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Abstract

Observing animals in the wild often poses extreme challenges, but animal-borne ac-
celerometers are increasingly revealing unobservable behaviours. Automated machine
learning streamlines behaviour identification from the substantial datasets generated
during multi-animal, long-term studies; however, the accuracy of such models depends
on the qualities of the training data. We examined how data processing influenced
the predictive accuracy of random forest (RF) models, leveraging the easily observed
domestic cat (Felis catus) as a model organism for terrestrial mammalian behaviours.
Nine indoor domestic cats were equipped with collar-mounted tri-axial accelerom-
eters, and behaviours were recorded alongside video footage. From this calibrated
data, eight datasets were derived with (i) additional descriptive variables, (ii) altered
frequencies of acceleration data (40Hz vs. a mean over 1s) and (iii) standardised du-
rations of different behaviours. These training datasets were used to generate RF
models that were validated against calibrated cat behaviours before identifying the
behaviours of five free-ranging tag-equipped cats. These predictions were compared
to those identified manually to validate the accuracy of the RF models for free-ranging
animal behaviours. RF models accurately predicted the behaviours of indoor domestic
cats (F-measure up to 0.96) with discernible improvements observed with post-data-
collection processing. Additional variables, standardised durations of behaviours and
higher recording frequencies improved model accuracy. However, prediction accuracy
varied with different behaviours, where high-frequency models excelled in identifying
fast-paced behaviours (e.g. locomotion), whereas lower-frequency models (1 Hz) more
accurately identified slower, aperiodic behaviours such as grooming and feeding, par-
ticularly when examining free-ranging cat behaviours. While RF modelling offered a
robust means of behaviour identification from accelerometer data, field validations
were important to validate model accuracy for free-ranging individuals. Future stud-
ies may benefit from employing similar data processing methods that enhance RF
behaviour identification accuracy, with extensive advantages for investigations into

ecology, welfare and management of wild animals.
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1 | INTRODUCTION

Animal-attached tri-axial accelerometer loggers, which measure
both gravitational and inertial acceleration at high frequency, pro-
vide a useful means of recording wild animal behaviours (Gooden
et al., 2024; Shepard, Wilson, Quintana, et al.,, 2008; Wilmers
et al., 2015) as well as those of animals in captivity and agriculture
(Alvarenga et al., 2016; Hathaway et al., 2023). This informs many
aspects of species' biology such as their ecology and movements
(Bidder et al., 2020; Ullmann et al., 2023), energetics (Dunford
et al., 2020; Pagano & Williams, 2019), diel activity patterns (Bryce
et al,, 2022; Migli et al., 2021), conservation and management
(McGowan et al., 2022; Wijers et al., 2018) and welfare (Barbour
etal., 2019; Soltis et al., 2012).

Classification of behaviours from acceleration data can be
achieved manually, through observing animals and attributing ac-
celeration signals to different behaviours undertaken (Wilson
et al., 2006). Decision trees then utilise a series of questions to
categorise the data with respect to the observed signal criteria
(McClune et al., 2014; Riaboff et al., 2019; Valletta et al., 2017).
Although decision trees can be accurate and effective, they are
time-consuming to construct and use, especially when animals are
monitored for long periods of time and undertake many different
behaviours (Hammond et al., 2016). Increasingly, machine learning
is being used to automate behaviour recognition, either through un-
supervised or supervised methods. Unsupervised machine learning
groups acceleration signals into likely behaviour categories by iden-
tifying similarities in patterns. More commonly, supervised machine-
learning methods, such as random forest (RF) models, are trained
using previously classified accelerometer data and are then used to
predict animal behaviours using distinct accelerometer attributes
(Breiman, 2001). These methods can rapidly and accurately identify
vast datasets from animal behaviours in the wild, where observation
is not always possible.

Accelerometer data calibrated via observations forms a be-
haviour ‘training’ dataset (Shuert et al., 2018; Wang, 2019). RF
models generate multiple (e.g. 300+) decision trees, and the most
frequent predicted classification from the many individual trees
generated is selected as the predicted behaviour for each time pe-
riod (Li, 2013). Training datasets are generated from a proportion
of the training data (60%-80%), which can be tested for predictive
accuracy using the remaining test data (Lush et al., 2016; Venter
et al., 2019). Validation using data that was not initially used to
train the model provides an independent measure of predictive
accuracy.
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Overall, decision trees can be highly accurate, however, they are
prone to overfitting behavioural categories, that is, they are highly
accurate at identifying training data but less so for unidentified data
(Valletta et al., 2017). Automated RF models solve this problem by
generating multiple decision trees from a subset of the available vari-
ables and a subset of the classified data, so are less subject to over-
fitting and have an increased accuracy (Cutler et al., 2007; Nathan
et al., 2012; Valletta et al., 2017). However, inherent errors with RF
modelling can occur such as incorrectly identifying or overlooking
certain behaviours (Rast et al., 2020; Wang et al., 2015). Indeed, the
accuracy of RF modelling has been reported to be as low as 0% for
mountain lion (Puma concolor) behaviours such as grooming while
their locomotory behaviours were identified with an accuracy above
90% (Wang et al., 2015). Graf et al. (2015) hypothesised that the
erratic nature of grooming, which requires many postures and is con-
ducted at varying frequencies, meant it was difficult to define using
accelerometer metrics and hence, was often misidentified by RF
models. Revising methods that can improve predictive accuracy is
an important component of data processing that is often overlooked
in ecological studies and has wide-ranging implications that would
benefit researchers by improving model outputs.

There are three main ways that have been described to change
orimprove the efficacy of RF modelling, and these are implemented
during acceleration data processing before the RF models are fitted
(Alvarenga et al., 2016; Pagano et al., 2017; Tatler et al., 2018). They
are (i) increasing the number of calculated variables that improve
the explanatory power and specificity in describing behaviours
(Tatler et al., 2018; Wijers et al., 2018), (ii) increasing or decreasing
the frequency of acceleration data recording (Fogarty et al., 2020;
Wang et al., 2015) and (iii) ensuring that the training data incorpo-
rates a similar duration of each of the behaviours (here denoted
‘standardised duration’; Chen et al., 2004; Pagano et al., 2017,
Wijers et al., 2018).

1.1 | Choice of calculated variables

The variables calculated from accelerometer data that are used to
generate an RF model can affect overall model accuracy (Tatler
et al., 2018, Wijers et al., 2018). Many studies simply select com-
monly used variables, but do not investigate whether these gen-
erate the most accurate model (Fogarty et al., 2020; Venter
et al., 2019). Variables typically consist of static and dynamic accel-
eration (Smith, 1997; Wilson et al., 2006), dynamic body accelera-
tion (DBA) (Qasem et al., 2012; Wilson et al., 2020) and pitch and
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roll (Fehlmann et al., 2017; Nathan et al., 2012; Wilson et al., 2008).
Potential extra variables might include the dominant power spec-
trum frequency and amplitude, and ratios of Vectoral Dynamic
Body Acceleration (VeDBA) to dynamic acceleration (Fehlmann
et al., 2017; Lush et al., 2018; Wang et al., 2015), to name just a few.
While some metrics provide an instantaneous measurement of mo-
tion in one or up to three axes, the running standard error of any
waveform indicates its amplitude and therefore the ‘size’ of the
acceleration movement over time of a particular behaviour, which
can therefore also be important in behaviour classifications (Laich
et al., 2008; Nathan et al., 2012; Qasem et al., 2012; Smith, 1997).

1.2 | Adjustment of accelerometer data frequency

Accelerometer data, while usually recorded at sub-second sampling
frequency (up to 140Hz, Sur et al., 2017), are often summed or ex-
pressed as a mean over 1 or 2s to provide summary metrics of move-
ments (Lush etal., 2018; Pagano et al., 2017; Shepard, Wilson, Halsey,
et al., 2008; Wijers et al., 2018). The use of these lower-resolution
recordings facilitates rapid processing of accelerometer data and can
be an important consideration given computational power, battery
life and the study duration and aims. However, higher sampling fre-
quencies could provide more precise information for fast-paced or
high-speed behaviours such as running (Chakravarty et al., 2019).
Alternatively, aperiodic, or ‘slower’ behaviours such as feeding may,
in fact, be represented better by an average over a few seconds
(Alvarenga et al., 2016; Lush et al., 2018). Therefore, the inclusion
of data recorded at different frequencies (via sub-sampling or as a
mean over time) has the potential to affect the accuracy and reli-
ability of the RF model with which to predict behaviours (Alvarenga
et al., 2016; Hounslow et al., 2019; Lush et al., 2018).

