A Cronfa

Swansea University's Research Repository

Swansea University
Prifysgol Abertawe

Criticality of the Thirring Model
in 24+1D

Jude Worthy

Primary Supervisor: Prof. Simon Hands

Administrative Supervisor: Prof. Chris Allton

Submitted to Swansea University in Fulfilment of the Requirements

for the Degree of Doctor of Philosophy

Swansea University 2023

Copyright: The Author, Jude Worthy, 2023
Distributed under the terms of a Creative Commons Attribution 4.0 License (CC BY 4.0).


r.t.lloyd
CRONFA banner


Criticality of the Thirring Model in 241D

Jude Worthy

Abstract

The 2+1d Thirring model provides a good laboratory to explore criticality in a strongly
coupled region. We investigate the utility of Ginsparg-Wilson relation obeying Dirac
operators, namely overlap operators and domain wall operators for this enterprise and
seek to improve them. These operators recover global U(2) symmetry in the continuum
limit as required by any theory with chiral symmetry. We do this via calculation of the
bilinear condensate and the evaluation of an equation of state around a phase transition.
However, numerical calculations using QFTs may be computationally very expensive,
especially around phase transitions. In the past often only quenched calculations have
been possible. As available computing power has increased however, dynamic calcula-
tions have become increasingly feasible. In this work we carry out both quenched and
dynamic simulations. We look to find critical exponents via the equation of state char-
acterizing the behaviour of the condensate in the continuum limit, and in the process

find improvements in the evaluation of the measurements.
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Chapter 1

Introduction

The fundamental idea of lattice field theory is to discretize spacetime, representing it
as a lattice of points and links, providing a natural regularistation, allowing access to
strongly coupled regions beyond the reach of perturbative methods. In Euclidean space,
working with the functional formalism (path integral formulations) the discretization
allows calculations on computers, utilising well established numerical methods from sta-
tistical mechanics. To find a continuum theory from the lattice one we must take the
limit of the lattice spacing a — 0 in a manner corresponding to the renormalized group
techniques of Hamiltonian formulations, varying the parameters of the theory with a

suitably to keep the physical content constant.

From a condensed matter perspective the lattice spacing may correspond to different
physical systems, the lattice sites corresponding to the molecular structure of a metal
for example, and we may not initially seek the continuum limit. However, we may find
phase transitions in such a system occuring at critical values of the parameters. Such
critical phenomena are typically found in strongly coupled regions, and happen in the
continuum limit of the lattice theory. Thus the search for critical phenomena in the
condensed matter community corresponds to the search for a continuum theory in the

particle physics community.

From either persepctive finding the limit is a challenging task. On a lattice with a fixed
number of points the continuum limit corresponds to a vanishing volume. To keep the
volume constant requires a divergent number of lattice sites. Hence we must look at

lattice measurements close to, but not at, the continuum limit.

At a critical phase transition some physical quantity typically undergoes some sort of
continuous but non-smooth change. This quantity may be an order parameter. A
correlation length associated with the order parameter will be divergent at the phase
transition but will be characterised by a power law with its exponent (critical exponent)

in the region around the phase transition. As such, these exponents may be seen to
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characterise the physics of the associated property. In this work we look at chiral sym-
metry breaking, in which the chiral condensate (1)1) is the breaking order parameter,
and will be looking for appropriate exponents to describe its behaviour in the critical
region. To this end we carry out lattice simulations close to the transition and construct

an equation of state with suitable exponents.

Working in 24-1d, while having always been of theoretical interest, has become of prac-
tical interest especially with the industrial development of graphene. Exploring the
strongly coupled 2+1d Thirring model, a toy interacting fermion theory, is challenging
and has seen much endeavour increasingly over recent years. For example [1-6], cover as-
pects including critical flavour number, U(2) symmetry breaking, and meson correlators.
Different discretisations of the Dirac operator have been explored, including staggered,
domain wall, and SLAC fermions, and different results have been found. It is desirable
to capture as many of the continuum symmetries on the lattice as possible. However,
we cannot keep them all and must choose. Since we will be interested in U(2)-symmetry
breaking, picking a Dirac operator with U(2)-symmetry on the lattice would seem a
sensible choice. We choose to work with overlap and domain wall operators to this end.

I hope herein to contribute to this body of work.

In short the objectives of this thesis are to explore and compare some numerical at-
tributes of the chosen U(2)-invariant Dirac operators in the context of the 2+1d Thirring
model, and to calculate the critical exponents associated with the symmetry breaking
bilinear condensate in the continuum limit. We will access the continuum limit of the
lattice theory through the constuction of an equation of state in the vicinity of the lattice

fixed point.

The thesis is laid out as follows. The basics of lattice QFT in the functional formalism
is briefly highlighted in chapter 2. Some general aspects of Dirac operators are reviewed
in chapter 3, with a focus on the chiral operators which will be used in the numerical
calculations. Some details of the calculation of the operators are provided. Most of the
results in this work relate to the bilinear condensates which are described in chapter 4.
Chapter 5 reviews the Thirring model, and introduces the equation of state which will be
used to find the critical exponents. Chapter 6 gives an overview of dynamic fermions and
their evaluation before moving onto the results chapters. Chapter 7 shows the locality of
the overlap operator and looks at the Ginsparg-Wilson errors of the operators. Chapters
8 and 9 look at the condensates, equations of state, and critical exponents for quenched
and dynamic cases respectively. Chapter 10 considers the evaluation of the susceptibility

and the axial ward identity. Finally a summary and outlook is given in chapter 11.

Some of the early work relating to the locality of the overlap operator has been published

in the article [7] and further material has been presented and published at the symposium
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8, 9.

Throughout, the following labels are often used in the legends of the figures, as well
as in the text. HT (occasinoally just H) denotes a formulation using the hyperbolic
tanh approximation to the sign function, and Z refers to a Zolotarev approximation. S
refers to a Shamir formulation and W the Wilson formulation. DW is the domain wall
formulation, and OL is the overlap formulation. Q refers to quenched, and D to dynamic
measurements. AXMY denotes a case where auxiliary fields have (dynamically) been
generated with Ly = X, and the measurements have been evaluated with Ly =Y. M
will usually refer to the mass type with M1 the standard mass, and M3 the twisted
mass, although M is the the domain wall height /overlap parameter. These labels will

sometimes be mixed together.

1Other unpublished presentations were given at the Miami 2020 Physics Conference (December 2020)
and the Asia-Pacific Symposium for Lattice Field Theory (August 2020).



Chapter 2

Lattice Quantum Field Theory

2.1 Functional Formalism

Following [10] the functional formalism (path integral method) of a fermionic theory

coupled to an auxiliary field in Euclidean space gives the quantisation

() = % / D[, BD[A] exp(=Sr[b, 9, A] — Sc[A]) O, %, 4] (2.1)

Z= / D[, Y] D[A] exp(—Sr [, ¥, A] — Sc[A]) (2.2)

where (O) is the observable and Z is the generating (partition) function derived from

the classical action

S = Sp[, ¥, A] + Sg[A] (2.3)

comprising (interacting) fermionic and bosonic components. The spinors ¢ and 1 are
4-component Grassmann fields on the lattice to ensure Fermi statistics, and A is a real

valued 3-component field. The actions comprise their respective lagrangains.

Sr = /d-’BCF[lb(f)ﬂ/-)(f'?),A(x)]

(2.4)
Sg = / drLGlA(z)]

In this work we are interested in the single gauge invariantly coupled fermionic field
given by eqn. 2.5, and the gauge variant Thirring auxiliary field given by eqn. 2.6 in 2

spatial dimensions.
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L= 1»5('7/1(6# +1i4,) +m)y (2.5)
irrin, 1
LT = 2—92/13 (2.6)

In order to make the integrals well defined the theory must be regularized, which we
achieve by moving onto a discrete lattice. The lattice regularization also enables the
exploration of strong coupling for which perturbative methods are not applicable and we
will then be able to calculate observables with the aid of computers. We will primarily
be concerned with the evaluation of the bilinear condensate, C = (¢). Hence our
observable of choice is O = ).

2.2 Lattice Discretisation and the Dirac Operator

Working in 2 spatial dimensions, we discretise the continuum space = = (zo, 1, 22)
with a finite volume lattice over a volume V = T x L? where T is the extent of the
time dimension and L the the extent of the spatial dimensions. We consider N; and N,
nodes in temporal and spatial dimensions, so that we have lattice spacings a; = L/N,
and a; = T'/N; but we always work with a = a; = a;. We then have N, = N, sth and
V = N,a®. The fermion (Dirac) field points are distributed uniformly v (n) = v¥(z(n))
at z(n) = (ta,ja,ia) for d = 3 with n = i + Ngj + N2t, and indices running from 0
to Ns/y — 1. The volume is periodic in the spatial dimensions and anti-periodic in the
temporal direction. As such there are no nodes on o =T, x1 = L, or 5 = L. The anti-
periodic conditions implement non-zero temperature conditions and are implemented by
fixing the temporal component of the auxiliary field A,(N; —1,35,i) = —A,(0,5,7). As
Ny — o0, T — 0.

It would seem natural to simply discretise the bosonic field A, on the nodes, but
Wilson’s formulation ensured exact gauge invariance through the introduction of the
bosonic link fields Uy,(n). These links are located between nodes in their respective
orientation. eg Ui(n) = Uy(t(n),i(n),j(n)) is on the link connecting nodes with coords
(t(n),i(n),j(n)) and (t(n),i(n)+1,j(n)). Such link fields may be constructed compactly

or non-compactly from the auxiliary field A, (n).

Compact link:
U,(n) = exp(iaA,(n)) (2.7)

Non-Compact link:
Uu(n) =1+iaA,(n) (2.8)
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The Taylor expansion of the compact form is identical to the non-compact form up to
first order. It is tempting to think that these formulations should be equivalent in the
continuum limit a — 0, but we shall see that they may lead to very different results.!

With the link fields suitably constructed we locate the discretized fermionic components
¥(n) on the nodes. The naive discretization of the fermionic lagrangian at node n is

given by

= d n)Y(n+ g) — n— p)t(n — j
Lr(n) = B()(Y 7, AL R =Tl ZDWOZR) 4 () (29)

p=1

with corresponding action

Srl, ¥,U] =a®)_ Lr(n) = $Dot + mipp (2.10)

neA

The ~, are elements of a Clifford algebra. We will choose from 4x4 complex valued
matrix representations. 4x4 subelements of Dy, where D = Dy + ml, are then given by

d - . -~
. U, 8iina — UG — )i s
Do(]|2) _ “3Z‘Yu u(J) i+ 2;(.7 i) ji—f (2_11)

p=1

For the vector auxiliary field we have the lagrangian and action, where A,(n) is 3-

component (over u) at lattice site indexed by n, and A is the set of all lattice sites.

Lg(n) = %Z A2, (2.12)
I

SglA] = a® ) La(n) (2.13)
neA

The discretisation provides a natural regularisation, with the grid spacing a providing
an ultra-violet cutoff, and the spatial size L providing an infra-red cutoff. The allowed
momenta are thus restricted to the Brillouin zone, p, € [—m/a, 7 /a]. To recover vacuum
conditions we require 7' — oo, and correspondingly a finite time extent corresponds to
a finite temperature system. Thermal equilibirum is reached by extending the spatial

dimensions L — oo.

