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Abstract
This paper develops an enhanced teaching interface tested on both a Baxter robot and a KUKA iiwa robot. Movements are 
collected from a human demonstrator by using a Kinect v2 sensor, and then the data is sent to a remote PC for the teleopera-
tion with Baxter. Meanwhile, data is saved locally for the playback process of the Baxter. The dynamic movement primitive 
(DMP) is used to model and generalize the movements.  In order to learn from multiple demonstrations accurately, dynamic 
time warping (DTW), is used to pretreat the data recorded by the robot platform and Gaussian mixture model (GMM), aim-
ing to generate multiple patterns after the teaching process, are employed for the calculation of the DMP. Then the Gaussian 
mixture regression (GMR) algorithm is applied to generate a synthesized trajectory with smaller position errors in 3D space. 
This proposed approach is tested by performing two tasks on a KUKA iiwa and a Baxter robot.

Keywords  Teaching interface · Teleoperation · Dynamic movement primitive (DMP) · Gaussian mixture regression 
(GMR) · Dynamic time warping (DTW)

1  Introduction

With the advance of new robotic technology, the application 
of robots in both industry and social service fields has been 
widely used. The natural and friendly human–robot inter-
action plays an increasingly important role to bring robot 
technology into human daily life (Chin and Yue 2011). Espe-
cially, robotic skill learning receives much attention in the 
robotics area. Wherein, through imitation and skill learn-
ing from human operators, the robots are able to optimize 
the execution of a specific task. The research focusing on 
understanding the human motion based on teaching by dem-
onstration (TbD) has attracted wide interest during the past 
decades (Li et al. 2017). In Li et al. (2014), a slave/master 

controller based TbD is developed to retain the kinematic 
constraint by using the tracking system. A trajectory learn-
ing approach for multi-robot interaction for welding task has 
been developed in Chernova and Veloso (2008). The ability 
of human skills transferred from demonstrators has a huge 
influence on robot intelligence, and is an important way of 
robot learning, successfully avoiding the difficulties of the 
control of the complex movement imitated from human.

The teaching process from a human operator transfers 
the motor skills to the imitator (robot) through recording 
the motion of the learning movement and generalized out-
put Calinon et al. (2014). In Chin and Yue (2011), a research 
team develops a problem-based learning (PBL) method on 
an autonomous vacuum robot with mechatronics systems, 
by doing this, the students are able to have hands-on expe-
rience. In addition, an actuated dynamics technology based 
proportion-integral-derivative (PID) controller is proposed 
in Chin et al. (2016), and the global exponentially bounded-
ness of the unactuated dynamics has been established. The 
acquisition of teaching data is realized through body sensation, 
which conveys human–computer dialogue effectively. This has 
a wide usage in intelligent identification and control system as 
a natural way of human–computer interaction. Common soma-
tosensory devices include wear systems, such as 3DSuit, data 
gloves, and optical movement capture system, such as Micro-
soft’s Kinect somatosensory camera (Frick and Alberts 2006).
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Gaussian mixture model (GMM) is a commonly used 
clustering algorithm. It approximates the complex distribu-
tion accurately. It first extracts a feature element of each 
unit in the sample, then uses the Gaussian mixture model 
to cluster these features as an object, finally obtaining the 
segmentation result. In Huang et al. (2005),  the authors 
used continuous myoelectric signals and employed GMMs 
for multiple limb motion classification. In addition, earlier 
in the 19th century, scientists used a finite GMM whose 
parameters are estimated through the EM algorithm by esti-
mating a probability density function of human skin color 
(Yang and Ahuja 1998). Playback process of a robot includes 
movement control and movement trajectory reproduction. 
Trajectory reproduction is employed when the encoded data 
is sent to regression techniques, such as Gaussian Mixed 
Regression (GMR) (Grollman and Jenkins 2008). Move-
ment control is the result of mapping robot movement tra-
jectories, which is aiming to acting the reproduction. To be 
precise, it is the playback process after the learning process 
from a demonstrator. In addition, human skill transfer can be 
achieved optimally by programming with special character-
istic methods, such as dynamic movement primitive (DMP) 
(Schaal et al. 2005).