1.3 | Standardised durations—balancing the
duration of each behaviour in the training dataset

There is some evidence that RF models trained using datasets that
have a larger number of examples of some behaviours than the oth-
ers (i.e. they use every behaviour example collected and therefore
have an ‘inconsistent’ duration of each in the dataset, e.g., an abun-
dance of ‘resting’ behaviour), skew the predictions of behaviours
in favour of the more abundant behaviour classification while less
readily predicting infrequent behaviours (Chen et al., 2004; Smit
et al., 2023). Behaviours that are hard to observe during calibrations,
such as mating, may therefore be misclassified during wild animal
behaviour predictions. This potential bias can be minimised by sub-
sampling abundant behaviours to generate a more ‘standardised’
duration distribution of behaviours in the training dataset (Pagano
et al., 2017; Wijers et al., 2018).

This study aimed to examine how effective various RF models
were at identifying behaviours when different aspects of the train-
ing data [(i) to (iii) above] were changed. These models were used
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to identify the behaviours of a model quadruped—free-ranging do-
mestic cats (Felis catus, hereafter ‘cats’). Cat behaviours were also
manually identified using a decision tree to assess whether the
RF models reliably identified the behaviours of free-ranging ani-
mals. Cats were studied as they are a useful proxy for wild animal
movement and behaviour research, in part because they are read-
ily handled which facilitates device deployment, but also because
they roam freely outdoors, replicating behaviours that might occur
in wild cryptic terrestrial species. Furthermore, while accelerom-
eters have been used to study cat activity previously (Andrews
et al,, 2015; Lascelles et al., 2008; Naik et al., 2018; Thomas
et al.,, 2017), and some have identified cat behaviours from acceler-
ometers (Kestler & Wilson, 2015; Watanabe et al., 2005; Watanabe
& Takahashi, 2013), this research develops the use of RF models to
efficiently and accurately process accelerometer data and identifies
free-ranging domestic cat behaviours in detail. We aim to provide
a framework for other researchers using RF models for behaviour
identification to improve model accuracy and generate reliable ac-

tivity classifications.

2 | MATERIALS AND METHODS
2.1 | Animals and study sites

Nine adult domestic cats (4 females, 5 males; aged 6 months-8years)
which were housed inside (‘indoor cats’) at Mid Antrim Animal
Sanctuary, Antrim, Northern Ireland, were collared and filmed to cal-
ibrate behaviours. Subsequently, five domestically owned cats (4 fe-
males, 1 male; aged 9 months-12years, ‘outdoor cats’, see Table A1)
that were free to roam outside their owners' houses were recruited
in Northern Ireland and collared to identify their natural behaviours

(see below and Appendix A for details).

2.2 | Calibration of animal behaviours and
accelerometer signals

Indoor cats were fitted with neck collars to which tri-axial acceler-
ometers (‘Daily Diary’: Wilson et al., 2008) recording at 40 Hz were
affixed. Accelerometer data were synchronised with video foot-
age of the cats and distinct behaviours were labelled (‘rest’, ‘walk’,
‘trot’, ‘run’, ‘collar shake’, ‘feed’ and ‘groom’) using bespoke software
DDMT (Wildbyte technologies, http://wildbytetechnologies.com/
software.html, Wilson et al., 2008, see Appendix A for details of syn-
chronisation and accelerometer data sample extraction). Transitions
between behaviours were not included in any behaviour sample. A
total of 116 samples of calibrated behaviours that lasted at least 2s
(>80 accelerometer measurements) were extracted from the ac-
celerometer data. This equated to 54.2min of discrete observed
behaviours (mean 361.14 +109.68seconds per individual) with an
average of 464.33 +345.01 seconds per behaviour (Table A2). Wang
et al. (2015) and Nekaris et al. (2022) successfully identified animal
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behaviours using RF models trained using comparable sampling ef-

forts so these observations should provide a robust training dataset.

2.21 | Development of a decision tree for
behaviour identification

A decision tree for identifying behaviours from the accelerometer
data was developed from the calibrated accelerometer signals. This
was accomplished by an observer examining metrics derived from
the examples of calibrated behaviour data. Distinguishing features
were identified which were indicative of different movements, for
example, a high VeDBA (sensu Qasem et al., 2012), changes in pitch,
or patterns in the amplitude and frequency of the dynamic accel-
eration (see the decision tree Figure A1). The decision tree accuracy
was tested by the observer using it to identify the calibrated samples
of behaviours and calculate the percent that was correctly identified
(Table A2).

2.3 | Automated behaviour identification via RF
modelling and model validation

2.3.1 | Generating the datasets for RF modelling

From the labelled, video-calibrated accelerometer data, a ‘base’
dataset of variables was calculated at 40 Hz. This included 13 vari-
ables; raw- (‘acc’), static- (‘st’) and dynamic acceleration (‘dy’), for all
three axes: lateral (sway), vertical (heave) and sagittal (surge) (x, y
and z, respectively). Vectoral dynamic body acceleration (VeDBA),
smoothed VeDBA (‘VeDBASs’) over 2s, ‘Pitch’ and ‘Roll’ were also

calculated (definitions and equations for these variables are given
in Appendix A and Table A3). A second ‘extended’ dataset at 40 Hz
was generated by calculating eight further variables; the data from
each behaviour were grouped and a running 2s standard error of
the variables was calculated (Table A4). Two further datasets were
generated by calculating the mean values over 1s for all the vari-
ables in that dataset, generating a base and an extended dataset
at 1 Hz. Four more ‘standardised duration’ datasets were then de-
rived from these by randomly subsampling the data to consist of a
maximum of 60s of each behaviour (rather than, e.g., over 2000s
of ‘rest’ behaviour) (Pagano et al., 2017). A time period of 60s was
chosen as most behaviours were recorded for at least this amount
of time (Table A2), and this time period provided a large enough
dataset to train and validate the models. Where less than 60s of a
certain behaviour occurred, 100% of these data were included in
the analysis. These calculations generated eight training datasets
(Figure 1) that were used to fit RF models for the identification of
domestic cat behaviours.

2.3.2 | Generating the RF models

Using R software (version 3.4.0, R core team 2014) and the pack-
age randomForest (Breiman, 2001), RF models were generated
from the eight datasets using a random sample of 60% of the cali-
brated data. To train each model, we fit 500 classification trees
and used a random subset of three predictor variables for each
splitin the tree (Lush et al., 2018; Pagano et al., 2017). A minimum
number of five data points was used during classification regres-
sions and 10 during predictions (Breiman, 2001). These models

were then used to predict the behaviours of the remaining 40%

Raw acceleration

Base variables,
standardised duration,
40 Hz

Base variables,
inconsistent duration,
40 Hz

Base variables,
inconsistent duration,
1 Hz 1 Hz

Base variables,
standardised duration,

Extended variables,
standardised duration,
40 Hz

Extended variables,
inconsistent duration,
40 Hz

Extended variables, Extended variables,
inconsistent duration, standardised duration,
1 Hz 1 Hz

FIGURE 1 Development of datasets used for random forest modelling. Base datasets consisted of 13 ‘base’ variables including raw
acceleration, static- and dynamic -acceleration, all in three axes, heave, surge and sway, plus VeDBA, smoothed VeDBA over 2 seconds,

Pitch and Roll. ‘Extended’ datasets consisted of the base variables plus the standard error of raw and dynamic acceleration in all three axes,
VeDBA and smoothed VeDBA. Data were collected at 40 Hz and the mean of each variable was also calculated over each second to generate
datasets at 1 Hz. ‘Standardised duration’ datasets were derived from subsampling the ‘inconsistent duration’ 40Hz and 1 Hz datasets, so
each had a maximum of 60seconds of any one behaviour, whereas ‘inconsistent duration’ datasets included all available behavioural samples.
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of the data. The most frequent prediction across all trees was
selected as the final classification, which was then compared to
the actual, video-identified, behaviour (Breiman, 2001; Pagano
et al., 2017). We calculated the ‘out-of-bag’ (OOB) error rate and
the Gini Index for each model and evaluated the predictive ac-
curacy of each model from the precision, recall and F-measure of
each behaviour (see Appendix A ‘Measuring the accuracy of RF
models’). The Gini Index indicates the importance of a variable in
improving the purity of behaviour classifications (Breiman, 2001;
Christensen et al., 2023; Han et al., 2016). High F-measures and
low OOB error rates indicate good model accuracy, but a low OOB
error rate combined with a low F-measure indicates model overfit-
ting, where the model can reliably classify data from the training

dataset but not the validation dataset.

