

**Effects of acute and chronic stair climbing exercise on
metabolic health: A systematic review**

Jing-Yuan Hong¹, Yun-Jui Li¹, Richard Metcalfe², Yung-Chih Chen¹

¹ Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan

² Applied Sports Technology, Exercise and Medicine Research Centre (A-STEM), Swansea University, Bay Campus, Fabian Way, Swansea, UK

Corresponding author:

Dr. Yung-Chih Chen
Department of Physical Education and Sport Sciences
National Taiwan Normal University
Taipei, 162, Section 1, Heping E. Rd
Taiwan

Abstract

Background: Stair climbing exercise (SE) provides a feasible approach to elevate physical activity, but the effects on metabolic health are unclear. We systematically reviewed the currently available evidence on the effects of SE on fasting and postprandial glycaemia and lipidaemia. **Methods:** Studies were included if they investigated the effects of acute or chronic (at least 2 weeks) SE on fasting and/or postprandial glycaemic (insulin and glucose) and lipidaemic (triacylglycerols and non-esterified fatty acids) responses in healthy, prediabetic or type 2 diabetic adult populations. PubMed, Web of Science and Scopus were searched for eligible studies until July 2022. **Results:** 25 studies (14 acute and 11 chronic) were eligible for review. Acute bout(s) of SE can reduce postprandial glycaemia in individuals with prediabetes and type 2 diabetes (8 of 9 studies), but not in normoglycemic individuals. The effects of acute SE on postprandial lipidaemic responses and SE training on both fasting and postprandial glycaemia/lipidaemia were unclear. **Conclusion:** Acute SE may reduce postprandial glucose concentrations in people with impaired glycaemic control, but high-quality studies are needed. More studies are needed to determine the effect of chronic SE training on postprandial glucose and lipid responses, and the acute effects of SE on lipid responses.

Keywords: Impaired glucose control, type 2 diabetes, postprandial glycaemia, postprandial lipidaemia, stair climbing exercise

1 **Introduction**

2 Low levels of habitual physical activity together with prolonged sedentary behaviour are known
3 to impair metabolic health, including an elevation of fasting and postprandial glucose and lipid
4 concentrations (1-5). Importantly, an increase in postabsorptive and postprandial glycaemia
5 (e.g., glucose and insulin concentrations) and lipidaemia (e.g., triacylglycerols [TAGs] and non-
6 esterified fatty acids [NEFAs]) will increase the likelihood of developing to type 2 diabetes,
7 cardiovascular diseases, as well as premature morbidity and mortality (6, 7). The prevalence
8 and burden of both type 2 diabetes and cardiovascular disease remains extremely high
9 worldwide (8, 9). As such, there remains an urgent need to develop feasible and effective
10 strategies to increase population physical activity levels and improve metabolic health.

11

12 There is good evidence that various types of acute and chronic exercise, including moderate
13 intensity continuous exercise, resistance exercise and high-intensity interval exercise, can
14 improve fasting and postprandial glycaemia and lipaemia in both healthy [individuals](#) and
15 individuals with impaired glucose and lipid metabolism (e.g., prediabetes and type 2 diabetes)
16 (10-18). However, there are various obstacles that may impede the adoption of, and adherence
17 to, these types of exercise, such as the distance to the appropriate facilities, costs associated
18 with gym memberships, the difficulties of using specialised (gym) equipment, dislike of
19 unfamiliar (gym) environments, limited time to travel to exercise locations, and bad weather
20 (19). Overall levels of exercise adherence is low in the general population (20, 21), and
21 potentially lower in people with type 2 diabetes (22, 23), and this represents a key public health
22 challenge (24). Providing alternative and straightforward approaches to increasing
23 exercise/physical activity that overcome some of the key barriers may be part of an effective
24 solution.

25

26 Walking is promoted as an effective and easily available form of physical activity, but there is
27 some evidence from randomised controlled trials (RCTs) that the intensity may not be sufficient
28 to improve key aspects of metabolic health (e.g., glucose and TAGs) (25, 26). The addition of
29 stair climbing could be an easy way to increase the intensity of walking physical activity,
30 potentially resulting in more pronounced effects on metabolic health. The combined concentric
31 and eccentric component of ascending and descending stairs has also been hypothesised to elicit
32 greater skeletal muscle adaptations and metabolic health benefits (27, 28). Additional benefits
33 of [stair climbing exercise \(SE\)](#) are that it requires no extra skills/techniques, no equipment
34 (beyond access to a set of stairs), and it can easily be performed at home or in an office setting.
35

36 Recent studies have suggested that acute (e.g., single bout and multiple bouts) and long-term
37 [SE \(i.e., several weeks of training\)](#) interventions can reduce postprandial glucose concentrations
38 and improve lipid profile (25, 29, 30), but there are also several studies reporting no beneficial
39 effects (31-33). The inconsistent results might be caused by various SE protocols (i.e., duration
40 and intensity), different populations, and different methods of assessing postprandial glucose
41 and lipid control. Accordingly, whilst SE may be practical approach to increase moderate-
42 vigorous intensity physical activity, the efficacy of SE for improving the metabolic health is
43 not certain. Therefore, the purpose of [the](#) current study is to conduct a systematic review of
44 experimental studies on the acute and chronic effects of SE on glucose and lipid responses in
45 adults with and without type 2 diabetes.

46

47 **Methods**

48 This review was undertaken in accordance with the Preferred Reporting Items for Systematic
49 Reviews and Meta-Analysis (PRISMA) guidelines (34) and is registered at the International
50 Prospective Register of Systematic Reviews (PROSPERO) with registered number
51 (CRD42020221691).

52

53 **Search strategy**

54 The systematic literature search was performed using three electronic databases: PubMed, Web
55 of Science and Scopus. The databases were searched up until the end of July 2022. The search
56 was restricted to the English language and original research published in peer-reviewed journals
57 (preprints and grey literature were not included). The following keywords were used to identify
58 relevant articles: (“stair*” OR “stepping”) AND (“glucose” OR “glycemia” OR “glycaemia”
59 OR “free fatty acids [FFAs]” OR “lipemia” OR “non-esterified fatty acids [NEFAs]” OR
60 “triglycerides OR triacylglycerols” OR “insulin” OR “insulinemia”).

61

62 **Eligibility criteria**

63 The Population, Intervention, Comparison, Outcome and Study (PICOS) framework was used
64 to determine the inclusion criteria for studies (35). Studies were included based on the following
65 inclusion criteria:

66 1) (P) Participants: males and females aged 18 years or above. Healthy (i.e.,
67 normoglycaemia; fasting glucose < 100 mg/dL) and individuals with prediabetes
68 (fasting glucose: 100–125 mg/dL) and type 2 diabetes (fasting glucose: ≥125 mg/dL)
69 were included.

70 2) (I) Intervention: included studies had to involve either an acute (single bout and/or
71 multiple bouts throughout the day) or chronic (multiple bouts over at least 2 weeks) SE
72 intervention, and include a detailed description of the SE protocol (e.g., the type of SE
73 protocol [i.e., ascending and/or descending], intensity (e.g., heart rate [HR], %HR_{max},
74 %HRR, rating of perceived exertion [RPE] or step pace), number of sessions, duration
75 of SE, as well as the intervention period for chronic training. We excluded studies
76 involving bench stepping as it is biomechanically different from stair climbing (where
77 all movement is forward) and may result in different physiological effects.

