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Abstract. We study analysis on the cone of discrete Radon measures
over a locally compact Polish space X. We discuss probability measures
on the cone and the corresponding correlation measures and correlation
functions on the sub-cone of finite discrete Radon measures over X. For
this, we consider on the cone an analogue of the harmonic analysis on
the configuration space developed in [12]. We also study elements of
finite-difference calculus on the cone: we introduce discrete birth-and-
death gradients and study the corresponding Dirichlet forms; finally, we
discuss a system of polynomial functions on the cone which satisfy the
binomial identity.

In memory of Prof. Anatoly Vershik

1. Introduction

Let X be a locally compact Polish space and B(X) be the corresponding
Borel σ-algebra onX. LetM(X) be the space of real-valued Radon measures
on (X,B(X)).

A random measure on X is a random element of the space M(X). The
theory of random measures plays an essential role in the modern studies
of probability and point processes, see e.g. [4, 10]. The (marked) point
processes can be interpreted as random discrete (non-negative) measures.
The cone of non-negative discrete Radon measures on B(X) is the set

(1.1) K(X) :=

{
η =

∑
i

siδxi ∈ M(X) : si > 0, xi ∈ X

}
,

where δxi denotes the Dirac measure with unit mass at xi ∈ X. Here
the atoms xi are assumed to be distinct and their total number is at most
countable. By convention, K(X) contains the zero measure η = 0, which is
represented by the sum over the empty set of indices i.

The probability measures on the cone K(X), in particular, the Gamma
measure (see Section 2.2 below), are important e.g. for the respresentation
theory of big groups [8], study of infinite-dimensional analogue of Lebesgue
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measure [25], constructions of orthogonal polynomials in the generalisations
of the white noise analysis [16, 19], etc.

The support of a η ∈ K(X) is defined by

τ(η) := {x ∈ X : sx(η) := η({x}) > 0}.

In particular, τ(0) = ∅. If η ∈ K(X) is fixed, we just write sx := sx(η).
Thus, each η ∈ K(X) can be rewritten in the form

η =
∑

x∈τ(η)

sxδx.

For each η ∈ K(X) and a compact Λ ∈ B(X), we have that∑
x∈τ(η)∩Λ

sx = η(Λ) < ∞.

Hence, if we interpret sx as the weight at a point x ∈ X, the total weight in
any compact region is finite. Nevertheless, for a typical measure on K(X),

(1.2) |τ(η) ∩ Λ| = ∞

for almost all η ∈ K(X) (henceforth, | · | denotes the cardinality of a discrete
set); in other words, the configuration of points constituting the support of
η is not locally finite. The crucial assumption for (1.2) is that the measure
that provides the distribution of weights sx > 0 is infinite on (0,∞). This
makes analysis on the cone very different from the case of weights (marks)
with a finite distribution, the so-called marked configurations with a finite
measure on marks, where the results are essentially pretty similar to the
case without marks (when all sx = 1), see e.g. [15, 20, 18].

The further studies of the analysis and probability on the cone were pro-
vided in several directions. The Gibbs perturbation of the Gamma measure
was constructed and studied in [9], the Laplace operator and the corre-
sponding diffusion process on the cone were developed in [14], see also [3], a
moment problem on the cone was analysed in [13], and some non-equilibrium
birth-and-death dynamics on the cone were studied in [5].

The present paper deals with two other important topics of the analysis
on the cone of discrete Radon measures: we discuss an analogue of the
harmonic analysis on the cone, similar to [12] and we introduce elements of
finite-difference calculus on the cone, influenced by [6].

The paper is organised as follows. In Section 2, we define the basic struc-
tures on the cone K(X) and discuss probability measures on the cone. In
particular, in Proposition 2.5, we describe a class of measures for which (1.2)
holds almost everywhere. In Section 3, we discuss harmonic analysis on the
cone. For this, we consider an analogue of the K-transform (Definition 3.1),
cf. [12], which maps functions defined on the sub-cone K0(X) of discrete
measures with finite support to the cone K(X), and study properties of
the K-transform. Next, we discuss the correlation measures and correlation
functions of probability measures on the cone. Finally, in Section 4, we
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study discrete gradients on the cone, derive several properties of the corre-
sponding Dirichlet forms (Propositions 4.3 and 4.4), and describe properties
of certain polynomial functions on the cone which satisfy, in particular, the
binomial formula (Proposition 4.7).

This article was written with the enthusiasm, commitment and deep sci-
entific knowledge of our collaborator, co-author and friend Yuri Kondratiev.
He passed away on September 5th, 2023.

2. Framework

Let M(X) denote the space of real-valued Radon measures on X. We
equip M(X) with the vague topology, that is the coarsest topology on M(X)
such that, for each continuous function f : X → R with compact support
(shortly f ∈ Cc(X)), the following mapping is continuous:

M(X) ∋ ν 7→ ⟨ν, f⟩ :=
∫
X
f(x) dν(x) ∈ R.

We consider the corresponding Borel σ-algebra B(M(X)). Let K(X) ⊂
M(X) be defined by (1.1). We endow K(X) with the vague topology induced
by M(X) and denote the corresponding Borel σ-algebra by B(K(X)); that
is then the trace σ-algebra of B(M(X)). Note that, for each f ∈ Cc(X),

⟨η, f⟩ =
∑

x∈τ(η)

sxf(x), η ∈ K(X).

Let R∗
+ := (0,+∞) be endowed with the logarithmic metric

dR∗
+
(s1, s2) := |ln(s1)− ln(s2)| , s1, s2 > 0.

It is easy to see that R∗
+ is a locally compact Polish space, and any set of

the form [a, b], with 0 < a < b < ∞, is compact. Then, X̂ := R∗
+ × X is

also a locally compact Polish space. Hence, we can define M(X̂) and Bc(X̂)

as before. Clearly, any compact set in X̂ is a subset of [a, b] × Λ for some
0 < a < b < ∞ and Λ ∈ Bc(X); henceforth, Bc(X) denotes the family of
sets in B(X) with compact closure.

We define the space of locally finite configurations over X̂ as the set

Γ(X̂) :=
{
γ ⊂ X̂ :

∣∣γ ∩ ([a, b]× Λ)
∣∣ < ∞ ∀ Λ ∈ Bc(X), b > a > 0

}
.

As usual, each configuration γ ∈ Γ(X̂) can be identified with the Radon

measure
∑

y∈γ δy ∈ M(X̂). Thus, the inclusion Γ(X̂) ⊂ M(X̂) holds, which

allows to endow Γ(X̂) with the vague topology induced by M(X̂) and the

corresponding Borel σ-algebra B(Γ(X̂)).

Let Γp(X̂) ⊂ Γ(X̂) be the set of pinpointing configurations, which consists
of all configurations γ such that if (s1, x1), (s2, x2) ∈ γ with x1 = x2, then
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s1 = s2. For each γ ∈ Γp(X̂) and each Λ ∈ Bc(X), we define the local mass
of Λ by

γ(Λ) :=

∫
X̂
s11Λ(x) dγ(s, x) =

∑
(s,x)∈γ

s11Λ(x) ∈ [0,+∞] ,

where 11Λ denotes the indicator function of the set Λ. The set of pinpointing
configurations with finite local mass is then defined by

Π(X̂) := {γ ∈ Γp(X̂) : γ(Λ) < ∞ ∀Λ ∈ Bc(X)}.

One has Π(X̂) ∈ B(Γ(X̂)) and we fix the trace σ-algebra of B(Γ(X̂)) on

Π(X̂), denoted by B(Π(X̂)).
Thus, we have defined a bijective mapping

(2.1)
R : Π(X̂) −→ K(X)

γ =
∑

(s,x)∈γ

δ(s,x) 7−→
∑

(s,x)∈γ

sδx.

