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Abstract
Aiming at the problem that the progressively optimized Rapidly-exploring Random Trees Star (RRT∗) algorithm generates a
large number of redundant nodes, which causes slow convergence and low search efficiency in high-dimensional and
complex environments. In this paper we present Target-biased Informed Trees (TBIT∗), an improved RRT∗ path planning
algorithm based on target-biased sampling strategy and heuristic optimization strategy. The algorithm adopts a combined
target bias strategy in the search phase of finding the initial path to guide the random tree to grow rapidly toward the target
direction, thereby reducing the generation of redundant nodes and improving the search efficiency of the algorithm; after
the initial path is searched, heuristic sampling is used to optimize the initial path instead of optimizing the random tree,
which can benefit from reducing useless calculations, and improve the convergence capability of the algorithm. The
experimental results show that the algorithm proposed in this article changes the randomness of the algorithm to a certain
extent, and the search efficiency and convergence capability in complex environments have been significantly improved,
indicating that the improved algorithm is feasible and efficient.
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1. Introduction

With the evolution of a new round of technological revolution
and industrial transformation, the robotics industry is boom-
ing. Scholars have carried out in-depth research on robots in
various fields. Su et al. proposed an incremental learning frame-
work for human-like redundancy optimization of anthropomor-
phic manipulators (Su et al., 2022), and the trajectory control of
redundant robotic manipulators using remote center of motion
constraints is performed through an improved recurrent neu-
ral network scheme (Su et al., 2020). By integrating technologies,
Su et al. propose a novel system that enables robots to highly
intelligently learn the skills of advanced surgeons and perform
the learned surgical manipulations in future semi-autonomous

surgeries (Su et al., 2021). With the growth of market demand,
various types of service robots, such as commercial robots, med-
ical robots, household robots, distribution robots, and robots for
the elderly and disabled, have rapidly penetrated into our life or
work scenarios.

Path planning technology is one of the key technologies to
realize mobile robot navigation, which affects the efficiency
and safety of mobile robot navigation process. For the problem
of robot path planning, scholars/researchers have carried out a
lot of research works. According to the implementation of the
algorithm, path planning algorithms can be divided into tra-
ditional planning algorithms, intelligent planning algorithms,
and sampling-based planning algorithms. Traditional planning
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756 Target biased informed trees

algorithms mainly include artificial potential field method
(Zhang et al., 2006), bug algorithm (Lumelsky & Stepanov, 1986),
vector histogram method (Borenstein & Koren, 1991), grid
method (Li et al., 2019), visual method (Willms & Yang, 2006),
and so on. Traditional planning algorithms tend to fall into local
minimums when solving complex problems in narrow spaces.
With the increase of the robot’s degree of freedom, the planning
efficiency of traditional algorithms is greatly reduced, and the
memory consumption is significantly increased. Intelligent
planning algorithms include fuzzy logic method (Lei & Li, 2007),
genetic algorithm (Baba & Kubota, 1993), and neural network
method (Liu et al., 2007). Although intelligent algorithms over-
come the local minimum problem of traditional algorithms
and have good adaptability to the environment, similar to
traditional algorithms, as obstacles become more complicated
and spatial dimensions increase, their planning efficiency and
success rate decrease.

To solve the above problems, scholars have proposed a path
planning algorithm based on sampling. The sampling-based al-
gorithm does not use the explicit representation of the environ-
ment, but obtains the node information of the feasible trajec-
tory through collision detection. Then, the collision-free nodes
in the space are connected to form a feasible trajectory graph
(road map). Finally, a feasible path from the initial state to the
target state is obtained in the road map. The two most com-
monly used sampling-based path planning algorithms are the
probabilistic roadmaps (PRM) algorithm and the rapidly explor-
ing random trees (RRT; LaValle, 1998). The PRM algorithm is a
multiple query method, which has been proven to have good
planning performance in high-dimensional spaces (Kavraki et
al., 1996). However, the randomness of PRM sampling results
in a greatly increased probability of path planning failures in
maps containing narrow passages. Additionally, a priori cal-
culated roadmap may be computationally challenging or even
not feasible in some applications. The RRT algorithm has been
widely used and developed in various fields. The reason is that
the RRT algorithm has probabilistic completeness and is suit-
able for differential constraints. The sampling method of the
RRT algorithm is completely random, which also leads to its low
planning efficiency and poor path optimization ability. There-
fore, in view of the limitations of the RRT algorithm, researchers
have proposed many improved algorithms in hopes of optimiz-
ing the algorithm in different aspects. The most classic is the
rapidly exploring random trees star (RRT∗; Karaman & Frazzoli,
2011) algorithm proposed by Sertac and Emilio in 2011. The al-
gorithm gradually reduces the cost of generating the path by
reselecting the parent node and rewiring. After the initial so-
lution is generated, the algorithm will continue to execute to
optimize the initial path until the end of the iteration. As the
number of iterations increases, the executable path is continu-
ously optimized and gradually converges to the optimal value.
Since the sampling space of the RRT∗ algorithm is still the en-
tire space region, as the number of iterations increases, some
useless points will be added to the random search tree. This
will lead to excessive memory consumption and unnecessary
computation, which will slow down the convergence speed in
the subsequent optimization process. The convergence speed
during the optimization process is reduced. In response to the
above shortcomings, Qureshi introduced artificial potential field
into the RRT∗ algorithm (Qureshi & Ayaz, 2016) and increased
the goal orientation of random tree growth based on preserv-
ing the randomness of random tree growth, thereby accelerating
the convergence speed of random tree. Iram introduced offline
planning algorithm RRT∗-adjustable bounds (RRT∗-AB) based on
RRT∗. This method improves computational efficiency by quickly

aiming at the target area (Noreen et al., 2011). The RRT∗-smart
algorithm (Nasir et al., 2013) can adjust parameters according
to online information, thereby reducing the cost of random tree
generation and speeding up convergence. Drawing lessons from
the growth process of bidirectional RRT random trees, bidirec-
tional rapidly exploring random trees algorithm (Jordan & Perez,
2013) is proposed, which accelerates the convergence of random
trees. The rapid expansion of random tree RRT (Informed RRT∗)
algorithm based on heuristic guidance (Mashayekhi et al., 2020)
uses heuristic functions to limit sampling points to specific ar-
eas and reduce the growth cost of random trees. Janson pro-
posed Fast Marching Trees (FMT∗; Janson et al., 2015), which uses
a marching method to process a single set of samples. The re-
sulting search is ordered on cost-to-come but must be restarted
if a higher resolution is needed. Gammell proposed the Batch In-
formed Trees (BIT∗) algorithm (Gammell et al., 2020), which sam-
ples batch of states and views these sample states as an increas-
ingly dense edge implicit random geometric graph. BIT∗ effec-
tively reuses information from previous searches and approxi-
mations by using incremental search technology, but does not
update its heuristic search during the search process.