Tt is to be noted that although we assume the convergence of the MCMC algorithm for the non-
compact case, it is not as clear cut as for the compact case.
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2.3 Lattice Measurements

We use the Matthews-Salam relations? [11, 12] to integrate out the Grassmann variables
in the fermionic action, Sp. We find the fermion matrix M = M|[A], where M results
from the replacement of each element D(j|i) with a 4x4 complex valued matrix according

to the choice of gammas. Eqns 2.1 and 2.2 become

(0) = % / DI[A] exp(—Sc[A])det[M]O[A] (2.14)

Z = /D[A] exp(—Sg[A])det[M] (2.15)

The particular form of O[A] is not general in this notation. For example though, with
O = 1), and mass term ma7) in the Lagrangian, O[A] = Tr[M _1].

The Haar measure of the continuum becomes the product of weighted Riemannian in-

tegration (measure) over each auxiliary field component A; ,.

D[A] = H/oo dAW (2.16)
ip vV
Hence
7 = H /oo dA;, exp(—Sg[A])det[M] (2.17)
i T

The calculations are now well defined, and it is feasible to calculate eqn. 2.14 analyt-
ically in some simple instances. However, in practice, we must resort to Monte Carlo

integration, based on a series of N auxiliary link field configurations { A"} so that

1L
(O)zﬁi O[A"] (2.18)
n=1

The error of the approximation decreases as 1/ Vv/N when the fields {A"™} are generated
independently with probability

P(A™) x exp(—Sg[A"])det(M[A™]) (2.19)

The determinant must be positive for this technique to work. Unfortunately, the de-

terminant is not guaranteed to positive, and this is known as the sign problem. A

2See appendix A.1.
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commonly used remedy, which is assumed to be physically acceptable?, is to replace
M{[A] with (M[A]M[A]H)Y/2.

This covers the barest of bones of lattice field theory and we now turn to the choice of

Dirac operator.

3(MTM)'? may lose the locality of M if M not positive definite.



Chapter 3
Dirac Operators

We start by reviewing some properties and symmetries of the continuum operator, no-
tably the U(2) global symmetry, that we wish to replicate in the lattice formulations.
We then go on to describe the difficulty of achieving this symmetry caused by Nielsen-
Ninomiya ”"No-Go” theorem, which states that chiral symmetry (the analogue of U(2)
symmetry in 3+1d) cannot be achieved on the lattice in conjunction with a set of other
desired lattice properties. The workaround to this problem, the Ginsparg-Wilson re-
lations, is described, and Dirac operators, domain wall and overlap, satisfying these
relations are then introduced. Calculational details are given of these operators. The
optimal Zolotarev approximation to the sign function required by the overlap operator
is specified as well as the coefficients required by the equivalent domain wall formula-
tion. Finally the relation between the overlap and domain wall formulations is provided.
With precise definitions forthcoming in this chapter, we believe this work introduces the
overlap and domain wall operators with Wilson kernel and twisted mass term to the
literature, and that simulations using this variant have not been carried out elsewhere

before.

3.1 Properties of the Continuum Dirac Operator

We consider the Euclidean Dirac equation (v,(0, + i4,) +m)y = 0. In 3+1d there
is no choice but for ¢ to be a 4-component spinor, comprising two Weyl fermions and
a mass term coupling them. In 241d it may be 2-component in the irreducible form
comprising only a single Weyl fermion and mass term. However, this is not parity
invariant (invariant under a reflection). We choose the reducible 4-vector form which is

parity invariant [3], as shown in appendix A.2. Then we choose the gamma matrices
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00 0 —i 0 00 —1 0 0 —i 0
00 —i 0 0 1 0 0 0 i
_ vy = = 3.1
=10 i 0o o™ 0o 100/’ i 0 o o (3-1)
i 0 0 0 100 0 0 —i 0 0
and we have
10 0 0 0 0 -1 0
01 0 0 0 0 0 -1
_ s — 3.2
B=loo -1 o[’ |21 0o 0o o (32)
00 0 -1 0 -1 0 0

where 5 = 707172773 would be the chirality operator in 3+1d.

In 3+1d the helicity of a spinor ¢(z) is the spin direction projected onto the plane normal
to its direction of motion, and so may be imagined to be a corkscrew motion rotating
either clockwise/left-handed or anti-clockwise/right-handed relative to the direction of
motion [13]. Since it is relative to the direction of motion, helicity is a constant of motion
but is not Lorentz invariant. However, it is independent of the frame of reference for
massless particles travelling at the speed of light. The chirality operator 75 is closely
connected to helicity, but is Lorentz invariant. For massless fermions it corresponds to
helicity. 75 has degenerate eigenvalues 1 which are associated with a left and right
handedness. As such the Dirac 4-vector may be separated into a left-handed component
and right handed component via left and right projectors (operators with the property
P? = P) using 5.

iy o, 1%

P : 3.3

with further properties P, + P_ =1, P,P_ = P_P, = 0. We can then define left and
right handed Weyl fermions

Yr=Pi¢ ; Yr=9¢P_

S (3.4)
YL=P¢ ; Pr=vP;

from which we make the chiral decomposition of the fermion action

S = YDy + mipp = P DYr, + YrDYR + m(Yrvr + YRYL) (3.5)
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Eqgn. 3.5 shows that the massless Dirac 4-vector may be viewed as comprising 2 inde-

pendent Weyl fermions, which couple with the introduction of a mass term.

As we will see below, due to an expanded global symmetry in 2+1d there is no longer a
unique choice of ”chiral” projector,! and hence there is no longer a unique way to define
left or right handedness. Since we are free to choose certain alternative projectors, we

will instead use 3 projectors.

1
P, — 273 . P

_1-m
2

(3.6)

The choice of 3 in eqn. 3.2 leads to these projectors having the simple form

(I 0) (0 0)
P, = P = (3.7)
00 0 I

where I is the 2 x 2 identity matrix. 5 and 73 are not interchangeable in general, even

though we may choose either for the projector.

Having introduced chirality, we can introduce chiral symmetry. In 3+1d massless fermions

have global invariance under the chiral rotation

Y= By 1h— el (3.8)

Chirality can be equivalently expressed by the chirality relation, the anti-commuting

relation

D’)’5 = —’75D (39)

In 2+41d the Euclidean Dirac action for fermions was given by eqns. 2.4 and 2.5. The
action has global symmetries [3]

U — Y P — e (3.10a)
P — VY ;P — pe ¥ (3.10b)

Further, when m = 0,
P — By ;P — Pt (3.11a)

Strictly speaking, there is no chirality in 2+1d, but we continue to use the analogy.
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P €PBY ;P e (3.11b)

These make up a U(2) symmetry, explicitly breaking to a U(1) ® U(1) with the mass
term (the symmetry breaking is U(1) ® U(1) — U(1) in 3+1d). This symmetry was
enabled by choosing the reducible rather than irreducible spinors. Since we are working
in a 2+1d ”physical” space, one may view the extra 3 spin dimension as a fictitious

non-physical extra dimension. As well as eqn. 3.9 we have

Dvy3 = —y3D
73 73 (3.12)

Drysys = 573D

We distinguish explicit, spontaneous, and anomalous symmetry breaking [14]. Explicit
symmetry breaking occurs in the classical lagrangian as with the mass term in eqn. 3.5.
Anomalous symmetry breaking occurs when the lagrangian keeps its symmetry but on
quantisation, that is taking the path integral over the lagrangian, loses the invariance.
The symmetry breaking is associated with the measure rather than the lagrangian itself.
Spontaneous symmetry breaking maintains the symmetry in the lagrangian, but it is
broken in the ground state of the system. This is associated with a degeneracy of ground
states. These forms are not mutually exclusive but spontaneous symmetry breaking may

be hidden by anomalous and anomalous may be hidden by explicit.

In a chiral theory, chirality swaps under a parity (reflection) transformation. In a vector
theory, chirality remains constant under a parity (reflection) transformation [15, 16]. So
chiral symmetry does not imply a chiral theory. The search for a chiral theory on the
lattice was a signifcant challenge and led to the chirally symmetric Dirac operators which
we will consider, albeit with vector theories. In 3+1d chiral symmetry is anomalous.
Not so in 2+1d and we may be able to observe spontaneous symmetry breaking at some

critical value of some symmetry breaking parameter should the model possess such a

property.

Having already chosen the parity invariant 4-component form of 7 we are allowed to

replace the mass with the twisted invariant mass terms [3]:

m — iy3m (3.13)
m — iysm .

which were shown to have signifcant numerical advantages. The twisted mass terms are

anti-hermitian. They are a consequence of the U(1) ® U(1) symmetry and hence found
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via the rotations eqns. 3.11a and 3.11b. We will use the m — iy3m variant extensively

throughout this work.

3.2 Wilson Dirac Operator

In the continuum a single massless fermion with momentum p is identified as a pole in
the momentum space propagator. Unfortunately, on the lattice we find 2% such poles,
where d is the dimension of the problem. This is known the doubling problem. Wilson
added a vanishing term (as a — 0), —a/2Dﬁ, to the lagrangian to circumvent this. In

the continuum

a

Seft, 6. A1 = [ d' @)D, = 502+ m)u(z) (3.14)

D, =8, +iA,(z) (3.15)

We presented the naive Dirac operator on the lattice in section 2.2. We further add the

(lattice) Wilson correction

d = ~

a2
neA p=1

so the entries of W are

5 d - -
e a Up(9)0ji4a — 205 + U_nu(9)0;i—g
W(jli) = _EZ #U0)0;1p ;2 w9)5i- (3.17)
pu=1

The Wilson Dirac operator is then just Dy = Do + W and the Wilson Dirac action is

SF[¥,,U] = $Dwy + mipy (3.18)

The Wilson-Dirac operator does not have chiral symmetry or U(2) symmetry in 2+1d.
However, it is 75-hermitian, 75Dv5 = DT, and also y3-hermitian in 2+1d.

3.3 Nielsen-Ninomiya No-Go Theorem

Unfortunately the Wilson term added to the Dirac operator to deal with the doubling
problem explicitly breaks chiral symmetry, i.e. while y5D9 = —Dg7s, 75Dw # —Dws.
More broadly the Nielsen-Ninomiya No-Go theorem [17], in 3+1d, asserts that certain
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desirable properties of a lattice model are simultaneously unachievable. [18] restates
the theorem as that there can be no net chirality (i.e. the number of left handed and
right handed particles is equal, and hence we cannot isolate a single left or right handed
particle, which is an objective of a chiral theory) in a lattice model of fermions in which

the Hamiltonian satisfies the following conditions:

1) it is quadratic in the fields
2) it is invariant under translations of the (cubic) lattice
3) it is invariant under change of the chiral phase of the fields

4) it is local, specifically in the sense that it is continuous in momentum space

Proofs and variants under differing assumptions have been proposed and [19] provides
one of the clearer introductions to the topic including the following definition in mo-
mentum space. Assuming the fermionic lattice action S = a* Zp @Zpb(p)wp, then the
following four assumptions imply the existence of doublers and that they comprise an

equal number of left and right handed particles.

1) Reflection positivity. This may be expressed as D(p) = 'y4D(p, —P4)74.

2) Cubic group symmetry. These are the rotations and translations on the cubic
lattice and imply that further reflections hold: D(p) = 'yﬂf)f(p)(Rﬂp)'yﬂ with
(Rup)y = Py (1 —26,,).

3) Chiral invariance. D(p) = —y5D(p)7s.

4) Locality. Locality in coordinate space, ||D(z)|| < Cexp(—yz) should fall off ex-

ponentially with the number of lattice spacings, implies continuity in momentum

space of D(p).

In order to remove the doublers one of these conditions must be broken. We note that
a discretisation is wltra-local if the derivative stencil is limited to only a finite number

neighbouring lattice sites.