As shown in [9], both R and its inverse mapping R−1 are measurable with

respect to B(Π(X̂)) and B(K(X)) and R is a σ-isomorphism. Moreover,

B(K(X)) = {R(A) : A ∈ B(Π(X̂))},

and thus B(Π(X̂)) = {R−1(B) : B ∈ B(K(X))}.
Let πν⊗σ be the Poisson measure on B(Γ(X̂)) (see e.g. [1] for the details)

with intensity measure ν ⊗ σ, where ν and σ are two non-atomic positive
Radon measures on the Borel σ-algebras B(R∗

+) and B(X), respectively, and
ν has finite first moment, i.e.,

(2.2)

∫
R∗
+

s dν(s) < ∞.

In terms of the Laplace transform of πν⊗σ, for each continuous function

f : X̂ → [0,∞) with compact support, we have∫
Γ(X̂)

e−⟨γ,f⟩dπν⊗σ(γ) = exp

(∫
X̂

(
e−f(s,x) − 1

)
d(ν ⊗ σ)(s, x)

)
.

Proposition 2.1. For ν and σ as above, πν⊗σ(Π(X̂)) = 1.

Proof. As easily seen, Γp(X̂),Π(X̂) ∈ B(Γ(X̂)). Moreover, using the distri-

bution of configurations of the form γ ∩ ([a, b] × Λ), γ ∈ Γ(X̂), 0 < a < b,
Λ ∈ Bc(X), under πν⊗σ (see e.g. [11]), we conclude that, for each 0 < a < b,
Λ ∈ Bc(X) fixed,

πν⊗σ

(
{γ ∈ Γ(X̂) : ∃ (s1, x1), (s2, x2) ∈ γ ∩ ([a, b]× Λ) s.t. x1 = x2, s1 ̸= s2}

)
= 0.
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Thus πν⊗σ(Γp(X̂)) = 1. The rest of the proof is a consequence of the
Mecke identity [23], which states that for every measurable function H :

Γ(X̂)× X̂ → [0,+∞) the following equality holds:∫
Γ(X̂)

∫
X̂
H(γ, s, x) dγ(s, x)dπν⊗σ(γ)(2.3)

=

∫
Γ(X̂)

∫
X̂
H(γ ∪ {(s, x)}, s, x) d(ν ⊗ σ)(s, x)dπν⊗σ(γ).

In particular, for each Λ ∈ Bc(X) fixed and for the measurable function
H(γ, s, x) = s11Λ(x), the latter leads to∫

Γp(X̂)
γ(Λ)dπν⊗σ(γ) =

∫
Γp(X̂)

∫
X̂
s11Λ(x) d(ν ⊗ σ)(s, x)dπν⊗σ(γ)

= σ(Λ)

∫
R∗
+

s dν(s) < ∞,(2.4)

which implies that γ(Λ) < ∞ for πν⊗σ-a.a. γ ∈ Γp(X̂). Hence, πν⊗σ(Π(X̂)) =
1. □

Definition 2.2. By Proposition 2.1, we may view πν⊗σ as a probability

measure on B(Π(X̂)). Thus, we consider the push-forward of the measure
πν⊗σ under R to K(X), which we denote by πK,ν⊗σ.

Then, by (2.4), ∫
K(X)

η(Λ)dπK,ν⊗σ(η) < ∞.

Note that, for each continuous bounded function g ∈ Cb(RN ), N ∈ N,
and for every functions φ1, . . . , φN ∈ Cc(X), we have∫

K(X)
g (⟨η, φ1⟩, . . . , ⟨η, φN ⟩) dπK,ν⊗σ(η)

=

∫
Π(X̂)

g (⟨γ, id⊗ φ1⟩, . . . , ⟨γ, id⊗ φN ⟩) dπν⊗σ(γ),

where (id⊗ φ)(s, x) := sφ(x). In terms of the Laplace transform of πK,ν⊗σ,
for each f ∈ Cc(X) one finds∫

K(X)
e−⟨η,f⟩dπK,ν⊗σ(η) = exp

(∫
X

∫
R∗
+

(
e−sf(x) − 1

)
dν(s)dσ(x)

)
.

Proposition 2.3 (Mecke-type identity). For each measurable function F :

K(X)× X̂ → [0,+∞), the following equality holds

(2.5)

∫
K(X)

∫
X
F (η, sx, x) dη(x)dπK,ν⊗σ(η)

=

∫
K(X)

∫
X

∫
R∗
+

s F (η + sδx, s, x) dν(s)dσ(x)dπK,ν⊗σ(η).
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Proof. Formula (2.5) is a direct consequence of the Mecke identity (2.3) and
Proposition 2.1:∫

K(X)

∫
X
F (η, sx, x) dη(x)dπK,ν⊗σ(η)

=

∫
Π(X̂)

∫
X̂
sF (R(γ), s, x) dγ(s, x)dπν⊗σ(γ)

=

∫
Π(X̂)

∫
X̂
sF (R(γ ∪ {(s, x)}), s, x) d(ν ⊗ σ)(s, x)dπν⊗σ(γ)

=

∫
K(X)

∫
X

∫
R∗
+

sF (η + sδx, s, x) dν(s)dσ(x)dπK,ν⊗σ(η). □

A special case concerns ν = νθ, where

νθ(ds) :=
θ

s
e−sds

for some θ > 0. In this case, the corresponding Poisson measure is called a
Gamma–Poisson measure and the push-forward to K(X) is called a Gamma
measure with intensity θ and denoted by Gθ. Alternatively, a Gamma mea-
sure can be characterized by its Laplace transform [2]: for each −1 < f ∈
Cc(X), ∫

K(X)
e−⟨η,f⟩dGθ(η) = exp

(
−θ

∫
X
ln(1 + f(x)) dσ(x)

)
.

The next result states a Mecke-type characterization result for Gamma
measures. There, M+(X) ⊂ M(X) denotes the cone of all non-negative
measures.

Proposition 2.4 ([9]). Let µ be a probability measure defined on M+(X)
which has finite first local moments, i.e., for each Λ ∈ Bc(X),∫

M+(X)
η(Λ) dµ(η) < ∞.

Then, µ = Gθ if and only if for any measurable function G : M+(X)×X →
[0,+∞) we have∫

M+(X)

∫
X
G(η, x) dη(x)dµ(η)

=

∫
M+(X)

∫
X

∫
R∗
+

sG(η + sδx, x) dνθ(s)dσ(x)dµ(η).

Measure νθ is an example of an infinite measure on R∗
+. The next state-

ment shows that, for any such ν (with finite first moment), the support τ(η)
of πK,ν⊗σ-a.a. η ∈ K(X) is not a locally finite subset of X.

Proposition 2.5. Let ν(R∗
+) = ∞. Then, for any Λ ∈ Bc(X) with σ(Λ) > 0

and for πK,ν⊗σ-a.a. η ∈ K(X), the set τ(η) ∩ Λ has an infinite number of
elements.
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Proof. By e.g. [1], for any Λ ∈ Bc(X), 0 < a < b, n ∈ N0 := N ∪ {0},
(2.6)

πν⊗σ

{
γ ∈ Γ(X̂) :

∣∣γ ∩ ([a, b]× Λ)
∣∣ = n

}
=

(
σ(Λ)ν([a, b])

)n
n!

e−σ(Λ)ν([a,b]).

