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Abstract
Observing animals in the wild often poses extreme challenges, but animal- borne ac-
celerometers	are	increasingly	revealing	unobservable	behaviours.	Automated	machine	
learning streamlines behaviour identification from the substantial datasets generated 
during multi- animal, long- term studies; however, the accuracy of such models depends 
on the qualities of the training data. We examined how data processing influenced 
the predictive accuracy of random forest (RF) models, leveraging the easily observed 
domestic cat (Felis catus) as a model organism for terrestrial mammalian behaviours. 
Nine indoor domestic cats were equipped with collar- mounted tri- axial accelerom-
eters, and behaviours were recorded alongside video footage. From this calibrated 
data, eight datasets were derived with (i) additional descriptive variables, (ii) altered 
frequencies	of	acceleration	data	(40 Hz	vs.	a	mean	over	1 s)	and	(iii)	standardised	du-
rations of different behaviours. These training datasets were used to generate RF 
models that were validated against calibrated cat behaviours before identifying the 
behaviours of five free- ranging tag- equipped cats. These predictions were compared 
to those identified manually to validate the accuracy of the RF models for free- ranging 
animal behaviours. RF models accurately predicted the behaviours of indoor domestic 
cats (F- measure up to 0.96) with discernible improvements observed with post- data- 
collection	processing.	Additional	variables,	standardised	durations	of	behaviours	and	
higher	recording	frequencies	improved	model	accuracy.	However,	prediction	accuracy	
varied with different behaviours, where high- frequency models excelled in identifying 
fast-	paced	behaviours	(e.g.	locomotion),	whereas	lower-	frequency	models	(1 Hz)	more	
accurately identified slower, aperiodic behaviours such as grooming and feeding, par-
ticularly when examining free- ranging cat behaviours. While RF modelling offered a 
robust means of behaviour identification from accelerometer data, field validations 
were important to validate model accuracy for free- ranging individuals. Future stud-
ies may benefit from employing similar data processing methods that enhance RF 
behaviour identification accuracy, with extensive advantages for investigations into 
ecology, welfare and management of wild animals.
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1  |  INTRODUC TION

Animal-	attached	 tri-	axial	 accelerometer	 loggers,	 which	 measure	
both gravitational and inertial acceleration at high frequency, pro-
vide a useful means of recording wild animal behaviours (Gooden 
et al., 2024; Shepard, Wilson, Quintana, et al., 2008; Wilmers 
et al., 2015) as well as those of animals in captivity and agriculture 
(Alvarenga	et	al.,	2016;	Hathaway	et	al.,	2023). This informs many 
aspects of species' biology such as their ecology and movements 
(Bidder et al., 2020; Ullmann et al., 2023), energetics (Dunford 
et al., 2020; Pagano & Williams, 2019), diel activity patterns (Bryce 
et al., 2022; Migli et al., 2021), conservation and management 
(McGowan et al., 2022; Wijers et al., 2018) and welfare (Barbour 
et al., 2019; Soltis et al., 2012).

Classification of behaviours from acceleration data can be 
achieved manually, through observing animals and attributing ac-
celeration signals to different behaviours undertaken (Wilson 
et al., 2006). Decision trees then utilise a series of questions to 
categorise the data with respect to the observed signal criteria 
(McClune et al., 2014; Riaboff et al., 2019; Valletta et al., 2017). 
Although	 decision	 trees	 can	 be	 accurate	 and	 effective,	 they	 are	
time- consuming to construct and use, especially when animals are 
monitored for long periods of time and undertake many different 
behaviours	 (Hammond	et	al.,	2016). Increasingly, machine learning 
is being used to automate behaviour recognition, either through un-
supervised or supervised methods. Unsupervised machine learning 
groups acceleration signals into likely behaviour categories by iden-
tifying similarities in patterns. More commonly, supervised machine- 
learning methods, such as random forest (RF) models, are trained 
using previously classified accelerometer data and are then used to 
predict animal behaviours using distinct accelerometer attributes 
(Breiman, 2001). These methods can rapidly and accurately identify 
vast datasets from animal behaviours in the wild, where observation 
is not always possible.

Accelerometer	 data	 calibrated	 via	 observations	 forms	 a	 be-
haviour ‘training’ dataset (Shuert et al., 2018; Wang, 2019). RF 
models generate multiple (e.g. 300+) decision trees, and the most 
frequent predicted classification from the many individual trees 
generated is selected as the predicted behaviour for each time pe-
riod (Li, 2013). Training datasets are generated from a proportion 
of the training data (60%–80%), which can be tested for predictive 
accuracy using the remaining test data (Lush et al., 2016; Venter 
et al., 2019). Validation using data that was not initially used to 
train the model provides an independent measure of predictive 
accuracy.

Overall, decision trees can be highly accurate, however, they are 
prone to overfitting behavioural categories, that is, they are highly 
accurate at identifying training data but less so for unidentified data 
(Valletta et al., 2017).	Automated	RF	models	solve	this	problem	by	
generating multiple decision trees from a subset of the available vari-
ables and a subset of the classified data, so are less subject to over-
fitting and have an increased accuracy (Cutler et al., 2007; Nathan 
et al., 2012; Valletta et al., 2017).	However,	inherent	errors	with	RF	
modelling can occur such as incorrectly identifying or overlooking 
certain behaviours (Rast et al., 2020; Wang et al., 2015). Indeed, the 
accuracy of RF modelling has been reported to be as low as 0% for 
mountain lion (Puma concolor) behaviours such as grooming while 
their locomotory behaviours were identified with an accuracy above 
90% (Wang et al., 2015). Graf et al. (2015) hypothesised that the 
erratic nature of grooming, which requires many postures and is con-
ducted at varying frequencies, meant it was difficult to define using 
accelerometer metrics and hence, was often misidentified by RF 
models. Revising methods that can improve predictive accuracy is 
an important component of data processing that is often overlooked 
in ecological studies and has wide- ranging implications that would 
benefit researchers by improving model outputs.

There are three main ways that have been described to change 
or improve the efficacy of RF modelling, and these are implemented 
during acceleration data processing before the RF models are fitted 
(Alvarenga	et	al.,	2016; Pagano et al., 2017; Tatler et al., 2018). They 
are (i) increasing the number of calculated variables that improve 
the explanatory power and specificity in describing behaviours 
(Tatler et al., 2018; Wijers et al., 2018), (ii) increasing or decreasing 
the frequency of acceleration data recording (Fogarty et al., 2020; 
Wang et al., 2015) and (iii) ensuring that the training data incorpo-
rates a similar duration of each of the behaviours (here denoted 
‘standardised duration’; Chen et al., 2004; Pagano et al., 2017; 
Wijers et al., 2018).

1.1  |  Choice of calculated variables

The variables calculated from accelerometer data that are used to 
generate an RF model can affect overall model accuracy (Tatler 
et al., 2018, Wijers et al., 2018). Many studies simply select com-
monly used variables, but do not investigate whether these gen-
erate the most accurate model (Fogarty et al., 2020; Venter 
et al., 2019). Variables typically consist of static and dynamic accel-
eration (Smith, 1997; Wilson et al., 2006), dynamic body accelera-
tion	 (DBA)	 (Qasem	et	al.,	2012; Wilson et al., 2020) and pitch and 
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roll (Fehlmann et al., 2017; Nathan et al., 2012; Wilson et al., 2008). 
Potential extra variables might include the dominant power spec-
trum frequency and amplitude, and ratios of Vectoral Dynamic 
Body	 Acceleration	 (VeDBA)	 to	 dynamic	 acceleration	 (Fehlmann	
et al., 2017; Lush et al., 2018; Wang et al., 2015), to name just a few. 
While some metrics provide an instantaneous measurement of mo-
tion in one or up to three axes, the running standard error of any 
waveform	 indicates	 its	 amplitude	 and	 therefore	 the	 ‘size’	 of	 the	
acceleration movement over time of a particular behaviour, which 
can therefore also be important in behaviour classifications (Laich 
et al., 2008; Nathan et al., 2012; Qasem et al., 2012; Smith, 1997).

1.2  |  Adjustment of accelerometer data frequency

Accelerometer	data,	while	usually	recorded	at	sub-	second	sampling	
frequency	(up	to	140 Hz,	Sur	et	al.,	2017), are often summed or ex-
pressed	as	a	mean	over	1	or	2 s	to	provide	summary	metrics	of	move-
ments (Lush et al., 2018; Pagano et al., 2017;	Shepard,	Wilson,	Halsey,	
et al., 2008; Wijers et al., 2018). The use of these lower- resolution 
recordings facilitates rapid processing of accelerometer data and can 
be an important consideration given computational power, battery 
life	and	the	study	duration	and	aims.	However,	higher	sampling	fre-
quencies could provide more precise information for fast- paced or 
high- speed behaviours such as running (Chakravarty et al., 2019). 
Alternatively,	aperiodic,	or	‘slower’	behaviours	such	as	feeding	may,	
in fact, be represented better by an average over a few seconds 
(Alvarenga	et	al.,	2016; Lush et al., 2018). Therefore, the inclusion 
of data recorded at different frequencies (via sub- sampling or as a 
mean over time) has the potential to affect the accuracy and reli-
ability	of	the	RF	model	with	which	to	predict	behaviours	(Alvarenga	
et al., 2016;	Hounslow	et	al.,	2019; Lush et al., 2018).

1.3  |  Standardised durations—balancing the 
duration of each behaviour in the training dataset

There is some evidence that RF models trained using datasets that 
have a larger number of examples of some behaviours than the oth-
ers (i.e. they use every behaviour example collected and therefore 
have an ‘inconsistent’ duration of each in the dataset, e.g., an abun-
dance of ‘resting’ behaviour), skew the predictions of behaviours 
in favour of the more abundant behaviour classification while less 
readily predicting infrequent behaviours (Chen et al., 2004; Smit 
et al., 2023). Behaviours that are hard to observe during calibrations, 
such as mating, may therefore be misclassified during wild animal 
behaviour predictions. This potential bias can be minimised by sub- 
sampling abundant behaviours to generate a more ‘standardised’ 
duration distribution of behaviours in the training dataset (Pagano 
et al., 2017; Wijers et al., 2018).

This study aimed to examine how effective various RF models 
were at identifying behaviours when different aspects of the train-
ing data [(i) to (iii) above] were changed. These models were used 

to identify the behaviours of a model quadruped—free- ranging do-
mestic cats (Felis catus, hereafter ‘cats’). Cat behaviours were also 
manually identified using a decision tree to assess whether the 
RF models reliably identified the behaviours of free- ranging ani-
mals. Cats were studied as they are a useful proxy for wild animal 
movement and behaviour research, in part because they are read-
ily handled which facilitates device deployment, but also because 
they roam freely outdoors, replicating behaviours that might occur 
in wild cryptic terrestrial species. Furthermore, while accelerom-
eters	 have	 been	 used	 to	 study	 cat	 activity	 previously	 (Andrews	
et al., 2015; Lascelles et al., 2008; Naik et al., 2018; Thomas 
et al., 2017), and some have identified cat behaviours from acceler-
ometers (Kestler & Wilson, 2015; Watanabe et al., 2005; Watanabe 
& Takahashi, 2013), this research develops the use of RF models to 
efficiently and accurately process accelerometer data and identifies 
free- ranging domestic cat behaviours in detail. We aim to provide 
a framework for other researchers using RF models for behaviour 
identification to improve model accuracy and generate reliable ac-
tivity classifications.

2  |  MATERIAL S AND METHODS

2.1  |  Animals and study sites

Nine	adult	domestic	cats	(4	females,	5	males;	aged	6 months–8 years)	
which	 were	 housed	 inside	 (‘indoor	 cats’)	 at	 Mid	 Antrim	 Animal	
Sanctuary,	Antrim,	Northern	Ireland,	were	collared	and	filmed	to	cal-
ibrate behaviours. Subsequently, five domestically owned cats (4 fe-
males,	1	male;	aged	9 months–12 years,	‘outdoor	cats’,	see	Table	A1) 
that were free to roam outside their owners' houses were recruited 
in Northern Ireland and collared to identify their natural behaviours 
(see	below	and	Appendix	A for details).

2.2  |  Calibration of animal behaviours and 
accelerometer signals

Indoor cats were fitted with neck collars to which tri- axial acceler-
ometers (‘Daily Diary’: Wilson et al., 2008)	recording	at	40 Hz	were	
affixed.	 Accelerometer	 data	 were	 synchronised	 with	 video	 foot-
age of the cats and distinct behaviours were labelled (‘rest’, ‘walk’, 
‘trot’, ‘run’, ‘collar shake’, ‘feed’ and ‘groom’) using bespoke software 
DDMT (Wildbyte technologies, http:// wildb ytete chnol ogies. com/ 
softw are. html, Wilson et al., 2008,	see	Appendix	A for details of syn-
chronisation and accelerometer data sample extraction). Transitions 
between	behaviours	were	not	included	in	any	behaviour	sample.	A	
total	of	116	samples	of	calibrated	behaviours	that	lasted	at	least	2 s	
(>80 accelerometer measurements) were extracted from the ac-
celerometer	 data.	 This	 equated	 to	 54.2 min	 of	 discrete	 observed	
behaviours	 (mean	 361.14 ± 109.68 seconds	 per	 individual)	 with	 an	
average	of	464.33 ± 345.01 seconds	per	behaviour	(Table	A2). Wang 
et al. (2015) and Nekaris et al. (2022) successfully identified animal 
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behaviours using RF models trained using comparable sampling ef-
forts so these observations should provide a robust training dataset.