The above algorithms have played a certain role in optimizing
RRT∗, but the strong randomness of the RRT∗ algorithm under
high-dimensional space or complex constraints will still cause
problems such as many invalid nodes, huge amount of redun-
dant calculation, and slow convergence speed, which reduce
the working efficiency of the robot. Therefore, this paper pro-
poses an improved RRT∗ path planning algorithm target-biased
informed trees (TBIT∗) based on target-biased sampling strategy
and heuristic optimization strategy. By optimizing the sampling
point generation method and improving the path optimization
rules, the algorithm can quickly plan a high-quality path in a
complex environment containing complex obstacles and narrow
passages, and finally verify the feasibility of the algorithm in a
complex environment through simulation experiments.

2. Path Planning Problem Definition

Suppose the state space of the planning task is X, Xobs ⊂ X rep-
resents the area where all obstacles in the workspace are lo-
cated, and Xfree = X/Xobs denotes the free state space in the
workspace, which refers to all reachable areas in the workspace
except obstacles. xinit ⊂ Xfree is the initial pose or starting point,
and xgoal ⊂ Xfree represents the target pose or target point. The
continuous function π : [0, 1] → Xfree is a collision-free feasible
path from the starting point to the target point in free space,
where π (0) = xinit and π (1) = xgoal . The path cost function is
represented by C (π ), Cbest = min{C (π )} represents the cost of the
best feasible path, and π∗ = argmin {C (π )} denotes the current
best feasible path. This paper only considers off-line planning
in the Euclidean space and positive Euclidean distance between
any two states. The path planning problem is defined as: find-
ing a collision-free feasible path π∗ from the starting point xinit

to the target point xgoal with the minimum cost C (π ) in the free
state space Xfree.

3. Principles of Related Algorithms

The TBIT∗ algorithm proposed in this paper improves the sam-
pling method of the RRT∗ algorithm through the target bias
strategy, and improves the speed of searching the initial path;
the heuristic optimization strategy in the Informed RRT∗ al-
gorithm is applied to optimize the initial path, which greatly
increases the rate of path optimization. The following describes
the implementation principles of related algorithms.
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3.1. Rapidly exploring random trees star

The basic structure of the RRT∗ algorithm is similar to that of
the RRT algorithm. They both use the starting point as the root
node of the random tree and perform random sampling in the
free space with no obstacles to find appropriate leaf nodes to
add to the random tree. When the target point is also added to
the random tree, a collision-free feasible path from the initial
point to the target point can be found. If the collision-free fea-
sible path from the initial point to the target point is not found
when the maximum number of iterations is reached, the plan is
considered mission failed. Based on the RRT algorithm, the RRT∗

algorithm has made two changes: one is that when a new leaf
node is added, the RRT∗ algorithm ensures that the path corre-
sponding to the new node has a local minimum by reselecting
the parent node; the second is to reroute the random tree after
adding new nodes to ensure the gradual optimality of the gener-
ated path. The pseudo-code of the RRT∗ algorithm is as follows:

Algorithm 1. RRT∗ algorithm pseudo-code

T ← RRT∗(xinit, xgoal)
1. T ← EmptyTree()
2. for i = 0 to N
3. xrand ← RandomSample(Xfree)
4. xnearest ← NearestNode(xrand, T)
5. xnew ← Steer(xnearest, xrand)
6. if CollisionFree(xnearest, xnew) then
7. Xnear ← NearNeighbors(xnew, T)
8. xparent ← ChooseParent(Xnear, xnew)
9. T ← InsertNode(xnew, xparent, T)
10. T ← Rewire(xnew, xparent, Xnear)
11. if CheckToGoal(xnew, xgoal) then
12. T ← InsertNode(xgoal, xnew, T)
13. return T

The following are the functions of the main functions in the
RRT∗ algorithm:

I nsertNode: Insert a node into the random tree.
RandomSample: Random sampling in the free state space.
NearestNode: Find the node closest to the sampling point in

the random tree.
CollisionF ree: Detect whether the path between two points

collides with obstacles in the environment.
Steer: The node closest to the random sampling point in the

random tree extends a certain distance to the random sampling
point to generate a new node.

Near Neighbors: Calculate the set of nodes within a specific
range from a node in the random tree.

ChooseParent: Calculate the node closest to the newborn
node in the random tree and use it as the parent node of the
newborn node.

Rewire: Rewiring operation. Calculate the path cost of all
nodes in the set of neighboring nodes in turn when the new node
is the parent node. If the new path has a lower path cost com-
pared with the original path, the new node is taken as its parent
node.

CheckToGoal: Check whether the path between the new node
and the target point collides with obstacles in the environment.

3.2. Informed rapidly exploring random trees star

The RRT∗ algorithm samples in the entire state space, so as the
number of iterations increases, useless sampling points gradu-
ally increase, which will bring a huge number of useless calcu-

Figure 1: Schematic diagram of heuristic sampling area.

lations and slow the convergence of the algorithm. The princi-
ple of the Informed RRT∗ algorithm to find the initial path is the
same as that of the RRT∗ algorithm, but after the Informed RRT∗

algorithm obtains the initial feasible solution, it uses heuris-
tic sampling to limit the sampling points to the hyper-ellipsoid
sampling space generated by the minimum cost of the current
feasible solution, reducing the sampling of useless areas and ac-
celerating the convergence of the algorithm.

As shown in Fig. 1, when the algorithm is sampling in 2D
space, the heuristic sampling area is an ellipse, the focal length
Cmin of the ellipse is the distance between xinit and xgoal, and the
long axis is the shortest path cost Cbest. As the number of iter-
ations increases, the current path cost Cbest decreases contin-
uously, which makes the sampling area to gradually decrease,
useless sampling points decrease, and the algorithm conver-
gence speed increases.

The pseudo-code of the Informed RRT∗ algorithm is shown
in Algorithm 2. Among them, Xsoln is a heuristic subset, and
HeuSample function is a heuristic sampling function. When Cbest

is less than positive infinity, the sampling area will be limited to
the heuristic subset. From the comparison of the pseudo-code of
the two algorithms, the Informed RRT∗ algorithm only changes
the sampling method.

