
Applied Mathematical Modelling 132 (2024) 41–56

Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier.com/locate/apm

Experimental and numerical gust identification using deep 

learning models

Kayal Lakshmanan a, Davide Balatti a, Hamed Haddad Khodaparast a,∗, 
Michael I. Friswell a, Andrea Castrichini b

a Swansea University, Faculty of Science and Engineering, Bay Campus, Swansea, SA1 8EN, United Kingdom
b Airbus Operations Ltd., Filton, BS99 7AR, United Kingdom

A R T I C L E I N F O A B S T R A C T

Keywords:

Gust identification

Inverse method

Aeroelasticity

Deep learning

Identifying gusts and turbulence events is of primary importance for designing future gust load 
alleviation systems, calculating airframe load, and analysing incidents. Due to the impossibility 
of their direct measurement, indirect methods are used and ad hoc experiments are necessary 
to validate the methodology. This paper employs Convolutional Neural Network and Long 
Short Term Memory (CNN-LSTM) as well as CNN models for in-flight gust identification. Two 
aeroelastic models, with different levels of fidelity, representative of a civil and commercial 
aircraft, are used to generate gust responses to train and test the Deep Learning (DL) models. 
The results highlight the capability of both LSTM-CNN and CNN models in reconstructing gusts 
across the entire flight envelope of a civil commercial aircraft. The CNN model demonstrated 
its ability to identify gusts and turbulence when they occur concurrently, similar to real-world 
scenarios, in a significantly shorter amount of time. Furthermore, its application to wind tunnel 
gust response measurements, where the inflow has previously been characterised, demonstrated 
the effectiveness of the proposed methodology for experimental measurements.

1. Introduction

The accurate and effective estimation of aircraft loads is a critical issue in the aerospace sector. These loads’ extreme values are 
often the principal factors for determining the size of an aircraft’s structure. Consequently, they significantly impact the aircraft’s 
performance. Inaccuracies in load estimations can result in suboptimal design choices, typically manifesting as overly conservative 
structures that are heavier than necessary. This excess weight increases energy consumption, toxic emissions, and noise pollution. 
Therefore, accurate load estimations are directly linked to achieving the aviation industry’s objective of net-zero carbon emissions 
by 2050 [1].

In-flight, the most significant loads an aircraft encounters are due to gusts and manoeuvres. Aircraft designers must, therefore, 
ensure that their designs comply with airworthiness standards. These include the capability to withstand vertical and lateral discrete 
gusts, as well as turbulence [2]. Turbulence refers to air movement that an aircraft navigates through, which changes the dynamic 
response of the aircraft. This change takes place as the effective incidence on each aerodynamic surface is influenced by any com-

ponent of the air’s velocity (termed gust velocity) that is perpendicular to the flight path [3]. In recent years, there has been an 
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increased effort to develop new active or passive Gust Load Alleviation (GLA) systems, as evidenced by several studies [4–9]. These 
studies show the importance of these loads. Directly measuring the time responses of gust velocities, which cause gust loads on 
aircraft structures, is not feasible. As a result, it becomes necessary to rely on identification strategies.

A better knowledge of the actual gusts and turbulence to which the aircraft is subjected could improve different aeronautical 
practices (e.g. design of GLA systems, analysis of accidents or estimation of the loads on the airframe). Regardless of the active 
or passive nature of the GLA systems, they are designed based on ‘1 - cos’ gust and the von Karman wind turbulence model [10]. 
Indeed, in future, the design of GLA systems could be driven by an extensive database of actual gusts and turbulence events recorded 
by flying aircraft. Moreover, aircraft are equipped with digital flight data recorders, which enable the recording of specific aircraft 
parameters. In analysing flight incidents, gust and turbulence events are essential in estimating limit loads [11]. Furthermore, the 
advent of Industry 4.0 has brought complex industrial systems that are more interconnected, smart, and autonomous. A Digital Twin 
can be used to manage an aircraft throughout its service life and ensure its structural integrity [12]. To reliably calculate structural 
loads, the identification of gusts and turbulence events is necessary.

In the 40s and 50s, gust profiles were studied using the discrete-gust approach. This method used the peak vertical acceleration 
measured on an aircraft during a gust event to extract gust parameters such as the maximum gust velocities or the distance parallel 
to the aeroplane’s flight path for the gust to reach its peak velocity. The identified gusts were used in the design of new aircraft, 
although this approach was not able to identify the real air turbulence [13,14]. Later, in the 60s and 70s, a new approach based on 
frequency response functions was proposed. Its use was limited due to its complexity in defining the frequency response functions 
[13]. In 1999, a Monte-Carlo and statistical analysis flight gust loads analysis approach was proposed by Kim et al. [15] in the context 
of space and missile systems. This procedure was based on forcing functions derived by extracting measured wind profiles’ turbulent 
components. The application of the method was limited to gust wavelengths greater than 500 ft (152 m). In 2009, a model-based 
method which included information from an observer for a non-linear aircraft model, onboard measured data, parameters available 
on commercial aircraft and a disturbance model for the estimation of gusts and structural loads was proposed. Non-linear parameter 
optimisation was used to estimate the gust profile [16]. Recently, Balatti et al. [17] proposed a method based on cubic B-spline 
functions for the problem of gust and turbulence identification using simulated in-flight data. Results showed the robustness of this 
method. Indeed, gust response data were created using a detailed model, and the identification was performed using a simplified 
model.