2.4 | Free-ranging cat behaviour identification

The five outdoor cats were fitted with collars bearing the same
accelerometers (‘Daily Diary’, Wilson et al., 2008) set to record at
40Hz (see Appendix A for details). Devices were fitted to hang under
the chin of the cats and recorded for a total of 13.72days (mean
2.74+0.60days per individual).

241 | Identification of free-ranging cat behaviours
via decision tree and RF models

The free-ranging cat behaviours were first identified manually by
a researcher examining the accelerometer data. Using the deci-
sion tree developed from the categorised data, they classified the
behaviours of the first 15 min of each hour for all five cats, total-
ling 74.88 h of identified behaviours (mean 15.00 + 3.61 h per cat).
This was representative of the behaviours exhibited by the cats
for the whole time they were collared (see Appendix A ‘Effects of
identifying cat behaviours for 15 min per hour or the full time’).
This method provided an accurate measure of the time cats spent
engaged in the behaviours as a reference for comparison with the
RF modelling.

Second, the behaviours of the free-ranging cats were identi-
fied from their accelerometer data using the eight RF models de-
veloped from the training datasets, using the package randomForest
(Breiman, 2001). To achieve this, their accelerometery data were
used to calculate the same variables as those used to train the RF
models, for example, the base variables were included when the RF
models had been developed from base datasets (Table A4). The free-
ranging cat accelerometer variables were also calculated at either
40Hz or using mean values over 1 second in the same way as the
calibrated training data. The RF models were used to identify the
behaviours at each instant in time (40 Hz or 1 Hz) using the 500 trees
developed at each node and selected the most common outcome as
the predicted behaviour. The total amount of time the cat spent on
each behaviour was then summed. The time spent undertaking each
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behaviour was converted to a per cent of the time that the particular

individual was collared.

2.5 | Dataanalyses

Analyses were conducted using R (version 3.4.0, R core team
2014), with a statistical significance level of p<.05. Results are
expressed as mean+ 1 standard error unless otherwise indicated.
An intraclass correlation coefficient (ICC) was calculated with
the DescTools package (Signorell, 2016) based on a single rat-
ing, absolute-agreement, two-way mixed effects model (Koo &
Li, 2016) to compare the per cent of time cats spent on the behav-
iours predicted by the RF model with the per cent of time spent
on the behaviours identified from the decision tree. The decision
tree predictions of the behaviours were assumed to be the most
precise method of behaviour identification as each behaviour sig-
nal could be compared to other examples of calibrated signals.
The ICC model assessed the reliability of the two methods (the
decision tree and one RF model in each case) for providing simi-
lar results in terms of behaviour frequency and rank. If the 95%
confidence intervals of the ICC estimate were greater than 0.9,
between 0.9 and 0.75, between 0.75 and 0.5 and less than 0.5, this
was indicative of ‘excellent’, ‘good’, ‘moderate’ and ‘poor’ reliabil-
ity, respectively (Koo & Li, 2016). In the first instance, all behav-
iours were included in this analysis before ‘rest’ behaviours were

removed and the comparisons re-run.

3 | RESULTS

3.1 | RF model accuracy for calibrated behaviours
of indoor cats

The RF model that most accurately predicted known behaviours
used the extended variables, with standardised duration of be-
haviours, at 40Hz. In this model, the F-measure was 0.96+0.02
(Table 1) and the precision and recall were both above 0.95. The
second most accurate model, with extended variables, inconsist-
ent behaviour durations, at 40 Hz, had an F-measure of 0.94 +0.05
and a precision and recall above 0.93. The accuracy of the RF
models was lower when the mean of each second was calculated
for the variables. The most accurate model, when using the mean
over 1 second, was developed from the extended variables, with
a standardised duration of behaviours. This had an F-measure of
0.74+0.05 and a precision and recall of 0.83 and 0.71 respec-
tively. Thus, all datasets at 40Hz generated more accurate mod-
els than those at 1Hz, according to the F-measure and the OOB
error rate. In addition, the datasets with standardised durations of
behaviours produced the models with the highest F-measure for
datasets at both 40 and 1 Hz.

The OOB error rate was higher for models with standardised du-
rations of behaviours than the models with inconsistent durations
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TABLE 1 The F-measure and out-of-

40H .
z bag (OOB) error rate (Breiman, 2001) of
F-measure 0OB F-measure 0OOB random forest models developed from
datasets with a set of base or extended
1 1 1 1 [ 0,
Base variables, inconsistent duration 0.89+0.07 4.48% 0.66+0.12 15.57% variables, a standardised or inconsistent
Base variables, standardised duration  0.92+0.03 9.04% 0.56+0.11 31.79% duration of training behaviours, at 40Hz
Extended variables, inconsistent 0.94+0.05 2.18% 0.60+0.15 13.67% or from the mean of each variable over
duration 1second.
Extended variables, standardised 0.96+0.02 5.26% 0.74+0.05 28.49%

duration

compared to those with the same variables and frequency. While
a low OOB error rate combined with a low F-measure can indicate
model overfitting, the high F-measures and higher OOB error rates
seen here suggest the models with standardised durations of be-
haviours are less prone to overfitting than those with inconsistent
durations of behaviours.

Prediction accuracy varied with behaviour. Using the most ac-
curate model (with extended variables, standardised duration of
behaviours, at 40Hz), trot, run, shake, rest, feed and groom were
all identified with an F-measure above 0.92 but walk had an F-
measure of 0.88 (Table 2). The most accurate model at 1 Hz (with
extended variables and standardised duration of behaviours) had
more varying accuracy with different behaviours, most accurately
predicting shake, feed, rest and run (F-measures all over 0.8)
but less accurately predicting groom (0.67), walk (0.58) and trot
(0.58). In general, high-frequency, fast-paced behaviours (walk,
trot, run and shake) were most accurately identified by models
derived from the high-frequency 40 Hz datasets. Across all 40Hz
models, high-frequency behaviours were identified at an average
F-measure of 0.89+0.14, whereas with models at 1Hz, higher
frequency behaviours were identified at an average F-measure
of 0.59 +0.24. Models derived from datasets at 1 Hz performed
better at predicting low-frequency behaviours (feed, groom, rest)
than at predicting high-frequency behaviours, with an average F-
measure of 0.71+0.25.

3.2 | Identification of free-ranging cat behaviours
3.2.1 | Reliability of RF behaviour identification

Cat behaviours identified by the observer using the decision tree
showed cats spent 22.1 h (+15.2 min) a day resting on average, fol-
lowed by walking (55.4 +19.9 min) and grooming (39.5+4.6 min).
This was followed by other locomotory behaviours (‘run’: 6.6 + 3.9
min and ‘trot: 5.0+1.0 min), ‘collar shake’ (3.5+0.6 min) and
‘feeding’ (2.7 + 1.6 min). Validations of the decision tree showed
the observer correctly identified cat behaviour 82.76% of the time
(see Table A2).

