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Abstract: Cytochrome P450 monooxygenases (CYPs; P450s) are a superfamily of heme-containing
enzymes that are recognized for their vast substrate range and oxidative multifunctionality. CYP107
family members perform hydroxylation and epoxidation processes, producing a variety of biotech-
nologically useful secondary metabolites. Despite their biotechnological importance, a thorough
examination of CYP107 protein structures regarding active site cavity dynamics and key amino
acids interacting with bound ligands has yet to be undertaken. To address this research knowledge
gap, 44 CYP107 crystal structures were investigated in this study. We demonstrate that the CYP107
active site cavity is very flexible, with ligand binding reducing the volume of the active site in some
situations and increasing volume size in other instances. Polar interactions between the substrate and
active site residues result in crucial salt bridges and the formation of proton shuttling pathways. Hy-
drophobic interactions, however, anchor the substrate within the active site. The amino acid residues
within the binding pocket influence substrate orientation and anchoring, determining the position
of the hydroxylation site and hence direct CYP107’s catalytic activity. Additionally, the amino acid
dynamics within and around the binding pocket determine CYP107’s multifunctionality. This study
serves as a reference for understanding the structure–function analysis of CYP107 family members
precisely and the structure–function analysis of P450 enzymes in general. Finally, this work will aid in
the genetic engineering of CYP107 enzymes to produce novel molecules of biotechnological interest.

Keywords: P450; CYP107; crystal structure; active site; enzymatic reaction; substrate; secondary
metabolites; amino acid dynamics; polar and hydrophobic interactions

1. Introduction

Cytochrome P450 monooxygenases (CYPs/P450s) are a superfamily of heme-containing
enzymes known for their broad substrate specificities and diverse catalytic activities. Ge-
nomic sequence analysis of P450s in Bacteria has shown that these enzymes are frequently
located in operons and biosynthetic gene clusters (BGCs) [1–4], functioning as oxidative
tailoring enzymes, leading to functional diversity in the generated secondary metabo-
lites [5,6]. Due to their catalytic diversity with stereo- and regio-specific oxidation capabili-
ties, P450 enzymes have been exploited for various applications, including biomedical and
biotechnological applications [7–12].

Using an established nomenclature procedure, P450 enzymes are classified into dif-
ferent P450 families and subfamilies based upon their percentage amino acid sequence
identities. If the shared P450 sequence is more than 40% identical, they belong to the same
family, e.g., CYP1A1; if sequences share more than 55% identity, they belong to the same
subfamily, e.g., CYP1A1, CYP1A2 [13]. Since their initial identification six decades ago,
most P450s that have been identified have been grouped into different P450 families [14].
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As of 2023, 1910 P450 families have been identified in Bacteria [14]. Among the Bacteria
P450 families, the CYP107 family is found to be dominantly present in BGCs, such as
in Streptomyces [15], Firmicutes [16], and Gamma- and Delta-proteobacteria [2], indicating
key role(s) for CYP107 family members in the synthesis of many BGC-derived secondary
metabolites. Streptomyces species produce two-thirds of all microbial-derived secondary
metabolites, including antibiotics [17], and CYP107 is dominant in their BGCs [15].

CYP107 family members perform hydroxylation and epoxidation reactions in a wide
range of substrates, as summarized in Table 1. CYP107 family members can function
as oxidative tailoring enzymes in macrolide antibiotic biosynthetic pathways, such as
those generating erythromycin and mycinamicin [18,19]. In Streptomyces species, CYP107
family members are involved in the biosynthesis of many valuable human antibiotics,
including pikromycin and rapamycin [20,21]. CYP107H1 (P450BioI), found in Bacillus
subtilis, synthesizes pimelic acid, a major component of biotin (vitamin B7) [22]. This P450
catalyzes oxidative cleavage at the C7-C8 position of ACP-linked fatty acids (Table 1) [22].
CYP107BR1 (P450vdh) found in Pseudonocardia autotrophica biosynthesizes vitamin D3 by
performing a two-step hydroxylation (Table 1) [23]. Due to their potential biotechnological
value, many CYP107 proteins have been functionally characterized, and their role in
synthesizing various secondary metabolites has been elucidated (Table 1).

Table 1. Role of CYP107s in the synthesis of primary and secondary metabolites. Key reactions are
shown, and metabolite(s) reaction sites are highlighted in red.

P450 Species Name Biological Process and Enzymatic Reaction The Biological Significance
of the Product Reference

CYP107H1
(P450BioI) Bacillus subtilis

• Pimelic acid synthesis
• C7–C8 carbon–carbon bond cleavage

Biomolecules 2023, 13, x FOR PEER REVIEW 2 of 25 
 

subfamily, e.g., CYP1A1, CYP1A2 [13]. Since their initial identification six decades ago, 
most P450s that have been identified have been grouped into different P450 families [14]. 
As of 2023, 1910 P450 families have been identified in Bacteria [14]. Among the Bacteria 
P450 families, the CYP107 family is found to be dominantly present in BGCs, such as in 
Streptomyces [15], Firmicutes [16], and Gamma- and Delta-proteobacteria [2], indicating key 
role(s) for CYP107 family members in the synthesis of many BGC-derived secondary me-
tabolites. Streptomyces species produce two-thirds of all microbial-derived secondary me-
tabolites, including antibiotics [17], and CYP107 is dominant in their BGCs [15]. 

CYP107 family members perform hydroxylation and epoxidation reactions in a wide 
range of substrates, as summarized in Table 1. CYP107 family members can function as 
oxidative tailoring enzymes in macrolide antibiotic biosynthetic pathways, such as those 
generating erythromycin and mycinamicin [18,19]. In Streptomyces species, CYP107 family 
members are involved in the biosynthesis of many valuable human antibiotics, including 
pikromycin and rapamycin [20,21]. CYP107H1 (P450BioI), found in Bacillus subtilis, syn-
thesizes pimelic acid, a major component of biotin (vitamin B7) [22]. This P450 catalyzes 
oxidative cleavage at the C7-C8 position of ACP-linked fatty acids (Table 1) [22]. 
CYP107BR1 (P450vdh) found in Pseudonocardia autotrophica biosynthesizes vitamin D3 by 
performing a two-step hydroxylation (Table 1) [23]. Due to their potential biotechnological 
value, many CYP107 proteins have been functionally characterized, and their role in syn-
thesizing various secondary metabolites has been elucidated (Table 1). 

Table 1. Role of CYP107s in the synthesis of primary and secondary metabolites. Key reactions are 
shown, and metabolite(s) reaction sites are highlighted in red. 