2.2.1  |  Development	of	a	decision	tree	for	
behaviour identification

A	decision	 tree	 for	 identifying	behaviours	 from	the	accelerometer	
data was developed from the calibrated accelerometer signals. This 
was accomplished by an observer examining metrics derived from 
the examples of calibrated behaviour data. Distinguishing features 
were identified which were indicative of different movements, for 
example,	a	high	VeDBA	(sensu	Qasem	et	al.,	2012), changes in pitch, 
or patterns in the amplitude and frequency of the dynamic accel-
eration (see the decision tree Figure A1). The decision tree accuracy 
was tested by the observer using it to identify the calibrated samples 
of behaviours and calculate the percent that was correctly identified 
(Table A2).

2.3  |  Automated behaviour identification via RF 
modelling and model validation

2.3.1  |  Generating	the	datasets	for	RF	modelling

From the labelled, video- calibrated accelerometer data, a ‘base’ 
dataset	of	variables	was	calculated	at	40 Hz.	This	included	13	vari-
ables; raw-  (‘acc’), static-  (‘st’) and dynamic acceleration (‘dy’), for all 
three axes: lateral (sway), vertical (heave) and sagittal (surge) (x, y 
and z,	respectively).	Vectoral	dynamic	body	acceleration	(VeDBA),	
smoothed	VeDBA	(‘VeDBAs’)	over	2 s,	 ‘Pitch’	and	‘Roll’	were	also	

calculated (definitions and equations for these variables are given 
in	Appendix	A and Table A3).	A	second	‘extended’	dataset	at	40 Hz	
was generated by calculating eight further variables; the data from 
each	behaviour	were	grouped	and	a	running	2 s	standard	error	of	
the variables was calculated (Table A4). Two further datasets were 
generated	by	calculating	the	mean	values	over	1 s	for	all	the	vari-
ables in that dataset, generating a base and an extended dataset 
at	1 Hz.	Four	more	‘standardised	duration’	datasets	were	then	de-
rived from these by randomly subsampling the data to consist of a 
maximum	of	60 s	of	each	behaviour	(rather	than,	e.g.,	over	2000 s	
of ‘rest’ behaviour) (Pagano et al., 2017).	A	time	period	of	60 s	was	
chosen as most behaviours were recorded for at least this amount 
of time (Table A2), and this time period provided a large enough 
dataset	to	train	and	validate	the	models.	Where	less	than	60 s	of	a	
certain behaviour occurred, 100% of these data were included in 
the analysis. These calculations generated eight training datasets 
(Figure 1) that were used to fit RF models for the identification of 
domestic cat behaviours.

2.3.2  |  Generating	the	RF	models

Using R software (version 3.4.0, R core team 2014) and the pack-
age randomForest (Breiman, 2001), RF models were generated 
from the eight datasets using a random sample of 60% of the cali-
brated data. To train each model, we fit 500 classification trees 
and used a random subset of three predictor variables for each 
split in the tree (Lush et al., 2018; Pagano et al., 2017).	A	minimum	
number of five data points was used during classification regres-
sions and 10 during predictions (Breiman, 2001). These models 
were then used to predict the behaviours of the remaining 40% 

F I G U R E  1 Development	of	datasets	used	for	random	forest	modelling.	Base	datasets	consisted	of	13	‘base’	variables	including	raw	
acceleration,	static-		and	dynamic	-	acceleration,	all	in	three	axes,	heave,	surge	and	sway,	plus	VeDBA,	smoothed	VeDBA	over	2	seconds,	
Pitch and Roll. ‘Extended’ datasets consisted of the base variables plus the standard error of raw and dynamic acceleration in all three axes, 
VeDBA	and	smoothed	VeDBA.	Data	were	collected	at	40 Hz	and	the	mean	of	each	variable	was	also	calculated	over	each	second	to	generate	
datasets	at	1 Hz.	‘Standardised	duration’	datasets	were	derived	from	subsampling	the	‘inconsistent	duration’	40 Hz	and	1 Hz	datasets,	so	
each	had	a	maximum	of	60 seconds	of	any	one	behaviour,	whereas	‘inconsistent	duration’	datasets	included	all	available	behavioural	samples.
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of the data. The most frequent prediction across all trees was 
selected as the final classification, which was then compared to 
the actual, video- identified, behaviour (Breiman, 2001; Pagano 
et al., 2017). We calculated the ‘out- of- bag’ (OOB) error rate and 
the Gini Index for each model and evaluated the predictive ac-
curacy of each model from the precision, recall and F- measure of 
each	 behaviour	 (see	Appendix	A ‘Measuring the accuracy of RF 
models’). The Gini Index indicates the importance of a variable in 
improving the purity of behaviour classifications (Breiman, 2001; 
Christensen et al., 2023;	Han	et	al.,	2016).	High	F-	measures	and	
low OOB error rates indicate good model accuracy, but a low OOB 
error rate combined with a low F- measure indicates model overfit-
ting, where the model can reliably classify data from the training 
dataset but not the validation dataset.

2.4  |  Free- ranging cat behaviour identification

The five outdoor cats were fitted with collars bearing the same 
accelerometers (‘Daily Diary’, Wilson et al., 2008) set to record at 
40 Hz	(see	Appendix	A for details). Devices were fitted to hang under 
the	 chin	 of	 the	 cats	 and	 recorded	 for	 a	 total	 of	 13.72 days	 (mean	
2.74 ± 0.60 days	per	individual).

2.4.1  |  Identification	of	free-	ranging	cat	behaviours	
via decision tree and RF models

The free- ranging cat behaviours were first identified manually by 
a researcher examining the accelerometer data. Using the deci-
sion tree developed from the categorised data, they classified the 
behaviours	of	the	first	15 min	of	each	hour	for	all	five	cats,	total-
ling	74.88 h	of	identified	behaviours	(mean	15.00 ± 3.61 h	per	cat).	
This was representative of the behaviours exhibited by the cats 
for	the	whole	time	they	were	collared	(see	Appendix	A ‘Effects of 
identifying cat behaviours for 15 min per hour or the full time’). 
This method provided an accurate measure of the time cats spent 
engaged in the behaviours as a reference for comparison with the 
RF modelling.

Second, the behaviours of the free- ranging cats were identi-
fied from their accelerometer data using the eight RF models de-
veloped from the training datasets, using the package randomForest 
(Breiman, 2001). To achieve this, their accelerometery data were 
used to calculate the same variables as those used to train the RF 
models, for example, the base variables were included when the RF 
models had been developed from base datasets (Table A4). The free- 
ranging cat accelerometer variables were also calculated at either 
40 Hz	or	using	mean	values	over	1	second	 in	the	same	way	as	the	
calibrated training data. The RF models were used to identify the 
behaviours	at	each	instant	in	time	(40 Hz	or	1 Hz)	using	the	500	trees	
developed at each node and selected the most common outcome as 
the predicted behaviour. The total amount of time the cat spent on 
each behaviour was then summed. The time spent undertaking each 

behaviour was converted to a per cent of the time that the particular 
individual was collared.

2.5  |  Data analyses

Analyses	 were	 conducted	 using	 R	 (version	 3.4.0,	 R	 core	 team	
2014), with a statistical significance level of p < .05.	 Results	 are	
expressed	as	mean ± 1	standard	error	unless	otherwise	indicated.	
An	 intraclass	 correlation	 coefficient	 (ICC)	 was	 calculated	 with	
the DescTools package (Signorell, 2016) based on a single rat-
ing, absolute- agreement, two- way mixed effects model (Koo & 
Li, 2016) to compare the per cent of time cats spent on the behav-
iours predicted by the RF model with the per cent of time spent 
on the behaviours identified from the decision tree. The decision 
tree predictions of the behaviours were assumed to be the most 
precise method of behaviour identification as each behaviour sig-
nal could be compared to other examples of calibrated signals. 
The ICC model assessed the reliability of the two methods (the 
decision tree and one RF model in each case) for providing simi-
lar results in terms of behaviour frequency and rank. If the 95% 
confidence intervals of the ICC estimate were greater than 0.9, 
between	0.9	and	0.75,	between	0.75	and	0.5	and	less	than	0.5,	this	
was indicative of ‘excellent’, ‘good’, ‘moderate’ and ‘poor’ reliabil-
ity, respectively (Koo & Li, 2016). In the first instance, all behav-
iours were included in this analysis before ‘rest’ behaviours were 
removed and the comparisons re- run.

3  |  RESULTS

3.1  |  RF model accuracy for calibrated behaviours 
of indoor cats

The RF model that most accurately predicted known behaviours 
used the extended variables, with standardised duration of be-
haviours,	 at	40 Hz.	 In	 this	model,	 the	F-	measure	was	0.96 ± 0.02	
(Table 1) and the precision and recall were both above 0.95. The 
second most accurate model, with extended variables, inconsist-
ent	behaviour	durations,	at	40 Hz,	had	an	F-	measure	of	0.94 ± 0.05	
and a precision and recall above 0.93. The accuracy of the RF 
models was lower when the mean of each second was calculated 
for the variables. The most accurate model, when using the mean 
over 1 second, was developed from the extended variables, with 
a standardised duration of behaviours. This had an F- measure of 
0.74 ± 0.05	 and	 a	 precision	 and	 recall	 of	 0.83	 and	 0.71	 respec-
tively.	Thus,	all	datasets	at	40 Hz	generated	more	accurate	mod-
els	than	those	at	1 Hz,	according	to	the	F-	measure	and	the	OOB	
error rate. In addition, the datasets with standardised durations of 
behaviours produced the models with the highest F- measure for 
datasets	at	both	40	and	1 Hz.

The OOB error rate was higher for models with standardised du-
rations of behaviours than the models with inconsistent durations 
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compared to those with the same variables and frequency. While 
a low OOB error rate combined with a low F- measure can indicate 
model overfitting, the high F- measures and higher OOB error rates 
seen here suggest the models with standardised durations of be-
haviours are less prone to overfitting than those with inconsistent 
durations of behaviours.

Prediction accuracy varied with behaviour. Using the most ac-
curate model (with extended variables, standardised duration of 
behaviours,	at	40 Hz),	trot,	run,	shake,	rest,	feed	and	groom	were	
all identified with an F- measure above 0.92 but walk had an F- 
measure of 0.88 (Table 2).	The	most	accurate	model	at	1 Hz	(with	
extended variables and standardised duration of behaviours) had 
more varying accuracy with different behaviours, most accurately 
predicting shake, feed, rest and run (F- measures all over 0.8) 
but	 less	 accurately	predicting	 groom	 (0.67),	walk	 (0.58)	 and	 trot	
(0.58). In general, high- frequency, fast- paced behaviours (walk, 
trot, run and shake) were most accurately identified by models 
derived	from	the	high-	frequency	40 Hz	datasets.	Across	all	40 Hz	
models, high- frequency behaviours were identified at an average 
F-	measure	 of	 0.89 ± 0.14,	 whereas	 with	 models	 at	 1 Hz,	 higher	
frequency behaviours were identified at an average F- measure 
of	 0.59 ± 0.24.	Models	 derived	 from	datasets	 at	 1 Hz	 performed	
better at predicting low- frequency behaviours (feed, groom, rest) 
than at predicting high- frequency behaviours, with an average F- 
measure	of	0.71 ± 0.25.

3.2  |  Identification of free- ranging cat behaviours

3.2.1  |  Reliability	of	RF	behaviour	identification

Cat behaviours identified by the observer using the decision tree 
showed	cats	spent	22.1 h	(±15.2 min) a day resting on average, fol-
lowed	by	walking	(55.4 ± 19.9	min)	and	grooming	(39.5 ± 4.6	min).	
This	was	followed	by	other	locomotory	behaviours	(‘run’:	6.6 ± 3.9	
min	 and	 ‘trot’:	 5.0 ± 1.0	 min),	 ‘collar	 shake’	 (3.5 ± 0.6	 min)	 and	
‘feeding’	 (2.7 ± 1.6	min).	Validations	of	 the	decision	 tree	 showed	
the	observer	correctly	identified	cat	behaviour	82.76%	of	the	time	
(see Table A2).

