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Abstract This paper explores the chaotic dynamics

of a piezoelectrically laminated initially curved

microbeam resonator subjected to fringing-field elec-

trostatic actuation, for the first time. The resonator is

fully clamped at both ends and is coated with two

piezoelectric layers, encompassing both the top and

bottom surfaces. The nonlinear motion equation which

is obtained by considering the nonlinear fringing-field

electrostatic force, includes geometric nonlinearities

due to the mid-plane stretching and initial curvature.

The motion equation is discretized using Galerkin

method and the reduced order system is numerically

integrated over the time for the time response. The

variation of the first three natural frequencies with

respect to the applied electrostatic voltage is deter-

mined and the frequency response curve is obtained

using the combination of shooting and continuation

methods. The bifurcation points have been examined

and their types have been clarified based on the loci of

the Floquet exponents on the complex plane. The

period-doubled branches of the frequency response

curves originating from the period doubling (PD)

bifurcation points are stablished. It’s demonstrated

that the succession PD cascades leads to chaotic

behavior. The chaotic behavior is identified qualita-

tively by constructing the corresponding Poincaré

section and analyzing the response’s associated

frequency components. The bifurcation diagram is

obtained for a wide range of excitation frequency and

thus the exact range in which chaotic behavior occurs

for the system is determined. The chaotic response of

the system is regularized and controlled by applying

an appropriate piezoelectric voltage which shifts the

frequency response curve along the frequency axis.

Keywords Chaotic dynamics � Period-doubling
bifurcation � MEMS resonators � Initially curved

microbeam � Piezoelectric actuation � Fringing-field
electrostatic actuation

1 Introduction

Chaos is one of the major nonlinear phenomena in the

microelectromechanical systems. The chaotic

dynamic behavior of such systems can be promising

in various applications. One of the prominent applica-

tions of chaos is the generation of pseudo-random

numbers and chaotic signals in the encryption of data
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for secure communications [1–3]. Chaos is also

employed in ultra-sensitive sensors [4–6] such as mass

sensor. As the chaotic regime is highly sensitive to the

changes in the system parameters, it can offer an ideal

platform for identification of the parameters. Yin et al.

[6] experimentallymeasured ultra-small changes in the

mass of a cantilever beam as a highly sensitive mass

sensor by detecting changes in its chaotic behavior.

Regarding their sensitivity to initial conditions, chaotic

oscillators can also be utilized to detect very weak

signals with a high noise to signal ratio in resonant

sensor applications [7, 8]. The most important studies

in the field of chaos prediction and control in MEMS

can be found in Refs. [9–25]. Haghighi et al. [9]

examined the chaotic dynamics in MEMS resonators

based on straight microbeams under parallel-plates

electrostatic excitation. They presented an analytical

criterion for homoclinic chaos using the Melnikov

function. Their numerical studies indicated the signif-

icant effect of the excitation amplitude on the transition

of system dynamics to chaos. Luo et al. [10] also

addressed the prediction and control of chaos in a

similar model. Dynamic analysis based on phase-plane

and bifurcation diagrams and Lyapunov exponents

showed that chaotic behavior is highly dependent on

system parameters and initial conditions of MEMS

resonators. Initially curved microbeams have gained a

prominent position in MEMS due to their unique

nonlinear characteristics and behaviors, such as bi-

stability, snap-through motion, the ability of large

displacements and high sensitivity. However, a limited

number of studies have investigated the chaotic

dynamics of such microstructures. Tajaddodianfar

et al. [11] explored the chaotic vibrations of an initially

curved microbeam under parallel-plates electrostatic

actuation. Using proper numerical tools such as

Poincare sections and Fourier spectrum, they investi-

gated the effects of various parameters, including the

initial curvature of the microbeam, on the formation of

chaotic regions. Period-doubling bifurcation is one of

themostwell-known routes to chaos [17–23, 26, 27]. In

this regard, De et al. [17] investigated the nonlinear

dynamics of electrostatic microelectromechanical sys-

tems under superharmonic excitations. With the

increase of AC voltage, a period-doubling cascade

was observed, which finally led to the chaotic regime.

