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Abstract
Even though numerous works focus on the few-shot learning issue by combining meta-learning, there are still limits to
traditional graph classification problems. The antecedent algorithms directly extract features from the samples, and do not
take into account the preference of the trained model to the previously “seen” targets. In order to overcome the
aforementioned issues, an effective strategy with training an unbiased meta-learning algorithm was developed in this
paper, which sorted out problems of target preference and few-shot under the meta-learning paradigm. First, the
interactive attention extraction module as a supplement to feature extraction was employed, which improved the
separability of feature vectors, reduced the preference of the model for a certain target, and remarkably improved the
generalization ability of the model on the new task. Second, the graph neural network was used to fully mine the
relationship between samples to constitute graph structures and complete image classification tasks at a node level, which
greatly enhanced the accuracy of classification. A series of experimental studies were conducted to validate the proposed
methodology, where the few-shot and semisupervised learning problem has been effectively solved. It also proved that our
model has better accuracy than traditional classification methods on real-world datasets.
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1 Introduction

Even though the algorithms based on deep learning have pow-
erful feature extraction and knowledge expression abilities (Sil-
ver et al., 2016; Li et al., 2017; Devlin et al., 2018; Cai et al., 2021),
there are still challenges (Li et al., 2019a; Deng et al., 2021a). On
the one hand, deep learning methods fully depend on datasets
that require considerable labeled samples for training purposes.
Conversely, there are plenty of untagged data that need to be
artificially tagged, which is expensive and time consuming (a
few-shot learning problem). On the other hand, deep learning
is merely for a specific task. In other words, models are only
trained for the current tasks. Hence, the performance of trained
models needs to be promoted while doing new tasks that have
never been seen. In addition, owing to lacking training sam-
ples, the trained models may work well on the training set but
encounter parameters overfitting problems on the testing set.
Therefore, another key point of solving the few-shot learning

problem is to overcome the problems of overfitting. Due to these
inherent defects of deep learning, it remains gravely difficult to
realize artificial intelligence by using deep learning alone.

Meta-learning, or “Learning to learn,” has aroused great in-
terest. Unlike traditional artificial intelligence methods, the pur-
pose of meta-learning is to improve the learning algorithm it-
self, and take into account the experience of multiple learning.
This meta-learning paradigm provides an opportunity to solve
many traditional challenges of deep learning, including data and
computational limitations, as well as the basic problems of gen-
eralization. In addition, it is not to learn how to solve a specific
task, but to master the learning itself through the tasks that have
been learned. Although meta-learning is also a kind of machine
learning, there exists a difference, where the goal of the latter is
to allow machines to learn, while meta-learning is to allow ma-
chines to learn how to learn. Meta-learning, in general, makes
extensive use of prior knowledge and experience to guide the
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1356 Target unbiased meta-learning for graph classification

Figure 1: The overview of meta-learning tasks and target bias. To simulate a meta-testing task, we derive M five-way five-shot tasks for meta-training. What is worth
noting is that not only do the samples of the query set used for meta-testing contain the classification targets (flower, person, woollies, pears, and bananas), but also

include the targets (birds, cars, cats, apples, and grapes) seen in the meta-training stage. Under these circumstances, the trained model is more inclined to identify
the target that has been seen and produce the target bias problem that will affect classification accuracy.

learning of new tasks and has the ability to “Learning to learn.”
What proves beyond dispute is that only if machines have this
ability can artificial intelligence be truly realized. Therefore,
meta-learning has become a new direction of conquest.

However, although the existing meta-learning methods have
achieved excellent results with broad prospects, they all extract
feature vectors from the support set and the query set sepa-
rately, which fail to consider the difference between the sam-
ple targets in the support and query set (Pfahringer et al., 2000).
The emerging meta-learning method can be used with the train-
ing set to derive multiple few-shot classification tasks and simu-
late classification tasks with a few labeled samples of the testing
set. However, when most existing meta-learning methods ex-
tract feature vectors, they only take the benefits of making full
use of data information caused by prior knowledge into account,
but fail to consider the preference of the training model for tar-
gets that have already been seen. Also, meta-learning tasks co-
exist with multiple tasks; they have a certain memory ability for
prior knowledge. It will lead to the extracted feature vectors not
conducive to the current classification task if this preference is
not considered, and we define this preference as “target bias”
(representing the preference of the model for the meta-training
targets that have been seen in the process of training the classi-
fication model). As illustrated in Fig. 1, the labeled dataset in the
training task is images of cars, birds, etc. The testing task, unfor-
tunately, keeps classifying flowers, people, etc. If there are cars
or birds in the image to be classified besides flowers or persons,
the trained model may be more inclined to regard cars or birds as
classification targets, other than flowers or persons, which may
lead to deviations in the classification results. In order to allevi-
ate this deviation, this paper proposes an interactive attention
extraction module in the feature extraction process, which has
been exploited to improve the separability of feature vectors and
reduce the model’s preference for a certain target. It is worth
noting that our interactive attention extraction module can be
used as a supplement to any feature extraction module, reduc-
ing the model’s preference of the “seen” targets to improve the
classification accuracy.

Also, most of the data in the real-world have complex inter-
active relationships, which can be represented by graph struc-
tures, and graph neural networks (GNNs) are created to fully ex-
plore the relationships between samples. In order to make full
use of the relationships between samples, a neural network has

been introduced as a classification module to map the image-
level classification task to the node-level, and obtain the im-
plicit relationship between the samples through the node fea-
ture updating module and the edge feature updating module,
where each feature vector was treated as a node, and the GNN
was utilized to fully express the relationship in between. Simul-
taneously, in order to solve the issues that the distribution of
samples cannot truly represent the distribution characteristics
of real data triggered by few training samples, and to further
deal with the amount of data that is incapable of meeting the
requirements of training and learning, we took the advantages
of semisupervised learning (Zhu & Goldberg, 2009) and transduc-
tive inference (Joachims et al., 1999; Liu et al., 2018) to enhance
the effect.