In 2+1d we (masslessly) have U(2) symmetry analogously to chiral symmetry, and points

(3) are altered as set out in the next section.

3.4 Ginsparg Wilson Relation

The Ginsparg-Wilson [10, 20] (GW) relation provided the solution to the Nielsen-
Ninomiya conundrum which had been thought to be an insurpassable problem for chirally
invariant theories. Nevertheless, the domain wall [21] and overlap operators [22] circum-
vent the chiral condition. With a vanishing (in the continuum limit as a — 0) modifica-

tion to the 3rd condition of the Neilsen-Ninomiya No-Go theorem, y5D + D~ys = 0, all
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4 properties can be achieved for finite a. The (GW) relation may be given equivalently
by either of

5D + D5 = 2aDvys D

(3.19)
(1—-aD)ysD = —Dv5(1 —aD)

which replaces the chiral relation. For the 2+1d formulation, further GW relations
[3, 23, 24] are found.

3D + D3 = 2aD~y3D

(3.20)
713750 — Dy3ys =0
Together these correspond to the invariant transformations
U - o=y . § 5 Peion(—)
U eicx’ys(l—%)‘p : T — \i;e’ia“/S(l—%) (321)
U — e BBY ;. T Pl

We also require that the Dirac operator D has v5- and ~v3-hermiticity, i.e. 5Dy =
v3Dv3 = Dt. The GW relation may be further expressed in terms of a fully chirally
symmetric, but non-local, Dirac operator D., such that D.vs + 5D, = 0.

D.=(1—aD)™'D

3.22
D;'=D"1'-a 322)

GW fermions do not suffer exceptional configurations [10]. Exceptional configurations
occur when negative real eigenvalues are close to the mass value. A vanishingly small

mass term will always be enough to render the smallest eigenvalue vanishingly positive.

Mass terms have not been considered so far. [25] specifies, with a = 1, the bare mass to
be added directly to the chiral Dirac operator rather than the GW operator, resulting
in the relations
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D= (D.+m)(1+D,)!
D—-m (3.23)
1-D

D, =

3.5 Ginsparg Wilson Dirac Operators

In this work we consider overlap and domain wall formulations which may be formally
equivalent (domain wall may be seen as a generalisation of the overlap although devel-
oped first). Within each method which we choose twisted or non-twisted mass, Shamir
or Wilson kernel, and Zolotarev or hyperbolic tanh (HT) sign approximations. One of
the driving considerations of this work is to discern the most pertinent differences be-
tween the formulations in the context of the 2+1d Thirring model. The chiral anomaly
for which the overlap method was developed does not exist in 2+1d, but it is thought we
still require the correct chiral symmetry on the lattice to attain the correct continuum

theory in the a — 0 limit.

Although we do not explore it in this work we mention the SLAC Dirac operator as an
alternative solution to the doubling problem, which has been used in other closely related
studies [4], and has found conflicting results which will be discussed further. Rather than
using a finite point stencil for the derivative, a fourier representation is used which does
not have doublers, since the dispersion relation remains linear. However, it is non-local,

upsetting the Nielsen-Ninomiya conditions in that way?.

3.6 Domain Wall Operator

The domain wall method that eventually led to the overlap operator was initially devel-
oped by Kaplan [21], building on work of Callen and Harvey [26], and was an attempt
to find a chiral theory on the lattice, with the plan to put the electroweak part of the
Standard Model on the lattice. Eventually, it was used for QCD, a vector theory, and
is used in this work. We review the origin of the method closely following the original

work [21] and especially a good early overview [27].

To begin, consider the Hamiltonian operator of free fermions in a single spatial dimension
H = 01[020,+my|, where o; are Pauli matrices, and 03 = —01072 is the chirality operator.
Define a so called mass defect term in a non-physical extra dimension, s, such that m(s)

is a smooth asymptotic monotonic odd function with

2However, it can be shown that taking the derivative of a sufficiently smooth ¢, with a Fourier
operator is exponentially local. The non-locality only manifests with discontinuous ¢. Limiting the
possible Dirac fields ¢ on the lattice may provide another way around the Nielsen-Ninomiya theorem.
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—myg S — —00
m(s) =<0 s=0 (3.24)
+mg s — 400

Then we consider the new Hamiltonian with the extra dimension

H=—-0 [0'261: + 0305 + m(s)] (325)

which has chiral energy eigenstates

Uy = PP (s)us (3.26)
D, (s) = exp(:t/ m(s')ds') (3.27)
0
and u4 are chiral eigenstates
o3U4 = :I:ui (328)

®, (s) diverges and hence is not normalizable, leaving ®_(s) as the only acceptable
solution. The chiral zeromode eigenstate it describes propagates parallel to the wall
and falls off exponentially away from the wall. Hence the mode is bound to the s =0

hyperplane.

Moving to an infinite lattice, with lattice spacing a and m(s) given by a step function

-1 s<a
m(s) =mgf(s);0(s) =<0 s=0 (3.29)
+1 s>a

sinh(apg)
a

where mg = we have the Hamiltonian given by

H = —01[o9A\; + 03/ 5 + m(3)] (3.30)

where A\, is the usual 2nd order 1st derivative stencil. This has two chiral zeromode

solutions

Uy =" Py (s)us (3.31)
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where, with ns the index of the lattice node in the extra s-dimension,

@, (s) = etolsl (3.32)

B_(s) = (~1) D (s) (3.33)

&, (s) is now normalizable, and hence is also an acceptable solution. Unfortunately there
are still doublers and we have 2 positive chirality states, and 2 negative chirality states
(24 in higher dimensions). Again we can turn to the Wilson correction for doublers with

the Hamiltonian

H = —01[020; + 0305 + m(8) — 7(Dzz + Ass)] (3.34)

which has solutions

Py(sta)=—kesr(s)®s(s) (3.35)

and it is found that not only are the doublers removed, but the ®, solution is not
normalizable, resulting in a single chiral zero mode bound to the domain wall and
exponentially decreasing away from the wall, which was the objective of the method.
Unfortunately, for calculations we must have a finite lattice and boundary conditions
(bes) must be imposed. Periodic bes in the s-direction and antiperiodic bes in the x-
direction are chosen. To ensure that solutions are separable in the s-dimension, the

lattice Hamiltonian eqn. 3.34 is rewritten

H = —o1[ogsin(k) + 03As + m(s) — r(cos(k) — 1) — rAss)] (3.36)

with momenta k given by, forn =0,...,.L — 1

.

k
L

(n+1/2) (3.37)

The mass terms are given by

-1 1<s<istl
m(s) = sinh(uo)0(s);0(s) = ¢ +1 Ll < s < L, (3.38)

0 s=1,251
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Now there are two domain walls, and two defects, one at s = 1 and one at s = %
The energy eigenvalues of eqn. 3.36 come in 4 pairs each corresponding to an eigenstate

bound to one of the defects and of opposite chirality.

Finally we want to couple to an auxiliary field. Unfortunately, regardless of whether
the auxiliary field is constructed with an extra s-dimension or not, the theory is vector
like again, and not the chiral theory that was initially envisaged. However, the electro-
weak sector of the Standard Model was the target chiral theory. Shamir and Furman
[28, 29] proposed using the method for QCD, a vector-like theory, and provided a slightly
different formulation that is the most often used, the most salient point now being that it
satisfies the Ginsparg-Wilson relation. The lattice mass distribution now has the defect

on the boundaries rather than the interior walls.

M 0<s<lL,
m(s) = * (3.39)
0 s=0,L,

We present that formulation and similar formulations in the following. It is most easily
viewed in a reduced matrix form in the extra dimension, where Dy, = Dy, (—M) contains
the domain wall height, M, and m is a bare mass which we require to be introduced

into the formalism to take the m — 0 limit.

Dw+I —P_ 0 mP,
Dspw(m) = B ° (3.40)
0 -P, Dw+I -P_
mP_ 0 P, Dw+I

where we identify the fermion on the wall with

Y(z) = Py¥(z,N)+ P_¥(z,1)

i _ i} (3.41)
Y(z) = ¥(z,1)Py + ¥(z,N)P-

‘We consider this the standard formulation which has the standard mass term, the Shamir
kernel, and the hyperbolic tanh sign approximation. To consider the variants we split
eqn. 3.40 into component massive and non-massive parts, Dpy (m) = DODW +D3y, and
with the introduction of coefficients w, into the diagonal of the kinematic component,
which are set to 1 for the usual hyperbolic tanh (HT) formulation.
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wDl+1 —P_ 0 0
—-P Dl+1 —-P_ 0
Dlpw = vl (3.42)
0 P, wDl4+1 —P_
0 0 —P,  wiDl4T1
0 0 0 P,
0 00 O
DM = 3.43
SDW 0 00 0 ( )
P00 0

Then without adjustment to the kinematic component, we may choose the twisted mass

form
0 0 0 iygPy
0 00 0
DT, =iy DT = 3.44
SDW V3L spw 0 00 0 ( )
ivsP— 0 0 0

The subscript SDW denotes the Shamir kernel formulations. We also consider the Wil-
son kernel formulations, subscript W DW |, introduced by Borici [30], and made optimal
by Chiu [31], the latter introducing non-unity coefficients chosen to match the Zolotarev

approximation in the overlap operator.

wiDl+1 (Dl -T1)P_ 0 0
Do | (@Dl =1)Py  weDl+T  (wpDl-T)P_ 0
wbw 0 (wsDl —T)P,  wsDl+1  (wsD! —I)P_
0 0 (wsD! —1)P,  wyDl +1
(3.45)
We denote the T1 mass terms, mD{,%L, which are correspondingly given as
0 0 0 —(wDl-1)P,
0 00 0
D e = 3.46
WDW 0 0 0 0 ( )
—(wyDl—1)P_ 0 0 0
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0 0 0 —i(w Dl —1)Pyys
0 0 0 0
i = o 0 o 0 (3.47)
—i(wsaDIl —I)P_~v3 0 0 0

The identification with the fermion fields must be adjusted from eqn. 3.48.

Y(z) = P¥(z,N)+ P_¥(z,1)

_ _ _ (3.48)
¥(z) = —¥(z,1)(w D! — )P, — ¥(z, N)(wy DI - I)P_

The domain wall fermionic partition function Zp = [D[¥,¥,U] e SF [‘I’"i"U], with
Sk = [ ¥Dpw(U]¥, includes not only the fermion field identified in eqns. 3.41 and
3.48 but also Ls; — 1 non-physical fields spread throughout the extra dimension. While
measurements may be taken with identification of the physical field we need to add so
called Pauli-Villars fields to the action to make a partition function which corresponds
to a single field. This is necessary for the correct production of auxiliary fields as shown

in chapter 6. We require

Z = /D[W’ i[, Q’ 6, U] e_SF [‘Il"iliU]_SG [U]_SPV [@,6’[]] (3.49)

where the Pauli-Villars action Spy can be defined in terms of the domain wall operator

with mass set to 1.