Based on the ICC estimate for all behaviours, there was excel-
lent reliability between the time spent on each behaviour that was 
identified	by	the	decision	tree	and	the	RF	models	(range = 0.999–
0.999). We note though, that the high proportion of identified 

‘resting’ behaviour could have skewed the results towards this 
extremely high reliability as it comprised over 90% of the cat's 
behaviour. The reliability of the models decreased when ‘resting’ 
behaviour was removed from the analysis (detailed below) and 
likely more accurately established how reliable the models were 
at identifying behaviours other than ‘resting’. The two models with 
the highest degree of reliability were both derived from extended 
datasets with standardised duration of behaviours; this model 
at	 40 Hz	was	 the	most	 reliable	 and	 had	 ‘good	 reliability’	 (ICC	 of	
0.756 ± 0.006),	and	this	model	at	1 Hz	had	‘moderate	to	good	reli-
ability’	(ICC	of	0.751 ± 0.006).	These	two	models	predicted	differ-
ent amounts of time the free- ranging cats spent ‘walking’, ‘feeding’ 
and ‘grooming’ (Figure 2),	where	 the	 1 Hz	model	 slightly	 overes-
timated the amount of time spent ‘walking’ compared to the de-
cision tree estimate but predicted ‘feeding’ and ‘grooming’ more 
accurately	 than	 the	40 Hz	model.	Notably,	 the	 40 Hz	model	 pre-
dicted hardly any ‘feeding’ or ‘grooming’ behaviours (<0.04% of 
the time, Figure 2), and is likely therefore unfit for use to identify 
free- roaming cat behaviours, despite its accuracy in predicting the 
behaviours in validations. Two of the remaining models, one with 
base	variables,	standardised	duration	of	behaviours	at	40 Hz	and	
one with extended variables, inconsistent durations of behaviours 
at	1 Hz,	had	 ‘moderate	reliability’	 (ICC	between	0.641	and	0.748)	
compared to the decision tree- identified behaviours. The remain-
ing four RF models had ‘poor reliability’; these models had ICC val-
ues of less than 0.5 (see Table A5 for all ICC values and 95% CIs) 
(Koo & Li, 2016).

3.2.2  |  Important	variables	for	
differentiating behaviours

The variables that were most important for improving the purity 
of behaviour predictions were similar in the two models that were 
most accurate at identifying free- ranging cat behaviours, both with 
extended variables, standardised durations of behaviours at 40 or 
1 Hz.	 In	fact,	the	top	six	variables	were	the	same	for	both	models,	
although in a different order (Figure 3), and at least six of the top 
10 metrics were standard error variables and included the standard 
error of dynamic acceleration in all three axes. Both models also in-
dicated that the dynamic acceleration of all three axes was the least 
important variable for improving node purity. The most important 
variables	for	the	best	model,	at	40 Hz,	were	smoothed	VeDBA,	the	

40 Hz 1 Hz

F- measure OOB F- measure OOB

Base variables, inconsistent duration 0.89 ± 0.07 4.48% 0.66 ± 0.12 15.57%

Base variables, standardised duration 0.92 ± 0.03 9.04% 0.56 ± 0.11 31.79%

Extended variables, inconsistent 
duration

0.94 ± 0.05 2.18% 0.60 ± 0.15 13.67%

Extended variables, standardised 
duration

0.96 ± 0.02 5.26% 0.74 ± 0.05 28.49%

TA B L E  1 The	F-	measure	and	out-	of-	
bag (OOB) error rate (Breiman, 2001) of 
random forest models developed from 
datasets with a set of base or extended 
variables, a standardised or inconsistent 
duration	of	training	behaviours,	at	40 Hz	
or from the mean of each variable over 
1 second.
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    |  7 of 19DUNFORD et al.

TA B L E  2 Precision,	recall	and	F-	measure	for	random	forest	model	testing	of	known	cat	behaviours,	with	the	mean	and	standard	error	of	
the mean (SEM) for each model.

Base variables, inconsistent durations, 40 Hz Base variables, standardised durations, 40 Hz

Precision Recall F- measure Precision Recall F- measure

Feed 0.99 0.91 0.95 0.97 0.99 0.98

Groom 1.00 0.88 0.93 0.97 0.96 0.96

Rest 0.99 0.99 0.99 0.95 0.88 0.92

Walk 0.87 0.91 0.89 0.82 0.79 0.80

Trot 0.54 0.47 0.50 0.83 0.88 0.85

Run 0.97 0.97 0.97 0.94 0.98 0.96

Shake 1.00 0.95 0.97 0.99 0.95 0.97

MEAN 0.91 0.87 0.89 0.92 0.92 0.92

SEM 0.06 0.07 0.07 0.03 0.03 0.03

Base variables, inconsistent durations, 1 Hz Base variables, standardised durations, 1 Hz

Precision Recall F- measure Precision Recall F- measure

Feed 0.79 0.63 0.70 0.90 0.71 0.79

Groom N/A 0.00 N/A 0.67 0.40 0.50

Rest 0.94 0.93 0.94 0.91 0.70 0.79

Walk 0.66 0.76 0.71 0.46 0.64 0.53

Trot 0.31 0.19 0.24 0.48 0.60 0.53

Run 0.68 0.78 0.72 0.77 0.80 0.78

Shake N/A 0.00 N/A 0.00 0.00 0.00

MEAN 0.68 0.47 0.66 0.60 0.55 0.56

SEM 0.11 0.15 0.12 0.12 0.10 0.11

Extended variables, inconsistent durations, 40 Hz Extended variables, standardised durations, 40 Hz

Precision Recall F- measure Precision Recall F- measure

Feed 1.00 1.00 1.00 1.00 1.00 1.00

Groom 1.00 0.96 0.98 0.96 0.99 0.98

Rest 1.00 1.00 1.00 0.98 0.90 0.93

Walk 0.94 0.94 0.94 0.88 0.88 0.88

Trot 0.64 0.62 0.63 0.89 0.96 0.93

Run 1.00 1.00 1.00 1.00 1.00 1.00

Shake 1.00 1.00 1.00 1.00 1.00 1.00

MEAN 0.94 0.93 0.94 0.96 0.96 0.96

SEM 0.05 0.05 0.05 0.02 0.02 0.02

Extended variables, inconsistent durations, 1 Hz Extended variables, standardised durations, 1 Hz

Precision Recall F- measure Precision Recall F- measure

Feed 1.00 0.61 0.76 0.86 0.83 0.84

Groom 0.00 0.00 0.00 1.00 0.50 0.67

Rest 0.95 0.97 0.96 1.00 0.72 0.84

Walk 0.77 0.78 0.77 0.56 0.60 0.58

Trot 0.36 0.29 0.32 0.48 0.72 0.58

Run 0.81 0.78 0.79 0.89 0.89 0.89

Shake N/A 0.00 N/A 1.00 0.67 0.80

MEAN 0.65 0.49 0.60 0.83 0.71 0.74

SEM 0.16 0.15 0.15 0.08 0.05 0.05

Note:	N/A	values	occurred	if	no	sample	of	the	behaviour	was	correctly	identified.
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8 of 19  |     DUNFORD et al.

standard error of the dynamic acceleration in the sway (X) axis, and 
then	the	standard	error	of	VeDBA.

4  |  DISCUSSION

Identifying animal behaviours from accelerometery allows research-
ers to monitor cryptic species and study behaviours over a time 
span ranging from seconds to years (Nuijten et al., 2020; Wang 
et al., 2015; Wijers et al., 2018). Manual classification of long- term 
studies of free- ranging animals' behaviours can, however, be la-
bour	 intensive	 (Hammond	et	 al.,	2016). Therefore, there has been 
increased interest in using supervised machine- learning methods, 
such as RF modelling, that can increase the efficiency and accuracy 
of behaviour identifications. Model accuracy can vary substantially 
according to the species studied and the details of the methodology. 
RF models have been used to predict behaviours of a diverse range 
of species such as griffon vultures (Gyps fulvus) (Nathan et al., 2012), 
polar bears (Ursus maritimus) (Pagano et al., 2017) and sharks (lemon: 
Negaproin brevirostris; Brewster et al., 2018; white: Carcharodon car-
charias; Gooden et al., 2024), but their accuracy of behaviour predic-
tions can vary. Therefore, this study aimed to assess how accurately 
RF models predict behaviours when aspects of the data used to train 
the model were modified.

Our results indicate that data processing did make a difference in 
the model accuracy. Specifically, accuracy was highest when (i) the 
model included descriptive variables that were chosen as likely to dif-
ferentiate between the behaviours (here demonstrated with extended 
datasets including standard error); (ii) the frequency of the data was 
highest or specifically matched the focal behaviour, such as to detect 
slower behaviours and (iii) the training data included a standardised 
duration for all behaviours. When our models were used to assess 
free- roaming animal behaviours, the most reliable model during vali-
dation identified almost no ‘feeding’ and ‘grooming’ behaviours, ren-
dering it unreliable and emphasising the advantage of validations of 
models for wild animal behaviours. Rast et al. (2020) similarly found a 
poor reliability of wild fox (Vulpes vulpes) behaviour predictions from 
RF models that were accurate during validations. Observations in the 
wild may not always be possible but monitoring individuals that were 
not included in the initial data collection would also be advantageous, 
either in captivity or those that are habituated. Techniques such as 
animal- borne video cameras or direct observations should be used to 
validate model predictions in the wild or preferably to collect training 
data from wild animals that can be used to train the models (Gooden 
et al., 2024; Pagano et al., 2017). This, alongside adjustments to data 
pre- processing, should increase the accuracy of RF model behaviour 
predictions and has wide- ranging implications for many aspects of 
ecological research and conservation.

F I G U R E  2 Mean	and	standard	error	of	five	free-	ranging	domestic	cats'	per	cent	time	spent	on	behaviours.	Behaviours	were	identified	
from accelerometery data via a decision tree, and by random forest (RF) models derived from training datasets calibrated to behaviours via 
videoed accelerometery data of indoor cats. Definitions of each of the datasets used to develop the RF models can be found in Table A4. 
The time (per cent of the day) cats spent on behaviours predicted by each model are shown by colour (see Behaviour key). ‘Resting’ 
(not shown) made the total time to 100%. The model predictions were compared to the decision tree predictions through an interclass 
correlation coefficient (see the Statistics section for details) and good (**) and moderate (*) reliability is highlighted. The model that derived 
behaviours most similar to the behaviours identified using the decision tree was derived from extended variables, standardised durations of 
behaviours	at	40 Hz.
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    |  9 of 19DUNFORD et al.

4.1  |  Effect of calculating standard error variables 
on model accuracy

The extended RF models derived using standard error variables 
had a higher accuracy than those with base variables (Table 1), 
demonstrating that variable selections should be critically consid-
ered to improve model accuracy. There are almost limitless vari-
ables that can be calculated, and indeed, studies have included 
between 8 and 128 variables in their models (Graf et al., 2015; 
Wijers et al., 2018), which have been further enhanced by other 
data, such as sound (Wijers et al., 2018), or multiple synchro-
nised accelerometers in different locations (Tran et al., 2021). 
Smit et al. (2023) showed greater RF accuracy in identifying do-
mestic cat behaviours when accelerometers were attached to a 
harness rather than a collar, however, harnesses can hinder move-
ments or more easily become entangled if deployed in the wild. 
The selection and importance of different variables may depend 
on the species and its' behavioural characteristics or the behav-
iour	of	 interest	 (Hathaway	et	al.,	2023) as well as the computer 
power available—more variables require more processing power. 
Furthermore, we predict that if certain variables are demon-
strably useful for a given species, these provide a good starting 
point	for	work	on	comparable	species	of	different	sizes	or	those	
that have similar locomotor modes, as seen in the similarity be-
tween useful predictor variables from RF models for pygmy goat 
(Capra aegagrus hircus)	 and	 Alpine	 ibex	 (Capra ibex) behaviours 
(Dickinson et al., 2021).

The high decrease in Gini found for standard error variables in 
the two most reliable models when classifying free- ranging cat be-
haviours demonstrates that these are particularly useful for increas-
ing the purity of behaviour differentiation (Figure A2). This concurs 

with Nathan et al. (2012) who note the usefulness of the standard 
deviation to identify griffon vulture (Gyps fulvus)	behaviours.	A	run-
ning standard error calculated over an appropriate period provides 
a	more	constant	measure	of	the	overall	size	of	the	motion	and	rep-
resents the amplitude of the wave that will be consistently high for 
a high- energy movement (Laich et al., 2008; Nathan et al., 2012) 
(Figure A2). Interestingly, and likely importantly, the dynamic accel-
eration in the heave, surge and sway axes were consistently ranked 
as the three least important variables. This could be due to the wave- 
like form of dynamic acceleration that contains peaks and troughs 
that occur with each step giving a value that can be both positive and 
negative with appreciable variability over time (Laich et al., 2008). 
This inconsistency in the dynamic acceleration appears to hinder its 
use as a distinguishing factor between behaviours.