Therefore, if σ(Λ) > 0 and ν(R∗
+) = ∞ then, passing a → 0, b → ∞, we

obtain, by the definition of πK,ν⊗σ, that

πK,ν⊗σ({η ∈ K(X) : |τ(η) ∩ Λ| = n}) = 0,

that implies the statement. □

Remark 2.6. Note that by (2.6), for any Λ ∈ Bc(X) with σ(Λ) = 0,

πK,ν⊗σ({η ∈ K(X) : τ(η) ∩ Λ = ∅}) = 1.

Definition 2.7. Let M1
fm(K(X)) denote the space of all probability mea-

sures µ on (K(X),B(K(X)) which have finite local moments of all orders,
that is, for all n ∈ N and all Λ ∈ Bc(X),∫

K(X)
(η(Λ))n dµ(η) < ∞.

Proposition 2.8. πK,ν⊗σ ∈ M1
fm(K(X)) if and only if ν has finite moments

of all orders, that is, for all n ∈ N,

(2.7)

∫
R∗
+

sn dν(s) < ∞.

Proof. For each n ∈ N and each Λ ∈ Bc(X) we have∫
K(X)

(η(Λ))n dπK,ν⊗σ(η) =

∫
Π(X̂)

(γ(Λ))n dπν⊗σ(γ)

=

∫
Γ(X̂)

⟨γ, id⊗ 11Λ⟩n dπν⊗σ(γ),

where, as shown e.g. in [7, Theorem 6.1], the latter integral is equal to

n∑
k=1

(σ(Λ))k

k!

∑
(i1,...,ik)∈Nk

i1+...+ik=n

(
n

i1 . . . ik

) k∏
j=1

(∫
R∗
+

sij dν(s)

)
.

The required necessary and sufficient condition then follows. □

Remark 2.9. By Proposition 2.8, Gθ ∈ M1
fm(K(X)) for every intensity

θ > 0.

Let Λ ∈ Bc(X) and 0 < a < b be fixed. We consider

Γ([a, b]× Λ) := {γ ∈ Γ(X̂) : γ ⊂ [a, b]× Λ}

and let B[a,b]×Λ(Γ(X̂)) be the corresponding σ-algebra on Γ(X̂) which is σ-
isomorphic to the trace σ-algebra B(Γ([a, b] × Λ)), see [12, Section 2.2] for
details. Let Π([a, b] × Λ) = Γp([a, b] × Λ) be the corresponding measurable
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subset of pinpointing configurations (which are finite and, hence, have finite

local mass), and let B[a,b]×Λ(Π(X̂)) be the corresponding σ-algebra on Π(X̂).
Then

K([a, b]× Λ) := R(Π([a, b]× Λ))

= {η ∈ K(X) : τ(η) ⊂ Λ, sx(η) ∈ [a, b] ∀x ∈ τ(η)} ∈ B(K(X)),

and we can consider the corresponding σ-algebra B[a,b]×Λ(K(X)). We also

consider the measurable mapping p̂[a,b]×Λ : Π(X̂) → Π([a, b] × Λ) given by
p̂[a,b]×Λ(γ) := γ ∩ ([a, b] × Λ). We then define the measurable mapping
pΛ,a,b : K(X) → K([a, b]× Λ) by

pΛ,a,b(η) := R p̂[a,b]×ΛR−1η, η ∈ K(X).

Then, for each η ∈ K(X),

pΛ,a,b(η) =
∑

x∈τ(η)∩Λ

11[a,b](sx)sxδx,

and

(2.8) |τ(pΛ,a,b(η))| =
∑

x∈τ(η)∩Λ

11[a,b](sx) ≤
1

a

∑
x∈τ(η)∩Λ

sx =
1

a
η(Λ) < ∞.

Definition 2.10. A measure µ ∈ M1
fm(K(X)) is called locally absolutely

continuous with respect to πK,ν⊗σ if, for all Λ ∈ Bc(X) and 0 < a < b,

the measure µΛ,a,b := µ ◦ p−1
Λ,a,b is absolutely continuous with respect to

πΛ,a,b
K,ν⊗σ := πK,ν⊗σ ◦ p−1

Λ,a,b. Equivalently, the push-forward of the measure µ

under R−1 to Π(X̂) is locally absolutely continuous with respect to πν⊗σ

(see [12] for details).

3. Harmonic analysis on the cone

3.1. Discrete Radon measures with finite support. We consider the
sub-cone of all non-negative Radon measures with finite support

K0(X) := {η ∈ K(X) : |τ(η)| < ∞} =

∞⊔
n=0

K(n)
0 (X),

where K(0)
0 (X) := {0} is the set consisting of the zero measure and, for each

n ∈ N, K(n)
0 (X) := {η ∈ K0(X) : |τ(η)| = n}.

We consider also the space Π0(X̂) := {γ ∈ Π(X̂) : |γ| < ∞} of pinpointing
finite configurations on X̂. Since Π0(X̂) ⊂ Γ0(X̂) := {γ ∈ Γ(X̂) : |γ| < ∞},
we can endow Π0(X̂) with the topology induced by the topology defined on

Γ0(X̂) [12] and the corresponding Borel σ-algebra, denoted by B(Π0(X̂)).

As easily seen, Π0(X̂) ∈ B(Γ0(X̂)), thus, B(Π0(X̂)) = B(Γ0(X̂)) ∩ Π0(X̂).

Also, K0(X) = R(Π0(X̂)), which allows to endow K0(X) with the σ-algebra

B(K0(X)) := {R(A) : A ∈ B(Π0(X̂))}
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with respect to which the restriction R|Π0(X̂)
: Π0(X̂) → K0(X) is a σ-

isomorphism.
A set A ∈ B(K0(X)) is called bounded if there exist 0 < a < b, Λ ∈ Bc(X)

and an N ∈ N such that, for all η ∈ A,

(3.1) τ(η) ⊂ Λ, |τ(η)| ≤ N, sx ∈ [a, b] ∀x ∈ τ(η).

We denote by Bb(K0(X)) the set of all bounded sets in B(K0(X)).
Let L0(K0(X)) be the class of all B(K0(X))-measurable functions G :

K0(X) → R. Assume that G = 11AG, where a A ∈ B(K0(X)) is such that,
for some 0 < a < b and Λ ∈ Bc(X), we have, for all for all η ∈ A,

(3.2) τ(η) ⊂ Λ, sx ∈ [a, b] ∀x ∈ τ(η).

Then we will say that G has a local support on K0(X). The class of all
measurable functions with local support is denoted by L0

ls(K0(X)). Simi-
larly, if G = 11AG for a bounded A ∈ Bb(K0(X)), we will say that G has
bounded support on K0(X). We consider a subclass of all bounded mea-
surable functions with bounded support, denoted by Bbs(K0(X)). Thus,
Bbs(K0(X)) ⊂ L0

ls(K0(X)) ⊂ L0(K0(X)). We will denote the pre-images

of these classes under (R|Π0(X̂)
)−1 by Bbs(Π0(X̂)), L0

ls(Π0(X̂)), L0(Π0(X̂)),

respectively.

3.2. K-transform. In the sequel, for η, ξ ∈ K(X), we write ξ ⊂ η if τ(ξ) ⊂
τ(η) and sx(ξ) = sx(η) for all x ∈ τ(ξ). If, additionally, ξ ∈ K0(X), we
write ξ ⋐ η. Note that, for ξ, η ∈ K(X) ⊂ M(X) with ξ ⊂ η, the measure
η − ξ ∈ M(X) is well-defined and η − ξ ∈ K(X) with τ(η − ξ) = τ(η) \ τ(ξ)
and sx(η − ξ) = sx(η) for each x ∈ τ(η) \ τ(ξ).