Spv[®,8,U] = / ®Dpw[U](1)® (3.50)

T

We note that these pseudo fermions ®, ®, are complex valued rather than being Grass-

mann numbers, and hence are bosonic, with the property that

1
[D[¥, ¥,U] el- YPowlUI¥
-t
~ det[Dpw]

(3.51)
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3.7 Overlap Dirac Operator

The overlap operator was developed in a series of papers [32, 33] following on from
Kaplan’s orginal domain wall paper [21], before finally finding its modern form by Neu-
berger [22] in the lattice functional formalism. It was developed in the Hamiltonian
formalism and a review of the initial development is provided by Jansen [27]. It is re-
lated to the domain wall operator, exactly when the bulk formulation is used®. It was

originally given by (although without the mass term), with lattice spacing a =1,

Doy =+ “;m Lyl ;mv (3.52)
V = Dw/(D}, Dw)~*/? (3.53)
Dy = Dy (—M) (3.54)

Equivalently, since Dy = ’yg,D;ﬂV’ys,

1+m 1—m
Dor, = 5 + 5 ~Yssgn(Hw) (3.55)
Hw = vsDw (3.56)

where 0 < M < 2 (the mass term in the Wilson Dirac operator, eqn. 3.54) is here
an overlap regularisation parameter? corresponding to the domain wall height, and the
sign function is defined by sgn(X) = X (X2)~'/2. Eqn. 3.56 is the Wilson kernel . The
kernel is not unique, and Hy may be replaced, most notably by theShamir kernel Hg

where

Hs = ysDw(2 + Dw) ™! (3.57)

and the Mobius kernels which comprise combinations of the two. We focus on the Wilson
and Shamir kernels. In 2+1d we may replace the 75 with 3 [35] so that we have the

structurally identical formulation

1+m 1—m
Dor, = 5t Yasgn(Hyy ) (3.58)
Hw = vsDw (3.59)

‘We also have the alternative mass formulations

3The bulk formulation uses the same auxiliary field on every slice in the extra s-dimension.
*There is topological significance to this parameter not considered in this work, as discussed in [34]
for example.
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DZ’{’S _ 1+imys LV 1 —imnys (3.60)
2 2
Dims — 1+ ;m'Ys L ;mmr, (3.61)

which should be physically the same. Although V is y3,75-hermitian, the new mass terms
are not (since 7 makes them anti-hermitian). Note also there is a numerical difference

whether the mass term is left or right of the V term.

An approximation to the sign function is necessary, and typically a rational function is
used. After the approximation is applied the operator is sometimes referred to as the
truncated overlap operator, although we will continue to refer to the approximation as
the overlap operator.

Similarly to the domain wall operator, it is applicable to vector theories and has been
applied extensively to QCD. As such it has been designated as the vector overlap operator
[36], whereas the same authors introduce the chiral overlap operator. The chiral overlap
operator exploits further similarity with the domain wall operator which is more general
in the sense that the auxiliary field may vary in the extra dimension. The chiral overlap
operator uses this flexibility to have different auxiliary fields associated with left and
right chirality modes.

We see that the overlap operator satisfies the GW conditions, eqns. 3.19 and 3.20

1 1 1 1
D 4 Dvyg = —+ =V -+ -V
1D +Dys=1(5+5V)+(G+5V)n
vV Vv 1
=BtnBy+toNB= 5(’73 + 73V + Vs +3) (3.62)
73

1 1
=2 +5V)(o+ %V) = 2Dy3D

2

The same holds for the 75 formulation, and also

v3v5D — D375 = y3Diys — Dysys (3.63)

= Dy3ys — Dy3ys =0

However, it is not so clear that they satisfy locality. However, we will numerically

demonstrate this in chapter 7.
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3.8 Direct Calculation of the Overlap Operator

The computational difficulty in calculating the overlap operator is in the sign function.
Fortunately it can be expressed, and calculated approximately, as a rational function,
including as a factored expression or as a partial fraction. The partial fraction formula-
tion may be derived from the factored form. The sign function can be expressed as [37],

where the coefficients are to be determined.

m (3.64)

and hence we have

_14m 1-m [1;(vsDw)? — ;I

2 2 Y11, (vsDw)? — d;1
: (3.65)
1+m 1-—m IL; DywDw — niI
Dor, = ks cDw T
2 2 [1, Dly Dw — d;1

J

The denominators may be evaluated, for example, successively with a conjugate gradient
algorithm, or simultaneously with a multishift conjugate gradient algorithm [38]. The
factored form above may be reexpressed as a partial fraction for improved numerical

stability, in which eqn. 3.65 becomes

1+m 1—m

Dor, = 5 - 3 cDW(ao+zj:

Y%
D}, Dw — d;I

) (3.66)

The product ranges are i = 1,...,N;, j = 1,...,N;. ag is one if N; = N; and zero
if N; < N;. To evaluate with the Shamir kernel, Dg = Dy [2 + Dy]™1, with D]; =
DI,V 2+ DI)V]_I, which corresponds to the domain wall formulation eqn. 3.42, we may

use

_ Dw : Di,  Dw [-i/2
2+ Dw 2+D;',V2+DW

L > a;(2+ Dw)[D}y Dw + (2 + D}y )di(2 + Dw)] (2 + D}y)

Vs

~ 2T Dw
(3.67)
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3.8.1 Hyperbolic Tangent Approximation

The coefficients must be chosen. A simple approximation to the sign function is given

by the hyperbolic tangent (polar) approximation [39].

1—z\n
sgn(z) ~ tanh(ntanh~'z) = Tr (1”)” (3.68)
14z

The approximation becomes exact as n — oo. Note for matrices (1 + z)/(1 + y) would

be ambiguous if x and y do not commute. This becomes

I[1}/3 ! (22 +(tan27)?]
" Ry "R (3.69)

n-1)/2 _ [¢®+(tanil)?]
H( 4 [:2+(tan$%2)1)2] n odd

sgn(z) ~

and the partial fraction expressions

(G+1/2)my2
) 2z ~n/2—1 1+(tan )
gn(z) ~ { =2 Dyl —n_z2+(ta.n(’+‘/2)")2 even (3.70)
n

FIGURE 3.1: Hyperbolic tangent (polar) approximation to the sign function with dif-
ferent n. Left panel: Sign Function. Right panel: Error.
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FIGURE 3.2: Hyperbolic tangent approximation to the sign function.

We see in figure 3.1 that the approximation is roughly symmetric about = = 1, and that
the error, in the right panel, remains large away from = = 1 even for relatively large n.
It is strictly symmetric about 0, as shown in fig. 3.2 with the approximation vanishing
as it approaches zero for both even and odd cases, and as * — oo for even n cases.
However, it seems worthwhile choosing even n since the odd n approximation diverges
as T — 00

We can use the scaling rule, eqn. 3.71 [40], to keep the accuracy in the lower range, and
forgoing it in the upper range (or vice versa). Significant reductions in n can potentially
be achieved, improving the speed of calculation of the approximation. Fig. 3.3 shows
the scalings where N has been reduced from 200 to 50 via scalings of 1 to 4. The error

at the lower range remains nearly identical to the higher n counterpart.

sgn(z;n) ~ sgn(szr;n/s) (3.71)

1

01

0.01 L

0.001

sgn

& 0.0001 [
le-05 |
1e-06 |

1e-07 |

1e-08 L
0.001 0.01

FIGURE 3.3: Scaled hyperbolic tanh (polar) approximation to the sign function with
different scale factor s. Left panel: Sign Function. Right panel: Error.
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3.8.2 Zolotarev Optimal Rational Function

We seek an odd rational approximation over the positive and negative ranges [ry, 9] and

[—79, —71]. Zolotarev [41] found optimal such rational approximations which we denote

Zs[g};”] (z) =~ sgn(z) (3.72)

The approximation is optimal in the Lo, norm in the specified range, i.e. no other ratio-
nal approximation exists over the specified range that does not have a larger maximum

error somewhere in that range.

Herein we follow [31, 37, 42-44], which provide derivations. At the crux of it is the
Jacobi elliptic sine function sn(z, k), and what we call the Zolotarev elliptic function,

with coefficients given in the algorithm box below

sn 2
sn(z/M,\) 1 N1 en(zk)

—_— = — — 3.73
sn(z, k) Mm=11_5“(c’;_’k)2 (3.73)

m

from which we we can find the continuous real rational function by considering the
contour 2(t) = tK for t € [0,1] and 2(t) = K +i(t — 1)K’ for t € [1,2], where K = K (k)
and K’ = K (k') are the complete elliptic integrals, defined in the box below, and k' =
(1 — k)1/2. Specifying = = sn(z(t), k) gives

|2
sn(z/M,\) = %H om (3.74)

The approximation may be stated as in the following box:

The Zolotarev sign function applies over a designated range [r;, 73] and approxi-
mation order N. Then if N is even let, N;, = N/2 — 1 and N; = N/2, otherwise
if N is odd, let N,, = (N —1)/2 and N3 = (N — 1)/2. Let the Zolotarev sign
function be given by

N, 2
Hmﬂ=11 - Ia

Zlrunl(p) = Z[LAl(z) = mz—f—— (3.75)
Hm:l 1- cn
where 5 = :—f and r = :—1 Then we have the factored expression
T1,T Hz‘n:l (a‘m — 72)
Zloral(r) = dr (3.76)

L 1(dm — r2)

m=
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Ng 2
withd = »lg=1Tim o — 2. d = r2¢ . Further, it can be expressed via a
vl ngl chm . 1"m
partial fraction decomposition

Ny

T1,T bm
ZEurlr) =dr(bo+ Y
m=1

7'2+dm

) (3.77)

where b,, must be evaluated and d,,, are the denominators of the factored expres-

sion.

Calculation of the Zolotarev sign function coefficients is then carried out as follows:

Set range parameters
1
k=—
B (3.78)
K =+v1—k
A=K'/N (3.79)
Set complete elliptic integrals
1
K — / dt
o (1—1t2)(1— k2t2)1/2 (3.80)
o /1 dt '
Jo (1—12)(1 — kt2)1/2
Set constants -
M = R(1) (3.82)
sn(K, k)sn(A, k'
= (2 sl e ) - (3.83)
1 —dn*(K, k)sn2(A, k)
M
A= —— 3.84
C R(C?) ( )
where N
L l===
R(z) = % (3.85)
m=1 L= a
and
—sn?(2mA, k')
('4” —
1 —sn2(2mA, k') (3.86)
Jo— —sn?((2m — 1)A, k') '
™ 1—sn2((2m — 1)A, k')

Fig. 3.4 shows the errors of the two approximations. The Zolotarev errors are, in a
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sense, uniform across the specified range, whereas the HT errors, while very small around

x = 1 struggle with large errors away from unity. In fig. 3.5 we see the distribution
of denominator coefficients of the two approximations. The left panel shows the strong
clustering and narror range of the HT method contrasting with the much wider range

of the and more even spread of the Zolotarev method.

err

FIGURE 3.4: Errors for approximations to sign function. Left panel:

denominator coefficient
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FIGURE 3.5: Distribution of denominator coefficients for approximations to the sign
function with different n. Note the wide difference in z-axis ranges. Left panel: Hy-
perbolic tanh. Right panel: Zolotarev approximation.

The domain wall formulation requires knowledge of u;, the roots of Z,

extrema and roots are calculated via

[r1,72]
sgn

(x) — 1. The
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Extrema: Form e (1,...,N +1)
T =111 — K’sn?((m — 1)A, k)~ 1/2 (3.87)
Roots: Form € (1,...,N)

O ETE TN
Yo = Man™( (YR (3.88)

U = (1) 50 +2[Z]A

T = 11(1 — K sn?(ypm, k')~ (3.89)

where [] is the lowest integer value and asn is the inverse of the Jacobi elliptic

sine function.

Fig. 3.6 shows error plots, extrema and root locations over an exemplary range.
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FIGURE 3.6: Roots and extrema of the Zolotarev approximation with N = 12.