With a purpose to making robots complete operation tasks 
such as grabbing objects in dynamic and complicated envi-
ronments, robots should have the ability of obstacle avoid-
ance. The dynamic movement primitive (DMP) is used 
to model and generalize the motion trajectory inside the 
obstacle environment via combining the specific planning 
algorithm with its generalization and anti-jamming. In Kor-
mushev et al. (2011), the DMP model combined with the syn-
thetic capacity discipline method is used to comprehend the 
trajectory generation for the spherical impediment. In Stulp 
et al. (2013), the authors presented that the linear forcing 
term of the DMP can be represented by defining a function 
approximator. The method calls for unique obstacle records 
to calculate the repulsive pressure within the vicinity of the 
impediment. Gaussian mixture model (GMM) is broadly used 
in pattern recognition and facts evaluation, wherein, Gauss-
ian mixture regression (GMR) is a widely-used quantitative 
analysing approach. The GMM can clean the probability dis-
tribution of arbitrary shapes. In Pervez and Lee (2018) and 
Hersch et al. (2006), authors developed a proposed Gaussian 
Mixture Model to represent the non-linear term, which is 
not required to manually specify the parameters of the basis 
functions. However, most probability estimation methods 
are often not able to attain whole information. For example, 
the sample is known, however the sample category of which 
Gaussian distribution is unknown. Hence it is desirable to 
employ the EM solution (most expectations value).

In addition, research in the field of human physical 
motions through tracking system has attracted public focus 
recently Yang et al. (2011). In Faion et al. et al. (2012), 

a research team developed a method, wherein a Bayesian 
based object tracking system with special focus on Micro-
soft KinectTM devices to intelligently schedule a network of 
multiple RGBD sensors. A kinematics based skeletal track-
ing system using Microsoft Kinect sensor with an upper limb 
virtual reality rehabilitation system has been investigated 
(Tao et al. 2013). In Raheja et al. (2011), a method of track-
ing the fingertips and palm centre has been developed using 
the Kinect sensor.

Dynamic Time Warping (DTW) is a measurement of the 
similarity between two time series. Its usage has been in the 
area of speech recognition to discover whether two words 
constitute the same phrase. In the time collection, the period 
of the two time series may not be identical, and the DTW 
calculates the similarity between the two time collection 
by using extending and shortening the time series (Calinon 
et al. 2007). In this paper, a Baxter robot has firstly been 
used to test the proposed teaching method by performing 
obstacle avoidance with different heights after the DMP is 
applied. Then a KUKA iiwa robot has been used to prove the 
achievement of our designed teaching method by drawing 
curves in a horizontal flat paper programming by recording 
a sequence of actions taught by a human demonstrator, after 
that we use the DTW and GMR to analyse and general-
ize the recorded movements. By doing this, the robot could 
playback in the vertical plan, which shows the success of our 
developed teaching interface.

2 � Preliminary

2.1 � Baxter robot

Baxter robot (Fig. 1) has been used mainly in the indus-
trial research fields. The humanoid Baxter robot of Rethink 
Robotics is a popular collaborative robot (Li et al. 2017). 
The Baxter robot includes one torso, one 2-DOF head and 
two 7-DOF arms, which are shoulder joints: s0 , s1 , elbow 
joints: e0 , e1 and wrist joints: w0 , w1 , w2 , respectively, run-
ning under the ROS and Linux operating systems (Li et al. 
2017).