78 3) (C) Comparator: for acute studies, a suitable no-exercise control trial needed to be
79 included to serve as the comparator. For chronic training studies, both randomised
80 controlled trials and single-arm intervention studies were considered eligible, with study
81 design considered when interpreting the findings. In the case of RCTs, the eligible
82 comparator was a time-matched no intervention control group, whereas for single arm
83 intervention studies comparisons were made between pre- and post-training time points.

84 4) (O) Outcome: The outcome variables of interest were blood glucose, insulin, TAGs and
85 NEFAs. Studies included at least one of those outcomes in the postprandial state for
86 acute studies, and within the fasting and/or postprandial state for training studies. No
87 restrictions were placed on the method of blood sampling; studies using intravenous
88 cannulation, venepuncture, fingerstick sampling or continuous glucose monitoring
89 (CGM) were included.

90 5) (S) Study design: RCTs or non-randomised controlled trials (non-RCTs) were both
91 included.

92

93 Studies were excluded if they met any of the following criteria:

94 1) A non-SE control (non-exercise) trial was not included in an acute study and/or the
95 protocol of SE, such as type, intensity, frequency, and duration, was not explicitly stated.
96 Studies involving bench stepping exercise on only one stair were also excluded.

97 2) Studies investigating the effects of SE combined with other types of exercise or dietary
98 interventions (e.g., intermittent fasting or low calories diets) were excluded because it
99 is not possible to determine the isolated effects of SE.

100 3) Any study reusing data from a previous study, without containing any new
101 measurements for at least one glycaemic or lipidaemic parameter.

102 4) No formal statistical analysis was provided in the published paper.

103 5) Studies published in non-English language, commentaries, letters, reviews, conference

104 abstracts, poster abstracts.

105

106 A Microsoft Excel spreadsheet was developed to track eligibility status. First, the titles and
107 abstracts were independently assessed by these two authors (J-YH and Y-JL) and initially coded
108 as 'yes', 'no' or 'maybe' for inclusion. The same two authors then reviewed the full texts of the
109 'yes' and 'maybe' studies, and disagreements regarding the inclusion of any study were
110 resolved by discussion with a third reviewer (Y-CC). In addition to the database search, the
111 reference lists of all included studies were checked to identify additional eligible articles. **Fig.**
112 **1** provides an overview of the study selection process.

113

114 [INSERT FIGURE 1 ABOUT HERE]

115

116 **Data extraction and synthesis**

117 The results in this review were analysed through a process of narrative synthesis after
118 standardised data was extracted from each of the included studies. Data extraction was
119 conducted by one reviewer (J-YH) and then verified by two reviewers (Y-JL and Y-CC). The
120 authors extracted the following data from each included article: (1) first author's name and
121 publication year; (2) participants' characteristics (e.g., age, health status and weight status); (3)
122 study design; (4) characteristics of the SE protocols (e.g., intensity and duration, etc.) and (5)
123 outcome measures (i.e., outcomes extracted for the narrative review were measures of blood
124 glucose [including results from CGM], insulin, TAGs and NEFAs). A *p* value of < 0.05,
125 presented in the original studies, was used across the studies to determine the significant effects
126 of SE intervention on the outcomes of interest.

127

128 **Study risk of bias assessment**

129 The quality of the studies included in the review was assessed using the Cochrane
130 Collaboration's risk of bias (RoB) 2.0 tool for crossover (acute studies) and parallel-arm study
131 designs (training studies) (36). Assessments were performed independently by two authors (Y-
132 CC and RM) with disagreements discussed between the two reviewers discussed until a
133 consensus was reached.

134

135 **Results**

136 **Study selection**

137 A total of 1403 article titles and abstracts were initially retrieved from the search. Of these, 844
138 were duplicates and were immediately removed. A total of 559 articles were then screened by
139 the title and abstract. After this first stage of screening, 25 articles were eligible for full-text
140 screening, and 7 articles were removed for the following reasons: 1) commentaries article (n =
141 1), 2) intervention criterion (n = 3), 3) unclear SE protocol (n = 1), 4) reused data from previous
142 study (n = 1), and 5) no formal statistical analysis presented (n = 1). This left 18 eligible articles
143 from the formal search with one additional article identified from the search of reference lists
144 from these articles (37). In addition, 6 of the included articles involved more than one trial,
145 either comparing different SE protocols (29-31), different populations (27, 38), and/or they
146 included both acute and chronic sub-studies (39). In total, 25 unique studies are included in this
147 review. There were 14 studies investigating the acute effects of SE (14, 27, 28, 33, 37-44) and
148 11 studies examining the training effects of SE (25, 29-32, 39, 45, 46). The flow chart of the
149 systematic search is presented in **Fig.1**.

150

151 **The study characteristics of acute stair climbing exercise**

152 The characteristics of the acute studies are summarized in **Table 1**. Overall, 14 studies (13
153 randomised controlled crossover studies and 1 non-randomised controlled crossover study)
154 were identified including 220 participants, aged between 23 and 72 years. These studies were

155 performed in populations who were metabolically healthy (n = 5 studies, 99 participants) (33,
156 38, 42, 44), in people with prediabetes (n = 5 studies, 128 participants) (14, 27, 28, 40, 43), and
157 in people with type 2 diabetes (n = 4 studies, n = 37 participants) (27, 37, 39, 41). Nine studies
158 used a single bout of SE (27, 28, 37, 39, 40, 42-44) and 5 studies involved multiple shorter
159 bouts of SE spread across the day (14, 33, 38, 41). The majority of studies involved both
160 ascending and descending SE (27, 28, 33, 37, 39-44), but 3 studies examined the effects of
161 ascending SE only (14, 38). The relative intensity of the SE exercise (based on HR according
162 to ACSM criteria (47)) was light-intensity (50–63% HR_{max}) in 3 studies (38, 43), moderate-
163 intensity (64–76% HR_{max}) in 9 studies (14, 27, 28, 33, 37, 39, 40, 42, 44), and vigorous intensity
164 (77–93% HR_{max}) in 1 study (41). In 1 study the SE was performed at self-selected pace between
165 90–110 steps/min but they did not report an objective measurement of relative intensity (44).

