
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10459  | https://doi.org/10.1038/s41598-024-60915-9

www.nature.com/scientificreports

Orbital learning: a novel, actively 
orchestrated decentralised learning 
for healthcare
Neeraj Kavan Chakshu  & Perumal Nithiarasu *

A novel collaborative and continual learning across a network of decentralised healthcare units, 
avoiding identifiable data-sharing capacity, is proposed. Currently available methodologies, such as 
federated learning and swarm learning, have demonstrated decentralised learning. However, the 
majority of them face shortcomings that affect their performance and accuracy. These shortcomings 
include a non-uniform rate of data accumulation, non-uniform patient demographics, biased human 
labelling, and erroneous or malicious training data. A novel method to reduce such shortcomings 
is proposed in the present work through selective grouping and displacing of actors in a network of 
many entities for intra-group sharing of learning with inter-group accessibility. The proposed system, 
known as Orbital Learning, incorporates various features from split learning and ensemble learning 
for a robust and secure performance of supervised models. A digital embodiment of the information 
quality and flow within a decentralised network, this platform also acts as a digital twin of healthcare 
network. An example of ECG classification for arrhythmia with 6 clients is used to analyse its 
performance and is compared against federated learning. In this example, four separate experiments 
are conducted with varied configurations, such as varied age demographics and clients with data 
tampering. The results obtained show an average area under receiver operating characteristic curve 
(AUROC) of 0.819 (95% CI 0.784–0.853) for orbital learning whereas 0.714 (95% CI 0.692–0.736) for 
federated learning. This result shows an increase in overall performance and establishes that the 
proposed system can address the majority of the issues faced by existing decentralised learning 
methodologies. Further, a scalability demo conducted establishes the versatility and scalability of this 
platform in handling state-of-the-art large language models.

Keywords  Decentralised learning, Digital health, Data security, Data privacy

The digitalisation of healthcare for autonomous patient care in various healthcare systems is curtailed by arduous 
frameworks for data sharing1,2. Sharing of patient data amongst healthcare units, social-care units and research 
facilities is quintessential for dynamic training, testing and deployment of diagnostic or prognostic deep learning 
algorithms. However, sharing data mandates ethical, technical and legal scrutiny3–5 and associated challenges.

A large number of governments and healthcare institutions are investing in curating local patient data and 
training individual deep learning algorithms6,7. These algorithms, however, having been predominantly trained 
on the local dataset, have their peak performance limited and biased to a testing or local environment8,9. When 
exposed to external data, they have been observed to show drastically reduced performance, thereby, generalis-
ability of local models for universal adoption is hindered8.

To enhance AI algorithms beyond local data without sharing data between participants (healthcare units), 
decentralised learning over a network of participants is seen as a possibility10. In such a network, local data is 
held privately by every participant of the network. However, the locally trained intelligence is aggregated and 
shared amongst them. Such a system allows for data protection and at the same time provides a collaborative 
approach to comprehensive intelligence.
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Related work
Though various network topologies have been proposed, two popular decentralised systems, federated 
learning11–16 and swarm learning17, are being tested in healthcare18–20. The primary difference between the two 
is that the former uses a centralised server for intelligence aggregation, whereas the latter employs a peer-to-peer 
system for the same purpose.

Decentralised learning faces several challenges in design and data-sharing, as highlighted in recent studies21–23. 
These challenges include the drop in performance due to the aggregating algorithm or data poisoning by a 
participant, which may result from erroneous data generation, tampering, or malicious activity. Additionally, 
accommodating participants with varying computational capacities is challenging, and heterogeneity in data 
quality and quantity affects overall performance, such as Non-Independent Identical Distribution (Non-IID), 
data biases, and temporal imbalance. Model inversion attacks may also compromise data privacy by reverse-
engineering the shared intelligence to recreate the training data.

To address these challenges, various modified forms of decentralised learning have been proposed. Split 
federated learning24 shares only some layers of a deep learning model to prevent model inversion attacks. Tiered 
Federated Learning25 groups participants based on their training time into temporal tiers, while Generative 
Adversarial Networks-based federated learning26 generates synthetic data to address data imbalance issues.