Based on the ICC estimate for all behaviours, there was excel-
lent reliability between the time spent on each behaviour that was
identified by the decision tree and the RF models (range=0.999-
0.999). We note though, that the high proportion of identified

‘resting’ behaviour could have skewed the results towards this
extremely high reliability as it comprised over 90% of the cat's
behaviour. The reliability of the models decreased when ‘resting’
behaviour was removed from the analysis (detailed below) and
likely more accurately established how reliable the models were
at identifying behaviours other than ‘resting’. The two models with
the highest degree of reliability were both derived from extended
datasets with standardised duration of behaviours; this model
at 40Hz was the most reliable and had ‘good reliability’ (ICC of
0.756 +0.006), and this model at 1 Hz had ‘moderate to good reli-
ability’ (ICC of 0.751+0.006). These two models predicted differ-
ent amounts of time the free-ranging cats spent ‘walking’, ‘feeding’
and ‘grooming’ (Figure 2), where the 1Hz model slightly overes-
timated the amount of time spent ‘walking’ compared to the de-
cision tree estimate but predicted ‘feeding’ and ‘grooming’ more
accurately than the 40Hz model. Notably, the 40Hz model pre-
dicted hardly any ‘feeding’ or ‘grooming’ behaviours (<0.04% of
the time, Figure 2), and is likely therefore unfit for use to identify
free-roaming cat behaviours, despite its accuracy in predicting the
behaviours in validations. Two of the remaining models, one with
base variables, standardised duration of behaviours at 40Hz and
one with extended variables, inconsistent durations of behaviours
at 1Hz, had ‘moderate reliability’ (ICC between 0.641 and 0.748)
compared to the decision tree-identified behaviours. The remain-
ing four RF models had ‘poor reliability’; these models had ICC val-
ues of less than 0.5 (see Table A5 for all ICC values and 95% Cls)
(Koo & Li, 2016).

3.2.2 | Important variables for
differentiating behaviours

The variables that were most important for improving the purity
of behaviour predictions were similar in the two models that were
most accurate at identifying free-ranging cat behaviours, both with
extended variables, standardised durations of behaviours at 40 or
1Hz. In fact, the top six variables were the same for both models,
although in a different order (Figure 3), and at least six of the top
10 metrics were standard error variables and included the standard
error of dynamic acceleration in all three axes. Both models also in-
dicated that the dynamic acceleration of all three axes was the least
important variable for improving node purity. The most important
variables for the best model, at 40Hz, were smoothed VeDBA, the
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TABLE 2 Precision, recall and F-measure for random forest model testing of known cat behaviours, with the mean and standard error of
the mean (SEM) for each model.

Base variables, inconsistent durations, 40 Hz Base variables, standardised durations, 40 Hz
Precision Recall F-measure Precision Recall F-measure

Feed 0.99 0.91 0.95 0.97 0.99 0.98

Groom 1.00 0.88 0.93 0.97 0.96 0.96

Rest 0.99 0.99 0.99 0.95 0.88 0.92

Walk 0.87 0.91 0.89 0.82 0.79 0.80

Trot 0.54 0.47 0.50 0.83 0.88 0.85

Run 0.97 0.97 0.97 0.94 0.98 0.96

Shake 1.00 0.95 0.97 0.99 0.95 0.97

MEAN 0.91 0.87 0.89 0.92 0.92 0.92

SEM 0.06 0.07 0.07 0.03 0.03 0.03
Base variables, inconsistent durations, 1 Hz Base variables, standardised durations, 1Hz
Precision Recall F-measure Precision Recall F-measure

Feed 0.79 0.63 0.70 0.90 0.71 0.79

Groom N/A 0.00 N/A 0.67 0.40 0.50

Rest 0.94 0.93 0.94 0.91 0.70 0.79

Walk 0.66 0.76 0.71 0.46 0.64 0.53

Trot 0.31 0.19 0.24 0.48 0.60 0.53

Run 0.68 0.78 0.72 0.77 0.80 0.78

Shake N/A 0.00 N/A 0.00 0.00 0.00

MEAN 0.68 0.47 0.66 0.60 0.55 0.56

SEM 0.11 0.15 0.12 0.12 0.10 0.11
Extended variables, inconsistent durations, 40 Hz Extended variables, standardised durations, 40 Hz
Precision Recall F-measure Precision Recall F-measure

Feed 1.00 1.00 1.00 1.00 1.00 1.00

Groom 1.00 0.96 0.98 0.96 0.99 0.98

Rest 1.00 1.00 1.00 0.98 0.90 0.93

Walk 0.94 0.94 0.94 0.88 0.88 0.88

Trot 0.64 0.62 0.63 0.89 0.96 0.93

Run 1.00 1.00 1.00 1.00 1.00 1.00

Shake 1.00 1.00 1.00 1.00 1.00 1.00

MEAN 0.94 0.93 0.94 0.96 0.96 0.96

SEM 0.05 0.05 0.05 0.02 0.02 0.02
Extended variables, inconsistent durations, 1 Hz Extended variables, standardised durations, 1Hz
Precision Recall F-measure Precision Recall F-measure

Feed 1.00 0.61 0.76 0.86 0.83 0.84

Groom 0.00 0.00 0.00 1.00 0.50 0.67

Rest 0.95 0.97 0.96 1.00 0.72 0.84

Walk 0.77 0.78 0.77 0.56 0.60 0.58

Trot 0.36 0.29 0.32 0.48 0.72 0.58

Run 0.81 0.78 0.79 0.89 0.89 0.89

Shake N/A 0.00 N/A 1.00 0.67 0.80

MEAN 0.65 0.49 0.60 0.83 0.71 0.74

SEM 0.16 0.15 0.15 0.08 0.05 0.05

Note: N/A values occurred if no sample of the behaviour was correctly identified.
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FIGURE 2 Mean and standard error of five free-ranging domestic cats' per cent time spent on behaviours. Behaviours were identified
from accelerometery data via a decision tree, and by random forest (RF) models derived from training datasets calibrated to behaviours via
videoed accelerometery data of indoor cats. Definitions of each of the datasets used to develop the RF models can be found in Table A4.
The time (per cent of the day) cats spent on behaviours predicted by each model are shown by colour (see Behaviour key). ‘Resting’

(not shown) made the total time to 100%. The model predictions were compared to the decision tree predictions through an interclass
correlation coefficient (see the Statistics section for details) and good (**) and moderate (*) reliability is highlighted. The model that derived
behaviours most similar to the behaviours identified using the decision tree was derived from extended variables, standardised durations of

behaviours at 40Hz.

standard error of the dynamic acceleration in the sway (X) axis, and
then the standard error of VeDBA.

4 | DISCUSSION

Identifying animal behaviours from accelerometery allows research-
ers to monitor cryptic species and study behaviours over a time
span ranging from seconds to years (Nuijten et al., 2020; Wang
et al., 2015; Wijers et al., 2018). Manual classification of long-term
studies of free-ranging animals' behaviours can, however, be la-
bour intensive (Hammond et al., 2016). Therefore, there has been
increased interest in using supervised machine-learning methods,
such as RF modelling, that can increase the efficiency and accuracy
of behaviour identifications. Model accuracy can vary substantially
according to the species studied and the details of the methodology.
RF models have been used to predict behaviours of a diverse range
of species such as griffon vultures (Gyps fulvus) (Nathan et al., 2012),
polar bears (Ursus maritimus) (Pagano et al., 2017) and sharks (lemon:
Negaproin brevirostris; Brewster et al., 2018; white: Carcharodon car-
charias; Gooden et al., 2024), but their accuracy of behaviour predic-
tions can vary. Therefore, this study aimed to assess how accurately
RF models predict behaviours when aspects of the data used to train
the model were modified.

Our results indicate that data processing did make a difference in
the model accuracy. Specifically, accuracy was highest when (i) the
model included descriptive variables that were chosen as likely to dif-
ferentiate between the behaviours (here demonstrated with extended
datasets including standard error); (ii) the frequency of the data was
highest or specifically matched the focal behaviour, such as to detect
slower behaviours and (iii) the training data included a standardised
duration for all behaviours. When our models were used to assess
free-roaming animal behaviours, the most reliable model during vali-
dation identified almost no ‘feeding’ and ‘grooming’ behaviours, ren-
dering it unreliable and emphasising the advantage of validations of
models for wild animal behaviours. Rast et al. (2020) similarly found a
poor reliability of wild fox (Vulpes vulpes) behaviour predictions from
RF models that were accurate during validations. Observations in the
wild may not always be possible but monitoring individuals that were
not included in the initial data collection would also be advantageous,
either in captivity or those that are habituated. Techniques such as
animal-borne video cameras or direct observations should be used to
validate model predictions in the wild or preferably to collect training
data from wild animals that can be used to train the models (Gooden
et al., 2024; Pagano et al., 2017). This, alongside adjustments to data
pre-processing, should increase the accuracy of RF model behaviour
predictions and has wide-ranging implications for many aspects of
ecological research and conservation.
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FIGURE 3 Relative importance of (a) (b)
predictor variables for purity of domestic
cat behaviour predictions based on the X;)[:sBdAes oo g‘ch?;ze oo
mean Gini index for (a) the 40Hz and VeDBAsde & VeDBAs 8
(b) 1Hz model generated using extended dyYsde o dyXsde o
variables with standardised durations of stZ ° VeDBAsde °
behaviours. Variable abbreviations are AccYsde ° dyZsde °
detailed in the methods and Table A2. stY ° VeDBA °
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Pitch ° stY °
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Roll o Pitch ©
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4.1 | Effect of calculating standard error variables with Nathan et al. (2012) who note the usefulness of the standard

