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Abstract
Control of surface texture in strip steel is essential to meet customer requirements during galvanizing and temper rolling
processes. Traditional methods rely on post-production stylus measurements, while on-line techniques offer non-contact and
real-timemeasurements of the entire strip. However, ensuring accuratemeasurement is imperative for their effective utilization
in the manufacturing pipeline. Moreover, accurate on-line measurements enable real-time adjustments of manufacturing
processing parameters during production, ensuring consistent quality and the possibility of closed-loop control of the temper
mill. In this study, we formulate the manufacturing issue into a Time Series Extrinsic Regression problem and a Machine
Vission problem and leverage state-of-the-art machine learningmodels to enhance the transformation of on-linemeasurements
into a significantly more accurate Ra surface roughness metric. By comparing a selection of data-driven approaches, including
both deep learning such as convolutional, recurrent, and transformer networks and non-deep learning methods such as Rocket
and XGBoost, to the close-form transformation, we evaluate their potential using Root Mean Squared Error (RMSE) and
correlation for improving surface texture control in temper strip steel manufacturing.

Keywords Machine learning · On-line measurement · Surface roughness · Temper rolling · Time Series Extrinsic Regression
(TSER)

1 Introduction

Temper rolling is a critical process in strip steel produc-
tion, which involves cold-rolling the steel to improve its
mechanical and surface properties. For high-value prod-
ucts like automotive paneling, meeting customer demands
extends beyond achieving favorable mechanical properties
and necessitates specific surface properties to facilitate bet-
ter press performance [1] and ensure paint quality [2].

Line operators have the ability to modify various param-
eters, including roll selection, roll force, and speed, in order
to influence the steel’s microstructure and meet customer
requirements. The selection of rolls in the temper mill plays
a crucial role in imparting surface texture onto the steel. The
rolls have a surface texture created by electric discharged
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texturing, which is then transferred onto the steel by the roll
with respect to the other parameters that affect how this tex-
ture transfer happens, such as roll force and speed.

The feedback process informing line operators about
whether the surface texture hasmet customer specifications is
slow. Surface measurements are taken post-production man-
ually using a stylus device, and only on a small section at
the head or tail of the coil. This causes two main issues:
(a) the samples may not be representative of the entire coil
surface [3] (b) the feedback does not allow mid-coil pro-
cess adjustments. This can result in producing coils that do
not meet customer requirements. Therefore, the slow feed-
back provided is only beneficial for subsequent coils, leaving
the inadequate coil with a reduced value and forcing re-
production of the product, potentially multiple times in a
slow iterative process until the customer requirements are
met. Given the prevalence of just-in-time manufacturing [4],
the delayed feedback-driven re-production can cause down-
stream delays and the possibility of costly line stoppages
for customers if replacement steel is not manufactured and
delivered promptly.
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Access to fast monitoring on-line allows operators to per-
form real-time adjustments for line parameters and provides
measurements for the entire surface. It also opens the door for
real-time closed-loop high-precision control systems to auto-
mate the temper mill parameters to create steel for customer
requirements. Cheri et al. [5] propose an on-line intelligent
control method of cold rolled strip steel surface roughness,
which uses on-line measurements to inform a model out-
putting roll force for closed-loop roughness control. The
authors use a fuzzy neural network for their prediction. This
method relies on the accuracy of the on-line measurement
system used as this is the value targeted by the system.

To address the need for on-line measurement, fast non-
contact measurement techniques have been developed [5].
The technique we use fires a laser at the surface and the
scattered light intensities are captured giving a corresponding
angle. Surface gradients can be calculated from the reflected
angles through time and integrated to calculate the surface
profile and surface statistics.

Other techniques exist; for instance, the work by Bilstein
et al. [6] provides details of a system that canmeasure surface
roughness on-line and offer information on the measure-
ment principle, system design, and laboratory and on-line
trial results of the system. An early attempt is provided by
Luk et al. [7]. The authors use a microscope to capture scat-
tered light which is represented using a gray-level histogram
of light intensities from which the optical roughness param-
eter is calculated. The system is calibrated using parameters
calculated using traditional techniques on the sample.

For adjustments to be made based on optical measure-
ments, it is essential that the measurements are accurate.
However, when exploring the lasermeasurement closed form
techniquedescribed later in the paper side by sidewith the tra-
ditional stylus-based method, we have found the accuracy of
surface statistics calculated not suitable for product release.

We propose the use of machine learning to improve the
accuracy and effectiveness of this method by performing
the transformation from raw laser reflection data to surface
parameters. By accounting for the various unknown factors
that influence the physical processes and the raw reflections
which impact the resulting surface roughness,machine learn-
ing can develop a more accurate model for prediction, which
can provide surface roughness in real-time during produc-
tion. Ultimately, this will improve the quality and efficiency
of the temper rolling process.

In the domain of Brain-Computer Interfaces, several stud-
ies [8–10] delve into machine learning for electroencephalo-
gram (EEG) datasets primarily aimed at classifying actions
based on brain signals, such as distinguishing between left
and right hand movements. Although these are classifica-
tion problems, they share a resemblance with our regression
problem, as they involve multichannel signals collected from

multiple sensors spanning a substantial number of time steps,
contingent upon the measurement duration and frequency.

Our research builds upon existing literature [5] by intro-
ducing methods to enhance accuracy and transform the Ra
parameter to align with the gold standard stylus measure-
ment, as opposed to roughness from another form of surface
measurement. This transformation ensures alignment with
customer requirements, where the Ra ground truth is defined
using a stylus measurement. Ra is defined as the mean devi-
ation of the roughness profile, formalized as follows:

Ra = 1

N

N∑

i=1

|zi − z| (1)

where N is the number of time steps, z is the height profile,
and z is the mean of z.

Previous studies have also utilized machine learning to
regress theRa parameter in a production setting. For instance,
Elangovan et al. [11] proposed the use of machine learning
to characterize metal surface roughness Ra in the context
of metal objects turned on a lathe. Their approach involved
employingmultiple regression analysis on statistical features
extracted from the vibration signal of the tool, alongside
machining parameters such as tool wear and speed. The
statistical features extracted were relatively straightforward,
including measures such as mean and skewness. Notably,
the authors did not incorporate any light sensing data of the
surface into their model, while in this paper, we exclusively
model with light sensing data.

The surface roughness Ra is an important parameter in
other fields of manufacturing such as 3D printing [12–15],
where the Ra value can be correlated with other desirable
properties. In another use case of machine learning for sur-
face roughness prediction [16], the authors use a Multi-layer
Perceptron (MLP) and adaptive neuro-fuzzy inference sys-
tem for roughness prediction in stainless steel selective laser
melting additive manufacturing. The Ra parameter has also
been used in multiple regression analysis to understand the
influence of different parameters in the dressing (replen-
ishing) grinding wheels [17]. Similarly, Neural Networks
(NNs) have been used to model the relationship in Com-
puter Numerical Control (CNC) steel milling between the
resulting Ra and material removal rate when using different
input parameters [18].

The paper by Gupta et al. [19] presents a machine learning
approach for multiclass classification of steel microstruc-
ture types, which bears relevance to our work using machine
learning. Their research employed the k-nearest neighbor (k-
NN) algorithm to train a classifier based on steel composition
and heat treatment parameters, analogous to our utilization
of machine learning for predictive modeling in the steel man-
ufacturing domain.
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Sawai et al. [20] propose image regression using a convo-
lutional neural network (CNN) to link themicrostructurewith
a property without any manual feature extraction. They use
an explainableAI approach incorporatingUMAPdimension-
ality reduction to highlight important features of the steel.
Regression has also been applied to other practical use cases
including those which require the use of other types of data
beyond images or timeseries [21–25].