2.2 � KUKA iiwa robot

KUKA iiwa robot (with man-machine collaboration capa-
bilities) is the first mass production of sensitive robots. 
The KUKA iiwa robot is able to achieve direct cooperation 
between human and robot to complete tasks of high  sensitiv-
ity requirements (Schreiber et al. 2010). It has an advanced 
precision 7° of flexibility (DOFs) robot arm (Schreiber 
et al. 2010). The arm has been programmed via Workbench, 
which is a standard KUKA modifying platform employing 
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KUKA robot language (KRL) and Java (Schreiber et al. 
2010). The KUKA iiwa is controlled by the KUKA Smart-
Pad shown in Fig. 2.

2.3 � Kinect v2

The Kinect v2 is an RGB-D device, released by Microsoft, 
which captures depth, colour, and IR images (Khoshelham 
and Elberink 2012). By use of the software development kit 
(SDK) released with the sensor, captured colour and depth 

information can be transformed into real-world frames, 
known as Camera Space. These frames are referenced to 
the centre of the depth sensor (Webb and Ashley 2012). The 
users also are able to obtain the skeletal tracking system via 
Kinect 2.0 SDK. This feature has been used in this paper, 
where the position of operators can be tracked by standing 
in front of the device.

2.4 � Gaussian mixture model

The Gaussian Mixture Model refers to the estimation of 
the probability density distribution of the samples, and the 
estimated model is the weighted sum of several Gaussian 
models (Ren et al. 2017). Each Gaussian model represents a 
class. The data in the sample are projected on several Gauss-
ian models, respectively, and the probability of each class is 
obtained (Ren et al. 2017). Then the probability of the larg-
est class for the results of the calculation can be selected by 
GMM Pervez and Lee (2018). In addition, the significance 
of GMM is to construct a series of GMMs to describe the 
joint density, and then obtain the probability density and 
regression function from each GMM.

The formulation of GMM is defined as,

where k is the number of the model, pk is the weight of the 
kth Gaussian, and it is also the kth Gaussian probability den-
sity function, the average value of GMM is �k , the variance 
is �k . Our estimation of this probability density is to require 
pk , �k and �k variables. When the expression is obtained, the 
result of the summation is the probability of the sample xexp 
belonging to each class.

2.5 � Dynamic time warping

The dynamic time regular method DTW is a typical opti-
mization method. It describes the time correspondence 
between the test template and the reference template with 
the time regular function W(n) to solve the regular function 
corresponding to the minimum distance of the two templates 
(Petitjean et al. 2014). This algorithm is developed from 
dynamic programming (DP), and is widely used to match 
the templates with different lengths (Muda et al. 2010). It 
follows a classic algorithm for speech recognition.

The DTW calculates the similarity between two time 
series by extending and shortening the time series. As shown 
in Fig. 3, the upper and lower solid lines represent two time 
series, and the dashed lines between the time series repre-
sent similar points between the two time series. The DTW 
uses the sum of the distances between all these similarities, 

(1)p(xexp) =

k∑
k=1

pkp(xexp ∣ k)

Fig. 1   Image of Baxter robot

Fig. 2   Image of KUKA iiwa robot
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which is called Warp Path Distance, to measure the similar-
ity between the two time series.

2.6 � Dynamic movement primitive

DMP, that is a dynamical system developed from investi-
gations into organic studies, learns from movement primi-
tives to generate a sophisticated one (Mueen and Keogh 
2016). The concept of movement dynamic primitives 
can be divided into two categories: constitute the states 
using unique formulations based on dynamical structures 
(Petitjean et al. 2014); and generating trajectories by way 
of interpolating the through factors (Ma et al. 2017). DMP 
consists of 2 components: a converted system r and a canon-
ical system h. The formula is given as follows,

where x is the transformed system states, s is the canonical 
system states and w is the transforming parameters of the 
canonical system output.

3 � The enhanced teaching interface

In this section, we investigate the algorithm method for 
teaching process, playback and the generalizing task, includ-
ing the DMP, the GMR and the DTW.

