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Abstract

Filled rubber-like materials are widely used in engineering applications, and are known to

exhibit a rate-dependent non-linear inelastic behavior and stress-softening, also known as the

Mullins effect is frequently encountered. In this work, we characterized and modeled the con-

stitutive response of a handful of commercially available filled rubber-like materials. We first

perform a set of large-deformation uniaxial experiments at room temperature and at multiple

rates. Those experimental findings are used to develop and calibrate a thermodynamically con-

sistent constitutive model, which is then numerically implemented in a finite element package

by writing a user material subroutine. The constitutive model is validated by comparing the

results of an inhomogeneous experiment and simulation. A key finding of this work is that the

mechanisms that cause the Mullins effect appear to be the main drivers of viscoelasticity in the

materials used here.
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1 Introduction

Filled rubber-like materials also known as filled elastomers or filled viscoelastomers, consist of a

polymer matrix embedded with stiff filler particles and are used in many applications ranging

from industrial and consumer (Clark, 1981; Leblanc, 2002; Toopchi-Nezhad et al., 2008) to medical

applications (Birmingham et al., 1998; Herrington et al., 2005). In general, filled viscoelastomers,

are known to exhibit a rate-dependent non-linear inelastic behavior, where stress softening, also

known as the Mullins effect is frequently encountered.

When discussing the mechanical behavior of materials exhibiting the Mullins effect, two terms

describing the state of the material are necessary to understand — virgin, and preconditioned.

Virgin material is a raw material without any prior loading history. Whereas preconditioned ma-

terial is a material that has been mechanically cycled under displacement control numerous times.

Preconditioning has been used to eliminate the Mullins effect (Dorfmann and Ogden, 2003, 2004;

Diani et al., 2009), and therefore is often performed prior to testing or application. However, there

remains significant ambiguity on how long the effects of preconditioning last in eliminating the

Mullins effect.

The Mullins effect is most easily explained through a stress - stretch curve. As shown in Figure

1, when a virgin filled viscoelastomer is subjected to displacement controlled cyclic loading, the

stress is expected to become softer during the reloading until the material reaches the previous

maximum stretch, after that, the stress follows the prior loading path. This phenomenon was

first intensively studied by Mullins (1948) more than 7 decades ago, yet, there is still no general

agreement either on the physical source or on the mechanical modeling of this effect (Diani et al.,

2009; Plagge and Klüppel, 2019).

Although the origin of this effect is yet to be determined, the mechanics literature has seen

numerous experimental contributions, in which filled viscoelastomers, showed significant Mullins

effect (cf. eg., Bouasse and Carrière, 1903; Harwood et al., 1965; Harwood and Payne, 1966; Lion,

1996; Bergström and Boyce, 2000; Hossain and Liao, 2020; Hossain et al., 2020; Liao et al., 2020b,a,

2021, and references within).

Furthermore, it is well known that the Mullins effect can be partially or fully recovered; and the

rate and degree of recovery can be affected by various conditions such as filler type, temperature,
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is shown in a different color for clarity.

and solvent exposure (cf. eg., Mullins, 1948; Diani et al., 2009; Yan et al., 2010; Wang and Chester,

2018a; Chen et al., 2020, and references within). And while this work’s main focus is not on the

Mullins recovery specifically, it remains an important phenomenon that should not be neglected

when modeling this class of materials.

There have been numerous attempts to model the Mullins effect based on phenomenological

models and physical interpretations leading to micro-mechanical models. For example, one of the

earliest phenomenological attempts was to describe the filled viscoelastomer as an isotropic two-

phase system containing a hard phase and a soft phase, where the hard phase evolves into the soft

phase upon stretching only if the stretch is greater than any previous maximum stretch (Mullins

and Tobin, 1957, 1965; Harwood et al., 1965; Harwood and Payne, 1966). More contemporary

models (Bergstrom and Boyce, 1999; Qi and Boyce, 2004) based on this early phenomenological

concept were also developed and recently used by Wang and Chester (2018b) to model the combined

viscoelasticity and Mullins effect in a filled elastomer. Another class of phenomenological models

is built upon continuum damage mechanics (Simo, 1987; Miehe, 1995), or pseudo-elasticity (Ogden

and Roxburgh, 1999; Dorfmann and Ogden, 2003, 2004) where a damage parameter capturing

any physical phenomenon such chain and multichain damage, microstructural damage, microvoid

formation, etc., evolves with the deformation (Diani et al., 2009). On the other hand, physical

explanations involving micro-structural changes (Blanchard and Parkinson, 1952; Houwink, 1956;

Bueche, 1960) that are typically based on the statistical mechanics of chain rupture or filler cluster
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rupture lead to micro-mechanical models that have shown success (Bueche, 1960; Govindjee and

Simo, 1991; Klüppel and Schramm, 2000; Marckmann et al., 2002).

Equally important, since filled viscoelastomers exhibit a rate-dependent behavior, which is

typically influenced by the volume fraction of the filler particles (Payne, 1962; So and Chen, 1991;

Lion, 1996), one should not forget to mention both phenomenological based (Lubliner, 1985; Simo,

1987; Holzapfel and Simo, 1996; Lion, 1997; Reese and Govindjee, 1998; Bergström and Boyce,

1998) and micro-mechanics based models (Green and Tobolsky, 1946; Miehe and Göktepe, 2005;

Linder et al., 2011), that have been used to capture that rate-dependent behavior of these materials

successfully.

In more recent efforts, Lu et al. (2017) characterized and modeled the behavior of soft ma-

terials exhibiting both viscoelasticity and Mullins effect. Reis et al. (2021), proposed a model

for visco-hyperelastic materials with Mullins effect merging a phenomenological approach with a

macromolecular one and were successfully able to predict the behavior of polyurethane elastomers

undergoing intermediate deformations, up to a strain of ≈ 30%. Li et al. (2023) proposed a consti-

tutive model that incorporates the Mullins effect and the magnetic-dependent nonlinear viscoelastic

behavior of isotropic soft magnetorheological elastomers undergoing small deformations, up to a

strain of ≈ 15%. Anssari-Benam et al. (2023) extended the theory of pseudo-elasticity to capture

the permanent set and the induced anisotropy in the Mullins effect.

Our experimental investigations show a novel behavior not previously reported in the literature.

We have experimentally found that the mechanisms that cause the Mullins effect appear to be the

main drivers of viscoelasticity in the materials used here. We also found evidence that for some

of the materials used, preconditioned samples exhibited recovery of the Mullins effect at room

temperature.

Accordingly, the overall goal of this work is to determine the low to moderate rate constitutive

behavior of filled viscoelastomers at room temperature while concurrently addressing the Mullins

effect, large deformation viscoelasticity, and coupling between them. Toward that goal we have

taken a combined experimental and modeling approach.