This paper introduces an approach that leverages the
power of machine learning to substantially improve the on-
linemeasurement of theRa roughness parameter compared to
the closed-form baseline approach described in Section 3.1.
To our knowledge machine learning has not previously been
used for transforming surface timeseries or 2D data produced
by reflections from a laser into an accurate Ra measurement
for use on-line. Additionally, what makes the transformation
different and difficult is that the Ra is not being calculated
based on the surface profile as is traditional, but predicted
using a lossy higher-order signal from the surface.

Specifically, our proposed method uses the on-line laser-
based surface data collection described in Section 2 and feeds
this data into a machine learning model chosen from this
paper’s evaluation to produce an Ra value for use in produc-
tion. This is a modification of the pipeline which takes the
on-line data and calculates an Ra from the closed-form solu-
tion which instead of using a machine learning model, relies
on transforming the laser-based surface data into a surface
profile from integrated gradients. Improvements compared
to the closed-form solution are required as the closed-form
value deviates significantly from stylus measurements from
the same local area from the same sample of steel. Therefore,
this paper focuses onmachine learningmodels for producing
the Ra for the use case.

This work introduces and integrates a diverse set of
machine learning architectures from the existing literature
and, where required, adapts and optimizes them to suit the
intricacies of this problem. By doing so, we not only demon-
strate the potential of machine learning in very accurately
solving this complex transformation task but also provide
a methodology and evaluation of these models which oth-
ers can use for similar problems. The aim is to train a model
which can produce anRa value onlinewhich is accuratewhen
compared to the industry standard stylus measurement. The
aim is completed and the methodology to complete this is
shown in the paper.

Contributions of our work:

• Formulation of the Ra prediction problem as a machine
learning problem, including appropriate preparation of
the dataset.

• Application of machine learning to improve the accuracy
of the transformation from laser measurements into the
surface roughness Ra parameter.

• Experimental methodology and comprehensive insights
into our model training protocols.

• Acomprehensive overviewof the variousmodels that can
be used to solve time series problems where the channels
are spatially related. These are the models we employ in
our experiments, categorized into distinct methodologi-
cal approaches: non-deep learning, 1D deep learning, and
2D deep learning.

The paper is organized as follows. Section 2 gives an
in-depth overview of the data, including details of the mea-
surement device employed by our industrial collaborator,
from which our data is gathered; how we organize the
data into a dataset for the machine learning for our exper-
iments; the data measurement methodology; and the issues
with measuring ground truth. Section 3 presents the exper-
imental setup, methodology, model training details, and
hyperparameters. The section also including a description
of the calculation of baseline closed-form solution, and a
comprehensive overview of the various data-driven mod-
els employed in our experiments categorized into distinct
methodological approaches: non-deep learning, 1D deep
learning, and 2D deep learning. Section 4 presents the results
of the data-driven approach experiments vs those of the base-
line, and provides additional insights into the generalization
ability with given new unseen steel through the results on the
k-foldmodelling experiments. Finally, Section 5 summarizes
the key findings of the study and provides recommendations
for future work.

2 Data acquisition

2.1 On-linemeasurement device

The on-line measurement device consists of a laser and a
1D semicircular array of 20 sensors. The laser is positioned
between the central two sensors in the array. The sensors are
spaced in 6.7-degree increments, except the central position
containing the laser, which is spaced 6.8 degrees, in total
spanning an arc of 127.4 degrees. The raw intensity data
are generated by firing a continuous laser at the surface of
the steel and capturing the reflected light intensities across
the array of sensors at discrete intervals. Each discrete mea-
surement creates a 1D image of the angle of reflection and
light scattering, with each of the sensors providing a pixel.
The measurement device scans the surface of the steel while
remaining in a fixed position, as the steel moves through the
production line. This means that the measurement is along
the rolling direction of the steel strip. The laser pulse rate is
synced with the speed of the production line such that each
reading is taken at a specified equal distance. This results
in intensity-angle information through time, NC×T , where
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Fig. 1 Illustrative diagram of the laser measurement device. The inten-
sities of the 20 sensors correspond to a single time step creating a 20×
1 1D image in the data plot Fig. 2

C = 20, the number of sensors; T is the number of time
steps; and the values are constrained between 0 and 255. The
device calculates the Ra using this data as specified in the
baseline calculation section. An illustrative diagram of the
device is shown in Fig. 1 and an example of the intensity
data produced by this system can be seen in Fig. 2.

2.2 The steel surface dataset

The data used in this paper has been provided by our indus-
trial partner for the improvement in Ra calculation from the
laser measurement system and to judge the feasibility of a
data-driven approach in terms of both speed and accuracy.
The data has two measurement types, the conventional sty-
lus measurement, and the laser intensity reflection data. All
measurements are taken from a set of 49 steel samples which

Fig. 2 The light intensity through time/distance, recorded by the semi-
circular 20 sensor array collecting light from laser reflected from the
steel surface. Each time step is a 20 × 1 1D image of the angle of
reflection, taken with an interval of 0.8um along the length of the steel

Table 1 Number of samples
grouped by number of
measurements

Number of
samples

Number of
measurements

4 5

24 10

1 23

2 24

13 25

3 26

have been processed differently and have different rough-
nesses. The samples are size 110 × 90 mm. From each steel
sample, multiple measurements are taken in different posi-
tions using both measurement types. Three out of the 49
steel samples use a different coating than the remaining 46
galvanized samples. These samples are expected to be more
difficult because they have different reflective properties than
the rest of the dataset and fewer samples for themodel to learn
from.

The laser intensity data for our dataset has a time step dis-
tance of 0.8um with each of the readings having T = 65536
(216) time steps, which is about 5.24cm of steel surface
length. There are between 5 and 26 laser samples taken
per steel sample, totalling 724 samples, with the distribution
shown in Table 1.

It can be seen in Figs. 2 and 6 that there are many regions
where the intensity is very low, indistinguishable from noise.
We suspect this is due to the 1D nature of the measurement
array, the laser will be reflected in a hemisphere but we are
only collecting an arc. The missing data might be one reason
contributing to the inaccuracy of the baseline technique.

The conventional stylus measurements involve running a
stylus along the surface of the steel. The stylus moves up and
downas it navigates the topography and records the heights as
a surface profile. From a surface profile, the roughness profile
can be calculated by removing the longer wavelengths. The
Ra parameter is calculated from the roughness profile. For
our experiments, we aim to predict the Ra parameter without
closed-form calculation using the equation.

The raw laser reflection data is the input for our experi-
ments and the roughness parameter Ra calculated from the
stylus profiles are our true outputs. The distribution of Ra in
our dataset can be seen in Fig. 3.

2.3 Many-to-many data problem

Ideally, there would be a one-to-one map between a laser
measurement and a stylus measurement, such that both mea-
sure the same track on the surface. However, it is not feasible
to gather this data as we do not have the capability to run the
stylus on the same track as the laser due to the small scale
and level of precision that would require. There is also the
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Fig. 3 The distribution of Ra for the steel samples in our dataset. Blue
shows the distribution for all stylus measurements across all of the steel
samples. Orange shows the distribution of the mean Ra measurements,
one for each steel sample

issue of the stylus head having a different size to that of the
laser beam and coming into contact with a different area of
steel.

Therefore the data has an issue where for each of the 49
steel samples there are many laser reflection measurements
and many stylus measurements all with different tracks on
the surface without local spatial relation.