166

167 **Acute effects of stair climbing exercise on glucose, insulin, TAGs and NEFA responses**

168 In total, 14 studies investigated the acute effects of SE on postprandial glucose and insulin
169 responses. In people with prediabetes, all 5 studies reported a reduction in postprandial
170 glycaemic concentrations following either a single bout (27, 28, 40, 43) or after multiple shorter
171 bouts performed throughout the day (14). Findings were similarly consistent in people with
172 type 2 diabetes, 3 out of 4 studies reported positive effects of SE on postprandial glycaemic
173 responses (27, 37, 41) with 1 study reported no effect on a 24-h glucose AUC measured using
174 CGM (39). On the other hand, findings were inconsistent in people who were metabolically
175 healthy, with positive effects on postprandial glycaemia observed in one study (44) and no effect
176 observed in another two studies (33, 38). These inconsistent findings may be explained using
177 different SE protocols and participant characteristics (33, 38, 44). In terms of insulin responses,
178 one study found that postprandial insulin was reduced in healthy individuals after a single bout
179 of 3 and 10 min SE but not in 1 min SE (42) and postprandial insulin AUC were decreased in
180 **healthy middle-aged individuals with obesity**, but not in **younger individuals without obesity**,

181 using the same multiple bout SE protocol (38). No difference in postprandial insulin
182 concentrations were found in 3 studies which applied single bouts of SE in either **individuals**
183 **with** prediabetes (27, 28) or **individuals with** type 2 diabetes (27).

184

185 There were only a small number of studies that examined the effect of acute SE on postprandial
186 lipid responses (NEFAs and TAGs) (33, 37, 38, 41, 42). One study reported a reduction in NEFA
187 responses in healthy individuals with obesity, but not in healthy lean individuals (38). A further
188 two studies reported no effect of acute SE on NEFA responses in people type 2 diabetes (37,
189 41). There **were** no beneficial effects on postprandial TAGs responses in all acute SE
190 interventions in healthy participants (33, 38, 42) and none of **the** included studies examined
191 postprandial TAG responses in prediabetes and type 2 diabetes pateints.

192

193 [INSERT TABLE 1 ABOUT HERE]

194

195 **The study characteristics of chronic stair climbing exercise**

196 The characteristics of the chronic SE studies are summarized in **Table 2**. Overall, 11 studies (7
197 RCTs and 4 non-RCTs) were identified with a total of 187 participants, aged from 19 to 68
198 years. These studies were performed in participants who were categorized as metabolically
199 healthy (n = 7 studies, 143 participants) (25, 30-32, 46), in people with prediabetes (n = 2 studies,
200 30 participants) (29), and in people with type 2 diabetes (n = 2 studies, 14 participants) (39, 45).
201 The length of the training intervention ranged between 2 to 12 weeks. There were 7 studies
202 where the training was fully supervised (29-31, 39) and 4 studies where the training sessions
203 were performed in a free-living environment with either partial or without supervision (25, 32,
204 45, 46).

205

206

207 In terms of the mode of SE, 5 studies compared the independent effects of ascending or
208 descending SE in separate arms (29-31), with the rest including both ascending and descending
209 SE (25, 31, 32, 39, 45, 46). The majority of SE interventions (based on HR according to ACSM
210 criteria (47)) were performed at moderate-intensity (64–76% HR_{max} or RPE between 12–15
211 from the 6–20 scale) (25, 30, 39, 45), but 2 studies involved vigorous intensity (77–93%
212 HR_{max}) (31). In the other 2 studies, SE was performed at a self-selected pace (50–90 steps/min),
213 and they did not report a measure of relative exercise intensity (32, 46). Moreover, 6 studies
214 progressively increased training volumes (1–2 bouts of SE every 1–2 week) but the same SE
215 intensity for 5 days per week for 8 weeks (32, 46) or 2 to 3 days per week for 12 weeks (29,
216 30). 5 studies conducted the same SE training protocol (e.g., frequency and intensity) 3 times
217 per week for 6 weeks (31, 39) or 12 weeks (25). One study performed daily SE after every meal
218 (breakfast, lunch and dinner) for 2 weeks (45).

219

220 In addition, 10 studies reported post-training sampling, with overnight fasting (45), 48 h (30),
221 60 h (32, 46), 72 h (31, 39) and 96 h (29) after last training session. One study did not report
222 the timing of post-training sampling (25). In terms of outcome measurements, 6 of 11 training
223 studies only collected fasting blood samples (25, 30-32, 45, 46), and 4 of 11 assessed both
224 fasting and postprandial using either a 2-h OGTT (29, 31) or a 24-h mixed meal CGM
225 assessment (39).

226

227 **Training effects of stair climbing exercise on glucose, insulin and TAGs responses**

228 In total, 11 studies investigated the training effects of SE on either glycaemic and/or
229 insulinaemic responses and the majority of these studies (7 studies) collected only fasting
230 samples. Two studies reported the independent positive effects on both ascending and
231 descending SE after 8 weeks training on reducing glucose and insulin concentrations in older
232 prediabetic individuals with overweight and obesity (29), with more pronounced effects after

233 descending SE (29). Mixed results were found in the glycaemic/insulinaemic responses after
234 SE training in people who were normoglycaemic or in people with type 2 diabetes (25, 30, 31,
235 39, 45, 46). For example, Kang & Ahn, 2019 (25) have reported reduced fasting glucose
236 concentrations in an older adult population, but the intervention was longer (12 weeks), and the
237 SE session duration was also more prolonged (40 min). Similarly, Chow et al (30) reported
238 reduced fasting insulin concentrations after an 8-week SE intervention in young females, but
239 the finding was not consistent across descending SE (reduced fasting insulin) and ascending SE
240 (no effect observed). However, Allison et al (31) reported no significant changes in fasting or
241 OGTT-derived insulin and glucose responses following a 6-week low volume SE ($3 \times 20\text{-s}$
242 maximal stair ascends) intervention in young inactive females, whilst Godkin et al (39) reported
243 no change in fasting insulin, mean 24-glucose, time in hyperglycaemia or glycaemic variability
244 following a similar SE intervention ($3 \times 60\text{-s}$ high intensity stair climbs) in people with type 2
245 diabetes.

246

247 Overall, 6 studies investigated changes in blood TAG concentrations after SE interventions
248 ranging from 2 to 12 weeks in length. No studies measured changes in fasting NEFA
249 concentrations. The concentrations of fasting TAGs were decreased following 8 weeks of SE
250 training in healthy, middle aged, overweight/obese individuals (25, 46) and after 12 weeks of
251 training in middle aged, overweight/obese people with prediabetes (29). No effect of SE was
252 observed in one study in young healthy lean individuals after 8 weeks of training (32), and
253 following 2 weeks of SE training in males and females with type 2 diabetes (45).

254

255 [INSERT TABLE 2 ABOUT HERE]

256

257 **Quality Assessment**

258 Overall, 5 of 14 acute studies were rated as having “some concerns” for risk of bias (36%; (33,
259 38, 41, 44)), whilst 9 out of 14 studies were rated as having a high risk of bias. The main reasons
260 for the high risk of bias ratings were due to concerns in the randomisation process, the potential
261 for carryover effects and concerns in the statistical analysis (64%; (14, 27, 28, 37, 39, 40, 42,
262 43)). In addition, 3 of 11 SE training studies were rated as having “some concerns” for risk of
263 bias (27%; (30, 32)) and 8 out of 11 studies were rated as having high risk of bias. This was
264 mainly due to lack of a non-exercise control group (73%; (25, 29, 31, 39, 45, 46)). The results
265 of bias assessment are shown in the **Fig 2 and Fig 3.**

266

267 [INSERT FIGURE 2 ABOUT HERE]

268

269 [INSERT FIGURE 3 ABOUT HERE]

270

271 **Discussion**

272 The aim of this study was to systematically review the effects of acute and chronic SE on the
273 glycaemic and lipidaemic responses in individuals with healthy, prediabetic and type 2 diabetic
274 status. We found consistent evidence that acute bout(s) of SE, prior to feeding or after meal
275 consumption, can attenuate postprandial glucose concentrations in individuals with impaired
276 glucose control (i.e., prediabetes and type 2 diabetes). There were mixed results for the acute
277 effects of SE on postprandial glycaemia and insulinaemia in normoglycaemic individuals.
278 Furthermore, there is mixed evidence which on the balance suggests that there might be a
279 beneficial effect of SE training on fasting glucose and TAG concentrations in middle-aged
280 individuals who were overweight [and had prediabetes](#). However, the quality of the available
281 SE training studies was low (high potential risk of bias) and thus further high-quality research
282 is needed. Finally, although the currently available evidence suggests there is no effect of acute

283 SE on postprandial lipid responses, only limited studies have investigated this, and thus no clear
284 conclusions can be drawn at this time.