Algorithm 2. Informed RRT∗ algorithm pseudo-code

T ← Informed RRT∗(xinit, xgoal)
1. T ← EmptyTree()
2. T ← InsertNode(xinit, T)
3. Cbest ← ∞
4. Xsoln ← ∅
5. for i = 0 to N
6. Cbest = minx∈Xsoln (Cost(x))
7. xrand ← HeuSample(xinit, xgoal, Cbest)
8. xnearest ← NearestNode(xrand, T)
9. xnew ← Steer(xnearest, xrand)
10. if CollisionFree(xnearest, xnew) then
11. Xnear ← NearNeighbors(xnew, T)
12. xparent ← ChooseParent(Xnear, xnew)
13. T ← InsertNode(xnew, xparent, T)
14. T ← Rewire(xnew, xparent, Xnear)
15. if CheckToGoal(xnew, xgoal) then
16. T ← InsertNode(xgoal, xnew, T)
17. Xsoln ← Xsoln ∪ xnew

18. return T
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Figure 2: RRT∗-AB schematic diagram.

3.3. Rapidly exploring random trees star-adjustable
bounds

The RRT∗-AB algorithm improves the efficiency of the al-
gorithm through three strategies: connectivity region, goal-
biased bounded sampling, and path optimization. Goal-biased
bounded sampling is performed within the boundary of connec-
tivity region to find the initial path. Once the initial path is found,
it is optimized gradually using node rejection and concentrated
bounded sampling. Final path is further improved using global
pruning to erode extra nodes.

When the algorithm is running, first determine the sectioned
sampling area CRegion and sample in this area, as shown in
Fig. 2a. When the path cannot be found in the first scan of CRegion,
the CRegion is doubled, as shown in Fig. 2b. When the initial path
is searched, the algorithm redefines the connection area along
the initial path, and optimizes the initial path through sampling
in this area until the end of the iteration, as shown in Fig. 2c.

4. Target-Biased Informed Trees

To reduce the path search time and reduce the final feasible path
cost, this paper proposes an improved RRT∗ algorithm based on
the target bias strategy and heuristic optimization strategy. The
algorithm is divided into a search phase and an optimization
phase. In the search phase, the algorithm uses a combined target
bias strategy to obtain sampling points, which reduces the ran-
domness of sampling points while reducing the cost of adding
sampling points to the random tree, so as to quickly search for
an initial path with a relatively low path cost; in the optimization
phase, the heuristic optimization strategy defines the sampling
area as a hyperellipsoid region composed of waypoints in the
initial path, which makes the collision-free sampling points ob-
tained in this sampling area can definitely reduce the path cost.
It overcomes the redundant calculations generated when sam-
pling points are added to the random tree in the optimization
stage of the Informed RRT∗ algorithm, which greatly improves
the efficiency of path optimization.

The pseudo-code of TBIT∗ is as shown in Algorithm 3. Af-
ter initializing the parameters, the algorithm enters the search
phase (lines 2–7), and the random tree is expanded using the
combined target bias strategy (line 3). The random tree ex-
pansion method is determined according to the failure rate of
random tree node expansion. In the search phase, the target

bias strategy is used to reduce the randomness of random tree
growth, and the initial path can be obtained faster. After finding
the initial path P , the algorithm enters the optimization phase
(lines 8–10). In this stage, the initial path is optimized, instead
of optimizing all the nodes in the initial random tree. The initial
path is globally pruned by the greedy algorithm (line 8) to reduce
the path cost. Then, the algorithm uses heuristic sampling (line
9) through iterative methods to obtain sampling points that do
not collide with obstacles in the hyper-ellipsoid area formed by
nodes in the initial path to reduce the cost of the initial path.
The B-spline is used to optimize the path (line 10) to make the
final path more consistent with the laws of robot kinematics.

Algorithm 3. TBIT∗ algorithm pseudo-code

P ← TBIT∗(xinit, xgoal)
1. T ← EmptyTree()
2. while PathNotFound(T) do
3. xrand ← TargetBiasSample(xgoal, T)
4. xnearest ← NearestNode(xrand, T)
5. xnew ← Steer(xnearest, xrand)
6. if CollisionFree(xnearest, xnew) then
7. T ← InsertNode(xnew, T)
8. P ← GlobalPruning(P)
9. P ← Optimize HSample(T)
10. P ← BSpline(P)
11. return P

4.1. Searching stage

In the search stage, the combined target bias sampling includes
a sunflower area sampling and a target pulling area sampling.
The algorithm dynamically selects the sampling method accord-
ing to the current node expansion failure rate. Expansion failure
rate Ref is the ratio of the number of expansion failures of the
random tree to the total number of expansions. When the ex-
pansion failure rate is low, it means that obstacles have little ef-
fect on the expansion of the random tree, and the random tree
tends to sample in the sunflower area and the target traction
area, so that the random tree stretches toward the target point.
On the contrary, it shows that obstacles have a greater impact
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on the expansion of the random tree, and the algorithm tends
to sample randomly throughout the space and strengthen the
algorithm’s exploration of unknown areas so as to escape the
obstacle area at a relatively small cost. The pseudo-code of the
sampling algorithm in the search phase is shown in Algorithm
4, where r1 and r2 are constants. In this paper, r1 and r2 are, re-
spectively, 0.4 and 0.8.

Algorithm 4. Combined target bias strategy pseudo-code

xrand ← TargetBiasSample(xgoal, T)
1. if Ref ≤ r1

2. xrand ← SunFlowerSample(xgoal, T)
3. else if Ref ≤ r2

4. xrand ← GoalTractionSample(xgoal, T)
5. else
6. xrand ← RandomSample(xgoal, T)

4.1.1. Sunflower regional sampling
The sunflower area is a hyper-hemispherical area with the max-
imum expected expansion node xmax as the center of the sphere.
S′ is the hyper-ellipsoid cross-section through the center of the
sphere xmax and the line S connecting the center of the circle xmax

and xgoal is the normal line of S′. The section S′ divides the hy-
persphere area into two hyper hemisphere areas, where the hy-
perhemisphere area intersecting the line segment S is the sun-
flower sampling area, and sampling in this area can improve the
efficiency of the random tree expansion to the target point. The
radius R of the sunflower area is dynamically changed by the
obstacles encountered during the expansion. The initial value
of the radius R is σ · L , where L is the length of the map edge
and σ is a constant.