Definition 3.1. For each G ∈ L0
ls(K0(X)), we define a function KG :

K(X) → R, called the K-transform of G, by

(3.3) (KG)(η) :=
∑
ξ⋐η

G(ξ), η ∈ K(X).

Note that since G ∈ L0
ls(K0(X)), there exist 0 < a < b and Λ ∈ Bc(X)

such that ∑
ξ⋐η

G(ξ) =
∑
ξ⋐η

11 τ(ξ)⊂Λ
sx∈[a,b],x∈τ(ξ)

(ξ)G(ξ) =
∑

ξ⊂pΛ,a,b(η)

G(ξ),

and hence, by (2.8), the sum in (3.3) is well-defined (note that, by (2.8),
pΛ,a,b(η) ∈ K0(X)). Moreover, we have shown that, for F := KG, G ∈
L0
ls(K0(X)),

(3.4) F (η) = F (pΛ,a,b(η)), η ∈ K(X),

for some 0 < a < b and Λ ∈ Bc(X) (dependent on F ).

Proposition 3.2. Let G ∈ L0
ls(K0(X)) and KG be defined by (3.3). The

KG is a B(K(X))-measurable function.
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Proof. Let F ∈ L0
ls(Π0(X̂)). We define the B(Γ0(X̂))-measurable function

F̃ : Γ0(X̂) → R given by

F̃ (η) :=

{
F (η), if η ∈ Π0(X̂),

0, otherwise.

By [12], the function K
X̂
F̃ : Γ(X̂) → R, given by

(K
X̂
F̃ )(γ) :=

∑
ζ⊂γ

|ζ|<∞

F̃ (ζ), γ ∈ Γ(X̂),

is well-defined and B(Γ(X̂))-measurable. Therefore, the restriction

(KΠF )(γ) :=
(
(K

X̂
F̃ )
∣∣
Π(X̂)

)
(γ) =

∑
ζ⊂γ

|ζ|<∞

F (ζ), γ ∈ Π(X̂)

is B(Π(X̂))-measurable.
Now, let G ∈ L0

ls(K0(X)) be given and consider F = G ◦ R
∣∣
Π0(X̂)

∈
L0
ls(Π0(X̂)). Note that

(3.5) KG =

∞∑
n=0

K(G11K(n)
0 (X)

).

For an arbitrary set of indices I ⊆ N0, let η =
∑

i∈I siδxi ∈ K(X). Hence,
by (3.5),

(KG)(η) =

∞∑
n=0

∑
{i1,...,in}⊆I

G

(
n∑

i=1

sikδxik

)
(3.6)

=
∞∑
n=0

∑
{i1,...,in}⊆I

G

(
R

(
n∑

i=1

δ(sik ,xik
)

))
= KΠ(G ◦ R|Π0(X̂)

)(R−1η) = (KΠF )(R−1η)

with R−1η =
∑

i∈I δ(si,xi) ∈ Π(X̂).

Since KΠF is B(Π(X̂))-measurable, we have that KG is B(K(X))-meas-
urable. □

Let FL0(K(X)) be the class of all B(K(X))-measurable functions F :
K(X) → R such that (3.4) holds (for some 0 < a < b and Λ ∈ Bc(X) depen-
dent on F ). By (3.4) and Proposition 3.2, K : L0

ls(K0(X)) → FL0(K(X)).

Proposition 3.3. 1. The mapping K : L0
ls(K0(X)) → FL0(K(X)) is linear,

positivity-preserving and invertible, with the inverse mapping given by, for
F ∈ FL0(K(X)),

(3.7) (K−1F )(η) =
∑
ξ⊂η

(−1)|τ(η)|−|τ(ξ)|F (ξ), η ∈ K0(X).



ANALYSIS ON THE CONE OF DISCRETE RADON MEASURES 11

2. For each G ∈ Bbs(K0(X)), there exist C > 0, Λ ∈ Bc(X) and N ∈ N
such that

|(KG)(η)| ≤ C(1 + η(Λ))N , η ∈ K(X).

Proof. 1. The linearity and positivity-preserving properties follow directly
from the definition (3.3). Next, for G ∈ L0

ls(K0(X)), we set F = KG and
denote the right-hand side of (3.7) by K−1F . Then

(K−1F )(η) =
∑
ξ⊂η

(−1)|τ(η)|−|τ(ξ)|
∑
ζ⊂ξ

G(ζ) =
∑
ζ⊂η

G(ζ)
∑
ξ⊂η:
ζ⊂ξ

(−1)|τ(η)|−|τ(ξ)|

=
∑
ζ⊂η

G(ζ)
∑

ξ⊂η−ζ

(−1)|τ(η−ζ)|−|τ(ξ)| =
∑
ζ⊂η

G(ζ)0|τ(η−ζ)| = G(η).

On the other hand, let F ∈ FL0(K(X)) and let Λ ∈ Bc(X) and 0 < a < b
be such that (3.4) holds. We have

(K−1F )(η) =
∑
ξ⊂η

(−1)|τ(η)|−|τ(ξ)|F (ξ)

=
∑
ξ1⊂η:

τ(ξ1)⊂Λ,
sx∈[a,b] ∀x∈τ(ξ1)

∑
ξ2⊂η:

∃x∈τ(ξ2):x∈X\Λ or sx /∈[a,b]

(−1)|τ(η)|−|τ(ξ1)|−|τ(ξ2)|F (ξ1 + ξ2)

=
∑
ξ1⊂η:

τ(ξ1)⊂Λ,
sx∈[a,b] ∀x∈τ(ξ1)

F (ξ1)(−1)|τ(η)|−|τ(ξ1)|
∑
ξ2⊂η:

∃x∈τ(ξ2):x∈X\Λ or sx /∈[a,b]

(−1)−|τ(ξ2)|;

and since ∑
ξ2⊂η:

∃x∈τ(ξ2):x∈X\Λ or sx /∈[a,b]

(−1)−|τ(ξ2)| = 0|{x∈τ(η) : x∈X\Λ or sx /∈[a,b]}|,

we obtain

(K−1F )(η) = 11τ(η)⊂Λ, sx∈[a,b] ∀x∈τ(η)(η)(K
−1F )(η),

thus K−1F ∈ L0
ls(K0(X)). We then have

(KK−1F )(η) =
∑
ξ⋐η

11τ(ξ)⊂Λ, sx∈[a,b] ∀x∈τ(ξ)(ξ)
∑
ζ⊂ξ

(−1)|τ(ξ)|−|τ(ζ)|F (ζ)

=
∑

ξ⊂pΛ,a,b(η)

∑
ζ⊂ξ

(−1)|τ(ξ)|−|τ(ζ)|F (ζ)

=
∑

ζ⊂pΛ,a,b(η)

F (ζ)
∑

ξ⊂pΛ,a,b(η):
ζ⊂ξ

(−1)|τ(ξ)|−|τ(ζ)|

=
∑

ζ⊂pΛ,a,b(η)

F (ζ)0|τ(pΛ,a,b(η))|−|τ(ζ)| = F (pΛ,a,b(η)) = F (η),
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by (3.4).
2. For G ∈ Bbs(K0(X)), we have |G| ≤ c11A for some c > 0, A ∈

Bb(K0(X)). Hence, for some 0 < a < b, Λ ∈ Bc(X), N ∈ N, (3.1) holds for
all η ∈ A. Therefore, for each η ∈ K(X),

|(KG)(η)| ≤ c(K11A)(η) = c
N∑
k=0

∑
ξ⊂pΛ,a,b(η)
|τ(ξ)|=k

11A(ξ)

≤ c
N∑
k=0

(
|τ(pΛ,a,b(η))|

k

)
≤ C(1 + η(Λ))N ,(3.8)

for C = c(max
{
1, 1a
}
)N , where we used the estimate (2.8). □

We can also extend the K-transform to the class Fexp(K0(X)) of measur-
able functions G : K0(X) → R such that, for some Λ ∈ Bc(X) and C > 0,

(3.9) |G(ξ)| ≤ 11{τ(ξ)⊂Λ}(ξ)C
|τ(ξ)|

∏
x∈τ(ξ)

sx, ξ ∈ K0(X).