Najar et al. [18] studied the chaotic dynamics of

electrostatic micro-actuators. Using the finite differ-

ence method, they showed the cyclic-fold and period-

doubling bifurcations in the frequency–response

curves and reported the cascade of period-doubling

bifurcations and chaos in the studied model. Liu et al.

[19] also examined period-doubling and chaos in an

electrostatically actuated microcantilever beams using

Poincare map. Concerning the solving method of

nonlinear equations, the nonlinear vibrations of the

beamhave been successfully analyzed inRefs. [28–30]

using the extended Galerkin method.

The pull-in instability is one of the most important

concerns in MEMS resonators based on parallel-plates

electrostatic actuation. The use of fringing-field elec-

trostatic actuation in microelectromechanical systems

is very promising as it prevents pull-in instability and

increases the lifelong of the devices. Based on the

literature review, no study has so far addressed the

chaotic dynamics of initially curved microbeams

under fringing-field electrostatic actuation. Regarding

the advantages of this MEMS structure, the analysis of

the chaotic dynamics of such resonators is highly

important.

For the first time, this paper is aimed to compre-

hensively investigate the chaotic dynamics of MEMS

resonators based on piezoelectrically laminated ini-

tially curved microbeam exposed to fringing-field

electrostatic actuation. The nonlinear equation of the

motion accounting for the electrostatic and geometric

nonlinearities have been discretised to yield a reduced

order model and the resultant is numerically integrated

over the time for the time response. The frequency

response curve along with the bifurcation points are

determined using the combination of shooting and

continuation techniques and types of the bifurcation

points are examined using the loci of the associated

multipliers with respect to the unit circle on the

complex plane. It has been illustrated that the cascade

of period doubling bifurcations end up with the so-

called period doubling route to chaos which has been

identified by means of developing the Poincaré

sections and the associated frequency spectrum of

the time response. The chaotic response of the system

has been regularised by applying an appropriate

piezoelectric excitation.

2 Mathematical modeling

Clamped–clamped microbeam with initial curvature

w0 under simultaneous piezoelectric and fringing-field
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electrostatic actuation is considered as shown in

Fig. 1. The initially curved microbeam has the length

L, width a and thickness h. The microbeam is assumed

to be made of isotropic linear elastic material with

Young’s modulus Eb, Poisson’s ratio tb and density

qb. As the width of the microbeam is much larger than

its thickness the plane strain condition holds and

therefore, the effective Young’s modulus eEb ¼
Eb= 1� tb2ð Þ [31] is considered. For the sake of

simplicity, the sign of tilda (� ) on the effective

modulus of elasticity has been dropped. For piezo-

electric actuation, the microbeam is sandwiched with

two thin layers of PZT throughout the entire length of

the microbeam. Piezoelectric layers have thickness hp,

density qp, Young’s modulus Ep and Poisson’s ratio

tp. Moreover, two stationary electrodes with the

length of Le and the same width and thickness as of

the microbeam are symmetrically placed on both sides

of the microbeam for the fringing-field electrostatic

actuation. The horizontal distance between the actu-

ation electrodes and the edges of the microbeam on the

xy plane is g.

Upon applying DC voltage Vp to each of the

piezoelectric patches, the resulting axial force is

applied along the length to the microbeam as

follows[32, 33]

Fp ¼ �2e31Vpa ð1Þ

Where e31 denotes the piezoelectric voltage constant.

Depending on the polarity of the piezoelectric voltage,

the axial force can be tensile or compressive. More-

over, the potential difference V is applied between the

microbeam and the lateral actuation electrodes. The

asymmetry of the electric fringing-fields leads to the

application of an out-of-plane electric force along the

z-axis to the microbeam. Using the finite element

simulation, the electrostatic force per unit of length

can be expressed as [34]

f e ¼ � rsinh q w0 þ wð Þð Þ � V2

coshs q w0 þ wð Þð Þ H x� L� Le
2

� �

H Le þ
L� Le

2
� x

� �

ð2Þ

where r, q and s are the fitting parameters. Further-

more, H xð Þ is the Heaviside step function and

V ¼ VDC þ VACcos Xtð Þ½ �, in which VDC is the direct

current voltage and VAC and X are the amplitude and

frequency of the alternating current voltage,

respectively.