3.1 � Calculation of arm joint angles

According to our previous work in Li et al. (2016), a Denavit 
Hartenberg (DH) featured system chart has been created 
shown in Fig. 4 to represent the 7-DOF model of our human 
arm. The DH kinematic parameters of the human arm are 
indexed in Table 1. In step with the DH approach, the out-
line of the coordinate frames transformation from body i to 
border i − 1 can be calculated.

(2)ṡ = h(s)

(3)ẋ = r(x, s,w)

The skeleton data of a human in 3-d positions could be 
obtained by using the Kinect sensor, which consist of 25 joints 
and this is shown in the right side of Fig. 5. Then, we make the 
arm model visible by creating the geometry model, which is 
shown in the left side of Fig. 5 in our previous work (Li et al. 
2016). Next, the point Hip-Left is selected as the origin, at the 
same time as x-axis is within the identical path of vector ����⃗AO 
and y-axis is in conjunction with vector �����⃗OC (Li et al. 2016). It 
is simple to align the regular vector of every axis to the base 
coordinate, ���⃗X0 , ���⃗Y0 and ���⃗Z0 (Li et al. 2016):

In our previous work (Li et al. 2016), it was found that the 
plane COD and plane xOy form the supplement angle �1.

�2  is the angle formed by vector �����⃗CD and  y-axis, which is 
shown as follows (Li et al. 2016):

Similarly, the plane BCD and plane CDE form the angle �3 
in (Li et al. 2016).

�5 is the angle between plane CDE and DEH Li et al.  (2016).

Angle �6 is formed by vector �����⃗ED and plane EFH according 
to Li et al. (2016).

(4)���⃗X0 =
����⃗AO

| ����⃗AO|
;

(5)���⃗Y0 =
�����⃗OC

|�����⃗OC|
;

(6)���⃗Z0 = ���⃗X0 ×
���⃗Y0

(7)𝜃1 = 𝜋− < �����⃗CO × �����⃗CD, ����⃗CB × �����⃗CO >

(8)𝜃2 =< �����⃗CO, �����⃗CD >

(9)𝜃3 =< ����⃗CB × �����⃗CD, �����⃗CD × ����⃗CE >

(10)𝜃4 =< �����⃗DC, �����⃗DE >

(11)𝜃5 =< ����⃗EC × �����⃗ED, �����⃗ED × �����⃗EH >

(12)𝜃6 = Π∕2+ < �����⃗EH × �����⃗EG, �����⃗ED >

Fig. 3   Warping example between two time series. Modified from 
Petitjean et al. (2014)

Table 1   Model representation of the DH parameter table (Liang et al. 
2016)

Link number �
i

d
i
(m) a

i
(m) �

i
(rad)

1 �1 0 0 �∕2

2 �2 0 0 �∕2

3 �3 d3 0 �∕2

4 �4 0 0 �∕2

5 �5 d5 0 �∕2

6 �6 0 0 �∕2

7 �7 0 a7 0
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However, the angle �7 is difficult to calculate using the above 
method, which is the yaw angle of wrist (Li et al. 2016). �7 
could be treated as forming by ���⃗X5 and ���⃗Y7 (Li et al. 2016). 
While,

so now the problem becomes to solve ���⃗X5 . We know that 
���⃗X5 is in the plane of EFH, and ���⃗X5 is perpendicular to �����⃗DE . 
Supposing that:

There are:

Therefore,

By doing the calculation above, the every single joint angle 
is able to be obtained. Here we still need to consider two 
situations in order to make the calculations exact: (1) the left 

(13)���⃗X7 =
����⃗EF

| ����⃗EF|
;

(14)���⃗Z7 =
����⃗EF × �����⃗EH

| ����⃗EF × �����⃗EH|
;

(15)���⃗Y7 = ���⃗Z7 × ���⃗X7

(16)���⃗X5 = k1
����⃗EF + k2

�����⃗EH

(17)(k1
����⃗EF + k2

�����⃗EH) × �����⃗DE = 0;|k1 ����⃗EF + k2
�����⃗EH| = 1

(18)𝜃7 =< ��⃗x5, ��⃗x7 >

thumb must be inside the equal plane with the palm. (2) The 
angles of vectors change from zero to � , here further prob-
lems need be addressed (Li et al. 2016). Those above seven 
angles and their preliminary positions are shown in Fig. 4 
in the joint space. The proposed geometry vector technique 
is based on the precept of cosine cost of two vectors proven 
in (11). Furthermore, the attitude among two planes may 
be calculated by giving their regular vector (Li et al. 2016).