In summary, our contributions are three-fold:
First, a simple and well-behaved target unbiased meta-

learning method for graph classification has been developed; it
operates directly on graphs and can quickly lock the target do-
main of the current classification task and solves the target bias
problem of other graph classification methods.

Second, we demonstrate how this form of a graph-based neu-
ral network model can be used for few-shot classification of
nodes in a graph.

Third, we demonstrate the superior performance of the pro-
posed approach on the standard few-shot learning benchmark
datasets and consider new few-shot learning settings (such as
transductive and semisupervised learning) that are also impor-
tant real-world use cases and results show that our approach
can outperform baseline algorithms under these settings too.

2 Related Works

Aiming at solving the problem of few-shot learning, a large num-
ber of recent studies have focused on meta-learning, because it
can quickly adapt to new tasks and transfer useful knowledge
between tasks with fewer samples. Models and algorithms of
meta-learning, in a general way, can be basically divided into
the following three types: optimization-based methods, metric
learning-based methods, and memory-based methods. The fol-
lowing is a specific introduction to these distinguished methods.

The optimization-based methods are designed to quickly up-
date the parameters on scarce samples through the design of
the model structure, and directly establish the mapping function
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between the input and the predicted value. Chelsea Finn and
Sergey Levine proposed the MAML algorithm in 2017 (Finn et al.,
2017), which is currently one of the most elegant and promising
meta-learning algorithms. In 2018, OpenAI released the simple
meta-learning algorithm Reptile (Nichol et al., 2018), which re-
peatedly samples a task, performs stochastic gradient descent
(SGD), and updates the initial parameters until the final param-
eters are learned. The authors of Jamal and Qi (2019) successfully
train a task-agnostic meta-learning algorithm, alleviating the
problem of task preference. Research (Guo & Cheung, 2020) pro-
poses a few-shot learning algorithm (AWGIM) based on weight
generation. The above methods have achieved extreme success
in tackling the problem of few-shot learning. Unfortunately, due
to the limitations of optimizer selection (such as SGD, Adam,
etc.) and learning rate, optimization-based meta-learning meth-
ods usually have to update multiple steps to reach a better point,
so when models face new tasks, the learning process remains
extremely slow. Worse, they are easily overfit when updating the
weights in the case of train.

The basic idea of methods based on metric learning is to
compare the distance between query set samples and support
set samples, and then utilize the means of nearest neighbors
to achieve classification. The research works (Sung et al., 2018;
Li et al., 2019b; Deng et al., 2021b) are inspired by the Siamese
Network (Koch et al., 2015; Guo et al., 2017), the Matching Net-
work (Vinyals et al., 2016), and the Prototypical Network (Snell
et al., 2017) and then use metric learning ideas to implement
few-shot classification tasks. Metric-based meta-learning meth-
ods, also known as non-parametric methods, perform well for
few-shot classification, but their effectiveness in other meta-
learning fields, such as regression or reinforcement learning, has
yet to be proven. Also, when the differences between the testing
and training tasks are evident, the effect fails to appear. Further-
more, when the task becomes larger, the pairwise comparison
may result in expensive computational costs.

Memory-based methods are to construct an external mem-
ory, introduce prior knowledge into it, and then use it to real-
ize the classification of few-shot. The MetaNet (Munkhdalai &
Yu, 2017) proposed in ICML2017 is a method that realizes rapid
parametrization of generalization tasks. CVPR2018 proposes a
few-shot learning algorithm MM-Net (Cai et al., 2018) based on
external memory. The innovation of this article is to use external
memory modules to achieve few-shot learning tasks. Memory-
based methods are one of the most commonly used methods,
and have been implemented in few-shot classification, regres-
sion tasks, and meta-reinforcement learning. Although these
methods are more flexible, due to the learner networks needing
to design a learning strategy from scratch, they are slightly less
efficient than other meta-learning methods. In addition, they
impose restrictions on the model (RNN), which may prevent its
development and application to some extent.

The above meta-learning methods have completely affected
an immense number of learning tasks, from image classifica-
tion, video processing to speech recognition, natural language
processing, etc. Data, on the other hand, are non-linear and ex-
pressed as a graph structure of complex relationships and in-
terdependence in between (Bronstein et al., 2017; Song et al.,
2021). Hence, quite a few indispensable operations such as con-
volution are not suitable for graph data (Deng et al., 2020b; Wu
et al., 2020). To sort it out, the GNN is used to embed data into a
suitable Euclidean space. Victor Garcia et al. used the few-shot
learning algorithm of GNN to transfer the distance measure-
ment from Euclidean space to non-European space (Garcia &
Bruna, 2017), and calculated the relationship between images by

graph model, although the thought is very simple, but obtaining
an advanced effect. Moreover, some new network architectures
have been proposed recently, such as Graph attention networks
(Veličković et al., 2017), Graph generative networks (Zhang et al.,
2019), and Graph spatial-temporal networks (Luo & Yuille, 2019).
In addition, Luo et al. (2020) proposed a deep relationship net-
work to capture the relationship between different samples and
constructed a knowledge graph by linking images with tags; Lin
et al. (2020) proposed a network (HOSP-GNN) for few-shot learn-
ing, which can not only use relative metrics in multiple sam-
ples to describe higher order structural relationships, but also
re-formulate the update rules of the graph structure through al-
ternate calculations between vertices and edges based on higher
order structures; Ding et al. (2020) introduced a new graph el-
ement learning framework-Graph Prototype Network to solve
the problem of the few-shot node classification on the attribute
network; Ma et al. (2020) proposed a direct method that using
good initial value to capture the substructure. This paper fo-
cuses on the classification of few-shot learning and proposes a
new framework AS-MAML. What is worth noting is that Yanbin
Liu et al. (Sung et al., 2018) proposed transductive method car-
ries on the label propagation to the training set and the testing
set in the episode, by establishing an undirected graph together
with all the unlabeled data and the annotated data, solved the
problem that the classifier is unreliable, due to the lack of train-
ing data. Compared with inductive inference methods, it has
achieved advanced results. In this paper, similar transductive
inference methods are used to make full use of the data with-
out labels. The experimental results show that the classification
ability of the model is improved after the addition of transduc-
tive inference. However, these methods also have the following
shortcoming: They only take the benefits of making full use of
data information caused by prior knowledge into account, but
fail to consider the preference of the training model for samples
that have already been seen. To a certain extent, it will interfere
with the model’s classification task. In order to alleviate this de-
viation, this paper proposes an interactive attention extraction
module.