285

286 **Effects of acute stair climbing exercise on postprandial glycaemic responses**

287 Postprandial hyperglycaemia is strongly associated with adverse health outcomes including an
288 increased risk of cardiovascular disease and type 2 diabetes (48). Moreover, studies have shown
289 that exaggerated postprandial glucose excursions are a particularly important consideration for
290 individuals with impaired glycaemic control; indeed, even in individuals with well controlled
291 type 2 diabetes according to HbA1c, a significant proportion of the day can be spent in
292 (postprandial) hyperglycaemia (49).

293

294 The present review provides some evidence that in people with pre- and type 2 diabetes, acute
295 SE exercise with a self-selected comfortable and/or predetermined pace (mostly moderate
296 intensity) and performed approximately 20–120 min after a meal, can reduce postprandial
297 glucose excursions. Indeed, this finding was consistent across all 5 of the available studies in
298 prediabetic populations (14, 27, 28, 40, 43) and 3 out of 4 studies in people with type 2 diabetes
299 (27, 37, 41). This effect appears to be independent of participant age (young (40, 43), middle-
300 aged (14, 27, 28) or elder individuals (27, 37, 41)) and the method of assessment of glycaemic
301 control (e.g., OGTT (14, 37, 40) *versus* mixed meal tests (14, 27, 28, 41, 43)). Furthermore,
302 reductions in glucose concentrations at one or more time points after a meal have been observed
303 with a range of different SE protocols (e.g., the duration of the SE bouts ranged from 1 to 10
304 min), but there is some evidence of a potential dose response, with studies reporting more
305 pronounced improvement in glycaemic control (e.g. reduction in glucose AUC) with longer (3
306 and 10 min) compared to shorter bouts (1 min) of SE (40, 43). **It is also interesting to note that**
307 **the improvements in postprandial glycaemia following acute SE in people with either pre-**
308 **diabetes or type 2 diabetes have been observed in the absence of any change in postprandial**

309 insulin responses (27, 28), perhaps indicating that acute SE improves glycaemia via insulin-
310 independent mechanisms (discussed below). Collectively, the currently available evidence
311 supports that SE can be used as an effective and ready-to-perform strategy to decrease
312 postprandial glycaemia for individuals with impaired glucose control (e.g., prediabetes and type
313 2 diabetes). However, the high risk of bias score for the majority of the included studies, means
314 that these findings should be interpreted with some caution.

315

316 Mechanistically, the improvement in glycaemic control after acute SE is probably explained by
317 an increase in exogenous glucose oxidation together with increases in glucose and insulin
318 delivery due to enhanced blood flow to skeletal muscle during acute bouts of exercise (1, 50).
319 Indeed, skeletal muscle rapidly activates glucose uptake during moderate intensity exercise by
320 inducing translocation of glucose transporter 4 (GLUT4) molecules to the cell surface within 5
321 min of exercise initiation (50, 51). This mechanism results in an increase in skeletal muscle
322 glucose uptake which is independent and additive to the effects of insulin (52, 53). This
323 mechanistic suggestion remains speculative, however, as to our knowledge, no studies have
324 investigated the mechanisms for improved glycaemic control following acute SE. **Future**
325 **studies should investigate the molecular mechanisms through which acute SE improves**
326 **glycaemic control.**

327

328 Interestingly, some studies have compared SE to walking (28) and cycling (27) in people with
329 prediabetes and type 2 diabetes. A single bout of 6 min SE, compared to walking, showed a
330 greater reduction of postprandial glucose concentrations (28). This effect may be a result of the
331 higher exercise intensity (e.g., greater HR and estimated oxygen consumption and lactate levels)
332 in SE compared to walking (28). In another study with better standardisation of exercise
333 intensity (e.g., same HR and RPE), a single bout of 8 min SE was superior to cycling for
334 reducing postprandial glucose concentrations (27). Although both concentric and eccentric

335 muscle contraction are involved in SE and cycling, the support of body weight that is involved
336 during the SE could be a potential reason why better improvements in glycaemic control were
337 found SE compared to cycling.

338

339 Postprandial glycaemic control is also an important consideration in individuals who would be
340 classified as "normoglycaemic" according to diagnostic criteria for type 2 diabetes. Studies
341 have shown that there is a causal effect of postprandial spikes in blood glucose after a meal and
342 the risk of cardiovascular and metabolic related diseases not only in individuals with
343 prediabetes and type 2 diabetes but also in normoglycaemic individuals (48, 54, 55). The
344 present review revealed mixed findings on the effects of SE on postprandial
345 glycaemic/insulinaemic responses and, overall, it is not possible to conclude that there is a
346 beneficial effect of acute SE in this population (33, 38, 42, 44). This is perhaps not all that
347 surprising given that there is also mixed evidence for the effects of other types of exercise of
348 postprandial insulin sensitivity and glycaemic control in healthy individuals (56-66). The
349 heterogeneous design of the small number of studies (5 studies only) is likely to explain the
350 mixed findings, with differences in population characteristics (lean vs obese), SE protocols, and
351 the composition of the meal and/or outcome assessment methods the most likely driving factors.
352 Indeed, there is evidence from one study that, despite identical study methods and SE protocols,
353 SE improved postprandial insulin responses in overweight/obese but not in lean individuals
354 (38). Similarly, another study showed that the improvement in glycaemic control following
355 multiple shorter bouts of SE was only present in people with elevated baseline blood glucose
356 concentrations (14). **It is also worth noting that any potential improvements in glycaemic**
357 **control in normoglycaemic individuals are likely to be subtle because the capacity for skeletal**
358 **muscle glucose uptake is already high, particularly in those who are young and lean. As such,**
359 **studies with small sample sizes and low statistical power may lack the sensitivity to be able to**
360 **detect any change.**

361

362 **Effects of acute stairs climbing exercise on postprandial lipemic responses**