3.2 � Pretreatment of the experimental data

The DTW algorithm is based totally on the concept of 
dynamic programming, and its purpose is to locate the short-
est distance and highest quality matching path among two 
distinct check samples and reference templates. Let us define 
the reference time collection as T =

{
t1, t2, t3,⋯ , ti,⋯ , tL1

}
 

and the test sample as R =
{
r1, r2, r3,⋯ , rj,⋯ , rL2

}
 , wherein 

ti and rj denote the joint attitude values of the time factors, 
L1 and L2 denote the vector lengths. The space matrix D(i, j) 
collects when the vectors T and R are non-linearly matched is 
(Petitjean et al. 2014):

(19)
D(i, j) = d(ti, rj) + min

⎧
⎪⎨⎪⎩

D(i, j − 1)

D(i − 1, j)

D(i − 1, j − 1)

⎫
⎪⎬⎪⎭
,

i = 1, 2,⋯ ,L1;j = 1, 2,⋯ ,L2

Fig. 4   Human arm model and 
its DH coordinate frames modi-
fied from Li et al. 2016

Fig. 5   The geometry model for 
human arm in joint space and 
screenshot of skeleton tracking 
system modified from Li et al. 
2016
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where d(ti, rj) is the distance function of ti and rj , the 
D(L1, L2) is the shortest distance between T and R. The 
smaller the D(L1, L2) is, the closer distance between T and 
R is.

In our research, the DTW approach has been used to 
align the recorded patterns by giving a warped characteris-
tic W =

{
w1,w2,⋯ ,wp,⋯ ,wP

}
 , where w(p) = (ip, jp) is the 

match factor (Petitjean et al. 2014). Here the warped charac-
teristic W is needed to decrease the gap between the check 
sample vector and the reference template vector, therefore 
the above equation may be rewritten as:

where d[w(p)] = d[Ti(p),Rj(p)] describes the distance meas-
ure between the i(p)th feature of the test sample vector and 
the j(p)th feature of the reference template vector, which is 
usually characterized by a square measure which is defined 
as follows:

Assuming that the most desirable direction between the fac-
tors (1, 1) to (i, j) in the coordinate system is not related to 
the route after the point (i, j), the recursive method can be 
used to locate the most fantastic course. Here we outline 
the minimum cumulative distance among the two factors as 
DAcc(i, j) , then we find that Petitjean et al. (2014):

where (qi, qj) belongs to the set of all points within a certain 
path that exists between points (1, 1) and (i, j). It can be seen 
from the above components that the minimal cumulative 
distance of the factor (i, j) is related to not only the local dis-
tance d(Ti,Rj) of the eigenvalues Ti , Rj , but also the minimal 
cumulative distance earlier than this point in the coordinate 
system Petitjean et al. (2014).

Hence we conclude that (i, j − 1) , (i − 1, j) and (i − 1, j) 
for any point c(p) = (i, j) in the coordinate system can reach 
the preceding point of c(p), so the selection of the preced-
ing factor only needs to align with the three above factors. 
According to the equation below, we can calculate the equal 
DTW distance among the check pattern vector and the refer-
ence template vector, which is shown as follows:

3.3 � Trajectory generation

The canonical system of DMP is an exponential differential 
equation given by:

(20)D = min

K∑
k=1

d[w(p)]

(21)d[w(p)] = [Ti(p) − Rj(p)]
2

(22)DAcc(i, j) = d(Ti,Rj) + min(qi,qj)[DAcc(qi, qj)]

(23)D� = DAcc(L1,L2).