4.2  |  Effects of data frequency on model accuracy

Many studies identify behaviours from accelerometery data having 
taken a mean over 1 or 2 s (Fehlmann et al., 2017; Graf et al., 2015; 
Pagano et al., 2017)	and	Shepard,	Wilson,	Halsey,	et	al.	(2008) sug-
gest that variables should be ‘smoothed’ (i.e. taking a running mean) 
over a time period of one stroke cycle. Other studies have used 
smoothing	periods	of	3,	5	or	10 s	 (Campera	et	al.,	2019; Chimienti 
et al., 2016; Lush et al., 2018) with varying effects on model predic-
tive	accuracy.	Here,	we	investigated	how	smoothing	period	affected	
RF	model	accuracy	by	including	and	testing	our	1 Hz	datasets,	how-
ever,	a	model	derived	at	40 Hz	was	most	accurate	for	identifying	cat	
behaviours during validation stages. The high- frequency behaviours, 
such as ‘trotting’ and ‘running’, would have rapid oscillations in the 
accelerometer	data	and	the	40 Hz	dataset	seems	to	have	captured	

F I G U R E  3 Relative	importance	of	
predictor variables for purity of domestic 
cat behaviour predictions based on the 
mean	Gini	index	for	(a)	the	40 Hz	and	
(b)	1 Hz	model	generated	using	extended	
variables with standardised durations of 
behaviours. Variable abbreviations are 
detailed in the methods and Table A2.
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10 of 19  |     DUNFORD et al.

this	detail.	In	contrast,	the	1 Hz	version	of	the	same	model	had	a	low	
F- measure but a good ICC reliability and provided a more accurate 
estimate of the time free- ranging cats spent on the stationary be-
haviours, ‘feed’ and ‘groom’. We hypothesise that derivations of the 
mean	over	1 Hz	allowed	a	more	accurate	determination	of	stationary	
behaviours because these more accurately capture the motion of 
behaviours that are performed at a slower frequency. Slower or ‘ape-
riodic’ behaviours such as ‘grooming’ may be harder to identify from 
just	a	few	points	in	the	40 Hz	dataset	due	to	the	inconsistent	nature	
of this behaviour (as noted by Graf et al., 2015 for Eurasian beavers, 
and Chakravarty et al., 2019). It may be indicative of the variety of 
grooming motion frequencies and postures adopted by cats to groom 
their whole body and, while these variations can be visually identi-
fied by the researcher using a decision tree, the RF models strug-
gled to deal with the inconsistency in this behaviour. The period over 
which the mean is taken should also be considered, especially for 
larger animals that might have a slower stride frequency; for exam-
ple,	Alvarenga	et	al.	(2016) found for sheep, that a mean calculated 
over	5	or	10 s	led	to	a	higher	accuracy	than	over	3 s.	Supporting	this	
hypothesis, European pied flycatchers (Ficedula hypoleuca) catching 
prey	at	high	speeds	required	a	frequency	of	over	100 Hz	for	accu-
rate	identification	whereas	slower	flight	required	12.5 Hz	(using	the	
‘rabc’ behaviour classification R package; Yu et al., 2023). Despite 
these behavioural considerations, study logistics including battery 
life will also influence decisions on the frequency of data collection. 
Certainly, our work indicates that the frequency of the data should 
be carefully evaluated when using RF modelling to identify specific 
animal behaviours accurately and indicates that taking a mean over 
1 or 2 s would be particularly useful for identifying aperiodic behav-
iours, but the animal species and focal behaviour frequency should 
be considered and data processing conducted accordingly.

4.3  |  Effects of standardised durations of 
behaviours on model accuracy

An	 inconsistent	 duration	 of	 behaviours	 in	 the	 training	 dataset	 has	
been shown to bias model predictions towards the most abundant 
behaviours (Chen et al., 2004; Pagano et al., 2017) and, while every 
effort was made to record as many samples as possible of each cat 
behaviour, there was an abundance of ‘resting’ behaviour and rela-
tively few examples of ‘groom’ and ‘shake’ behaviours in the data. 
These	 small	 sample	 sizes	 for	 specific	behaviours	did	not	 appear	 to	
be a factor in behaviour identification accuracy, that is, they were 
not identified with any less precision or recall than other behaviours 
(Table A6).	However,	we	did	find	that	the	models	from	datasets	with	
standardised durations of each behaviour were more accurate than 
those with inconsistent durations of behaviours, which opposes the 
findings of Pagano et al. (2017) for polar bear behaviour identification 
who found uneven datasets were more accurate. While the higher 
OOB error rate and F- measure seen for our models with standardised 
durations of each behaviour indicate a smaller chance of overfitting, 
this could also be due to the smaller datasample for these models; 

the OOB error rate is a percentage of incorrect classifications from 
the training data not used in each decision tree, so each ‘wrong’ clas-
sification had more effect. Nevertheless, there was good evidence 
that a standardised duration of behaviours increased model accuracy, 
so sub- sampling over- abundant behaviours to create a more even 
distribution does seem to be important in improving the predictive 
capabilities	of	RF	modelling.	Interestingly,	the	dataset	size	did	not	ap-
pear	to	influence	overall	accuracy	scores;	further	testing	of	a	40 Hz	
dataset that was subsampled to a similar number of data points as the 
1 Hz	dataset	 (both	with	extended	variables	and	standardised	distri-
butions	of	behaviours)	showed	that	the	40 Hz	dataset	maintained	a	
higher	F-	measure	(see	Appendix	A). This demonstrates that the abso-
lute	number	of	samples	in	the	smaller	1 Hz	dataset	was	not	the	driving	
factor in the lower F- measures or OOB error rates.

5  |  CONCLUSIONS

RF models can be used to accurately predict animal behaviours using 
classified accelerometer data, but model accuracy can be improved 
via	 post-	data-	collect	 processing.	 Here,	 we	 show	 that	 high	 data	
frequencies, standardised durations of behaviours and extended 
variables improved model accuracy. The accuracy of models when 
identifying aperiodic behaviours, such as feeding and grooming, of 
animals in the wild may improve when using lower frequency data 
(means	over	1 s)	and	suggests	that	the	aperiodicity	of	focal	behav-
iours should be taken into consideration when using RF modelling 
for identifying free- ranging animal behaviours. The validation of 
behaviour predictions with known free- ranging animal behaviours 
was important to reveal this trend and validations should also be 
prioritised in future studies to ensure wild animal behaviour predic-
tions are accurate.

AUTHOR CONTRIBUTIONS
Carolyn E. Dunford:	Conceptualization	 (lead);	data	curation	 (lead);	
formal analysis (lead); investigation (lead); methodology (lead); vali-
dation	(lead);	visualization	(lead);	writing	–	original	draft	(lead);	writ-
ing – review and editing (equal). Nikki J. Marks:	Conceptualization	
(equal); funding acquisition (equal); project administration (equal); 
supervision (equal); writing – review and editing (equal). Rory P. 
Wilson:	 Conceptualization	 (equal);	 resources	 (equal);	 supervision	
(equal); writing – review and editing (equal). D. Michael Scantlebury: 
Conceptualization	 (equal);	 funding	 acquisition	 (equal);	 project	 ad-
ministration (equal); supervision (equal); writing – original draft 
(equal); writing – review and editing (equal).

ACKNOWLEDG EMENTS
The authors wish to thank E. Cox and S. Loca for their assistance 
with	data	collection	and	Mid-	Antrim	Animal	Sanctuary	for	their	sup-
port and participation in this work. We also wish to thank all the 
owners of the cats that participated in this study. C. Dunford was 
supported from a DfE studentship awarded to D. M. Scantlebury 
and N. J. Marks.

 20457758, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.11380 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [26/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  11 of 19DUNFORD et al.

CONFLIC T OF INTERE S T S TATEMENT
The authors declare no conflict of interest.

DATA AVAIL ABILIT Y S TATEMENT
Data are available from the Dryad Digital Repository with the doi: 
10.5061/dryad.q2bvq83sx.

ORCID
Carolyn E. Dunford  https://orcid.org/0000-0001-9850-4212 
Rory P. Wilson  https://orcid.org/0000-0003-3177-0107 
D. Michael Scantlebury  https://orcid.org/0000-0001-8327-0556 

R E FE R E N C E S
Altmann,	 J.	 (1974).	 Observational	 study	 of	 behavior:	 Sampling	 meth-

ods. Behaviour, 49(3–4),	 227–266.	https:// doi. org/ 10. 1163/ 15685 
3974X	00534	

Alvarenga,	F.,	Borges,	 I.,	Palkovič,	L.,	Rodina,	 J.,	Oddy,	V.,	&	Dobos,	R.	
(2016). Using a three- axis accelerometer to identify and classify 
sheep behaviour at pasture. Applied Animal Behaviour Science, 181, 
91–99. https:// doi. org/ 10. 1016/j. appla nim. 2016. 05. 026

Andrews,	C.	J.,	Potter,	M.	A.,	&	Thomas,	D.	G.	(2015).	Quantification	of	
activity in domestic cats (Felis catus) by accelerometery. Applied 
Animal Behaviour Science, 173,	 17–21.	 https:// doi. org/ 10. 1016/j. 
appla nim. 2015. 05. 006

Barbour, K., McClune, D. W., Delahay, R. J., Speakman, J. R., McGowan, 
N. E., Kostka, B., Montgomery, I. W., Marks, N. J., & Scantlebury, D. 
M. (2019). No energetic cost of tuberculosis infection in European 
badgers (Meles meles). The Journal of Animal Ecology, 88(12),	1973–
1985. https:// doi. org/ 10. 1111/ 1365-  2656. 13092 

Bidder,	O.	R.,	di	Virgilio,	A.,	Hunter,	 J.	S.,	McInturff,	A.,	Gaynor,	K.	M.,	
Smith,	A.	M.,	Dorcy,	J.,	&	Rosell,	F.	(2020).	Monitoring	canid	scent	
marking in space and time using a biologging and machine learn-
ing approach. Scientific Reports, 10, 588. https:// doi. org/ 10. 1038/ 
s4159	8-		019-		57198	-		w

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. 
https:// cran. r-  proje ct. org/ web/ packa ges/ rando mFore st/ index. 
html

Brewster,	 L.,	 Dale,	 J.,	 Guttridge,	 T.,	 Gruber,	 S.,	 Hansell,	 A.,	 Elliott,	M.,	
Cowx,	I.,	Whitney,	N.,	&	Gleiss,	A.	(2018).	Development	and	appli-
cation of a machine learning algorithm for classification of elasmo-
branch behaviour from accelerometry data. Marine Biology, 165(4), 
62. https://	doi.	org/	10.	1007/	s0022	7-		018-		3318-		y

Bryce,	C.	M.,	Dunford,	C.	E.,	Pagano,	A.	M.,	Wang,	Y.,	Borg,	B.	L.,	Arthur,	
S. M., & Williams, T. M. (2022). Environmental correlates of ac-
tivity and energetics in a wide- ranging social carnivore. Animal 
Biotelemetry, 10(1), 1–16.

Campera,	M.,	Balestri,	M.,	Chimienti,	M.,	Nijman,	V.,	Nekaris,	K.	A.	I.,	&	
Donati, G. (2019). Temporal niche separation between the two eco-
logically similar nocturnal primates Avahi meridionalis and Lepilemur 
fleuretae. Behavioral Ecology and Sociobiology, 73, 1–12. https:// doi. 
org/	10.	1007/	s0026	5-		019-		2664-		1

Chakravarty,	P.,	Cozzi,	G.,	Ozgul,	A.,	&	Aminian,	K.	(2019).	A	novel	biome-
chanical approach for animal behaviour recognition using acceler-
ometers. Methods in Ecology and Evolution, 10(6), 802–814. https:// 
doi.	org/	10.	1111/	2041-		210X.	13172	

Chen,	C.,	Liaw,	A.,	&	Breiman,	L.	 (2004).	Using	 random	forest	 to	 learn	
imbalanced data. University of California, Berkeley, 110(1–12), 24.

Chimienti, M., Cornulier, T., Owen, E., Bolton, M., Davies, I. M., Travis, 
J. M., & Scott, B. E. (2016). The use of an unsupervised learning 
approach	for	characterizing	latent	behaviors	in	accelerometer	data.	
Ecology and Evolution, 6(3),	727–741.	https:// doi. org/ 10. 1002/ ece3. 
1914

Christensen,	 C.,	 Bracken,	 A.	M.,	 O'Riain,	M.	 J.,	 Fehlmann,	 G.,	 Holton,	
M.,	Hopkins,	P.,	King,	A.	J.,	&	Fürtbauer,	I.	(2023).	Quantifying	allo-	
grooming in wild chacma baboons (Papio ursinus) using tri- axial ac-
celeration data and machine learning. Royal Society Open Science, 
10(4), 221103.

Cutler,	D.	R.,	Edwards,	T.	C.,	Jr.,	Beard,	K.	H.,	Cutler,	A.,	Hess,	K.	T.,	Gibson,	
J.,	&	Lawler,	J.	J.	(2007).	Random	forests	for	classification	in	ecology.	
Ecology, 88(11),	2783–2792.	https://	doi.	org/	10.	1890/	07-		0539.	1

Dickinson,	E.	R.,	Twining,	J.	P.,	Wilson,	R.,	Stephens,	P.	A.,	Westander,	J.,	
Marks, N., & Scantlebury, D. M. (2021). Limitations of using surro-
gates for behaviour classification of accelerometer data: refining 
methods using random forest models in Caprids. Movement Ecology, 
9(1). https://	doi.	org/	10.	1186/	s40462-	021-	00265-	7

Dunford, C. E., Marks, N. J., Wilmers, C. C., Bryce, C. M., Nickel, B., 
Wolfe, L. L., Scantlebury, D. M., & Williams, T. M. (2020). Surviving 
in	 steep	 terrain:	A	 lab-	to-	field	assessment	of	 locomotor	costs	 for	
wild mountain lions (Puma concolor). Movement Ecology, 8, 1–12.