Different ways to identify gust loads have been investigated in recent decades, but primarily two approaches have been considered, 
namely the optimisation method and the direct method [11]. In the optimisation method, the gust response is used in an optimisation 
framework, and the gust is tuned until the model responses match the measured responses. In the direct method, the gust is calculated 
using the gust response as input of the inverted aircraft model. However, the creation of an inverted model is complicated and 
typically associated with ill-conditioned problems. To solve this, machine learning and DL techniques have been proposed to replace 
physical models with a model derived directly from the data without requiring a substantial understanding of the underlying physics. 
Because of this, various machine learning and DL techniques have been utilised to identify linear and nonlinear systems based on 
measurements.

For example, Zhou et al. [18] applied Long Short Term Memory (LSTM) to the problem of load identification in three different 
nonlinear cases and showed the ability of LSTM to identify the disturbance even when its location is unknown. Moreover, they 
showed the low sensitivity of the hyperparameters of the recurrent neural network in the identification accuracy.

Antonakis et al. [19] employed a Convolutional Neural Network (CNN) methodology to perform dynamic modelling and iden-

tifying gusts using recorded in-flight data. To achieve this, a neural network method was employed with in-flight data recordings 
[19]. As it is not feasible to compare the identified gust with a direct measurement, the von Karman turbulence model was used to 
confirm a similar frequency content. In recent years, numerous researchers have been working on wind estimation in atmospheric 
turbulence using small Unmanned Aerial Systems (sUAS) [20,21]. Indeed, turbulence is a crucial factor in sUAS, which operates at 
lower airspeed and altitude with respect to aircraft. Generally, indirect measurements are preferred over direct ones. Allison et al. 
[20] used LSTM to address the problem of turbulence identification using a small unmanned aerial system. Simulated in-flight data 
using the Dryden gust model and realistic large eddy simulations were used to train the model. The results revealed the ability of the 
LSTM model to predict turbulence fields. Zimmerman et al. [21] utilised in-flight data obtained from a multirotor drone flying close 
to an anemometer to collect data in order to validate and test models for wind estimation. The authors evaluated three models: an 
LSTM neural network, an artificial neural network, and a Gaussian process regression. While all three models showed similar results, 
the LSTM model had the highest performance.

Although the literature presents several strategies for gust identification, the impossibility of directly measuring gusts poses a 
challenge to validating these identification strategies. Moreover, the studies considering DL models are limited. This paper aims to 
extend their use by considering: (a) aeroelastic models with different levels of accuracy and (b) experimental measurements in a 
controlled and known environment to validate the DL model. To do this, two aeroelastic models of civil and commercial aircraft, 
with different levels of accuracy, are used to generate gust responses for training and testing the DL models. The developed DL models 
are tested considering five different cases of increasing complexity. Finally, the DL model demonstrating the highest performance 
is applied to experimental measurements of a wing in the wind tunnel subjected to known gusts. In Section 2, the theory and 
framework employed in this paper for aeroelastic gust load identification are described. Within this section, the tools required for 
this framework, which include aeroelastic modelling (2.1), experimental aeroelastic testing (2.2), deep learning (DL) methods (2.3), 
and hyper-parameter optimisation (2.4), are explained. In Section 3 in-flight gust response data are created for five cases, and the DL 
42

models are developed. The gust identification results are reported in Section 4 before presenting the conclusions.
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2. Theory: aeroelastic gust load identification

The theory of aeroelastic gust load identification is introduced in this section. The theory explains how gust loads applied to 
aircraft structures can be identified using physical/numerical aeroelastic responses, physical/numerical models of the structure, 
and DL methods. The aeroelastic response includes various outputs such as Center of Gravity (CG) heave acceleration, vertical tip 
displacements etc. These outputs are directly measurable, whereas gust loads cannot be directly measured. Having an accurate 
estimation of gust loads from measurable flight data is important, as gust loads play a crucial role in the aircraft design process 
[22]. In many real-world applications, directly measuring input loads applied to a structure is not feasible. However, it is possible to 
estimate these loads by analyzing information from measurable quantities. Examples of these methods can be seen in [18,23].

In general, an inverse problem consists of either identifying the characteristics of a system under a known input and output 
or identifying the input of a known system by measuring its response. The system can be either a numerical model or a physical 
structure. This paper demonstrates that a DL-based model can replace the conventional model or physical structure, and be utilised 
for identification purposes. In science and engineering, many problems have the form of a Fredholm integral equation of the first kind, 
which after discretization, are typically ill-posed or strongly ill-conditioned [24]. Assuming zero initial conditions of displacement 
and velocity, i.e., 𝑧(0) = 0 and 𝑧̇(0) = 0 and linearity of the models, the time-domain convolution integral between the impulse 
response function ℎ(𝑡) and the exciting gust 𝑤𝑔(𝑡) is

𝑧(𝑡) =

𝑡

∫
0

ℎ(𝑡− 𝜏)𝑤𝑔(𝜏)𝑑𝜏 (1)

where the kernel function ℎ(𝑡 − 𝜏) is a convolution-type kernel and 𝜏 is the time delayed operation satisfying 𝑡 ≥ 𝜏 . The kernel 
function ℎ(𝑡 − 𝜏) can be calculated in the frequency domain as the transfer function between the input and the measurement of 
interest and converted to the time domain by using the inverse Fast Fourier transformation [17].