(24)𝜏 ṡ = −𝛼hs

where � > 0 is the temporal scaling factor, �h > 0 is the 
stable parameter and s is the phase value varied from 0 to 1.

The transformed system is made up of two contents 
(Bodiroža et al. 2013): a spring damping system and a non-
linear term, which is described as follows in Cartesian Space:

where x ∈ R is the Cartesian position, x0 is the start position, 
v ∈ R is the velocity of the robot end-effector, g donates 
the target, k and c are the coefficients for spring and damp-
ing respectively. The transformation function f presents the 
complex nonlinear system, and it transforms the result of the 
canonical system, which is given by:

where N is the number of GMM, pi ∈ R is the weight, l is 
the variable value of the normalized radial.

After selecting the start line x0 and goal g of the canonical 
system s = 0, and integrating the canonical system, we are 
able to generate a motion by the usage of the weight parameter 
(Hogan and Sternad 2012). The significance of DMP here is to 
obtain the nonlinear transformation characteristic f(s) through 
skill transfer from the demonstrator. However, there is an issue 
in creating the transformed system through the usage of more 
than one verified path (Yin and Chen 2017). Therefore we 
applied the GMM to overcome the above problems.

The GMM is the estimation of the probability density dis-
tribution of the samples (Reynolds et al. 2000). The estimated 
version is the weighted sum of numerous Gaussian models 
and every Gaussian version represents a class (Reynolds et al. 
2000). In this paper, the joint probability of the nonlinear 
system is the teaching data encoded through GMM, and the 
records is reconstructed via GMR to generalize the movement 
trajectory. For any degree of freedom, given j teaching data 
factors �j =

{
sj, fj

}
 , j ∈ R , where sj and fj had been defined in 

DMP segment, N is the number of records points contained in 
a single training, every teaching data �j follows the subsequent 
probability distribution:

where p(k) is the prior probability, p(�j ∣ k) is the conditional 
probability distribution, which follows the Gaussian distri-
bution, and k is the number of Gaussian model distribution. 
Thus, the whole set of teaching data can be expressed by the 
Gaussian mixture model as follows (Yu et al. 2016):

(25)𝜏 v̇ = k(g − x) − cv + (g − x0)sf (s)

(26)𝜏 ẋ = v

(27)f (s) =

N∑
i=1

pili

(28)p(�j) =

k∑
k=1

p(k)p(�j ∣ k)

(29)p(k) = �k
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where D is the dimension of the GMM encoding the teach-
ing data. Here we used BIC method to obtain the value of k 
(Burnham and Anderson 2004).

where L(�j) measures the model’s characterization of data, 
n(k) is the number of free parameters of the model, which is 
a measure of the complexity of the model.

The parameters of GMM need to be determined, which 
are denoted as 

�
�k,�k,

∑
k

�
 . That is the kth component of 

prior probability, expectations and variance, respectively. 
The EM algorithm is used to estimate the GMM parameters, 
which are obtained by giving the maximum similarity esti-
mation of the parameters in the probability model, expecta-
tions and variance, respectively.

The teaching data �j is used as the query point, and the 
corresponding spatial value �′

f
 is estimated using GMR. It is 

known that p(�j ∣ k) satisfies the Gaussian distribution, �
�f ,k
�s,k

�
∼ N(�k,

∑
k)  ,  whe re  �k  =  

{
�f ,k,�s,k

}
 ,  

∑
k

=
�∑

f ,k

∑
fs,k∑

sf ,k

∑
s,k

�
 , and the conditional probability of �f  and k 

satisfies the Gaussian distribution as given �s , k (Yu et al. 
2016).