Fehlmann,	G.,	O'Riain,	M.	J.,	Hopkins,	P.	W.,	O'Sullivan,	J.,	Holton,	M.	D.,	
Shepard,	E.	L.,	&	King,	A.	J.	(2017).	Identification	of	behaviours	from	
accelerometer data in a wild social primate. Animal Biotelemetry, 
5(1), 6. https://	doi.	org/	10.	1186/	s4031	7-		017-		0121-		3

Fogarty, E. S., Swain, D. L., Cronin, G. M., Moraes, L. E., & Trotter, M. 
(2020).	Behaviour	classification	of	extensively	grazed	sheep	using	
machine learning. Computers and Electronics in Agriculture, 169, 
105175.	https://	doi.	org/	10.	1016/j.	compag.	2019.	105175

Fuller,	G.,	Heintz,	M.	R.,	&	Allard,	S.	 (2019).	Validation	and	welfare	as-
sessment of flipper- mounted time- depth recorders for monitoring 
penguins	in	zoos	and	aquariums.	Applied Animal Behaviour Science, 
212, 114–122. https:// doi. org/ 10. 1016/j. appla nim. 2019. 01. 002

Gooden,	A.,	Clarke,	 T.	M.,	Meyer,	 L.,	&	Huveneers,	C.	 (2024).	Wildlife	
tourism has little energetic impact on the world's largest predatory 
shark. Animal Behaviour, 207,	247–265.

Graf,	P.	M.,	Wilson,	R.	P.,	Qasem,	L.,	Hackländer,	K.,	&	Rosell,	F.	(2015).	
The use of acceleration to code for animal behaviours; a case study 
in free- ranging Eurasian beavers Castor fiber. PLoS One, 10(8), 
e0136751.	https://	doi.	org/	10.	1371/	journ	al.	pone.	0136751

Hammond,	 T.	 T.,	 Springthorpe,	D.,	Walsh,	R.	 E.,	&	Berg-	Kirkpatrick,	 T.	
(2016). Using accelerometers to remotely and automatically char-
acterize	 behavior	 in	 small	 animals.	 The Journal of Experimental 
Biology, 219(11), 1618–1624. https:// doi. org/ 10. 1242/ jeb. 136135

Han,	H.,	Guo,	X.,	&	Yu,	H.	(2016).	Variable	selection	using	mean	decrease	
accuracy and mean decrease gini based on random forest, 7th IEEE 
international conference on software engineering and service science 
(ICSESS) (pp. 219–224).

Hathaway,	A.,	Campera,	M.,	Hedger,	K.,	Chimienti,	M.,	Adinda,	E.,	Ahmad,	
N.,	Imron,	M.	A.,	&	Nekaris,	K.	A.	I.	(2023).	Analysis	of	accelerom-
eter data using random Forest models to classify the behavior of 
a wild nocturnal primate: Javan slow Loris (Nycticebus javanicus). 
Ecologies, 4(4), 636–653.

Hounslow,	 J.	 L.,	 Brewster,	 L.	 R.,	 Lear,	 K.	O.,	 Guttridge,	 T.	 L.,	 Daly,	 R.,	
Whitney,	 N.	M.,	 &	 Gleiss,	 A.	 C.	 (2019).	 Assessing	 the	 effects	 of	
sampling frequency on behavioural classification of accelerometer 
data. Journal of Experimental Marine Biology and Ecology, 512, 22–30. 
https:// doi. org/ 10. 1016/j. jembe. 2018. 12. 003

Kestler,	J.,	&	Wilson,	M.	(2015).	Acceleration	derived	feral	cat	(Felis catus) 
behaviour during ground nesting bird- breeding season on the is-
land of Schiermonnikoog, Doctoral dissertation, Van Hall Larenstein.

Koo,	T.	K.,	&	Li,	M.	Y.	(2016).	A	guideline	of	selecting	and	reporting	in-
traclass correlation coefficients for reliability research. Journal of 
Chiropractic Medicine, 15(2), 155–163. https:// doi. org/ 10. 1016/j. 
jcm. 2016. 02. 012

Laich,	A.	G.,	Wilson,	R.	P.,	Quintana,	F.,	&	Shepard,	E.	L.	(2008).	Identification	
of imperial cormorant Phalacrocorax atriceps behaviour using accel-
erometers. Endangered Species Research, 10,	 29–37.	https:// doi. org/ 
10. 3354/ esr00091

 20457758, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.11380 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [26/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5061/dryad.q2bvq83sx
https://orcid.org/0000-0001-9850-4212
https://orcid.org/0000-0001-9850-4212
https://orcid.org/0000-0003-3177-0107
https://orcid.org/0000-0003-3177-0107
https://orcid.org/0000-0001-8327-0556
https://orcid.org/0000-0001-8327-0556
https://doi.org/10.1163/156853974X00534
https://doi.org/10.1163/156853974X00534
https://doi.org/10.1016/j.applanim.2016.05.026
https://doi.org/10.1016/j.applanim.2015.05.006
https://doi.org/10.1016/j.applanim.2015.05.006
https://doi.org/10.1111/1365-2656.13092
https://doi.org/10.1038/s41598-019-57198-w
https://doi.org/10.1038/s41598-019-57198-w
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://doi.org/10.1007/s00227-018-3318-y
https://doi.org/10.1007/s00265-019-2664-1
https://doi.org/10.1007/s00265-019-2664-1
https://doi.org/10.1111/2041-210X.13172
https://doi.org/10.1111/2041-210X.13172
https://doi.org/10.1002/ece3.1914
https://doi.org/10.1002/ece3.1914
https://doi.org/10.1890/07-0539.1
https://doi.org/10.1186/s40462-021-00265-7
https://doi.org/10.1186/s40317-017-0121-3
https://doi.org/10.1016/j.compag.2019.105175
https://doi.org/10.1016/j.applanim.2019.01.002
https://doi.org/10.1371/journal.pone.0136751
https://doi.org/10.1242/jeb.136135
https://doi.org/10.1016/j.jembe.2018.12.003
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.3354/esr00091
https://doi.org/10.3354/esr00091


12 of 19  |     DUNFORD et al.

Lascelles,	 B.	D.	 X.,	 Hansen,	 B.	D.,	 Thomson,	 A.,	 Pierce,	 C.	 C.,	 Boland,	
E., & Smith, E. S. (2008). Evaluation of a digitally integrated 
accelerometer- based activity monitor for the measurement of ac-
tivity in cats. Veterinary Anaesthesia and Analgesia, 35(2),	173–183.	
https://	doi.	org/	10.	1111/j.	1467-		2995.	2007.	00367.	x

Li,	 X.	 (2013).	 Using	 “random	 forest”	 for	 classification	 and	 regression.	
Chinese Journal of Applied Entomology, 50(4),	1190–1197.

Lord, L. K., Griffin, B., Slater, M. R., & Levy, J. K. (2010). Evaluation of col-
lars and microchips for visual and permanent identification of pet 
cats. Journal of the American Veterinary Medical Association, 237(4), 
387–394.	https://	doi.	org/	10.	2460/	javma.	237.4.	387

Lush,	L.,	Ellwood,	S.,	Markham,	A.,	Ward,	A.,	&	Wheeler,	P.	(2016).	Use	of	
tri- axial accelerometers to assess terrestrial mammal behaviour in 
the wild. Journal of Zoology, 298(4),	257–265.

Lush,	 L.,	 Wilson,	 R.	 P.,	 Holton,	 M.	 D.,	 Hopkins,	 P.,	 Marsden,	 K.	 A.,	
Chadwick,	D.	R.,	&	King,	A.	J.	(2018).	Classification	of	sheep	urina-
tion events using accelerometers to aid improved measurements of 
livestock contributions to nitrous oxide emissions. Computers and 
Electronics in Agriculture, 150(C),	170–177.

McClune,	 D.	 W.,	 Marks,	 N.	 J.,	 Wilson,	 R.	 P.,	 Houghton,	 J.	 D.,	
Montgomery, I. W., McGowan, N. E., Gormley, E., & Scantlebury, 
M. (2014). Tri- axial accelerometers quantify behaviour in the 
Eurasian badger (Meles meles): Towards an automated interpreta-
tion of field data. Animal Biotelemetry, 2(1), 5. https:// doi. org/ 10. 
1186/ 2050-  3385-  2-  5

McGowan,	 N.	 E.,	 Marks,	 N.	 J.,	 Maule,	 A.	 G.,	 Schmidt-	Küntzel,	 A.,	
Marker, L. L., & Scantlebury, D. M. (2022). Categorising cheetah 
behaviour	using	tri-	axial	accelerometer	data	 loggers:	A	compari-
son of model resolution and data logger performance. Movement 
Ecology, 10(1),	1–17.

Migli,	D.,	Astaras,	C.,	Boutsis,	G.,	Diakou,	A.,	Karantanis,	N.	E.,	&	Youlatos,	
D. (2021). Spatial ecology and diel activity of European wildcat (Felis 
silvestris) in a protected lowland area in northern Greece. Animals, 
11(11), 3030.

Naik,	R.,	Witzel,	A.,	Albright,	J.	D.,	Siegfried,	K.,	Gruen,	M.	E.,	Thomson,	
A.,	Price,	J.,	&	Lascelles,	B.	D.	X.	(2018).	Pilot	study	evaluating	the	
effect of feeding method on overall activity of neutered indoor pet 
cats. Journal of Veterinary Behavior, 25, 9–13. https:// doi. org/ 10. 
1016/j. jveb. 2018. 02. 001

Nathan,	 R.,	 Spiegel,	 O.,	 Fortmann-	Roe,	 S.,	 Harel,	 R.,	 Wikelski,	 M.,	 &	
Getz,	 W.	 M.	 (2012).	 Using	 tri-	axial	 acceleration	 data	 to	 identify	
behavioural modes of free- ranging animals: General concepts and 
tools illustrated for griffon vultures. The Journal of Experimental 
Biology, 215(6), 986–996. https:// doi. org/ 10. 1242/ jeb. 058602

Nekaris,	K.	A.-	I.,	Campera,	M.,	Chimienti,	M.,	Murray,	C.,	Balestri,	M.,	&	
Showell,	Z.	(2022).	Training	in	the	dark:	Using	target	training	for	non-	
invasive application and validation of accelerometer devices for an 
endangered primate (Nycticebus bengalensis). Animals, 12(4), 411.

Nuijten,	 R.,	 Prins,	 E.	 F.,	 Lammers,	 J.,	Mager,	 C.,	&	Nolet,	 B.	 A.	 (2020).	
Calibrating tri- axial accelerometers for remote behavioural obser-
vations in Bewick's swans. Journal of Zoo and Aquarium Research, 
8(4), 231–238. https://	doi.	org/	10.	19227/		jzar.	v8i4.	522

Pagano,	A.	M.,	Rode,	K.	D.,	Cutting,	A.,	Owen,	M.,	Jensen,	S.,	Ware,	J.,	
Robbins,	 C.,	Durner,	 G.	M.,	 Atwood,	 T.	 C.,	 &	Obbard,	M.	 (2017).	
Using tri- axial accelerometers to identify wild polar bear behaviors. 
Endangered Species Research, 32, 19–33. https:// doi. org/ 10. 3354/ 
esr00779

Pagano,	A.	M.,	&	Williams,	T.	M.	(2019).	Estimating	the	energy	expendi-
ture	 of	 free-	ranging	 polar	 bears	 using	 tri-	axial	 accelerometers:	 A	
validation with doubly labelled water. Ecology and Evolution, 9(7),	
4210–4219. https:// doi. org/ 10. 1002/ ece3. 5053

Qasem,	L.,	Cardew,	A.,	Wilson,	A.,	Griffiths,	I.,	Halsey,	L.	G.,	Shepard,	E.	
L.,	Gleiss,	A.	C.,	&	Wilson,	R.	(2012).	Tri-	axial	dynamic	acceleration	
as a proxy for animal energy expenditure; should we be summing 
values or calculating the vector? PLoS One, 7(2),	e31187.	https:// doi. 
org/	10.	1371/	journ	al.	pone.	0031187

Rast,	W.,	Kimmig,	 S.	 E.,	Giese,	 L.,	&	Berger,	A.	 (2020).	Machine	 learn-
ing goes wild: Using data from captive individuals to infer wildlife 
behaviours. PLoS One, 15(5),	 e0227317.	 https://	doi.	org/	10.	1371/	
journ	al.	pone.	0227317

Riaboff,	L.,	Aubin,	S.,	Bédère,	N.,	Couvreur,	S.,	Madouasse,	A.,	Goumand,	
E.,	Chauvin,	A.,	&	Plantier,	G.	(2019).	Evaluation	of	pre-	processing	
methods for the prediction of cattle behaviour from accelerometer 
data. Computers and Electronics in Agriculture, 165, 104961. https:// 
doi. org/ 10. 1016/j. compag. 2019. 104961

Shepard,	E.	L.,	Wilson,	R.	P.,	Halsey,	L.	G.,	Quintana,	F.,	Laich,	A.	G.,	Gleiss,	
A.	C.,	 Liebsch,	N.,	Myers,	A.	E.,	&	Norman,	B.	 (2008).	Derivation	
of body motion via appropriate smoothing of acceleration data. 
Aquatic Biology, 4(3), 235–241. https:// doi. org/ 10. 3354/ ab00104

Shepard,	 E.	 L.,	 Wilson,	 R.	 P.,	 Quintana,	 F.,	 Laich,	 A.	 G.,	 Liebsch,	 N.,	
Albareda,	D.	A.,	Halsey,	L.	G.,	Gleiss,	A.,	Morgan,	D.	T.,	&	Myers,	A.	
E. (2008). Identification of animal movement patterns using tri- axial 
accelerometry. Endangered Species Research, 10,	47–60.	https:// doi. 
org/ 10. 3354/ esr00084

Shuert,	C.	R.,	Pomeroy,	P.	P.,	&	Twiss,	S.	D.	(2018).	Assessing	the	utility	
and limitations of accelerometers and machine learning approaches 
in classifying behaviour during lactation in a phocid seal. Animal 
Biotelemetry, 6(1), 14. https://	doi.	org/	10.	1186/	s4031	7-		018-		0158-		y

Signorell,	A.	(2016).	DescTools:	Tools	for	descriptive	statistics,	R package 
version 0.99, 18. http://	CRAN.	R-		proje	ct.	org/	packa	ge= DescT ools

Smit,	M.,	Ikurior,	S.	J.,	Corner-	Thomas,	R.	A.,	Andrews,	C.	J.,	Draganova,	
I., & Thomas, D. G. (2023). The use of triaxial accelerometers and 
machine learning algorithms for behavioural identification in do-
mestic cats (Felis catus):	A	validation	study.	Sensors, 23(16),	7165.	
https://	doi.	org/	10.	3390/	s2316	7165

Smith,	S.	W.	(1997).	The scientist and engineer's guide to digital signal pro-
cessing. California Technical Publishing, 35.