Considering the nature of metric learning, the difference be-
tween our work and the above methods is that, through employ-
ing the interactive attention extraction module during the pro-
cess of feature extraction, the trained model is able to quickly
locate the target to be identified, and naturally reduces the in-
terference of other objects in the same situation. Furthermore,
in order to improve the accuracy of classification, the advanced
GNN is therefore combined as the classification module. The
specific implementation process is described in Section 4.

3 Problem Definition

Meta-learning: It introduces a series of concepts, including N-way
K-shot, meta-training, meta-testing, base class and novel class,
support set and query set, etc. Wherein base class and novel
class represent the source domain data used in the meta training
phase and the target domain data to be learned in the meta test-
ing stage, respectively, in which base class and novel class have
no intersection (Santoro et al., 2016; Mishra et al., 2017; Gidaris &
Komodakis, 2019; Deng et al., 2020a). The so-called N-way K-shot
classification problem means that the samples in the testing set
desired to be classified are all in N categories, and only K samples
in each category are labeled. What to prove is that using these
N × K samples to realize the classification of unlabeled samples
in the testing set.
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It is known that meta-learning demands learning many tasks
to learn a model algorithm with strong generalization ability.
Therefore, meta-training is conducted by constructing multiple
classification tasks similar to the testing set to ensure the adapt-
ability of the model. Since meta-learning uses tasks as its own
training data, the actual training set and testing set of meta-
learning are composed of multiple tasks. In order to distinguish,
the training set within each task was renamed to support set S
= {(X1, Y1), . . . , (Xn, Yn)}, where n = N × K, and the testing set was
renamed to query set Q = {x1, . . . , xq}. The formation process of
the support set and the query set is: each iteration randomly se-
lects N classes from all the classes in the training set, extracts
K samples from all the samples in each class as the support set,
and the rest as the query set. The process of meta-training is to
use the samples in the support set to train the model. Moreover,
the process of meta-testing is to randomly select a few instances
from the query set, and let the model query which category it be-
longs to in the support set, namely the label Yi, where i ∈ (1, n); if
the classification is correct, it can be proved that the model per-
formance is excellent. Repeating the above meta-learning pro-
cess can finally get the accuracy of the task model, which will
be used to further optimize the parameters of the model. When
the training tasks are all completed, the trained model will be
applied to classify the samples in the testing set to achieve fine-
tuning of the model, which will be used to classify the samples
with unknown labels in the testing set (Triantafillou et al., 2019).
As illustrated in Fig. 1, they are five-way five-shot tasks, and the
number of meta-training tasks is M that is formed by repeating
the above meta-learning process M times.

Graph classification: In the real world, there are complex in-
teractive relationships between most data, and this relationship
can be represented by a graph structure, which is composed
of nodes and edges, where the nodes represent the objects of
task processing and edges represent the relationship between
them. In this paper, we regard the support set categories or query
set samples cascaded with tags as nodes, and the similarity
among categories or between categories and query set samples
as edges, and the matrix composed of the weights on the edges
is regarded as an adjacency matrix (see Section 4 for details).
That is to say, our classification task converts the comparison
methods at the image level into the comparison method at the
graph (node) level. The purpose is to compose the graph struc-
ture through the image, and use the GNN to update the node fea-
tures and edge features to fully mine the relationship between
them, thereby increasing the accuracy rate.

Interactive: Most of the existing meta-learning methods are
multitasking and independently extracting the feature vectors
of the training set and the testing set samples, which leads to
the low resolution of the extracted features (the extracted fea-
ture vectors are easily affected by prior experience and blindly
treat the trained targets as the targets of the current classifica-
tion task), while our model can extract the interactive attention
Rc (which represents the relationship between the prototype and
the query set sample feature map) and Rx (which represents the
relationship between the query set sample feature map and the
prototype) between the training set samples and the testing set
samples, making the feature vectors more favorable for classifi-
cation. In short, the “interaction” in this paper means that the
feature extraction network no longer independently extracts the
feature vectors of the support set and the query set samples.
Instead, the feature vectors related to the current task are gen-
erated by extracting the interaction between support set sam-
ples and query set samples (locking the target domain quickly
through interactive attention).

Bias: Most meta-learning tasks coexist with multiple tasks,
and they have a certain memory ability for prior knowledge. As
a result, if the trained model’s preference for the training target
is not taken into account, the extracted feature vectors will be
unsuitable for the current classification task, and we refer to this
preference as “target bias.”. Also, our proposed interactive atten-
tion extraction module can quickly lock the classification target
by generating interactive attention, so that the meta-learning
model reaches target unbiased (we still retain the prior knowl-
edge while interfering with the past goal; this part is shown in
Section 4 Methods of the revised manuscript). In short, bias rep-
resents the preference of the model for the classification tar-
gets (meta-training targets) that have been seen in the process
of training the classification model.

4 Methods

From the theory of previous sections, we have known that meta-
learning task is composed of multiple N-way K-shot tasks, and
this section will expound the execution process of a certain
meta-learning task, and the theory of Section 3 has explained
that the GNN contains a node update module and an edge up-
date module, and in this section we shall explain that how the
distance between the sample and categories be continuously up-
dated to obtain the final similarity through these two modules.
We shall first briefly describe how the input context is mapped
into a target unbiased feature vector, and then particularize the
related architecture. Also, our proposed model is divided into
three modules to be described: feature extraction module, in-
teractive attention extraction module, and graph classification
module. The visualization of the operation process is shown in
Algorithm 1 (Figs. 2 and 3).