Algorithm 5. Pseudo-code of sunflower area sampling

xrand ← SunFlowerSample(xgoal, T)
1. r ← σ · L
2. xmax ← MaxCost(xgoal, T)
3. if IsCollision = = False then
4. xrand ← xmax + r · (cos θ, sin θ )
5. else
6. r ← k · r
7. xrand ← RandCirle(r, xmax)
8. while Diameter(xmax, xgoal, xrand)
9. xrand ← RandCirle(r, xmax)

The pseudo-code of the sunflower area sampling algorithm is
shown in Algorithm 5. During the expansion of the random tree,
the radius value is dynamically adjusted by the coefficient k. In
the random tree expansion process, when the obstacles in the
sampling area increase, the expansion failure rate increases. At
this time, the radius of the sampling area should be reduced to
accelerate the escape from the multi-obstacle area. When there
are fewer obstacles in the sampling area, the expansion failure
rate is reduced. At this time, increasing the radius of the sam-
pling area is beneficial to improve the path search efficiency. In
this paper, the coefficient k is determined by the failure expan-
sion rate. When r1 < Ref ≤ (r1 + r2)/2, k takes the value 1 + 4Ref ,
and when (r1 + r2)/2 < Ref ≤ r2, k takes the value 1.5Ref .

The functions ĝT (x) and ĥ(x) represent admissible estimates
of the cost-to-come to a state through the random tree, x ∈ X,

from the start and the cost-to-go from a state to the goal. The
function f̂ (x) represents the total estimated cost from the start-
ing point to the target point constrained to pass through x, and
f̂ (x) = ĝT (x) + ĥ(x). We assume that the estimated cost f̂ (xinit) of
the starting point xinit is infinite before the initial path is found.
Before sampling the sunflower area, the function MaxCost cal-
culates and compares the total estimated cost f̂ (x) of all nodes
in the random tree to find the node xmax with the smallest esti-
mated cost.

Figure 3 shows the node expansion diagram in a simple 2D
environment, where the sunflower sampling area is a semicir-
cular area, S′ is a straight line passing through the center of the
circle, and the shaded part is an obstacle. In the process of ran-
dom tree expansion, the flag bit IsCollision will change according
to the result of collision detection. As shown in Fig. 3a, when
the random tree is expanded in the sunflower area, the first ex-
pansion of xmax will extend the distance r along the line seg-
ment S to the target point to generate a new node xnew. When
this method fails to expand, the collision detection result resets
the flag IsCollision, and a new node xnew will be randomly gen-
erated in the sunflower area, as shown in Fig. 3b. When sam-
pling randomly in the sunflower area, first randomly generate a
point in a circle with xmax as the center and R as the radius, and
then calculate the linear equation of the line S′. When a random
point appears in the semicircular area where the circle and the
lower area of the line S′ intersect, xrand is returned. The function
Diameter is used to determine whether a random point is in the
area below the straight line S′. During the sampling process, the
radius of the sunflower area is dynamically adjusted according
to the expansion failure rate.

The RandCirle function is mainly used for random and uni-
form sampling in a circle with xmax as the center and r as the
radius. The coordinate transformation of points in the polar co-
ordinate system in a 2D environment is shown in formulas (1)
and (2):

x = r · cos θ (1)

y = r · sin θ. (2)

Assuming that the probability density function of polar coor-
dinates is f (r, θ ), the corresponding Jacobian matrix when cal-
culating the rectangular coordinate system is shown in formula
(3): ⎛

⎜⎜⎝
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

⎞
⎟⎟⎠ . (3)

Supposing the determinant value to be r (cos2θ + sin2
θ ) = r,

therefore, the formula (4) can be used to realize the conversion
from the polar coordinate system to the rectangular coordinate
system:

f (r, θ ) = r · f (x, y) . (4)

When sampling uniformly in the unit circle, f (x, y) = 1
π

,
which is a constant, then f (r, θ ) = r

π
, from which formulas (5)

and (6) can be obtained:

f (r) =
2π∑
0

f (r, θ ) dθ =
2π∑
0

r
π

dθ = 2r (5)

f (θ |r) = f (r, θ )
f (r)

= 1
2π

. (6)

From the above formula, when r is determined, f (θ |r) is a
constant, we can further calculate the distribution function and
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Figure 3: Sampling in sunflower area.

take the inverse function to get r = √
ξ1 , θ = 2πξ2, where ξ1 and

ξ2 are random numbers. From the above derivation, when ran-
domly and uniformly sampling in a circle with a radius of r, the
coordinates of random points can be obtained according to the
following formulas (7) and (8), where 0 ≤ ξ1 ≤ r2, 0 ≤ ξ2 ≤ 1.

x =
√

ξ1cos (2πξ2) (7)

y =
√

ξ1sin (2πξ2) (8)

According to the formula derivation, the pseudo-code of
RandCirle is shown in Algorithm 6.

Algorithm 6. Random sampling pseudo-code within a circle

xrand ← RandCirle(r, xcenter)
1. ξ1 ← random(0, r2)
2. ξ2 ← random(0, 1)
3. xtem ← (

√
ξ1 cos 2πξ2,

√
ξ1 sin 2πξ2 )

4. xrand ← xtem + xcenter

4.1.2. Sampling of target towing area
When the influence of obstacles on the expansion of the ran-
dom tree increases, the failure rate of the random tree expan-
sion also increases. At this time, it is necessary to change the
sampling strategy and appropriately increase the randomness
of the sampling to speed up the random trees escape from the
obstacle area. The target traction area is the hyperball area with
xgoal as the center of the sphere. In 2D space, this area is a circu-
lar area with xgoal as the center; in three-dimensional (3D) space,
this area is a spherical area with xgoal as the center of the sphere.
Figure 4 is a schematic diagram of the target towing area in a 2D
environment.

When sampling in the target pulling area, the sampling
points are generated in the circular area centered on xgoal, which
makes the sampling points guide the random tree to grow in
the target direction. By sampling the target pulling area, while
increasing the randomness of sampling, it reduces the genera-
tion probability of useless sampling points far away from the tar-
get point. This improves the quality of the sampling points and

speeds up the growth of the random tree, so that the initial path
can be obtained faster. Different from the sunflower area sam-
pling, when the expansion failure rate of the target towing area
sampling increases, the search radius will gradually increase to
ensure quick escape from the obstacle area. The pseudo-code
for sampling the target traction area is shown in Algorithm 7,
where ε is a constant.

Algorithm 7. Pseudo-code of target pulling area sampling

xrand ← GoalTractionSample(xgoal, T)
1. xrand ← RandCirle(r, xgoal)
2. if IsCollision = = False
3. r ← ε · r

4.2. Optimization stage

In the Informed RRT∗ algorithm, when the initial path is found,
the algorithm starts to shrink the sampling space and restrict
the sampling points to the ellipse. As the number of iterations
increases, nodes with relatively small path costs are continu-
ously added to the random tree, and the initial path is contin-
uously optimized. However, with the increase of nodes, the In-
formed RRT∗ algorithm still performs re-parenting and re-wiring
operations on each node, which brings a lot of redundant calcu-
lations. Based on the above shortcomings, in the optimization
stage, this paper proposes the following three improvements to
reduce the path cost and speed up the algorithm convergence.