The Zolotarev algorithm was optimal across the ranges [—r2, —r1] and [r1,r2]. We may
further seek an optimal rational function across just [ri,72]. The Remez algorithm is
an iterative technique, also based on Chebyshev’s theorem, which has no requirement
that the function be odd, and will find more optimal solutions should they exist. As it
turns out, it seems that the Remez algorithm does identically give the optimal Zolotarev

solution, and no improvement.
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3.9 Relation Between Domain Wall and Overlap

The equivalence of the domain wall and overlap formulations was understood from the
beginning. Early in the development of the overlap operator it was noted [33] that
the domain wall of [21] could be developed from their formalism. We show the formal
equivalence of the methods via their shared determinant in appendix A.3 following [39]
and [35]. Below we just quote the most pertinent relations from [40] to highlight the full

matrix equivalence. With the compacting matrix

P P, 0 0 P 0 0 P,
0 P P 0 P. P 0 0
C = * ct=c1l=|1 (3.90)
0 0 P P, 0 P, P 0
P, 0 0 P 0 0 P. P
we have
DOL(m) 0 0 0
—(1-m)AR 1 0 0
Kpw = C'D7Y (1) Dpw (m)C = ( - 3.91
—(1-m)A} 0 0 1

[35] has further shown the equivalence for the twisted mass terms. It is important to

note that the twisted mass formulation is not used for the Pauli-Villars terms, so that

Ky = C' Dy, (1) DRy (m)C (3.92)

Hence (Kpw¥)1 = Doy when ¥ = {¢,0,--- ,0} and since we have

(Kpw) ™" = C1(Dpiw) ™ (m)Dpw(1)C (3.93)

we may also calculate the inverse of the overlap operator indirectly with (K BéV\Il)l =
Daiw. We sometimes refer to these calculations as indirect calculation of the overlap
operator rather than calculation of the domain wall operator.

3.10 Further Formulations

There are alternative algebraic formulations using an extra “dimension” and exploit-
ing the Shur complement to achieve the same evaluation of the overlap operator [39].

Although we don’t explore them further it is useful to be aware of them. The Schur
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complement of a block matrix is defined via its LDU decomposotion M = LDU, to be

the bottom right element of the D component

M:<A B)z( I 0) (A 0 )(I A—IB> (394)
C D ca' 1)\o p—ca'B)\o I

This is given by

S=D-CA'B

(3.95)

and has the property that det(M) = det(A)det(D — CA~1B).

We may indirectly evaluate the partial fraction formulation sign(H)

=" _uH_sing

Jj=1 H2—d?
EDw 0 0 1
al
S L 0 0
0 0o 2w 1 (3.96)
0 0 S
-1 0 -1 0 R
which has the Schur complement
R+ ;II’YSDW ;12’75DW (3.97)
Dl,Dw —d? D},Dw — d3
There is also a continued fraction formulation
1
sign(vsDw ) = BoysDw + 3.98
(D) B1sDw + 51— e
W+ B335 Dy
which is the Schur complement of
B3ys Dw 1 0 0
1 B2vs Dw 1 0 (3.99)
0 1 B1vs Dw 1
0 0 1 Bovs Dw




Chapter 4

Bilinear Condensate

The bilinear condensate (&w) is the primary measurement of this work, and we will use
calculations of it to look for the critical coupling, 3., in the lattice Thirring model, taking
m — 0, and to find critical exponents characterising the behaviour of the condensate in
the vicinity of the critical point. The suitability of the different variants set out in this

chapter will be explored in the results chapters.

4.1 Measurements

We start by introducing some useful notation. With D = D[U], we define the brackets
(-)p and ()5 with integrals

(O)p = / DI, HO[¥, Flexp(—T DY) (4.1)

(©)o = [ DUlexp(~5clU)OW] (42)

We then have the fermionic part of the partition function

Zr=(l)p= /’D[\II, Ulexp(—¥ DY) = det[D] (4.3)

and the full interacting partition function

2= (Zr)g = [ DWlexp(~SalU)detiD] (4.0

Our measurements will then be of the form

33
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(0) = 5 (O)p)e (45)

which defines our use of the bracket (-).

4.2 Bilinear Condensate

‘We are most interested in the bilinear condensate, C' = (1/_J¢), herein referred to as just
the condensate. The condensate is the order parameter we choose for the Thirring model.
It is zero in the unbroken phase and non-zero in the broken phase. The continuous but
non-smooth change occurs at the critical coupling strength. The condensate is defined

by the derivative of the free energy! wrt the symmetry-breaking parameter, and is given
by

olnZ
Noting that in general?
olnZ 1 0Zf
om ~ 7'\ om e (47)

and since for Dirac operators linear in mass which we again split according to D =
D% + mD™ we have

0Zp

S = (WD Y)p (4.8)

and hence we find that the condensate may be equivalently expressed as

C = (pD™) (4.9)

To evaluate this we require

% = (Tr[D™D~']det[D]) (4.10)

and from here we use the Monte Carlo integration® with

!By analogy to classical statistical mechanics in which the Helmholtz free energy F(T') o< InZ(T)
2Derivations of equations in this section are given in appendix A.5
3As set out in appendix B.1.
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_ % > T{D" D (U] (4.11)

We observe in passing that the mass term in the Shamir domain wall formulation is
independent of U. We now turn to the particular forms for the overlap and domain wall

operators.

4.3 Overlap Condensate

We distinguish two mass variants of the overlap operator, the standard mass and the 3
twisted mass formulation, given in section 3.7, and again separate the mass terms from
the non mass terms with the notation given in eqn. 4.12. The indices j = 1 corresponds

to the standard mass term and j = 3 the twisted mass term so that

D), = DY, +mDY} (4.12)

in which we have the mass terms

1 1
DY =-+zV
OL 92 9
11
DMl —— v
oL T2 2 (4.13)
i3 3
D ik >
2 2
V =7ssgn[H]

H is given by either the Wilson kernel Hy = 3 Dy or the Shamir kernel Hg = y3Dw (24
Dyy)~ L. The trace terms to evaluated for the condensate are then given by

Cor, = Te[Dy (Do)~ = Tr[—((DOL) —1)] (4.14)

=1l
i3 +m

C3r = Te[DYE (D) = Tu[- (Dd)~ ' —1)] (4.15)

We note that a left handed formulation with the twisted mass gives the same condensate
even though DM3 (D3, )~! # DMA(D?,)~! where

DM4 _ % - %V (4.16)
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These formulations are unaffected by the choice of kernel, and derivations are given in

appendix A.5.

4.4 Domain Wall Condensates

For the domain wall formulation, the trace is more complicated due to the splitting of
the fermion onto opposite walls. Also, the formulation is dependent not only on the
mass term but also on the choice of kernel. The different fomulations have already
been described for splitting and we again use the notation D{)W = D%y + ng&,
with subscript DW replaced with SDW for Shamir formulations and W DW for Wilson
formulations, and the superscript j again corresponds to the mass formulation. In each
case the M matrix corresponds the domain wall operator, so for example in eqn. 4.17
M = D.ls' pw- The subscript indices indicate the submatrix of the extra dimension, as
illustrated in eqn. 3.42 for example. The variant components are defined in section 3.6.

Then we have traces for the Shamir kernel given by

Te[D3Dw (Dspw) '] = —(Tx[P (M~ ")n1] + Tr[P- (M ~")1v]) (4.17)

Te[D§5w (D3pw) '] = —i(Tx[Py My ] — Te[P_M; \]) (4.18)

And for the Wilson kernel we have

Tr[DN bw (D pw) '] = (Tr[(wi DI — 1 )P Mg]+ Tr[(wy DI - I )P_M{\])
(4.19)

Tr[ DY dw (Diy pw) "] = i(Tx[(w1 DI — )P MY ] — Tr[(wy DIl — 1) P_M{])
(4.20)

Derivations of these are given in [44].



Chapter 5

Thirring Model in 241D

The Thirring model [45] was introduced as a toy relativistic model with an analytic
solution in 14+1d. With considerable current industrial interest in planar materials
such as graphene, understanding of the 2+1d case is of interest both as toy model
and is of relevance to the commercial world. However, there is no analytic solution in
241d, and odd dimensioned theories have significantly different properties to their even
numbered counterparts. The model may be further considered a stepping stone towards
understanding strongly coupled QED in 2+1d. It has been suggested [3] that this is
the simplest relativistic fermi model which necessitates numerical techniques for the

exploration of the strongly coupled sector where perturbative approaches don’t work.

The Euclidean continuum formulation of the Thirring model for a single fermion field,

in which the current density J, = z"zﬁ'ypz/J is conserved, so that % =0, is given by [46]:

= = g2 =
S, ¥ = / P2 (1,0, + m)Y + 7(2/)7,‘«/1)2 (5.1)

It has a global U(2) symmetry with mass terms explicitly breaking this to U(1) ® U(1)
as set out in section 3.1. The self interacting term may be reformulated (see appendix
A.4) with an auxiliary field so that we have S[¢),¥] = Sg[¥, %, A] + Sg[A], where the
fermionic action takes the form of the usual gauge invariant Dirac term although the

Thirring action Sg[A] is not gauge invariant:

Selb, 94 = [ Erd(0, +i4,) + m)w (5.2)

1
SolAl = 32 / @z A2 (5.3)

This formulation allows the Monte Carlo integration technique already introduced (eqn.

2.18) to be used in calculations. After discretisation we have the dimensionless coupling

37
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strength parameter 3 = a/g?. We keep the lattice spacing fixed at a = 1 and will vary
B in its stead.

We will will seek fixed point parameter values, described in the next section, in the

L. In the case of the Thirring model, we have two pa-

lattice theory parameter space
rameters’ m and 3. We a priori know that m ¢ = 0 and will seek ;. Fixed points
correspond to continuum theories, that is taking a — 0, although methodologically we
will control a through 8. If 0 < By < oo then it is a critical coupling, 3. = By, and
it is associated with a phase transition. At such a phase transition there may be an
observable which changes phase.®> Such an observable is an order parameter and we
wish to characterize that order parameter. Lumping together [47] higher order forms?
from Ehrenfest’s classification of phase transitions, we distinguish between first order
phase transitions wherein the order parameter is discontinuous at the critical point, and
continuous phase transitions in which some higher derivative of the order parameter is
discontinuous. The characterisation will be with power law functions (functions of the
form f(a,b) = a®b®) expressed in an equation of state (EoS) around the critical point.
For the Thirring model we will concentrate on the condensate C' = (¥1)) as the order
parameter and will seek some form C(m, ) which holds close to the critical point. To
this end we continue on a path set out in the 90s with the Gross-Neveu model [48], and

later the Thirring model [2], and will utilise the EoS developed therein.

The change in order parameter at the critical point is caused by the breaking of some

symmetry and is called spontaneous symmetry breaking.

Early numerical work on the 2+1d Thirring model was carried out with staggered
fermions [49]. More recent work has included SLAC fermions [4], and domain wall
fermions [50]. A summary of related work in the area is provided in [6]. Somewhat
problematically, the different methods have found different critical flavour numbers.
Simulations with staggered formulations lead to 3 < N, < 4, and the SLAC formu-
lations have N, < 1. Domain wall results indicate 1 < N, < 2. In this work we
continue with the domain wall/overlap formulation, motivated by the intention to cap-
ture the U(2) symmetry on the lattice, in contrast to staggered fermions which break
from U(1) ® U(1) — U(1), but also with a local formulation in contrast to the SLAC

fermions.

5.1 Fixed Points, Power Laws, and Critical Exponents

Although it is usual to consider the lattice spacing fixed in lattice calculations, it is

intuitive to consider the continuum from the ¢ — 0 limit. As the lattice spacing a

!The parameter space is just the set of lattice theories covering all possible values of the parameters.
2We have already specified the number of fermions, N r =1, and do not consider it a parameter here.
3The critical point of water is a counter example of this.