We have designed and conducted an experimental program that decouples each phenomenon

in order to assess them separately as much as possible. Those experiments are broadly grouped as

either virgin or preconditioned so that we can experimentally separate the underlying mechanisms
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that affect the material behavior. Specifically we have used the filled materials Silicone DC745U,

Buna 50A, Neoprene 50A, and Neoprene 70A (Vijayaram, 2009; Diani et al., 2009) for their many

important applications across various fields (Lerman, 1989; Birmingham et al., 1998; Hashimoto

et al., 1998).

For our modeling effort, we adopt and build upon the phenomenological approach of Qi and

Boyce (2004) and assume that a typical filled viscoelastomer may be treated as composite material

with rigid filler particles to capture the rate-independent behavior with the stress softening. To

that we append the work of Linder et al. (2011) and employ their micromechanics motivated model

to capture the viscous behavior of the investigated materials. Following our recent work (Wang

and Chester, 2018b), we introduce a scalar internal variable that captures the complex stretch-

stretch rate stiffening of the viscous response, as well as the asymmetric nearly rate-independent

response during unloading. Thermal recovery of the Mullins effect is also incorporated by a basic

Arrhenius function. The proposed model is then calibrated against uniaxial experiments using a

nonlinear least square method, and is later numerically implemented as a user material subroutine

(UMAT) in Abaqus/Standard (2023) and used for validation in a set of inhomogeneous deformation

experiments.

The remainder of this paper is organized as follows. In Section 2, we report on our experi-

mental methods for characterizing the quasi-static combined effects of the Mullins effect, its room

temperature thermal recovery, and viscoelasticity, along with the accompanying results. In Section

3, we provide a summary of the experimental results that is later used to inform the model. In

Section 4, we overview the constitutive framework. In Section 5, we present the constitutive model,

which is then calibrated in Section 6. In Section 7, we validate our model. In Section 8, we provide

concluding remarks.

2 Experiments

In this section we report on our experimental methods for characterizing the quasi-static combined

effects of the Mullins effect, its room temperature thermal recovery, and viscoelasticity, along with

the accompanying results.
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2.1 Uniaxial experiment preliminaries

For a uniaxial experiment on filled viscoelastomers we employ two kinematic quantities, the stretch

λ =
l

l0
=
u+ l0
l0

= 1 +
u

l0
, (1)

and the stretch rate

λ̇ =
u̇

l0
, (2)

where l is the instantaneous gauge length, l0 is the initial gauge length, u is the displacement,

and u̇ is the load-frame velocity. We have chosen to perform our experiments under displacement

control, and at a constant stretch rate. Therefore, we use (2) to prescribe the load frame velocity

for a tension test at a constant stretch rate.

As is standard, the nominal, or engineering, stress P , is the force is divided by the initial

cross-sectional area A0

P =
F

A0
. (3)

2.2 Uniaxial experimental setup

We performed our uniaxial tests using an MTS Criterion Model 43 testing machine. A 500 N load

cell (MTS Model LPB.502 D) is used to measure the force that is later used to calculate the stress.

We use the non-contact Digital Image Correlation (DIC) software Vic2D (Correlated Solutions)

which is integrated with a digital camera (FLIR Grasshopper3) to measure the deformation in our

experiments. This is a standard practice for large deformations since measuring the deformation

based on the crosshead displacement is known to be less accurate. Moreover, our DIC data ac-

quisition system captures images simultaneously while taking force signal measurements, which is

convenient when it comes to the post-processing since the deformation and force are synchronized

in time.

2.3 Sample preparation

Prior to the experiments, tensile dog bone samples are extracted from the sheets using an ASTM

D638-V cutting die. The nominal gauge section dimensions of our samples are 9.49 mm long and
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3.18 mm wide. The Silicone DC745U samples were nominally 1 mm thick, Buna 50A samples were

nominally 2.38 mm thick, and both Neoprene 50A and 70A were nominally 1.58 mm thick. The

variety of thicknesses are a combination of what is commercially available and also operating within

our load cell limits. The dimensions of samples are measured right before testing due to expected

dimensional variations. Since DIC analysis requires contrast for accurate measurements, we apply

a number of black dots using a paint marker on DC745U and white dots using a paint primer on

Buna 50A and both Neoprene 50A and 70A.

2.4 Experimental plan

In general, filled viscoelastomers show a complex behavior where the Mullins effect and viscoelas-

ticity take place concurrently. For that reason, and in order to have a comprehensive understanding

of their behavior, we have designed an experimental program that decouples each phenomenon as

much as possible in order to assess them separately. We note that all our experiments were per-

formed at room temperature (24◦C), and all results shown were repeated at least 3 times each to

ensure repeatability.

When we use the term preconditioning, that means a sample was cycled (load and unload)

for at least 6 cycles to the same stretch, typically larger than the maximum stretch expected in

a future tensile test, unless otherwise specified, and then allowed to relax stress free for 24 hours

before further testing. We observed that cycling the samples for more than 6 cycles had no further

effect on the constitutive response, for all the investigated materials.

The experimental program is broken down into the following steps:

• A suite of experiments to probe the rate-independent behavior in the absence of viscoelasticity

and the Mullins effect. For this, we perform large deformation quasi-static (λ̇ = 10−4s−1)

uniaxial load/unload tests on preconditioned specimens.

• A suite of experiments to probe the Mullins effect in the absence of viscous effects. For this,

we perform large deformation quasi-static (λ̇ = 10−4s−1) uniaxial load/unload/reload tests

on virgin specimens.

• A suite of experiments to probe the rate-dependent behavior in the absence of the Mullins
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effect. For this, we perform a set of uniaxial load/unload tests at various stretch rates (λ̇ =

10−3s−1, λ̇ = 10−2s−1, and λ̇ = 10−1s−1) on preconditioned samples.

• A suite of experiments to probe the overall rate-dependent behavior with both mechanisms of

inelasticity active. For this, we perform a set of uniaxial load/unload/reload tests at various

rates (λ̇ = 10−3s−1, λ̇ = 10−2s−1, and λ̇ = 10−1s−1), as well as multistep uniaxial relaxation

tests on virgin specimens.

• A suite of experiments to probe the relationship between viscoelasticity and the Mullins effect:

– We perform a set of multistep uniaxial relaxation tests on samples with different pre-

conditioning stretches.

– We perform uniaxial load/unload/reload tests on virgin samples, immediately followed

by a preconditioning cycle, immediately followed by a repeat of the load/unload/reload

cycles at different rates. These experiments are done purposefully to not allow any time

for relaxation or recovery of the Mullins effect.

2.5 Quasi-static load/unload on preconditioned specimens

We performed quasi-static load/unload tensile tests on preconditioned samples at a prescribed

stretch rate of 10−4 s−1 to have a baseline of the rate-independent behavior of all materials in the

absence of both viscoelasticity and Mullins effect (Diani et al., 2009). While it is possible to go at a

slower rate, it is not practical since the time each experiment would take becomes excessive. Figure

2 shows that preconditioned DC745U samples exhibits a typical near hyperelastic behavior under a

quasi-static load/unload cycle, however, all other materials show some hysteresis, suggesting some

inelastic mechanisms are still active at this rate.