Indeed, for each η ∈ K(X), we have then

|(KG)(η)| ≤
∑
ξ⋐η

|G(ξ)| ≤
∑
ξ⋐η:

τ(ξ)⊂τ(η)∩Λ

C |τ(ξ)|
∏

x∈τ(ξ)

sx =
∏

x∈τ(η)∩Λ

(1+Csx) < ∞,

since η ∈ K(X) and hence,
∑

x∈τ(η)∩Λ
Csx = Cη(Λ) < ∞.

Example 3.4. Let f : X → R be a bounded measurable function with
compact support.
1. For G ∈ Fexp(K0(X)) defined by

G(η) :=

{
sf(x), if η = {sδx} ∈ K(1)

0 (X)

0, otherwise
, η ∈ K0(X),

the K-transform of G is given by

(KG)(η) =
∑

x∈τ(η)

sxf(x) = ⟨η, f⟩, η ∈ K(X).

2. For the so-called Lebesgue–Poisson exponent eK(f) ∈ Fexp(K0(X)) cor-
responding to f ,

(3.10) eK(f, η) :=
∏

x∈τ(η)

sxf(x), η ∈ K0(X),

its K-transform is equal to

(3.11) (KeK(f))(η) =
∏

x∈τ(η)

(1 + sxf(x)), η ∈ K(X).
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Given G1, G2 ∈ L0(K0(X)), let us define the ⋆-convolution between G1

and G2,

(G1 ⋆ G2)(η) :=
∑

ξ1+ξ2+ξ3=η
τ(ξi)∩τ(ξj)=∅, i ̸=j

G1(ξ1 + ξ2)G2(ξ2 + ξ3), η ∈ K0(X),

where the sum is over all ξ1, ξ2, ξ3 ⊂ η such that (τ(ξ1), τ(ξ2), τ(ξ3)) is
a partition of τ(η). As easily seen, under this product L0(K0(X)) has a
commutative algebraic structure with unit element eK(0).

Proposition 3.5. For all G1, G2 ∈ L0
ls(K0(X)) we have G1⋆G2∈L0

ls(K0(X))
and

(3.12) K(G1 ⋆ G2) = (KG1) · (KG2).

Proof. Given G1, G2 ∈ L0
ls(K0(X)) we have Gi = Gi11A for some A ∈

B(K0(X)) such that (3.2) holds. Then

(G1 ⋆ G2)11A = ((G111A) ⋆ (G211A))11A = ((G111A) ⋆ (G211A)) = G1 ⋆ G2.

This shows that G1 ⋆ G2 ∈ L0
ls(K0(X)). Concerning the right-hand side of

(3.12),

(3.13) (KG1)(η) · (KG2)(η) =

∑
ξ⋐η

G1(ξ)

∑
ζ⋐η

G2(ζ)

 , η ∈ K(X),

observe that, for each η ∈ K(X) fixed, there is a one-to-one correspondence
between pairs ξ ⋐ η, ζ ⋐ η and groups ϑ ⋐ η, ξ1, ξ2, ξ3 ⊂ ϑ with ξ1 +
ξ2 + ξ3 = ϑ, hence, (τ(ξ1), τ(ξ2), τ(ξ3)) forms a partition of τ(ϑ). This one-
to-one correspondence is defined by the following rule: τ(ϑ) = τ(ξ) ∪ τ(ζ),
τ(ξ1) = τ(ξ) \ τ(ζ), τ(ξ2) = τ(ξ) ∩ τ(ζ), τ(ξ3) = τ(ζ) \ τ(ξ). In this way,
product (3.13) can be rewritten as∑

ϑ⋐η

∑
ξ1+ξ2+ξ3=ϑ

G1(ξ1 + ξ2)G2(ξ2 + ξ3),

which completes the proof. □

3.3. Correlation measures and correlation functions on K0(X). A
measure ρ on

(
K0(X),B(K0(X))

)
is said to be locally finite if ρ(A) < ∞ for

each A ∈ Bb(K0(X)).

Example 3.6. An example of a locally finite measure is the Lebesgue–
Poisson measure λK0,ν⊗σ, where ν and σ are non-atomic positive Radon
measures on B(R∗

+) and B(X), respectively, and ν has a finite first moment
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(2.2). The measure λK0,ν⊗σ is defined so that, for each G ∈ Bbs(K0(X)),∫
K0(X)

G(η) dλK0,ν⊗σ(η)

= G(0) +

∞∑
n=1

1

n!

∫
X̂n

G

(
n∑

k=1

siδxi

)
dν(s1) · · · dν(sn)dσ(x1) · · · dσ(xn).

(3.14)

Note that the sum in (3.14) is finite for G ∈ Bbs(K0(X)), in particular, for
G = 11A with A ∈ Bb(K0(X)). Moreover, it is easily seen that λK0,ν⊗σ is the
push-forward of λν⊗σ

∣∣
B(Π0(X̂))

under R
∣∣
|Π0(X̂)

to
(
K0(X),B(K0(X))

)
, where

λν⊗σ is the Lebesgue–Poisson on
(
Γ0(X̂),B(Γ0(X̂))

)
, see [12]. In particular,

we can extend (3.14) to measurable functions on K0(X) integrable with
respect to λK0,ν⊗σ(η) for which the right-hand side of (3.14) is well-defined.
For example, if f ∈ L1(X,σ) and eK(f) is defined as in (3.10) for λK0,ν⊗σ-
a.a. η ∈ K0(X), then eK(f) ∈ L1(K0(X), λK0,ν⊗σ) with∫

K0(X)
eK(f, η) dλK0,ν⊗σ(η) = exp

(∫
R∗
+

s dν(s)

∫
X
f(x) dσ(x)

)
.

Definition 3.7. Let µ ∈ M1
fm(K(X)) be given. We (uniquely) define a mea-

sure ρµ on on (K0(X),B(K0(X)) by requiring that, for all A ∈ Bb(K0(X)),

ρµ(A) =

∫
K(X)

(K11A)(η) dµ(η).

Then ρµ is called the correlation measure corresponding to µ.

Remark 3.8. Note that, by (3.8), the assumption µ ∈ M1
fm(K(X)) ensures

that ρµ(A) < ∞ for all A ∈ Bb(K0(X)).

Remark 3.9. It can be easily derived from [21, Theorem 2 and formula
(3.9)] that, under a very week assumption, the correlation measure ρµ in
Definition 3.7 uniquely determines the measure µ.

Proposition 3.10. Let ν and σ be two non-atomic positive Radon measures
on B(R∗

+) and B(X), respectively. Assume that ν has finite moments of
all orders (2.7), so that πK,ν⊗σ ∈ M1

fm(K(X)) by Proposition 2.8. Then,
λK0,ν⊗σ is the correlation measure of πK,ν⊗σ.