In real applications, Eq. (1) is discretized over the interval [0, 𝑡]. Indeed, considering 𝑛 sampled points over that interval, Eq. (1)

can be expressed in matrix form as

𝐳 =𝐇𝐰𝑔 (2)

where 𝐇 ∈ℝ𝑛×𝑛 is a transfer matrix, and 𝐳 ∈ℝ𝑛×1 and 𝐰𝑔 ∈ℝ𝑛×1 are vectors composed of discrete values of the response and gust, 
respectively. To determine 𝐰𝑔 when 𝐳 is available and 𝐇 is known and non-singular, Eq. (2) can be inverted, to give

𝐰̃𝑔 =𝐇−1𝐳 (3)

where 𝐰̃𝑔 is the identified gust. However, inverse problems are typically ill-posed and sensitive to the inversion of the transfer matrix. 
To deal with this problem, cubic B-spline functions were used to regularise 𝐇 and improve the identification robustness [17]. Indeed, 
the gust can be expressed as a summation of cubic B-spline functions as

𝐰̃𝑔 =𝚿𝐜 (4)

where 𝚿 ∈ ℝ𝑛×𝑚 is a known matrix consisting of 𝑚 cubic B-spline basis functions and 𝐜 ∈ ℝ𝑚×1 is a vector containing the B-spline 
scaling factors. Equation (2) can be expressed as

𝐳 = (𝐇𝚿)𝐜 (5)

where the only unknown is 𝐜 and inverting (𝐇𝚿) the gust can be identified.

When the assumptions of the linear system are not satisfied, such as in a non-linear aeroelastic system, the Duhamel integral can-

not be applied. However, in such cases, there must exist a non-linear function  that relates the input gust 𝑤𝑔 to the measurement 𝑧

𝑧(𝑡) = [
𝑤𝑔(𝑡)

]
(6)

Suppose there exists an inverse function  that relates the measurement 𝑧 to the exciting gust 𝑤𝑔 as

[
𝑧(𝑡)

]
= 𝑤̃𝑔(𝑡) ≈𝑤𝑔(𝑡) (7)

with

𝜀 = |𝑤̃𝑔(𝑡) −𝑤𝑔(𝑡)| (8)

where 𝜀 is the error between the identified gust 𝑤̃𝑔 and the real gust 𝑤𝑔 . Equation (7) indicates that solving the gust identification 
problem boils down to determining . The  can be derived either from a physical model and/or a physical structure. However, 
this paper demonstrates the use of DL methods, such as LSTM and CNNs, for the identification of . To this end, the DL methods 
should be employed in conjunction with an aeroelastic model or physical structure. Therefore, the following subsections describe the 
aeroelastic modelling process, experimental aeroelastic testing, and the theory behind the two DL methods used in this paper. The 
43

framework of the gust identification theory introduced in this paper can be outlined as follows:
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• Generate possible input gust profiles (see Section 2.1.1 ‘Gust and Turbulence Models’). In the wind tunnel, these gust profiles 
can be generated using the gust generator (see Section 2.2).

• Conduct experiments (2.2) and/or run numerical aeroelastic models (2.1) to generate gust response data, such as the centre of 
gravity (CG) heave acceleration or vertical tip displacements.

• Using the generated data, train DL models for inverse gust identification (training process explained in Sections 2.3 and 2.4).

• Employ the trained DL models for gust identification.

2.1. Aeroelastic modelling

Aeroelasticity is the science that investigates the mutual interaction between aerodynamics, elastic, and inertia forces and their 
impact on the static and dynamic aircraft structural response. Depending on the analysis required and the design stage models with 
different levels of accuracy can be developed. The complexity of the model is determined by the type of aircraft configuration, 
the type of dynamic simulation required, the flight envelope of the aircraft, and finally, the stage in the design process. Aeroelastic 
models can be categorised into simplified and detailed models. During the preliminary design of an aircraft, when limited information 
is available, a simplified model can be used to obtain relevant information about aircraft’s handling qualities, stability, and flight 
performance. Moreover, for an elastic aircraft, a numerical model of the aeroelastic system serves as the starting point for designing 
and analysing an active or passive GLA system. Indeed, model reduction techniques are necessary when working with a detailed 
model. Alternatively, a simplified model can be used directly. Regardless of the approach taken in defining the aeroelastic model, 
the equation of motion can be formulated in terms of the physical displacement 𝐲 ∈ℝ𝐡×𝟏 or modal coordinates 𝐪 ∈ ℝ𝐩×𝟏 using the 
relation

𝐲 =𝚽𝐪 (9)

where ℎ represents the number of degrees of freedom in physical coordinates, 𝑝 denotes the number of modal coordinates (dependent 
on the number of modes retained for the analysis), and 𝚽 ∈ ℝℎ×𝑝 is the modal matrix. The reduced order aeroelastic equation of 
motion representative of an aircraft subjected to gusts can be expressed as

𝐀𝜻̈ +
(
𝜌𝑉 𝐁+𝐃

)
𝜻̇ +

(
𝜌𝑉 2𝐂+𝐄

)
𝜻 = 𝐟𝑤𝑔 (10)

where 𝐀 ∈ ℝ𝐪×𝐪, 𝐃 ∈ ℝ𝐪×𝐪 and 𝐄 ∈ ℝ𝐪×𝐪 are respectively the structural inertia, damping and stiffness matrices, 𝐁 ∈ ℝ𝐪×𝐪 and 
𝐂 ∈ℝ𝐪×𝐪 are the aerodynamic damping and stiffness matrices which are functions of the Mach number and the reduced frequency, 
𝜻 ∈ℝ𝑞×1 is the vector of the generalized coordinates and 𝜻̇ and 𝜻̈ are its first and second derivatives, 𝜌 is the air density and 𝑉 is the 
aircraft velocity [2]. On the right-hand side of Eq. (10), the forcing term f is the force vectors associated with the gust, and 𝑤𝑔 is the 
gust profile. Equation (10) can be solved in the time or frequency domain.