As a result, the mean Ra measurement from all stylus
measurements for the steel sample must be calculated and
used as the Ra of that steel sample. During training, all of the
laser reflection samples from each steel sample will have the
mean Ra of the steel sample be the label (Fig. 4).

We expect that this will result in additional noise in our
model, but expect the model performance to still be accurate,
as steel samples naturally have variation across the same sample.

3 Methodology

We apply non-deep learning and deep learning models from
different areas of research in order to judge their suitability
for the problem in terms of accuracy and speed. This will
be compared to the baseline of calculating an Ra from a
profile built from gradients. As the data is 2-dimensional
data, we include deep learning models commonly used for
image classification. Classification models can be modified
to produce a regression output by changing the output layer
of the model. We also experiment with the top 1-dimensional
deep learning time series classification models, treating each

Fig. 4 The relation between the laser reflection data and the mean Ra
of a steel sample

of the individual sensors as a separate channel. We also note
that these models are designed with data that has a long time
step dimension in mind, whereas the 2-dimensional models
typically come frommachine vision and expect a square input
imagewith a substantially shorter length dimension than ours
of 65,536. 1-dimensional models also have the potential to
be faster due to lower computational complexity.

3.1 Baseline calculation

To calculate the baseline, the gradient profile first needs to
be calculated.

A single laser intensity reading X is a matrix with shape
20×216 denoted as Xi, j , where i represents the sensor index
and j represents the timestep index. First, perform a thresh-
olding operation expressed as follows:

X̃i, j = (Xi, j −minθ (Xi,:))+ (2)

where minθ (Xi,:) orders Xi,: and takes the value at position
θ . For example, if the threshold value θ is 2 as used in for data,
then minθ (Xi, j ) takes the 2nd smallest value of Xi,: for the
channel i . The notation (·)+ denotes the function that maps
any negative input value to zero and leaves all non-negative
values unchanged. Therefore, the θ smallest values in each
channel of X are set to zero and the other values are shifted
accordingly. An example of thresholded and non-thresholded
data can be seen in Fig. 6.

For calculating the gradients, denoted g, a vector A is used.
It has length 20 denoted as Ai , where i represents the angle
corresponding to the sensor at that index. Then, for each time
step j , the operation can be expressed as follows:

g j = 1

2
·
∑20

i=1 Xi, j · Ai∑20
i=1 Xi, j

(3)

where g j represents the value of the resulting vector at time
step j . Note that the summation is performed over the 20
channels in matrix X , and the division is by the sum of
the values in matrix X for the corresponding time step j .
Dividing by the sum of the intensities makes the resulting
gradient the angle corresponding to the mean intensity, and
multiplying by 1

2 ensures that the surface gradients, rather
than the reflected gradients are obtained.
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Due to certain time steps where the sensors do not detect
any light, some of the gradient values become infinite. To fill
in these missing values, linear interpolation is used.

To obtain the surface profile from the calculated gradients,
you accumulate the tangent of the gradient values along the
desired direction over discrete time steps. The integrated sur-
face profile, denoted as surfacei , can be calculated with:

surfacei =
i∑

j=0

tan(g j )�t (4)

where i represents the discrete time step index,�t represents
the time step increment of 0.8, and surfacei represents the
accumulated surface profile at the i-th time step.

To calculate the roughness profile the longer wavelengths
are filtered out from the signal. Extend the surface profile
by attaching flipped profiles to both ends. This is done by
concatenating the flipped profile of length N to the beginning
and end of the original profile, resulting in an extended profile
of length 3N .

Then perform the Fast Fourier Transform (FFT) on the
extended surface profile, which gives the profile in the fre-
quency domain, denoted as F(ω), where ω is the frequency
coordinate.A frequency-domainfilter is next applied to F(ω)

to remove the longer wavelengths that correspond to the
waviness component. This can be done by setting the Fourier
coefficients of the unwanted frequencies to zero. The cutoff
frequency can be determined based on the desired waviness
wavelength, in our case 80µm.

The inverse FFT of the filtered data obtains the roughness
profile in the spatial domain, denoted as R(x), where x is the

Fig. 5 The difference between the Ra calculated from the raw laser-
reflected data by us and by the measurement device itself

index. The extended roughness profile needs to be cropped
to the length of the original profile, R(x), where x > N and
x < 2N .

The resulting roughness profile represents the filtered sur-
face profile data with the waviness component removed,
leaving only the roughness component. Apply (1) to the
roughness profile to calculate the Ra parameter.

The laser measurement device provides outputs of the raw
laser reflection intensities through time, but also an Ra value
it has calculated itself. Figure 5 shows the difference between
the values calculated from the raw input vs. the values cal-
culated by the measurement device from the raw input. The
plot shows that most results are very similar, but that there
are some very large outliers.

A plot of raw intensity data can be seen in Fig. 6 in raw
unprocessed form, and with thresholding to remove sensor
issues at very low intensities. The worst outliers have lots of
gaps in the intensity data which is likely what is causing the
large discrepancies in our calculations. We believe that the
measurement device might have a better method for interpo-
lating the raw data than the one we have used. It is not in
the scope of our work to re-engineer the closed-form solu-
tion exactly as the measurement device calculates it, we just

(a) No Thresholding

(b) With Thresholding

Fig. 6 Comparison of raw intensity data for the worst outlier with and
without thresholding
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provide here an insight into the process. Therefore, we use
the values from the measurement device as the closed-form
baseline values and not our calculated values.

3.2 Models tested

In this section, we present the data-driven models that we
test in our study, categorized into three groups: non-deep
learning, 1D deep learning, and 2D deep learning.

For the 1D models, we selected models from the Time
Series Extrinsic Regression (TSER) [26] and Time Series
Classification (TSC) [27] areas of research. Thesemodels are
specifically designed for datawith a long length,which aligns
with our data characteristics. In our approach, we treat the
data from each of the 20 sensors as individual data channels.

For 2D deep learning, we explored models from the
machine vision field, considering that our data has a 2D
structure, where the channels are spatially related to each
other and the time dimension represents a scan of the surface
length. It is important to note that machine vision models are
typically used on square-shaped images, while our data is
thin and long. To adapt these models to our data, we treated
it as a single-channel grayscale image with a height of 20
(representing the sensors) and a width of 216.

The deep learning models mainly consist of fully con-
nected, convolutional, Recurrent Neural Network (RNN),
and transformer layers. These layer types differ as follows.
Fully connected networks are the most basic type, where
neurons are all fully connected between layers, while convo-
lutional layers use parameter sharing and multiply a filter of
weights using a sliding window over the input. By contrast,
RNNs have cyclic connectionswhere a deeper layer connects
to a previous layer. Finally, transformers use the self-attention
mechanism, which utilizes fully connected layers to generate
a query, a key, and a value. These are then used to learn and
subsequently provide relationships between different points
in the input sequence.

For the implementation of the 1D deep learning models,
we utilized the tsai package [28], which offers convenient
implementations of many of these models. Meanwhile, we
modified several 2D models from the TorchVision pack-
age [29] to suit our specific data format and experimental
requirements, and use the fastai package for the xresnet mod-
els [30].

3.2.1 Non-deep learning (data-driven approach)

Rocket, initially proposed by Angus Dempster et al. [31] as
an “exceptionally fast and accurate” model for TSC, stands
out among other state-of-the-art models in its field due to
its fast training speed. Rocket’s feature extraction process
yields broad and informative features, making it adaptable
for regression tasks, which can be achieved by replacing

the ridge classifier with a ridge regressor. This adaptability
has been demonstrated by Chang Wei Tan et al. [26], where
Rocket outperformed other models and emerged as the best-
performing model in their TSER experiments.