Proof. Let A ∈ Bb(K0(X)) and (3.1) holds. Then, by (3.4), (K11A)(η) =
(K11A)(pΛ,a,b(η)) and hence,∫

K(X)
(K11A)(η)dπK,ν⊗σ(η) =

∫
K([a,b]×Λ)

(K11A)(η)dπ
Λ,a,b
K,ν⊗σ(η).
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Then, by (3.6) and Proposition 2.1 with X̂ replaced by [a, b] × Λ, we get
that ∫

K([a,b]×Λ)
(K11A)(η)dπ

Λ,a,b
K,ν⊗σ(η)

=

∫
Γ([a,b]×Λ)

(KX̂11R−1A)(γ)dπ
[a,b]×Λ
ν⊗σ (γ)

= e−ν([a,b])σ(Λ)

∫
Γ([a,b]×Λ)

∑
ξ⊂γ

11R−1A(ξ)dλν⊗σ(γ)

and rewriting 11R−1A(ξ) = 11R−1A(ξ) ·11Γ([a,b]×Λ)(γ \ξ), we can apply e.g. [12,
Lemma A.1]

= e−ν([a,b])σ(Λ)

∫
Γ([a,b]×Λ)

11R−1A(ξ)dλν⊗σ(ξ)

∫
Γ([a,b]×Λ)

dλν⊗σ(γ)

= λν⊗σ(R−1A) = λK0,ν⊗σ(A),

which proves the statement. □

Let µ ∈ M1
fm(K(X)). Then, by (3.8), K(Bbs(K0(X))) ⊂ L1(K(X), µ).

Thus, Bbs(K0(X)) ⊂ L1(K0(X), ρµ) and standard techniques of the measure
theory yield

(3.15)

∫
K0(X)

G(η) dρµ(η) =

∫
K(X)

(KG)(η) dµ(η), G ∈ Bbs(K0(X)).

The density of Bbs(K0(X)) in L1(K0(X), ρµ) allows to extend the K-
transform to a bounded operator. We will keep the same notation for the
extended operator. More precisely, we have the following result.

Proposition 3.11. Let µ ∈ M1
fm(K(X)). Then, there is a bounded operator

K : L1(K0(X), ρµ) → L1(K(X), µ) such that formula (3.15) holds for any
G ∈ L1(K0(X), ρµ). Moreover, for each G ∈ L1(K0(X), ρµ), equality (3.3)
holds for µ-almost all η ∈ K(X).

Proof. The proof is based on standard techniques of measure theory and
follows similarly to [12, Corollary 4.1 and Theorem 4.1]. □

Remark 3.12. In particular, for any µ ∈ M1
fm(K(X)) and f : X → R such

that eK(f) ∈ L1(K0(X), ρµ), it follows from Proposition 3.11 that (3.11)
holds for µ-a.a. η ∈ K(X).

Proposition 3.13. Let the conditions of Proposition 3.10 hold. Let µ ∈
M1

fm(K(X)) be locally absolutely continuous with respect to the measure
πK,ν⊗σ. Let ρµ be the correlation measure of µ according to Definition 3.7.
Then ρµ is absolutely continuous with respect to λK0,ν⊗σ.
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Proof. Given A ∈ Bb(K0(X)), assume that λK0,ν⊗σ(A) = 0. Hence, for some
0 < a < b, N ∈ N, Λ ∈ Bc(X), (3.1) holds for all η ∈ A and we have

0 = λK0,ν⊗σ(A)

=

∫
K(X)

(K11A) (η)dπK,ν⊗σ(η)

=

∫
K(X)

(K11A) (pΛ,a,b(η))dπK,ν⊗σ(η) =

∫
K([a,b]×Λ)

(K11A) (η)dπ
Λ,a,b
K,ν⊗σ(η).

This implies that K11A = 0 πΛ,a,b
K,ν⊗σ-a.e. on K([a, b]× Λ). As a result,

ρµ(A) =

∫
K(X)

(K11A) (η)dµ(η)

=

∫
K([a,b]×Λ)

(K11A) (η)
dµΛ,a,b

dπΛ,a,b
K,ν⊗σ

(η)dπΛ,a,b
K,ν⊗σ(η) = 0. □

Definition 3.14. Let the conditions of Proposition 3.13 hold. The Radon–

Nikodym derivative kµ :=
dρµ

dλK0,ν⊗σ
is called the correlation function corre-

sponding to µ.

4. Finite-difference calculus on the cone

4.1. Discrete gradients on K(X). The discrete structure of measures in
K(X) suggests a development of a finite-difference calculus on K(X). For
η ∈ K(X), the elementary operations on η which will be considered are the
following ones:

• removing one point x from the support of η: η 7→ η − sxδx;
• adding a new point x with a weight s to η: η 7→ η + sδx, s ∈ R∗

+.

As a set of test functions on K(X) we will consider the space F :=

FCb(Cc(X̂),K(X)) of all functions F : K(X) → R of the form

F (η) = g
(
⟨R−1η, φ1⟩, . . . , ⟨R−1η, φN ⟩

)
, η ∈ K(X),

where g ∈ Cb(RN ), φ1, . . . , φN ∈ Cc(X̂), N ∈ N. We fix two non-atomic
positive Radon measures ν and σ on B(R∗

+) and B(X), respectively, such
that ν has finite first moment.

Definition 4.1. Let F ∈ F .
1. A discrete death gradient of F is defined by

(D−
x F )(η) := F (η − sxδx)− F (η), η ∈ K(X), x ∈ τ(η).

The corresponding tangent space is chosen to be T−
η (K(X)) := L2(X, η).

2. A discrete birth gradient of F is defined by

(D+
(s,x)F )(η) := F (η + sδx)− F (η), η ∈ K(X),

where (s, x) ∈ X̂, x /∈ τ(η). Here, the corresponding tangent space is chosen

to be T+
η (K(X)) := L2(X̂, sν(ds)⊗ σ(dx)).
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Observe that, for a fixed η ∈ K(X), the function τ(η) ∋ x 7→ (D−
x F )(η)

is bounded and has compact support in X. Thus, (D−
· F )(η) ∈ T−

η (K(X)).
For each h ∈ Cc(X), we define a directional derivative along h by

(D−
h F )(η) : = ⟨(D−

· F )(η), h⟩T−
η (K(X))

=

∫
X
(D−

x F )(η)h(x)dη(x) =
∑

x∈τ(η)

sxh(x)(D
−
x F )(η).

As easily seen, for each η ∈ K(X) fixed, we also have (D+
· F )(η) ∈ T+

η (K(X))
and we define a directional derivative along a direction h ∈ Cc(X) by

(D+
h F )(η) : = ⟨(D+

· F )(η), h⟩T+
η (K(X))

=

∫
X

∫
R∗
+

(D+
(s,x)F )(η)sdν(s)h(x)dσ(x).

The next result states a relation between these two notions of directional
derivative.

Proposition 4.2. For any F,G ∈ F and h ∈ Cc(X) we have∫
K(X)

(D−
h F )(η)G(η) dπK,ν⊗σ(η)

=

∫
K(X)

F (η)(D+
h G)(η) dπK,ν⊗σ(η)−

∫
K(X)

F (η)G(η)Bν,σ,h(η) dπK,ν⊗σ(η),

where

Bν,σ,h(η) :=

∫
X
h(x) dη(x)−

∫
R∗
+

s dν(s)

∫
X
h(x) dσ(x).

Proof. By formula (2.5),∫
K(X)

∫
X
F (η − sxδx)h(x)dη(x)G(η) dπK,ν⊗σ(η)

=

∫
K(X)

∫
X

∫
R∗
+

sF (η)h(x)G(η + sδx) dν(s)dσ(x)dπK,ν⊗σ(η)

=

∫
K(X)

F (η)(D+
h G)(η) dπK,ν⊗σ(η)

+

∫
K(X)

F (η)G(η) dπK,ν⊗σ(η)

∫
R∗
+

s dν(s)

∫
X
h(x) dσ(x).