4.2.1. Changing the optimization object
The Informed RRT∗ algorithm takes the starting point and the
target point as the focus and the initial path cost as the ma-
jor axis to construct the ellipse space. When sampling in this
space, the sampling points need to go through a lot of calcu-
lations before they can be added to the random tree, but these
points added to the random tree may not directly optimize the
path, which also generates a lot of redundant calculations.

To speed up the algorithm convergence and reduce the re-
dundant calculation caused by useless sampling points, this
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Figure 4: Schematic diagram of the target towing area.

paper finds the initial path and adjusts the optimization of the
random tree to the optimization of the initial path. Using heuris-
tic subsets to limit the sampling points to an ellipsoid area com-
posed of nodes in the path, the collision-free nodes generated
by sampling in this area must be able to optimize the path. This
greatly reduces redundant calculations such as collision detec-
tion, rerouting, and reselection of parent nodes generated by
sampling points that cannot optimize the path, thereby improv-
ing the efficiency of path cost convergence. The pseudo-code of
the sampling function in the optimization stage is shown in Al-
gorithm 8.

Algorithm 8. Pseudo-code of initial path optimization

P ← Optimize HSample(T)
1. P ← FindPath(T)
2. N ← |P|
3. i = 1
4. while i < N − 1
5. j = i + 2
6. Cmin = (Pi − Pj)2

7. Cmax = (Pi+1 − Pj)2 + (Pi+1 − Pi)2

8. qcenter = Pi + Pj/2
9. C ← RatationToWorldFrame(Pi, Pj)
10. r1 ← Cmax/2

11. {rk}k = 1,2,3, ..., n ←
√

C2
max − C2

min/2

12. L = diag{r1, r2, r3, . . . , rn}
13. qball = SampleUnitBall(Qball)
14. qellipse ← (CL · qball + qcenter) ∩ Q
15. if CollisionFree(qellipse, qi)
16. if CollisionFree(qellipse, qj)
17. Replace(qellipse, qi+1)
18. i = i + 1
19. return P

In Algorithm 8, starting from the starting point, three nodes
on the path are selected as the optimization objects for opti-
mization until the target node is optimized. During the opti-
mization process, the sampling area is a hyper-ellipsoid area
(lines 6–14) composed of three nodes, which is an elliptical area
in a 2D environment; in a 3D environment, this area is an el-
lipsoid area. First, randomly and uniformly sample in the unit
circle (line 13), and then map the random sampling point qball

to the point qellipse (line 14) in the specified ellipse through ma-
trix transformation, where Pi and Pj are the two focal points
of the ellipse and Pi+1 is a point on the ellipse, Cmin is the focal
length, and Cmax is the length of the major axis. The transforma-
tion matrix L is a diagonal matrix, which can be obtained by the
Cholesky decomposition of the hyperellipsoid matrix S, namely
L L T ≡ S, where S ∈ n×n, and the constraint condition is

S = diag

{
C2

best

4
,

C2
best − C2

min

4
, . . . ,

C2
best − C2

min

4

}
. (9)

From S, the decomposition matrix L can be obtained as

L = diag

⎧⎨
⎩ Cbest

2
,

√
C2

best − C2
min

2
, . . . ,

√
C2

best − C2
min

2

⎫⎬
⎭ . (10)

Obtain the rotation transformation matrix C from the hyper-
ellipsoid coordinate system to the world coordinate system
through the function RatationToWorldF rame, which is defined
as

C = U · diag
{
1, 1, . . . , det(U ) · det(V)

} · VT , (11)

where det(·) represents the determinant and the constraint ma-
trix

∑
VT ≡ Pj −Pi

(Pj −Pi )2
· eT

1 is subjected to singular value decomposi-
tion to obtain U ∈ n×n, V ∈ n×n, where e1 is the product out-
side the first column of the identity matrix. Finally, by rotating
and translating qball through the matrix, the random point qellipse

in the corresponding ellipse can be obtained (line 14). When
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Figure 5: Schematic diagram of path optimization in 2D environment.

qellipse does not collide with the two focal points, qellipse is used
to replace the node qi+1 in the original path.

Figure 5 is a schematic diagram of path optimization in 2D
environment. The initial path is the black solid line, the inflec-
tion point is the node in the path, L1 is the path length between
xa and xb, and L2 is the path length between xc and xb. During
the optimization process, the algorithm will sequentially select
three nodes in the path to form an ellipse for path optimization.
Take Fig. 5 as an example, take xa and xc in the path as the fo-
cal points of the ellipse, and take L1 + L2 as the long axis of the
ellipse to form a unique ellipse, and use this area as the sam-
pling area of the optimized path. According to the definition of
an ellipse, when the new node is inside the ellipse, the sum of
the distance between itself and the two focal points must be less
than the major axis, so the newly generated path must be better
than the original path. When there is no collision, the connec-
tion between xb, xa, and xc is disconnected, and xnew is connected
to xa and xc to generate a better new path.

4.2.2. Greedy pruning algorithm
The greedy pruning algorithm is shown in Algorithm 9, P is the
initial path, N is the number of nodes in the path P , and Pop is
the optimized path. The algorithm starts from the starting point
and performs collision detection with the nodes behind the path
in the order of nodes in the path. If there is a collision, the detec-
tion continues from the parent node of the collision node until
the two nodes pass the collision detection. If two nodes pass the
collision detection and there are other nodes between the two
nodes, at this time, the two nodes are directly connected, and
the middle node is discarded. Greedy pruning algorithm can re-
duce unnecessary nodes and reduce path cost.

Algorithm 9. Pseudo-code of greedy pruning algorithm

P ← Global Pruning(P )
1. N ← |P|
2. i = 1
3. Pop ← P(1)
4. while i �= N
5. j = N
6. while i �= j
7. if CollisionFree(P(i), P(j))
8. Pop ← Reconnection(P(i), P(j))
9. i = j
10. break
11. j = j − 1
12. return Pop

Figure 6: Schematic diagram of greedy pruning algorithm.

Figure 6 is a schematic diagram of the greedy pruning algo-
rithm. The dotted line in the figure is the clipped path. When
there is no collision between xt and xgrandfather, xfather will be dis-
carded and xgrandfather will be used as the parent node of xt. Ac-
cording to the principle of triangle inequality, the path cost after
pruning will be smaller.