The architecture of Rocket is composed of 10,000 parallel
convolutional operations, each with random parameteriza-
tion. The convolutional output then undergoes two global
pooling operations for each kernel, resulting in 20,000 fea-
tures. These two pooling operations are max pooling and
Proportion of Positive Values operation (PPV). The ridge
classifier utilizes these features to make predictions. In the
original paper, Rocket achieves high accuracy while exhibit-
ing the shortest training phase when evaluated across the
85 UCR TSC datasets [32]. We have implemented an exact
replica of the Rocket transformation in PyTorch which takes
the kernels from the original implementation and produces
identical outputs. We use this version as it is significantly
faster when using a GPU [33].

MiniRocket, introduced by Angus Dempster et al. [34],
builds upon the efficiency of the ROCKET model, further
distinguishing itself from other state-of-the-art approaches
in terms of speed. It offers notable advancements in accu-
racy relative to computational cost. This efficiency boost is
achieved through modifications to the kernel parameteriza-
tion. By employing binary kernels with two potential values
(-1 or 2), MiniRocket performs convolution operations based
on addition rather than multiplication. With only two kernel
values available, there exist 84 unique kernels. To approx-
imate the use of 10,000 kernels, these 84 kernels have 119
dilations, chosen based on the input data length, resulting
in 9,996 unique kernels. Additionally, Biases are sampled
from the input data, resulting in a normalization effect. Fur-
thermore, MiniRocket eliminates the max pooling operation,
opting for only PPV pooling, yielding one feature per ker-
nel, amounting to approximately 10,000 features compared
to ROCKET’s 20,000. The authors report that MiniRocket
achieves processing speeds roughly 75 times faster on larger
datasets while maintaining similar accuracy to ROCKET, a
model already recognized for its efficiency compared to other
models in the existing literature.

XGBoost, introduced by Chen and Guestrin [35], is a
highly effective and widely used machine learning algo-
rithm. It combines gradient boosting and tree-based models
to handle diverse data types and capture complex interac-
tions. XGBoost sequentially adds decision trees to a growing
ensemble, where each subsequent tree corrects the errors
made by the previous trees. Additionally, XGBoost supports
various objective and loss functions and employs regulariza-
tion techniques such as shrinkage and feature subsampling,
which help prevent overfitting and enhance generalization.
Its exceptional performance, versatility, and scalability have
made it a popular choice in competitions and real-world
applications.
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RandomForest, introduced byBreiman [36], is a powerful
ensemble learning algorithm that combinesmultiple decision
trees for accurate predictions. It handles high-dimensional
data, reduces overfitting, and provides insights into feature
importance. With its versatility, efficiency, and interpretabil-
ity, Random Forest is widely used in various domains and
applications. The algorithm works by constructing a multi-
tude of decision trees on randomly selected subsets of the
training data. Each tree in the Random Forest operates inde-
pendently, making predictions based on the majority vote of
the individual trees. This ensemble approach helps to reduce
overfitting and improves the overall robustness of the model.
Random Forest has demonstrated its effectiveness across
various domains and applications, including classification,
regression, and feature selection.

3.2.2 1D deep learning (data-driven approach)

Bai et al. propose a network that uses dilated causal convo-
lutions to capture temporal dependencies [37], the Temporal
ConvolutionalNetwork (TCN). TheTCNmodel uses stacked
convolutional blocks with each block having exponentially
increasing dilations, d. This helps capture long-range pat-
terns such that the model has a large receptive field by the
final layer. The Receptive Field (RF) of the model can be
estimated with the following equation:

RF = 2 ·
n−1∑

i=0

(ks − 1) · di (5)

Each convolutional block contains two convolutional, hence
the multiplication by two in the equation. The model has
two additional hyperparameters, kernel size (ks or ks in the
equation) and layers which contains a list with the length
being the number of layers (we refer to as nl in the paper or
n in the equation) and the contents being the output channels
dimention for the convolution in each layer. ks and nl can
be selected to increase model complexity and to change the
receptive field, as it is likely beneficial for the receptive field
to encompass the data length.

The model makes use of residual connections between
blocks, weight norm before convolution, and Dropout in
the network. We use the tsai Python package [28] for the
implementation of themodel inPyTorch.Three different con-
figurations of kernel size (ks) and number of layers (nl) are
explored: ks = 9, nl = 12; ks = 5, nl = 13, and ks = 7, nl =
8. These configurations yield approximate receptive fields of
65,520, 65,528, and 3060 respectively. It is worth noting our
data length, which is 65536.

InceptionTime [38] is a deep learning architecture inspired
by the Inception module [39] originally proposed by Fawaz
et al. for TSC. It incorporates blocks of different-sized

convolutions, accompanied by residue connections, to effec-
tively extract both local and global features from the input
data. Each block applies a bottleneck layer to the input,
which reduces the dimensionality of the data. Subsequently,
it employs 10, 20, and 40-length convolutional filters within
the blocks. Additionally, an alternative path applies a max
pooling layer to the input, followed by a bottleneck layer.
To obtain a global representation of the features, a Global
Average Pooling (GAP) layer is employed. Finally, the archi-
tecture concludes with a softmax classification layer for
accurate predictions. As we are performing regression, we
use a linear prediction layer for the output layer without soft-
max.

Rahimian et al. propose XceptionTime [40] as a dedicated
model for analyzing surface Electromyography (sEMG) sig-
nal data. The authors draw inspiration from the success of
two existing models: Xception, known for its superior per-
formance in large image classification compared to Inception
V3, and InceptionTime, which was developed based on the
Inception V4 concept. Motivated by these achievements,
the authors introduce XceptionTime as a novel model that
combines the strengths of InceptionTime with the utiliza-
tion of depthwise separable convolution Xception modules.
By incorporating depthwise separable convolutions, Xcep-
tionTime outperforms its existing counterparts in analyzing
sEMG signal data.

The MRNN-FCN model architecture, proposed by Khan
et al. [41], incorporates two parallel feature extraction routes,
which are subsequently concatenated in the final feature
layer. Path 1, begins with a dimension shuffle operation, fol-
lowed by the selected RNN unit and dropout regularization
for training purposes.

Path 2 encompasses a combination of different layers. It
begins with a 1D convolutional layer with Batch normal-
ization and ReLU activation. Subsequently, a squeeze and
excitation block is employed. Additional convolutional lay-
ers and squeeze and excitation blocks follow. Finally, a GAP
operation is used to obtain a summary representation of the
extracted features.

The outputs fromPath 1 andPath 2 are concatenated, facil-
itating the fusion of diverse features derived from different
pathways, and providing a comprehensive representation of
the input data.

TheMRNN-FCN,MGRU-FCN, andMLSTM-FCNmod-
els share a similar architecture, with the key difference lying
in the type of RNN module utilized. While the MRNN-
FCN employs a standard RNNmodule, theMGRU-FCN and
MLSTM-FCN models replace it with the Gated Recurrent
Unit (GRU) and Long Short-Term Memory (LSTM) mod-
ules, respectively. The GRU and LSTMmodules are variants
of the RNNmodule that address the vanishing gradient prob-
lem and enable the model to capture long-term dependencies
more effectively.
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He et al. [42] introduced the ResNet framework to facili-
tate the training of significantly deeper networks compared to
previous approaches. This framework has revolutionized the
fields of computer vision and deep learning, as residual learn-
ing and skip connections have become integral components
in many modern deep architectures. Residual learning, in
combination with skip connections, represents the key inno-
vation of ResNet. It enables the network to bypass multiple
layers and directly propagate information from earlier layers
to subsequent ones, thereby ensuring a smooth flow of gra-
dients during training and mitigating the vanishing gradient
problem.