Feature extraction module: We use the traditional prototype
network (Snell et al., 2017) to extract the original feature vec-
tors. In the same way, the entire support set S = {(X1, Y1), . . . ,
(Xn, Yn)}, where n = N × K, and query set samples Q = {x1, . . . ,
xq} are used as the inputs of the embedded function fφ . The class
feature mapping (prototype) Ci (equation 1), where i = 1, . . . , N, of
the support set S and feature mapping fφ (xj) of query set samples
xj, where j ∈ (1, q), are outputs:

Ci = 1
| K |

K∑
k=1

fφ (Xk
i ) (1)

where i = 1, . . . , N, Ci represents the class center of the i-th class
in support set, K represents the number of labeled samples in
support set, and fφ (Xk

i ) indicates the feature mapping of the k-
th sample of the i-th class in support set.

The network structure that realizes the above functions con-
sists of four convolutional blocks, and each convolutional block
includes a convolutional layer, a batch normalization layer, and
a ReLU activation function layer. Its intention is to utilize a sim-
ple four-level network structure to map the input information to
a high-dimensional feature space, i.e. RD → RM, where M = c × h
× w, with c, h, and w representing the number of channels and
the height and width of the feature map, respectively. Also, the
mean value of its high-dimensional feature vectors is taken as
prototype Ci. The ReLU activation function is made use of non-
linear mapping. The visualization is shown in Fig. 4.

Interactive attention extraction module: In order to further pro-
cess the original feature mappings and obtain the unbiased tar-
get feature vectors, the interactive attention extraction module
is introduced. First, the prototypes Ci ∈ Rc × h × w of support set
and the feature mappings fφ (xj) ∈ Rc × h × w of query set samples
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Figure 2: Overview of unbiased feature vectors extraction process in a meta-learning task. The feature extraction module has been used to acquire class center feature

vectors (C1, C2, C3, and C4) of support set and sample feature vectors [fφ (xj)] (j = 1, . . . , q) of query set. Afterwards, interactive attention extraction module is used to
obtain unbiased feature mappings C̄i and f̄φ (xj ).

Figure 3: Overview of unbiased feature vectors classification process in a meta-learning task. The graph classification module has been used to update feature vectors

of nodes and adjacency matrix, ultimately, obtains the similarity scores between nodes.

Figure 4: Overview of the network structure of feature extraction module.

are mapped to Rc × m, where m = h × w, using a multilayer neu-
ral network. At this time, m represents the numbers of spatial
positions on each feature mapping. The feature mappings ex-
tracted by the prototype network now become: Ci → (c1, . . . , cm) ∈
Rc×m, fφ (xj ) → (x′

1, . . . , x′
m) ∈ Rc×m (where cp|mp=1 and x′

q|mq=1 repre-
sent the class feature vectors and the query sample feature vec-
tors of the p-th and q-th spatial position, respectively), and then
we use equations (2) and (3) to calculate the interaction relation-
ship mapping Rc ∈ Rm × m and Rx ∈ Rm × m:

Rc
p =

(
cp∥∥cp

∥∥
2

)T (
x′

q∥∥x′
q

∥∥
2

)
∈ (rc

1, . . . , rc
m), (2)

where p ∈ (1, . . . , m), q = 1, . . . , m, and cp and x′
q represent the class

feature vectors and the query sample feature vectors of the p-th
and q-th spatial position, respectively.

Rx
q =

(
x′

q∥∥x′
q

∥∥
2

)T (
cp∥∥cp

∥∥
2

)
∈ (rx

1 , . . . , rx
m), (3)

where p = 1, . . . , m, q ∈ (1, . . . , m), and cp and x′
q represent the class

feature vectors and the query sample feature vectors of the p-th
and q-th spatial position, respectively.

Now the interactive attention mappings can be obtained,
where Rc = (rc

1, . . . , rc
m) ∈ Rm×m represent the relationship be-

tween the prototype Ci and the query set sample feature map-
ping fφ (xj), and the attention mappings Rx = (rx

1 , . . . , rx
m) ∈ Rm×m

represent the relationship between the query set sample fea-
ture mapping fφ (xj) and the prototype Ci. Furthermore, from the
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Figure 5: Overview of the network structure of the interactive attention extraction module.

spatial position, rc
p ∈ Rm represents the interaction between the

p-th spatial position of class feature mapping cp and all spa-
tial positions of query sample feature mappings x′

q|mq=1. Similarly,
rx

q ∈ Rm represents the interaction between the q-th spatial posi-
tion of query sample feature mapping x′

q and all spatial positions
of class feature mappings cp|mp=1. At this point, the local inter-
action between class prototypes and query set sample feature
vectors are defined by Rc ∈ Rm × m and Rx ∈ Rm × m, respectively.

Next, convolution blocks are used to convolve Rc ∈ Rm × m, Rx

∈ Rm × m (convolution kernel function ω ∈ Rm with m × 1 size can
be generated adaptively by a meta-learner, which will be elabo-
rated in Fig. 5) to convert from vectors to scalars, and a Softmax
function limits them keep numbers ac

p (the interactive attention
coefficient, which represents the interaction between the p-th
spatial position of class feature mapping cp and all spatial posi-
tions of query sample feature mappings x′

q|mq=1), ax
q (the interac-

tive attention coefficient, which represents the interaction be-
tween the q-th spatial positions of query sample feature map-
ping x′

q and all spatial position of class feature mappings cp|mp=1)
belonging to (0, 1) (shown as equations 4 and 5). The feature vec-
tor of the i-th [where i ∈ (1, N)] support set class with interactive
attention coefficient in the p-th [where p ∈ (1, m)] spatial posi-
tion is recorded as ac

pCi , and the sample feature vector of the
j-th [where j ∈ (1, q)] query set sample in the q-th spatial posi-
tion [where q ∈ (1, m)] with interactive attention coefficient is
recorded as ax

q fφ (xj ).

ac
p ∝ exp

(
ωTrc

p

t

)
, (4)

where p ∈ (1, . . . , m), ac represents the interactive attention coef-
ficient, and t represents a temperature hyperparameter.

ax
q ∝ exp

(
ωTrx

q

t

)
, (5)

where q ∈ (1, . . . , m), ax represents the interactive attention co-
efficient, and t represents a temperature hyperparameter. The
temperature hyperparameters in this paper are used to make
outputs of the Softmax function smoother, and if the values of
these hyperparameters are too large, after Softmax function out-
put, it will lead to greater classification error rate and lower clas-
sification accuracy, so the values of temperature hyperparame-
ters should be smaller numbers (less than 1), and we set them
to 0.025 in this paper.