P450 Species Name Biological Process and Enzymatic Reaction 
The Biological 
Significance of 
the Product 

Reference 

CYP107H1 
(P450BioI) 

Bacillus subtilis 

• Pimelic acid synthesis 
• C7–C8 carbon–carbon bond cleavage 

 

Vitamin [22] 

CYP107A1 
(P450eryF) 

Saccharopolyspora 
erythraea 
NRRL23338 

• Erythromycin biosynthesis 
• C6-hydroxylation of the macrolide 6-deoxyerythronolide B (6-

DEB) 

 

Antibacterial 
agent 

[18,24–
26] 

CYP107U1 
Streptomyces coeli-
color 
A3(2) 

• Glycocholic acid biosynthesis 
• Dehydrogenation of glycocholic acid to glyco-7-oxo-deoxy-

cholic acid 
Detergent [27] 

Vitamin [22]

CYP107A1
(P450eryF)

Saccharopolyspora
erythraea NRRL23338

• Erythromycin biosynthesis
• C6-hydroxylation of the macrolide

6-deoxyerythronolide B (6-DEB)

Biomolecules 2023, 13, x FOR PEER REVIEW 2 of 25 
 

subfamily, e.g., CYP1A1, CYP1A2 [13]. Since their initial identification six decades ago, 
most P450s that have been identified have been grouped into different P450 families [14]. 
As of 2023, 1910 P450 families have been identified in Bacteria [14]. Among the Bacteria 
P450 families, the CYP107 family is found to be dominantly present in BGCs, such as in 
Streptomyces [15], Firmicutes [16], and Gamma- and Delta-proteobacteria [2], indicating key 
role(s) for CYP107 family members in the synthesis of many BGC-derived secondary me-
tabolites. Streptomyces species produce two-thirds of all microbial-derived secondary me-
tabolites, including antibiotics [17], and CYP107 is dominant in their BGCs [15]. 

CYP107 family members perform hydroxylation and epoxidation reactions in a wide 
range of substrates, as summarized in Table 1. CYP107 family members can function as 
oxidative tailoring enzymes in macrolide antibiotic biosynthetic pathways, such as those 
generating erythromycin and mycinamicin [18,19]. In Streptomyces species, CYP107 family 
members are involved in the biosynthesis of many valuable human antibiotics, including 
pikromycin and rapamycin [20,21]. CYP107H1 (P450BioI), found in Bacillus subtilis, syn-
thesizes pimelic acid, a major component of biotin (vitamin B7) [22]. This P450 catalyzes 
oxidative cleavage at the C7-C8 position of ACP-linked fatty acids (Table 1) [22]. 
CYP107BR1 (P450vdh) found in Pseudonocardia autotrophica biosynthesizes vitamin D3 by 
performing a two-step hydroxylation (Table 1) [23]. Due to their potential biotechnological 
value, many CYP107 proteins have been functionally characterized, and their role in syn-
thesizing various secondary metabolites has been elucidated (Table 1). 

Table 1. Role of CYP107s in the synthesis of primary and secondary metabolites. Key reactions are 
shown, and metabolite(s) reaction sites are highlighted in red. 

P450 Species Name Biological Process and Enzymatic Reaction 
The Biological 
Significance of 
the Product 

Reference 

CYP107H1 
(P450BioI) 

Bacillus subtilis 

• Pimelic acid synthesis 
• C7–C8 carbon–carbon bond cleavage 

 

Vitamin [22] 

CYP107A1 
(P450eryF) 

Saccharopolyspora 
erythraea 
NRRL23338 

• Erythromycin biosynthesis 
• C6-hydroxylation of the macrolide 6-deoxyerythronolide B (6-

DEB) 

 

Antibacterial 
agent 

[18,24–
26] 

CYP107U1 
Streptomyces coeli-
color 
A3(2) 

• Glycocholic acid biosynthesis 
• Dehydrogenation of glycocholic acid to glyco-7-oxo-deoxy-

cholic acid 
Detergent [27] 

Antibacterial agent [18,24–26]

CYP107U1 Streptomyces coelicolor
A3(2)

• Glycocholic acid biosynthesis
• Dehydrogenation of glycocholic acid to

glyco-7-oxo-deoxycholic acid

Biomolecules 2023, 13, x FOR PEER REVIEW 3 of 25 
 

 

CYP107L1 
(PikC) 

Streptomyces vene-
zuelae 

• Pikromycin biosynthesis 
• Mono-hydroxylation at C12 of the 12-membered ring macro-

lactone of YC-17 to produce methymycin 

 
• Mono-hydroxylation at C10 of the 12-membered ring macro-

lactone of YC-17 to produce neomethymycin 

 
• Dihydroxylation of YC-17 results in novamethymycin 

 
• Hydroxylation of C12 of the 14-membered ring of narbomy-

cin, giving rise to pikromycin 

 
• Hydroxylation at the C14 position of narbomycin, giving rise 

to neopikromycin 

 
• Dihydroxylation of narbomycin to yield novapikromycin 

 

Antibacterial 
agents [20,28] 

CYP107BR1 
(P450vdh) 

Pseudonocardia au-
totrophica 

• Vitamin D biosynthesis Vitamin 
[23,29,30
] 

Detergent [27]



Biomolecules 2023, 13, 1733 3 of 24

Table 1. Cont.

P450 Species Name Biological Process and Enzymatic Reaction The Biological Significance
of the Product Reference

CYP107L1
(PikC) Streptomyces venezuelae

• Pikromycin biosynthesis
• Mono-hydroxylation at C12 of the 12-membered ring

macrolactone of YC-17 to produce methymycin
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Table 1. Cont.

P450 Species Name Biological Process and Enzymatic Reaction The Biological Significance
of the Product Reference

CYP107E1
(MycG)

Micromonospora
griseorubida

• Mycinamicin biosynthesis
• Sequential hydroxylation and epoxidation reactions

at two distinct sites, a tertiary allylic C–H bond (C-14)
and an olefin (C12–C13)

• C14-Hydroxylation and C12/C13-epoxidation on
macrolactone ring of mycinamicin
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Immunosup-
pressant [37] 

Immunosuppressive,
antifungal, and antitumor
agent

[21]
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Table 1. Cont.

P450 Species Name Biological Process and Enzymatic Reaction The Biological Significance
of the Product Reference

CYP107W1 Streptomyces avermitilis

• Oligomycin biosynthesis
• C12-hydroxylation reaction of oligomycin C to form

oligomycin A
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The CYP107 members studied to-date are soluble proteins, and their general overall
structure is comparable to that of bacterial P450s [39,40]. Structural analysis of CYP107
members revealed characteristic P450 folds and conserved motifs in their structures [39,40].
The α/β structure of CYP107 members comprises two structural domains: a helical do-
main and random coils and β-sheets [18,22,41]. The conserved catalytic residues and
characteristic P450 structure, which includes a kink in the I-helix where the highly con-
served acid/alcohol residue pair controls the protonation of intermediate oxygen species
during oxygen activation, are present in all CYP107 members’ active sites, except for
CYP107A1 [18,26]. The proximal cysteine heme thiolate ligand is located in the N-terminal
loop before the L-helix. It is often exposed to solvents via the substrate-binding pocket,
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which is covered by three domains, namely the F1, F2, and F3 loops [21,22] The active site
contains various hydrophobic regions interacting with the substrate [22,35]. CYP107 mem-
bers generally require endogenous ferredoxin and ferredoxin reductase partner proteins to
perform their catalytic functions. Functional analysis of some CYP107 members in vitro
revealed that exogenous ferredoxin and NADPH-ferredoxin reductase from spinach and
reductase domain (RhFRED) from Rhodococcus in partnership with spinach ferredoxin can
transfer the electrons [19,27,42].