An emerging concern within decentralised networks is the vulnerability to prompt insertion attacks. These 
attacks involve the malicious injection of deceptive prompts or commands that can mislead or derail the func-
tioning of the network. Such vulnerabilities are particularly concerning as they can compromise the integrity and 
reliability of shared intelligence, potentially leading to incorrect or biased outcomes. Addressing the challenge 
of prompt insertion attacks is crucial for the future development of secure and robust decentralised learning 
systems. As of now, comprehensive solutions to this specific problem remain underdeveloped, marking it as an 
important area for future research and innovation.

However, these solutions address individual drawbacks, and there is currently no comprehensive system 
capable of addressing all challenges within a single architecture. We offer a novel system to conduct decentralised 
learning, based on active grouping and displacement of participants. This system, known as the Orbital Learn-
ing (OL), utilises novel methods along with various concepts adopted from existing decentralised methods. 
Fundamentally, the proposed system is designed to group participants on an intelligence-sharing network into 
different orbits based on how their local data quality and rate affect the overall shared intelligence, without any 
access to their data. The proposed system enables displacement of any participants to a different orbit. Intelligence 
sharing takes place independently within each of these groups (orbits) but can be accessed by other groups when 
required. In what follows, we study this system’s functioning on a publicly available ECG-dataset, compare its 
performance against an existing decentralised learning system, describe its setup and mechanisms.

Orbital learning setup
Decentralised learning on OL platform comprise of fundamental functional elements (see Fig. 1a). Clients are the 
participants on the intelligence sharing network who house their local patient data, train their neural network 
models, and share intelligence. The central node is designated to orchestrate the training, testing, movement, and 
deployment of neural network models, and can either be hosted independently or within one of the larger clients. 
The benchmark patient dataset is a reference patient database made available to all clients on the network, which 
is used for training a reference neural network model for benchmarking and calibrating clients’ performance. 
The central node uses this benchmark dataset to train a reference Neural Network (NN) model which forms the 
central referential point for orchestrating client movement in the system. Orbits represent groups of clients with 
similar data and temporal homogeneity, with similar impacts on the shared sections of NN.

To establish similarity amongst the clients, two fundamental characteristics are analysed: Impact on shared 
intelligence and melioration rate. Impact on shared intelligence is determined by two sub-characteristics: input 
data and labelling qualities. The former is affected by demographics, patterns, and the quality of local patient data, 
while the latter is affected by the quality of patient care provided to the client based on the available expertise. 
These characteristics are measured by Assessors, algorithms designed to benchmark local data against the bench-
mark dataset and referential neural network within the client, thereby avoiding any data sharing. Melioration 
rate is a result of the clients’ training times, which is affected by both its data collection rate and computational 
speeds during training of the local neural network.

The shared layers, a section of hidden layers in a NN, adapted from split learning24,27–29, form the basic mode 
of sharing intelligence between the clients (see Fig. 1c). An individual copy of the layers is held by each client 
in the orbit, trained, and transferred with one other client after each melioration. By placing clients in an orbit, 
shared layers can be transferred from one client to the neighbouring client, either in a clockwise or anticlockwise 
manner (see Fig. 1c). However, intelligence is not shared but accessible between orbits, and shared layers from a 
different orbit can be trained upon only if it has been obtained from an inner orbit to avoid creating new biases 
into inner orbits with comprehensive data, as outer orbits generally have more biased or lower quality data.

Methods
The OL system has four distinctive steps necessary for its components to function properly. The first step involves 
assessing the impact of each client on the shared intelligence, without sharing patient data. This is done using 
two types of assessors: one to analyse the similarity of input patient data of a client with that of the benchmark 
dataset held by the central node, and the other to assess the overall impact of a client on the shared intelligence. 
The second step involves initiating any project on the proposed system, where the central node trains the refer-
ence NN model on the benchmark patient dataset and transfers a copy of this reference model to every client on 
the network. After an initial set number of meliorations without any intelligence sharing, each client is assessed 
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for similarity with that of the central node, and clients are grouped based on similarity using K-means cluster-
ing. The third step involves continuous functioning of the system beyond initiation, with intelligence being 
cyclically shared and trained within an orbit by transfer of the local copy of shared layers of every client to one 
of their neighbours, while also being assessed for impact before intelligence sharing. Any client found to have 
an impact magnitude beyond a set threshold from that of the orbit’s average values is removed from the orbit 
and regrouped with clients in another orbit with similar impact on shared intelligence. Finally, the fourth step 
involves utilising the shared intelligence for actual inferencing of patient data, where a local NN model is used on 
every client for diagnosing or monitoring, by incorporating the concept of ensemble learning via using several 
sets of shared layers within the orbit.