We add the vectors Ci and fφ (xj) that contain historical in-
formation and the vectors ac

pCi and ax
q fφ (xj ) that contain inter-

active attention, respectively, to generate the target unbiased

support set class feature vectors (1 + ac
p)Ci and the target unbi-

ased query set sample feature vectors (1 + ax
q ) fφ (xj ). In brief, the

former of (1 + ac
p)Ci and (1 + ax

q ) fφ (xj ) represents the feature vec-
tors containing prior knowledge, and the latter of (1 + ac

p)Ci and
(1 + ax

q ) fφ (xj ) represents the feature vectors related to the cur-
rent classification target. We denote class prototype Ci weighted
by (1 + ac

p) and query set sample feature map fφ (xj) weighted by
(1 + ax

q ) as C̄i and f̄φ (xj ), respectively. Up till now, target unbiased
feature mappings C̄i and f̄φ (xj ) are acquired, which are more
suitable for classifying unseen targets.

Two convolutional blocks have been used to obtain the in-
teractive attention mappings Rc and Rx (the internal structure
of the convolution block is shown in Fig. 5), and in order to ac-
quire the interactive attention coefficients ac

p and ax
q , first a con-

volutional block has been utilized to map Rc and Rx to a low-
dimensional feature space, and then we use a softmax function
to limit them among (0, 1). For the sake of generating convo-
lution kernel adaptively according to the interactive attention
mappings Rc and Rx, we first employ a global average pool and
map them to the low-dimensional space through the convolu-
tion block, and then output the convolution kernel ω ∈ Rm by the
activation function ReLU. Furthermore, so as to gain the target
unbiased feature mappings C̄i and f̄φ (xj ), matrix multiplication
operations are used to multiply matrix Ci with matrix ac

p and ma-
trix fφ (xj) with matrix ax

q . Then, we use summation operations
to let them combine with original feature vectors Ci and fφ (xj),
respectively. The network structure of the interactive attention
extraction module is shown in Fig. 5.

Graph classification module: In order to improve the accuracy
of a classification and finally complete the classification of un-
known label samples in the query set at the graph level, G (Garcia
& Bruna, 2017) are used to fully express the relationship between
support set categories and the query set samples. The GNN is a
graph model composed of nodes and edges. We make the target
unbiased category prototype C̄i and the target unbiased query
set sample feature vector f̄φ (xj ) in the query set concatenate
with the one-hot encoding of the label, and regard it as the node
of the graph structure and express it as V = (v1, . . . , vz), where z
= N + q, where N is the number of classes of support set and q is
the number of samples in the query set. The weight of each edge
represents the similarity between the query set sample and the
query set category. The process of obtaining adjacency matrix A
from target unbiased feature vector vi and vj, where i, j = 1, . . . ,
z, is shown in equation (6), where each element Ai, j of the ad-
jacency matrix is processed by the absolute difference between
the class center feature vector and the query set sample feature
vector.
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Figure 6: Overview of the network structure of the graph classification module.

The graph classification module is composed of multiple
graph nerves. A GNN model is made up of an adjacency ma-
trix (weight) updating module that changes the graph model
structure and a node feature updating (graph convolution) mod-
ule that does not change the graph model structure. Where the
weight updating module consists of five fully connected layers,
their function is to make similar nodes closer. The output of
the GNN model represents the similarity between the query set
sample and the support set category.

Graph convolution module consists of graph convolution
layer, batch normalization layer, Leaky ReLU activation function
layer, and a cascade operation layer. Its function is to utilize the
adjacency matrix and node feature vectors of the last layer net-
work to update the node feature vectors of this layer so that it
contains global information, which is beneficial to the classifi-
cation operation. Its visualization diagram is shown in Fig. 6.

A(l)
i, j = MLP

(
abs(v(l)

i − v
(l)
j )

)
, (6)

where l represents the l-th layer network, v represents the target
unbiased feature vectors, and A represents the adjacency ma-
trix.

Training method: When performing few-shot classification,
the model is optimized by minimizing the cross-entropy loss
(equation 7). Under semisupervised learning and transductive
inference setting, the training process is similar to the few-shot
learning process except that the sample label is represented by
its K-simplex uniform distribution.

L ( f̄φ (xj ), Y) = −
∑

k

YklogP (yj = Yk|T ), (7)

where yj is the prediction label of the query set sample xj and
f̄φ (xj ) represents the target unbiased query set sample feature
vector.

5 Experiments

To demonstrate the efficacy and progress of our meta-learning
method, three datasets were chosen: Omniglot, MiniImageNet,
and TieredImageNet. Multiple sets of experiments have been
implemented, including supervised and semisupervised few-
shot learning classification, as well as the classification under
transductive inference settings. The classification results indi-
cate that our method has an even better performance than state-
of-the-art methods.

5.1 Datasets

Omniglot contains 1623 different handwritten characters from 50
different letters. Each character is drawn online by 20 different
people. In other words, there are 1623 categories, but only 20 im-
ages per category in Omniglot. The dataset has been split into
1200 classes for training and the remaining 423 for testing (Lake
et al., 2015).

MiniImageNet is taken from ImageNet, including 100 cate-
gories; each category contains 600 sample data. Among them,
64 category data are used as the training set, 16 category data as
verification set, and 20 category data as testing set (Snell et al.,
2017).