Therefore, by the definition of D−
h F , the required formula follows. □

We proceed to show that a Laplacian-type operator associated with the
discrete birth-and-death gradients exists. For each F,G ∈ F , let E be the
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Dirichlet integral associated with the discrete death gradient:

E(F,G) :=

∫
K(X)

⟨(D−
· F )(η), (D−

· G)(η)⟩T−
η (K(X)) dπK,ν⊗σ(η)

=

∫
K(X)

∫
X
(D−

x F )(η)(D−
x G)(η) dη(x)dπK,ν⊗σ(η).

It turns out by formula (2.5) that, actually, E coincides with the Dirichlet
integral associated with the discrete birth gradient:

E(F,G) :=

∫
K(X)

⟨(D+
· F )(η), (D+

· G)(η)⟩T+
η (K(X)) dπK,ν⊗σ(η)

=

∫
K(X)

∫
X

∫
R∗
+

s(D+
(s,x)F )(η)(D+

(s,x)G)(η) dν(s)dσ(x)dπK,ν⊗σ(η).(4.1)

Proposition 4.3. The (E ,F ) is a well-defined symmetric bilinear form on
L2(K(X), πK,ν⊗σ).

Proof. The symmetry and the bilinear property follow directly. Hence, we
just have to show that if F ∈ F is πK,ν⊗σ-a.e. equal to 0, then E(F,G) = 0
for every G ∈ F . This is a consequence of formula (2.5), because for each
Λ ∈ Bc(X) one then finds∫

K(X)

∫
X

∫
R∗
+

s|F (η + sδx)|11Λ(x) dν(s)dσ(x)dπK,ν⊗σ(η)

=

∫
K(X)

∫
X
|F (η)|η(Λ) dπK,ν⊗σ(η) = 0,

which implies that F (η+sδx) = 0 for πK,ν⊗σ⊗ν⊗σ-a.a. (η, s, x) ∈ K(X)×X̂.

Thus, (D+
(s,x)F )(η) = 0 for πK,ν⊗σ ⊗ ν ⊗ σ-a.a. (η, s, x) ∈ K(X) × R∗

+ ×X.

Hence, by (4.1), for each G ∈ F we have E(F,G) = 0. □

Proposition 4.4. For each F ∈ F , let

(LF )(η) :=

∫
X
(D−

x F )(η) dη(x) +

∫
X

∫
R∗
+

(D+
(s,x)F )(η)sdν(s)dσ(x).

Then, (L,F ) is a symmetric operator on L2(K(X), πK,ν⊗σ) which verifies
the following equality

(4.2) E(F,G) = ⟨−LF,G⟩L2(K(X),πK,ν⊗σ), F,G ∈ F .

The bilinear form (E ,F ) is closable on L2(K(X), πK,ν⊗σ) and the operator
(L,F ) has Friedrich’s extension, denoted by (L,D(L)). Moreover, the ex-
tended operator (L,D(L)) is the generator of the closed symmetric form,
denoted by (E , D(E)).
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Proof. First note that, by formula (2.5), for any F,G ∈ F we have

E(F,G) =

∫
K(X)

(D−
x F )(η)G(η − sxδx) dη(x)dπK,ν⊗σ(η)

−
∫
K(X)

(D−
x F )(η)G(η) dη(x)dπK,ν⊗σ(η)

= −
∫
K(X)

∫
X

∫
R∗
+

sF (η)(D+
(s,x)G)(η) dν(s)σ(x)dπK,ν⊗σ(η)

−
∫
K(X)

∫
X
F (η)(D−

x G)(η) dη(x)dπK,ν⊗σ(η),

which, due to the symmetry of E , shows that formula (4.2) holds, provided
LF ∈ L2(K(X), πK,ν⊗σ). In order to prove that LF ∈ L2(K(X), πK,ν⊗σ),
observe that since F ∈ F , there are C ≥ 0, 0 < a < b, Λ ∈ Bc(X) such that

|(D−
x F )(η)| ≤ C11[a,b](sx)11Λ(x), x ∈ τ(η), η ∈ K(X),

|(D+
(s,x)F )(η)| ≤ C11[a,b](s)11Λ(x), s ∈ R∗

+, x ∈ X \ τ(η), η ∈ K(X).

Thus, ∫
K(X)

(LF )2(η) dπK,ν⊗σ(η)(4.3)

≤ 2C2

∫
K(X)

(∫
X
11[a,b](sx)11Λ(x) dη(x)

)2

dπK,ν⊗σ(η)

+ 2C2

∫
K(X)

(∫
X
11Λ(x) dσ(x)

∫
R∗
+

s11[a,b](s) dν(s)

)2

dπK,ν⊗σ(η),

where the latter integral is finite. Concerning (4.3), three applications of
formula (2.5) yield∫

K(X)

(∫
X
11[a,b](sx)11Λ(x) dη(x)

)2

dπK,ν⊗σ(η)

=

∫
K(X)

∫
X

∫
X
11[a,b](sx)11Λ(x)11[a,b](sy)11Λ(y)dη(x)d(η − sxδx)(y)dπK,ν⊗σ(η)

+

∫
K(X)

∫
X
sx11[a,b](sx)11Λ(x) dη(x)dπK,ν⊗σ(η)

=

∫
K(X)

(∫
X
11Λ(x) dσ(x)

∫
R∗
+

s11[a,b](s) dν(s)

)2

dπK,ν⊗σ(η)

+

∫
K(X)

∫
X

∫
R∗
+

s211[a,b](s)11Λ(x) dν(s)dσ(x)dπK,ν⊗σ(η) < ∞.

Hence, LF ∈ L2(K(X), πK,ν⊗σ). Furthermore, by formula (4.2), (−L,F ) is
a positive symmetric operator in L2(K(X), πK,ν⊗σ). It is now standard to
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prove that the bilinear form (E ,F ) is closable and (L,F ) has Friedrich’s
extension (see e.g. [24]). □

Remark 4.5. Using techniques of the Dirichlet form theory [22], it is pos-
sible to show that there exists an equilibrium Markov process on K(X) that
has the operator L as its generator, compare with [17] and [3].

4.2. Polynomial functions on K(X). Let n ∈ N. Let M(n)(X) be the set
of all symmetric real-valued Radon measures on

(
Xn,B(Xn)

)
, see [7]. Let

F(X) be the set of all bounded measurable functions on X with compact

support, and F (n)(X) the set of all bounded measurable symmetric functions

on Xn with compact support. For µ(n) ∈ M(n)(X) and f (n) ∈ F (n)(X), we
denote

⟨µ(n), f (n)⟩ :=
∫
Xn

f (n)dµ(n), n ∈ N.

Let η =
∑
i
sxiδxi ∈ K(X). We set P (0)(η) := 1 and P (1)(η) := η ∈

M(X) = M(1)(X), and consider the measure P (n)(η) on (Xn,B(Xn)) for
n ≥ 2, given by

P (n)(η)(dx1 · · · dxn)(4.4)

:= η(dx1)(η(dx2)− sx1δx1(dx2))× . . .×
× (η(dxn)− sx1δx1(dxn)− sx2δx2(dxn)− . . .− sxn−1δxn−1(dxn)).