Over the past few years, the resolved X-ray crystal structures of many CYP107 family
members’ have been determined. To-date, 44 CYP107 family members’ crystal structures
have been deposited and are available for use at the Research Collaboratory for Structural
Bioinformatics (RCSB) Protein Data Bank (PDB) [43]. From the above data (Table 1),
the structure–function analysis of individual CYP107 enzymes has been well established.
However, these studies focus on CYP107 enzymes in isolation, oxidizing a specific substrate.
A comprehensive comparative structure–function analysis of CYP107 family members,
including amino acid dynamics, and their defined role(s) in catalysis has yet to be reported.
The availability of 44 CYP107 family protein crystal structures allows us to decipher the
detailed structure–function mechanics of these P450s, with a particular focus on amino acid
dynamics. Herein, this study is aimed at addressing this research knowledge gap. We have
analyzed 44 crystal structures and delineated the structure–function relationships between
CYP107 family members.

2. Materials and Methods
2.1. Retrieving of CYP107 Member’s Structures

CYP107-member protein crystal structures were retrieved from RCSB PDB [43] and
used in this study (Table 2). Of the 44 crystal structures, 3 of them, namely CYPTaml,
P450Revl, and P450-sb21, had not been previously assigned classical P450 family and
subfamily names (Table 2). Assigning the families and subfamilies for these P450s is
reported here following the International P450 Nomenclature Committee rules [13].

Table 2. CYP107 crystal structures used in the study. The PDB codes, P450 names, and their references
are presented.

PDB Code P450 Name Reference

3EJB, 3EJD, 3EJE CYP107H1 [22]

1JIO, 1JIN, 1JIP, 1Z8O, 1Z8P, 1Z8Q, 1OXA, 1EGY, 1EUP CYP107A1 [18,24–26]

2BVJ, 2CD8, 2C7X, 2C6H, 2VZ7, 2VZM, 2WHW, 2WI9 CYP107L1 [20,28]

3A4G, 3A50, 3A4H, 3A4Z, 3A51, 3VRM, 5GNM, 5GNL CYP107BR1 [23,29,30]

2YGX, 2YCA, 2Y98, 2Y5Z, 2Y5N, 3ZSN, 4AW3 CYP107E1 [19]

4GGV CYP107B [31]

6L39, 6L3A CYP107G1 [21]

7WEX CYP107X1 [38]

4WPZ CYP107W1 [35]

6XA2, 6XA3 CYP107FH5 * [36]

6M4S CYP107Z14 * [37]

3WVS CYP107E6 * [34]
* P450s named in this study.

2.2. CYP107 Active Site Analysis

Individual CYP107 crystal structures were analyzed and assigned to either an open
(non-ligand bound) or closed (ligand-bound) conformation. Each open and closed CYP107
crystal structure active site area and volume was analyzed by the Computed Atlas of
Surface Topography of proteins (CASTp) [44]. For active site analysis, each PDB file was
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individually uploaded onto PyMOL software, Version 2.2.5 [45]. The active site cavities
were selected using heme as the central point of the binding pocket, and amino acid
residues within 5 Å were chosen. In cases where the ligand extended out of the selected
binding pocket, 5 Å from the ligand was chosen instead. The amino acid residues were
analyzed for both open and closed conformations. Active site amino acid dynamics were
analyzed by choosing one PDB representative in the open and closed conformation for
each CYP107 protein, if available. The amino acid residues and count for each PDB were
then compared and analyzed for any changes in the amino acid composition of the active
sites. Amino acid residues were represented as sticks and labelled using the three-letter
amino acid codes.

2.3. Analysis of Ligand Interactions in Closed Conformation PDB Files Using PyMOL

Of the 44 crystal structures, 28 were in the closed conformation. Individual PDB files
were uploaded onto PyMOL and the active site cavity was selected, as described above.
The amino acids were represented as sticks and labelled according to their single letter
amino acid code. Polar contacts with atoms were selected; if the ligand interactions with
amino acid residues were present, dashed lines connect the ligand and the specific amino
acid residue, water molecule, or solvent molecule. Using published data, the literature,
hydrophobic residues within 5 Å were selected and represented as sticks. The amino acid
residues that were not interacting with the ligand were removed.

3. Results
3.1. Enzyme Conformation Affects the Active Site Morphology in CYP107 Proteins

Most CYP107 crystal structures were in a closed conformation (63.6%) (Table 3). The
area of the active site cavity of CYP107 proteins co-crystallized with a bound ligand ranged
between 789 Å2 (CYP107FH5) and 2070 Å2 (CYP107G1), whereas the area of the active site
in an open conformation ranged between 950 Å2 (CYP107Z14) and 2287 Å2 (CYP107G1)
(Table 3). A similar pattern was noticed when comparing the volume of both conformations.
The volume of the active site in a closed conformation ranged between 455 Å3 (CYP107FH5)
and 2196 Å3 (CYP107G1) compared to 859 Å3 (CYP107Z14) and 2637 Å3 (CYP107G1) in an
open conformation (Table 3). These data indicate the overall flexibility and spaciousness of
the CYP107 active site cavity when no ligand is bound, allowing for the possible binding of
large substrates. Based on the available crystal structures data, one can estimate that the
change in active site area and volume from open to closed conformation is 276 Å2 and 494
Å3, respectively. In most cases, the area and volume of the active site decreased to bind the
ligand, which causes a conformational shift from open to closed. These findings indicate
a significant difference between the respective values, showing a dynamic change in the
active site cavity when a ligand is bound.

Table 3. The 41 CYP107 crystal structures’ active site cavity area, volume, and conformations.

P450 Name PDB Code Area (SA) Å2 Volume (SA) Å3 Conformation

CYP107A1 1EGY 848 701 Closed

CYP107A1 1EUP 851 751 Closed

CYP107A1 1Z8Q 824 647 Closed

CYP107A1 1JIP 903 729 Closed

CYP107A1 1JIN 855 691 Closed

CYP107A1 1Z8P 816 655 Closed

CYP107A1 1JIO 841 700 Closed

CYP107A1 1Z8O 829 664 Closed

CYP107A1 1OXA 837 715 Closed
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Table 3. Cont.