2.1.1. Gust and turbulence models

Atmospheric disturbance models are commonly classified into two idealized categories: discrete gusts and continuous turbulence. 
A discrete gust is typically modelled as a ‘1 - cosine’function due to the shape of the gust, which is described mathematically as

𝑤𝑔(𝑡) =
⎧⎪⎨⎪⎩

𝑤𝑔0
2

[
1 − cos

(
2𝜋 𝑉

𝑙𝑔
𝑡

)]
for 0 ≤ 𝑡 ≤ 𝑙𝑔

𝑉

0 for 𝑡 >
𝑙𝑔

𝑉

(11)

where 𝑤𝑔0
is the maximum gust velocity and 𝑙𝑔 is the gust wavelength. According to the European Aviation Safety Agency (EASA) 

regulation [10] for the case of civil and commercial aircraft, gust wavelengths are varied between 18 m to 214 m, and the gust 
velocity is calculated as

𝑤𝑔0 =𝑤𝑟𝑒𝑓

(
𝐻

106.14

)1.6
(12)

where the gust gradient 𝐻 is half the gust wavelength 𝑙𝑔 and the reference gust velocity 𝑤𝑟𝑒𝑓 reduces linearly from 17.07 m/s 
Equivalent Air Speed (EAS) at sea level to 13.41 m/s EAS at 4572 m, and then again to 6.36 m/s EAS at 18288 m. Fig. 1 shows gusts 
at different wavelengths at sea level for an airspeed of 200 m/s.

According to the EASA regulations, the power spectral density of atmospheric turbulence is described by the von Karman spectra 
as

Φ𝑣(Ω) =
𝐿𝑇

𝜋

1 + 8
3 (1.339Ω𝐿𝑇 )2

[1 + (1.339Ω𝐿𝑇 )2]11∕6
(13)

where Ω is the spatial frequency, 𝐿𝑇 is the scale of turbulence (commonly assumed to be 2500 ft). According to Hoblit [3], the 
turbulence velocity time history is obtained as the output of a shape filter with the input given by a stationary Gaussian ‘white-noise’ 
44

time history. The transfer function that approximates the von Karman shape is
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Fig. 1. Gusts with different gust wavelengths.

Fig. 2. Bode diagram of the von Karman approximation of atmospheric turbulence.

𝐺(𝑠) =
𝜎𝑤√
Φ𝜂

√
𝜏𝑇

𝜋

(1 + 2.187𝜏𝑇 𝑠)(1 + 0.1833𝜏𝑇 𝑠)(1 + 0.021𝜏𝑇 𝑠)
(1 + 1.339𝜏𝑇 𝑠)(1 + 1.118𝜏𝑇 𝑠)(1 + 0.1277𝜏𝑇 𝑠)(1 + 0.0146𝜏𝑇 𝑠)

(14)

where Φ𝜂 is the power spectral density of the white noise, 𝜏𝑇 is the ratio between 𝐿𝑇 and the horizontal velocity of the aircraft and 
𝜎𝑤 is the component of the gust velocity. Fig. 2 shows the Bode diagram of the approximation of the von Karman turbulence model. 
The atmospheric turbulence is obtained in the time domain as the output of the state-space form of the transfer function Eq. (14)

whose input is white noise.

2.2. Experimental aeroelastic testing on physical structures

Wind tunnels equipped with various sensors may be utilised for aeroelastic testing. In the context of gust load identification in 
this paper, the purpose of this aeroelastic testing is to gather data to train DL models. This particular aeroelastic testing requires a 
gust generator. A gust generator, capable of producing both discrete and continuous gusts, was commissioned and characterised at 
Swansea University’s wind tunnel [25]. Different gust profiles, such as 1-cos with varying lengths and velocities and sinusoidal gusts, 
are considered. The wing response, such as vertical tip displacement, is measured using laser sensors, as detailed by the authors in 
[26]. Consequently, validated aeroelastic models, in conjunction with data from these sensors, can be utilized to train deep learning 
models for the identification of gust inputs, as described in subsequent sections. Fig. 3 shows the gust generator, the wing installed 
in the Swansea University wind tunnel, the balance and the laser displacement sensors [9]. For details on experimental aeroelastic 
testing, readers are referred to [25,26].

2.3. Deep learning models

CNNs are feed-forward neural networks commonly used for two-dimensional image recognition. CNNs’ architecture allows for 
the use of training kernels, which are small matrices that are multiplied and averaged with all of the patches in the image. The 
45

key advantage of this model is that it accurately captures local features such as corners and basic shapes. If a one-dimensional time 
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Fig. 3. Wing installed in the wind tunnel.

Fig. 4. Typical structure of CNN.

signal is transformed directly into a two-dimensional signal, the spatial correlation in the original correlation is eliminated, and some 
original information may be lost. So, in the context of this research, for the one-dimensional signals, one-dimensional CNNs are used 
to uncover patterns in the temporal dimension, such as local maxima, minima, rapid changes, and among others. A typical structure 
of CNN is shown in Fig. 4. The input layer takes the input vector and creates a feature map corresponding to the convolution kernel. 
The feature map is then passed on to the next layer using a set of weights. A receptive field, which is a square matrix of weights with 
sizes smaller than the input, establishes the connection between the convolution layer and the input. The convolution procedure 
is carried out as the receptive field strides (convolves) along the input area. For a given input 𝑥(𝑡) = {𝑥1, 𝑥2, … , 𝑥𝑡} and output 
𝑦(𝑡) = {𝑦1, 𝑦2, … , 𝑦𝑡}, the convolution operation is described as