on model accuracy

The extended RF models derived using standard error variables
had a higher accuracy than those with base variables (Table 1),
demonstrating that variable selections should be critically consid-
ered to improve model accuracy. There are almost limitless vari-
ables that can be calculated, and indeed, studies have included
between 8 and 128 variables in their models (Graf et al., 2015;
Wijers et al., 2018), which have been further enhanced by other
data, such as sound (Wijers et al., 2018), or multiple synchro-
nised accelerometers in different locations (Tran et al., 2021).
Smit et al. (2023) showed greater RF accuracy in identifying do-
mestic cat behaviours when accelerometers were attached to a
harness rather than a collar, however, harnesses can hinder move-
ments or more easily become entangled if deployed in the wild.
The selection and importance of different variables may depend
on the species and its' behavioural characteristics or the behav-
iour of interest (Hathaway et al., 2023) as well as the computer
power available—more variables require more processing power.
Furthermore, we predict that if certain variables are demon-
strably useful for a given species, these provide a good starting
point for work on comparable species of different sizes or those
that have similar locomotor modes, as seen in the similarity be-
tween useful predictor variables from RF models for pygmy goat
(Capra aegagrus hircus) and Alpine ibex (Capra ibex) behaviours
(Dickinson et al., 2021).

The high decrease in Gini found for standard error variables in
the two most reliable models when classifying free-ranging cat be-
haviours demonstrates that these are particularly useful for increas-
ing the purity of behaviour differentiation (Figure A2). This concurs

deviation to identify griffon vulture (Gyps fulvus) behaviours. A run-
ning standard error calculated over an appropriate period provides
a more constant measure of the overall size of the motion and rep-
resents the amplitude of the wave that will be consistently high for
a high-energy movement (Laich et al., 2008; Nathan et al., 2012)
(Figure A2). Interestingly, and likely importantly, the dynamic accel-
eration in the heave, surge and sway axes were consistently ranked
as the three least important variables. This could be due to the wave-
like form of dynamic acceleration that contains peaks and troughs
that occur with each step giving a value that can be both positive and
negative with appreciable variability over time (Laich et al., 2008).
This inconsistency in the dynamic acceleration appears to hinder its
use as a distinguishing factor between behaviours.

4.2 | Effects of data frequency on model accuracy

Many studies identify behaviours from accelerometery data having
taken a mean over 1 or 2 s (Fehlmann et al., 2017; Graf et al., 2015;
Pagano et al., 2017) and Shepard, Wilson, Halsey, et al. (2008) sug-
gest that variables should be ‘smoothed’ (i.e. taking a running mean)
over a time period of one stroke cycle. Other studies have used
smoothing periods of 3, 5 or 10s (Campera et al., 2019; Chimienti
et al., 2016; Lush et al., 2018) with varying effects on model predic-
tive accuracy. Here, we investigated how smoothing period affected
RF model accuracy by including and testing our 1 Hz datasets, how-
ever, a model derived at 40 Hz was most accurate for identifying cat
behaviours during validation stages. The high-frequency behaviours,
such as ‘trotting’ and ‘running’, would have rapid oscillations in the
accelerometer data and the 40Hz dataset seems to have captured
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this detail. In contrast, the 1 Hz version of the same model had a low
F-measure but a good ICC reliability and provided a more accurate
estimate of the time free-ranging cats spent on the stationary be-
haviours, ‘feed’ and ‘groom’. We hypothesise that derivations of the
mean over 1 Hz allowed a more accurate determination of stationary
behaviours because these more accurately capture the motion of
behaviours that are performed at a slower frequency. Slower or ‘ape-
riodic’ behaviours such as ‘grooming’ may be harder to identify from
just a few points in the 40Hz dataset due to the inconsistent nature
of this behaviour (as noted by Graf et al., 2015 for Eurasian beavers,
and Chakravarty et al., 2019). It may be indicative of the variety of
grooming motion frequencies and postures adopted by cats to groom
their whole body and, while these variations can be visually identi-
fied by the researcher using a decision tree, the RF models strug-
gled to deal with the inconsistency in this behaviour. The period over
which the mean is taken should also be considered, especially for
larger animals that might have a slower stride frequency; for exam-
ple, Alvarenga et al. (2016) found for sheep, that a mean calculated
over 5 or 10s led to a higher accuracy than over 3s. Supporting this
hypothesis, European pied flycatchers (Ficedula hypoleuca) catching
prey at high speeds required a frequency of over 100Hz for accu-
rate identification whereas slower flight required 12.5Hz (using the
‘rabc’ behaviour classification R package; Yu et al., 2023). Despite
these behavioural considerations, study logistics including battery
life will also influence decisions on the frequency of data collection.
Certainly, our work indicates that the frequency of the data should
be carefully evaluated when using RF modelling to identify specific
animal behaviours accurately and indicates that taking a mean over
1 or 2 s would be particularly useful for identifying aperiodic behav-
iours, but the animal species and focal behaviour frequency should

be considered and data processing conducted accordingly.

4.3 | Effects of standardised durations of
behaviours on model accuracy

An inconsistent duration of behaviours in the training dataset has
been shown to bias model predictions towards the most abundant
behaviours (Chen et al., 2004; Pagano et al., 2017) and, while every
effort was made to record as many samples as possible of each cat
behaviour, there was an abundance of ‘resting’ behaviour and rela-
tively few examples of ‘groom’ and ‘shake’ behaviours in the data.
These small sample sizes for specific behaviours did not appear to
be a factor in behaviour identification accuracy, that is, they were
not identified with any less precision or recall than other behaviours
(Table A6). However, we did find that the models from datasets with
standardised durations of each behaviour were more accurate than
those with inconsistent durations of behaviours, which opposes the
findings of Pagano et al. (2017) for polar bear behaviour identification
who found uneven datasets were more accurate. While the higher
OOB error rate and F-measure seen for our models with standardised
durations of each behaviour indicate a smaller chance of overfitting,
this could also be due to the smaller datasample for these models;

the OOB error rate is a percentage of incorrect classifications from
the training data not used in each decision tree, so each ‘wrong’ clas-
sification had more effect. Nevertheless, there was good evidence
that a standardised duration of behaviours increased model accuracy,
so sub-sampling over-abundant behaviours to create a more even
distribution does seem to be important in improving the predictive
capabilities of RF modelling. Interestingly, the dataset size did not ap-
pear to influence overall accuracy scores; further testing of a 40Hz
dataset that was subsampled to a similar number of data points as the
1Hz dataset (both with extended variables and standardised distri-
butions of behaviours) showed that the 40Hz dataset maintained a
higher F-measure (see Appendix A). This demonstrates that the abso-
lute number of samples in the smaller 1 Hz dataset was not the driving

factor in the lower F-measures or OOB error rates.

5 | CONCLUSIONS

RF models can be used to accurately predict animal behaviours using
classified accelerometer data, but model accuracy can be improved
via post-data-collect processing. Here, we show that high data
frequencies, standardised durations of behaviours and extended
variables improved model accuracy. The accuracy of models when
identifying aperiodic behaviours, such as feeding and grooming, of
animals in the wild may improve when using lower frequency data
(means over 1s) and suggests that the aperiodicity of focal behav-
iours should be taken into consideration when using RF modelling
for identifying free-ranging animal behaviours. The validation of
behaviour predictions with known free-ranging animal behaviours
was important to reveal this trend and validations should also be
prioritised in future studies to ensure wild animal behaviour predic-

tions are accurate.
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APPENDIX A

Additional methods

Details of cats housed indoors for behaviour recording

Nine adult domestic cats (4 females, 5 males; aged 6 months-8years)
housed at Mid Antrim Animal Sanctuary, Antrim, Northern Ireland in
rooms (2 mx 3 m) were studied in June and July 2017. Cats were free
to move to an enclosed outside area (2x2m). All individuals were
either neutered or spayed and were certified as healthy by a veteri-
narian prior to participation in the study.