Soltis,	 J.,	Wilson,	 R.	 P.,	 Douglas-	Hamilton,	 I.,	 Vollrath,	 F.,	 King,	 L.	 E.,	 &	
Savage,	 A.	 (2012).	 Accelerometers	 in	 collars	 identify	 behavioral	
states	 in	 captive	African	 elephants	 Loxodonta africana. Endangered 
Species Research, 18(3), 255–263. https:// doi. org/ 10. 3354/ esr00452

Sur,	 M.,	 Suffredini,	 T.,	 Wessells,	 S.	 M.,	 Bloom,	 P.	 H.,	 Lanzone,	 M.,	
Blackshire,	S.,	Sridhar,	S.,	&	Katzner,	T.	(2017).	Improved	supervised	
classification of accelerometry data to distinguish behaviors of 
soaring birds. PLoS One, 12(4),	e0174785.	https://	doi.	org/	10.	1371/	
journ	al.	pone.	0174785

Tatler,	J.,	Cassey,	P.,	&	Prowse,	T.	A.	A.	(2018).	High	accuracy	at	low	fre-
quency: Detailed behavioural classification from accelerometer 
data. Journal of Experimental Biology, 221(23), jeb184085. https:// 
doi. org/ 10. 1242/ jeb. 184085

Thomas,	D.	G.,	Post,	M.,	&	Bosch,	G.	(2017).	The	effect	of	changing	the	
moisture levels of dry extruded and wet canned diets on physical 
activity in cats. Journal of Nutritional Science, 6, e9. https:// doi. org/ 
10.	1017/	jns.	2017.	9

Thomas, L., & Juanes, F. (1996). The importance of statistical power anal-
ysis:	 An	 example	 from	 animal	 behaviour.	Animal Behaviour, 52(4), 
856–859. https:// doi. org/ 10. 1006/ anbe. 1996. 0232

Tran,	D.	N.,	Nguyen,	T.	N.,	Khanh,	P.	C.	P.,	&	Tran,	D.	T.	 (2021).	An	iot-	
based design using accelerometers in animal behavior recognition 
systems. IEEE Sensors Journal, 22(18),	17515–17528.

Ullmann,	W.,	Fischer,	C.,	Kramer-	Schadt,	S.,	Pirhofer	Walzl,	K.,	Eccard,	
J.	 A.,	 Wevers,	 J.	 P.,	 Hardert,	 A.,	 Sliwinski,	 K.,	 Crawford,	 M.	 S.,	
Glemnitz,	M.,	&	Blaum,	N.	 (2023).	The	 secret	 life	of	wild	animals	
revealed	 by	 accelerometer	 data:	 How	 landscape	 diversity	 and	
seasonality influence the behavioural types of European hares. 
Landscape Ecology, 38, 1–15.

Valletta,	J.	J.,	Torney,	C.,	Kings,	M.,	Thornton,	A.,	&	Madden,	J.	 (2017).	
Applications	 of	 machine	 learning	 in	 animal	 behaviour	 studies.	
Animal Behaviour, 124, 203–220. https:// doi. org/ 10. 1016/j. anbeh 
av. 2016. 12. 005

Venter,	 Z.	 S.,	 Hawkins,	 H.,	 &	 Cramer,	M.	 D.	 (2019).	 Cattle	 don't	 care:	
Animal	 behaviour	 is	 similar	 regardless	 of	 grazing	management	 in	

 20457758, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.11380 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [26/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1111/j.1467-2995.2007.00367.x
https://doi.org/10.2460/javma.237.4.387
https://doi.org/10.1186/2050-3385-2-5
https://doi.org/10.1186/2050-3385-2-5
https://doi.org/10.1016/j.jveb.2018.02.001
https://doi.org/10.1016/j.jveb.2018.02.001
https://doi.org/10.1242/jeb.058602
https://doi.org/10.19227/jzar.v8i4.522
https://doi.org/10.3354/esr00779
https://doi.org/10.3354/esr00779
https://doi.org/10.1002/ece3.5053
https://doi.org/10.1371/journal.pone.0031187
https://doi.org/10.1371/journal.pone.0031187
https://doi.org/10.1371/journal.pone.0227317
https://doi.org/10.1371/journal.pone.0227317
https://doi.org/10.1016/j.compag.2019.104961
https://doi.org/10.1016/j.compag.2019.104961
https://doi.org/10.3354/ab00104
https://doi.org/10.3354/esr00084
https://doi.org/10.3354/esr00084
https://doi.org/10.1186/s40317-018-0158-y
http://cran.r-project.org/package=DescTools
https://doi.org/10.3390/s23167165
https://doi.org/10.3354/esr00452
https://doi.org/10.1371/journal.pone.0174785
https://doi.org/10.1371/journal.pone.0174785
https://doi.org/10.1242/jeb.184085
https://doi.org/10.1242/jeb.184085
https://doi.org/10.1017/jns.2017.9
https://doi.org/10.1017/jns.2017.9
https://doi.org/10.1006/anbe.1996.0232
https://doi.org/10.1016/j.anbehav.2016.12.005
https://doi.org/10.1016/j.anbehav.2016.12.005


    |  13 of 19DUNFORD et al.

grasslands. Agriculture, Ecosystems & Environment, 272,	 175–187.	
https:// doi. org/ 10. 1016/j. agee. 2018. 11. 023

Wang, G. (2019). Machine learning for inferring animal behavior from 
location and movement data. Ecological Informatics, 49,	 69–76.	
https:// doi. org/ 10. 1016/j. ecoinf. 2018. 12. 002

Wang, Y., Nickel, B., Rutishauser, M., Bryce, C. M., Williams, T. M., Elkaim, 
G., & Wilmers, C. C. (2015). Movement, resting, and attack behav-
iors of wild pumas are revealed by tri- axial accelerometer measure-
ments. Movement Ecology, 3(1), 2. https:// doi. org/ 10. 1186/ s4046 
2-  015-  0030-  0

Watanabe,	S.,	Izawa,	M.,	Kato,	A.,	Ropert-	Coudert,	Y.,	&	Naito,	Y.	(2005).	
A	new	technique	for	monitoring	the	detailed	behaviour	of	terres-
trial	 animals:	A	 case	 study	with	 the	domestic	 cat.	Applied Animal 
Behaviour Science, 94(1),	 117–131.	https:// doi. org/ 10. 1016/j. appla 
nim. 2005. 01. 010

Watanabe,	Y.	Y.,	&	Takahashi,	A.	 (2013).	Linking	animal-	borne	video	to	
accelerometers reveals prey capture variability. Proceedings of the 
National Academy of Sciences of the United States of America, 110(6), 
2199–2204. https://	doi.	org/	10.	1073/	pnas.	12162	44110	

Wijers,	M.,	Trethowan,	P.,	Markham,	A.,	Du	Preez,	B.,	Chamaillé-	Jammes,	
S.,	 Loveridge,	 A.,	 &	 Macdonald,	 D.	 (2018).	 Listening	 to	 lions:	
Animal-	borne	 acoustic	 sensors	 improve	 bio-	logger	 calibration	
and behaviour classification performance. Frontiers in Ecology and 
Evolution, 6,	171.	https://	doi.	org/	10.	3389/	fevo.	2018.	00171	

Williams, T. M., Wolfe, L., Davis, T., Kendall, T., Richter, B., Wang, Y., 
Bryce,	C.,	Elkaim,	G.	H.,	&	Wilmers,	C.	C.	 (2014).	Mammalian	en-
ergetics: Instantaneous energetics of puma kills reveal advantage 
of felid sneak attacks. Science (New York, N.Y.), 346(6205), 81–85. 
https:// doi. org/ 10. 1126/ scien ce. 1254885

Wilmers,	C.	C.,	Isbell,	L.	A.,	Suraci,	J.	P.,	&	Williams,	T.	M.	(2017).	Energetics-	
informed	behavioral	 states	 reveal	 the	drive	 to	kill	 in	African	 leop-
ards. Ecosphere, 8(6), e01850. https:// doi. org/ 10. 1002/ ecs2. 1850

Wilmers,	 C.	 C.,	 Nickel,	 B.,	 Bryce,	 C.	M.,	 Smith,	 J.	 A.,	Wheat,	 R.	 E.,	 &	
Yovovich,	V.	 (2015).	 The	 golden	 age	 of	 bio-	logging:	How	 animal-	
borne sensors are advancing the frontiers of ecology. Ecology, 96(7),	
1741–1753.	https:// doi. org/ 10. 1890/ 14-  1401. 1

Wilson,	R.	P.,	Börger,	L.,	Holton,	M.	D.,	Scantlebury,	D.	M.,	Gómez-	Laich,	A.,	
Quintana,	F.,	Rosell,	F.,	Graf,	P.	M.,	Williams,	H.,	Gunner,	R.,	Hopkins,	
L., Marks, N., Geraldi, N. R., Duarte, C. M., Scott, R., Strano, M. S., 
Robotka,	 H.,	 Eizaguirre,	 C.,	 Fahlman,	 A.,	 &	 Shepard,	 E.	 L.	 (2020).	
Estimates for energy expenditure in free- living animals using acceler-
ation	proxies:	A	reappraisal.	Journal of Animal Ecology, 89(1),	161–172.

Wilson, R. P., Shepard, E., & Liebsch, N. (2008). Prying into the intimate de-
tails of animal lives: Use of a daily diary on animals. Endangered Species 
Research, 4(1–2),	123–137.	https:// doi. org/ 10. 3354/ esr00064

Wilson,	R.	P.,	White,	C.	R.,	Quintana,	F.,	Halsey,	L.	G.,	Liebsch,	N.,	Martin,	
G. R., & Butler, P. J. (2006). Moving towards acceleration for esti-
mates of activity- specific metabolic rate in free- living animals: The 
case of the cormorant. Journal of Animal Ecology, 75(5), 1081–1090. 
https://	doi.	org/	10.	1111/j.	1365-		2656.	2006.	01127.	x

Yu,	H.,	Muijres,	F.	T.,	 te	Lindert,	J.	S.,	Hedenström,	A.,	&	Henningsson,	
P.	 (2023).	 Accelerometer	 sampling	 requirements	 for	 animal	 be-
haviour classification and estimation of energy expenditure. Animal 
Biotelemetry, 11(1), 28.

How to cite this article: Dunford, C. E., Marks, N. J., Wilson, 
R. P., & Scantlebury, D. M. (2024). Identifying animal 
behaviours from accelerometers: Improving predictive 
accuracy of machine learning by refining the variables 
selected, data frequency, and sample duration. Ecology and 
Evolution, 14, e11380. https://doi.org/10.1002/ece3.11380

APPENDIX A

Additional methods
Details of cats housed indoors for behaviour recording
Nine	adult	domestic	cats	(4	females,	5	males;	aged	6	months–8 years)	
housed	at	Mid	Antrim	Animal	Sanctuary,	Antrim,	Northern	Ireland	in	
rooms	(2	m × 3	m)	were	studied	in	June	and	July	2017.	Cats	were	free	
to	move	 to	an	enclosed	outside	area	 (2 × 2 m).	All	 individuals	were	
either neutered or spayed and were certified as healthy by a veteri-
narian prior to participation in the study.