4The lowest order of discontinuous derivative gave the classification order.
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varies, if the parameters of the theory are fixed, 8 and m in our Thirring model, the
physical measurables will change. That is to say, changing the lattice spacing changes the
physical theory. For small enough a, to keep the same physical theory we must change
the parameters in accordance with a. That is we require 8 = B(a), and m = m(a). To
be independent of this change requires g—f = 0 which defines a fixed point®. We will
find this fixed point in the continuum limit as a — 0. Thus we are saying that at a
fixed point the constants of the theory (which govern the physics) are independent of
the lattice scale. This is equivalent to the usual perturbative renormalization process

[48]. In the Thirring model we have the critical parameters m. = 0 and we want to find

Be.

A consequence of scale independence is that ratios of measurements at corresponding
ratios of scales should be equal. Denoting a measurement M using a lattice lagrangian
L[B] with a single parameter 3 (ignoring m for illustration), close to a critical value

B = Be, this can be expressed as (with the colon : meaning such that)

MIL(B: B~ fe=0)] _ MILB: S fe=d)
MILB:B—Pec=ac)] M[L(B:B—Bc=ad

(5.4)

M can then be expressed as a power law M o (8 — 66)6 since if ff 52 . Tf(% then

f(z) 29. Since we can find this power law through curve fitting we can then extrapolate

to find the measurement of the continuum limit.

In the region around a system with dimensionless critical coupling value j3., the hy-
perscaling hypothesis [51] asserts that the only significant parameter is a length scale
& of the order parameter. For the Thirring model we use the condensate as the order
parameter. Letting ¥(z) = ¥(z)¥(z), & = (3., X(z))/V, the condensate may be ex-
pressed as C = (X), and we define the associated correlation length £ such that for large
|z —y[> &

(S(2)5(y)) me-'w'/ﬁ (55)

Then the length scale has an associated power law with exponent v as the critical

coupling strength is approached.

§ ox |.B - ﬁcl_y (56)

However, it is divergent at 3.. At the critical coupling the correlator takes a pure power

law form

5Note this not the beta function relating coupling strength to energy scale.
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1

(Z(z)Z(y)) W (5.7)

which defines another critical exponent 7. These two critical exponents are the physical
properties of the system that are the ultimate goal of our calculations. Given the diver-
gence of the length scale at the critical coupling we must work with calculations in the
vicinity of the critical coupling. It is easier to calculate the order parameter than the
diverging length scale directly, and we shall do this in conjunction with an equation of

state in order to evaluate the critical exponents.

5.2 Equation of State

From RG equation reasoning [2] we have the general macroscopic equation

H(M,t,1) ~ M°F(tM~1/Pm) (5.8)

where H is some field that breaks the symmetry explicitly, M is the order parameter
broken at the critical point, ¢ is the distance from the critical point, F is a universal
scaling function, and the 1 in H refers to the lattice regularization. For the Thirring
model, the external force H, is replaced with the mass m, the order parameter M is the
bilinear condensate (zﬁzp), and the coupling strength § = a/ g2 is the critical parameter,
sot = 3 — .. Then we have

m = (@)’ FI(B — Be) ()P (5.9)

and after taking the Taylor expansion of F we have the equation of state (EoS)

m = A(B — Bo) (o)’ P™ + B (Py)° (5.10)

in which A = F(0) and B = F'(0). Considering the line m = 0, and since (1&1/})'s #0in
the broken phase, we have F[(8 — .) (&zp)_l/ 5"‘] =0, and hence

(8 = Be) () /P ~ const (5.11)

Clearly, at the critical coupling we have 8 — 3. = 0, so

m ~ ()’ (5.12)
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We can relate 6 and S3,, back to v and n via the hyperscaling relations, with d = 3:

1 1
Bm = gv(d—2+n) = 5v(1+n) (5.13)
d+2—-n 5—nq
5= = 5.14
d—2+1n 1479 ( )
and hence
5—-96
= — 5.15
=173 (5.15)
2Bm
V= —— 5.16
1+17 ( )

For Dirac operators which have the same physical content, we would expect the cal-
culated critical exponents to be the same. Hence the choice of Wilson or Shamir
kernel should yield the same critical exponents, and that calculation and comparison
is one of the objectives of this work. If so there should be some relation between
My = EoS(Buw, Cw(Muw, Bw)) and ms = EoS(Bs, Cs(ms, Bs)) so that for some functions
f,and g,

ms = f(mw, ,Bw)

5.17
Bs = g(Mw, Bw) (54

Rather than seeking critical exponents according to an equation of state [52] consid-
ers more general space of four fermi models, including Gross-Neveu interactions (1,511))2,
Thirring interactions (17,%)? as well as (¢y35¢)? and (¢¥y,,¥)? and looks at a network
of fixed points in the parameter space. Should our results not match it could be in-
dicative that such a wider model space is required in which to find a continuum theory.
The magnitude of the discrepancy might also measure the magnitude of the required
correction.

Uniqueness of universality class implied by locality [53] suggests different discretisations
should have the same continuum limit, but in a space with a multitude of fixed points

it is difficult to ensure different algorithms converge to the same fixed point.
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5.3 Quenched Generation of Auxiliary Fields and the Choice

of Measure

We want to generate an ensemble of auxiliary fields so that we can use the Monte Carlo
integration calculation of eqn. 2.18. However, the determinant of the Dirac operator
in the probability density function, eqn. 2.19, is very costly, and some insight can be
garnered simply assuming det[D] = 1. This is the quenched approach, and then we are

interested in the quenched auxiliary measure

/'D[A] exp(—Sg[A]) (5.18)

which, for the Thirring model with Riemannian measure, eqn. 2.16, and with A, = A;,,

is given by

\/‘6 /oo dAre 34
— L€ 27k (5.19)

So our sequence of auxiliary fields A™ may be generated with each value being an inde-

pendent gaussian random number A7 ~ N(0, %) This is the non-compact measure. A

compact (unnormalised) measure [54] is given by

11 / d AyePleos(A)—1] (5.20)
k —m

for which we require our sample A to be taken from the probability density function
ePleos(Ak)—1] /N where N = [™_dx ePleos(@)—1],

However, for a fermion measurement, we use either non-compact links Uy, = 1 + ia Ay,
eqn. 2.7, or compact links, Uy = €'®4% eqn. 2.8, transforming A to U for use in Dirac
operators, denoted D[Un¢] or D[Uc]|.

In true gauge field theories we want the link fields to be unitary, U(1), to ensure gauge
invariance on the lattice and hence the compact formulation is natural. It is appropriate
to use the compact measure with compact links. However, this introduces O(a) terms
into the naive lattice fermion action [10]. Since the auxiliary field of the Thirring model
is not gauge invariant there is no reason to force a U(1) link and so it seems natural
to use the non-compact link formulation for which no additional terms are found in the
lattice fermion action. Further, there are no lattice artifacts in the bosonic action of
order higher than the intended Aﬁ term when using the non-compact link. Accordingly
the non-compact measure is appropriate. There is plenty of precedent in the literature
[3, 5] for this. However, compact links and measures have also been explored with the
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Thirring model [54]. We are primarily interested in the non compact, but will touch on

the compact as well in our calculations.’

It is worth pointing out that at first glance it seems that any derivative of the compact
or non compact links should be the same in the a — 0 limit, and indeed in the weakly
coupled limit, where A is small, Ud%jgo =U Nc|%jgo, the Dirac operators are the
same, D[Uc] = D[Unc¢], and the compact and non compact measures are equivalent.
However, away from the weakly coupled region this is not the case and they constitute

distinct formulations.

5We note that the RHMC algorithm to be described in the next chapter is only formally proven for
the compact case.



Chapter 6
Dynamic Fermions

While quenched fermions have been studied extensively in the past, that was largely
due to the computational challenge of dynamic fermions, for which the det[D] = 1
assumption is not made. We will distinguish between the valence fermions - that is the
Dirac operator used to calculate measurements - and sea fermions - the Dirac operator
used in the generation of the auxiliary fields. Compromising between quenched and
dynamic fermions we may use different Dirac operators for each calculation. If they are
not the same, then the measurements are considered partially quenched. The primary
reason to do this, similarly to full quenching, is to accelerate the calculation. At best
this may be viewed as two calculationally inconsistent methods for different parts of the
overall calculation, and at worst as being a non-physical calculation. Nevertheless it is
an established practice; partially quenched simulations in QCD have been carried out
with regular Wilson fermions for the sea components, and domain wall valence fermions
for example. Changing the mass term has also been tested [10], although [55] gives an
example where the condensate measured using massively generated gauge fields in the

m — 0 limit erroneously remained non-zero.

Since we want to calculate the integral eqn. 2.14 with Monte Carlo integration, and
we cannot simply generate the auxiliary fields via the distribution functions allowed by
the quenched formulation, alternative methods must be found. Such methods include
Markov chain, classical dynamics, and langevin (stochastic dynamics) methods [19, 39],
but perhaps the currently most used method is the hybrid Monte Carlo method [56],
taking aspects of classical dynamics and the Markov methods. The rational hybrid
Monte Carlo [57] (RHMC) method allows for the calculation of any number of fermion
fields rather than the necessarily even number of fermion fields of the original hybrid
Monte Carlo (HMC) method.

44
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6.1 Markov Chain Monte Carlo Generation of Auxiliary
Fields

We want to generate a sequence of independent auxiliary fields A from which to derive
the Dirac operator link fields U used in the Monte Carlo integration of our lattice
measurement, eqn. 2.18. For a given action S[A], we want to find a distribution A with
probability distribution P[A] o e~SM] This is done via Markov chain (Ao,...,An).
The essence of a Markov chain is simply that the generation of the next stochastic
variable in the sequence is dependent only on the previous value and not the entire time
history. [39] gives more details and proofs of the underlying maths, but the resulting
Metropolis algorithm is

1. Choose Ay.
2. Loop forn=1,N

e Choose some A’, according to any probabilistic rule which ensures that
all allowable A fields may be achieved after a finite number of steps
(this is ergodicity).

e Assign A™ according to

A with probability min{1, exp(—S[A’] — S[A"1])}

A" =
A™1  otherwise

For N large enough, Ay will take the specified distribution oc el regardless of the
choice of Ag and we have created an independent A field for the Monte Carlo integration.
To ensure the convergence of the AV field to a fixed probability distibution, it suffices
to have detailed balance, also called time reversibility. Some more details are given in
appendix B.2. In practice one does not choose a new initial field Aq for each new field
to be generated, and we take our fields from a single extended Markov chain. Further,
the fields extracted from this chain may be correlated but there are methods available

to work with correlated data.

6.2 Hybrid Monte Carlo Generation of Auxiliary Fields

We want a good way to choose A’. The most utilized method is currently to adopt a
non-physical hamiltonian dynamics step, specifying the hamiltonian H = %P2 + S[4],

and then march according to
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. oH
A= = P (6.1a)
. 0H  0S[A]

P=—34=""a4 (6.10)

The time marching scheme must be time reversible to satisfy detailed balance. Further
symplectic integrators are bound to surfaces of constant H to within discretisation errors.
To this end the leapfrog method! is used to discretise the time marching. Here that is
if A is evaluated at ¢t = iAt, then P is evaluated at t = (i + 1/2)At. It is possible
to evaluate the force term, P, when we use an effective action Sefs(A) which has real
numbers rather than the Grassmann numbers of the original action. A™~! is known
at the beginning of each hamiltonian dynamics step, except for A? which must be set,
either as a random distribution or fixed to zero. Each member of P must be set to a
random gaussian distribution at the beginning of each step. This is the hybrid Monte
Carlo method introduced in [56].