Cats were fitted with quick-release collars (Breakaway buckle
collar, Rogz Ltd. 2002/030628/07) to which a tri-axial accelerom-
eter (‘Daily Diary’, Wilson et al., 2008) recording at 40 Hz was at-
tached. The total weight of the collar and logger was 25 g (less than
1% of the cats' body weight). Daily Diary loggers were fitted under
the chin of the cat in line with the lateral (sway), sagittal (surge) and
vertical (heave) body axes (Chakravarty et al., 2019). While wearing
the collars, cats were filmed using a Sony Alpha a58 DSLR camera
(Sony, Latin America, Inc.) for 15 min during the morning while a
second researcher encouraged the cat to undertake different be-
haviours, such as running after a toy, or provided food to observe
feeding behaviours. In addition, naturally occurring behaviours were
observed, such as walking, trotting, resting, grooming and shaking
the collar. These behaviours were selected as they accounted for
much of the cat's (and other wild equivalent predator's) daily behav-
iours (Wilmers et al., 2017), are of ecological significance (Williams
et al., 2014), and the repertoire can be indicative of welfare (Fuller
et al,, 2019). Each cat was filmed for 15 min to record the different

behaviours it undertook.

Accelerometer data and video synchronisation

Accelerometer data and video footage from the indoor cats were
synchronised using the timestamp of the data and video. To guard
against any potential inaccuracies of their internal clocks, during
the video, the collar was shaken up and down by the observers to
create a distinct marking point in the accelerometer data that could
be synchronised with the camera timestamp on the recording.
Once the data were downloaded and loaded into DDMT software
(Wildbyte technologies, http://wildbytetechnologies.com/software.
html, Wilson et al., 2008), any offset that was required between the
camera and the accelerometer was added to the accelerometer data.
Distinct behaviours that lasted at least two seconds were selected on
the video and identified in the accelerometer data via the corrected
timestamp. Transitions between behaviours were not included in
any behaviour sample. DDMT is a specialised accelerometer han-
dling software, including facilitating the ‘labelling’ of behaviours that
could then be extracted individually. This was conducted for all dis-
tinct identifiable behaviours within the video footage.

Random forest model generation

Random forest models use a subset of known behaviour data to ‘train’
the model to identify behaviours and use the remaining data subset
to ‘test’ the model accuracy. Classification trees were built using a
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random ‘training’ subset of 60% of the data. The 500 trees grown
from each training dataset were well above the recommended 300
trees required to acquire accurate results (Fehlmann et al., 2017).

To validate each model, it was used to predict the behaviours of
the 40% of the dataset not used for training. For every measure of
accelerometer data (at 40 Hz or 1 Hz), a behavioural prediction was
made according to the classification from each of the 500 trees cre-
ated from the training dataset. The most frequent prediction across
all trees was selected as the final classification as the most likely
behaviour, which was then compared to the actual, video-identified,
behaviour (Breiman, 2001; Pagano et al., 2017). We built a confusion
matrix (a table of the frequencies of correct or incorrect behaviour
predictions—Table Aé) to assess the precision and recall of the model
(Equations 1 and 2, Fehlmann et al., 2017) and evaluated the pre-
dictive abilities of the model based on the F-measure (Equation 3)
(see below for calculations of precision, recall and F-measure). These
metrics provide measures of model accuracy (Pagano et al., 2017).

The ‘out-of-bag’ (OOB) error rate (the per cent of events that
were incorrectly classified from rows not included in each of the 500
decision trees; Breiman, 2001) and the Gini Index were calculated
(Breiman, 2001; Fehlmann et al., 2017). The Gini Index indicates

TABLE A1 Details of free-roaming domestic cats (Felis catus)
fitted with accelerometer and GPS collars, with their age (years)
and sex.

CatID Age Sex
A 10months F

B Unknown F

C 4 F

D 2 B

E 12 M

Note: ‘Unknown’ represents a rescued cat so the age was not confirmed.

which variables improve the purity of behaviour classifications
(Breiman, 2001; Christensen et al., 2023; Han et al., 2016) and was
used to identify whether the ‘standard error variables’ were useful in

behaviour identifications using the RF models.

Measuring the accuracy of random forest models

Precision, recall and F-measure are based on the following catego-
ries of identification; true positive (TP) where the predicted be-
haviour is correctly identified as the actual behaviour (our example
focal behaviour is resting, so, e.g., resting is identified as resting),
true negative (TN) where the predicted behaviour is correctly identi-
fied as a different behaviour (not the focal behaviour, e.g. walking
is identified as walking), false positive (FP) where the predicted be-
haviour is incorrectly identified as the focal behaviour (e.g. another
behaviour is identified as resting) and false negative (FN) where the
predicted behaviour is identified as an incorrect behaviour (e.g. rest-
ing is identified as grooming; Pagano et al., 2017).

TP

Precision = TP FP

TP

Recall = TP-l——FN

recision x recall
2% P

F measure = —_——
precision + recall

€©)

If no FN results were obtained, such as when a certain be-
haviour was not selected in the random sample, then limited in-
formation could be gleaned as to how the focal behaviour was
handled and thus an N/A result was returned for precision, and
F-measure. If TP and FP returned results of O, such as when no
behaviours were identified correctly, or no behaviours were iden-

tified as the focal behaviour incorrectly, then all samples of the

TABLE A2 Duration (s) of video-identified accelerometery data for each behaviour of nine indoor domestic cats.

Duration of behaviour (s)

CatID Sex Groom Feed Rest Walk Trot Run Shake Total

1 F 7.20 0.00 66.88 38.88 2.93 21.08 3.80 140.75
2 F 3.58 2.88 592.18 339.40 12.05 0.00 0.00 950.08
3 F 0.00 0.00 299.80 36.53 0.00 0.00 0.00 336.33
4 F 0.00 0.00 489.13 0.00 0.00 0.00 0.00 489.13
5 M 0.00 0.00 6.38 60.83 61.58 15.80 3.35 147.93
6 M 2.30 54.10 40.70 10.45 0.00 11.63 0.00 119.18
7 M 0.00 10.00 129.90 35.85 0.00 0.00 0.00 175.75
8 M 0.00 0.00 35.48 11.73 8.03 2.30 0.00 57.53
9 M 0.00 0.00 831.35 0.00 2.28 0.00 0.00 833.63
Total 13.08 66.98 2491.78 533.65 86.85 50.80 715 3250.28
N 3 3 42 16 12 2 116

Decision tree accuracy (%) 66.67 66.67 86.84 95.24 62.50 58.33 100 82.76

Note: The number of behaviour samples longer than 2s (N) and the accuracy of the decision tree for identifying the behaviours are also shown.
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TABLE A3 Summary variables extracted from accelerometer data and used in random forest models to predict domestic cat behaviours.

Parameter Notation Calculation Description Reference
Raw acceleration (g) acc,, acc,, acc, The acceleration measured in each A
orthogonal axis (x, y and 2)
Static acceleration (g) st,, st st, A running 2s mean of The posture of the animal in each B
acc,, accy, or acc, orthogonal axis (x, y and z)
Dynamic acceleration (g) dy, dy,, dy, acc — st for each axis, x, The movement of the animal in each B
y,and z orthogonal axis (x, y and 2)
Vectoral dynfamlc body VeDBA /dyxz . dyyz + dyzz The overall body movement of the animal B
acceleration (g)
Smoothed vectoral dynamic body VeDBAs A running 2s mean of The overall body movement of the animal C
acceleration (g) VeDBA without extreme peaks or troughs
Pitch Pitch asin(stz) Describes whether the animal is going up D
of down a slope
Roll Roll asin(stx) Describes whether an animal is banking E
or lying on its side
Standard error of raw acceleration SDacc,, SDacc,,  Arunning 2s standard The magnitude of the raw acceleration in E
SDacc, error of acc,, acc,, or each orthogonal axis (x, y and z)
acc,
Standard error of dynamic SDdy,, SDdy,, A running 2s standard The magnitude of the movement of the D,F,H
acceleration SDdy, error of dy,, dy,, or dy, animal in each orthogonal axis (x, y
and 2)
Standard error of VeDBA SDVeDBA A running 2s standard The magnitude of the overall body D,F,H
error of VeDBA movement of the animal
Standard error of smoothed VeDBA SDVeDBAs A running 2s standard The magnitude of the overall body D,F,H

error of VeDBAs

movement of the animal without
extreme peaks or troughs

Note: Acceleration was measured in the sway (x), heave (y) and surge (z) axes. References are (A) Smith (1997) (B) Wilson et al. (2006), (C) Qasem
et al. (2012), (D) Fehlmann et al. (2017), (E) Wilson et al. (2008), (F) Laich et al. (2008), (G) Watanabe and Takahashi (2013).