Cats were fitted with quick- release collars (Breakaway buckle 
collar,	Rogz	 Ltd.	2002/030628/07)	 to	which	 a	 tri-	axial	 accelerom-
eter (‘Daily Diary’, Wilson et al., 2008)	 recording	at	40	Hz	was	at-
tached. The total weight of the collar and logger was 25 g (less than 
1% of the cats' body weight). Daily Diary loggers were fitted under 
the chin of the cat in line with the lateral (sway), sagittal (surge) and 
vertical (heave) body axes (Chakravarty et al., 2019). While wearing 
the	collars,	cats	were	filmed	using	a	Sony	Alpha	a58	DSLR	camera	
(Sony,	 Latin	 America,	 Inc.)	 for	 15	min	 during	 the	morning	while	 a	
second researcher encouraged the cat to undertake different be-
haviours, such as running after a toy, or provided food to observe 
feeding behaviours. In addition, naturally occurring behaviours were 
observed, such as walking, trotting, resting, grooming and shaking 
the collar. These behaviours were selected as they accounted for 
much of the cat's (and other wild equivalent predator's) daily behav-
iours (Wilmers et al., 2017), are of ecological significance (Williams 
et al., 2014), and the repertoire can be indicative of welfare (Fuller 
et al., 2019). Each cat was filmed for 15 min to record the different 
behaviours it undertook.

Accelerometer data and video synchronisation
Accelerometer	 data	 and	 video	 footage	 from	 the	 indoor	 cats	were	
synchronised using the timestamp of the data and video. To guard 
against any potential inaccuracies of their internal clocks, during 
the video, the collar was shaken up and down by the observers to 
create a distinct marking point in the accelerometer data that could 
be synchronised with the camera timestamp on the recording. 
Once the data were downloaded and loaded into DDMT software 
(Wildbyte technologies, http:// wildb ytete chnol ogies. com/ softw are. 
html, Wilson et al., 2008), any offset that was required between the 
camera and the accelerometer was added to the accelerometer data. 
Distinct behaviours that lasted at least two seconds were selected on 
the video and identified in the accelerometer data via the corrected 
timestamp. Transitions between behaviours were not included in 
any behaviour sample. DDMT is a specialised accelerometer han-
dling software, including facilitating the ‘labelling’ of behaviours that 
could then be extracted individually. This was conducted for all dis-
tinct identifiable behaviours within the video footage.

Random forest model generation
Random forest models use a subset of known behaviour data to ‘train’ 
the model to identify behaviours and use the remaining data subset 
to ‘test’ the model accuracy. Classification trees were built using a 
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random ‘training’ subset of 60% of the data. The 500 trees grown 
from each training dataset were well above the recommended 300 
trees required to acquire accurate results (Fehlmann et al., 2017).

To validate each model, it was used to predict the behaviours of 
the 40% of the dataset not used for training. For every measure of 
accelerometer	data	(at	40	Hz	or	1	Hz),	a	behavioural	prediction	was	
made according to the classification from each of the 500 trees cre-
ated from the training dataset. The most frequent prediction across 
all trees was selected as the final classification as the most likely 
behaviour, which was then compared to the actual, video- identified, 
behaviour (Breiman, 2001; Pagano et al., 2017). We built a confusion 
matrix (a table of the frequencies of correct or incorrect behaviour 
predictions—Table A6) to assess the precision and recall of the model 
(Equations 1 and 2, Fehlmann et al., 2017) and evaluated the pre-
dictive abilities of the model based on the F- measure (Equation 3) 
(see below for calculations of precision, recall and F- measure). These 
metrics provide measures of model accuracy (Pagano et al., 2017).

The ‘out- of- bag’ (OOB) error rate (the per cent of events that 
were incorrectly classified from rows not included in each of the 500 
decision trees; Breiman, 2001) and the Gini Index were calculated 
(Breiman, 2001; Fehlmann et al., 2017). The Gini Index indicates 

which variables improve the purity of behaviour classifications 
(Breiman, 2001; Christensen et al., 2023;	Han	et	al.,	2016) and was 
used to identify whether the ‘standard error variables’ were useful in 
behaviour identifications using the RF models.

Measuring the accuracy of random forest models
Precision, recall and F- measure are based on the following catego-
ries of identification; true positive (TP) where the predicted be-
haviour is correctly identified as the actual behaviour (our example 
focal behaviour is resting, so, e.g., resting is identified as resting), 
true negative (TN) where the predicted behaviour is correctly identi-
fied as a different behaviour (not the focal behaviour, e.g. walking 
is identified as walking), false positive (FP) where the predicted be-
haviour is incorrectly identified as the focal behaviour (e.g. another 
behaviour is identified as resting) and false negative (FN) where the 
predicted behaviour is identified as an incorrect behaviour (e.g. rest-
ing is identified as grooming; Pagano et al., 2017).

If no FN results were obtained, such as when a certain be-
haviour was not selected in the random sample, then limited in-
formation could be gleaned as to how the focal behaviour was 
handled	and	 thus	 an	N/A	 result	was	 returned	 for	precision,	 and	
F- measure. If TP and FP returned results of 0, such as when no 
behaviours were identified correctly, or no behaviours were iden-
tified as the focal behaviour incorrectly, then all samples of the 

(1)Precision =
TP

TP + FP

(2)Recall =
TP

TP + FN

(3)Fmeasure = 2 ×
precision × recall

precision + recall

TA B L E  A 2 Duration	(s)	of	video-	identified	accelerometery	data	for	each	behaviour	of	nine	indoor	domestic	cats.

Cat ID Sex

Duration of behaviour (s)

TotalGroom Feed Rest Walk Trot Run Shake

1 F 7.20 0.00 66.88 38.88 2.93 21.08 3.80 140.75

2 F 3.58 2.88 592.18 339.40 12.05 0.00 0.00 950.08

3 F 0.00 0.00 299.80 36.53 0.00 0.00 0.00 336.33

4 F 0.00 0.00 489.13 0.00 0.00 0.00 0.00 489.13

5 M 0.00 0.00 6.38 60.83 61.58 15.80 3.35 147.93

6 M 2.30 54.10 40.70 10.45 0.00 11.63 0.00 119.18

7 M 0.00 10.00 129.90 35.85 0.00 0.00 0.00 175.75

8 M 0.00 0.00 35.48 11.73 8.03 2.30 0.00 57.53

9 M 0.00 0.00 831.35 0.00 2.28 0.00 0.00 833.63

Total 13.08 66.98 2491.78 533.65 86.85 50.80 7.15 3250.28

N 3 3 38 42 16 12 2 116

Decision tree accuracy (%) 66.67 66.67 86.84 95.24 62.50 58.33 100 82.76

Note:	The	number	of	behaviour	samples	longer	than	2 s	(N) and the accuracy of the decision tree for identifying the behaviours are also shown.

TA B L E  A 1 Details	of	free-	roaming	domestic	cats	(Felis catus) 
fitted with accelerometer and GPS collars, with their age (years) 
and sex.

Cat ID Age Sex

A 10 months F

B Unknown F

C 4 F

D 2 F

E 12 M

Note: ‘Unknown’ represents a rescued cat so the age was not confirmed.
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focal	 behaviours	 were	 predicted	 as	 negative	 and	 returned	 N/A	
results for precision, and F- measure. If the precision was 0 (when 
TP and FP were 0), the F- measure could not be calculated and was 
returned as 0.

Generating the datasets for random forest modelling
Random forest models use variables to differentiate between be-
haviours. These are derived from the raw accelerometer data. The 
variables derived from the raw heave, surge and sway values (move-
ments in orthogonal axes) of the identified accelerometer samples 
describe the animal's body motion and posture through acceleration 
and were selected as they describe the animals movement in differ-
ent ways (Venter et al., 2019).

The variables calculated from the raw accelerometery data that 
constitute the base dataset were chosen based on previous accel-
erometery studies (Fehlmann et al., 2017;	Shepard,	Wilson,	Halsey,	
et al., 2008; Shepard, Wilson, Quintana, et al., 2008; Watanabe & 
Takahashi, 2013; Wilson et al., 2006, 2008). This dataset can be used 
to train a random forest model which can then be used to identify 
behaviours from other accelerometer data.
A	‘base’	dataset	of	variables	was	calculated	at	40	Hz.	This	com-

prised of 13 variables: raw acceleration (‘acc’), static acceleration 
(‘st’) and dynamic acceleration (‘dy’), all measured in three axes: sway, 
heave and surge (noted as x, y and z, respectively). The static accel-
eration represents the animal's posture, whereas the dynamic accel-
eration represents animal movements (Wilson et al., 2006). Vectoral 

TA B L E  A 3 Summary	variables	extracted	from	accelerometer	data	and	used	in	random	forest	models	to	predict	domestic	cat	behaviours.

Parameter Notation Calculation Description Reference

Raw acceleration (g) accx, accy, accz The acceleration measured in each 
orthogonal axis (x, y and z)

A

Static acceleration (g) stx, sty, stz A	running	2 s	mean	of	
accx , accy , or accz

The posture of the animal in each 
orthogonal axis (x, y and z)

B

Dynamic acceleration (g) dyx, dyy, dyz acc − st for each axis, x, 
y, and z

The movement of the animal in each 
orthogonal axis (x, y and z)

B

Vectoral dynamic body 
acceleration (g)

VeDBA
√

dyx
2
+ dyy

2
+ dyz

2 The overall body movement of the animal B

Smoothed vectoral dynamic body 
acceleration (g)

VeDBAs A	running	2 s	mean	of	
VeDBA

The overall body movement of the animal 
without extreme peaks or troughs

C

Pitch Pitch asin
(

stz
)

Describes whether the animal is going up 
of down a slope

D

Roll Roll asin
(

stx
)

Describes whether an animal is banking 
or lying on its side

E

Standard error of raw acceleration SDaccx, SDaccy, 
SDaccz

A	running	2 s	standard	
error of accx , accy , or 
accz

The magnitude of the raw acceleration in 
each orthogonal axis (x, y and z)

E

Standard error of dynamic 
acceleration

SDdyx, SDdyy, 
SDdyz

A	running	2 s	standard	
error of dyx , dyy , or dyz

The magnitude of the movement of the 
animal in each orthogonal axis (x, y 
and z)

D,	F,	H

Standard	error	of	VeDBA SDVeDBA A	running	2 s	standard	
error of VeDBA

The magnitude of the overall body 
movement of the animal

D,	F,	H

Standard	error	of	smoothed	VeDBA SDVeDBAs A	running	2 s	standard	
error of VeDBAs

The magnitude of the overall body 
movement of the animal without 
extreme peaks or troughs

D,	F,	H

Note:	Acceleration	was	measured	in	the	sway	(x), heave (y) and surge (z)	axes.	References	are	(A)	Smith	(1997) (B) Wilson et al. (2006), (C) Qasem 
et al. (2012), (D) Fehlmann et al. (2017), (E) Wilson et al. (2008), (F) Laich et al. (2008), (G) Watanabe and Takahashi (2013).

TA B L E  A 4 Definitions	of	terminology	for	datasets.

Datasets Definition

Base A	dataset	consisting	of	the	variables	accx , accy , accz , stx , sty , stz , dyx , dyy , dyz, VeDBA, VeDBAs, Pitch and Roll

Extended A	dataset	consisting	of	the	variables	accx , accy , accz , stx , sty , stz , dyx , dyy , dyz , VeDBA,VeDBAs, Pitch, 
Roll, SDaccx , SDaccy , SDaccz, SDdyx, SDdyy , SDdyz, SDVeDBA and SDVeDBAs

Inconsistent duration A	dataset	containing	all	available	calibrated	accelerometer	behaviours	over	2 s	long

Standardised duration A	dataset	with	a	maximum	of	60 s	of	any	one	behaviour

40 Hz A	dataset	of	variables	at	40 Hz

1 Hz A	dataset	of	the	mean	of	the	variables	over	1 s

 20457758, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.11380 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [26/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16 of 19  |     DUNFORD et al.

dynamic	body	acceleration	(‘VeDBA’),	smoothed	VeDBA	(‘VeDBAs’),	
‘Pitch’ and ‘Roll’ were also calculated (definitions and equations for 
these variables are provided in Tables A3 and A4).
A	second	‘extended’	dataset	at	40	Hz	was	generated	by	grouping	

the data from each behaviour and calculating a running 2- second 
standard error of raw and dynamic acceleration in the sway, heave 
and	surge	axes,	VeDBA,	and	smoothed	VeDBA	(Table	A3). These fur-
ther eight variables generated an ‘extended’ dataset that consisted 
of the base variables and the standard error variables (Table A4). 
These new variables examined the variation of each of the ‘active’ 
variables around the mean (Fehlmann et al., 2017; Laich et al., 2008; 
Watanabe & Takahashi, 2013).

Two further datasets were generated by calculating the mean val-
ues	of	 the	40	Hz	datasets	over	one	second	for	all	 the	variables	 in	
that	dataset,	generating	a	base	and	an	extended	dataset	at	1	Hz.	The	
frequency of the data has been shown to influence the reliability of 
behaviour	 identification	when	random	forest	modelling	(Alvarenga	
et al., 2016).

Four more ‘standardised duration’ datasets were then derived, 
one	from	each	of	the	base	and	extended	datasets	at	40	and	1	Hz.	A	
long duration of examples of some behaviours can lead to a bias in 
the classification algorithm towards the more numerous behaviours 
(Chen et al., 2004). Therefore, a more even distribution of behaviours 
decreases the overestimation of the more numerous behaviours in 
training datasets. We used a similar method to Pagano et al. (2017), 
in which datasets of known behaviours were randomly subsampled 
to	consist	of	a	maximum	of	60 s	of	each	behaviour	(rather	than	over	
2000 s	of	rest	behaviour,	Table	A2).	Where	less	than	60 s	of	a	certain	
behaviour occurred, 100% of these data was included in the analysis. 
In total, eight datasets were developed (Figure 1).