Then we have

where we could calculate the variance 
∑′

f
 and the average �′

f
 

of the kth GMM component, which is shown as follows (Yu 
et al. 2016):

(30)

p(�j ∣ k) = N(�j,�k,
�

k
) =

1�
(2�)D��

∑
k
��

∗ e−0.5(�j−�k)
T
∑−1

k
(�j−�k)

(31)

SBIC = −L(�j) +
n(k)

2
lgN

L(�j) =

N∑
j=1

lg(p(�j))

n(k) = k − 1 + k(D +
1

2D(D + 1)
)

(32)�f ,k ∣ �s,k ∼ N(��
f ,k
,
∑�

f ,k
)

(33)��
f ,k

= �f ,k +
∑

fs,k

∑−1

s,k
(�s,k − �s,k)

(34)
∑�

f ,k
=
∑

f ,k
−
∑

fs,k

∑−1

f ,k

∑
sf ,k

(35)��
f
=

K∑
k=1

�k�
�
f ,k

where �f
′ is the estimation acquired through the distribution 

of the expected conditions, and �s is similar to the recon-
struction of area values (Yu et al. 2016). The generalized 
data of points are �f ′, �s , which are included in the teaching 
data and able to produce a smooth motion trajectory under 
the covariance constraint 

∑
f

′.

4 � Experimental studies

A Baxter robot and a KUKA iiwa robot are used in our 
experiments to verify the effectiveness of the proposed 
method. Baxter has an advanced precision 7° of flexibility 
(DOFs) robot arm. The arm could be programmed utilizing 
Ubuntu operaion system, which is a standard Baxter pro-
gramming platform employing python language. KUKA 
iiwa robot has man-machine collaboration capabilities. It 
is able to achieve direct cooperation between human and 
robot to complete the task of high sensitivity requirements. 
As for the experimental platform, PC operation system 
is Windows 10. There is also Kinect SDK for Windows, 
Visual studio 2013 and OpenCV library. The KUKA robot 
needs to be programmed via Workbench, which is a com-
mon modifying platform combined with KUKA robot lan-
guage (KRL) and Java. The experiments are conducted 
under laboratory conditions under adequate lighting.

4.1 � Obstacle avoidance experiment

In this experiment, several tests have been designed to test the 
performance of our designed system by controlling the Bax-
ter to avoid a high obstacle. Only one person stands forward 
to Kinect with a distance of about 2 m. Here, the operator 
guilds the Baxter to avoid the high obstacle by using teleoper-
ation, which is shown in Fig. 6. At the same time, those data 
of each joints of operator’s arm is recorded, which is used for 
the playback of the Baxter robot. After that, we increase the 
height of the obstacle, it is noticed that the Baxter is not able 
to pass the obstacle successfully. Hence, the DMP has been 
employed to generalize the trajectory of the Baxter robot. 
By doing this, the Baxter is finally able to pass through the 
obstacle successfully with the increasing height.

(36)
∑�

f
=

K∑
k=1

�2
k

∑�

f ,k

(37)�k =
p(�s ∣ k)∑K

k=1
p(�s ∣ i)
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4.2 � Trajectory generalizing experiment

For this experiment, we test on a KUKA iiwa robot, 
the recorded data processed by using MATLAB from 
the movements of a demonstrator saved locally. Then 
the result data generated by the trajectories are sent to 
a separate computer and obtained access to control the 
robot arm. A marker pen is connected to draw patterns 
on a horizontal flat surface. A sine wave is chosen to be 
demonstrated, wherein the ability of the designed tech-
nique is tested extraordinarily with complex shapes. 
During the experimental process, we use a pre-revealed 
template shape on a sheet of A4 paper. Then, a human 
operator guides the KUKA robot to follow the template 
by handing the robot 5 times, which is shown in Fig. 7. 

The movement of the robotic endpoint is recorded at some 
stage in demonstration.

The five recorded motion based trajectories in Cartesian 
space are saved, where the analysed data are initiated by 
K-means method and EM algorithm to obtain the GMMs. 
The experimental trajectories are plotted through MAT-
LAB. After that, the DTW is used to align the 5 trajectories, 
where the first curve is selected as the reference to align all 
the other patterns, which is shown in Fig. 8 for the warp-
ing results. Then, GMM is used to encode the trajectories. 
Finally, the KUKA robot is able to reproduce a generalized 
curve on the vertical surface.