P450 Name PDB Code Area (SA) Å2 Volume (SA) Å3 Conformation

CYP107BR1 3VRM 1098 970 Closed

CYP107BR1 3A50 1231 1066 Closed

CYP107BR1 3A51 1260 1064 Closed

CYP107E1 2Y5N 1600 1189 Closed

CYP107E1 2Y98 1459 994 Closed

CYP107E1 2Y5Z 1552 1118 Closed

CYP107E1 3ZSN 1520 1286 Closed

CYP107E1 4AW3 1623 1412 Closed

CYP107G1 6L3A 2070 2196 Closed

CYP107L1 2C6H 1180 933 Closed

CYP107L1 2C7X 1124 711 Closed

CYP107L1 2CD8 1148 793 Closed

CYP107L1 2VZ7 1131 934 Closed

CYP107L1 2VZM 1181 943 Closed

CYP107L1 2WHW 1171 921 Closed

CYP107L1 2WI9 1177 922 Closed

CYP107E6 3WVS 1542 1121 Closed

CYP107FH5 6XA2 789 455 Closed

CYP107E1 2YCA 1490 1261 Closed

CYP107B 4GGV 1369 954 Open

CYP107BR1 3A4G 1448 1659 Open

CYP107BR1 3A4H 1333 1536 Open

CYP107BR1 5GNM 1294 1426 Open

CYP107BR1 5GNL 1271 1447 Open

CYP107E1 2YGX 1526 1033 Open

CYP107G1 6L39 2287 2637 Open

CYP107L1 2BVJ 1151 871 Open

CYP107W1 4WPZ 2021 1943 Open

CYP107X1 7WEX 1720 1520 Open

CYP107FH5 6XA3 1263 1763 Open

CYP107Z14 6M4S 950 859 Open

CYP107BR1 3A4Z 1249 1093 Open

A pattern was observed comparing a specific CYP107 subfamily’s active site cavity size
(Table 3). The change in area and volume from open to closed conformation for CYP107FH5
was the highest compared to CYP107G1 and CYP107BR1, indicating that the active site
cavity became smaller as its area and volume is decreased on binding ligand. In contrast,
CYP107E1 and CYP107L1 have the highest area and volume when the ligand is bound
(closed conformation), indicating that substrate binding increased the active site cavity area
and volume size (Table 3). The molecular dynamics of amino acids were also flexible from
open to closed, and vice versa for these CYP107 subfamilies (Table 4). To better understand
these observations, we further quantified the amino acid dynamics using root-mean-square
difference (RMSD) between the open and closed conformation of the CYP107 members
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belonging to the same subfamily (Table 4). RMSD analysis revealed a significant change in
amino acid positions in CYP107BR1 and CYP107FH5 compared to CYP107L1, CYP107E1,
and CYP107G1 (Table 4). CYP107BR1 and CYP107FH5 had the highest RMSD values of
2.5 Å and 3.0 Å (Table 4). These P450s were bound to elongated substrates, which may have
contributed to the shift in the locations of amino acid residues in the open conformation.
The RMSD values of CYP107L1, CYP107E1, and CYP107G1 were less than 1 Å, indicating
that the amino acid’s position stayed relatively constant (Table 4). Compared to CYP107BR1
and CYP107FH5, the substrates bound to these P450s were not elongated and would not
require as much shifting. The amino acids unique to closed or open confirmation for a given
CYP107 subfamily are listed in Table 4. The amino acids uniquely present in either open or
closed conformation that possibly play a key role in catalytic reaction are highlighted.

Table 4. Analysis of amino acid dynamics for CYP107 subfamilies. The unique amino acid residues
found within 5 Å of the heme in the active site cavities of five CYP107 proteins belonging to the same
subfamily in open and closed conformations are presented in the table.

P450 Name Conformation
Number of Amino
Acids in the Active
Site Cavity

Unique Amino Acids Amino Acids Interacting
with the Substrate RMSD (Å)

CYP107BR1
Open 35 Leu153 -

2.5
Closed 34 Ile88 and Ile150 Ile88

CYP107L1
Open 36 Leu93, His245,

Val290, Thr294 -
0.6

Closed 36 Glu94, Val291,
Thr295, Ala357 Glu94

CYP107E1

Open 35 Ala285 -

0.4
Closed 33 Gly81, Leu84,

Gly230, Val233 Gly81, Leu84, Val233

CYP107G1
Open 31 Leu282 -

0.7
Closed 30 Leu190, Ile154 Gln85

CYP107FH5
Open 35 Thr70, Leu166 -

3.0
Closed 35 Ile163, Ala362 Ser397, Thr398, Leu399

The active site cavity dynamics of CYP107 members are comparable with other P450s.
In human CYP3A4 crystal structures complexed with ketoconazole and erythromycin, there
was a similar significant shift in the active site volume; however, the active site volume ex-
panded rather than decreased, increasing from 1173 Å3 to 2017 Å3 and 2682 Å3, respectively.
The displacement of the protein backbone to accommodate such large substrates is the
cause of this volume increase [46]. A similar pattern was shown in CYP2A6. The volume
increased from 251 Å3 to 300 Å3 when bound with phenacetin; however, the volume de-
creased to 243 Å3 when bound with methoxsalen [47]. These findings highlight the overall
flexibility of P450 active sites and the dynamic changes associated with ligand binding.

3.2. CYP107H1: Substrate Shape Change and Expulsion of Water Molecules as per Substrate Size

CYP107H1, often referred to as P450bioI, catalyzes the oxidative cleavage of C7–C8 in
the acyl carrier protein (ACP)-linked fatty acids involved in pimelic acid synthesis, which
makes up the majority of the carbon backbone skeleton of biotin [22]. This P450 interacts
with the phosphopantetheine linker of the ACP molecule and forms various hydrogen
bonds with active site residues. CYP107H1 has been crystallized with three different
chain lengths of fatty acids, namely tetradecanoic acid (Figure 1A), hexadex-9z-enoic acid
(Figure 1B), and octadec-9z-enoic acid (Figure 1C). All fatty acids were bound in a U-shaped
conformation, bringing the oxidation site closer to the heme Fe [22]. Interestingly, as the
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fatty acid chain length increased, the number of water molecules interacting with active site
residues decreased from 9 to 5, respectively (Figure 1). Met-283 formed a water-mediated
hydrogen bond when the largest fatty acid was docked, possibly to provide protons for
the oxidation reaction to occur. It has been observed that the larger the fatty acid chain,
the closer it was to the heme, and more water molecules were expelled from the binding
pocket to increase the space required to bind a larger substrate.
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Figure 1. Analysis of CYP107H1 interactions with tetradecanoic acid (A), hexadec-9z-enoic acid
(B), and octadec-9z-enoic acid (C). Information on the PDB codes for CYP107H1-fatty acid crystal
structures is shown in the figure. Heme is shown in green, and substrates are shown in blue. Amino
acid residues sharing a polar interaction with the substrate are shown in cyan, and residues sharing a
hydrophobic interaction are shown in orange. Polar interactions are indicated as red dashed lines,
water molecules are represented as red spheres, and amino acid residues are labelled according to
their one-letter code. A list of all amino acid residues shown in this figure is described in Table 5.

Table 5. List of amino acid residues within 5 Å of the ligand of CYP107 proteins. Amino acid residues
share a polar interaction with the ligand, shown in bold.

CYP Name (PDB Code) Amino Acid Residues

CYP107H1 (3EJB)
Lys35, Tyr36, Pro37, Ser56, Arg59, Thr60, Pro61, Leu62, Pro63, Glu64, Gln76, Met79, Leu81, Phe82,
Leu164, Ile165, Thr167, Ile168, Phe170, Arg172, Leu230, Ile233, Ala234, Thr238, Thr281, Met283, Thr284,
Ala285, Gln304, Tyr306, Phe383

CYP107H1 (3EJD)
Lys35, Tyr36, Pro37, Ser56, Arg59, Thr60, Pro61, Leu62, Pro63, Glu64, Gln76, Met79, Leu81, Phe82,
Leu164, Ile165, Thr167, Ile168, Phe170, Arg172, Leu230, Ile233, Ala234, Thr238, Thr281, Met283, Thr284,
Ala285, Gln304, Tyr306, Phe383

CYP107H1 (3EJE)
Lys35, Tyr36, Pro37, Ser56, Arg59, Thr60, Pro61, Leu62, Pro63, Glu64, Gln76, Met79, Leu81, Phe82,
Leu164, Ile165, Thr167, Ile168, Phe170, Arg172, Leu230, Ile233, Ala234, Thr238, Thr281, Met283,
Thr284, Ala285, Gln304, Tyr306, Phe383