363 Previous meta-analyses have demonstrated a ~15–25% decrease in postprandial TAGs
364 following running and cycling between 30–110 min at 40–75% $\dot{V}O_{2\text{max}}$ (67) and small reduction
365 in postprandial TAGs when breaking sitting with short bouts of physical activity compared to
366 prolonged sitting (68). However, there was no effect of acute bout(s) SE on postprandial TAGs
367 reported in any of the 4 available studies revealed in this review, either in young healthy lean
368 and overweight individuals (33, 38, 42). There was also limited evidence for any changes in
369 NEFA concentrations, with only one study showing an effect in obese but not in lean individuals
370 (38), and two other studies showing no effect in people with type 2 diabetes (37, 41). Together,
371 these findings suggest that SE has limited effects on postprandial lipid concentrations. However,
372 it is important to note that there is relatively less research on the effects of SE on postprandial
373 lipaemia compared to postprandial glycaemia and, as such, an important finding of this review
374 is the need for more research in this area. Nevertheless, one potential reason for the lack of
375 effect observed in the studies conducted to date is the short duration and low exercise volume
376 of SE (e.g., in 5 of 6 trial arms the duration of SE was lower than 10 min), with previous research
377 suggesting that higher exercise duration and/or volume is an important driver of the effect of
378 aerobic exercise on lowering postprandial lipids (69). Moreover, studies have shown that
379 exercise performed 12–16 h prior to a meal seems to produce the most dramatic and consistent
380 decrease in postprandial lipidaemia (67) and in the current review studies were between 1–9 h
381 timeframe which might be another reason for the lack of observed effects of SE on lipemic
382 responses.

383

384 **Effects of chronic SE training on insulin and glycaemic responses in healthy, prediabetes**
385 **and type 2 diabetes populations**

386 Whilst the acute effects of exercise are generally thought to be more important for improving
387 glycaemic control, there is some evidence that chronic adaptations to exercise *training* can
388 enhance insulin sensitivity and glycaemic control after the acute effects of the last training bout
389 have subsided (70). There are 11 studies that have investigated the training effects of SE on
390 blood glucose and insulin concentrations, with 7 in healthy individuals (25, 30-32, 46), 2 in
391 prediabetic individuals (29) and 2 in people with type 2 diabetes (39, 45).

392

393 There is evidence both for and against a beneficial effect of chronic SE on markers of insulin
394 sensitivity and glycaemic control. For example, studies have reported improvements in insulin
395 sensitivity in older adults with prediabetes following a 12-week SE intervention (29), whilst
396 other studies in people with type 2 diabetes have reported no changes following 2–6 week SE
397 interventions (39, 45). Similarly, in healthy normoglycaemic populations, studies have reported
398 both favourable effects (25, 30) and no significant changes (31, 46). There are a wide variety
399 of possible explanations for these mixed findings, but there are three key themes that are worthy
400 of further discussion. Firstly, it is notable that most studies investigating chronic SE have relied
401 on fasting indices and this may miss the beneficial effects of training-induced skeletal muscle
402 adaptations upon insulin sensitivity and glycaemic control, which are mostly likely to be
403 observed postprandially (71). Secondly, there is some tentative evidence of a dose-response
404 effect in the literature to date. For example, two studies investigating particularly low volumes
405 of SE (3 × 20 s or 3 × 60 s stair climbs per session) over 6 weeks reported no improvements
406 (31, 39), whereas studies that have reported beneficial changes have tended to use either higher
407 volumes of SE per session and/or longer training interventions (25, 30). Finally, it is important
408 to highlight that many of the studies conducted to date have had very small sample sizes and,
409 given the associated technical/biological/random error associated with repeated assessments of
410 insulin sensitivity and glycaemic control (72), the statistical power of these studies to detect
411 improvements is low. To illustrate this point, in the study by Allison et al (31), which had a

412 sample size of n=11, there was a 10% mean reduction in insulin AUC and a 12% mean
413 improvement in insulin sensitivity following 6-weeks of low volume SE in healthy inactive
414 women, but both findings were statistically non-significant. Taken together, there is a clear
415 need for further larger studies in both healthy and clinical cohorts, investigating a variety of
416 doses of chronic SE, on both fasting and (particularly) postprandial insulin sensitivity and
417 glycaemic control.

418

419 An additional theme from the chronic SE studies that is important to highlight is the potential
420 for descending SE to result in more profound improvements in insulin sensitivity and glycaemic
421 control compared with ascending SE (29, 73). Interestingly, these more pronounced effects
422 appear to occur despite lower relative exercise intensity (i.e., heart rate) and RPE with
423 descending SE (29). The reason descending SE demonstrated greater beneficial effects is
424 unclear, but a possible mechanism could be an attenuated circulating inflammatory response
425 (e.g., component 1q, apelin and adropin) caused by mechanical pressure through repeated bouts
426 of eccentric muscle contraction (73). Nevertheless, the practical application of the more
427 pronounced effects of descending SE is somewhat unclear, as in a real-world setting,
428 performing a bout SE for health would most likely necessitate a combination of both ascending
429 and descending SE.

430

431 Overall, the findings of this review have revealed a clear contrast in findings between the effects
432 of acute and chronic SE on markers of glycaemic control and insulin sensitivity in people with
433 pre- or type 2 diabetes. Specifically, there is a clear and consistent pattern of evidence (albeit
434 from studies of mixed quality) that acute bouts of SE can improve glycaemia, whereas the
435 effects of chronic SE several days after the final session has been performed are unclear. This
436 has important practical implications: for people with pre- or type 2 diabetes who are interested
437 in using SE as a method to manage blood glucose control, the current evidence suggests that a

438 higher frequency of SE sessions will be important to maintain the potential benefits. This is not
439 dissimilar to recommendations for other types of physical activity and exercise, where a high
440 frequency of activity is similarly emphasised in clinical guidelines and recommendations (74).

441

442 **Effects of chronic SE training on lipaemic responses**

443 Only 6 studies in total have investigated the training effects of SE on fasting TAG
444 concentrations, with three studies in healthy individuals (25, 32, 46), two studies in prediabetic
445 individuals (29) and one in type 2 diabetes (45). One study involving 2 weeks of SE training
446 found no effects on TAGs in lean elderly men (45). However, a reduction in fasting TAGs has
447 been reported after 8 weeks of SE in overweight/obese women who were either metabolically
448 healthy or with prediabetes/type 2 diabetes (25, 29, 46). Similar improvements were not
449 observed in the relatively young and lean sedentary women (age of ~20 years) (32). This
450 potentially suggests that body composition might be important moderator of the effect of SE
451 training on fasting TAGs, and this should be investigated.

452

453 **Key Directions for Future Research**

454 This review has revealed some important directions for future research. Firstly, due to limited
455 available studies, the effect of both acute SE and SE training on lipidaemic responses is unclear
456 and more research is needed in this area. Similarly, most of the SE training studies to date have
457 used fasting blood samples and therefore there is a need to investigate the effect of SE training
458 on postprandial metabolic responses. This is especially the case as it can be argued that
459 postprandial responses are more likely to be influenced by adaptations in skeletal muscle (71).