4.3 � Results

The first group of experiments aim to verify the performance 
of the proposed DMP, including the ability of generalization, 
i.e., spatial scaling, and the learning performance when the 
demonstration is defective. In this experiment, the demon-
stration process uses the joints s1, e0 and w2 fixed, and the 
angles of the joints s0, e1, w0 and w1 which are recorded 
during the process. Then the demonstration data are used 
for the training of the modified DMP. The training result is 
shown in Fig. 9. It can be seen from the graph that the maxi-
mum and the minimum values of Shoulder Pitch between 
the data from demonstration and playback, in some specific 
time point, are differing about 0.4 radians, meaning that the 
range of the arm motion of Baxter is increasing at about 
0.4, which leads to an accurate motion. The motion of joint 
Shoulder Pitch is regenerated from the demonstration, which 
synthesizes the features of the demonstration and enables 

Fig. 6   Illustration of the 
obstacle avoidance experiment. 
a Obstacle avoidance byteleop-
eration with Baxter. b Obstacle 
avoidance byplayback. c Failed 
to pass the obstaclewith increas-
ing height. d Succeeded to pass 
the ob-stacle with increasing 
heightafter applying DMP

Fig. 7   The setup of trajectory generalizing experiment
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the robot to perform the obstacle passing task successfully 
as shown in Fig. 6d.

As shown in the left side of Fig. 10, for the second experi-
ment, five distinctly separate curves are drawn horizontally. 
It can be concluded that, the number of GMMs  effect the 
result trajectories. Hence, to achieve good performance of 
the generated trajectories, the number of GMM components 
is chosen as 20 in this paper. In addition, the optimal result 
trajectory is shown in the right side of Fig. 10. By using the 
GMR method, we transform the data retrieval problem of 
TbD into a joint distribution estimation problem, which is 
approximated by a mixture of Gaussians. During the calcula-
tion, the key point of learning process is correlative to the 
number of points in the sample set of data linearly. Here the 
prediction process relies on this number.

After that, we modified the DMP code to apply the spatial 
and temporal generalization. The generalized curve is then 
able to be drawn on a vertical flip chart pad by the playback 
process of KUKA robot, as is shown in Fig. 11, a smooth 
curve is retrieved from multiple demonstrations using the 
modified DMP, where the playback process can be achieved 
with 5 times’ speed, which is proved to achieve the proposed 
temporal generalization. In our future work, some teaching 
by demonstration based tasks would be researched by apply-
ing the DMP segmentation.

5 � Conclusion

A GMR and DMP combined with DTW based teaching by 
demonstration technology has been developed in this paper, 
which is an effective and superior method for humans to 
interact with the robot. The Kinect V2 sensor is used to tel-
eoperate the Baxter so that the manipulator is able to achieve 
the generated motions more accurately. For the motion gen-
eration, the discrete DMP is selected as the basic motion 
model, which can achieve the generalization of the motions. 
To improve the learning performance of the DMP model, 
the GMM and GMR are employed for the estimation of the 
unknown function of the motion model. The DMP model is 
enabled to retrieve a better motion from multiple demonstra-
tions of a specific task. Two experiments have been applied 
to test the performance of our designed teaching interface. 
The experimental results have verified the effective generali-
zation of the proposed methods. Compared with the standard 
teaching approaches, the emphasis of the proposed teaching 
interface evaluates the DMP for multiple demonstrations by 

Fig. 8   Illustration of the alignment using DTW. a Alignment result 
between the first and the secondcurves. b Alignment result between 
the first and the thirdcurves. c Alignment result between the first and 
the forthcurves. d Alignment result between the first and the fifth 
curves

▸
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combining with GMR, meanwhile, all the experimental data 
have been initially pre-treated by DTW.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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