𝑦𝑖𝑗 = 𝜎

(
𝐹∑
𝑟=1

𝐹∑
𝑐=1

𝑤𝑟𝑐𝑥(𝑟+𝑖×𝑆)(𝑐+𝑗×𝑆) + 𝑏

)
,

0 ≤ 𝑖 ≤ 𝐻 − 𝐹

𝑆
, 0 ≤ 𝑗 ≤ 𝑊 − 𝐹

𝑆
,

(15)

where 𝑦𝑖𝑗 indicates a node’s output on the feature map, and 𝜎 is a nonlinear activation function used to extract the features from the 
input. The height and width of the receptive field are denoted by 𝐹 , while 𝑆 represents the stride length. 𝑤𝑟𝑐 , 𝑥(𝑟+1×𝑆)(𝑐+𝑗×𝑆) and 
𝑏 represent the weights, input data element, and bias, respectively. 𝐻 and 𝑊 stand for the input’s height and width dimensions. In 
convolutional layers, the input size decreases depending on the number of filters. The pooling layer limits overfitting and minimises 
the input layer’s spatial dimension by 75% [27].

LSTM models are a type of recurrent neural network that has lately shown promise in time series forecasting. The key character-

istic of the LSTM architecture is a system that allows it to discard irrelevant information during learning while maintaining track of 
long-term dependencies.

A basic structure of the LSTM memory cell is presented in Fig. 5. In principle, an LSTM cell maintains two states: long-term (𝑐𝑡) 
and short-term (ℎ𝑡), which are updated as new data becomes available. A typical memory cell contains three control gates, input, 
output, and forget gates, performing the writing, reading and resetting functions in each cell. The multiplicative gates enable the 
model to hold information over long time periods, avoiding the vanishing gradient problem seen in Recurrent Neural Networks [28]. 
46

The following set of equations allows the LSTM to predict the output vector.
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Fig. 5. Basic structure of the LSTM layer.

𝑖𝑡 = 𝜎
(
𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 +𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖

)
𝑓𝑡 = 𝜎

(
𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 +𝑊𝑐𝑓 𝑐𝑡−1 + 𝑏𝑓

)
𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑔

(
𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐

)
𝑜𝑡 = 𝜎

(
𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 +𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜

)
ℎ𝑡 = 𝑜𝑡ℎ

(
𝑐𝑡
)

(16)

where 𝑖𝑡, 𝑓𝑡, 𝑐𝑡 and 𝑜𝑡 describe the input, forget gate, cell activation, and output, respectively. 𝜎 denotes the activation function, and 
𝑊 and 𝑏 represent the weight matrix and the bias vector.

2.4. Hyper-parameter optimisation

Machine learning and DL methods often require the tuning of specific parameters known as hyper-parameters. These hyper-

parameters are optimised during the training of DL algorithms since they have a critical impact on the algorithm’s performance. 
Choosing appropriate hyperparameter values is crucial for building a strong and accurate model, as selecting inappropriate values 
can result in the model overfitting or underfitting the data. It is usual practice to display the model loss as a function of the number 
of epochs. This graphic can tell whether the model is overfitting, underfitting, or appropriately fitting the training dataset [29]. In 
addition, stopping criteria are implemented during the training to stop the training when the performance measure stops improving 
[30].

For the hyper-parameters of the CNN model, the number of filters and kernels, layers, learning rate, and epochs are considered. 
For the LSTM model, the number of neurons, layers, learning rate, and epochs are considered.

3. Data generation and deep learning modelling

This section outlines the process of in-flight data creation and DL modelling. In this work, two aeroelastic models representative 
of a civil jet aircraft with different levels of fidelity [17,22], and a wing model representative of one tested in the wind tunnel [26], 
are considered. As all the aeroelastic models discussed are available in the literature, only a concise summary is provided in this 
paper. The first model is a low-fidelity model and represents a flexible aircraft and consists of a rigid fuselage, a rectangular, uniform, 
untapered, unswept flexible wing with a hinged wingtip and a tailplane [7]. The analytical model was developed to have the least 
degrees of freedom and was used to perform multi-objective optimisation. In this case, the aeroelastic equation of motion is solved 
using the explicit Runge-Kutta method. The second model is a high-fidelity model, developed using a ‘stick’ model with lumped 
masses and double lattice panels. The second model was developed to investigate the effect of hinged wingtips [31]. This model 
is a modification of the FFAST (Future Fast Aeroelastic Simulation Technologies) aeroelastic model and includes several thousand 
elements, which are reduced using modal reduction to retain 55 modes for analysis [22]. Table 1 presents the key parameters for the 
two aircraft aeroelastic models under consideration [7,17,32]. Figs. 6 and 7 show the typical aircraft centre of mass heave vertical 
acceleration gust responses for the low-fidelity model and the high-fidelity model, respectively and used for training of DL models.

The wing physical structure consists of an aluminium spar with an “x-shaped” cross-section and 3D-printed aerofoils [6,9,26]. 
The wing considered in this work was subjected to discrete gusts with different gust lengths. The laser displacement sensor was used 
to measure the wing vertical displacement at 80% of the wing. Fig. 8 shows a case of an experimentally measured wing vertical 
displacement in response to a 1-cos gust.

The FFAST model and the aeroelastic model of the wing tested in the wind tunnel are solved in the frequency domain and the 
Fast Fourier transform is used to calculate the time domain response.

To assess the DL models across varying levels of complexity, five distinct cases of in-flight data were examined. These cases were 
selected to range from academic scenarios (involving discrete gusts at a single flight configuration) to more industrially relevant 
scenarios (involving turbulence and discrete gusts at any flight configuration). In all cases, ten thousand gust responses were utilized, 
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employing Latin hypercube sampling to vary the gust length between 18 m and 214 m, and the maximum discrete gust amplitude 
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Table 1

Main aircraft parameters.