TABLE A4 Definitions of terminology for datasets.

Datasets Definition
Base A dataset consisting of the variables acc,, acc,, acc,, sty, st st,, dy,, dyy, dy,, VeDBA, VeDBAs, Pitch and Roll
Extended A dataset consisting of the variables acc,, acc,, acc,, st,, st,, st,, dy,, dy,, dy,, VeDBA,VeDBAs, Pitch,

Roll, SDacc,, SDacc,, SDacc,, SDdy,, SDdy,,, SDdy,, SDVeDBA and SDVeDBAs

Inconsistent duration

Standardised duration

A dataset with a maximum of 605 of any one behaviour

A dataset containing all available calibrated accelerometer behaviours over 2s long

40Hz A dataset of variables at 40Hz

1Hz A dataset of the mean of the variables over 1s

focal behaviours were predicted as negative and returned N/A
results for precision, and F-measure. If the precision was 0 (when
TP and FP were 0), the F-measure could not be calculated and was

returned as 0.

Generating the datasets for random forest modelling

Random forest models use variables to differentiate between be-
haviours. These are derived from the raw accelerometer data. The
variables derived from the raw heave, surge and sway values (move-
ments in orthogonal axes) of the identified accelerometer samples
describe the animal's body motion and posture through acceleration
and were selected as they describe the animals movement in differ-
ent ways (Venter et al., 2019).

The variables calculated from the raw accelerometery data that
constitute the base dataset were chosen based on previous accel-
erometery studies (Fehlmann et al., 2017; Shepard, Wilson, Halsey,
et al., 2008; Shepard, Wilson, Quintana, et al., 2008; Watanabe &
Takahashi, 2013; Wilson et al., 2006, 2008). This dataset can be used
to train a random forest model which can then be used to identify
behaviours from other accelerometer data.

A ‘base’ dataset of variables was calculated at 40 Hz. This com-
prised of 13 variables: raw acceleration (‘acc’), static acceleration
(‘st’) and dynamic acceleration (‘dy’), all measured in three axes: sway,
heave and surge (noted as x, y and z, respectively). The static accel-
eration represents the animal's posture, whereas the dynamic accel-
eration represents animal movements (Wilson et al., 2006). Vectoral
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TABLE A5 Theresults of interclass correlation coefficient estimates and the 95% confidence intervals are based on a single rating,

absolute-agreement, two-way mixed effects model.

Model ICC estimate F dfl

Base variables, inconsistent 0.247 1.328 29
duration, 40 Hz

Base variables, standardised 0.742 3.870 29
duration, 40Hz

Base variables, inconsistent 0.364 1.570 29
duration, 1Hz

Base variables, standardised 0.079 1.090 29
duration, 1Hz

Extended variables, inconsistent 0.148 1.173 29
duration, 40 Hz

Extended variables, standardised 0.756 4.100 29
duration, 40Hz

Extended variables, inconsistent 0.649 2.850 29

duration, 1Hz

Extended variables, standardised 0.751 4.010 29
duration, 1Hz

Lower confidence Upper confidence

df2 p Value interval interval
29 225 0.229 0.264
29 <.001 0.736 0.748
29 114 0.349 0.379
29 413 0.057 0.101
29 .335 0.128 0.168
29 <.001 0.750 0.762
29 <.01 0.641 0.657
29 <.001 0.745 0.757

Note: The agreement between the per cent time spent on behaviours each day by domestic cats was compared between behaviours that were
predicted by each of the random forest models to behaviours predicted from accelerometery data identified by an observer using an ethogram.

dynamic body acceleration (‘VeDBA'), smoothed VeDBA (‘VeDBASs'),
‘Pitch’ and ‘Roll’ were also calculated (definitions and equations for
these variables are provided in Tables A3 and A4).

A second ‘extended’ dataset at 40 Hz was generated by grouping
the data from each behaviour and calculating a running 2-second
standard error of raw and dynamic acceleration in the sway, heave
and surge axes, VeDBA, and smoothed VeDBA (Table A3). These fur-
ther eight variables generated an ‘extended’ dataset that consisted
of the base variables and the standard error variables (Table A4).
These new variables examined the variation of each of the ‘active’
variables around the mean (Fehlmann et al., 2017; Laich et al., 2008;
Watanabe & Takahashi, 2013).

Two further datasets were generated by calculating the mean val-
ues of the 40 Hz datasets over one second for all the variables in
that dataset, generating a base and an extended dataset at 1 Hz. The
frequency of the data has been shown to influence the reliability of
behaviour identification when random forest modelling (Alvarenga
etal., 2016).

Four more ‘standardised duration’ datasets were then derived,
one from each of the base and extended datasets at 40 and 1 Hz. A
long duration of examples of some behaviours can lead to a bias in
the classification algorithm towards the more numerous behaviours
(Chenetal., 2004). Therefore, a more even distribution of behaviours
decreases the overestimation of the more numerous behaviours in
training datasets. We used a similar method to Pagano et al. (2017),
in which datasets of known behaviours were randomly subsampled
to consist of a maximum of 60s of each behaviour (rather than over
2000s of rest behaviour, Table A2). Where less than 60s of a certain
behaviour occurred, 100% of these data was included in the analysis.
In total, eight datasets were developed (Figure 1).

Free-ranging cat data collection

Cat owners in Northern Ireland were contacted in 2016 and volun-
teered their animals to have their movements recorded. For the first
2days of the study, the free-roaming cats were fitted with ‘dummy
collars’, which were the same size and weight as functioning collars
but did not contain any devices. This allowed the cat to become ac-
customed to wearing the collar and the added weight of the devices.
All the collars were fitted with a quick-release clasp so that it would
release if the cat became entangled. The collars were adjusted to
fit each cat and allow two fingers to fit between the collar and the
cat (Lord et al., 2010). Upon deployment, cats were monitored for
30min to ensure there was no discomfort. Thereafter, owners moni-
tored their cat's behaviour to watch for any signs of stress. In the
trial, no signs of stress were observed in any of the individuals we
measured, so all cats were included in the study. After two days, the
dummy collars were then exchanged for one that carried a VHF radio
transmitter (Tabcat homing tag © 2016 Loc8tor Ltd.) and an accel-
erometer tag (‘Daily Diary’, Wilson et al., 2008). The accelerometer
was set to record at 40 Hz. The VHF was only used to find the collar
if it became released from the cat (which happened on one occasion
and the cat was fit with a replacement collar the same day). The total
weight of the collar and loggers was 61 g, less than 1.5% of the body
weight of any of the cats. Throughout the study, cats were allowed
to move freely in and out of their owner's house via either a cat flap
or being let in and out when required.

ADDITIONAL RESULTS

Free-ranging cat behaviour identification from the decision tree
Through the validation process described in the text, the decision
tree was accurate 82.76% of the time (Table A2). The behaviours
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TABLE A6 Confusion matrix for random forest model identification of cat feed, groom, rest, walk, trot, run and shake behaviours.