With the axial force and the fringing-field electro-

static force in hand, the governing equation of the

motion and the associated boundary conditions con-

sidering the assumptions of Euler–Bernoulli for shal-

low beam can be derived by means of minimization of

the Hamiltonian [34–36]

EIð Þeq
o4w

ox4
þ qAð Þeq

o2w

ot2
þCd

ow

ot

¼ Fpþ
EAð Þeq
2L

Z L

0

ow

ox

� �2

þ2
ow

ox

dw0

dx

 !

dx

" #

o2w

ox2
þd2w0

dx2

� �

þf e

ð3Þ

where

EIð Þeq¼ EbIb þ EpIp ¼ Eb
ah3

12

þ Epa hph
h

2
þ hp

� �

þ
2h3p
3

 !

qAð Þeq ¼ qbAb þ qpAp ¼ qbahþ 2qpahp EAð Þeq
¼ EbAb þ EpAp ¼ Ebahþ 2Epahp

ð4Þ

Ab and Ap are the cross section of microbeam and

piezoelectric layers, respectively. Ib and Ip also denote

the moment of inertia of the cross-section of

microbeam and piezoelectric layers, respectively. In

Eq. (3), Cd is the viscous damping coefficient and

w0 xð Þ ¼ b0 1� cos 2px=Lð Þð Þ=2, in which b0 shows

the initial elevation of the midpoint of the microbeam.

Electrode

Electrode

Curved Microbeam

Vp

Vp

x

y
z

w

V

w0

V

h

hp

a

Le

Fig. 1 Double-clamped initially curved microbeam under

simultaneous piezoelectric and fringing-field electrostatic

actuation
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The boundary conditions associated with Eq. (3) are

given as

w 0; tð Þ ¼ 0;w L; tð Þ ¼ 0;
ow 0; tð Þ

ox
¼ 0;

ow L; tð Þ
ox

¼ 0

ð5Þ

For convenience, the following nondimensional

parameters are introduced

bw ¼ w

h
; bw0 ¼

w0

h
; bx ¼ x

L
; bLe ¼

Le
L
; bt ¼ t

et
; eX ¼ Xet

ð6Þ

where, et ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qAð ÞeqL4= EIð Þeq
q

. Therefore, the nondi-

mensional equation of motion can be obtained as

follows, the over hat (^) has been dropped for

simplicity

o4w

ox4
þo2w

ot2
þC

ow

ot
¼ Pþa1

Z 1

0

ow

ox

� �2

þ2
ow

ox

dw0

dx

 !

dx

" #

o2w

ox2
þd2w0

dx2

� �

�a2
sinh q w0þwð Þð Þ
coshs q w0þwð Þð ÞH x�1�Le

2

� �

H Leþ
1�Le
2

�x

� �

ð7Þ

The dimensionless parameters in Eq. 7 are

C¼ CdL
4

et EIð Þeq
;P¼ FpL

2

EIð Þeq
;a1¼

h2 EAð Þeq
2 EIð Þeq

;a2¼
rL4V2

EIð Þeqh
ð8Þ

The dimensionless viscous damping coefficientC is

related to the damping ratio n as C ¼ 2nx, where x
shows the nondimensional fundamental natural fre-

quency. The nondimensional boundary conditions

associated with Eq. (7) are given as

w 0; tð Þ ¼ 0;w 1; tð Þ ¼ 0;
ow 0; tð Þ

ox
¼ 0;

ow 1; tð Þ
ox

¼ 0 ð9Þ

To obtain the reduced order model (ROM), the

Galerkin decomposition method is implemented con-

sidering the normalized mode shapes ui xð Þ as admis-

sible functions. Accordingly, the deflection of the

microbeam is expressed as

w x; tð Þ ¼
X

M

i¼1

ui tð Þui xð Þ ð10Þ

where ui tð Þ are unknown generalized coordinates. By

substituting Eq. (10) in Eq. (7), multiplying both sides

of the equation by ui xð Þ and integrating the resultant

over the beam domain x ¼ 0; 1½ �, the reduced order

model can be derived as follows

€un þ C _un þ
X

M

i¼1

ui tð Þ
Z 1

0

ui
ivð Þundx

� P
X

M

i¼1

ui tð Þ
Z 1

0

ui
}undxþ

Z 1

0

w0
}undx

 !