Half span 32.5 m

Total mass 187429 kg

Airspeed 200 m/s

Wing inertia 12083 kg m2

Aircraft inertia 12425757 kg m2

Mean Chord 4 m

Wingtip Mass 500 kg

Wingtip span 6.5 m

Engine weight 1680 kg

Fig. 6. Low-fidelity model, aircraft centre of mass vertical acceleration gust responses.

Fig. 7. High-fidelity model, aircraft centre of mass vertical acceleration gust responses.

between 2 m/s and 18 m/s. The gusts and aircraft centre of mass acceleration time histories were recorded with a time step of 25 
ms.

3.1. In-flight data creation

The in-flight data were generated by solving Eq. (10) either in the time or the frequency domain, with the resulting response 
converted to the time domain using the inverse Fast Fourier transformation if the frequency domain approach was used. The first 
case considered the simplified model flying at 200 m/s and sea level, while the second case considered the detailed model flying 
at 200 m/s and sea level. In the third, fourth, and fifth cases, 104 flight configurations within the envelope of a civil, commercial 
aircraft were defined, as shown in Fig. 9. Latin hypercube sampling was used to select the flight configuration for each gust response 
in the third and fourth cases. Furthermore, the information regarding the flight configuration was not saved in the third case and was 
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saved in the fourth. The fifth case was a more realistic case, where a discrete gust and turbulence event were considered together. For 



Applied Mathematical Modelling 132 (2024) 41–56K. Lakshmanan, D. Balatti, H. Haddad Khodaparast et al.

Fig. 8. Experimental measurements vertical displacement gust response.

Fig. 9. Flight configurations considered.

each gust response, ad-hoc turbulence was created. In the first four cases, time histories of 5 seconds were considered. To consider 
the turbulence event before and after the discrete gust, in the fifth case, 15 seconds were considered.

3.2. Simulated wing gust response

Simulated experimental gust response measurements were generated by solving Eq. (10) in the frequency domain and converted 
to the time domain using the inverse Fast Fourier transformation. Ten thousand gust responses were considered at 18 m/s and sea 
level, using Latin hypercube sampling to vary the gust length between 1.3 m and 4.5 m and, based on the measured gusts, varying 
the amplitude between 0 m/s to 1 m/s. Gusts and vertical displacement at 80% wing span time histories were saved, considering a 
sampling time of 5 ms.

3.3. Deep learning modelling

In several applications, CNN and LSTM were individually used for time series modelling [33,34]. For example, LSTM was used 
in the context of nonlinear structural systems to predict impact loads and load location [18]. However, CNN-LSTM has been used 
to tackle many complex applications in manufacturing, finance, meteorology, etc., especially when dealing with time series data 
[27,35–37]. The CNN-LSTM model takes advantage of the convolutional layers’ ability to extract meaningful knowledge and learn 
the internal representation of time-series data, as well as the LSTM layers’ efficiency in distinguishing short-term and long-term time 
dependencies.

As a result, the CNN-LSTM model was primarily chosen for the gust identification task. However, considering that LSTM is 
predominantly helpful with temporal relationships, for the gust identification task, the time dependencies stay zeros until and after 
the gust emerges with sharp edges and shapes. Since the CNNs can accurately capture this behaviour, thus, a purely CNN model is 
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also explored for the gust identification task.
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Fig. 10. Hybrid CNN-LSTM model.

Table 2

The hyperparameters of the models.

Model Value

Dropout 0.1, 0.2, 0.3

Learning rate 10−3, 10−3, 10−5
Batch size 16, 32, 64, 128

Epochs stopping criteria with patience 10

Fig. 11. CNN model.

Initially, the two sub-models (CNN-LSTM) are integrated by adding CNNs at the front end for feature extraction, followed by 
LSTM layers with a Dense layer on the output to interpret the features across time steps. Fig. 10 shows the architecture of the hybrid 
CNN-LSTM model utilised in this work. Two stacked 1-dimensional convolutional filters are applied in the front end; then, two layers 
of LSTM layers are integrated into the model, and a dropout layer is added in-between the CNN and LSTM layers to reduce the 
overfitting problem during model training. Finally, after adding another dropout layer, a fully connected layer is added to perform 
the gust identification task.

The performance of DL models is determined by predefined hyperparameters obtained through an optimization procedure. For 
the CNN-LSTM model used in this study, the number of layers, filters, neurons, and activation function are determined based on prior 
studies [35,38,39], and their values are shown in Fig. 10. Subsequently, for the CNN model used in this study, the architecture and 
values of hyperparameters, number of layers, filters, neurons and activation function are shown in Fig. 11.

Other parameters, such as the dropout rates, learning rate, batch size, and activation functions, are adjusted using a grid search. 
Table 2 shows the values used in the grid search to adjust the hyperparameter. Finally, the number of epochs is determined based on 
the stopping criteria when sufficient convergence of training and validation has been met with specified patience.

For the validation of the model, the standard holdout validation strategy is followed [35,40] by dividing the dataset into 80% and 
20%, respectively for the training and test dataset. From the training dataset, 10% of the dataset is randomly selected for validation 
during model training, whereas 20% of the test dataset is set aside for final evaluation after model training to assess the model’s 
performance on unseen data.

3.3.1. Model evaluation metrics

In this work, the Mean Squared Error (MSE) is used as the loss function during model training. The model parameters are updated 
by computing and backpropagating the MSE over the training data for each iteration (epoch). The MSE is defined as

MSE = 1 1
𝑛𝑡∑ 𝑛∑(

𝑤̃ (𝑡 ) −𝑤 (𝑡 )
)2
, (17)
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Table 3

Summary of cases considered.