TieredImageNet with MiniImagenet is a subset of ILSVRC-
12, which represents a larger subset of ILSVRC-12 with 608
classes. As Omniglot groups characters into letters, TieredIma-
geNet classifies categories into broader classes corresponding to
higher level nodes in the ImageNet hierarchy. There are a total
of 34 large classes. Each class contains 10 to 30 categories. These
are divided into 20 training sessions, 6 validation sessions, and
8 testing sessions (Ren et al., 2018).

5.2 Baselines

Matching Net (Vinyals et al., 2016): It is based on cosine distance
and proposed by Vinyals O et al., which is innovatively imple-
mented in the form of matching, where a few-shot classification
task maps the feature information of the sample to a higher di-
mensional and more abstract feature space.

Proto Net (Snell et al., 2017): It is based on squared Euclidean
distance and proposed by Snell J. et al., which uses squared Eu-
clidean distance as the distance measurement method, instead
of the commonly used cosine distance. The usage of the episode
minibatch gradient descent training method makes the samples
with more categories available during training.

Relation Net (Sung et al., 2018): It is based on the neural net-
work and proposed by Sung F. et al., which learned a learnable
non-linear similarity measurement method for few-shot or even
one-shot learning tasks.

GNN (Garcia & Bruna, 2017) and EGNN (Kim et al., 2019): In or-
der to prove the advanced nature of our feature extraction mod-
ule, we compared the GNN based on the non-Euclidean domain
proposed by Garcia V et al. and the EGNN proposed by Jongmin
Kim et al.; they provided an algorithm that uses GNN to solve
few-shot learning, and utilize graph model to calculate the rela-
tionship between images.

TPN (Liu et al., 2018): It proposes a few-shot learning algo-
rithm with transductive propagation network (TPN), and the
motivation is that our common supervised learning methods
consider separately the training set with a sample label and the
testing set without a sample label, which caused poor general-
ization. Transductive learning is to input the labeled training set
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Table 1: Few-shot classification results of five-way(%).

Datasets
Methods

Taxonomy Trans.
MinilmageNet TieredlmageNet

One-shot Five-shot One-shot Five-shot

Matching Net Image-level N 43.56 ± 0.26 55.31 ± 0.73 54.02 ± 0.00 70.11 ± 0.00
Matching Net Image-level Y 44.20 ± 0.10 57.00 ± 0.12 56.85 ± 1.84 69.57 ± 0.59
Proto Net Image-level N 46.61 ± 0.78 65.77 ± 0.70 48.58 ± 0.00 69.57 ± 0.00
Proto Net Image-level Y 49.42 ± 0.78 68.20 ± 0.66 52.64 ± 0.96 73.30 ± 0.71
Relation Net Image-level N 50.40 ± 0.80 65.30 ± 0.70 54.48 ± 0.00 71.31 ± 0.00
Relation Net Image-level Y 52.40 ± 0.00 65.36 ± 0.00 54.19 ± 0.28 75.31 ± 0.88
GNN Node-level N 50.33 ± 0.36 66.41 ± 0.63 63.56 ± 0.84 75.31 ± 0.73
GNN Node-level Y 52.78 ± 0.00 66.42 ± 0.00 65.32 ± 0.70 76.58 ± 0.86
EGNN Node-level N 52.46 ± 0.45 66.85 ± 0.40 57.94 ± 0.42 70.98 ± 0.40
EGNN Node-level Y 63.54 ± 0.75 76.37 ± 0.00 66.41 ± 0.24 80.15 ± 0.00
TPN Node-level Y 53.75 ± 0.86 69.43 ± 0.67 57.53 ± 0.96 72.58 ± 0.74
Our method Node-level N 71.94 ± 0.94 73.16 ± 0.61 78.09 ± 0.51 82.93 ± 0.63
Our method Node-level Y 73.72 ± 0.95 76.37 ± 0.62 78.63 ± 0.63 84.23 ± 0.66

and the unlabeled testing set into the network for training, and
then predict the results of this part of the testing set.

5.3 Parameter settings

Data preprocessing: In order to test the feasibility of the imple-
mentation on three datasets, we set the number of novel cate-
gories to five (N = 5), and the number of training examples per
novel category to one (K = 1) or five (K = 5), implying that each
class has only one or five labeled samples in the support set
of meta-training and meta-testing tasks. At the same time, we
set the number of testing examples for per novel category when
training as six, and the number of testing examples for per novel
category when testing as fifteen. Our initial feature extractor de-
notes four layer blocks of depth 3 with 3 × 3 kernels. The number
of filters in each block is 64, 128, 256, and 512, respectively, and
the image size entered is 84 × 84, and the experimental results
are obtained by the settings with 95% confidence intervals. As for
transductive setting, we have a chance to access the query data
in the inference stage, so the unlabeled set and the query dataset
are the same. All ablation experiments are performed under the
transduction setup and the network depth of the classification
module is 3.

Implementation details: To verify the accuracy of the imple-
mentation on three datasets, five-way one-shot and five-way
five-shot experiments will be conducted. We fix the values of
episodes per epoch when training as 5000, 1200, and 13 980,
for Omniglot, MiniImageNet, and TieredImageNet, respectively.
Also, we set the number of episodes per epoch when testing as
2000 for three datasets. An SGD is used to optimize the model,
where the initial learning rate is set as 0.1 and weight decay is
set as 5 × 10−4; meanwhile, the momentum of the optimization
algorithm is set as 0.9; batch size for training and testing is set
as 4 and 8, respectively. Also, all experiments in this paper are
accelerated training on two NVIDIA GTX 1080Ti GPUs, using Py-
torch programming language to train and test in Ubuntu 16.04
environment and the other settings of models are the same as
the implementation of their original papers.