�a1

X

M

i¼1

X

M

j¼1

X

M

k¼1

uiujuk
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ui0uj0dx
Z 1

0
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}undx
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X
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X

M

j¼1

uiuj

Z 1

0

ui0uj0dx
Z 1

0

w0
}undx

þ 2
X

M

i¼1

X

M

j¼1

uiuj

Z 1

0

ui0w00dx
Z 1

0

uj
}undx

þ 2
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0

ui0w00dx
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}undx
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A

¼�a2

Z 1

0

sinh q w0þ
PM

i¼1uiui

� �� �

un xð Þ
coshs q w0þ

PM
i¼1uiui

� �� � H x�1�Le
2

� �
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2

�x

� �

dx

ð11Þ

Such that n ¼ 1; 2; 3; . . .;M.

3 Results and discussion

To perform first validation, the results of this paper are

compared with those presented in Ref. [37]. For this

purpose, the microbeamwith an initial curvature under

the fringing-field electrostatic actuation with the

properties studied in Ref. [37] is considered. The

variations of the first three natural frequencies with

respect to the applied VDC for the present paper, along

with the results of Tausiff et al. are depicted in Fig. 2.

A very good agreement can be seen between the

results.

To perform second validation, the results presented

in this paper are compared with the results of Ref. [38].

Considering VDC = 80V, VAC = 40V, n ¼ 0:01 and the

geometric and mechanical properties in Ref. [38], the

frequency response curves in the vicinity of the third

natural frequency for the present study along with the

results of Ouakad et al. are presented in Fig. 3, which

suggests a very good agreement.
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The material and geometrical properties of the

studied model are given in Table 1 as follows:

The fitting parameters for the electrostatic force,

obtained through the minimization of the square root

of the errors, are introduced in Table 2 as follows.

Variation of the first three natural frequencies with

respect to the applied VDC is illustrated in Fig. 4.

The electrostatic force implicitly influences the

stiffness of the microbeam. This implies that the

microbeam’s stiffness results from the combination of

its elastic stiffness and the superimposed electrical

stiffness. It has been demonstrated that when the

fringing field electrostatic force is applied, the first

three natural frequencies begin to decrease. This

behavior is reminiscent of the parallel plate excitation,

where applying a voltage VDC leads to a reduction in

the natural frequency due to the softening nature of the

electrostatic force [39]. As the VDC increases, the

Fig. 2 Variation of the first three natural frequencies with DC

voltage: validation of the current model

Fig. 3 The frequency response curve in the vicinity of the third

natural frequency: validation of the current model

Table 1 Geometrical and material properties of the studied

model

Geometrical and material

properties

Value (unit)

L 800 lmð Þ
a 12 lmð Þ
h 2 lmð Þ
b0 4 lmð Þ
qb 2320 Kg=m3ð Þ
Eb 160 Gpað Þ
tb 0:22

Le 0:3L

g 2 lmð Þ
hp 0:01 lmð Þ
qp 7500 Kg=m3ð Þ
Ep 76:6 Gpað Þ
tp 0:3

e31 �9:29 Coulomb=m2ð Þ

Table 2 Fitting parameters of the electrostatic force

Fitting parameters r q s

Value 2:65� 10�6 0:97 1:33

Fig. 4 Variation of the first three natural frequencies versus the

applied electrostatic voltage
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softening effect intensifies, causing a further drop in

the natural frequency. Beyond a certain voltage for

each individual natural frequency, denoted as 93.12,

96.01 and 128.9V, the electrostatic voltage begins to

stiffen the system, resulting in a corresponding

recovery and increase in the associated natural

frequency.

In the present study, considering VDC = 180V,

VAC = 100V and n ¼ 0:06, we investigate the nonlin-

ear dynamics of the system in the vicinity of the third

natural frequency where the system exhibits strong

nonlinear behavior and undergoes various nonlinear

bifurcations i.e. period doubling which eventually

yields in chaotic response through the cascade of

various period doubling bifurcations. Figure 5 repre-

sents the frequency response curve in the region of the

interest.

As illustrated, while X is swept from 75, the system

undergoes a Neimark-Sacker (NS) or Secondary Hopf

bifurcation where the two complex conjugate Floquet

multipliers exit the unit circle away from the real axis

on the complex plane [40]. Here the bifurcation

solution introduces a new frequency in addition to the

one prior to the bifurcation point. The dynamics of the

bifurcated solution has not been the focus of this study

and it requires a separated dedicated investigation.