Experimental procedure
Experiments were conducted to benchmark the proposed OL system against other decentralised methods, Fed-
erated Learning (FL), Swarm Learning (SL) and SL with split model sharing (SSL). We split the data in each 
client into 80% training and 20% testing subsets. The testing subset allowed for estimating the impact of shared 
intelligence on local data inference. In terms of execution, a total of 15 meliorations were carried out by each of 
the client during the experiment, with first 5 meliorations during initiation and the rest during maintenance. 
Similarly, 15 federated or peer-to-peer aggregation rounds were carried out on the same clients on the FL plat-
form with weighted federated averaging, and SL platforms for benchmarking the performance.

In addition to the above experiments, an additional demonstration was conducted to analyse the proposed 
system’s capacity to handle complex models to establish its relevance in handling state-of-the-art natural language 
processing based models. This demonstration included deployment of a multimodal model capable of handling 
text and ECG waveform data to generate a text, classifying the diseases as a one line output. This demo is not 
compared with other methods due to computational and framework limitations.

Dataset
The patient dataset used in the experiments is taken from the PTB-XL ECG dataset32–34. This dataset consists 
of 21799 clinical 12-lead ECGs from 18,869 patients of 10 s length. This database is publicly available and can 
be accessed from Physionet34. Based on the description provided, the data in this dataset was annotated by up 

Figure 1.   (a) Orbital Learning (OL), selectively grouped healthcare clients on a decentralised network to be 
locally collaborative but globally accessible learning. (b) Two types of assessors that establish the performance 
of a client. (i) Auto-encoder neural network that helps determine clients’ data similarity to the the benchmark 
dataset. (ii) Similarity index, Spearman’s rank-order correlation in our work, to establish similarity of clients 
model with the reference model in the central node. (c) The functioning of orbital system taking place within an 
orbit and the bagging ensemble method that takes place during inferencing within a client in the orbit.
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to two cardiologists, who assigned potentially multiple ECG statements to each record. The data has been clas-
sified into five superclasses, as described in Table 1 and shown in Fig. 2b,c. The superclasses used are (acronym 
in brackets) Healthy/Normal ECG (NORM), Changes in the ST- and T-wave (STTC), Conduction Disturbance 
(CD), Hypertrophy (HYP), Myocardial Infarction (MI).

In addition to the PTB-XL ECG dataset, MIMIC-IV Clinical Database39, MIMIC-IV deidentified free-text 
clinical notes , and MIMIC-IV Diagnostic Electrocardiogram Matched Subset40 are used to demonstrate scal-
ability of this platform to handle complex multimodal models, that include natural language data. The 4000 
admitted entries were extracted with each sample having clinical notes, 12-lead ECG and corresponding disease 
classification, i.e., International Classification of Diseases (ICD).

Neural network model
The experiments are carried out using one-dimensional convolutional neural networks (CNN). The ECG data 
is used to train a CNN model with 10 hidden layers, consisting of an architecture described in the Appendix 
(Supplementary Fig. S5). For Federated Learning (FL) models, the same CNN model and client data distribution 
were adopted within Tensorflow-federated architecture35. Tensorflow-federated is an open-source library widely 
adopted for collaborative learning by various publications across domains36,37. Further, for simulating Swarm 

Table 1.   Classification of ECGs into five super classes in the PTB-XL dataset and their number of records.