CYP107A1 (1OXA) Ala74, Tyr75, Phe78, Phe86, Asn89, Gly91, Thr92, Ser171, Ile174, Leu175, Arg185, Val237, Leu240,
Ala241, Phe243, Glu244, Ala245, Phe288, Leu390, Leu391

CYP107A1 (1EGY) Ala74, Tyr75, Phe78, Phe86, Asn89, Gly91, Thr92, Ile174, Leu175, Arg185, Val237, Ala241, Phe243,
Ala245, Pro288, Leu391, Leu392

CYP107A1 (1EUP) Ala74, Tyr75, Phe78, Phe86, Ala87, Asn89, Met90, Gly91, Thr92, Ser171, Ser172, Ile174, Leu175, Arg185,
Leu236, Val237, Leu240, Ala241, Phe243, Glu244, Ala245, Pro288, Leu391, Leu392

CYP107A1 (1JIN) Ser58, Ser59, Asp60, Pro61, Phe72, Ala74, Tyr75, Asn89, Gly91, Thr92, Ile174, Leu175, Arg185, Val237,
Leu238, Leu240, Ala241, Glu244, Ala245, Thr291, Thr292, Arg293, Phe294, Leu391, Leu392



Biomolecules 2023, 13, 1733 11 of 24

Table 5. Cont.

CYP Name (PDB Code) Amino Acid Residues

CYP107A1 (1JIP) Ser58, Ser59, Asp60, Pro61, Phe72, Ala74, Tyr75, Asn89, Gly91, Thr92, Ile174, Leu175, Arg185, Val237,
Leu238, Leu240, Ala241, Glu244, Ser245, Thr291, Thr292, Arg293, Phe294, Leu391, Leu392

CYP107A1 (1Z8O) Ala74, Tyr75, Phe78, Phe86, Asn89, Gly91, Thr92, Ser171, Ile174, Leu175, Val237, Leu240, Ala241,
Glu244, Ala245, Ser246, Pro288, Thr291, Cys351, Glu360, Leu391, Leu392

CYP107A1 (1Z8P) Ala74, Tyr75, Phe78, Phe86, Asn89, Gly91, Thr92, Ser171, Ile174, Leu175, Val237, Leu240, Ala241,
Glu244, Ser245, Ser246, Pro288, Thr291, Cys351, Glu360, Leu391, Leu392

CYP107A1 (1Z8Q) Ala74, Tyr75, Phe78, Phe86, Asn89, Gly91, Thr92, Ser171, Ile174, Leu175, Val237, Leu240, Ala241,
Glu244, Thr245, Ser246, Pro288, Thr291, Cys351, Glu360, Leu391, Leu392

CYP107L1 (2C7X) Asp50, Trp74, Glu85, Leu81, Leu83, Leu88, Asn91, Leu93, Glu94, Phe178, Val179, Ala187, Gln188,
Met191, His238, Ile239, Val242, Ala243, Glu246, Thr247, Val290, Thr294, Tyr295, Asn392, Met394, Ile395

CYP107L1 (2C6H) Asp50, Trp74, Glu85, Leu81, Leu83, Leu88, Asn91, Leu93, Glu94, Phe178, Val179, Ala187, Gln188,
Met191, His238, Ile239, Val242, Ala243, Glu246, Thr247, Val290, Thr294, Tyr295, Asn392, Met394, Ile395

CYP107L1 (2VZM) Asp50, Trp74, Glu85, Leu81, Leu83, Leu88, Asn91, Leu93, Glu94, Phe178, Val179, Ala187, Gln188,
Met191, His238, Ile239, Val242, Ala243, Glu246, Thr247, Val290, Thr294, Tyr295, Asn392, Met394, Ile395

CYP107L1 (2VZ7) Asp50, Trp74, Glu85, Leu81, Leu83, Leu88, Asn91, Leu93, Glu94, Phe178, Val179, Ala187, Gln188,
Met191, His238, Ile239, Val242, Ala243, Glu246, Thr247, Val290, Thr294, Tyr295, Asn392, Met394, Ile395

CYP107BR1 (3A50) Trp67, Pro83, Thr84, Met86, Ile88, Leu89, Leu171, Val172, Ala177, Lys180, Asn181, Met184, Leu232,
Ile235, Ala236, Thr240, Val283, Pro287, Leu387

CYP107BR1 (3A51) Trp67, Pro83, Thr84, Met86, Ile88, Leu89, Leu171, Val172, Ala177, Lys180, Asn181, Met184, Leu232,
Ile235, Ala236, Thr240, Val283, Pro287, Leu387

CYP107E1 (2Y98) Arg75, Glu77, Val79, Lys80, Gly81, Gly82, Leu83, Leu84, Ser85, Phe168, Leu169, Ser170, Ala172, Val174,
Thr175, Ala176, Glu178, Met179, Ala183, Gly230, Val233, Ala234, Glu237, Ser238, Phe286, Leu386, Leu387

CYP107E1 (2Y5N)
Arg75, Glu77, Met78, Val79, Lys80, Gly81, Gly82, Leu83, Leu84, Ser85, Phe168, Leu169, Ser170, Ala172,
Val174, Thr175, Ala176, Glu178, Met179, Ala183, Gly230, Val233, Ala234, Glu237, Ser238, Phe286,
Leu386, Leu387

CYP107E1 (2YCA) Val79, Lys80, Gly82, Leu83, leu84, Phe168, Tyr187, Asp226, Ile229, Gly230, Val233, Ala234, Glu237,
Ser238, Leu280, Gly281, Val282, Gly283, Thr284, Ala285, Phe286, Thr311, Gly338, Leu386, Leu387

CYP107G1 (6L3A) Leu81, Ala83, Gln85, Gln87, Met91, Met175, Leu176, Ser177, val186, Met187, Gly190, Gln191, Ile240,
Ala241, Gly242, Thr245, Ile287, Ala282, Ser292, Trp293, Val394

CYP107E6 (3WVS) Arg81, Ala85, Ala87, Ser89, Phe91, Ile175, Leu176, Arg190, Asp233, Ile236, Gly237, Leu238, Ile240,
Ala241, Thr245, Leu287, Gly288, Gly290, Ser291, Ala292, Ala293, Pro294, Leu318, Met390, Val391

CYP107FH5 (6XA2) Val42, Pro43, Val44, Cys45, Ala91, Phe92, Leu101, His102, Leu184, Val185, Leu244, Ile247, Gly248,
Glu251, Thr252, Leu295, His297, Ala298, Thr299, Ser397, Thr398, Leu399, Ile400

3.3. CYP107A1
3.3.1. Perpendicular Binding of the Substrate

CYP107A1, also known as P450eryF, catalyzes C6-hydroxylation of the macrolide
6-deoxyerythronolide B (6-DEB) in erythromycin biosynthesis [18]. CYP107A1 has an
enlarged binding site pocket for the substrate, indicating it can accommodate larger
molecules [18]. The substrate (6-DEB) is orientated perpendicular to the heme and in-
teracts with three water molecules (Figure 2). Three phenylalanine residues lie within 5 Å
of the substrate and may aid in sequestering and orientating the substrate (Figure 2) [18].
CYP107A1 activates molecular oxygen by cleaving the oxygen bond and inserting one
oxygen atom into the C6 position of the substrate [18].
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clic aromatic hydrocarbons and steroids [24]. This trend was also demonstrated with 
CYP107A1 when bound to 9-aminophenanthrene and 4-androstene-3-17-dione (Figure 3). 
Spectral binding analysis revealed the presence of two binding sites. The data indicated 
that the binding of the second ligand reduced the overall size and increased the hydro-
phobicity of the active site, which in turn increased the first ligand’s binding affinity [24]. 
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Figure 2. Analysis of CYP107A1 interactions with 6-deoxyerythronolide. Amino acid residues
within 5 Å of the substrate are shown in cyan. Hydrophobic residues are shown in orange. Water
molecules are represented as red spheres, heme is green, and the substrate is blue. Amino acid
residues are labelled according to their one-letter code. PDB code is within brackets next to the
respective P450 name. A list of all amino acid residues shown in this figure is represented in Table 5.