2.6 Quasi-static load/unload/reload tests on virgin specimens

We performed quasi-static load/unload/reload tensile tests on virgin samples for all materials

specifically to probe the Mullins effect. We load/unload/reload each material a number of times

to increasing stretches, at a prescribed stretch rate of 10−4 s−1, the prescribed loading profile is

schematically shown in Figure 3, where each cycle is in different color for clarity. Also, note that
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Figure 2: Quasi-static uniaxial load/unload tensile test result on preconditioned a) DC745U, b)
Buna 50A, c) Neoprene 50A, and d) Neoprene 70A. Note the scale is not the same for each plot.

each unloading was reversed when the force signal reached zero, thus preventing the samples from

going into compression or buckling.

The results of the quasi static load/unload/reload tensile experiments are shown in Figure 4. It

can be clearly observed that all four materials exhibit the Mullins effect. After first loading a virgin

specimen, it is clear that the specimen “softens” during the unloading. Then, upon reloading, the

stress follows the previous unloading curve, until reaching the maximum stretch achieved in the

first cycle, after which it “continues” the initial loading curve. The same behavior can be observed

for the remaining load-unload cycles indicating the presence of stress-softening phenomenon also

known as the Mullins effect.
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Figure 3: Schematic of the prescribed load/unload/reload stretch profile. Each cycle is in different
color for clarity. Also, note that each unloading was reversed when the force signal reached zero,
thus preventing the samples from going into compression or buckling.

2.7 Load/unload at different stretching rates on preconditioned specimens

In addition to quasi-static load/unload tensile tests on preconditioned samples, we also performed

load/unload tensile tests on preconditioned samples at multiple prescribed stretch rates of 10−3 s−1,

10−2 s−1, and 10−1 s−1, to probe the rate-dependent behavior of the materials while minimizing the

Mullins effect as much as possible.

The results of the load/unload tensile tests on preconditioned samples are shown in Figure 5.

Both preconditioned DC745U and Neoprene 50A show a rate-independent behavior, while both

Buna 50A and Neoprene 70A show a rate-dependent behavior.1 That along with the results pre-

viously shown in Section 2.5 suggests that both DC745U and Neoprene 50A are effectively rate-

independent in the absence of the Mullins effect, suggesting that the mechanisms underlying the

Mullins effect might be the major driver of the rate-dependency in those two materials.

2.8 Load/unload/reload at different stretch rates on virgin specimens

Furthermore, we performed load/unload/reload tensile tests on virgin samples for all materials to

probe the overall rate-dependent behavior. The samples were loaded to increasing stretches and

then unloaded, at prescribed stretch rates of 10−3 s−1, 10−2 s−1, and 10−1 s−1, and then reloaded,

with this cycle repeating 4 times. The prescribed loading profile is similar to what was used in

1As it will be revealed later, the observed rate-dependency may be due to recovery of the Mullins effect since the
samples were tested 24 hours after preconditioning.
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Figure 4: Quasi-static (λ̇ = 10−4s−1) uniaxial tensile test results on virgin specimens. a) DC745U,
b) Buna 50A, c) Neoprene 50A, and d) Neoprene 70A. Note the scale is not the same for each plot,
and each cycle is in different color for clarity, and corresponds to Figure 3.

Section 2.6, however now multiple rates are used.

The results of the load/unload/reload tensile experiments at multiple stretch rates, on virgin

samples are shown in Figure 6. It can be clearly observed that all four materials exhibit the

expected behavior of a filled viscoelastomer: Mullins effect, rate-dependence, and hysteresis.

2.9 Multi-step relaxation tests on virgin specimens

Multi-step relaxation experiments were also performed on virgin specimens to investigate the overall

relaxation behavior for all materials. First, samples are loaded to a prescribed stretch, at a stretch

rate of λ̇ = 10−1 s−1. Once the prescribed stretch is reached, the crosshead is held fixed for 2000
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Figure 5: Uniaxial load/unload tensile results on preconditioned a) DC745U, b) Buna 50A, c)
Neoprene 50A, and d) Neoprene 70A specimens at multiple stretch rates.

seconds, an amount of time that adequately probes the stress relaxation behavior of the tested

materials, without the need for extended duration experiments. That procedure is then repeated

multiple times for loading as well as unloading to perform the full multi-step relaxation test, with

a loading profile schematically shown in Figure 7.

The results of the multi-step stress relaxation experiments are shown in Figure 8. Figures 8a,

c, e, and g show the stress-stretch behavior during a multi-step relaxation test, while Figures 8b,

d, f, and h show the stress-time behavior. These results clearly show that the stress approaches

equilibrium over time within each step; decaying during loading, while staying nearly constant

during unloading for DC745U, and slightly increasing for Buna 50A and both Neoprene 50A and
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Figure 6: Uniaxial load/unload/reload tensile test results on virgin specimens at multiple stretch
rates for a) DC745U, b) Buna 50A, c) Neoprene 50A, and d) Neoprene 70A.

70A which shows an asymmetric viscous response between loading and unloading of varying degree

for all materials tested.

Further, the data shown in both Figure 6 and Figure 8 show that as the loading stretch

is increased, there is a change in rate-dependence, therefore we have a stretch-dependent rate-

dependence only during loading and not during unloading. In order to quantify this rather complex

behavior, we begin by plotting only the loading portion of the curves from Figure 6 in Figure 9.

What can be observed in Figure 9a, c, e, and g is that at low deformations all rates are atop each

other, but as the deformation increases the apparent rate-dependence also changes. Building upon

the analysis of rate-dependent plasticity in metallic materials, we plot the stress as a function of
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Figure 7: Schematic of the prescribed loading profile for a uniaxial multi-step relaxation test.

stretch rate as shown in Figure 9b, d, f, and h for numerous values of stretch. As the slope is

typically known as the “rate-dependence,” we can clearly see that the slope varies with increasing

stretch and is not a constant, an indication from the experiments that this class of materials does

indeed exhibit rate-dependence that changes with deformation, which is very typical for non-linear

viscoelasticity (Amin et al., 2006, 2015; Hossain et al., 2020).

2.10 Experiments to probe the relationship between the Mullins effect and

viscoelasticity

2.10.1 Multi-step relaxation tests on partially and fully preconditioned specimens

Following the same procedure described in Section 2.9, multistep relaxation tests were also per-

formed on preconditioned samples having different maximum preconditioning stretches: (i) λpre <

λapplied ; and (ii) λpre > λapplied, to probe any relationship between the Mullins effect and viscoelas-

ticity. In the first case, the preconditioning stretch is larger than the applied stretch, and in the

second case, a more unconventional scenerio, the preconditioning stretch is lower than the applied

stretch.