It is straightforward to check that (4.4) does not depend on the ordering in

η =
∑
i
sxiδxi , therefore, P

(n)(η) is a symmetric measure on Xn. Moreover,

P (n)(η) =
∑

x1∈τ(η)

∑
x2∈τ(η)\{x1}

. . .
∑

xn∈τ(η)\{x1,...,xn−1}

sx1sx2 . . . sxn(4.5)

× δx1 ⊗ δx2 ⊗ . . .⊗ δxn

= n!
∑

{x1,...,xn}⊂τ(η)

sx1sx2 . . . sxnδx1 ⊙ δx2 ⊙ . . .⊙ δxn ,

where ⊙ denotes the tensor product symmetrization, cf. [7]. Then, for any
f ∈ F(X),

(4.6)
∣∣⟨P (n)(η), f⊗n⟩

∣∣ ≤ ⟨η, |f |⟩n < ∞, n ∈ N.

By the polarization identity, any µ(n) ∈ M(n)(X) is uniquely defined by the

values of ⟨µ(n), f⊗n⟩ for f ∈ F(X). Therefore, P (n)(η) ∈ M(n)(X), n ∈ N.
Let now n ∈ N and f (n) ∈ F (n)(X). We define the following polynomial

function on K(X)

pn(η) := ⟨P (n)(η), f (n)⟩.

Remark 4.6. We stress that pn is not the restriction of a polynomial on
M(X) (in the sense of [7]) to K(X) as the right-hand side of (4.5) may not
be even defined for an arbitrary η ∈ M(X) \K(X).
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We define also the polynomial sequence {(ω)n : n ≥ 0} of falling factorials

on M(X̂), cf. [6, 7]. Namely, we set (ω)0 := 1, (ω)1 := ω; and, for n ≥ 2
and ŷi := (si, xi), 1 ≤ i ≤ n, we define

(ω)n(dŷ1 . . . dŷn)(4.7)

: = ω(dŷ1)(ω(dŷ2)− δŷ1(dŷ2))

× . . .× (ω(dŷk)− δŷ1(dŷk)− δŷ2(dŷk)− . . .− δŷn−1(dŷn))

= n!
∑

{ŷ1,...,ŷn}⊂γ

δŷ1 ⊙ δŷ2 ⊙ . . .⊙ δŷn .

By [6, 7], the generating function of falling factorials on M(X̂) is

(4.8)

∞∑
n=0

1

n!
⟨(ω)n, f̂⊗n⟩ = exp

(
⟨ω, log(1 + f̂)⟩

)
, f̂ ∈ F(X̂),

that is understood as an equality of formal power series, see [6, Subsection
2.2 and Appendix]. Moreover, by [6], the falling factorials are of binomial
type, i.e.,

(4.9) (ω + ω′)n =
n∑

k=0

(
n

k

)
(ω)k ⊙ (ω′)n−k, ω, ω′ ∈ M(X̂), n ∈ N,

and the following lowering property holds: for each n ∈ N0, ŷ ∈ X̂, ω ∈
M(X̂),

(4.10) (ω + δŷ)n − (ω)n = nδŷ ⊙ (ω)n−1.

Let f ∈ F(X) and consider, for each j ∈ N,

f̂j(s, x) := 11[ 1
j
,j](s) s f(x), (s, x) ∈ X̂.

Then f̂j ∈ F(X̂) and we can consider ⟨(ω)n, f̂⊗n
j ⟩, ω ∈ M(X̂). Let f̂(s, x) :=

sf(x) for (s, x) ∈ X̂. Then, by (4.7), for each γ ∈ Π(X̂) ⊂ M(X̂), we have,
cf. (4.6), ∣∣⟨(γ)n, f̂⊗n⟩

∣∣ ≤ ⟨γ, |f̂ |⟩n < ∞.

Since f̂j → f̂ , j → ∞, pointwise, the dominated convergence theorem im-
plies that

lim
j→∞

⟨(γ)n, f̂⊗n
j ⟩ = ⟨(γ)n, f̂⊗n⟩, γ ∈ Π(X̂).

Then, by the polarization identity, for any f (n) ∈ F (n)(X), we may also

define ⟨(γ)n, f̂ (n)⟩ for γ ∈ Π(X̂) and

f̂ (n)
(
(s1, x1), . . . , (sn, xn)

)
:= s1 . . . snf

(n)(x1, . . . , xn).

Then, by (4.5),

(4.11) ⟨P (n)(η), f (n)⟩ = ⟨(R−1η)n, f̂
(n)⟩, η ∈ K(X).
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Proposition 4.7. Let f ∈ F(X). Then, for each n ∈ N and for each η,
η′ ∈ K(X) such that τ(η) ∩ τ(η′) = ∅, we have

⟨P (n)(η + η′), f⊗n⟩ =
n∑

k=0

(
n

k

)
⟨P (k)(η), f⊗k⟩⟨P (n−k)(η′), f⊗(n−k)⟩.

Proof. By (2.1), the assumption τ(η) ∩ τ(η′) = ∅ implies that

(4.12) R−1(η + η′) = R−1η +R−1η′.

Then the statement follows immediately from (4.9) and (4.11). □

Corollary 4.8. Let f ∈ F(X) and n ∈ N. Then,

1. For each η ∈ K(X), (s, x) ∈ X̂ such that x /∈ τ(η),

(D+
(s,x)⟨P

(n)(·), f⊗n⟩)(η) = nsf(x)⟨P (n−1)(η), f⊗(n−1)⟩;

2. For each η ∈ K(X) and x ∈ τ(η),

(D−
x ⟨P (n)(·), f⊗n⟩)(η) = −nsxf(x)⟨P (n−1)(η − sxδx), f

⊗(n−1)⟩.

Proof. 1. By (4.12), we get from (4.10) that

(D+
(s,x)⟨P

(n)(·), f⊗n⟩)(η) = ⟨P (n)(η + sδx), f
⊗n⟩ − ⟨P (n)(η), f⊗n⟩

= ⟨(R−1η + δ(s,x))n, f
⊗n⟩ − ⟨(R−1η)n, f̂

⊗n⟩

= n⟨(δ(s,x) ⊙ (R−1η)n−1), f̂
⊗n⟩

= nf̂(s, x)⟨(R−1η)n−1, f̂
⊗(n−1)⟩

= nsf(x)⟨P (n−1)(η), f⊗(n−1)⟩.

2. By item 1,

(D−
x ⟨P (n)(·), f⊗n⟩)(η) = ⟨P (n)(η − sxδx), f

⊗n⟩ − ⟨P (n)(η), f⊗n⟩

= −(D+
(sx,x)

⟨P (n)(·), f⊗n⟩)(η − sxδx)

= −nsxf(x)⟨P (n−1)(η − sxδx), f
⊗(n−1)⟩. □
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Remark 4.9. We can also consider the generating function for P (n), n ≥ 0.
Namely, for each f ∈ F(X), we have, by (4.11), (4.8) and (3.11),

∞∑
n=0

1

n!
⟨P (n)(η), f⊗n⟩ =

∞∑
n=0

1

n!
⟨(R−1η)n, f̂

⊗n⟩

= exp
(
⟨R−1η, log(1 + f̂)⟩

)
= exp

( ∑
(s,x)∈R−1η

log
(
1 + sf(x)

))

= exp

( ∑
x∈τ(η)

log
(
1 + sxf(x)

))
=

∏
x∈τ(η)

(
1 + sxf(x)

)
= (KeK(f))(η).

More generally, for any sequence f (n) ∈ F (n)(X), n ≥ 0, one can define the
function F ∈ Fexp(K0(X)) given by, cf. (3.9),

F (ξ) := sx1 . . . sxnf
(n)(x1, . . . , xn)

for each ξ =
∑n

i=1 sxiδxi ∈ K0(X), n ≥ 1; F (0) := f (0) ∈ R. Then
∞∑
n=0

1

n!
⟨P (n)(η), f (n)⟩ = (KF )(η), η ∈ K(X).
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