Predicted behaviour

Observed behaviour Feed Groom Rest
Feed 966* 0 0

Groom 0 166* 0

Rest 4 7 867"
Walk 1 0 20

Trot 0 0

Run 0 0

Shake 0 0

Total pred. 971 173 887

Walk Trot Run Shake Total obs.
0 0 0 0 966
0 0 1 0 167
77 7 1 0 963
887* 102 1 0 1011
34 910* 0 0 944
0 0 718* 0 718
0 0 0 57* 57
998 1019 721 57 4826

Note: The random forest model was trained using an extended set of variables (see Table A4), with a standardised duration of behaviours, using
accelerometery data measured at 40 Hz. This matrix shows the accuracy of behaviour identification using the model. Predicted behaviours were
identified using the model, and observed behaviours were identified from video recordings. Italicised and * values indicate correctly identified

behaviours (true positive).

identified from the accelerometer data using the decision tree
found that the free-ranging cats ‘rested’ for 22.12h (92.17 +1.05%)
each day, with the majority of the remaining time spent ‘walking’
(3.85 +£1.38%) and ‘grooming’ (2.74+0.32%). This was followed
by other locomotory behaviours (‘run: 0.46+0.27% and ‘trot"
0.35+0.07%), then ‘collar shake’ (0.24+0.04%) and ‘feeding’
(0.19 +0.11%).

Free-ranging cat behaviours from RF models

‘Resting’ was the primary behaviour identified for all cats accord-
ing to all models, where cats spent at least 21 hours ‘resting’ each
day (Figure 2). Locomotion, particularly ‘walking’, was the second
most commonly identified behaviour by the top models at 40 and
1 Hz, and comprised 5%-8% of each day. While there was almost
no ‘feeding’ or ‘grooming’ identified by the top model at 40 Hz, the
top model at 1 Hz predicted these behaviours more frequently but
still underestimated both in comparison to the behaviours identi-
fied using the decision tree, particularly ‘grooming’ at 0.66 +0.07%
compared to 2.74+0.32% found using the decision tree. Grooming
is a highly variable behaviour depending on which area of the body
is groomed and may result in different accelerometer axes detect-
ing motion, making it hard for the model to utilise differentiating

variable features.

RF model accuracy—precision and recall

For the most accurate model, with extended variables and stand-
ardised durations at 40 Hz, the precision and recall for different
behaviours ranged from 0.88 to 1.00 (Table 2). ‘Shake’, ‘feed’ and
‘run’ behaviours were the most reliably identified, whereas ‘walk’
behaviours had the lowest precision and recall and were commonly
misclassified as ‘trot’ and vice versa. ‘Rest’ behaviours had high pre-
cision (0.98) but lower recall (0.90), whereas other behaviours were
rarely classified as ‘resting’, but ‘rest’ behaviours were sometimes
misclassified as ‘groom’, ‘feed’, ‘trot’, ‘run’ and most commonly as
‘walk’ (Table A6).

ADDITIONAL INVESTIGATIONS

Effects of sample size on model accuracy

As supplementary analysis, we also investigated whether the
large size of the datasets (where the 40 Hz datasets were larger
than the 1 Hz dataset) might lead to higher accuracy due to the
size of the dataset rather than the frequency of the data. We hy-
pothesised that a larger dataset would lead to a higher accuracy
of the models, not because the model necessarily identified be-
haviours more accurately at this higher frequency, but because
the statistical power of these models from larger datasets would
be greater (Thomas & Juanes, 1996) (e.g. the model with extended
variables and standardised duration at 40 Hz contained 12,063
lines of data compared to the same dataset at 1 Hz that contained
320 lines of data). To investigate this, we examined whether this
model at 40 Hz was more accurate than this model at 1 Hz due
to the dataset size, by subsampling the 40 Hz dataset to include
only 60 events (lines of data) per behaviour, rather than 60s per
behaviour. This led to a ‘subsampled dataset’ more comparable
in size (n=420) to the 1 Hz dataset. This demonstrated whether
the dataset at 40 Hz was more accurate than at 1 Hz due to the
detail of the behaviour waveform being maintained or the size of
the dataset.

We used the subsampled dataset to identify cat behaviours and
assessed the accuracy. The subsampled 60 event dataset developed
a random forest model that had a precision of 0.82 +0.04, recall of
0.82 +0.07 and an F-measure of 0.81 +0.05. This F-measure was
6.7% more accurate than the random forest model trained using the
extended dataset with standardised durations of behaviours at 1 Hz
but was 14.9% less accurate than the same dataset at 40 Hz which
suggests that the larger dataset size does affect the accuracy of the
model, but also that the higher frequency dataset was still more ac-
curate than the mean over one second.

In general, the higher frequency datasets (40 Hz) produced
more accurate models than those derived from datasets at 1 Hz

(derived from taking the mean of the variables over 1s) (Table 1),
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Is mean VeDBA >0.025 g

. E

Is there aregular pattern in Sleeping
the heave acceleration?

.| -

Is VeDBA smoothed over 1

Resting

second >0.15 g

Is VeDBA smoothed over 1
second >0.4 g?

Yes l l No

Is VeDBA smoothed over 1
second >0.6 g?

Walking

Is this accompanied by
walking or trotting?

Yes l No

Running Does the amplitude of all
acceleration axes get rapidly larger
and smaller, followed by a short
rest?

- -

Collar shake or Unknown behaviour, possibly play
scratch or jumping

Trotting

No

Do heave and sway acceleration
cross over numerous times?

Yes l l No

Is pitch angle between —2 and — 7?

Grooming

Unknown behaviour,

Feeding possibly being stroked

FIGURE A1 Decision tree for identifying free-ranging domestic cat behaviours from tri-axial acceleration, developed from manual
calibrations of behaviours and accelerometer data using concurrent video recordings. ‘Sleep’ and ‘rest’ behaviours were characterised by
long periods of inactivity. ‘Grooming’ behaviours included the cat licking its fur on all parts of its body including its back, tail and paws.
‘Feeding’ behaviour was solely from pellet food from a bowl. Locomotory behaviours, ‘walk’, ‘trot’ and ‘run’, were conducted in straight lines
(with no corners) and characterised by the increasing speeds and different gaits. ‘Collar shake’ or scratch was typically conducted using a
hind leg or a rotatory shake of the head. Unknown behaviours that were not defined but were observed included human interactions such as
the cat being stroked and active behaviours such as jumping onto a high surface or playing with toys.

however, when the dataset at 40 Hz was subsampled to include the
same number of lines as the 1 Hz datasets, the modelling accuracy
decreased. This shows that the size of the datasets can increase
model accuracy when identifying behaviours. We found that the
subsampled 60 event datasets were still more accurate at identify-
ing behaviours than the model derived from a 1 Hz dataset which
was similar in size (although this was not tested for free-roaming
cat data using the ICC reliability measure). This shows that the de-
tail embedded in the accelerometery data recorded at 40 Hz is im-
portant when identifying behaviours and that taking a mean of the
data can lose distinguishing features. This agrees with our above
findings that behaviours that occur at a high frequency, such as
locomotion in free-ranging cats, are more reliably identified from
a model derived from a higher frequency dataset, and that if quick

locomotor behaviours are the focus of a study, high frequencies
would likely provide the highest accuracy.

Effects of identifying cat behaviours for 15 minutes per hour or
the full time

When recording animal behaviours, the amount of time that the
animal is studied for can influence the outcome of behavioural pre-
dictions (Altmann, 1974) (i.e. 15 min/h or the full time). We there-
fore tested whether there was a difference in the amount of time
spent on the different behaviours when they were identified for the
first 15 min of each hour or for the whole time, the cat was collared.
To test this, one of the five cats' behaviours was identified by the
observer using the decision tree for the whole time it was collared
(85.33h).
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The intraclass correlation coefficient (ICC) was calculated with
the DescTools package (Signorell, 2016) based on a single rating,
absolute-agreement, two-way mixed effects model (Koo & Li, 2016)
and was used to assess the reliability of the observer identifying the
behaviours of one cat for the first 15 min of each hour compared to
identifying the whole time the cat was collared (as a per cent of the
time identified). Analyses were conducted using R (version 3.4.0, R
core team 2014). This showed whether the predictions of cat be-
haviours from the shorter observation times provided an accurate

estimate of cat behaviours over the whole day.

There was ‘excellent reliability’ according to the ICC estimate
(Koo & Li, 2016) between the time spent on each behaviour when
identified by decision tree by an observer for 15 min per hour or for
the whole time. The ICC estimate was 0.98 with a 95% confidence
interval from 0.982 to 0.984, F(5, 5)=59.6, p<.001, which shows
that there was little difference in the time the cat was estimated
to have spent on each behaviour whether the observer identified
behaviours for 15min or for the whole 60min per hour and gives
confidence to our predictions of cat behaviours.
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