The ResNet framework is structured as a sequence of
layers, with each layer comprising residual blocks. These
blocks consist of multiple convolutional layers, batch nor-
malization, Rectified Linear Unit (ReLU) activation, and a
shortcut connection that adds the input of the block to its
output. The architecture is designed to accommodate deeper
networks, typically achieved by increasing the number of
channels while reducing spatial dimensions. This is accom-
plished by downsampling and progressively augmenting the
number of channels in each subsequent layer. This architec-
tural strategy empowersResNetmodels to effectively capture
and process complex features at varying scales and depths,
leading to enhanced performance in diverse computer vision
tasks.

In our experiments, we have utilized the ResNet model
proposed by Wang et al. [43] specifically designed for 1D
time series data. This implementation deviates from con-
ventional ResNet architectures in several aspects. Firstly,
it employs 1D convolutions instead of 2D convolutions,
thereby accommodating the nature of time series data. Unlike
traditional ResNet models, this variant does not incorpo-
rate downsampling operations. However, it still increases the
number of channels across layers to capture diverse tempo-
ral patterns. Moreover, this model diverges in terms of its
depth, comprising only three layers as opposed to the stan-
dard ResNet architecture with four layers. Furthermore, it
introduces a decreasing kernel size pattern across the three
layers, transitioning from a kernel size of 7 to 5, and finally
to 3. Typically, ResNet architectures employ kernel sizes of
3 throughout all layers, except for the input layer.

Wang et al. [43] also propose an additional model,
the Fully Convolutional Network (FCN). The FCN is a
straightforward model composed of three consecutive 1D
convolutional blocks. These blocks extract feature channels
in a sequence of 128, 256, and 128, respectively. Follow-
ing each convolutional block, batch normalization and ReLU
activation functions are applied. To obtain a global repre-
sentation, global average pooling is employed. The final
prediction is made using a linear layer.

He et al. [44] proposed a series of modifications, referred
to as a “bag of tricks,” that can be applied to the ResNet

architecture, resulting in variants known as xresnets. While
xresnets maintain the core principles of ResNet, utilizing
residual blocks with convolutional layers and shortcut con-
nections, xresnets incorporate notable structural changes. In
particular, xresnets modify the input stem by splitting the
original convolutional layer with a kernel size of 7 and a
stride of 2 into three separate convolutional layers. Each of
these layers utilizes a kernel size of 3. The first layer employs
a stride of 2, while the subsequent two layers have a stride
of 1. Additionally, xresnets modify the downsampling of the
identity path. Instead of employing a kernel size of 1 with
a stride of 2, xresnets utilize an average pooling layer with
a kernel size of 2, followed by a kernel size 1 convolutional
layer with step size of 1. Furthermore, xresnets introduce
an expansion parameter, which, when not a value of 1, adds
an additional convolutional layer to each block and augments
the number of channels.We use the 1Dvariants, xresnet1d18,
xresnet1d34, xresnet1d50, xresnet1d101, xresnet1d18 deep,
xresnet1d34 deep, xresnet1d50 deep, xresnet1d18 deeper,
xresnet1d34 deeper, and xresnet1d50 deeper.

The ResCNN network proposed by Zou et al. [45] is
composed of four sequential blocks. The first block features
two paths: the first path includes three convolutional blocks,
each incorporating batch normalization and ReLU activa-
tion, while the second path consists of a single convolutional
block with batch normalization and no ReLU activation. The
output of the second path acts as a shortcut and is added
to the output of the first path, followed by a ReLU acti-
vation. Subsequently, each block performs 1D convolution,
followed by batch normalization and an activation function.
The first block employs leaky ReLU activation, the second
block utilizes Parametric ReLU (PReLU) activation, and the
final block applies Exponential Linear Unit (ELU) activa-
tion. To capture a global representation of the feature maps,
global average pooling is performed. Finally, a linear layer
is used for prediction.

3.2.3 2D deep learning (data-driven approach)

For the 2D models selected, we have been more selective
due to the increased computation required to experimentwith
these models. Two variations of xresnet, xresnet18, and xres-
net34 have been chosen. These two models are the same as
previously described in the 1D section but instead with 2D
filters being used.

ConvNeXt, introduced by Liu et al. [46] in the era dom-
inated by transformer architectures, offers a compelling
alternative to traditional ConvNets.While Vision Transform-
ers (ViTs) quickly surpassed ConvNets as the state-of-the-art
image classification model, they encountered challenges
when applied to general computer vision tasks. Hierarchical
Transformers, like Swin Transformers, reintroduced Con-
vNet priors, making Transformersmore applicable to various
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vision tasks. The authors incorporate design elements from
Vision Transformers into a standard ResNet architecture.
unleash the potential of pure ConvNets. The result is Con-
vNeXt, a family ofmodels constructed entirely from standard
ConvNet modules. ConvNeXt achieves remarkable accuracy
and scalability, outperforming Swin Transformers on multi-
ple benchmarks, while retaining the simplicity and efficiency
of ConvNets. These findings challenge prevailing beliefs and
emphasize the importance of convolution in computer vision.
Two variants are used: Tiny and Small.

The Vision Transformer (ViT), introduced byDosovitskiy
et al. [47], represents a significant breakthrough in computer
vision by leveraging transformer-based architectures, which
have excelled in natural language tasks. ViT challenges the
conventional wisdom that Convolutional Neural Networks
(CNNs) are not necessary and a pure transformer can perform
very well for image classification. The self-attention mecha-
nisms of transformers, applied to embedded patches, capture
global contextual information from input images, enabling
the model to comprehend intricate visual patterns and rela-
tionships. The self-attention mechanism facilitates efficient
computation of pairwise interactions between image patches,
allowing ViT to model long-range dependencies effectively.
ViT directly applies a pure transformer encoder architecture
to sequences of embedded image patches. The ViT archi-
tecture consists of an initial patch embedding layer, which
splits the input image into a sequence of fixed-size patches.
These patches are then linearly projected into a set of learn-
able embeddings. The resulting embeddings are augmented
with positional encodings to encode spatial information. The
transformer encoder layers process the embedded patches,
incorporating self-attention and feed-forward neural network
modules. The self-attention mechanism captures the global
context by attending to all image patches, enabling effec-
tive information exchange. Finally, a classification token is
added, and the resulting sequence is passed through a linear
layer followed by softmax activation to obtain the class prob-
abilities. We have changed the model slightly by adjusting
the patch size to 20 by 32 instead of the 16 by 16 patch size
in the original model, such that the patches fit the 20 sensor
dim exactly and the 32 (25) is divisible by the 216 length of
the data, resulting in 2048 patches. We experiment with the
ViT Tiny and the ViT Small models.

Swin v2, introduced by Liu et al. [48], improves upon
previous transformer-based models which perform global
image processing. It adopts a hierarchical processing strat-
egy to effectively handle high-resolution images. Building
upon the Swin Transformer architecture, which reintroduces
ConvNet priors, Swin v2 serves as a practical choice for a
generic vision backbone. By dividing the input image into
non-overlapping patches and organizing them into stages and
windows, the model captures both local and global informa-
tion efficiently. Additional enhancements, such as the patch

merging module and shift operation, contribute to improved
feature extraction and contextual modeling. In our experi-
ments, we evaluate the performance of the Swin v2 Tiny and
Swin v2 Small variants.

These models were chosen based on their proven perfor-
mance in various machine learning tasks and their potential
to improve the accuracy of laser reflection measurements for
online sheet steel manufacturing.

3.3 Training and hyperparameters

For each deep learning experiment, the PyTorch framework
is employed, utilizing a consistent training loop and set of
hyperparameters for all trained learning models. The cho-
sen optimizer is Lion [49], with a weight decay of 0.01. To
assess the performance during training, the Mean Squared
Error (MSE) loss function is used, as defined in Eq. 6, by the
optimizer.

MSE = 1

n

n∑

i=1

(yi − ŷi )
2 (6)

The initial learning rate is set to 0.0001, and a learning rate
scheduler using the reduce-on-plateau strategy is utilized.
This scheduler reduces the learning rate by a factor of 0.5
when the validation loss fails to improvewithin the cooldown
and patience intervals. In our experiments, the cooldown and
patience are set to 10 epochs. Training continues until the
validation loss fails to improve for 100 consecutive epochs.
Throughout the training process, the checkpoints are saved
at regular intervals and the checkpoint weights with the best
validation loss are selected by the model upon completion.

The hyperparameters for the non-deep learning experi-
ments are as follows. For XGBoost we use a cross-validated
grid search with 3 folds. The search parameters are as fol-
lows: 100, 500, and 1000 number of estimators, max depth of
5, 10, 15, and 20, and learning rate of 0.1, 0.05, and 0.01. For
Random Forest Regressor we also use cross-validated grid
search with 3 folds. The search parameters are as follows:
number of estimators 100, 500, and 1000, max depth of 5,
10, 15, and 20, andminimumsamples per leaf 1, 5, 10, and 15.

The TCN models have kernel size and layers as hyperpa-
rameters. The layers hyperparameter contains a list with the
length being the number of layers (nl) and the contents being
the output channel dimension for the convolution in each of
these layers. We use the default value of 25 in each position
in the list and vary the length nl. We specify the nl and kernel
size (ks) hyperparameters were used in the results tables for
these models. Some models have been originally designed to
be usedwith classification, although they alsowork verywell
for regression, and therefore have a parameter “channels out”
which we set to 1 since we are regressing to a single value.
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Some models have a parameter sequence length which we
set to the length of the data, 2**16. Most of the deep learn-
ing models do not have hyperparameters to set or they have
internal optional hyperparameters that are not expected to be
changed and therefore we use the default values.

3.4 Dataset preparation for training

Two methods of training are performed. In the first, 20% of
the data is held back for the test set in order to evaluate the
models’ performance. Due to the limited spread of the Ra
label values from the many-to-many problem, we perform
the split on each steel sample in order to guarantee that the
model has seen 80% of the input samples from each steel
sample.

In the second method, due to the relatively small dataset
size, with only 49 different steel samples, we believe that it is
important to test the model’s generalization ability on com-
pletely unseen new steel samples. This is done by sectioning
our data into k folds, where each of the folds contains all
measurements from a single steel sample. A new model is
trained for each fold where one of the folds is used as the test
set and all the other folds as training data.

As the model has not seen this steel sample before, these
experiments ensure the model is not simply grouping data
samples assigning the related Ra from the same steel samples
and instead is actually learning a useful transformation from
Raw reflected readings to the Ra.

Before feeding the data into the model, thresholding is
performed as specified in Eq. 2 and then z-score normaliza-
tion. Calculatedmean and standard deviation values from the
training data are used to normalize the test data.

4 Results

We compare our data-driven approaches to the closed-form
baseline for the calculation of the Ra from the laser reflec-
tion data. Figure 7 shows that in general, the baseline has a
tendency to produce a higher Ra than the stylus. In order to
improve the baseline results we have transformed the calcu-
lated Ra values onto the true x = y line.

4.1 20%Data split experiments

The first set of conducted experiments are on the data split
such that 20% of data samples from each steel sample are
used as the test data. The results of the 20% data split anal-
ysis are presented in Table 2, which provides an overview
of the performance metrics for the evaluated models, cat-
egorized based on their approach. The analysis includes
three approach types: closed-form baselines, non-deep learn-
ing (data-driven approaches), and deep learning (data-driven

Fig. 7 The closed-form baseline Ra results and the results transformed
onto the x = y line

approaches). The metrics used for evaluation include the
Root Mean Squared Error (RMSE)-defined in Eq. 7, Pear-
son’s Correlation, maximum prediction error, and the per-
centage of predictions within the minimum and maximum
values obtained from the stylus measurement for the steel
sample. The table is sectioned by type of approach, where
each section is in descending order of RMSE with the best
result displayed in bold.

RMSE =
√√√√1

n

n∑

i=1

(yi − ŷi )2 (7)

The closed-form baseline models, including baseline
transformed and baseline, served as a reference point for
comparison. These models achieved RMSE values of 0.3076
and 0.6546 respectively. Notably, the prediction coverage
was relatively low for both models, with values of 0.0992
and 0.0064, respectively, meaning that many results fell out-
side the range of values provided by the stylus measurement.

For the non-deep learning (data-driven approach)
models, the MiniRocket model demonstrated the best per-
formance, achieving the lowest RMSE value of 0.0660
and a high correlation coefficient of 0.9576. The Rocket
model achieved a slightly lesser performance, with an RMSE
of 0.0882 In contrast, the XGBoost and Random Forest
models performed poorly compared to the other models
tested, as well as in comparison to the baseline models. For
XGBoost and Random Forest models, the input data must be
completely flattened, resulting in a very large feature space
of 1,310,720 (20× 2**16) dimensions for each data sample.
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Table 2 Results on data: 20%
per sample

Model RMSE Correlation Max error Pred. coverage

Closed-form baseline

Baseline transformed 0.3076 0.5940 1.0193 0.0992

Baseline 0.6546 0.5940 1.2648 0.0064

Non-deep learning (data-driven approach)

MiniRocket 0.0660 0.9576 0.2078 0.5921

Rocket 0.0882 0.9259 0.3876 0.4737

XGBoost 0.1970 0.5431 0.7598 0.2303

Random Forest 0.1985 0.6012 0.7038 0.2105

1D deep learning (data-driven approach)

TCN ks = 9 nl = 12 0.0487 0.9770 0.1740 0.6908

TCN ks = 5 nl = 13 0.0499 0.9762 0.1881 0.6776

TCN ks = 7 nl = 8 0.0529 0.9729 0.1891 0.6579

MGRU-FCN 0.0564 0.9695 0.1948 0.6053

InceptionTime 0.0584 0.9677 0.2476 0.6447

xresnet1d34 0.0618 0.9639 0.3486 0.5921

MLSTM-FCN 0.0633 0.9609 0.2052 0.5789

xresnet1d18 0.0643 0.9597 0.3837 0.6382

xresnet1d50 deep 0.0644 0.9600 0.3110 0.6118

xresnet1d101 0.0662 0.9587 0.2221 0.5329

MRNN-FCN 0.0703 0.9517 0.3980 0.6513

xresnet1d50 deeper 0.0704 0.9513 0.3141 0.5329

xresnet1d18 deep 0.0712 0.9506 0.4461 0.6053

xresnet1d34 deep 0.0743 0.9478 0.4354 0.5789

xresnet1d50 0.0754 0.9460 0.4752 0.5658

xresnet1d34 deeper 0.0779 0.9405 0.3381 0.5461

xresnet1d18 deeper 0.0795 0.9418 0.5058 0.5921

XceptionTime 0.0896 0.9201 0.3476 0.4474

ResCNN 0.0917 0.9190 0.5634 0.5987

FCN 0.1123 0.8799 0.6776 0.5197

ResNet 0.1223 0.8691 0.8352 0.6382

2D deep learning (data-driven approach)

xresnet34 0.0453 0.9806 0.1390 0.7237

ConvNeXt Small 0.0554 0.9706 0.1982 0.6184

ConvNeXt Tiny 0.0561 0.9701 0.1796 0.6382

xresnet18 0.0621 0.9629 0.2787 0.5658

Swin v2 Tiny 0.1124 0.8737 0.4015 0.2961

Swin v2 Small 0.1508 0.7551 0.8138 0.2961

ViT Small 0.1729 0.6859 0.4881 0.2632

ViT Tiny 0.1947 0.5813 0.5736 0.2171

We suspect that the results suffer from the large dimensions
and would benefit from some dimensionality reduction, such
as PCA before data is input into the model.

In the category of 1D deep learning (data-driven
approach), the models demonstrated strong performance.
The TCN ks = 9 nl = 12 model achieved the lowest RMSE of
0.0487, with a high correlation coefficient of 0.9770. Other

models in this category, such as TCN ks = 5 nl = 13, TCN ks
= 7 nl = 8, MGRU-FCN, and InceptionTime, demonstrated
comparable performance with RMSE values ranging from
0.0499 to 0.0584. Additionally, models such as xresnet1d34,
MLSTM-FCN, and xresnet1d50 deep exhibited good per-
formance with RMSE values below 0.065 and correlation
coefficients above 0.9500. It is interesting that the TCN ks =
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7 nl = 8 performed similarly to the other two models despite
this variation not having a receptive field large enough to
encompass the entire data length. This might be due to the
parameter Ra being, in essence, a mean across the length of
the sample, such that the output regression layer can easily
combine the features from different regions.

2D deep learning (data-driven approach) models showed
some variation in performance. It is important to note that
the 2D Deep Learning models can be categorized into two
groups: convolution-based models (such as xresnet and Con-
vNeXt) and transformer-based models (such as Swin and
ViT). The best-performing model, xresnet34, was better than
any of the 1Dmodels, though many of the transformer-based
2D models performed worse than all of them. In the cases
where a 2D model corresponded to a 1D architecture, the
2D model performed better. For example, this was the case
with the xresnet models. The xresnet34 model achieved the
lowest RMSE of 0.0453, with a high correlation coefficient
of 0.9806. Similar performance was observed for the Con-
vNeXt Small and ConvNeXt Tiny models, which achieved
RMSE values of 0.0554 and 0.0561 respectively. The xres-
net18 model also exhibited relatively strong performance.
The transformer-basedmodels exhibited relatively lower per-
formance, as indicated by higher RMSE values and lower
correlation coefficients compared to the convolution-based
models.

Overall, the best-performingmodel is the 2D xresnet34. It
exhibited the lowest RMSE, highest correlation coefficient,
lowest maximum error, and best prediction coverage. This
is closely followed by the best 1D convolution-based TCN
model with similar performance but with the benefit in terms
of computational efficiency due to less complex 1D convo-
lutional operations.

The prediction scatter for the 2D xresnet34 on the 20%
data is shown in Fig. 8. It is the best deep learning model
using the data-driven approach and significantly improvesRa
predictions when compared to the transformed closed-form
baseline. Prediction coverage (pred. coverage), is a measure
of the proportion of predictions that are within the minimum
and maximum of Ra measurements from the stylus for the
steel sample. This is visualized in the scatter plots: when a
point’s error bars cross the x = y line, it is counted as correct
for the coverage percentage.

4.2 K-fold experiments

To test the models’ generalizability between data samples
from different steel samples, k-fold experiments are per-
formed where all samples from each steel sample become
the test set for a model trained for each. The results of the
k-fold experiments are presented in Table 3. These experi-
ments are significantly more expensive to run, as each model
needs to be retrained 49 times, once for each steel sample.

Fig. 8 The 2D xresnet34 results on the 20% split dataset vs the baseline
tansformed

Therefore, these experiments have fewer models tested. The
baselines are the same for both experiments as they are closed
form.

The k-fold experiments evaluate the performance of the
models on each steel sample individually. In these experi-
ments, the baseline transformed and baseline models serve
as the reference baselines for comparison. The baseline trans-
formed model achieves an RMSE value of 0.3076 and a
correlation coefficient of 0.5940. The Baseline model per-
forms slightly worse, with an RMSE value of 0.6546 and the
same correlation coefficient.

Among the non-deep learning models in the data-driven
approach category, the MiniRocket model demonstrates the
best performance in the k-fold experiments. It achieves an
RMSE value of 0.1157 and a high correlation coefficient of
0.8675. The Rocket model also performs reasonably well,
with an RMSE of 0.1427 and a correlation coefficient of
0.7861.

In the 1D deep learning models, the TCN ks = 5 nl = 13
(Fig. 9) and TCN ks = 7 nl = 8 models exhibit strong perfor-
mance. Both models achieve relatively low RMSE values of
0.1028 and 0.1036, respectively, with high correlation coef-
ficients of 0.8923 and 0.8917. The 2D xresnet34, achieves
an RMSE value of 0.1095 and a correlation coefficient of
0.8774. This is slightly worse than its 1D equivalent, unlike
the 20% split results.

Comparing the performance of the models in the k-fold
experiments, it can be observed that the TCN models, lower
capacity 1D xresnet models (xresnet1d34, xresnet1d18)
models, and 2D xresnet34 outperform the other models.
These models perform well across both experiments, with
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Table 3 Results on data: fold
each steel sample

Model RMSE Correlation Max error Pred. coverage

Baselines

Baseline transformed 0.3076 0.5940 1.0193 0.0992

Baseline 0.6546 0.5940 1.2648 0.0064

Non-deep learning (data-driven approach)

MiniRocket 0.1157 0.8675 0.3944 0.3587

Rocket 0.1427 0.7861 0.4852 0.2813

1D deep learning (data-driven approach)

TCN ks = 5 nl = 13 0.1028 0.8923 0.5167 0.4542

TCN ks = 7 nl = 8 0.1036 0.8917 0.4902 0.4361

xresnet1d34 0.1076 0.8819 0.5649 0.4284

xresnet1d18 0.1102 0.8784 0.6172 0.4284

TCN ks = 9 nl = 12 0.1109 0.8764 0.5412 0.3832

InceptionTime 0.1115 0.8717 0.5904 0.4503

MLSTM-FCN 0.1174 0.8602 0.6120 0.3729

xresnet1d50 0.1204 0.8490 0.6394 0.3768

MGRU-FCN 0.1224 0.8512 0.5105 0.3200

MRNN-FCN 0.1267 0.8365 0.5793 0.3561

FCN 0.1359 0.8041 0.5446 0.3006

2D deep learning (data-driven approach)

xresnet34 0.1095 0.8774 0.6010 0.4181

the TCN models constantly performing very well and very
significantly beating the baselines.

As expected, the models perform worse on the k-fold
experiments as each prediction is on a completely unseen
steel sample, and our dataset has only 49 steel samples, a
relatively small number for generalization across samples
(Fig. 10).

Figure 3 shows that the data has close to a normal distri-
bution of Ra values across our samples. The model has seen
more samples with Ra values closer to the mean across all
samples. Figure 11 shows the RMSE for each steel sample
for the TCN models for the k-fold evaluation. It plots the
results vs the stylus measurement for each of the steel sam-
ples. There appears to be a minor improvement in the results
nearer to the distribution mean.

It can be observed that in the k-fold experiments, all the
models exhibited poor performance on all of the samples
taken from two specific steel samples, namely “MZ001” and
“GI047.” Interestingly, these two samples were also identi-
fied as outliers in our baseline calculations, as depicted in
Fig. 5. This finding raises the possibility that the models are
struggling to accurately predict these results due to inherent
issues with the collected data for these samples or problems
arising from our data preprocessing procedures. It is impor-
tant to note that these preprocessing steps are conducted prior
to both our calculation of the closed-form solution and the

data-driven approach. However, it is worth mentioning that
the data-driven approach produced satisfactory results for the
other two outliers from the closed-form calculation, namely
“MZ002” and “MZ003.” Figure 10 shows the TCN ks = 5 nl

Fig. 9 The results for the best model on the k-fold data (TCN ks = 5 nl
= 13) vs the baseline
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Fig. 10 The TCN Ks = 5 nl = 13 model results scatter plot for all of
the steel samples that were outliers when we calculated the close form
results, namely, all of the “MZ” steel samples and the “GI047” steel
sample

= 13 results scatter plot of only the samples from the closed-
form outlier steel samples, “MZ001,” “MZ002,” “MZ003,”
and “GI047.”

Despite these issues, the data-driven approach consis-
tently beats the baseline across all metrics. It is also worth
noting that theCNNmodels are computationally efficient and
can be run in real-time for predictions during production.

Fig. 11 The TCNmodels’ results vs the stylus steel sample Ra for each
fold. The right axis also shows the density of the Ra values in the dataset

We hypothesize that the underperformance of transformer
approaches can be attributed to the limited size of the avail-
able data and the absence of unsupervised pretraining tech-
niques or transfer learning. Typically, transformer networks
are trained on significantly larger datasets, such as being pre-
trained on extensive corpora and subsequently fine-tuned on
the specific experimental dataset. In our study, we did not
employ any form of pretraining for the transformer-based
approaches, which likely explains their inferior performance
compared to the Cov-based models. Cov-based models pos-
sess greater inductive bias, enabling them to learn effectively
even with less data. On the other hand, transformer mod-
els have the potential to achieve superior results by adopting
diverse learning strategies but require a larger amount of data
to acquire this capability.

We conducted a statistical comparison of the algorithms
on the k-fold test set results from the 49 steel samples. We
follow the work of [26] and adhere to the guidelines outlined
by Demšar [50]. In this process, each algorithm is ranked
for each of the 49 folds according to its Root Mean Square
Error (RMSE), assigning Rank 1 to the algorithm with the
lowest RMSE and Rank 14 to the highest. In the event of ties,
fractional ranking is employed. Subsequently, the average
rank for each algorithm is calculated. The Friedman test [51]
is then applied to these average ranks. In cases where the null
hypothesis was rejected, the post-hoc two-tailed Nemenyi
test is employed, following the methodology described by
Demšar [50], to compare the algorithms against each other.
The performance of the algorithms is deemed significantly
different if the average ranks exhibited a difference equal to
or greater than the critical difference of 2.8.

Figure 12 shows the critical difference diagram. The TCN
with ks 5 and nl 13 has the best average rank of 5.27 and is sig-
nificantly different from rocket, FCN, and xresnet1d50. The
black horizontal bar shows no significant difference between
the algorithms performing better than these three. The com-
putational cost experiments show, however, that minirocket
and xresnet34, running on CPU and using 2D convolution
respectively are much slower than the competitors.

Fig. 12 Critical difference diagram showing statistical difference com-
parison of the regression algorithms on the 49 different steel samples
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4.3 Computational cost

We performed a limited study to estimate the relative compu-
tational cost of using each of the aforementioned models in
production forRa predictions. In order to do so,we calculated
inference times on untrained versions of the models using all
724 samples in our dataset. The results can be seen in Table 4.
These experiments are performed using an AMD Ryzen 7
2700 Eight-Core Processor and a 2080ti GPU. The reported
inference times are a mean average over 10 predictions. For
the deep learning experiments, we use a batch size of 8. As
expected, neural networks with a larger number of weights
take longer tomake predictions, with the xresnet1d18 being a

Table 4 Inference times for different models

Model name Inference time (s)

xresnet1d18 deeper 2.0213

xresnet1d18 2.4981

TCN nl = 8 ks = 7 2.6053

xresnet1d18 deep 2.6869

XGBoost 3.4882

FCN 3.6852

TCN nl = 13 ks = 5 3.8410

ResCNN 4.0047

MRNN-FCN 4.1162

MGRU-FCN 4.1506

MLSTM-FCN 4.2164

xresnet1d34 4.4676

xresnet1d34 deep 4.6736

xresnet1d34 deeper 4.7140

Random Forest 4.9194

ResNet 6.8661

ViT Tiny 8.4807

XceptionTime 8.6212

TCN nl=12 ks = 9 9.1388

InceptionTime 10.8375

xresnet1d50 10.8629

xresnet1d50 deep 11.4460

xresnet1d50 deeper 11.5965

xresnet18 2D 17.9335

ViT Small 18.4366

xresnet1d101 20.6272

xresnet34 2D 32.6909

ConvNeXt Tiny 63.0345

Swin v2 Tiny 95.8745

ConvNeXt Small 107.5767

Rocket (GPU [33]) 125.8906

Swin v2 Small 188.7902

Minirocket 1632.5267

smallermodel and therefore the fastest to perform. 2Dmodels
are also shown to bemore computationally expensive than 1D
models. Minirocket has a significantly larger computational
cost than others, due to its lack of implementation for GPU
and large number of transformations. In theory,Minirocket is
a faster variant of theRocketmodel; however, we have imple-
mented Rocket in PyTorch so that it can utilize GPU [33].

These experiments are important to judge the feasibility of
using these models with the on-line system at line speed. For
our use case, train time is unimportant as the models will be
trained off-line. Each data sample is approximately 6.5cm
and the line speed is typically between 50 and 300cm/s,
meaning that to perform prediction at line speed we need
to be able to run approximately between 8 and 47 examples
per second for full coverage. As we have run the experi-
ments with all 724 samples from our dataset, the boundary
in the table for a model which can predict at the maximum
line speed is 15.4s for all 724 samples. All 1D deep learning
models apart from xresnet1d101 are below this threshold.
However, this threshold does not rule out feasibility as full
coverage is not a hard requirement. Predicting a more accu-
rate Ra less often can be more beneficial for line operators
or automatic tempermill control.

5 Conclusion

In this paper, we have provided a comprehensive evalua-
tion of machine learning models for the prediction of the
Ra roughness parameter from laser light reflection data.

This research introduces a novel methodology that sub-
stantially enhances the accuracy of online Ra roughness
parameter prediction by using machine learning models-
an approach previously unexplored. Conventional stylus
measurements cannot be taken on-line, and existing on-
line methods have been measured to exhibit inaccuracies
compared to the industry-standard stylus measurements.
Our approach and the models we tested consistently out-
performed the conventional closed-form baseline method,
underscoring their effectiveness.

Moreover, we validated the robustness of our approach
through two distinct experimental setups: the 20% test
data experiments and the more challenging k-fold cross-
validation. The findings from these experiments highlight
not only the potential but also the reliability of our machine
learning-based approach, reaffirming its capability to gen-
eralize and deliver accurate Ra roughness predictions on
unseen samples.

This approach offers fresh insights into how other surface
roughness parameters can be predicted and measured. The
success of our approach suggests that, in future work, sim-
ilar models can be employed to predict a spectrum of other
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steel surface parameters, thereby unlocking a broader range
of applications in various domains. By identifying the most
effective machine learning models for our specific problem,
this work offers a valuable starting point for those encoun-
tering similar data challenges.

In summary, this research signifies how accurate machine
learning can be for the prediction of surface roughness
parameters. Our findings not only emphasize the potential of
data-driven approaches but also provide a roadmap for future
endeavors in the arena of steel surface parameter prediction,
encouraging ongoing exploration and innovation.
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