4.2.3. Path smoothing based on B-spline curve
The final path generated by the path planning algorithm usually
has many inflection points, which is not conducive to the move-
ment of the robot and increases the complexity of controlling
the robot. Splines are piecewise polynomial functions and are
widely used to interpolate data points or approximate functions,
curves, and surfaces. The B-spline curve overcomes the short-
comings of the Bezier curve, it can specify the order, and moving
the control point only changes part of the shape of the curve.
Therefore, B-spline curves are widely used in path smoothing.
Elbanhawi et al. proposed a B-Spline based smoothing approach
(Elbanhawi et al., 2015), which proved to be more robust than
aforementioned approaches due to its ability to maintain con-
tinuity and order. It also offers a point insertion-based strategy
to avoid collision; however, it is only effective in a simple struc-
tured environment and fails in un-structured, complex, or nar-
row passage scenarios. It also lacks a post collision curve im-
provement mechanism and generates longer paths. Two cat-
egories of curve generation schemes are prominent in a path
smoothing state of art, i.e. interpolation and approximation.
Interpolation-based schemes pass from all the way points of
path, generating a longer curve. Approximation-based schemes
interpolate end points and approximate middle points, gen-
erating a shorter curve than interpolation. Iram-proposed ap-
proach has introduced an economical point insertion scheme
with automated knot vector generation while eliminating post
smoothness collisions with obstacles (Noreen, 2020). However,
this method is prone to useless collision detection in the pro-
cess of smoothing the path. Qian used the cubic spline for the
path planning of fork-car AGV (Donghai et al., 2022); Gu proposed
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Figure 7: Schematic diagram of path smoothing.

an improved cubic B-spline algorithm and used it to smooth the
trajectory of shrub pruning (Gu et al., 2021).

Let U be a set of m nondecreasing trees, u0 ≤ u1 ≤ u2 ≤ . . . ≤
um−1, where ui is called a node, set U is a node vector, and half-
open interval [ui , ui+1) is the ith node interval. p represents the
degree of the basis function; then, the basis function of the B-
spline curve is defined as

Ni,0 (u) =
{

1, ui ≤ u ≤ ui+1

0, else
(12)

Ni,p (u) = u − ui

ui+p − ui
Ni,p−1 (u) + ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1 (u) , (13)

where Ni, p(u) represents the ith pth B-spline basis function.
Suppose p0, p1, p2, . . . , pn are n + 1 control points; then, the
p-order (p − 1 degree) B-spline curve is expressed as

C (u) =
n∑

i=0

Ni,p (u) Pi . (14)

In this paper, the interpolation-based clamping cubic B-
spline is used to smooth the path. The method of this smoothing
algorithm is described in Algorithm 10. The smooth path algo-
rithm first linearly interpolates near the path nodes to increase
the number of control points. The path interpolation function
receives the nodes in the path and the distance between the
two nodes. The function selects the number of insertion points
and the separation distance by judging the distance between the
two nodes. When the distance between nodes is large, the newly
added control point is inserted into the position closer to the in-
flection point through linear interpolation. When the distance
between the two nodes is small, the midpoint of the two nodes
is inserted into the path as a new control node. As shown in
Fig. 7, smoothing the path after increasing the number of control
points near the inflection point in the path can better preserve
the shape of the original path, which greatly reduces the proba-
bility of collision between the smoothed path and the obstacle.

Before the path is flattened, the node vector Û is generated
using the properties defined by equation (15), where k is the or-
der and n is the number of nodes in the path.

m = n + k + 1 (15)

The curve is defined using the Cox–de Boor algorithm. There
are n basis functions for n number of control points with strong
local control at that point. These basis functions are calculated
using a recursive algorithm as shown in formulas (12) and (13).
Once the initial smooth path SP is generated, it will be evalu-
ated that it may collide with surrounding obstacles due to the
introduction of smoothing; see step 9 in Algorithm 10. If a colli-
sion occurs in the new path, the next step is to identify the path
segment facing the collision, as shown in step 10.

Once the collision segment is determined, an iterative pro-
cess will insert new control points between the control points of
the corresponding segment to approach the planned path; see
steps 11–14 in Algorithm 10. As a new control node is inserted,
the node vector will be updated accordingly; see step 15. After
inserting new control points in the collision segment, regener-
ate the smooth path SP ; see step 16. Collision assessment and
control points update for a smooth path until the entire path is
collision free.

Algorithm 10. Pseudo-code of path smoothing algorithm

P ← B Spline(P)
1. N ← |P|
2. i = 0
3. while i �= N
4. lenth = getlenth(P(i), P(i + 1)
5. P ← Interpolation(P(i), P(i + 1), lenth)
6. Update(i, N)
7. Û ← CreatKnotVector(N)
8. SP ← BSpline(Û, P, k)
9. while CollisionExit(SP)
10. collision SP ← Getsegments(SP)
11. P(i), P(j) ← Getpathnode(collision SP)
12. lenth = getlenth(P(i), P(j))
13. P ← Interpolation(P(i), P(j), lenth)
14. N ← |P|
15. Û ← CreatKnotVector(N)
16. SP ← BSpline(Û, P, k)
17. return SP
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Figure 8: Process of proposed algorithm TBIT∗ .

Figure 8 shows the top-level sequence of major steps in pro-
posed approach. Figure 8a shows the random tree generated dur-
ing the search phase. In the search stage, the sampling method
is dynamically selected according to the expansion failure rate
Ref during the random tree expansion process. When Ref ≤ r1,
sampling points are generated in the sunflower area, as shown
in Fig. 8b, where the semicircular area is the sunflower sampling
area. When r1 < Ref ≤ r2, sample points are generated in the tar-
get traction area, as shown in Fig. 8c, where the shaded part is
the target traction area. When r2 < Ref , the sampling points are
obtained through random sampling. Figure 8d shows the initial
path obtained during the search phase. The optimization phase
optimizes the initial path. Figure 8e shows the optimization pro-
cess of the greedy pruning algorithm. At this stage, redundant
nodes in the path can be pruned to reduce the path cost. Fig-
ure 8f is the result of using heuristic optimization strategy to
optimize the path. In this stage, the nodes in the path are opti-
mized by using the elliptic nature to further reduce the path cost.
Finally, the clamped cubic B-spline curve is used to smooth the
path, so that the final path is more in line with the laws of robot
kinematics, as shown in Fig. 8g.