5.4 Experimental results

Few-shot learning: With respect to MiniImageNet and TieredIma-
geNet datasets, we conduct five-way classification tasks. In ad-
dition, we set the number of labeled samples per class between

1 and 5 (K = 1 and 5). Table 1 indicates that our target unbiased
meta-learning method immensely outperforms the contrastive
methods. Furthermore, the preponderance of transductive infer-
ence is capable of being predicted by labeled samples, and able
to find clusters by using the information of unlabeled test sam-
ples, further classifying them more effectively. To achieve the
best generalization ability on these data, we add transductive
settings (Y) and compare its results with inductive settings (N).
The experimental results show that assuming unlabeled data
being equivalent to the data to be tested (transductive) has an
advantage over simply training labeled samples (inductive), with
accuracy improving by at least 0.54% (78.09% vs 78.63%) in the
five-way one-shot setting and 1.30% (82.93% vs 84.23%) in the
five-way five-shot setting. Our method belongs to the category of
metric learning. In order to prove the advancement of the classi-
fication module, we first compare the matching network based
on cosine distance proposed by Vinyals O et al. Also, the accuracy
of our method outperforms it under both five-way one-shot set-
tings and five-way five-shot settings. Second, we compare the
prototype network based on squared Euclidean distance pro-
posed by Snell J. et al. From Table 1, we can observe that our
method outperforms it by at least 4.96% (68.20% vs 73.16%) un-
der the five-way one-shot and five-way five-shot settings. Then,
we compare our method to the neural network-based relational
network proposed by Sung F. et al., and find that our work im-
proves accuracy significantly. Furthermore, in order to prove the
advanced nature of our feature extraction module, we compare
our method with the GNN based on the non-Euclidean domain
proposed by Garcia V et al. and the EGNN proposed by Jongmin
Kim et al., and the accuracy of our method improved by at least
7.40% (63.54% vs 71.94%) under the five-way one-shot settings,
and it is no worse than EGNN, in addition to improving at most
4.08% (80.15% vs 84.23%) under the five-way five-shot settings
with the help of the interactive attention extraction module.
Moreover, in the case of the same setting of transductive infer-
ence, since our method introduces the interactive attention ex-
traction module, the accuracy rate is improved by at least 6.94%
(69.43% vs 76.37%) under five-way one-shot and five-way five-
shot settings.

Semisupervised learning: It is introduced to utilize a mass of
label-free samples, to obtain valuable information from the data,
and to deal with the problem of poor generalization ability
of supervised learning as well as inaccurate of unsupervised
learning. We perform five-way five-shot semisupervised learn-
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Table 2: Semisupervised results of five-way five-shot setting(%).

Datasets
Methods

Class
MinilmageNet

20% 40% 60% 100%

GNN S 50.33 ± 0.36 56.91 ± 0.42 61.02 ± 0.28 66.41 ± 0.63
GNN SS 52.45 ± 0.88 58.76 ± 0.86 62.92 ± 0.57 66.41 ± 0.63
EGNN S 58.65 ± 0.55 56.91 ± 0.00 62.39 ± 0.00 66.85 ± 0.40
EGNN SS 62.62 ± 0.00 63.32 ± 0.00 68.58 ± 0.00 76.37 ± 0.00
TPN SS 59.87 ± 0.00 62.42 ± 0.00 67.36 ± 1.12 68.29 ± 0.62
Our method S 59.18 ± 0.21 62.98 ± 1.01 69.85 ± 0.46 74.37 ± 0.25
Our method SS 63.62 ± 0.71 64.32 ± 0.24 68.47 ± 0.59 76.54 ± 0.89

TieredlmageNet

GNN S 51.36 ± 0.25 55.52 ± 0.85 66.29 ± 0.26 75.31 ± 0.99
GNN SS 54.45 ± 0.81 56.68 ± 0.26 64.18 ± 0.36 76.85 ± 0.63
EGNN S 60.12 ± 0.42 64.87 ± 0.14 65.36 ± 0.57 70.98 ± 0.40
EGNN SS 63.18 ± 0.36 66.24 ± 0.43 70.80 ± 0.94 80.15 ± 0.00
TPN SS 61.52 ± 0.87 64.32 ± 0.53 69.52 ± 0.57 72.58 ± 0.74
Our method S 66.41 ± 0.14 71.12 ± 0.72 72.34 ± 0.64 82.93 ± 0.63
Our method SS 69.80 ± 0.31 71.93 ± 0.56 74.56 ± 0.33 84.23 ± 0.66

Algorithm 1: Training strategy of target unbiased meta-learning

Inputs: S = {(X1, Y1), . . . , (Xn, Yn)}, Q = {x1, . . . , xq}, where n = N × K;
Outputs: labels y of images in query set;
For all M tasks do:
| Compute Ci , fφ (xj) using equation (1), where i ∈ (1, n), j ∈ (1, q);
| Compute Rc

p, Rx
q using equations (2) and (3), where p ∈ (1, m), q ∈ (1, m);

| Compute ac
p, ax

q using equations (4) and (5), where p ∈ (1, m), q ∈ (1, m);
| Compute C̄i , f̄φ (xj ) using ac

p, ax
q ;

| Connect C̄i , f̄φ (xj ) with its labels → V = {v1, . . . , vz}, where z = N + q;
| For all layers =1, . . . , l do:
| | Compute A(l) using equation (6);
| | Compute V(l + 1) using A(l) , V(l) ;
| End
| Predict the label yj of xj based on A;
| Compute the cross-entropy loss function L using equation (7);
| Output the label yj, where j ∈ (1, q), of xj based on the minimum value of L;
End