Free- ranging cat data collection
Cat owners in Northern Ireland were contacted in 2016 and volun-
teered their animals to have their movements recorded. For the first 
2 days	of	the	study,	the	free-	roaming	cats	were	fitted	with	‘dummy	
collars’,	which	were	the	same	size	and	weight	as	functioning	collars	
but did not contain any devices. This allowed the cat to become ac-
customed to wearing the collar and the added weight of the devices. 
All	the	collars	were	fitted	with	a	quick-	release	clasp	so	that	it	would	
release if the cat became entangled. The collars were adjusted to 
fit each cat and allow two fingers to fit between the collar and the 
cat (Lord et al., 2010). Upon deployment, cats were monitored for 
30 min	to	ensure	there	was	no	discomfort.	Thereafter,	owners	moni-
tored their cat's behaviour to watch for any signs of stress. In the 
trial, no signs of stress were observed in any of the individuals we 
measured,	so	all	cats	were	included	in	the	study.	After	two	days,	the	
dummy	collars	were	then	exchanged	for	one	that	carried	a	VHF	radio	
transmitter (Tabcat homing tag © 2016 Loc8tor Ltd.) and an accel-
erometer tag (‘Daily Diary’, Wilson et al., 2008). The accelerometer 
was	set	to	record	at	40	Hz.	The	VHF	was	only	used	to	find	the	collar	
if it became released from the cat (which happened on one occasion 
and the cat was fit with a replacement collar the same day). The total 
weight of the collar and loggers was 61 g, less than 1.5% of the body 
weight of any of the cats. Throughout the study, cats were allowed 
to move freely in and out of their owner's house via either a cat flap 
or being let in and out when required.

ADDITIONAL RESULTS
Free- ranging cat behaviour identification from the decision tree
Through the validation process described in the text, the decision 
tree	was	accurate	82.76%	of	the	time	(Table	A2). The behaviours 

TA B L E  A 5 The	results	of	interclass	correlation	coefficient	estimates	and	the	95%	confidence	intervals	are	based	on	a	single	rating,	
absolute- agreement, two- way mixed effects model.

Model ICC estimate F df1 df2 p Value
Lower confidence 
interval

Upper confidence 
interval

Base variables, inconsistent 
duration,	40 Hz

0.247 1.328 29 29 .225 0.229 0.264

Base variables, standardised 
duration,	40 Hz

0.742 3.870 29 29 <.001 0.736 0.748

Base variables, inconsistent 
duration,	1 Hz

0.364 1.570 29 29 .114 0.349 0.379

Base variables, standardised 
duration,	1 Hz

0.079 1.090 29 29 .413 0.057 0.101

Extended variables, inconsistent 
duration,	40 Hz

0.148 1.173 29 29 .335 0.128 0.168

Extended variables, standardised 
duration,	40 Hz

0.756 4.100 29 29 <.001 0.750 0.762

Extended variables, inconsistent 
duration,	1 Hz

0.649 2.850 29 29 <.01 0.641 0.657

Extended variables, standardised 
duration,	1 Hz

0.751 4.010 29 29 <.001 0.745 0.757

Note: The agreement between the per cent time spent on behaviours each day by domestic cats was compared between behaviours that were 
predicted by each of the random forest models to behaviours predicted from accelerometery data identified by an observer using an ethogram.

 20457758, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.11380 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [26/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  17 of 19DUNFORD et al.

identified from the accelerometer data using the decision tree 
found	that	the	free-	ranging	cats	‘rested’	for	22.12 h	(92.17	± 1.05%)	
each day, with the majority of the remaining time spent ‘walking’ 
(3.85 ± 1.38%)	 and	 ‘grooming’	 (2.74 ± 0.32%).	 This	 was	 followed	
by	 other	 locomotory	 behaviours	 (‘run’:	 0.46 ± 0.27%	 and	 ‘trot’:	
0.35 ± 0.07%),	 then	 ‘collar	 shake’	 (0.24 ± 0.04%)	 and	 ‘feeding’	
(0.19 ± 0.11%).

Free- ranging cat behaviours from RF models
‘Resting’ was the primary behaviour identified for all cats accord-
ing to all models, where cats spent at least 21 hours ‘resting’ each 
day (Figure 2). Locomotion, particularly ‘walking’, was the second 
most commonly identified behaviour by the top models at 40 and 
1	Hz,	and	comprised	5%–8%	of	each	day.	While	there	was	almost	
no	‘feeding’	or	‘grooming’	identified	by	the	top	model	at	40	Hz,	the	
top	model	at	1	Hz	predicted	these	behaviours	more	frequently	but	
still underestimated both in comparison to the behaviours identi-
fied	using	the	decision	tree,	particularly	‘grooming’	at	0.66 ± 0.07%	
compared	to	2.74 ± 0.32%	found	using	the	decision	tree.	Grooming	
is a highly variable behaviour depending on which area of the body 
is groomed and may result in different accelerometer axes detect-
ing motion, making it hard for the model to utilise differentiating 
variable features.

RF model accuracy—precision and recall
For the most accurate model, with extended variables and stand-
ardised	 durations	 at	 40	 Hz,	 the	 precision	 and	 recall	 for	 different	
behaviours ranged from 0.88 to 1.00 (Table 2). ‘Shake’, ‘feed’ and 
‘run’ behaviours were the most reliably identified, whereas ‘walk’ 
behaviours had the lowest precision and recall and were commonly 
misclassified as ‘trot’ and vice versa. ‘Rest’ behaviours had high pre-
cision (0.98) but lower recall (0.90), whereas other behaviours were 
rarely classified as ‘resting’, but ‘rest’ behaviours were sometimes 
misclassified as ‘groom’, ‘feed’, ‘trot’, ‘run’ and most commonly as 
‘walk’ (Table A6).

ADDITIONAL INVESTIGATIONS
Effects of sample size on model accuracy
As	 supplementary	 analysis,	 we	 also	 investigated	 whether	 the	
large	size	of	the	datasets	(where	the	40	Hz	datasets	were	larger	
than	the	1	Hz	dataset)	might	 lead	to	higher	accuracy	due	to	the	
size	of	the	dataset	rather	than	the	frequency	of	the	data.	We	hy-
pothesised that a larger dataset would lead to a higher accuracy 
of the models, not because the model necessarily identified be-
haviours more accurately at this higher frequency, but because 
the statistical power of these models from larger datasets would 
be greater (Thomas & Juanes, 1996) (e.g. the model with extended 
variables	 and	 standardised	duration	 at	40	Hz	 contained	12,063	
lines	of	data	compared	to	the	same	dataset	at	1	Hz	that	contained	
320 lines of data). To investigate this, we examined whether this 
model	at	40	Hz	was	more	accurate	than	this	model	at	1	Hz	due	
to	the	dataset	size,	by	subsampling	the	40	Hz	dataset	to	include	
only	60	events	(lines	of	data)	per	behaviour,	rather	than	60 s	per	
behaviour. This led to a ‘subsampled dataset’ more comparable 
in	size	(n = 420)	to	the	1	Hz	dataset.	This	demonstrated	whether	
the	dataset	at	40	Hz	was	more	accurate	than	at	1	Hz	due	to	the	
detail	of	the	behaviour	waveform	being	maintained	or	the	size	of	
the dataset.

We used the subsampled dataset to identify cat behaviours and 
assessed the accuracy. The subsampled 60 event dataset developed 
a random forest model that had a precision of 0.82 ± 0.04,	recall	of	
0.82 ± 0.07	and	an	F-	measure	of	0.81	± 0.05.	This	F-	measure	was	
6.7%	more	accurate	than	the	random	forest	model	trained	using	the	
extended	dataset	with	standardised	durations	of	behaviours	at	1	Hz	
but	was	14.9%	less	accurate	than	the	same	dataset	at	40	Hz	which	
suggests	that	the	larger	dataset	size	does	affect	the	accuracy	of	the	
model, but also that the higher frequency dataset was still more ac-
curate than the mean over one second.
In	 general,	 the	 higher	 frequency	 datasets	 (40	 Hz)	 produced	

more	accurate	models	 than	 those	derived	 from	datasets	 at	1	Hz	
(derived	from	taking	the	mean	of	the	variables	over	1 s)	(Table 1), 

TA B L E  A 6 Confusion	matrix	for	random	forest	model	identification	of	cat	feed,	groom,	rest,	walk,	trot,	run	and	shake	behaviours.

Observed behaviour

Predicted behaviour

Feed Groom Rest Walk Trot Run Shake Total obs.

Feed 966* 0 0 0 0 0 0 966

Groom 0 166* 0 0 0 1 0 167

Rest 4 7 867* 77 7 1 0 963

Walk 1 0 20 887* 102 1 0 1011

Trot 0 0 0 34 910* 0 0 944

Run 0 0 0 0 0 718* 0 718

Shake 0 0 0 0 0 0 57* 57

Total pred. 971 173 887 998 1019 721 57 4826

Note: The random forest model was trained using an extended set of variables (see Table A4), with a standardised duration of behaviours, using 
accelerometery	data	measured	at	40 Hz.	This	matrix	shows	the	accuracy	of	behaviour	identification	using	the	model.	Predicted	behaviours	were	
identified using the model, and observed behaviours were identified from video recordings. Italicised and * values indicate correctly identified 
behaviours (true positive).
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however,	when	the	dataset	at	40	Hz	was	subsampled	to	include	the	
same	number	of	lines	as	the	1	Hz	datasets,	the	modelling	accuracy	
decreased.	This	 shows	 that	 the	size	of	 the	datasets	can	 increase	
model accuracy when identifying behaviours. We found that the 
subsampled 60 event datasets were still more accurate at identify-
ing	behaviours	than	the	model	derived	from	a	1	Hz	dataset	which	
was	similar	 in	size	(although	this	was	not	tested	for	free-	roaming	
cat data using the ICC reliability measure). This shows that the de-
tail	embedded	in	the	accelerometery	data	recorded	at	40	Hz	is	im-
portant when identifying behaviours and that taking a mean of the 
data can lose distinguishing features. This agrees with our above 
findings that behaviours that occur at a high frequency, such as 
locomotion in free- ranging cats, are more reliably identified from 
a model derived from a higher frequency dataset, and that if quick 

locomotor behaviours are the focus of a study, high frequencies 
would likely provide the highest accuracy.

Effects of identifying cat behaviours for 15 minutes per hour or 
the full time
When recording animal behaviours, the amount of time that the 
animal is studied for can influence the outcome of behavioural pre-
dictions	 (Altmann,	1974) (i.e. 15 min/h or the full time). We there-
fore tested whether there was a difference in the amount of time 
spent on the different behaviours when they were identified for the 
first	15 min	of	each	hour	or	for	the	whole	time,	the	cat	was	collared.	
To test this, one of the five cats' behaviours was identified by the 
observer using the decision tree for the whole time it was collared 
(85.33 h).

F I G U R E  A 1 Decision	tree	for	identifying	free-	ranging	domestic	cat	behaviours	from	tri-	axial	acceleration,	developed	from	manual	
calibrations of behaviours and accelerometer data using concurrent video recordings. ‘Sleep’ and ‘rest’ behaviours were characterised by 
long periods of inactivity. ‘Grooming’ behaviours included the cat licking its fur on all parts of its body including its back, tail and paws. 
‘Feeding’ behaviour was solely from pellet food from a bowl. Locomotory behaviours, ‘walk’, ‘trot’ and ‘run’, were conducted in straight lines 
(with no corners) and characterised by the increasing speeds and different gaits. ‘Collar shake’ or scratch was typically conducted using a 
hind leg or a rotatory shake of the head. Unknown behaviours that were not defined but were observed included human interactions such as 
the cat being stroked and active behaviours such as jumping onto a high surface or playing with toys.
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The intraclass correlation coefficient (ICC) was calculated with 
the DescTools package (Signorell, 2016) based on a single rating, 
absolute- agreement, two- way mixed effects model (Koo & Li, 2016) 
and was used to assess the reliability of the observer identifying the 
behaviours of one cat for the first 15 min of each hour compared to 
identifying the whole time the cat was collared (as a per cent of the 
time	identified).	Analyses	were	conducted	using	R	(version	3.4.0,	R	
core team 2014). This showed whether the predictions of cat be-
haviours from the shorter observation times provided an accurate 
estimate of cat behaviours over the whole day.

There was ‘excellent reliability’ according to the ICC estimate 
(Koo & Li, 2016) between the time spent on each behaviour when 
identified by decision tree by an observer for 15 min per hour or for 
the whole time. The ICC estimate was 0.98 with a 95% confidence 
interval from 0.982 to 0.984, F(5,	 5) = 59.6,	p < .001,	which	 shows	
that there was little difference in the time the cat was estimated 
to have spent on each behaviour whether the observer identified 
behaviours	 for	15 min	or	 for	 the	whole	60 min	per	hour	 and	gives	
confidence to our predictions of cat behaviours.

F I G U R E  A 2 Diagrammatic	
representation of a single axis of dynamic 
acceleration and the standard error of the 
dynamic acceleration during three speeds 
of locomotion.
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