5. Simulation Results and Experimental
Analysis

The TBIT∗ algorithm proposed in this paper uses a combined
target bias strategy for sampling in the search stage. The com-
bined target bias strategy includes sunflower area sampling and

target pulling area sampling. In the path optimization stage,
the greedy pruning algorithm is used to delete useless nodes
in the path; heuristic sampling is used to obtain potential op-
timized sampling points to reduce the path cost, and the path is
smoothed by the cubic B-spline curve. Some scholars have done
similar work, and the RRT∗-AB algorithm also uses the target
bias strategy. However, the sampling limited area of this algo-
rithm will only change when the initial path is not found at the
end of scanning the area or when the initial path is found in
the area. In the optimization path stage, RRT∗-AB redefines the
connection area along the initial path, and optimizes the selec-
tion of sampling points through the node rejection mechanism
to optimize the path. Therefore, the two algorithms are essen-
tially different. The RRT∗-AB algorithm has a good application
effect in the structured complex 2D environment and the un-
structured indoor environment. This section will also verify the
applicability of the algorithm in different environments.

This section demonstrates the experiments of the algorithm
proposed in this article in different environments, and each ex-
perimental scene has different obstacles. The experimental data
of RRT, RRT∗, Informed RRT∗, FMT∗, BIT∗, and TBIT∗ are also pre-
sented. These algorithms are implemented using the 64-bit ver-
sion of PyCharm Community 2020 and run on a PC with In-
tel Core i5-8250U CPU@1.60GHz CPU and 8GB internal RAM. Ex-
periments were carried out using different environment maps
M1, M2, M3, M4, and M5 to verify the robustness of the algo-
rithm. During the experiment, the experimental data and simu-
lation results were recorded, and they were compared and anal-
ysed. Considering that the algorithm has a certain degree of
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Figure 9: Results comparison of map M1.

Table 1: Simulation results of six algorithms in M1.

Algorithms Time to generate the initial path (s) Final path cost Total number of random tree nodes

RRT 1.71 940 1133
RRT∗ 18.38 748 3880
Informed RRT∗ 20.49 765 3518
FMT∗ 22.08 762 2998
BIT∗ 1.75 772 310
TBIT∗ 0.99 744 63

randomness, each experiment set has carried out 30 iterations
on the map, and the simulation data presented are the average
of these 30 experiment results.

In order to compare the algorithm optimization effects, the
numbers of optimization sampling iterations after finding the
initial path for RRT∗, Informed RRT∗, BIT∗, and TBIT∗ are all 3000
times. In the iterative process of BIT∗, the number of samples in
each batch is taken as 200. In view of the implementation prin-
ciple of the FMT∗ algorithm, it is not easy to distinguish the op-
timization stage of the path, so the sampling point of the FMT∗

algorithm is set to 3000 in this article.

5.1. Structured complex 2D environment

Maps M1 and M2 are complex scenes with different obstacle
densities in a 2D environment. The density of obstacles in M1
is higher. It can be seen from Fig. 9 and Table 1 that the RRT,

RRT∗, Informed RRT∗, and FMT∗ algorithms sample in the en-
tire space. However, the RRT∗ algorithm and the Informed RRT∗

algorithm are added to the optimization strategy of reselecting
the parent node and rerouting, which makes the path optimiza-
tion effect more obvious. However, due to the increase in the
amount of calculation, the time for the RRT∗ algorithm and the
Informed RRT∗ algorithm to obtain the initial path is greatly in-
creased. After the Informed RRT∗ and BIT∗ algorithms obtain the
initial path, the sampling is limited to the ellipse, so the random
tree is concentrated near the optimal path. However, BIT∗ uses
a series of informed graph searches to process states in order of
potential solution quality, which speeds up its construction of
random trees.

The combined target bias strategy of the TBIT∗ algorithm
makes the random tree grow toward the target point. There-
fore, the generated nodes are concentrated near the optimal
path, and the success rate of node expansion will be greatly
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Figure 10: Result comparison of map M2.

Table 2: Simulation results of the six algorithms in M2.

Algorithms Time to generate the initial path (s) Final path cost Total number of random tree nodes

RRT 4.6 1640 3354
RRT∗ 81.0 1154 6151
Informed RRT∗ 42.26 1184 4770
FMT∗ 16.21 1176 2826
BIT∗ 3.74 1218 654
TBIT∗ 3.38 1131 871

increased. Therefore, the TBIT∗ algorithm not only obtains a
path that is not much different from the RRT∗, Informed RRT∗,
FMT∗, and BIT∗ algorithms, but also greatly reduces the num-
ber of nodes in the random tree. Since the reselection of the
parent node and the rewiring strategy are omitted, the amount
of calculation at this time is greatly reduced, so the time cost
of obtaining the initial path is also greatly reduced. The above
experimental results show that the TBIT∗ algorithm is more ef-
ficient than the other five algorithms in a complex and dense
environment.

Figure 10 is a graph of the results of different algorithms run-
ning in M2. M2 is a special complex 2D simulation environment
with U-shaped obstacles. All six algorithms can find the optimal
solution. Except for RRT, the final path cost obtained by conver-
gence is basically the same. In terms of time cost, because the
TBIT∗ algorithm adds a combined target bias strategy, the initial

path can be obtained faster. Compared with the RRT algorithm,
the time cost of the TBIT∗ algorithm is reduced by 43%. Com-
pared with the BIT∗ algorithm, while the time cost is reduced
by 10%, the final path cost obtained by TBIT∗ is also reduced ac-
cordingly.

When the TBIT∗ algorithm uses sunflower area sampling, the
expansion failure rate increases due to the increase of expansion
failure nodes, so the algorithm uses target traction area sam-
pling and random sampling to quickly escape the obstacle area.
The expansion success rate outside the U-shaped obstacle is rel-
atively large, which makes the algorithm bias toward combined
target sampling, and the random tree grows quickly to the target
point. Therefore, the number of nodes in the random tree of the
TBIT∗ algorithm is greatly reduced compared to the RRT, RRT∗,
Informed RRT∗, and FMT∗ algorithms. The analysis results are
shown in Table 2.
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Figure 11: Result comparison of map M3.

Table 3: Simulation results of the six algorithms in M3.

Algorithms Time to generate the initial path (s) Final path cost Total number of random tree nodes

RRT 2.04 1119 983
RRT∗ 10.47 910 3674
Informed RRT∗ 8.99 921 3076
FMT∗ 26.27 990 2998
BIT∗ 1.06 868 230
TBIT∗ 0.81 707 68

5.2. Structured complex three-dimensional
environment

Figure 11 is a graph of the results of different algorithms run-
ning in M3. M3 is a complex 3D simulation environment with
dense obstacles. The six algorithms can get the optimal path
in M3, and the fast convergence of BIT∗ and TBIT∗ algorithms
is the best. Due to the addition of an optimization strategy, the
sampling points generated by the Informed RRT∗ algorithm in
the optimization stage are also near the optimal path. The RRT,
RRT∗, and FMT∗ algorithms are all exploring the entire space. Al-
though the optimization process makes the path cost of the RRT∗

algorithm gradually decrease, as the number of nodes increases,
the calculation amount of the RRT∗ algorithm increases, so the
convergence speed decreases.