The results of these multi-step relaxation are shown in Figure 10. Figure 10 provides us with

two major findings: (i) the level of the maximum stretch used for preconditioning not only has a

role on the Mullins effect, but also affects the rate-dependent behavior of filled viscoelastomers,

which has been previously reported in literature (Payne, 1962; So and Chen, 1991; Lion, 1996; Liao
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et al., 2021); and (ii) all materials show an asymmetric rate-dependent behavior during unloading,

specifically a less pronounced rate-dependency, suggesting that all mechanisms of inelasticity are

majorly active during the loading steps and reduced during unloading.

While this immediate discussion that follows deals with the specifics for the response of DC745U,

we note that the same behavior holds for all materials tested during loading. Taking a closer look

at the first loading step for DC745U in Figures 10a and b where the applied stretch is λapplied =

1.5, one can see that the virgin specimen shows a clear viscoelastic relaxation behavior, while both

preconditioned samples show a nearly rate-independent response relaxing toward an equilibrium

stress which is slightly higher for the samples preconditioned at a maximum stretch of λpre =

2.4. This result is expected since the maximum stretch used for preconditioning (either λpre = 2.4

or λpre = 3.3) is much higher than the applied stretch λapplied = 1.5, and corroborates that the

mechanisms responsible for the Mullins effect are tied to the mechanisms of viscoelasticity. This

same trend holds in further increments in deformation, until nearing an applied uniaxial stretch of

λapplied = 2.4. Once nearing an applied uniaxial stretch of λapplied = 2.4, we can see from Figures

10a and b that the samples preconditioned at λpre = 2.4 show a transitional behavior to a point

where they start behaving like virgin samples, in other words, the Mullins effect has returned.

Moreover, the specimens that were preconditioned at λpre = 3.3 (λpre > λapplied) start showing

some relaxation behavior which is significantly smaller than the other experiments.

Remarkably however, during unloading, the response for all samples can be classified into two

groups, i) DC745U and Neoprene 50A showing a nearly rate-independent behavior, and ii) Buna

50A and Neoprene 70A showing some relaxation behavior. This suggests that the mechanism that

underpins the Mullins effect and viscoelasticity is only active during loading and inactive during

unloading for both DC745U and Neoprene 50A; while being active during loading and partially

active during unloading for both Buna 50A and Neoprene 70A. Therefore, the main result from

this suite of multi-step relaxation experiments shows that the mechanisms underlying the Mullins

effect are contributors to what drives viscoelasticity in this class of materials.

Yet, while the results reported here suggest that the mechanisms responsible for the Mullins

effect are the main driver of viscoelasticity, the presence of viscoelasticity for preconditioned Buna

50A and Neoprene 70A reported here and in Section 2.7 can be interpreted in multiple ways. It is

well known in literature that the Mullins effect can be partially or even fully recovered, depending
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on the material’s structure and exposure conditions (cf. eg., Mullins, 1948; Diani et al., 2009; Yan

et al., 2010; Wang and Chester, 2018a; Chen et al., 2020, and references within). Accordingly, to

fully characterize the behavior, the next set of experiments will explicitly target recovery.
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Figure 8: Uniaxial multi-step relaxation test on virgin specimens a, c, e, and g) nominal stress -
stretch, and b, d, f, and h) nominal stress - time.
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Figure 9: a, c, e and g) Load tensile test results on virgin specimens at multiple stretch rates, and
b, d, f and h) log-log plot of the nominal stress as a function of stretch rate for different values of
uniaxial stretch. 18
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Figure 10: Uniaxial multi-step relaxation tests on virgin and preconditioned specimens, having
different maximum preconditioning stretches λpre, a, c, e, and g) nominal stress - stretch, and b, d,
f, and h) nominal stress - time. 19
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2.10.2 Load/unload/reload tests on virgin, preconditioned, and stress-free recovered

Buna 50A and Neoprene 70A specimens

As was mentioned previously, DC745U and Neoprene 50A did not exhibit a behavior that indicates

there is any recovery of the Mullins effect. However the behavior of Buna 50A and Neoprene 70A

exhibited noticeable rate-dependence after preconditioning. Therefore, to further investigate the

relationship between the Mullins effect, specifically its recovery, and relation to viscoelasticity, we

perform the following experiments on Buna 50A and Neoprene 70A:

• Step 1: Load/unload/reload tests on virgin samples at a rate of 10−1 s−1 following the proce-

dure from Section 2.8, immediately followed by 5 load/unload cycles to emulate “precondition-

ing,” immediately followed by load/unload/reload tests at a rate of 10−1 s−1, and 10−2 s−1,

respectively. We note that experiments were performed without allowing the samples to vis-

coelastically relax or recover the Mullins effect. These experiments allow us to compare the

virgin response to the emulated “preconditioned” response (at two different rates) without

allowing anytime for recovery, which gives us an insight on the nature of rate-dependency in

the absence of Mullins effect.

• Step 2: Those samples are set aside stress-free for 24 hours at room temperature. This allows

the samples to potentially recover the Mullins effect.

• Step 3: Finally, load/unload/reload tests at a rate of 10−1 s−1, and 10−2 s−1 are performed

on those samples. These experiments will help us identify whether or not Mullins effect is

recovering, which can be used to corroborate that the mechanisms behind the Mullins effect

are a major driver of viscoelasticity.

Figure 11a and Figure 12a show the measured stretch-time history for the loading described

in Step 1 above, and Figure 11b and Figure 12b are the corresponding measured stress-stretch

response. Figure 11c and d and Figure 12c and d plot the data for the last two cycles as described

in Step 1 above for the two stretch rates used simply for clarity. What can be observed from the

data provided in Figure 11b, c, and d and Figure 12b, c, and d respectively, is that for Buna

50A and Neoprene 70A we find that there is a significant decrease in the rate-dependent response

after the emulated “preconditioning” cycle. Additionally, the load/unload/reload response for the
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last two cycles does not show any sign of Mullins effect, which once again highlights the coupling

between Mullins mechanisms and viscoelasticity.