460 Moreover, the most of SE training studies were classified as having a high risk of bias due to
461 lack of non-exercise control groups, meaning any observed changes cannot be specifically
462 attributed to SE. Therefore, there is a need for randomised controlled trials to determine the true
463 effect of SE training on both fasting and postprandial glycaemia/lipidaemia. There is also a lack

464 of research investigating different SE protocol permutations on both glycaemic and lipid
465 responses. Indeed, most studies performed SE at moderate-intensity and direct comparisons in
466 the different intensities have not been made. In addition, due to different height and numbers
467 of stairs, unavoidably the total work and energy expenditure is different between studies and so
468 it is challenging to compare SE protocols across studies. Finally, one practical concern of SE
469 for older and/or overweight/obese individuals, or individuals with bone related issues, is the
470 potential for SE to cause knee injuries. Thus, it would be useful for future studies to investigate
471 the safety of SE in these populations, as well as the effect of SE interventions on bone related
472 health. In addition, [where studies wish to investigate the potential effects of intensity on the](#)
473 [health-related effects of SE, it may be prudent to use load carriage as an alternative to increasing](#)
474 [walking/running speed, as a method achieve higher SE intensities \(75\).](#)

475

476 **Conclusions**

477 In conclusion, this systematic review revealed some evidence that acute bout(s) of SE with
478 minimum 3 min duration can reduce postprandial glycaemic responses in people with pre- and
479 type 2 diabetes. Conversely, there is inconsistent evidence (fasting) or a lack of available studies
480 (postprandial) showing that SE training can improve glycaemic control in either healthy or pre-
481 and type 2 diabetic populations. Similarly, there is limited research on the acute or chronic
482 effects of SE on lipid responses, and findings are inconsistent. Overall, further high-quality
483 studies are needed to increase the certainty of conclusions that can be made on the effects of
484 both acute and chronic SE on glycaemic/lipidaemic regulation.

485

486 **Authors' contributions**

487 Y-CC and RM initially designed this project. J-YH and Y-JL searched and reviewed the
488 literature and assessed risk of bias of included studies in consultation with Y-CC and RM. J-

489 YH extracted data. J-YH and Y-CC wrote the manuscript with inputs and critical feedback from
490 RM. All authors approved the final manuscript.

491

492 **Statements and Declarations**

493 The authors declare no competing interests. This work was financially supported by the
494 National Taiwan Normal University (NTNU) within the framework of the Higher Education
495 Sprout Project by the Ministry of Education (MOE) in Taiwan to Y-CC.

496

497 **References**

- 498 1. Chen YC, Betts JA, Walhin JP, Thompson D. Adipose Tissue Responses to Breaking
499 Sitting in Men and Women with Central Adiposity. *Med Sci Sports Exerc.* 2018;50(10):2049-57.
- 500 2. Walhin JP, Richardson JD, Betts JA, Thompson D. Exercise counteracts the effects of
501 short-term overfeeding and reduced physical activity independent of energy imbalance
502 in healthy young men. *J Physiol.* 2013;591(24):6231-43.
- 503 3. Bovolini A, Garcia J, Andrade MA, Duarte JA. Metabolic Syndrome Pathophysiology
504 and Predisposing Factors. *Int J Sports Med.* 2021;42(3):199-214.
- 505 4. Krogh-Madsen R, Pedersen M, Solomon TP et al. Normal physical activity obliterates
506 the deleterious effects of a high-caloric intake. *J Appl Physiol (1985).* 2014;116(3):231-
507 9.
- 508 5. Krogh-Madsen R, Thyfault JP, Broholm C et al. A 2-wk reduction of ambulatory activity
509 attenuates peripheral insulin sensitivity. *J Appl Physiol (1985).* 2010;108(5):1034-40.
- 510 6. Kim D, Konya P, Sandhu KK, Dennis BB, Cheung AC, Ahmed A. Metabolic
511 dysfunction-associated fatty liver disease is associated with increased all-cause
512 mortality in the United States. *J Hepatol.* 2021;75(6):1284-91.
- 513 7. Xu H, Zhang Y, Xu W et al. Associations of visit-to-visit fasting glucose with risk of
514 mortality: A retrospective cohort study of 48,077 people with type 2 diabetes. *Diabetes
515 Metab.* 2021;47(1):101161.
- 516 8. Stadl E, Khunti K, Hansen TB, Schnell O. The global epidemics of diabetes in the 21st
517 century: Current situation and perspectives. *Eur J Prev Cardiol.* 2019;26(2_suppl):7-14.
- 518 9. Bauersachs R, Zeymer U, Briere JB, Marre C, Bowrin K, Huelsebeck M. Burden of
519 Coronary Artery Disease and Peripheral Artery Disease: A Literature Review.
520 *Cardiovasc Ther.* 2019;2019:8295054.
- 521 10. Thompson D, Karpe F, Lafontan M, Frayn K. Physical activity and exercise in the

523 regulation of human adipose tissue physiology. *Physiol Rev.* 2012;92(1):157-91.

524 11. Frampton J, Cobbold B, Nozdrin M et al. The Effect of a Single Bout of Continuous

525 Aerobic Exercise on Glucose, Insulin and Glucagon Concentrations Compared to

526 Resting Conditions in Healthy Adults: A Systematic Review, Meta-Analysis and Meta-

527 Regression. *Sports Med.* 2021;51(9):1949-66.

528 12. Brown EC, Franklin BA, Regensteiner JG, Stewart KJ. Effects of single bout resistance

529 exercise on glucose levels, insulin action, and cardiovascular risk in type 2 diabetes: A

530 narrative review. *J Diabetes Complications.* 2020;34(8):107610.

531 13. Costa RR, Buttelli ACK, Vieira AF et al. Effect of Strength Training on Lipid and

532 Inflammatory Outcomes: Systematic Review With Meta-Analysis and Meta-Regression.

533 *J Phys Act Health.* 2019;16(6):477-91.

534 14. Gay JL, Buchner DM, Erickson ML, Lauture A. Effect of short bouts of high intensity

535 activity on glucose among adults with prediabetes: A pilot randomized crossover study.

536 *Diabetes Res Clin Pract.* 2018;141:168-74.

537 15. Jolleyman C, Yates T, O'Donovan G et al. The effects of high-intensity interval training

538 on glucose regulation and insulin resistance: a meta-analysis. *Obes Rev.*

539 2015;16(11):942-61.

540 16. Jimenez-Maldonado A, Garcia-Suarez PC, Renteria I, Moncada-Jimenez J, Plaisance

541 EP. Impact of high-intensity interval training and sprint interval training on peripheral

542 markers of glycemic control in metabolic syndrome and type 2 diabetes. *Biochim*

543 *Biophys Acta Mol Basis Dis.* 2020;1866(8):165820.

544 17. Wewege MA, Thom JM, Rye KA, Parmenter BJ. Aerobic, resistance or combined

545 training: A systematic review and meta-analysis of exercise to reduce cardiovascular

546 risk in adults with metabolic syndrome. *Atherosclerosis.* 2018;274:162-71.

547 18. Kanaley JA, Colberg SR, Corcoran MH et al. Exercise/Physical Activity in Individuals

548 with Type 2 Diabetes: A Consensus Statement from the American College of Sports

549 Medicine. *Med Sci Sports Exerc.* 2022;54(2):353-68.

550 19. Gjestvang C, Abrahamsen F, Stensrud T, Haakstad LAH. Motives and barriers to

551 initiation and sustained exercise adherence in a fitness club setting-A one-year follow-

552 up study. *Scand J Med Sci Sports.* 2020;30(9):1796-805.