Category Super classification Description Number of records

Class 0 NORM Normal ECG 9517

Class 1 STTC​ ST/T Change 5237

Class 2 CD Conduction disturbance 4901

Class 3 HYP Hypertrophy 2649

Class 4 MI Myocardial infarction 5473

Figure 2.   (a) Micro-average Area Under Receiving Operating Curve (AUROC) distributions for Orbital 
Learning (OL), Federated Learning (FL), Swarm Learning (SL) and Swarm Learning with Split model sharing 
(SSL) obtained for all the four experiments. (b) Box plot displaying the distribution of age for each class (label) 
in the dataset used in the present work. (c) Violin plot showing the distribution of AUROC values, distinctively 
taken, for each class across all clients and all experiments for Orbital Learning vs Federated Learning. Dots mark 
the outliers in the data.
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Learning (SL) and SL with Split Model sharing (SSL), PySyft framework was used. Therefore, the performance 
of the proposed system has been compared with that of the Tensorflow-federated and PySyft frameworks to 
benchmark the performance and establish the differences and novelties. The following parameters were adopted 
for the FL model to match those adopted for the proposed Orbital Learning: client optimizer—Adam38 with a 
default learning rate of 0.001, server optimizer—Adam with a default learning rate of 0.001, repeat in clients (local 
optimization before federated aggregation)—100, and number of federated aggregation rounds—15.

The scalability demo used a multimodal setup of feature extraction of ECG through a pre-trained encoder 
and then combining it with clinical text for a tokenised input to be passed through a t5-small architecture tasked 
at predicting all ICDs that can be assigned as a one-line text.

Impact assessment
For conducting experiments mentioned in this section, we assess the overall impact of a client (without sharing 
of local data) on the shared intelligence impact through similarity in weights and biases of the client with that of 
the reference model from the central node (see Fig. 1c). In theory, we can quantify this similarity using a simple 
correlation index or complex system such as comparative neural networks (ex. discriminators). For this work, 
we employ Spearman’s rank-order correlation31, i.e.,

Here, di is the difference between the two ranks of each observation, n is the number of observations, and ρ is 
Spearman’s rank correlation coefficient. The coefficient values have a range of − 1 to + 1, with + 1 representing 
the perfect association between the initial trained weights and the locally trained weights of the neural network. 
The threshold for accepting clients into an orbit was set at ±0.015 from that of the average orbit value.

The input data quality at each client is measured by comparing it against the benchmark dataset with the help 
of an auto-encoder neural network. Auto-encoders have the capacity to capture characteristics of a particular 
dataset and train to represent data in a latent space (see Fig. 1b). Hence, when subjected to input data from a 
different dataset or dissimilar quality, distorted outputs are produced. A measure between the input and dis-
torted output signals provide a scale of similarity to the benchmark dataset. The Dynamic Time Warping (DTW) 
algorithm30 is used in our work to quantify this measure. DTW measures the similarity between two temporal 
sequences and provides the distance between them. The values for which varied between 3 and 120 during the 
experiments. Input signals closer to that of the benchmark dataset (from the initiation phase) had euclidean 
distance values between 3 and 10, and other signals varied between 40 and 120.

Results
To analyse the proposed OL system and compare its performance with other decentralised methods of FL, SL 
and SL with split model sharing (SSL), collectively referred to as other decentralised methods in this section, 
we conducted four experiments using ECG classifications for arrhythmia. In these experiments, we introduced 
simulated distributions, tampering of patient data, and label tampering from a publicly available dataset to estab-
lish the proposed OL system’s capability in addressing some of the existing drawbacks of decentralised learning. 
We designed the first two experiments to simulate clients (participants) with Non-IID and unbalanced data. 
We designed the third experiment to simulate erroneous data or data tampering, and the fourth experiment to 
simulate label tampering or mix-ups. We used a maximum of six clients in these experiments, with each client 
having 3000 ECG samples.

Experiment 1: Randomised Non‑IID and unbalanced data
Orbital learning platform performed effectively in handling Non-IID and unbalanced datasets when exposed 
to such a randomised dataset, based on values shown in Fig. 2a. The ECG dataset being used was randomly 
grouped into six clients. Further, client distribution was confirmed to have Non-IID before commencement of 
the experiment. The imbalance of samples between classes (labels) within a client was managed through weighted 
classes during training. As shown in Fig. 2a, OL outperforms other decentralised methods by a significant mar-
gin (Fig. 2c). It can also be observed that the variation in AUROC values between the clients is minimal. This 
experiment was repeated with an additional setting of slow melioration rate (longer time between consecutive 
meliorations) in Clients 2 and 4 for the 8th–10th meliorations (see “Related work”). This routine was conducted 
to determine if our system can handle temporal heterogeneity. The performance of OL did not change as a result 
of temporal heterogeneity.