3.3.2. Homotropic Cooperativity

Many P450s show homotropic cooperativity to various substrates, including poly-
cyclic aromatic hydrocarbons and steroids [24]. This trend was also demonstrated with
CYP107A1 when bound to 9-aminophenanthrene and 4-androstene-3-17-dione (Figure 3).
Spectral binding analysis revealed the presence of two binding sites. The data indicated
that the binding of the second ligand reduced the overall size and increased the hydropho-
bicity of the active site, which in turn increased the first ligand’s binding affinity [24].
Two molecules of each substrate were bound jointly within the binding pocket of CYP107A1.
9-aminophenanthrene interacted with various hydrophobic residues; one molecule was
buried within the binding pocket and was in direct contact with the heme, whereas the sec-
ond molecule was bound towards the surface of the pocket (Figure 3A) [24]. One molecule
of 4-androstene-3-17-dione was found deep in the binding pocket, and instead of direct
contact with the heme it interacted with a water molecule. It formed hydrogen bonds
with active site residues, namely Asn-89 and Ala-245 (Figure 3B). The second molecule
was towards the surface of the binding pocket. It showed a hydrogen bond with Ser-
171 (Figure 3B)—various hydrophobic amino acid residues surrounded all the substrates,
which could be involved in substrate anchoring. These results establish that homotropic
cooperativity in ligand binding can arise because of the binding of two substrate molecules
within the P450 active site [24].

3.3.3. High Flexibility and Conformational Change of I-Helix Region

CYP107A1 can accommodate a large substrate, such as the azole P450 inhibitor keto-
conazole, which is known to bind to many P450s [48]. Upon binding of this inhibitor, the
I-helix of CYP107A1 was found to be unwound (Figure 4A) [25]. The flexibility of the I-helix
cleft was also assessed by substituting the Ala-245 with a hydroxyl-containing residue,
serine. Surprisingly, despite having a hydrogen-bonding amino acid (in the mutant), the
I-helix was again found to unwind upon binding with ketoconazole (Figure 4B). However,
when the natural substrate, 6-DEB, was added to the mutant, the I-helix reformed, revealing
the flexibility of the active site of CYP107A1 [25].
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Figure 3. Homotropic cooperativity of CYP107A1 with 9-aminophenanthrene (A) and 4-androstene-3-
17-dione (B). Amino acid residues within 5 Å of each ligand are shown. Active site residues that have
polar interactions with the ligand are colored cyan, and those that have hydrophobic interactions are
colored orange. Heme is shown in green; substrates are shown in blue and magenta. Water molecules
are represented as red spheres. Amino acid residues are labelled according to their one-letter code.
PDB code is within brackets next to the respective P450 name. A list of all amino acid residues shown
in this figure is represented in Table 5.
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Figure 4. Analysis of interactions of native CYP107A1 (A) and mutant CYP107A1 (A245S) (B) bound
with ketoconazole. Amino acids within 5 Å are shown in cyan. Substituted amino acid (Ala and Ser)
is colored orange. Heme is shown in green, and substrate is shown in blue. Amino acid residues
are labelled according to their one-letter code. PDB code is within brackets next to the respective
P450 name. A list of all amino acid residues shown in this figure is represented in Table 5.
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3.3.4. Ala-245 Is Critical to the Proton Shuttle

Thr-252 in the active site of numerous P450s has been proposed to participate
in oxygen (O2) binding and its cleavage [49]. Interestingly, CYP107A1 has alanine
instead of threonine [18,26]. The proton shuttle system in CYP107A1 was studied,
and it was revealed that substituting Ala-245 to either serine or threonine led to an
overall decrease in enzyme function. The substrate’s 5-OH is the only direct hydrogen
bond donor to the iron-linked dioxygen and is probably a direct proton donor [26], as
shown in Figure 5A. The wild-type CYP107A1 bound with 6-DEB and dioxygen revealed
that one water molecule was expelled from the active site (Figure 5A). Introducing
serine instead of alanine led to hydrogen bonding between the adjacent residue and
the dioxygen molecule, breaking the proton shuttle pathway and decreasing enzyme
activity (Figure 5B) [26]. The threonine mutant showed decreased enzyme activity as
the hydroxyl group of threonine was too far away from the adjacent serine residue for
any hydrogen bonds to form, disrupting the proton shuttling pathway (Figure 5C) [26].
These results show that Ala-245 plays a crucial role in CYP107A1, i.e., to increase the size
of the active site cavity to accommodate larger substrates and for a functional proton
shuttle system for the catalytic activity.
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Figure 5. Analysis of the effect of Ala-245 substitution on the interactions of CYP107A1 with
6-deoxyerythronolide B (6-DEB). Interactions of 6-DEB with Native (A), A245S (B), and A245T
(C) CYP107A1 are shown in the figure. Amino acids within 5 Å are shown in cyan. Substituted amino
acid is colored orange. Dioxygen is shown as magenta, and water molecules as red spheres. Heme is
shown in green, and substrate is shown in blue. Polar interactions are shown as red dashed lines.
Amino acid residues are labelled according to their one-letter code. PDB code is displayed within
brackets next to the respective P450 name. A list of all amino acid residues shown in this figure is
represented in Table 5.

3.4. CYP107L1: Asp-50, Glu-85, and Glu-94 Play Pivotal Roles in the Substrate Access,
Orientation, and Relocation within the Active Site

CYP107L1 is known for its substrate tolerance and for performing multiple hydroxyla-
tion’s on structurally diverse macrolides with the deoxyamino sugar desosamine [20,28].
Two of these steps include the hydroxylation of YC-17 at C10/C12 and at C12/C14 of
narbomycin (Table 1) [20]. Interestingly, both substrates bind to the active site in similar
orientations. However, the narbomycin deoxysugar C3′dimethylamino group forms a salt
bridge with Glu-85 (Figure 6A), and YC-17 desosamine moiety C3′ forms a salt bridge with
Glu-94 (Figure 6B). Interestingly, a comparative analysis of amino acid residues within
the binding pocket of both open and closed conformations of CYP107L1 revealed that
Glu-94 is present in the closed conformation only (Table 4). This indicates that CYP107L1
active site dynamics change when a substrate is bound within the binding pocket and
incorporates Glu-94 to form a salt bridge with the substrate. Both substrates are sur-
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rounded by hydrophobic interactions with YC-17, securing the substrate further within the
binding pocket.
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was consequently removed [28]. This indicated a two-step substrate binding mechanism. 
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effective catalysis [28]. 