The combined target biased sampling method significantly
increases the speed of the TBIT∗ algorithm to obtain the ini-
tial solution. Due to the high efficiency of sampling, the number
of nodes in the random tree is greatly reduced. Compared with
the RRT and BIT∗ algorithms, the final path cost obtained by the
TBIT∗ algorithm is reduced by 37% and 20%. This demonstrates
the ability of the TBIT∗ algorithm to quickly pass through com-
plex 3D spaces. The analysis results are shown in Table 3.

Figure 12 is a graph of the results of different algorithms
running in M4. M4 is a 3D simulation environment with three
narrow passages. The six algorithms have good passability in
the 3D narrow channel space. Compared with the RRT and
RRT∗ algorithms, the Informed RRT∗ algorithm has a better op-
timization effect on random trees. However, the number of
random tree nodes is large, and the useless calculations in-
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Figure 12: Result comparison of map M4.

Table 4: Simulation results of the six algorithms in M4.

Algorithms Time to generate the initial path (s) Final path cost Total number of random tree nodes

RRT 4.04 1528 2649
RRT∗ 28.39 1132 4263
Informed RRT∗ 61.39 1169 6184
FMT∗ 43.33 1227 2836
BIT∗ 12.32 885 154
TBIT∗ 3.75 735 369

crease, resulting in a decrease in the convergence speed of the
algorithm. The time cost of the TBIT∗ algorithm when pass-
ing through narrow passages in 3D space is significantly re-
duced, which also speeds up the convergence speed of the
algorithm.

The TBIT∗ algorithm has a good optimization effect on the
path. Except for TBIT∗, BIT∗ has the lowest path cost, and the fi-
nal path obtained by RRT∗, Informed RRT, and FMT∗ algorithms
is not much different. Compared with the BIT∗ algorithm, the
TBIT∗ path cost is reduced by 27%. The TBIT∗ algorithm has a
great improvement in this convergence efficiency, and the node
utilization rate in its random tree is relatively high. The above
illustrates the obvious efficiency improvement compared to the
other five algorithms in a 3D environment containing narrow
passages. The analysis results are shown in Table 4.

5.3. Unstructured indoor environment

Experiments on unstructured indoor environment are also con-
ducted. For this purpose, map M5 is adapted from Intel research
lab datasets. We extracted the map data, filtered it, and finally
converted it into an occupancy map for simulation experiments.
Figure 13 shows the map in the source dataset (Fig. 13a) and the
processed occupancy map (Fig. 13b).

It can be seen from Fig. 14 that all six algorithms can obtain
paths in an unstructured environment, but the optimization ef-
fects of BIT∗ and TBIT∗ are relatively obvious, and their sampling
points in space are more efficient, thus reducing the amount of
calculation. Therefore, these two algorithms can obtain the ini-
tial path in a relatively short time.

It can be seen from Table 5 that in the optimization stage of
the initial path, the RRT∗ and Informed RRT∗ algorithms have
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Figure 13: Original map and occupancy map.

Figure 14: Result comparison of unstructured map M5.

similar effects. BIT∗ and TBIT∗ obtained similar final paths, but
the time for the TBIT∗ algorithm to obtain the initial path in-
creased by 40% compared to BIT∗. Although the final path ob-
tained by FMT∗ is similar to BIT∗, it takes a longer time for
FMT∗ to find a path due to the way it obtains the random
tree.

Since the process of convergence to the optimal solution
is started after the initial feasible solution is found, the con-
vergence rate is calculated after the initial path is calculated.
Since RRT and FMT∗ cannot strictly distinguish the optimization

stages of the path, we compared the convergence rates of RRT∗,
Informed RRT∗, BIT∗, and TBIT∗. Figure 15 shows the compari-
son of the convergence rate of these four algorithms in M5 for
3000 iterations. Let the initial feasible path, denoted by πinit, be
computed in tinit time with Cinit path cost while the optimal path
solution, denoted as π∗, is computed in t∗ time with C∗ path cost.
The convergence rate is defined as

Rconvergence = Cinit − C∗
t∗ − tinit

. (16)
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Table 5: Simulation results of the six algorithms in M5.

Algorithms Time to generate the initial path (s) Final path cost Total number of random tree nodes

RRT 0.96 751 353
RRT∗ 2.89 758 2833
Informed RRT∗ 3.38 705 2833
FMT∗ 28.7 597 2910
BIT∗ 1.54 593 191
TBIT∗ 0.91 580 90

Figure 15: Convergence rate comparison.

It can be clearly seen from Fig. 15 that the proposed TBIT∗

method has the highest convergence rate, followed by BIT∗. The
convergence rates of RRT∗ and Informed RRT∗ are similar. The
results show that once the initial path is found, this method can
be improved more quickly than other methods to make it con-
verge to the optimal solution.

6. Conclusion

The improved TBIT∗ path optimization algorithm proposed in
this paper optimizes the RRT∗ algorithm in the search phase and
the optimization phase. In the initial stage, the growth of the tree
is guided by the combined target bias strategy to reduce the gen-
eration of useless nodes, thereby reducing the time cost of the
algorithm and speeding up the convergence of the algorithm.
In the optimization stage, directly optimizing the nodes in the
path can reduce the number of nodes in the random tree and
avoid a large number of invalid calculations, thereby reducing
the time cost of obtaining the optimal path. The simulation re-
sults in the complex 2D and 3D simulated environments show
that, compared with the basic RRT, RRT∗, Informed RRT∗, FMT∗,
and BIT∗ algorithms, the TBIT∗ algorithm proposed in this pa-
per can form the initial path faster, and has a lower number
of nodes in the random tree and a smaller the path cost. This
shows that TBIT∗ has better versatility in both 2D and 3D en-
vironments. In a complex and special 2D environment, the su-
periority of the algorithm shows that it has certain application
value in robots that work in 2D environments such as sweeping
robots; in a complex and special 3D environment, the superior-
ity of the algorithm shows that it can be applied to robots that
work in 3D scenes, such as manipulators.

The algorithm in this paper only considers the optimization
of the path in terms of path cost, number of nodes, and time cost,
and does not consider the handover constraints in the path; it
leads to excessive turning angles in certain positions in the path,

which is not conducive to the movement of the robot. Subse-
quent handovers will be integrated into the generated path con-
straints in our future works.
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