Experiment 2: Age based Non‑IID and unbalanced data
For demonstrating the capacity of our proposed system in handling demographical heterogeneity, we conducted 
an experiment where each client had a completely different age group representing an extremely heterogeneous 
network of clients. The age groups used were 18–39, 40–49, 50–59, 60–69, 70–79, and 80–89. The experiment 
simulated extreme demographic disparity, a milder form of which can be observed in real-life healthcare settings, 
especially in large and ageing demographics. We have described the distribution of age for each class (label) in 
Fig. 2b. Promising results were observed across the clients in this experiment (see Fig. 2a). Our system automati-
cally determined three orbits after initiation, with Clients 1 and 2 in the innermost orbit, Clients 3 and 4 in the 
second orbit, and Clients 5 and 6 in the outermost orbit. This configuration was maintained autonomously for 
most of the experiment. A uniform performance is seen with OL, however, the same cannot be said for FL, where 
the AUROC values vary significantly between 0.57 and 0.88 (see Fig. 2a). Similar lower performances can be seen 

(1)ρ = 1−
6�d

2
i

n(n2 − 1)
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in SL and SSL. In other words, clients with data containing sharper features dominate the global performance 
in FL, which, in turn, affects clients’ accuracy unevenly.

Experiment 3: Data tampering in two clients with random noise
The effect of malicious activity on a decentralised learning network was estimated in this experiment. The pri-
mary objective was to evaluate the capability of a decentralised architecture to isolate malicious actors and prevent 
their activity from having any adverse impact on the shared intelligence. The ECG data from Experiment 1 was 
tampered in two of the six clients by adding random noise to their local data. Noise was added to Clients 2 and 
4 in the range of 0.0–0.2 to a Z-score normalised input data. As shown in Fig. 2a, the OL platform is capable of 
avoiding any such adverse effects on the overall performance of the network. It automatically isolated Clients 2 
and 4, which were subjected to random noise, thereby preventing the performance of other clients from drop-
ping. Some of the outliers in Fig. 2c for OL, are from this experiment and reflect the values seen in Clients 2 and 
4. When this setup with malicious actors was put on other decentralised platforms, the performance of every 
client on the network was brought down. In FL, SL and SSL, malicious clients are not isolated, and the global 
model is affected, which in turn brings down the performance of the entire network.

Experiment 4: Label tampering
Experiment 4 was conducted to evaluate the ability of a decentralised system to detect and handle incorrect 
labelling and data mix-ups, which can directly impact the quality of care provided to patients. The fourth seg-
ment in Fig. 2a illustrate the performance of OL and other decentralised methods, when Clients 2 and 4 had 
their labels shuffled. Similar to Experiment 3, OL was successful in detecting the anomaly in the affected clients 
and isolating them from the rest of the network. In this case, the two affected Clients remained in two separate 
orbits throughout the entire experiment. These results demonstrate that the proposed OL system can protect the 
performance of all clients from erroneous or malicious human labelling and tampering of model weights. Such 
isolation allows for manual intervention and rectification of the associated problem, followed by the reintroduc-
tion of the client to the system. In contrast, when observed in other methods, the affected clients performed 
normally but reduced the performance of the rest of the clients. As in the case with Experiment 3, some of the 
outliers in Fig. 2c for OL, are from this experiment and reflect the values seen in Clients 2 and 4.

Detailed AUROC curves for each class within every client is available in the Appendix. Readers are referred 
to Supplementary Figs. S1, S2, S3, and S4.