Figure 6. Substrate orientation within the active site of CYP107L1. (A) represents narbomycin
and (B) represents YC-17. Amino acid residues sharing hydrophobic interactions are shown in
orange. Amino acid residues with polar interactions are shown in cyan. Heme is shown in green,
and substrates are shown in blue. Polar interactions are shown as red dashed lines. Amino acid
residues are labelled according to their one-letter code. PDB code is displayed within brackets next
to the respective P450 name. A list of all amino acid residues shown in this figure is represented in
Table 5.

To further investigate the importance of these negatively charged residues in substrate
anchoring, these amino acid residues were substituted with neutral amino acid residues.
Aspartic acid was substituted with asparagine, and glutamic acid was substituted with
glutamine [28]. These site-directed mutants showed decreased catalytic function. These
experiments proved the salt bridge formation is critical for substrate anchoring and catalytic
function [20,28]. In these mutants, narbomycin was found deeper in the binding pocket,
similar to YC-17 in the wild-type enzyme (Figure 7A). The orientation of YC-17 in the
mutant and the wild-type were exactly the same (Figure 7B). Removing the negative charge
of aspartic acid located near the entrance of the binding pocket resulted in narbomycin
moving further into the binding pocket as the ionic bond formed in the wild-type was
consequently removed [28]. This indicated a two-step substrate binding mechanism. The
substrate first binds to the surface binding pocket and then moves to the buried binding
pocket [28]. Asp-50 appears to function as a gate for substrate access, Glu-85 may play
a role in substrate relocation, and Glu-94 plays a major role in substrate orientation for
effective catalysis [28].
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the substrate [30]. The structure of CYP107BR1 bound with vitamin D3 revealed that the 
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ylated, 25-hydroxyvitamin D3 is then bound to CYP107BR1, where the 3β-OH group is 
orientated close to the heme iron, which enables the 1α-hydroxylation step, as shown in 
Figure 8 [23]. The anti-parallel orientation indicates that this mutant is not functionally 
specialized. Ile-88 and Ile-150 were present in the closed conformation only (Table 4). Iso-
leucine is an aliphatic and hydrophobic amino acid that prefers to be buried in protein 
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Figure 7. Analysis of substrate interactions with double mutants of CYP107L1. (A) represents
D50N/E85Q mutant and narbomycin, and (B) represents D50N/E94Q and YC-17. Hydrophobic
amino acid residues are shown in orange; polar interaction residues are shown in cyan. Polar
interactions are shown as red dashed lines. Water molecules are shown as red spheres. Heme is
shown as green, and substrates are shown as blue. Amino acid residues are labelled according to
their one-letter code. PDB code is displayed within brackets next to the respective P450 name. A list
of all amino acid residues shown in this figure is represented in Table 5.

3.5. CYP107BR1: Distant Amino Acids Cause Conformational Change and Consequently Increase
Enzymatic Activity

CYP107BR1 performs a two-step hydroxylation reaction in the vitamin D3 synthesis
pathway (Table 1) [23]. A quadruple mutant (Vdh-K1) of this P450 showed that random
amino acid substitutions of four distant amino acids, namely T70R/V156L/E216M/E384R,
that are not part of the binding pocket, resulted in increased enzyme activity (Figure 8) [23].
These substitutions led to conformational changes and shifted the P450 to a closed con-
formation, increasing the binding efficiency to its redox ferredoxin partner and, thus, the
substrate [30]. The structure of CYP107BR1 bound with vitamin D3 revealed that the C25
position of the substrate is positioned very close to the heme iron; once C25 is hydroxylated,
25-hydroxyvitamin D3 is then bound to CYP107BR1, where the 3β-OH group is orientated
close to the heme iron, which enables the 1α-hydroxylation step, as shown in Figure 8 [23].
The anti-parallel orientation indicates that this mutant is not functionally specialized. Ile-
88 and Ile-150 were present in the closed conformation only (Table 4). Isoleucine is an
aliphatic and hydrophobic amino acid that prefers to be buried in protein hydrophobic
cores [50]. This amino acid, amongst others, is known to surround the aliphatic side chain
and CD-rings of vitamin D3, thus explaining its addition to the closed conformation of this
P450 (Figure 8) [23].
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CYP107BR1 (Vdh-K1). (A) represents vitamin D3, and (B) represents 25(OH)VD3. Amino acid
residues within 5 Å are shown in orange, and substituted amino acid residues are shown in cyan.
Water molecules are represented as red spheres. Heme is shown in green, and substrates are shown
in blue. Amino acid residues are labelled according to their one-letter code. PDB code is displayed
within brackets next to the respective P450 name. A list of all amino acid residues shown in this
figure is represented in Table 5.

3.6. CYP107E1: Orientation of Substrate Sugar Moieties Determines Catalytic Function

CYP107E1 is a multi-functional P450 in the mycinamycin synthesis pathway, perform-
ing sequential hydroxylation and epoxidation reactions (Table 1) [19]. Mycinamycin IV (M-
IV) and mycinamycin V (M-V) are native substrates of this P450 as opposed to mycinamycin
III (M-III), which is the biosynthetic precursor [19]. M-III contains the monomethoxy sugar
javose instead of dimethoxylated mycinose. Both M-IV and M-V are bound orthogonally to
the heme, following a pattern of “mycinose-in and desosamine-out” [19], and the C-12-C14
was near the heme iron (Figure 9A,B). Gly-81, Leu-84, Gly-230, and Val-233 are part of
the active site cavity of CYP107E1 in the closed conformation only (Table 4). Gly-81 and
Leu-84 form hydrogen bonds with mycinamycin IV (Figure 9A), and Gly-81, Leu-84, and
Val-233 formed hydrogen bonds with the substrate, mycinamycin V (Figure 9B). These
substrates are known to have multiple interactions with the BC loop, FC loop, and I-helix
of the P450 structure. Gly-81 and Leu-84 are found within the BC loop, and Val-233 is
located in the I-helix, thus explaining the hydrogen bond interactions [19]. M-III is bound
parallel to the heme plane following a pattern of “desosamine-in and javose-out” [19] and
is buried more deeply in the binding pocket. However, consistent with the poor functional
turnover of M-III, the reactive centers C-14 and C12–C13 are not exposed to the heme
iron (Figure 9C). This indicates that javose is less preferable than mycinose as an initial
recognition marker. For the substrate to reach a catalytically productive mode, mycinose
instead of desosamine should lead the way [19].