Figure 11e and Figure 12e show the measured stress-stretch response for Buna 50A and Neoprene

70A, respectively, at two different rates after allowing for 24 hours of recovery as described in Step

3 above, plotted atop of each other. We can clearly see increased rate-dependence when compared

to Figure 11b and Figure 12b. In addition to the increased rate-dependence, we can also see some

Mullins effect, which indicates that there is some recovery of the Mullins mechanisms in Buna 50A

and Neoprene 70A at room temperature in just 24 hours. We calculate the percent recovery, which

is taken to be the ratio of the stress in the second loading stretch to the stress in the initial loading

stretch in the virgin material. Here, the fourth loading cycle from Figure 11c and Figure 12c after

the emulated “preconditioned” case and the 24 hours relaxed were used to make the comparison

to determine if there is any recovery taking place. What can be observed from Figure 11f and

Figure 12f is that the Mullins effect partially recovers in Buna 50A and Neoprene 70A at room

temperature after just 24 hours, supporting the fact that the Mullins and viscoelasticity are indeed

coupled.
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Figure 11: Results for Buna 50A. a) Measured load/unload/reload stretch profile with each cycle
in a different color for clarity. And each unloading was reversed when the force signal reached zero.
b) Corresponding stress-stretch results, c) load/unload/reload cycle at a rate of 10−1 s−1 (blue in
Figure 11a), d) load/unload/reload cycle at a rate of 10−2 s−1 (magenta in Figure 11a), e) uniaxial
load/unload/reload tensile test results for preconditioned specimens after a 24 hours stress free
recovery at a stretch rate of 10−1 s−1 and 10−2 s−1, and f) measured percentage recovery.
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Figure 12: Results for Neoprene 70A. a) Measured load/unload/reload stretch profile with each
cycle in a different color for clarity. And each unloading was reversed when the force signal reached
zero. b) Corresponding stress-stretch results, c) load/unload/reload cycle at a rate of 10−1 s−1

(blue in Figure 12a), d) load/unload/reload cycle at a rate of 10−2 s−1 (magenta in Figure 12a), e)
uniaxial load/unload/reload tensile test results for preconditioned specimens after a 24 hours stress
free recovery at a stretch rate of 10−1 s−1 and 10−2 s−1, and f) measured percentage recovery.
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3 Summary of the experimental results to inform the model

The experimental results provide crucial information to motivate our modeling efforts. The main

takeaway from the experimental results are summarized in what follows:

• All materials tested exhibit the Mullins effect and concurrently inelastic behavior, such as rate-

dependence, and hysteresis. Accordingly the constitutive model must include both Mullins

effect and large deformation inelasticity.

• The inelastic mechanisms are more dominant during loading, where there exists a rate and

stretch-dependent stiffening behavior. Accordingly, the constitutive model must be able to

capture this phenomenon.

• The mechanisms that cause the Mullins effect partially recover at room temperature in just

24 hours for some materials. Accordingly the constitutive model must take recovery into

account.

• Most importantly, the mechanisms that cause the Mullins effect appear to be the main drivers

of viscoelasticity. Accordingly, unlike most prior work in this area of the literature, the

constitutive model must couple the Mullins effect with viscoelasticity.

4 Continuum framework

In this section we overview the kinematics and the governing continuum level equations to describe

the nonlinear mechanical behavior of the studied filled viscoelastomers. Since much of what follows

here is built upon our recent work (Wang and Chester, 2018b), it is not cited each and every time,

but acknowledged here.

4.1 Kinematics

Consider an undeformed body BR identified with the region of space it occupies in a fixed reference

configuration, and denote by xR an arbitrary material point of BR. The referential body BR then

undergoes a motion x = χ(xR, t) to the deformed body Bt with deformation gradient given by

F = ∇χ, such that J = detF > 0. (4)
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The right and left Cauchy-Green deformation tensors are given by

C = F>F , (5)

and

B = FF> . (6)

Also, the polar decomposition of the deformation gradient

F = RU (7)

into a rotation R, and a symmetric stretch U is well known in the literature.

We assume that the material is nearly-incompressible, and introduce the distortional and vol-

umetric parts of the deformation gradient, defined as

Fdis = J−1/3F where detFdis = 1 , (8)

and

Fvol = J1/3I where detFvol = J , (9)

so that

F = FdisFvol . (10)

The corresponding distortional right and left Cauchy-Green deformation tensors are then

Cdis = F>
disFdis = J−2/3C , (11)

and

Bdis = FdisF
>
dis = J−2/3B . (12)

4.2 Stress softening variables

Building upon literature (Mullins and Tobin, 1957, 1965; Harwood et al., 1965; Harwood and Payne,

1966), and following our recent work (Wang and Chester, 2018b), we treat filled viscoelastomers
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as a soft polymer matrix filled with stiff filler particles where the filler volume fraction is denoted

by νf , and the volume fraction of soft polymeric domain is νs = 1 − νf . As is typical, the virgin

material is assumed to initially have primarily hard regions that transform to soft with deformation.

Additionally, according to Mullins and Tobin (1957), when filled viscoelastomers undergo an

arbitrary deformation, the hard filler accommodates much less of the overall deformation than the

soft rubber matrix. Therefore, an amplified stretch

Λ =
√
X(λ̄2 − 1) + 1 (13)

is used as a deformation measure for the the polymeric matrix, where X is an amplification factor,

and λ̄ is the effective stretch given by

λ̄ =
√

trCdis/3 . (14)

As is typical, the amplification factor X depends on the soft volume fraction νs and the shape of

the filler particles. In this work we assume the following form (Guth, 1945)

X = 1 + 3.5(1− νs) + 18(1− νs)2 . (15)

4.3 Balance of forces and moments

Neglecting inertial effects, the balance of forces and moments in the deformed body Bt are expressed

as

divT + b = 0 and T = T>, (16)

where T is the Cauchy stress and b the body force. As standard, (16) serves as the governing

partial differential equation (PDE).

5 Constitutive equations

Making use of the experimental findings from Section 2, and following our earlier work and common

practice in the literature of viscoelastomers (Reese and Govindjee, 1998; Bergström and Boyce,
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1998; Wang and Chester, 2018b), this section summarizes the specific constitutive equations for

modeling the behavior of the filled viscoelastomers used in this work.

5.1 Free energy

We take the free energy density per unit reference volume to be additively decomposed into two

contributions

ψ̂R(C, νs,A
(γ)) = ψ̂RI

R (Cdis, J, νs) +
∑
γ

ψ̂
RD(γ)
R (Cdis, νs,A

(γ)) , (17)

where ψ̂RI
R (Cdis, J, νs) is the rate-independent contribution, and

∑
γ ψ̂

RD(γ)
R (Cdis, νs,A

(γ)) is the

overall rate-dependent contribution employing γ viscous mechanisms using tensorial internal vari-

ables A(γ).2

5.1.1 Rate-independent contribution to the free energy

For the rate-independent contribution to the free energy we adopt the work of Qi and Boyce (2004)

by assuming that a typical filled viscoelastomer material may be treated as composite material

with rigid filler particles which have the following form

ψ̂RI
R = νsG

RI
0 λL

2

[(
Λ

λL

)
β + ln

(
β

sinhβ

)
−
(

1

λL

)
β0 − ln

(
β0

sinhβ0

)]
+

1

2
K(ln J)2 , (18)

where νs is the soft volume fraction, GRI
0 is the initial shear modulus, λL is the locking stretch, and

Λ is the amplified stretch previously described in (13) . Moreover, β and β0 are functions given by

β = L−1

(
Λ

λL

)
and β0 = L−1

(
1

λL

)
, (19)

where L−1 is the inverse of the Langevin function, L(•) = coth(•) − 1/(•). K is the bulk modu-

lus used to approximate the near-incompressible conditions and is assumed to be three orders of

magnitude greater than the shear modulus GRI
0 (i.e., K = 103GRI

0 ).