ing experiments on two datasets, namely MiniImageNet and
TieredImageNet. As shown in Table 2, diverse results are ac-
quired, merely with labeled samples (supervised, which is de-
fined as S) and with labeled as well as unlabeled samples
(semisupervised, which is defined as SS), by setting the pro-
portion of labeled data to 20%, 40%, 60%, and 100%. The pro-
posed target unbiased meta-learning method is compared with
node-labeling GNN, EGNN, and TPN. Results indicate that our
method can also achieve good performance with fewer labeled
samples, where the accuracy of our method outperforms GNN by
at least 6.73% (52.45% vs 59.18%), 4.22% (58.76% vs 62.98%), and
5.93% (62.92% vs 69.85%) under the 20%, 40%, and 60% settings,
respectively. Our method, compared with EGNN, can obtain a
margin [1.00% (62.62% vs 63.62%), and 6.62% (63.18% vs 69.80%),
when 20% labeled] on MiniImageNet and TieredImageNet, re-
spectively, especially when the labeled portion was small. Si-
multaneously, when compared with TPN, the accuracy of our
method can improve at least 3.75% (59.87% vs 63.62%), 1.90%
(62.42% vs 64.32%), and 1.05% (67.36% vs 68.41%) under the 20%,
40%, and 60% settings, respectively. In addition, with the in-
crease of labeled samples, the classification accuracy of various
methods remains gradually improved and our method is capable

of extracting more useful information from samples compared
to baselines, on both inductive and transductive settings.

5.5 Ablation experiments

Impact of the interactive attention extraction module: To demonstrate
the effectiveness of the interactive attention extraction module,
we visualize the feature mappings of our target unbiased meta-
learning method (TUML), squared Euclidean distance-based pro-
totype network (Proto), graph models-based GNN, and TPN us-
ing transductive inference instead of inductive inference when
training graph modules, and the results are shown in Fig. 7.
What is obvious is that when the targets in the sample are
chaotic, e.g. the current classification target woollies are mixed
with the target cat already seen during training, the base-
line methods cannot accurately identify the target domain,
and our method can roughly locate the location of woollies.
Also, when the target distribution in the sample is relatively
clear, the traditional meta-learning methods can identify the
target domain, but they are susceptible to interference from
the targets that have been seen, and cannot accurately locate
the current classification target. For example, if there are ex-
isting current classification target bananas as well as target
grapes that have been seen in the training process, the fea-
ture extraction models of baselines are easily interfered with
by grapes, and our method can accurately locate the target do-
main by introducing the feature extraction module, which is ca-
pable of eliminating the graph interference and achieving target
unbiased.

Impact of the number of samples per class (K): We quantify how
influential it is to add the number of labeled samples per class
on the Omniglot. We make K a number between (0, 10), and fix
N to be 5. As expected, this change often be beneficial, both for
our method and for baselines. From Fig. 8, it can be seen that the
difficulty degrades as the shot increases, and more examples per
class indeed make it easier to correctly classify that class.

Impact of the number of classes per task (N): To examine the ef-
fect of N on test accuracy, we alter the value of N on the Om-
niglot by taking the integer between (0, 20), and fix K to be 5.
What proves evident is that our method is always superior to
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Figure 7: The feature mapping visualization of different methods.

Figure 8: Plots of testing accuracy for different numbers of shots and ways.

baseline methods. As illustrated in Fig. 8, with the increase of
N, the prediction accuracy of various methods has decreased,
which is due to the incremental number of categories, increases
the difficulty of classification, and thus the accuracy of classifi-
cation decreases.

Impact of the network structure: For further demonstration of
the superiority of our approach, we performed ablation exper-
iments of the network structure on the dataset MiniImageNet
and TieredImageNet, results as shown in Fig. 9, where P, I, and
G represent the prototype network, the interactive attention
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Figure 9: Histogram of testing accuracy for different network structures.

Table 3: Comparisons of the number of parameters and time
complexity.

Methods Trans. Parameters
Time (sec.)

One-shot Five-shot

Proto Net N 8232.96K 0.96 1.25
Proto Net Y 8232.96K 0.97 1.26
Our method N 8232.96K 1.72 2.02
Our method Y 8232.96K 1.93 2.25

extraction module, the graph classification module, respectively.
First of all, we use ResNet12 to extract features, and then clas-
sify them by square Euclidean distance. The accuracy of proto-
type network is compared with the method adding interactive
attention extraction module, and the results certify that the ad-
dition of interactive attention extraction module improves the
performance of the model by at least 4.22% (68.20% vs 72.42%) on
MiniImageNet and 4.30% (73.30% vs 77.60%) on TieredImageNet.
Last but not the least, employing GNN as a classifier, the accu-
racy is able to be improved from 65.78% and 72.42% to 71.72%
and 76.37% on MiniImageNet and from 70.51% and 77.60% to
78.63% and 84.23% on TieredImageNet, under one-shot and five-
shot settings, respectively.

Complexity analysis: We measure the number of parameters
and time complexities for several comparisons on MiniIma-
geNet, and the results are shown in Table 3. We evaluate the
average time for a task with 15 query samples per class under
five-way one-shot and five-way five-shot settings on the envi-
ronment of the NVIDIA GTX 1080Ti GPU. Table 3 indicates that
there are almost no additional parameters and the time con-
sumption of our method is quite comparable. Specifically speak-
ing, the parameters of the target unbiased feature extraction
module are mainly on meta-learner, which aims to train kernel
function w and the average time consumption of this module is
T(h2w2c), where h, w, and c represent the height of the feature
map, the width of the feature map, and the number of channels,
respectively. From the above discussions, we have known that
time consumption is related to the size of the feature map, so
we inserted the attention extraction module after the last con-
volutional layer. Our method shows comparable time consump-
tion against baselines, where the computational overhead is tiny
under both inductive and transductive settings.

6 Conclusion

The interactive attention extraction module based on the tra-
ditional feature extraction method has been developed in this
paper, which reduces the effect on the bias of the trained model
to the target, therefore solving the problem of few-shot classi-
fication through meta-learning. Then, the GNN has been uti-
lized as a classification module to fully excavate the relationship
between feature vectors and complete the classification at the
node-level while improving the accuracy of classification. Ex-
perimental results show that the proposed method has a more
outstanding performance than most traditional methods of few-
shot classification. In future work, the proposed model will be
ulteriorly extended to the tasks of zero-shot node classification
and few-shot graph-level classification problems as well as the
field of text and video classification tasks.
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