3.7. CYP107G1: Ala-241 and Gly-242 Are Involved in Substrate Anchoring

CYP107G1 can catalyze the specific oxidation C-27 in the pre-rapamycin macrolide
molecule (Table 1) [21]. Everolimus is a clinical derivative of rapamycin; this substrate is
bound compressed and perpendicular to the heme (Figure 10). Ala-241 and Gly-242 were
found to be involved in anchoring the substrate to ensure the correct orientation for the
reaction [21]. Leu-109 and Ile-154 were present in the closed conformation of this enzyme
(Table 4). These hydrophobic residues may aid in anchoring the substrate once bound.
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Figure 9. Substrate orientation within the active site of CYP107E1. (A) represents mycinamicin IV,
(B) represents mycinamicin V, and (C) represents mycinamicin III. Amino acid residues within 5 Å are
shown in orange, and amino acid residues sharing a polar interaction with the substrate are shown in
cyan. Water molecules are represented as red spheres. Heme is shown in green, and substrates are
shown in blue. Polar interactions are shown as red dashed lines. Amino acid residues are labelled
according to their one-letter code. PDB code is displayed within brackets next to the respective
P450 name. A list of all amino acid residues shown in this figure is represented in Table 5.
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orange. Amino acid residues sharing a polar interaction with the substrate are shown in cyan. Amino
acid residues involved in substrate anchoring are shown in magenta. The heme is shown in green,
and the substrate is shown in blue. Amino acid residues are labelled according to their one-letter
code. The polar interaction between substrate and amino acid residue is shown with red dashed
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acid residues shown in this figure is represented in Table 5.
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3.8. CYP107E6: Arg-81 and Arg-190 Play a Role in Substrate Orientation

CYP107E6, commonly known as P450revI, catalyzes the C18-hydroxylation of reveromycin
T in the biosynthetic pathway of reveromycin A (RM-A), a promising lead compound
with anti-osteoclastic activity (Table 1) [34]. The substrate binds to the active site where
Arg-190 forms a salt bridge with the C1 carboxyl group, and Arg-81, which is located at the
entrance of the binding pocket, forms a bifurcated hydrogen bond with the C5 hydroxyl
and C24 carboxyl groups of the substrate (Figure 11) [34]. The oxygen atom of reveromycin
T forms a water-mediated hydrogen bond (Figure 11) [34]. These interactions enable the
correct substrate orientation, where C18 is positioned near the heme iron ready for catalysis
to occur.
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Figure 11. Analysis of CYP107E6 interactions with reveromycin T. Amino acid residues sharing a
hydrophobic interaction are shown in orange. Amino acid residues sharing a polar interaction with
the substrate are shown in cyan. Water molecules are represented as red spheres. The heme is shown
in green, and the substrate is shown in blue. Polar interactions are shown as red dashed lines. Amino
acid residues are labelled according to their one-letter code. PDB code is displayed within brackets
next to the respective P450 name. A list of all amino acid residues shown in this figure is represented
in Table 5.

3.9. CYP107FH5: Steric and Hydrophobic Interactions with Phe-92, Leu-399, and Ile-400 Are
Critical for the C-10 Hydroxylation Step in the Tirandamycin Pathway

CYP107FH5, commonly known as TamI, is a multi-functional P450 involved in the hy-
droxylation and epoxidation steps in the tirandamycin biosynthetic pathway (Table 1) [36].
This P450 performs a C10 hydroxylation, converting tirandamycin C to tirandamycin E,
followed by a C11/C12 epoxidation, converting tirandamycin D to tirandamycin A, and
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finally, a C18 hydroxylation, converting tirandamycin A to tirandamycin B (Table 1) [36].
The second step of the pathway, i.e., conversion of tirandamycin E to tirandamycin D, is
performed by the FAD-dependent oxidase, TamL [36].

CYP107FH5 performs the initial hydroxylation step on tirandamycin C to produce
tirandamycin E. This substrate comfortably binds within the active site pocket with the
oxidation site near the heme, surrounded by hydrophobic residues such as Val-42, Pro-
43, Val-44, Phe-92, Val-185, and Ile-400 (Figure 12). Ser-397, Thr-398, and Leu-399 form
hydrogen bonds with the substrate (Figure 12). Interestingly, substituting Ser-397 and
Thr-398 resulted in no change in the substrate recognition or binding, proving that these
polar interactions with the substrate were not responsible for substrate anchoring [36].
However, the mutation of Leu-399 along with Phe-92 and Ile-400, which are near the
substrate’s polyene chain, resulted in decreased or complete loss of enzymatic activity due
to a disturbance in substrate binding [36]. These data indicated that non-polar and steric
interactions with the aromatic and hydrophobic residues Leu-399, Ile-400, and Phe-92 are
required for the correct orientation of the substrate in relation to the heme-iron and are
thus essential for the C-10 hydroxylation reaction to occur [36].
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Figure 12. Analysis of CYP107FH5 interactions with tirandamycin C. Amino acid residues sharing
a hydrophobic interaction are shown in orange. Amino acid residues sharing a polar interaction
with the substrate are shown in cyan. Heme is shown in green, and substrate is shown in blue.
Polar interactions are shown as red dashed lines. Amino acid residues are labelled according to their
one-letter code. PDB code is displayed within brackets next to the respective P450 name. A list of all
amino acid residues shown in this figure is represented in Table 5.

4. Conclusions

Understanding the structure–function relationship between a protein and its ligands
is critical in designing novel enzymes with potential biotechnological applications. The
availability of numerous protein crystal structures with many bound ligands is ideal
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for achieving this goal. The present study attempts to apply this strategy to the P450
superfamily, focusing on multifunctional and catalytically diverse P450 family CYP107.

Members of the CYP107 family are well-known for their capacity to perform oxidation
and epoxidation reactions on various substrates of pharmaceutical and biotechnological
importance. These multifunctional P450s are typically integrated into natural metabolite
biosynthetic gene clusters, particularly in macrolide antibiotic gene clusters, and undertake
oxidative tailoring processes to increase efficacy or attribute structural diversity to natural
metabolites. The CYP107 proteins studied typically have a large and flexible active site to
handle larger and multiple substrates. Structure–function analysis revealed that the size
of the substrate carbon skeleton can eject water molecules from the active site, potentially
making room for a larger substrate. Additionally, the type of sugar moiety attached to
the substrate backbone determines the correct orientation within the binding pocket and
impacts catalytic performance. Furthermore, homotropic cooperativity for steroids and
PAH and I-helix flexibility is observed for CYP107 enzymes. Amino acids within the
binding pocket are shown to be involved in substrate anchoring and orientation. Finally,
some residues formed critical salt bridges or hydrophobic interactions, or were engaged
in proton shuttle systems in specific CYP107s to ensure that catalysis could occur. These
polar and hydrophobic interactions forced the substrate to remain in a specific location
within the binding pocket. They ensured that the oxidation site of the substrate was placed
near the heme iron for the catalytic reaction to proceed. Amino acid dynamics and site-
directed mutagenesis work revealed critical amino acid substitutions that interacted with
the substrate.

Interestingly, research on CYP107BR1 found that distant amino acid residues not
located within the substrate binding region may also alter P450 function. To our knowledge,
CYP107A1 is still the only P450 in the 107 family that lacks the conserved threonine
residue. Instead, it has an alanine residue, which has been proven critical in the function of
CYP107A1. CYP107 members were found to be highly flexible concerning their adaptable
and large active site that allows access to various substrates. When various-sized substrates
were bound, the hydrophobic regions inside the active site changed to accommodate the
particular substrate, demonstrating their flexibility and tendency to interact with it. RMSD
values between open and closed conformations revealed that the amino acid residues
considerably shifted when an elongated substrate was bound within the active site. Its
dynamic behavior is comparable to well-studied P450s such as CYP102 and CYP109.

This study provides comprehensive information on CYP107 family members’ structure–
function analysis and highlights the active site cavity dynamics and amino acids’ role in
catalysis. This work will act as a further guide to future genetic engineering of CYP107
enzymes to produce novel molecules of medical and biotechnological interest.
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