Case 1 Case 2 Case 3 Case 4 Case 5

Modelling fidelity Low High Low Low Low

Flight configuration 1 1 104 104 104

Airspeed and altitude No No No Yes Yes

Disturbance ‘1-cos’ ‘1-cos’ ‘1-cos’ ‘1-cos’ ‘1-cos’+turb.

Table 4

Gust identification results using cubic B-spline functions.

Case 1 Case 2 (5 modes) Case 2

R2 0.9931 0.9974 0.9874

RMSE 0.0024 0.0015 0.0035

MAE 0.0150 0.0037 0.0342

where 𝑤𝑔𝑗
(𝑡𝑖) represents the 𝑗-th reference gust at time step 𝑡𝑖, 𝑤̃𝑔𝑗

represents the 𝑗-th identified gust at time step 𝑡𝑖, 𝑛𝑡 is a total 
number of time steps and 𝑛 is the number of samples i.e., the number of gusts in the test dataset.

To measure the performance of the trained model, the following three metrics are utilised: the coefficient of determination 𝑅2, the 
Root Mean Squared Error (RMSE), and the Mean Absolute Error (MAE). 𝑅2 is the proportion of variance in the target variable, which 
is explained by the input variable. The 𝑅2 ranges between 0 and 1, where 1 represents that the input variable perfectly explains the 
target variable and 0 is vice versa. 𝑅2 of 0.9 signifies that the input variables can explain 90% of the variance in the target variable. 
Many deep learning papers have employed 𝑅2 as a performance metric because it offers insights into how well the model fits the 
dataset [35,40–43].

𝑅2 = 1 −
𝑆𝑆𝑅𝐸𝑆

𝑆𝑆𝑇𝑂𝑇
(18)

where 𝑆𝑆𝑅𝐸𝑆 is residual sum of squares, defined as

𝑆𝑆𝑅𝐸𝑆 = 1
𝑛𝑡

𝑛𝑡∑
𝑖=1

𝑛∑
𝑗=1

(
𝑤𝑔𝑗

(𝑡𝑖) − 𝑤̃𝑔𝑗
(𝑡𝑖)

)2
,

𝑆𝑆𝑇𝑂𝑇 is total sum of squares, defined as

𝑆𝑆𝑇𝑂𝑇 = 1
𝑛𝑡

𝑛𝑡∑
𝑖=1

𝑛∑
𝑗=1

(
𝑤𝑔𝑗

(𝑡𝑖) − 𝑤̄𝑔𝑗
(𝑡𝑖)

)2
,

𝑤̄𝑔𝑗
(𝑡𝑖) =

1
𝑛

∑𝑛

𝑖=1𝑤𝑔𝑗
(𝑡𝑖) is mean of observed data. The RMSE measures how far the model’s predicted gusts are from the actual gusts 

and is defined as

RMSE = 1
𝑛𝑡

𝑛𝑡∑
𝑖=1

√√√√1
𝑛

𝑛∑
𝑖=1

(
𝑤̃𝑔𝑗

(𝑡𝑖) −𝑤𝑔𝑗
(𝑡𝑖)

)2
(19)

The MAE is the measure of the absolute difference between the predicted and the actual values and is defined as

MAE = 1
𝑛𝑡

1
𝑛

𝑛𝑡∑
𝑖=1

𝑛∑
𝑗=1

|𝑤̃𝑔𝑗
(𝑡𝑖) −𝑤𝑔𝑗

(𝑡𝑖)| (20)

4. Numerical gust identification results

The DL models presented in Section 3.3 were tested in different cases with increasing the level of complexity. In Cases 1 and 2, 
the results are compared to those obtained using the inverse method based on cubic B-spline functions [7]. The same model was used 
to generate the gust response and to perform the gust identification in both cases. Table 3 provides a summary of the aeroelastic 
model fidelity, flight configuration, airspeed and altitude knowledge, and disturbance considered for each case.

4.1. Results using cubic B-spline functions

To consider the effect of the model complexity, the identification using the cubic B-spline functions was performed considering 
the simplified and detailed models with 5, and 55 modes [7]. Table 4 displays the identification results using cubic B-spline functions. 
The simplified and detailed models with 5 modes displayed comparable performance in the identification process. However, as we 
51

increased the number of modes for the detailed model, the R2 score decreases and the MAE increases.
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Table 5

Gust identification results using the CNN-LSTM model.

Case 1 Case 2 Case 3

R2 0.9990 0.9465 0.9249

RMSE 0.0040 0.0303 0.0309

MAE 0.0019 0.0118 0.0118

Time 5 h 45 m 5 s 1 h 28 m 46 s 4 h 3 m 12 s

Table 6

Gust identification results using the CNN model.

Case 1 Case 2 Case 3 Case 4 Case 5

R2 0.9993 0.9987 0.9784 0.9958 0.8257

RMSE 0.0033 0.0046 0.0166 0.0148 0.1278

MAE 0.0020 0.0014 0.0122 0.0074 0.0988

Time 1 m 36 s 47.4 s 38 s 4 m 45 s 26 m 40 s

Fig. 12. Identification for Case 1 using the CNN-LSTM model (left) and CNN model (right); In each case, the gusts are randomly chosen from the test data pool.

Fig. 13. Identification for Case 2 using the CNN-LSTM model (left) and CNN model (right); In each case, the gusts are randomly chosen from the test data pool.

4.2. Comparison of CNN-LSTM and CNN models for Cases 1, 2 and 3

Table 5 presents the identification results obtained using the CNN-LSTM model along with the corresponding training time.