1. Choose Ay
2. Loop forn=1,N

(a) Initialise ¢, and Psier+ With gaussian random variables.
(b) Set Asiart = An—1 and evaluate Ho = H (¢, Pstart, Astart)-
(¢) Loop for t =1,T

i. March P and A with leapfrog scheme.

ii. Check if loop ends.
(d) Evaluate Hy = H(®, Popnas Aend)

(e) Monte Carlo acceptance step A, = A,y with probability
min{1,exp(H° — H')}, otherwise A, = A, _1

Note however, now the probability in the acceptance step uses the artificial H rather
than the original action S, since the fixed point distribution of the Metropolis algorithm
now includes the hamiltonian momentum variables P. However, the marginal probability

distribution of the auxiliary field remains e—° [A],

6.3 Effective Action and Pseudofermions

Again, we need to remove the Grassmann variables from eqn. 2.3. We will replace the

fermionic action SF[1/_1,1/), U] with an effective action S.fs[¢, U] which we can use with

1 . . . q'_""’1 _q'_‘_l oq™
For the advection equation given by SAT + 5o =0
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the HMC strategies [58].

Since the Grassmann integral can be recast (assuming M is positive definite) with com-

plex valued pseudofermions ¢ via

/ Dy, Blexp(~FMp) = / Do, 6 lexp(~6' M~14) (6.2)

we will have the have partition function

7= / DIAID[$, 6'] exp(—Seys16, A] — SclAl) (6.3)

in which the effective action for 2 species of fermion is given by the real valued

Sets16,6,U] = SelU] + 561 (D] D)) 6 (6.9

We have used M = (D[U]'D[U])~! where we have exploited det[D[U]] = det[D'[U]]
to ensure positive semidefinite eigenvalues, since the eigenvalues of y5D[U] are real
and D[U] has ys-hermiticity. These attributes may not be true in general but are for

operators satisfying the GW relations. For Ny = 1 we want

Sets16,6',U] = SolU] + 36 (D[] DY) 26 (65)

corresponding to partition function

2 = [ D) exp(-SalUaet|(D' IR (65)

¢ is initialised at the beginning of each trajectory with complex gaussian distribution

P(¢) ~ exp(—%¢2).

6.4 Effective Domain Wall Action

Denoting the domain wall fermion operator with bare mass m, M(m), and incorporating
the Pauli-Villars components for the sea fermions gives D[U] = M (m)M (1)~! so letting
the two fermion form be DD, where we have dropped the explicit dependence on U,

we have
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_ / DIU] exp(—Se[U])det [M* (1)1 Mt (m) M (m)M (1)1 /2

=/D[U] exp(—Sg[U])det[(MT(1)M (1))~ (M 1 (m) M (m)) /(M1 (1) M (1)) ~/*4]
(6.7)

Hence the effective action is given by

Sersl6, 81, U] = SclU] + ot (MT(1)M (1))7 (M (m) M (m)) =2 (M (1) M (1)) )¢
(6.8)

as given in [46].

6.4.1 Force Terms

‘We need to evaluate 865

A

eqn. 6.1b, for the hamiltonian evolution step. The matrix
derivative 44— = — A~ I%A_l is useful in the following. In the Thirring model we have

for the auxﬂlary field

9SglA] _ 2
0A;, g2

Az, (6.9)

For the fermionic term we have

s _ ot S(MtM(1))1/4

5Aa, A, M)A W) e

(MTM(m

) 1/2 M‘fM 1/4
S () s

+otMtM(1 )1/46

1/20(MTM (1) )1/4

+ ot (MM (1) /4 (MM (m))~ AL
T,p

(6.10)

S(MTM (1))

S (MM ) 2 M (1) )

= 2Re[p'

MM (m))~
54z,

+ gt ety - (MPM(1) Y9

Denoting
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¢ =(M*M(m))/"¢

_ R 6.11
¢ =(MtM(m))~1/?¢ (¢4
we have the much more benign looking
6S S(MTMQ)Y4_ . (MM (m))~1/2 .
— PO A f
4., 2Re[¢ A, o+ 5., [0} (6.12)

The rational hybrid monte carlo method [57, 59] evaluates these fractional powers as par-
tial fraction expansions, the coefficients of which are obtained with the Remez algorithm,

an implementation of which is provided by [60]. We have the expansions

(MM (m))* = ag + Z m
S(MM(m))® 5 1 (L)
A, Z Y54, MTM(m) + B;
g 1 _ \-10(MTM (m) + B;) .
6Ag, MTM(m)+B; BT 0 Az s /(3;)131)
O(MTM(m)+B;) OM(m) oM (m)
oA, = Mf(m) oA, oA, M (m) (6.15)

Ultimately the domain wall force terms boil down to the force terms of Wilson Dirac
operator. If the Wilson kernel of the domain wall formulation is being used, then extra
force terms must be included to account for the off-diagonal terms in eqn. 3.45.

6.4.2 Dirac and Wilson Force Terms

We are looking for gST’;%. For the (massless) naive part

d o S o
SF['w, "/_1, U] — Z Tﬁ(n)(z YVu Uﬂ(n)w(n + /l') — gﬂ(n — H)Wf(n — /l')) _ 'J’DO";[)

neA p=1

(6.16)
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For the non-compact links we have (remembering Al = A, since A is real)

tAun - iA, (n— o)) w(n — i
SelAl = 3 fm)(" e LH ANV ) = (Lt idy (= 1) (o — )
neA p=1
(6.17)
and so
giFEA] @ (@) Wit (z + 1) + P(z + ) uit(2)) /2 (6.18)
i
i
gi’,fEAi = =i (@)t (z + i) + V(z + L)1 (z))/2 (6.19)
and for the compact links we have
4 giAum)y(n e (n — f)tep(n — i
Srld) = Y d(m) (Y S A = )
et (6.20)
% = (1/_)(1)7”z'ei'4u(”)¢(g; + ) + o(z + ﬂ)’yﬂie_i“‘“(z)w(m))/g
and the Wilson part
Srw (.9, U] = —3 Z (n) Z Y (n+i)—2¢(n)+U_,(n)Y(n—p)) (6.21)
neA =1

For the non-compact formulation we have

SrwlA] = an)(z(uw(n Y+ ) = 26(m) + (1 + i (m— )10
nGA
ol = 3 0(@)iv(a-+ i) iz + (o)
(6.22)

n|— 1))

and for the compact formulation we have
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d
SrwlA] = —3 3 B O)pn -+ 7) — 26(m) + )0 — i)
neA p=1
e Sk = 3B @+ ) = P+ e (o)

(6.23)

6.5 Effective Overlap Action

It is interesting to note the step which separates the force term of the domain wall
formulation from the overlap formulation. Although the force terms are different the
measurements should still be identical between the methods in the Monte Carlo integra-
tion limit. The question would be whether there is any difference in acceptance rate or
other properties of the hamiltonian dynamics step. For the overlap action we have the

partition function, identical to eqn. 6.6

Z = / D[U] exp(—Sg[U])det[Dor (m) D), (m)]/? (6.24)

and for which we have the effective action

Sersle, 81, U] = ¢} (Dor(m) D}, (m)) /¢, (6.25)

In order to directly recast this in a domain wall formulation we use q~5 = {¢1,0,...,0},
and recall Kor(m) = CTM~1(1)M(m)C, eqn. 3.91. Then

Serfl6,01, U] = ¢t (Kor(m) Kb, (m)~1/%¢
= ¢ [T M1 ()M (m)M T (m)(MT) L (1)C] 26 (6.26)
= ¢ (ChHY2(MT (1) V(M (m) M (m))~/2(M (1)) /2 CV/%6

And so comparing with eqn. 6.8 we see the alterations which facilitate the use of a
symmetric matrix inverter. The C matrices can be dropped since they just recombine

to make a new set of random numbers.

1 (CH2(MH (1) — gl (MM (1))

(M(1))Y2C2§ — (MM 4G (6.27)




Chapter 7

Locality and the GW error

A code has been written in Fortran implementing the overlap and domain wall operators
set out in chapter 3 with which to explore some of their properties. We provide some

validation of the code before looking at the locality and the GW error.

7.1 Validation

Fig. 7.1 shows the L, convergence of Dirac overlap operators (eqn. 3.55 and variants)
with a fixed auxiliary field, and a fixed field ¥ to apply the operator to. With j being

the Lg value, for direct evaluation we use

err; = |D]'l/) — Dj_2¢|°o (7.1)

For indirect evaluation of the overlap operator utilising the domain wall operator, eqns.
3.91 and 3.92, we have

err; = |v; — vj—2|o (7.2)

where v; = (D}¥;)1, and ¥; = {9,0, ..., 0}, so that v is the same size as ¥;. D5 = Kpw
or D5 = KM3.

The error of the Shamir operator is seen to converge more quickly than for the Wilson
operator in both HT (hyperbolic tangent) and Z (Zolotarev) cases, the latter converging
much more rapidly with Ls as expected. The convergence rates are indifferent to the
choice of mass term, a slightly surprising result given our a priori knowledge [3] of the
significant improvements to be had using the twisted mass formulation M3. The bare
mass is set to 0.05. For the HT formulations, the indirect calculations should give
identical values to the direct calculations (the Shamir Zolotarev and Shamir HT are

52
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only the same in the Ly limit). This is shown in the right panel where the convergence
plots are identical for the corresponding formulations. 122 x 12 lattices were used and
the auxiliary field instance was generated, with the quenched assumption, with weak
coupling of 8 = 2. Not only do we want each formulation to converge with Ly, we want
all Shamir formulations to convergence to the same values, and all Wilson formulations

to converge to the same values, although these will be distinct. Happily, we find this to

be the case.
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FIGURE 7.1: Dirac Operator Convergence. Left panel: Direct evaluation of the overlap
operator (eqn. 3.55 and variants). Right panel: Indirect calculation of the overlap
operator through Kpw (eqn. 3.91) and K33 (eqn. 3.92)

7.2 Locality of Overlap Operator

Overlap and domain wall fermions operators in the Ly — oo limit obey the GW relation.
In order to recover the U(2) symmetry in the continuum limit ¢ — 0, we must have
the GW terms aDv5D (eqn.3.19) and equivalently the transform terms % (eqn.3.21)
vanishing in the same limit. A sufficient condition for this to be the case is the Dirac
operator being exponentially local, which also ensure the uniqueness of the continuum
limit [53]. The overlap operator is a dense matrix and manifestly non-local and hence
exponential locality is certainly not obvious. Proof that it is has been given for the
overlap operator in 3+1d in the weakly coupled region for QCD [53], and numerical
support was also provided. The proof depends on the positive real boundedness of
HTH, where H is the kernel of the sign function, and makes a separate case for when
the smallest eigenvalues go to zero. However, the upper boundedness stems from the
unitarity of the gauge links U = €. However, with the non-unitarity U = 1 + i, there
is no such bound. Further, we are considering a strongly coupled region. Considering
these factors, it is not inevitable that locality will hold near a critical region, nor in an

unbounded model of different dimension.

To recover continuum U (2) symmetry as a — 0, we require
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; aD .
) =t (7.3)

To see that exponential locality is sufficient to achieve eqn.7.3, note that

. - - D
e"m3(1_TD)\II — 610‘73(1' + ia’yg(—%) 4+ ... )\II (74)

so that recovery requires

[aDV], o =0 (7.5)

Remembering D is itself dependent on a, we have \Il; = [a_; DjiVi]aso = 0, which is
true if [Y°; D;ji¥;]a—0 < 00, which is true for any bounded ¥ if [, Dji|a—s0 < 0o, which
is true if D is exponentially local, and hence exponential locality allows recovery of U (2)

symmetry.