Immediately after the NS bifurcation point, the

stable branch loses its stability and transforms into

an unstable branch. This continues until another NS

bifurcation point is reached, beyond which stability is

restored. Further increase in the frequency yields in a

period doubling bifurcation (PD1) where the Floquet

multipliers exit the unit circle through -1 [34]. The

stable solution loses stability as the bifurcation point is

passed over. The unstable branch of the solution

undergoes another PD bifurcation namely PD2 right-

ward of which the stability is regained. Though a

sequence of NS and PD bifurcations occurs on the

frequency response curve beyond PD2, our focus, in

this case, has been on the period-doubled branches of

the frequency response curves originating from PD1

and PD2. This is depicted in more detail in Fig. 6 and

comprehensively discussed in the following section.

Figure 6a illustrates the period-doubled branch of

the frequency response curve originating from PD1

(X ¼ 131:5) which eventually intersects with the

original branch of solution throughout a subcritical

period doubling bifurcation (PD2 (X ¼ 128:9)) where

an unstable branch of period-doubled solution is

destroyed. Starting from PD1 on the period-doubled

branch, the solution is unstable indicating that PD1 is

of subcritical type. As travelling along the period-

doubled branch, the response undergoes a cyclic fold

bifurcation (CF (X ¼ 110:5)) where the stable and

unstable manifolds of the solution are both originated

from the same point. Here the Floquet multipliers exit

the unit circle throughout ? 1 on the complex plane.

Passing over the first CF bifurcation on the period-

doubled branch, various PD, CF and NS bifurcations

take place up until the period-doubled branch inter-

sects with the original branch at PD2. We explored the

period-quadrupled branches which originate from the

Period-doubling bifurcation points. We concluded that

the Period-quadrupled branches originating from PD4

(X ¼ 129:4) and PD6 (X ¼ 152:1) intersect with the

period-doubled branch at PD5 (X ¼ 149:1) and PD7

(X ¼ 168:2) respectively; the associated period-

quadrupled solutions are depicted in Figs. 6 (b) and

(c). The occurrence of successive period-doubling

bifurcations suggests the potential for a cascade of

such bifurcations leading to chaotic behavior. Captur-

ing this cascade of period-doubled branches was

challenging, requiring significant runtime to record the

higher-order branches. From now on we have focused

on the response of the system with the excitation

Fig. 5 The frequency response curve in the domain of strong

nonlinear behavior
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frequency between 152.1 and 168.2 which are asso-

ciated with the frequencies of PD6 and PD7. We

believe the cascade of the period-doubling bifurca-

tions occurs along this branch.

We have explored the response of the system prior

to the PD8 (X ¼ 158:9) bifurcation point. Here the

response settles on the period-quadrupled branch. The

associated time response, phase plane, Poincaré sec-

tion and the frequency spectrum are depicted in Fig. 7.

The time response corresponding to a complete

single period has been illustrated as an inset in Fig. 7a.

The time response, phase plane, Poincaré section and

the frequency spectrum of the response at X ¼ 159,

are represented in Fig. 8. The excitation frequency

here is slightly after the PD8 bifurcation point.

Exciting the system with the frequency X ¼ 159

implies that the associated period (T) is 0.0395.

However, the response has completed one period in

8 times the value of T. This is because the response

settles on the third consecutive period-doubled branch

resulting in the duration of 23T for a single period. The

Fig. 6 Frequency response curves for VP = 0V, VDC = 180V, VAC = 100V, n ¼ 0:06 (a): period-2, (b) and (c): period-4
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time response corresponding to a complete single

period has been illustrated as an inset in Fig. 8a. The

system has various orders on nonlinearity including

quadratic, cubic (from geometry), fifth and seventh

orders (coming from electrostatic force) which justi-

fies the existence of the dominant frequency MrNoX
whereM andN are the any of the orders of nonlinearity

and r and o can be any integer. The ratio of the

maximum dominant frequency to the frequency spec-

trum xs for X ¼ 159 are given in Table 3.

To extract the Poincaré section, we have applied the

sampling rate associated with the highest frequency

present in the frequency spectrum of the response and

this yields in 12 intersection points between the phase

trajectories and the Poincaré section which are depicted

in Fig. 8c. The number 12 is significant because it

represents the least commonmultiple of the contributing

frequency ratios listed in Table 3. When additional

nonlinear frequency components are introduced, it can

potentially lead to a larger common multiple, thereby

increasing the number of intersection points on the

Poincaré section. In extreme cases, this can result in the

formation of a chaotic strange attractor.

Exciting the system with the frequency X ¼ 160

reveals that a broad range of frequencies emerge on the

frequency spectrum and the Poincare section exhibits

Fig. 7 Response for X ¼ 158 (a): Time response, (b): Phase plane, (c): Poincare section, (d): FFT
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the formation of a complex geometry so-called as

strange attractor in the literature of chaotic dynamics.

To identify chaotic behavior, we didn’t solely rely on

the presence of infinite points in the Poincaré section. In

cases where the frequency components of the time

response have incommensurable ratios, they can generate

intricate patterns within the Poincaré section. Therefore,

we qualitatively assessed chaotic dynamics not only by

examining the Poincaré section but also by analyzing the

frequency spectrum of the time response. This approach

ensured that the strange geometry observed in the

Poincaré section was not solely a result of the incom-

mensurable frequency ratios within the response.

The time response, phase plane, Poincaré section

and the frequency spectrum of the steady state

response for X ¼ 162, X ¼ 164 and X ¼ 166 are

illustrated in Figs. 10, 11, 12.

Fig. 8 Response for X ¼ 159 (a): Time response, (b): Phase plane, (c): Poincare section, (d): Frequency spectrums

Table 3 Frequency ratios for X ¼ 159

xm

xs
1 4

3
3
2

12
7

2 12
5

3 4 6 12
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As depicted in Figs. 9, 10, 11, 12, the chaotic

response occurs for 159:4\X\166:6 where the

cascade of period doubling bifurcations occur. Fig-

ure 13 illustrates the bifurcation diagram for the

excitation frequencies varying in the range of 145–

175. Starting fromX ¼ 145, as the frequency is swept,

the period-2 branch undergoes a transformation into a

period-4 branch via a super critical period doubling

bifurcation denoted as PD6. Further sweep of the

excitation frequency yields in the cascade of super

critical period doubling bifurcations and accordingly

emergence of the chaotic region in the bifurcation

diagram. As the frequency is swept even further the

cascade of subcritical period doubling bifurcations

take place, ultimately leading to a return to regular

response for frequencies beyond 166.6.

For more clarity referring to Fig. 7, (X ¼ 158)

there are 6 points on the Poincaré section, and these

specific points have been highlighted in Fig. 13.

Assuming SX ¼ S1; S2; . . .; SNf g represents the N-

member-sequence of the samples on the Poincaré

section for a specific excitation frequency, the values

of the samples depend on the time that the first sample

is taken. Consequently, there is not a unique sequence

Fig. 9 Response for X ¼ 160 (a): Time response, (b): Phase plane, (c): Poincare section, (d): FFT
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of samples associated with a given frequency. The

sequence can comprise any N points taken from the

trajectory with a fixed sampling time provided that the

transient response, in the case of regular response, has

decayed.

Figure 14 represents the time history, phase plane,

Poincaré section, and the frequency spectrum associ-

ated with the excitation frequency of X ¼ 167: The

excitation frequency here is slightly before the PD9

(X ¼ 167:2) bifurcation point. The time response of a

one single period of the motion is depicted as an inset

in Fig. 14a.

In this section, an appropriate voltage is applied to

the piezoelectric layers which has accordingly regu-

larized the chaotic response of the micro beam.

Figure 15 illustrates the time response, phase plane,

Poincaré section and the frequency spectrum of the

time response for X ¼ 164 and VP = ? 0.3V.

As illustrated, the previously chaotic response

shown in Fig. 11 has been regularized. This can be

attributed to the application of voltage to the piezo-

electric layers, which generates an axial force along

the length of the microbeam. This axial force shifts the

frequency response curve along the horizontal axis,

Fig. 10 Response for X ¼ 162 (a): Time response, (b): Phase plane, (c): Poincare section, (d): FFT
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consequently affecting the chaotic regime. As a result,

the excitation frequency is pushed outside the chaotic

regime, leading to a regulated response; however, the

response has fallen into the third consecutive period-

doubled regular region. Consequently, despite excit-

ing the system with an excitation X ¼ 164, which is

associated with T = 0.038, the system exhibits an

8T period. Here the least common factor associated

with the dominant frequency ratios present in the

frequency spectrum is 12 and accordingly twelve

intersections between the trajectory and the Poincaré

section have been recorded.

Figure 16 depicts the response of the system similar

to those of Fig. 15 but with a negative polarity of the

piezoelectric voltage, VP = -0.3V.

Applying piezoelectric voltage with negative polar-

ity generates a compressive force. As a result, the

frequency response curve shifts to the left, causing the

Fig. 11 Response for X ¼ 164 (a): Time response, (b): Phase plane, (c): Poincare section, (d): FFT
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excitation frequency to move outside the chaotic zone.

In this case, the excitation falls within the 2T period

response, and consequently, the system response

exhibits a period equal to twice of the excitation

frequency. Here, the least common multiple of the

contributing frequency ratios in the time response is 3,

which results in 3 intersection points between the

trajectory and the Poincaré section.

To investigate the impact of piezoelectric actuation

on the bifurcation diagram, the diagrams correspond-

ing to VP = ? 0.3V and VP = -0.3V are depicted in

Figs. 17 and 18, respectively. It is noteworthy that in

the case of VP = ? 0.3V, the period doubling route

did not culminate in a chaotic response. However, for

the negative polarity, the chaotic region persisted but

shifted backward along the frequency axis.

Fig. 12 Response for X ¼ 166 (a): Time response, (b): Phase plane, (c): Poincare section, (d): FFT

Fig. 13 The bifurcation diagram
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4 Conclusion

In this paper the nonlinear and chaotic dynamics of a

piezoelectrically actuated initially curved microbeam

exposed to lateral fringing-field electrostatic actuation

was investigated. The nonlinear differential equation

of the motion accounting for the geometric and

fringing-field electrostatic nonlinearity was dis-

cretized to a finite degree of freedom model and then

the resultant nonlinear ODEs were numerically inte-

grated over the time to reveal the time response of the

system. The frequency response curves were deter-

mined using the combination of shooting and contin-

uation methods and the stability of the periodic

solutions were assessed based on the eigen values of

the associated monodromy matrix. Assuming the

excitation frequency as the control parameter, the

bifurcations on the frequency domain were deter-

mined and their types were examined based on the loci

of the associated eigen values with respect to the unit

circle on the complex plane. The bifurcation points

consisted of Neimark-Sacker (NS) or Secondary Hopf,

Fig. 14 Response for X ¼ 167 (a): Time response, (b): Phase plane, (c): Poincare section, (d): FFT
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cyclic fold and period-doubling types. It was observed

that period-doubling bifurcations occurred in a cas-

cade, ultimately leading to chaotic behavior through a

period-doubling route. The chaotic response was

qualitatively identified by capturing the corresponding

Poincare section and the associated frequency spec-

trum. The geometry on the Poincare section was a

complex geometry of fractional dimension; this could

have occurred not necessarily due to the chaotic

response but due to incommensurable ratios of the

contents of the frequency spectrum; The frequency

spectrum was developed to explore the cause of the

strange attractors. It was observed that a broad range

of frequencies existed on the frequency spectrum and

accordingly it was concluded that the system exhibits a

chaotic response. The piezoelectric actuation was

applied to generate an axil force along the microbeam

which accordingly shifted the frequency response

curves along the frequency axis and regularized the

chaotic response of the system. The outcomes of the

Fig. 15 Response for X ¼ 164, VP = ? 0.3V (a): Time response, (b): Phase plane, (c): Poincare section, (d): FFT
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Fig. 16 Response for X ¼ 164, VP = -0.3V (a): Time response, (b): Phase plane, (c): Poincare section, (d): FFT

Fig. 17 The bifurcation diagram for VP = ? 0.3V Fig. 18 The bifurcation diagram for VP = -0.3V
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present study are genuinely promising for the design

and fabrication of MEMS large-amplitude resonators.
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