The identification of Case 1 using cubic B-spline functions and the CNN-LSTM model gives similar results, but the CNN-LSTM 
model is computationally more expensive. Table 6 displays the identification results obtained using the CNN model, along with 
the corresponding training times. Notably, the training time for the CNN model is significantly reduced compared to that of the 
CNN-LSTM model.

Figs. 12, 13 and 14 depict the reference and the identified gusts for Cases 1, 2, and 3, respectively using both the CNN-LSTM 
and CNN model. For Cases 1 and 2, the identified gust closely resemble the reference gusts with only a small difference in Case 3 
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due to the complexity of considering 104 flight configurations. Overall, the performance of the identification task decreases as the 
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Fig. 14. Identification for Case 3 using the CNN-LSTM model (left) and CNN model (right); In each case, the gusts are randomly chosen from the test data pool.

Fig. 15. Identification for Case 4 using the CNN model; In each case, the gusts are randomly chosen from the test data pool.

modelling difficulty increases from Case 1 to Case 3, which involves the shift from considering only one flight configuration to all 
flight configurations and, as well as from using a simplified model to a detailed model.

The CNN model outperforms the cubic B-spline functions method in identifying gusts at a single flight configuration, as observed 
in Cases 1 and 2. While the DL models and the cubic B-spline functions method yield comparable results in Cases 1 and 2, the DL 
models offer the advantage of using a single unified model for gust identification, irrespective of the aircraft’s altitude and speed. 
In general, when comparing CNN and CNN-LSTM, CNN exhibited superior performance compared to the CNN-LSTM model. Indeed, 
upon scrutinizing the input and output data of the DL models, it becomes evident that the data are characterized by sharp edges, 
rather than relying solely on long-term time dependencies. This characteristic is effectively addressed by the CNN model.

4.3. CNN model for Case 4 and 5

Due to the lengthy training time required for CNN-LSTM model, experiments on cases 4 and 5 were run using only the CNN 
model. Fig. 15 shows the reference and the identified gusts for Case 4 using the CNN model. Introducing the information about 
flight configuration (Case 4) yields identification performances similar to that of a single flight configuration (Cases 1 and 2). With 
the B-spline method, each flight configuration requires a separate model, resulting in a collection of models for the entire flight 
configuration. In contrast, the advantage of using the DL model is to have a single, unified model for all fight configurations.

Fig. 16 shows the identified gust and turbulence model for Case 5. The maximum identification error is observed following the 
discrete gust, where the aircraft response is influenced by both discrete gusts and turbulence.

4.4. Experimental gust identification results

The above results indicate that, for the specific cases considered, the CNN model outperforms the CNN-LSTM model. Hence, in this 
subsection, the gust identification using experimental gust response was performed using the CNN model. The simulated wing gust 
responses from Section 3.2 served as training data for the CNN model. Table 7 presents the identification results and the associated 
training time. Wing gust responses from reference [9] were used to test the model and the identified gusts were compared with the 
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previously measured gusts [25]. Fig. 17 depicts the reference and the identified gust for gust lengths of 2.25 m and 1.5 m.
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Fig. 16. Identification for Case 5 using the CNN model.

Table 7

Wing gust identification re-

sults using the CNN model.

R2 0.9962

RMSE 0.00019

MAE 0.00012

Time 1 m 36 s

Fig. 17. Identification using the CNN model from wind tunnel experimental measurements: Discrete gust with a length of 2.25 m (left) and 1.5 m (right).

5. Conclusions

This study proposes the use of two DL models, a CNN-LSTM model and a CNN model, to identify gust and turbulence. The recently 
proposed gust identification system based on cubic B-spline functions, introduced by the authors of this paper [17] was employed as 
a reference. Two aeroelastic models with different levels of fidelity were employed to generate in-flight gust response measurements 
considering five different cases of increasing complexity. In the first two cases, discrete gusts at a constant flight configuration 
were analysed using the simplified and detailed models. The results demonstrate that the CNN model can identify the gust more 
accurately than the cubic B-spline functions. Similar performance was observed when using the CNN-LSTM model for the in-flight 
measurements generated by the simplified model. However, the CNN-LSTM model’s performance was reduced when the detailed 
model was used. Overall, when comparing CNN and CNN-LSTM, CNN demonstrated better performance over the CNN-LSTM model. 
Despite the established success of LSTM models in similar tasks, their effectiveness is highly dependent on the specific case (data). 
Additionally, upon examining the input data (Figs. 6 and 7) and output (Fig. 1) of deep learning models, it becomes apparent that 
the emphasis is on capturing sharp edges rather than relying on long-term time dependencies, a characteristic effectively addressed 
by the CNN model.

The CNN model was evaluated using the entire flight envelope of civil and commercial aircraft. Introducing altitude and airspeed 
as input improved the discrete gusts identification accuracy. Additionally, the CNN model accurately predicted a disturbance caused 
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by a real-life scenario with gust and turbulence acting together.



Applied Mathematical Modelling 132 (2024) 41–56K. Lakshmanan, D. Balatti, H. Haddad Khodaparast et al.

To the authors’ knowledge, this study demonstrated the potential of DL models for the problem of gust and turbulence iden-

tification in civil aircraft for the first time. The results highlight the advantage of using a single model to accurately identify the 
disturbance in any flight configuration. Future works will investigate the robustness of the proposed DL method and the evaluation 
of the required training data. Furthermore, this work will be extended using real gust response measurements from wind tunnel ex-

periments. Moreover, the measured data will be tested on the DL models created from the simulated data using the transfer learning 
method.
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