Now, following the numerical methodology of [53]|, we want to illustrate locality in the
critical region. We consider the effect of a Dirac operator D on a point source 7¥*
specified at an arbitrary location y on the lattice, and for a specified Dirac index, i. ie

nY*(z,d) = 0z 40i 4. Then we evaluate

¥ = Di? (7.6)

Next, we calculate the decay of the point source as

I(r) = max{[¢(z)[2 : [z —y[1 =} (7.7)

using the Iy norm for the decay value (over the dirac indices), and the [; norm to
determine the distance from the source location y. This calculation of distance has been

called the “Manhattan taxi distance”.

For locality to hold, we expect to see exponential decay at some distance from the source.
The decays of the Wilson overlap operator for quenched cases are shown for different
lattice sizes and coupling strengths in figure 7.2. The mass is non-zero in the left panel
and zero in the right panel, and suggests that the locality is essentially independent
of m, at least for small m. Increasing the coupling strength slows the decay rate, and
increasing the lattice volume shows the decay continuing to fall away further from the
source at the same rate, indicating there is not a finite volume effect preventing the

decay rate going to zero.
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FIGURE 7.2: Quenched Wilson Locality. Calculated with Zolotarev, Ls = 24, range
[0.001, 10]. Measurements taken at 8 points on each of 50 auxiliary fields. Left panel:
m = 0.01. Right panel: m = 0.

Fig. 7.3 shows the decay with compact links for the quenched Wilson case. Unlike
the compact case for which the decay rate is monotonically increasing with coupling
strength, now the decay rate increases through the strong coupling region and then

starts to decline again.
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F1GURE 7.3: Quenched Wilson Locality. Measurements taken at 8 points on each of
50 auxiliary fields, m = 0, Zolotarev range [0.001, 10]

Although quenched formulations were used in the work of [53], we really want to use
dynamically generated auxiliary fields. To this end we use fields, from a collaboration
[7], generated with the Shamir kernel, m = 0.005, the twisted mass, and the HT ap-
proximation with Ly = 64 on a 16% x 16 mesh. 3 is varied over the established critical

region § & 0.28. Plots are shown in fig. 7.4.
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FIGURE 7.4: Dynamic Shamir Locality. Measurements taken at 8 points on each of 12
auxiliary fields.

We see in the left panel that, although increasing slightly over the critical point, the
decay rate is dependent on the number of lattice points rather than physical distance,
and hence is consistent with non-locality.! Convergence to a meaningful value of the
decay rate on this small volume is seen to be difficult in the right-hand plots which show

the exponent from one d;-value to the next, by plotting f(d:)/f(d: — 1).

At the critical value, as a — 0, non locality would lead to a zero decay rate in lattice
units. Since this is manifestly not the case in any of the results, we may conclude that

this is strong evidence for the exponential locality of the operators, as we hoped.

7.3 Ginsparg Wilson Error

We also examine the Lg error of the overlap operator via the GW term, as a means to

assess recovery of U(2) symmetry. We define the GW error as, with a = 1,

errgw = (713D + Dy3 — 2D¥3D)¥| oo (7.8)

with 7 a randomly assigned field. This error should be exactly zero for zero mass as

Ly — oo. There is also what we call the GW correction term, eqn 7.9.

GWeor = |(2D73D)t]00 (7.9)

The correction should vanish as we reach the continuum limit, and U(2) symmetry
is restored. Now we concentrate on the GW error which is amenable to testing with
quenched fields, and rely on the locality of the previous section to ensure that this

correction term will vanish.

!The non-dimensional lattice spacing in the code is kept at 1. As 8 — f. the physical lattice spacing
goes to zero.
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For each 8 we use a single fixed instance of a quenched auxiliary field, consistent between
different equal-3 cases, and a fixed instance of %, consistent between all cases. With
these configurations we look at the GW error. Fig. 7.5 shows plots with the Wilson
kernel. In the left panel, using the HT approximation, we see that in the weakly coupled
case, § = 2, the error vanishes rather quickly (to machine precision by approximately
Ls = 60). Errors are also shown with non-zero mass values of m = 0.001 and m = 0.01.
The larger the mass value is, the sooner on the Ly scale the GW error is subsumed by
the mass term. With the stronger couplings, 8 = 1 and 8 = 0.5, we see that the error
decay rate is very significantly hampered, not even reaching a value of 0.01 by L, = 160
in the strongest 8 = 0.5 case. The non-zero mass terms again limit the L, convergence

according to their magnitude.

The right panel shows the error with Zolotarev approximations. The Zolotarev range
was set according the the kernel eigenvalues as given in table 7.1. A stronger coupling
of f = 0.2 is now included. As expected the decay rate is significantly improved, and
again the mass terms overwhelm the error decay. Interestingly, the decay rate does not
deteriorate further from 8 = 0.5 to 8 = 0.2, but in fact is a marginal improvement.
This is reasonable since ( is then further away from the critical value (which we will
show is ~ 0.8 for the quenched case). However, it is also explained by the difference in
instance of the auxiliary field, considering the eigenvalue range given in table 7.1. The
B = 0.5 has a larger condition number than the 5 = 0.2 case, and the error of the sign

approximation is proportional to this.

As will be shown in the next chapter, on average the stronger coupling will lead to a
wider eigenvalue range, rather than the inversion found in these instances. Of course
L convergence is not exclusively governed by the properties of the scalar sign function

approximation.
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FiGUure 7.5: Wilson kernel GW error calculated on a single quenched configuration,

generated with 8 = 0.2, 8 = 0.5, § = 1.0 or 8 = 2.0. For masses m = 0 (no point

type), m = 0.01 (circle), m = 0.001 (cross). Left and right panels have different scales.
Left panel: HT formulation. Right panel: Zolotarev formulation.
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In the left panel of fig. 7.6 a direct comparison of the Wilson Zolotarev and Wilson HT
cases is plotted. In the right hand panel, a similar plot is given, but for the Shamir cases.
Again, the Zolotarev approximation very significantly increases the error decay rate.
Further the Shamir formulations give a slight improvement on the Wilson formulations

despite having a larger condition number in the 5 = 0.5 instance.
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FIGURE 7.6: GW error calculated on a single quenched configuration with Zolotarev
and HT formulations with m = 0 in all cases. Left panel: Wilson kernel. Right panel:
Shamir kernel (82 x 8 lattice).

B | Wmin | Wmax | Wecond | Smin | S max | S cond
1 | 1.82e-2 5.72 314 9.1e-3 2 219
0.5 | 2.72e-4 7.29 26,801 | 1.36e-4 4.3 31,618
0.2 | 5.8e-4 10.77 18,569

TABLE 7.1: Wilson and Shamir kernel eigenvalue ranges and condition number
(max/min eigenvalue) for the auxiliary field used for the GW error calculations at
each f.

Referring to table 7.1 we observe that the lowest Shamir eigenvalues are half of those
with the Wilson formulation. This is not a coincidence and is reproduced on a series of
auxiliary fields in fig. 7.7 with the legend S(Wilson) referring to the evaluation of eqn.
7.10.

As ~ Aw/(2+ Aw) (7.10)

It is not a formal relation, Ag # Ay /(2+ Aw ) in general, and merely observed in passing.
It only holds when M = 1, and only for the smallest eigenvalues. It does not hold for

the largest eigenvalues.
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FI1GURE 7.7: Minimum eigenvalues for Wilson and Shamir kernels for a range of aux-
iliary fields. S(Wilson) is the smallest eigenvalue calculated according to eqn. 7.10.

Error plots are included for the compact formulations in fig. 7.8 in which a similar story
is borne out, but with greatly improved convergence rates, suggesting that the very high
L needed for U(2N) recovery in the critical region of the Thirring model have their

origin in the non-unitary nature of the link fields.
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FIGURE 7.8: GW error calculated on a single compact gauge configuration with m = 0.
Left panel: Wilson. Right panel: Shamir.

We note there are ways to estimate the chiral error which are independent of the random
-1

¢ field. [61] defines myes = % and [43] uses o = max[(D~1y5 + D7 1), ]

with D! = (qq).

The GW error gives a measure of how well L, converged the overlap operator. However,
it is limited by the magnitude of the mass term, and it is tempting to assume that in
the massive cases we are sufficiently L, converged when the GW error is dominated by
the mass term. However, condensate measurements (in the next sections) show that
this mass limited L; convergence is not sufficient for accurate measurements, and much

higher L, values are required.



Chapter 8

Quenched Overlap Condensate
Results

The evaluation of the condensate, attempts to improve the evaluation of the condensate,
and calculation of the equation of state constitute the primary focus of this work and
take up the next two chapters. This chapter focuses on quenched condensates, from
which we learn what we can, before moving to the physically more relevent dynamic
cases in the next chapter. We start with a validation of the condensates which were set
out in chapter 4. Then we look at the eigenvalue range of the operator kernel which is
an essential aspect in achieving Lg-convergence, as well as the condition number of the
overlap operator itself, which controls the ease of its inversion. We finally look at the

condensates themselves and the equations of state to be constructed from them.

8.1 Validation

As before, we want to ensure that the condensate, measured in the Ly — oo limit, is
unaffected by choice of sign approximation, HT or Z, or choice of mass type, M1 or M3.
We start with sanity checks on 62 x 6 grids with a free auxiliary field, A, =0. We can
see in Figure 8.1 that both the different Wilson and Shamir formulations converge with
Ls as expected, for each of the four cases considered. The Wilson formulation solution
appears to oscillate around the limit rather than converge only from above as is the
case for Shamir, as has been previously noted [3]. The Zolotarev range, eqn. 3.72, was
calculated as designated by the eigenvalue range of the overlap kernel generated with
the free auxiliary field, explored further in the next section. The point method (see
appendix B.3) was used for exact results. The overlap regularisation parameter, M,
eqn. 3.54 is set to 0.9 for consistency with earlier work [44] (unless otherwise stated it
is set to 1.0 by default).

60
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FIGURE 8.1: Condensates C' = (1)) vs L, with free auxiliary field A, = 0. HT denotes
hyperbolic tangent formulations, Z denotes Zolatarev. Left panel: Wilson kernel. Right
panel: Shamir kernel.

Moving to stronger coupling, we consider single fixed quenched auxiliary fields with link
values given by gaussian random numbers with standard deviation s, A;, ~ N(0,s%) =
sN(0,1), and 8 = 1/s2, i.e. in accordance with eqn. 5.19. The noisy estimation method
is used (again see appendix B.3), and plots for s = 0.5 and s = 1.0 are shown in figure
8.2. Somewhat alarmingly the standard mass formulation, designated M1, with the
HT rational function, in the stronger coupling case does not appear to converge to the
other values. Again M=0.9, and the Zolotarev range was calculated for each designated

auxiliary field.

0.5 . . . 0.06

T W HT M1 N8O —— T T T T W HT N1 N80 ——
W HT M3 N80 ¢ W HT M3 N80 %
04t W 7 M1 N80 | 0.055 F W Z M1 N8O
: W Z M3 N8O W Z M3 N8O
osl 0.05 |
0.045 |
0.2 f . 1 T
] o 0.04 |
0.1 ]
, ) * N R X 0.035 z
of B omomow g & % I .
+ 0.03 | 3 . . =z
® X & & b ