization to the function Eq. (24). We report the values of χ2 normalized by the degrees
of freedom, χ2=Nd:o:f:

ΛCB ΣCB Σ�
CB

amðfÞ
0 amðasÞ

0 ϵðfÞ ϵðasÞ Nsource
W Nsink

W I χ2=Nd:o:f: Nsource
W Nsink

W I χ2=Nd:o:f: Nsource
W Nsink

W I χ2=Nd:o:f:

−0.6 −0.81 0.18 0.01 100 0 [20 29] 1.08 100 0 [20 30] 0.62 100 0 [19 30] 0.43
−0.62 −0.81 0.18 0.01 60 0 [20 30] 1.3 60 0 [20 30] 0.56 60 0 [19 30] 0.39
−0.64 −0.81 0.18 0.01 60 0 [20 30] 1.55 60 0 [20 30] 0.55 60 0 [19 30] 0.31
−0.66 −0.81 0.18 0.1 50 0 [19 30] 1.38 50 0 [20 30] 0.72 50 0 [20 30] 0.26
−0.68 −0.81 0.18 0.1 50 0 [19 27] 1.44 50 0 [20 27] 1.0 50 0 [20 30] 0.48
−0.69 −0.81 0.18 0.1 50 0 [17 27] 1.0 50 0 [19 27] 1.24 50 0 [20 30] 0.85
−0.7 −0.81 0.18 0.01 50 0 [16 27] 0.57 50 0 [17 25] 1.33 50 0 [19 27] 0.46

−0.62 −0.82 0.18 0.01 60 0 [20 30] 1.3 60 0 [20 30] 0.57 60 0 [19 30] 0.4
−0.64 −0.82 0.18 0.01 60 0 [20 30] 1.56 60 0 [20 30] 0.56 60 0 [19 30] 0.32
−0.68 −0.82 0.18 0.01 60 0 [19 27] 1.32 60 0 [19 27] 0.67 60 0 [19 30] 0.33
−0.7 −0.82 0.18 0.01 50 0 [16 27] 0.58 50 0 [17 25] 1.31 50 0 [19 27] 0.46

−0.62 −0.84 0.18 0.01 60 0 [20 30] 1.32 60 0 [20 30] 0.58 60 0 [19 30] 0.41
−0.64 −0.84 0.18 0.01 60 0 [20 30] 1.59 60 0 [20 30] 0.58 60 0 [19 30] 0.32
−0.68 −0.84 0.18 0.01 60 0 [19 27] 1.36 60 0 [19 27] 0.71 60 0 [19 30] 0.34
−0.7 −0.84 0.18 0.01 50 0 [16 27] 0.6 50 0 [17 25] 1.26 50 0 [19 27] 0.45

−0.64 −0.91 0.18 0.01 60 0 [20 30] 1.78 60 0 [20 29] 0.83 60 0 [22 30] 0.43
−0.66 −0.91 0.18 0.01 100 0 [19 29] 1.44 100 0 [20 29] 0.84 100 0 [19 30] 0.29

−0.64 −0.93 0.18 0.01 60 0 [20 30] 1.88 60 0 [20 29] 0.91 60 0 [22 30] 0.46
−0.66 −0.93 0.18 0.01 100 0 [19 29] 1.51 100 0 [20 29] 0.91 100 0 [19 30] 0.33

−0.64 −0.95 0.18 0.01 60 0 [20 26] 1.55 60 0 [20 29] 1.0 60 0 [22 26] 0.7
−0.66 −0.95 0.18 0.01 100 0 [20 28] 2.08 100 0 [20 29] 0.99 100 0 [19 30] 0.38

−0.66 −0.99 0.18 0.16 50 0 [18 29] 2.19 50 0 [20 30] 1.31 50 0 [18 27] 0.48
−0.68 −0.99 0.18 0.16 50 0 [18 29] 1.4 50 0 [20 30] 1.11 50 0 [18 27] 0.41

−0.66 −1.01 0.18 0.16 50 0 [17 30] 1.36 50 0 [20 30] 1.46 50 0 [18 26] 0.09
−0.68 −1.01 0.18 0.16 50 0 [17 30] 0.62 50 0 [20 30] 1.22 50 0 [18 26] 0.31

−0.66 −1.015 0.18 0.2 50 0 [18 29] 1.31 50 0 [21 30] 1.36 50 0 [18 26] 0.12
−0.67 −1.015 0.18 0.2 50 0 [18 29] 0.96 50 0 [21 30] 1.23 50 0 [19 26] 0.21
−0.68 −1.015 0.18 0.2 50 0 [18 29] 0.62 50 0 [21 30] 1.13 50 0 [17 26] 0.34
−0.69 −1.015 0.18 0.2 50 0 [18 29] 0.57 50 0 [21 30] 1.04 50 0 [18 25] 0.57
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