553 20. Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical

554 activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9

555 million participants. *Lancet Glob Health.* 2018;6(10):e1077-e86.

556 21. Centers for Disease C, Prevention. Adult participation in aerobic and muscle-

557 strengthening physical activities--United States, 2011. *MMWR Morb Mortal Wkly Rep.*

558 2013;62(17):326-30.

559 22. Morato EH, Hill JO, Wyatt HR, Ghushchyan V, Sullivan PW. Physical activity in U.S.

560 adults with diabetes and at risk for developing diabetes, 2003. *Diabetes Care.*

561 2007;30(2):203-9.

562 23. Zhao F, Wu W, Feng X et al. Physical Activity Levels and Diabetes Prevalence in US
563 Adults: Findings from NHANES 2015-2016. *Diabetes Ther.* 2020;11(6):1303-16.

564 24. Kraus WE, Powell KE, Haskell WL et al. Physical Activity, All-Cause and
565 Cardiovascular Mortality, and Cardiovascular Disease. *Med Sci Sports Exerc.*
566 2019;51(6):1270-81.

567 25. Kang SJ, Ahn CH. The effects of home-based stair and normal walking exercises on
568 lower extremity functional ability, fall risk factors, and cardiovascular health risk factors
569 in middle-aged older women. *J Exerc Rehabil.* 2019;15(4):584-91.

570 26. Gray SR, Baker G, Wright A et al. The effect of a 12 week walking intervention on
571 markers of insulin resistance and systemic inflammation. *Prev Med.* 2009;48(1):39-44.

572 27. Takaishi T, Hayashi T. Stair ascending-descending exercise accelerates the decrease in
573 postprandial hyperglycemia more efficiently than bicycle exercise. *BMJ Open Diabetes*
574 *Res Care.* 2017;5(1):e000428.

575 28. Takaishi T, Imaeda K, Tanaka T, Moritani T, Hayashi T. A short bout of stair climbing-
576 descending exercise attenuates postprandial hyperglycemia in middle-aged males with
577 impaired glucose tolerance. *Appl Physiol Nutr Metab.* 2012;37(1):193-6.

578 29. Chen TC, Hsieh CC, Tseng KW, Ho CC, Nosaka K. Effects of Descending Stair Walking
579 on Health and Fitness of Elderly Obese Women. *Med Sci Sports Exerc.*
580 2017;49(8):1614-22.

581 30. Chow BC, Li S, Zhu X et al. Effects of descending or ascending stair exercise on body
582 composition, insulin sensitivity, and inflammatory markers in young Chinese women
583 with obesity: A randomized controlled trial. *J Sports Sci.* 2021;39(5):496-502.

584 31. Allison MK, Baglione JH, Martin BJ, Macinnis MJ, Gurd BJ, Gibala MJ. Brief Intense
585 Stair Climbing Improves Cardiorespiratory Fitness. *Med Sci Sports Exerc.*
586 2017;49(2):298-307.

587 32. Boreham CA, Kennedy RA, Murphy MH, Tully M, Wallace WF, Young I. Training
588 effects of short bouts of stair climbing on cardiorespiratory fitness, blood lipids, and
589 homocysteine in sedentary young women. *Br J Sports Med.* 2005;39(9):590-3.

590 33. Cho MJ, Bunsawat K, Kim HJ, Yoon ES, Jae SY. The acute effects of interrupting
591 prolonged sitting with stair climbing on vascular and metabolic function after a high-fat
592 meal. *Eur J Appl Physiol.* 2020;120(4):829-39.

593 34. Moher D, Shamseer L, Clarke M et al. Preferred reporting items for systematic review
594 and meta-analysis protocols (PRISMA-P) 2015 statement. *Syst Rev.* 2015;4:1.

595 35. Shamseer L, Moher D, Clarke M et al. Preferred reporting items for systematic review
596 and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. *BMJ.*
597 2015;350:g7647.

598 36. Sterne JAC, Savovic J, Page MJ et al. RoB 2: a revised tool for assessing risk of bias in
599 randomised trials. *BMJ.* 2019;366:l4898.

600 37. Takaishi T, Hayashi T. Stair climbing/descending exercise-immediate effect against

601 postprandial hyperglycemia in older people with type 2 diabetes mellitus. *Annals of*
602 *Sports Medicine and Research* 2015;2(3):1023.

603 38. Rafiei H, Omidian K, Myette-Cote E, Little JP. Metabolic Effect of Breaking Up
604 Prolonged Sitting with Stair Climbing Exercise Snacks. *Med Sci Sports Exerc.*
605 2021;53(1):150-8.

606 39. Godkin FE, Jenkins EM, Little JP, Nazarali Z, Percival ME, Gibala MJ. The effect of
607 brief intermittent stair climbing on glycemic control in people with type 2 diabetes: a
608 pilot study. *Appl Physiol Nutr Metab.* 2018;43(9):969-72.

609 40. Bartholomae E, Johnson Z, Moore J, Ward K, Kressler J. Reducing Glycemic Indicators
610 with Moderate Intensity Stepping of Varied, Short Durations in People with Pre-
611 Diabetes. *J Sports Sci Med.* 2018;17(4):680-5.

612 41. Honda H, Igaki M, Hatanaka Y et al. Stair climbing/descending exercise for a short time
613 decreases blood glucose levels after a meal in people with type 2 diabetes. *BMJ Open*
614 *Diabetes Res Care.* 2016;4(1):e000232.

615 42. Moore J, Bartholomae EM, Ward K, Hooshmand S, Kressler J. Three minutes of
616 moderate-intensity stair walking improves glucose and insulin but not insulin sensitivity
617 or total antioxidant capacity. *Nutr Metab Cardiovasc Dis.* 2022;32(2):479-86.

618 43. Moore J, Salmons H, Vinoskey C, Kressler J. A single one-minute, comfortable paced,
619 stair-climbing bout reduces postprandial glucose following a mixed meal. *Nutr Metab*
620 *Cardiovasc Dis.* 2020;30(11):1967-72.

621 44. Moore JM, Bartholomae E, Ward K, Kressler J. Postprandial glucose response
622 moderation by cardiorespiratory fitness following short exercise bouts. *J Sports Med*
623 *Phys Fitness.* 2020;60(5):764-9.

624 45. Honda H, Igaki M, Hatanaka Y et al. Repeated 3-minute stair climbing-descending
625 exercise after a meal over 2 weeks increases serum 1,5-anhydroglucitol levels in people
626 with type 2 diabetes. *J Phys Ther Sci.* 2017;29(1):75-8.

627 46. Michael E, White MJ, Eves FF. Home-Based Stair Climbing as an Intervention for
628 Disease Risk in Adult Females; A Controlled Study. *Int J Environ Res Public Health.*
629 2021;18(2).

630 47. Liguori G. *ACSM's Guidelines for Exercise Testing and Prescription.* American College
631 of Sports Medicine; 2022.