2We acknowledge that ψ̂RI
R (Cdis, J, νs) is not purely rate-independent as the evolution of νs is driven in part by

the deformation rate. However, this breakdown into rate-independent and rate-dependent is the most common found
in the literature, and thus we continue to use it here.
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5.1.2 Rate-dependent contribution to the free energy

For the rate-dependent free energy, we follow the micro-mechanically motived work of Linder et al.

(2011), which for each viscous mechanism γ takes the form

ψ̂
RD(γ)
R =

1

2
GRD(γ)

[(
A(γ) :Cdis − 3

)
− ln

(
detA(γ)

)]
, (20)

where GRD(γ) are shear moduli for each viscous mechanism γ.

Because our experimental results discussed in Section 2 show an asymmetric combined stretch-

stretch rate stiffening, we implement the following functional form for the rate-dependent moduli

to capture this rather complex behavior. We assume the form

GRD(γ) = (1− νs)ϕGRD(γ)
0 , (21)

where G
RD(γ)
0 is the ground state rate-dependent shear modulus for each γ. Here, the term (1−νs)

is introduced in (21) to capture the experimentally observed behavior that the viscoelasticity is

tied to, if not driven by, the mechanisms that cause the Mullins effect. Accordingly, as a material

point transitions between hard to soft, the affects of viscoelasticity are diminished. We emphasize

that while 1 − νs = νf , represents the filler volume fraction, we do not intend that the filler

is deforming and accounting for this contribution to the free energy, it is simply a convenient

phenomenological form. Also, ϕ is a scalar internal variable that acts on the viscous moduli to

capture the asymmetric rate- and-stretch dependent stiffening experimentally observed in the rate-

dependent response between the loading and the unloading. A discussion on the evolution of each

A(γ), νs and ϕ is presented in Section 5.3.
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5.2 Cauchy stress

Based on thermodynamic restrictions, straightforward calculations provide the Cauchy stress T in

the form

T = J−1F

(
2
∂ψ̂R

∂C

)
F> = J−1

[
GRI (Bdis)0 +K (ln J)1

]︸ ︷︷ ︸
Rate-independent contribution

+ J−1
∑
γ

GRD(γ)
[
FdisA

(γ)F>
dis − 1

3

(
A(γ) : Cdis

)
1
]

︸ ︷︷ ︸
Rate-dependent contribution

, (22)

where the rate-independent shear modulus GRI = νsXG
RI
0

(
λL
3Λ

)
L−1

(
Λ
λL

)
is a function of the

amplified stretch and stress softening variables.

5.3 Evolution equations

In what follows, we present a set of evolution equations that allow us to model the observed

behavior that was summarized in Section 3. Specifically, we present an evolution equation of the

soft volume fraction, the evolution of the tensorial internal variables A(γ), used to capture the rate-

dependent behavior, along with an evolution equation of the asymmetric parameter ϕ, to capture

the asymmetric response between loading and unloading.

5.3.1 Evolution of the soft domain volume fraction νs

Extending on our previous work (Wang and Chester, 2018a), we take the evolution of the soft

domain fraction to be

ν̇s = d+ r with νs(xR, t = 0) = νs0 , (23)

where d and r are intended to model the rate of deformation-induced softening and the rate of

static recovery, respectively.3

We adopt the phenomenological model proposed by Qi and Boyce (2004) for the evolution

3It is important to mention that although Mullins recovery can take place in a non-stress-free state, we have not
considered that here due to limited experimental data.
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equation for the soft volume fraction νs to describe the transformation from hard to soft phases

d = A(νss − νs)
λL − 1

(λL − Λmax)2
Λ̇max , νs(xR, t = 0) = νs0 (24)

with

Λ̇max =


Λ̇, Λ = Λmax ,

f(Λ) Λ < Λmax ,

(25)

and A a material parameter. Additionally, (24) states that as νs approaches the steady state

saturation value of νss whenever Λ̇ 6= 0 starting from an initial condition νs0 in the virgin state.

Here, f(Λ) is a new contribution that allows Λmax to recover to its virgin state value in the absence

of the deformation-induced softening, that is, when the current amplified stretch is less than the

previous maximum stretch in the material. A particular constitutive form will be shortly specified.

Moreover, according to Qi and Boyce (2004), νs approaches its steady state saturation value νss

faster than Λmax approaches λL, for that reason, ν̇s will always become dormant prior to chain

locking preventing any associated numerical issues.

Next, motivated by the existing literature and our previous work (Mullins, 1948; Diani et al.,

2009; Wang and Chester, 2018a), we adopt the temperature-dependent Arrhenius form to model

recovery, such that

r = r0 exp

{
− Q

Rθ

}
|ν∗ − νs| , with ν∗ = ν̂∗(θ) , (26)

where r0 ≤ 0 is a pre-exponential factor, Q is an activation energy, R is the gas constant, and ν∗ is

a temperature-dependent saturation value of the recoverable soft domain fraction. Since this work

only focuses on the constitutive response at room temperature, (26) can be simplified to

r = R0|ν∗ − νs| , (27)

where R0 = r0 exp
{
− Q
Rθ

}
is a negative lumped parameter (R0 ≤ 0). Lastly, to capture the recovery

of Λmax we specialize f(Λ) in (25)2 such that f(Λ) = R0(Λ−1) and the rate of recovery is the same

as used for the soft volume fraction.
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5.3.2 Evolution of the tensorial internal variables A(γ)

The evolution equation of each tensorial state dependent variable A(γ) is given in the form

Ȧ(γ) =
1

τ (γ)

(
C−1

dis −A(γ)
)
, A (xR, t = 0) = 1 , (28)

where τ (γ) is relaxation time for each viscous mechanism γ. This form is a linear evolution equation

and shows that each tensorial state dependent variable A(γ) advances towards the current C−1
dis with

a relaxation time of τ (γ).

5.3.3 Evolution of the asymmetric parameter ϕ

In order to capture the observed viscous stretch-stretch rate stiffening and the asymmetric inelas-

tic response between loading and unloading, a dimensionless scalar parameter ϕ was previously

introduced in (21). Building upon the recent work (Mao et al., 2017; Wang and Chester, 2018b),

ϕ evolves with the amplified stretch rate Λ̇, and the evolution equation is given by

ϕ̇ = B | ϕ∗ − ϕ |n Λ̇ , (29)

where B ≥ 0 is a material parameter that controls the rate at which ϕ̇ evolves, n controls the shape

of the evolution, and

ϕ∗ =


(

1− Λ

D

)−p( Λ̇

Λ̇0

)aΛ

when loading (i.e., Λ̇ ≥ 0)

0 when unloading (i.e., Λ̇ < 0) .

(30)

controls the value ϕ evolves toward. The parameterD > 1 controls the stretch dependent stiffening,

the parameter p controls the shape and magnitude of stiffening. Λ̇0 is a reference amplified stretch

rate is typically the slowest amplified stretch rate, and a is a rate-dependent parameter.

5.4 Specialized constitutive equations for uniaxial tension

In the special case of uniaxial tension, and assuming incompressibility, the constitutive model is

simplified to a one-dimensional set of equations. In this special case the effective stretch is given
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by

λ̄ =

√
1

3

(
λ2 +

2

λ

)
, (31)

and the Cauchy stress takes the form

σ = GRI

[
λ2 − 1

λ

]
︸ ︷︷ ︸

Rate-independent contribution

+
∑
γ

GRD(γ)

[
λ2A(γ) − 1

λ
√
A(γ)

]
︸ ︷︷ ︸

Rate-dependent contribution

, (32)

where σ is the Cauchy stress component in the loading direction. Further, the evolution of each

A(γ) is given by

Ȧ(γ) =
1

τ (γ)

(
λ−2 −A(γ)

)
. (33)

Lastly, the nominal stress is given by

P = GRI

[
λ− 1

λ2

]
︸ ︷︷ ︸

Rate-independent contribution

+
∑
γ

GRD(γ)

[
λA(γ) − 1

λ2
√
A(γ)

]
︸ ︷︷ ︸

Rate-dependent contribution

(34)

and can be used to directly compare with our experimental results, as well as for calibration.

6 Calibration

We note that before starting with the calibration process, the specialized constitutive equations for

uniaxial tension provided in Section 5.4 are implemented in MATLAB, where we make use of the

built-in functions lsqnonlin and MultiStart to perform the nonlinear least squares.

The constitutive model calibration process consists of two steps that build upon each other. We

first calibrate the rate-independent parameters along with the parameters related to the Mullins

effect, including the recovery term using quasi-static experimental data. We then hold those pa-

rameters fixed and move onto calibration of the rate-dependent parameters using experiments from

the other stretch rates and the multi-step relaxation.

First, we calibrate the specialized constitutive model against the quasi-static load/unload/reload

experiments on virgin specimens to obtain the rate-independent parameters along with the parame-

ters related to the Mullins effect. The calibrated model along with the experimental data for virgin
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materials quasi-static conditions is shown in Figures 13a, 14a, 15a, and 16a, and the calibrated

parameters are tabulated in Tables 1, 2, 3, and 4. Lastly, we assume that ν∗ = νs0, due to the lack

of data on Mullins recovery for the tested materials.

Next, holding the previously calibrated parameters fixed, we perform a least squares fit to

both the load/unload/reload at different rates, and relaxation experiments of virgin specimens

to calibrate the rate-dependent contribution. In order to capture the material behavior, we use

two viscous mechanism (γ = 2) for the rate-dependent contribution since we found that having

more viscous mechanisms did not show any improvement. The calibrated model along with the

experimental data for virgin materials can be observed in Figures 13b-d, 14b-d, 15b-d, 16b-d with

the calibrated parameters provided in Tables 1, 2, 3, and 4.

The main observation is that our model can reasonably reproduce the overall behavior of all

materials tested here, including the Mullins effect, rate-dependency and the asymmetry between

loading and unloading, however is more accurate with the load-unload than relaxation experi-

ments. Specifically, given the provided material parameters, our model better reproduces the cyclic

load/unload/reload response at multiple stretch rates and shows a less accurate prediction of the

response for multi-step relaxation. This can be attributed to the highly non-linear relaxation be-

havior absent during cyclic loading. While we acknowledge this shortcoming, we save it for a future

work.

Rate-independent Rate-dependent

Parameter Value Parameter Value

GTI
0 (kPa) 199.26 G

TD(1)
0 (kPa) 4.99

K(= 103GTI
0 )(MPa) 199.26 τ (1)(s) 6.22

λL 2.04 G
TD(2)
0 (kPa) 0.58

A 0.45 τ (2)(s) 837.53
νs0 0.60 B 14.50
νss 0.99 D 2.10

R0(s−1) N/A n 1
p 4.17
a 0.02941

Λ̇0(s−1) 10−4

Table 1: DC745U calibrated material parameters.
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Figure 13: DC745U model calibration using virgin specimens, experiments are shown as open
circles and the calibrated model as red solid lines. a) Quasi-static load/unload/reload, b)
load/unload/reload at multiple stretch rates, and multi-step relaxation c) stress - time, and d)
stress - stretch.
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Figure 14: Buna 50A model calibration using virgin specimens, experiments are shown as open
circles and the calibrated model as red solid lines. a) Quasi-static load/unload/reload, b)
load/unload/reload at multiple stretch rates, and multi-step relaxation c) stress - time, and d)
stress - stretch.
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Parameter Value Parameter Value

GTI
0 (kPa) 109.39 G

TD(1)
0 (kPa) 333.88

K(= 103GTI
0 )(MPa) 109.39 τ (1)(s) 24.06

λL 3 G
TD(2)
0 (kPa) 103.85

A 1.83 τ (2)(s) 8492.60
νs0 0.40 B 0.10
νss 0.84 D 10.98

R0(s−1) −5.72× 10−6 n 1
p 15.10
a 7.26× 10−7

Λ̇0(s−1) 10−4

Table 2: Buna 50A calibrated material parameters.
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Figure 15: Neoprene 50A model calibration using virgin specimens, experiments are shown as
open circles and the calibrated model as red solid lines. a) Quasi-static load/unload/reload, b)
load/unload/reload at multiple stretch rates, and multi-step relaxation c) stress - time, and d)
stress - stretch.
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Parameter Value Parameter Value

GTI
0 (kPa) 165.66 G

TD(1)
0 (kPa) 3.28

K(= 103GTI
0 )(MPa) 165.66 τ (1)(s) 93.29

λL 2.32 G
TD(2)
0 (kPa) 1.81

A 0.37 τ (2)(s) 3093.76
νs0 0.65 B 11.92
νss 0.99 D 2.40

R0(s−1) N/A n 1
p 3.62
a 5.5360× 10−4

Λ̇0(s−1) 10−4

Table 3: Neoprene 50A calibrated material parameters.
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Figure 16: Neoprene 70A model calibration using virgin specimens, experiments are shown as
open circles and the calibrated model as red solid lines. a) Quasi-static load/unload/reload, b)
load/unload/reload at multiple stretch rates, and multi-step relaxation c) stress - time, and d)
stress - stretch.
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Parameter Value Parameter Value

GTI
0 (kPa) 500 G

TD(1)
0 (kPa) 123.26

K(= 103GTI
0 )(MPa) 500 τ (1)(s) 2.06

λL 1.61 G
TD(2)
0 (kPa) 10.38

A 1.12 τ (2)(s) 372.87
νs0 0.48 B 5.00
νss 0.99 D 1.60

R0(s−1) −4.01× 10−6 n 1
p 3.77
a 7.26× 10−9

Λ̇0(s−1) 10−4

Table 4: Neoprene 70A calibrated material parameters.

40



D
ra

ft
7 Validation

In order to validate our constitutive model, we perform inhomogeneous tension experiments at room

temperature (24◦C), and we compare the reaction force and strain fields between experimental and

simulation results.

The specimen used for validation is prepared by extracting a dog bone sample using an ASTM

D638-I cutting die from the provided material sheets. Then, three circular holes were punched out

from the gauge section to create an inhomogeneous geometry, with a typical sample as shown in

Figure 17a, with the exact drawings for each sample provided in Appendix A. Additionally, we

spray paint the sample with a random speckle prior to the experiment, so that the full strain field

can be measured using DIC. Once more, we perform tension test using the same uniaxial testing

machine, and we measure the strain field using the DIC, and the force using the 500 N load cell.

a) b)

Figure 17: a) Typical modified ASTM D638-I specimen used for the validation experiment with
dimensions in mm, and b) corresponding undeformed initial finite element mesh with boundary
conditions.

As for the simulations, we implemented the constitutive model in Abaqus/Standard (2023)

by writing a user material subroutine UMAT. A typical mesh of the geometry shown in Figure

17b, however, the exact geometry and corresponding mesh was different for each material and was

discretesized with:

• 1279 C3D8 elements, with a single element through the thickness for DC745U.

• 2570 C3D8 elements, with a two elements through the thickness for Buna 50A.

• 1408 C3D8 elements, with a single element through the thickness for Neoprene 50A.
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• 2708 C3D8 elements, with two elements through the thickness for Neoprene 70A.

Also, the boundary conditions can be observed from Figure 17b; face EFGH is pinned (u1 = u2 =

u3 = 0) and the displacement u measured from the experiment is prescribed on face ABCD in

the 2 direction and constrained in the other directions. The force is obtained by summing up the

reaction force from each node in the 2 direction on face EFGH. All remaining faces are considered

traction free.

The results of the validation are shown in Figures 18, 19, 20, and 21. The experimentally

prescribed displacement as a function of time is shown in Figures 18a, 19a, 20a, 21a, and is used as

an input for the prescribed displacement in the simulation. A comparison of both force-displacement

and force-time curves is shown in Figures 18b, 19b, 20b, 21b, and 18c, 19c, 20c, 21c, respectively.

From these results, one may clearly observe a good quantitative agreement between the experiment

and the simulation.

Furthermore, Figures 22, 23, 24, and 25 also show a good quantitative agreement between the

experimental measured and simulated Hencky strain field component E22, where the Hencky strain

is given by E = lnU at various times.
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Figure 18: DC745U uniaxial model validation (Experiment and simulation comparison). a) Pre-
scribed displacement profile. b) Force-displacement curve. c) Force-time curve.
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Figure 19: Buna 50A uniaxial model validation (Experiment and simulation comparison). a)
Prescribed displacement profile. b) Force-displacement curve. c) Force-time curve.
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Figure 20: Neoprene 50A uniaxial model validation (Experiment and simulation comparison). a)
Prescribed displacement profile. b) Force-displacement curve. c) Force-time curve.
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Figure 21: Neoprene 70A uniaxial model validation (Experiment and simulation comparison). a)
Prescribed displacement profile. b) Force-displacement curve. c) Force-time curve.
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Figure 22: DC745U comparison of E22 for the inhomogeneous uniaxial deformation between the
experimentally measured and simulated validation at a displacement of a) 13 mm, and b) 27 mm.

a) b)

Figure 23: Buna 50A comparison of E22 for the inhomogeneous uniaxial deformation between the
experimentally measured and simulated validation at a displacement of a) 15 mm, and b) 19.8 mm.
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Figure 24: Neoprene 50A comparison of E22 for the inhomogeneous uniaxial deformation between
the experimentally measured and simulated validation at a displacement of a) 20 mm, and b)
25.74 mm.

a) b)

Figure 25: Neoprene 70A comparison of E22 for the inhomogeneous uniaxial deformation between
the experimentally measured and simulated validation at a displacement of a) 15 mm, and b)
19.87 mm.
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8 Conclusion

In this work we experimentally measured and numerically modeled the low to moderate constitutive

behavior of filled viscoelastomers, specifically, DC745U, Buna 50A, Neoprene 50A, and Neoprene

70A with an emphasis on the concurrent viscoelastic and stress softening behavior.

The rather complex behavior was experimentally investigated by conducting a suite of large

deformation uniaxial tests, such as load/unload/reload at multiple stretch rates and multi-step re-

laxation tests. Those tests were performed on both virgin and preconditioned specimens. The novel

experimental contribution is that we have observed circumstantial evidence that the mechanisms

that cause the Mullins effect appear to be the main drivers of viscoelasticity. We also observed that

the inelastic mechanisms are more dominant during loading, and that all materials used in this

work exhibit a stretch-stretch rate stiffening of the viscous response. There was also clear evidence

that preconditioned samples exhibited recovery of the Mullins effect at room temperature, for some

of the materials used.

For the constitutive model, we make use of the phenomenological approach that adapts the con-

cept of phase change in a filled viscoelastomer for Mullins effect, coupled with a micro-mechanically

motivated viscoelastic model. We specifically adopt an additive decomposition of the free energy

to capture the combined stress-softening and stretch-stretch rate stiffening of the viscous response.

The model was then calibrated against uniaxial tensile tests using non-linear least squares, and

then implemented in the commercial finite element software Abaqus/Standard (2023) as a user

material subroutine. Lastly, the model was validated reasonably, but not flawlessly, by performing

inhomogeneous experiments and simulations, and comparing various quantities such as the reaction

force to a prescribed displacement.

While much has been learned over the past decades, we believe there is further research to

consider for this particular class of materials. Although the focus of this study is to investigate

the mechanical behavior at room temperature, the literature indicates that temperature clearly

has an affect on the mechanical behavior for this class of materials. Moreover, it is well known

that Mullins effect may be recovered after prolonged times at elevated temperatures and other such

conditions. For that reason, it remains an open question to understand the effect of temperature,

on the coupling between the Mullins effect and viscoelasticity.
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A Appendix: Detailed geometry of validation samples

a) b)

c) d)

Figure 26: Detailed geometry of the samples used for the validation experiments. a) DC745U, b)
Buna 50A, c) Neoprene 50A, and d) Neoprene 70A. All dimensions are in mm.
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