Scalability demo
This investigation was specifically designed to evaluate the OL’s scalability in supporting complex, multimodal 
models that utilize advanced language learning mechanisms (LLMs). The primary task for the LLM in this 
experiment was to analyse and interpret heterogeneous data types, namely textual clinical notes and numerical 
ECG readings (see Fig. 3). The objective was to seamlessly integrate these modalities to generate concise text 
outputs that accurately encode the relevant International Classification of Diseases (ICD) codes, corresponding 

Figure 3.   Multimodal input model using Text-to-Text Transfer Transformer (T5) architecture for scalability 
demo.
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to the diagnosed conditions. This process required the model to not only grasp the semantic nuances of clinical 
language but also to correlate these narratives with the quantitative patterns found in ECG data, showcasing 
the model’s ability to handle and synthesize multimodal inputs. The assessors in this demo were the same as 
experiments before with only ECG analysed among the inputs to establish client’s data similarity to benchmark 
dataset. In other words, text was not assessed as free-style notes cannot be standardised.

Perplexity scores were employed as a quantitative metric to assess the model’s predictive performance. Per-
plexity, in this context, measures the model’s ability to predict the next token in the sequence given its current 
state, with lower scores indicating higher predictive accuracy and a better understanding of the data structure. 
Scores ranging from 5 to 16 were observed across different test sets, suggesting that the LLM was highly effec-
tive at forecasting the sequence of tokens that represent ICD codes, based on the complex interplay of textual 
and numerical data presented to it. These perplexity values are indicative of the model’s efficiency in navigating 
through the intricacies of medical documentation and ECG analysis, thus validating the OL platform’s capacity 
to facilitate sophisticated, AI-powered applications in healthcare analytics. This level of performance underscores 
the potential of the OL platform as a versatile and powerful tool for advancing medical research and practice, 
through the integration of cutting-edge computational techniques in the analysis and interpretation of multi-
faceted health data. The demo had 4 clients with two of them having patients of age only above 60 and the rest 
having randomly chosen set of patients. The former two are representation of specialised healthcare setting such 
as geriatric units and the latter two are the representation of general healthcare units. The OL platform placed 
the clients in two separate orbits. However, it must be noted here that the Spearman’s rank correlation coefficient 
threshold for being accepted into an orbit was set at ±1.5× 10

−5 from the orbit’s average value. This was selected 
through trial and error, while assessing relative sensitivity of this model to different data variations.

Discussion
Decentralised learning in healthcare, a critical area for the implementation of AI, faces several challenges, notably 
the presence of Non-IID and unbalanced data, temporal heterogeneity, data poisoning, and concerns over data 
privacy and model security. The OL system proposes innovative solutions to these challenges by structuring par-
ticipants into orbits based on similarities in data impact and training times, which enhances model performance 
through targeted ensemble learning and mitigates biases by addressing data quality variability and temporal 
disparities. This structure also allows for the isolation and correction of data poisoning issues without neces-
sitating the exclusion of participants, thus maintaining the integrity and inclusivity of the learning ecosystem.

Moreover, the OL system is designed with data privacy and security at its core, offering protection against 
cyber threats such as model inversion attacks, which is paramount in maintaining patient confidentiality. Its 
flexibility in accommodating varying computational capacities across participants ensures that the system is 
inclusive and can effectively leverage shared intelligence across different orbits, facilitating transfer learning 
operations for participants with limited resources.

Incorporating OL within the healthcare sector requires careful navigation of legal and ethical frameworks. 
Adherence to the GDPR, the UK’s Data Protection Act 2018, and the Medical Devices Regulation (MDR)41 is 
essential for ensuring data privacy and the safety of AI applications in healthcare. Furthermore, the recent EU 
AI Act42 introduces specific obligations for high-risk AI systems, emphasizing the need for transparency, human 
oversight, and detailed assessments to ensure that AI systems are safe, non-discriminatory, and ethically aligned 
with societal values.

This comprehensive approach to addressing both technical challenges and regulatory requirements highlights 
the OL system’s potential to significantly enhance healthcare delivery through decentralised learning. By fostering 
an environment that is both technologically advanced and ethically grounded, OL promises to drive forward the 
integration of AI in healthcare, ensuring that it is equitable, secure, and beneficial for all stakeholders involved.

Data availability
Data used in the present work is from the PTB-XL ECG dataset32–34. This dataset is publicly available and can be 
accessed here. MIMIC-IV datasets are publicly available but require credentialed access.

Code availability
The codes used in this work are in a public repository, and can be found here.
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