632 48. Monnier L, Colette C. Postprandial and basal hyperglycaemia in type 2 diabetes:
633 Contributions to overall glucose exposure and diabetic complications. *Diabetes Metab.*
634 2015;41(6 Suppl 1):6S9-6S15.

635 49. van Dijk JW, Manders RJ, Hartgens F, Stehouwer CD, Praet SF, van Loon LJ.
636 Postprandial hyperglycemia is highly prevalent throughout the day in type 2 diabetes
637 patients. *Diabetes Res Clin Pract.* 2011;93(1):31-7.

638 50. Wahren J, Felig P, Ahlborg G, Jorfeldt L. Glucose metabolism during leg exercise in
639 man. *J Clin Invest.* 1971;50(12):2715-25.

640 51. Romijn JA, Coyle EF, Sidossis LS et al. Regulation of endogenous fat and carbohydrate
641 metabolism in relation to exercise intensity and duration. *Am J Physiol.* 1993;265(3 Pt
642 1):E380-91.

643 52. Mul JD, Stanford KI, Hirshman MF, Goodyear LJ. Exercise and Regulation of
644 Carbohydrate Metabolism. *Prog Mol Biol Transl Sci.* 2015;135:17-37.

645 53. Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake.
646 *Physiol Rev.* 2013;93(3):993-1017.

647 54. Hanefeld M, Koehler C, Schaper F, Fuecker K, Henkel E, Temelkova-Kurktschiev T.
648 Postprandial plasma glucose is an independent risk factor for increased carotid intima-
649 media thickness in non-diabetic individuals. *Atherosclerosis.* 1999;144(1):229-35.

650 55. Lin HJ, Lee BC, Ho YL et al. Postprandial glucose improves the risk prediction of
651 cardiovascular death beyond the metabolic syndrome in the nondiabetic population.
652 *Diabetes Care.* 2009;32(9):1721-6.

653 56. Baynard T, Franklin RM, Goulopoulou S, Carhart R, Jr., Kanaley JA. Effect of a single
654 vs multiple bouts of exercise on glucose control in women with type 2 diabetes.
655 *Metabolism.* 2005;54(8):989-94.

656 57. Bogardus C, Thuillez P, Ravussin E, Vasquez B, Narimiga M, Azhar S. Effect of muscle
657 glycogen depletion on in vivo insulin action in man. *J Clin Invest.* 1983;72(5):1605-10.

658 58. Brestoff JR, Clippinger B, Spinella T, von Duvillard SP, Nindl BC, Arciero PJ. An acute
659 bout of endurance exercise but not sprint interval exercise enhances insulin sensitivity.
660 *Appl Physiol Nutr Metab.* 2009;34(1):25-32.

661 59. Devlin JT, Horton ES. Effects of prior high-intensity exercise on glucose metabolism in
662 normal and insulin-resistant men. *Diabetes.* 1985;34(10):973-9.

663 60. Hasson RE, Granados K, Chipkin S, Freedson PS, Braun B. Effects of a single exercise
664 bout on insulin sensitivity in black and white individuals. *J Clin Endocrinol Metab.*
665 2010;95(10):E219-23.

666 61. Short KR, Pratt LV, Teague AM. The acute and residual effect of a single exercise
667 session on meal glucose tolerance in sedentary young adults. *J Nutr Metab.*
668 2012;2012:278678.

669 62. Venables MC, Shaw CS, Jeukendrup AE, Wagenmakers AJ. Effect of acute exercise on
670 glucose tolerance following post-exercise feeding. *Eur J Appl Physiol.*
671 2007;100(6):711-7.

672 63. Mikines KJ, Sonne B, Farrell PA, Tronier B, Galbo H. Effect of physical exercise on
673 sensitivity and responsiveness to insulin in humans. *Am J Physiol.* 1988;254(3 Pt
674 1):E248-59.

675 64. Short KR, Pratt LV, Teague AM, Man CD, Cobelli C. Postprandial improvement in
676 insulin sensitivity after a single exercise session in adolescents with low aerobic fitness
677 and physical activity. *Pediatr Diabetes.* 2013;14(2):129-37.

678 65. Young JC, Enslin J, Kuca B. Exercise intensity and glucose tolerance in trained and

679 nontrained subjects. *J Appl Physiol (1985)*. 1989;67(1):39-43.

680 66. Perseghin G, Price TB, Petersen KF et al. Increased glucose transport-phosphorylation
681 and muscle glycogen synthesis after exercise training in insulin-resistant subjects. *N
682 Engl J Med*. 1996;335(18):1357-62.

683 67. Peddie MC, Rehrer NJ, Perry TL. Physical activity and postprandial lipidemia: are
684 energy expenditure and lipoprotein lipase activity the real modulators of the positive
685 effect? *Prog Lipid Res*. 2012;51(1):11-22.

686 68. Loh R, Stamatakis E, Folkerts D, Allgrove JE, Moir HJ. Effects of Interrupting
687 Prolonged Sitting with Physical Activity Breaks on Blood Glucose, Insulin and
688 Triacylglycerol Measures: A Systematic Review and Meta-analysis. *Sports Med*.
689 2020;50(2):295-330.

690 69. Burns SF, Miyashita M, Stensel DJ. High-Intensity Interval Exercise and Postprandial
691 Triacylglycerol. *Sports Med*. 2015;45(7):957-68.

692 70. Dela F, Larsen JJ, Mikines KJ, Ploug T, Petersen LN, Galbo H. Insulin-stimulated
693 muscle glucose clearance in patients with NIDDM. Effects of one-legged physical
694 training. *Diabetes*. 1995;44(9):1010-20.

695 71. Abdul-Ghani MA, Matsuda M, Balas B, DeFronzo RA. Muscle and liver insulin
696 resistance indexes derived from the oral glucose tolerance test. *Diabetes Care*.
697 2007;30(1):89-94.

698 72. Metcalfe RS, Gurd BJ, Vollaard NBJ. Exploring interindividual differences in fasting
699 and postprandial insulin sensitivity adaptations in response to sprint interval exercise
700 training. *Eur J Sport Sci*. 2023;23(9):1950-60.

701 73. Chen TC, Huang TH, Tseng WC et al. Changes in plasma C1q, apelin and adropin
702 concentrations in older adults after descending and ascending stair walking intervention.
703 *Sci Rep*. 2021;11(1):17644.

704 74. Colberg SR, Sigal RJ, Yardley JE et al. Physical Activity/Exercise and Diabetes: A
705 Position Statement of the American Diabetes Association. *Diabetes Care*.
706 2016;39(11):2065-79.

707 75. Stamatakis E, Ahmadi MN, Gill JMR et al. Association of wearable device-measured
708 vigorous intermittent lifestyle physical activity with mortality. *Nat Med*.
709 2022;28(12):2521-9.

710

711 **Figure Legends**

712 **Fig. 1** Modified PRISMA flow diagram for included and excluded studies.

713 **Fig. 2** The bias assessment result of acute SE studies. Visualizing risk of bias as percentage in

714 each domain.

715 **Fig. 3** The bias assessment result of SE training studies. Visualizing risk of bias as percentage

716 in each domain.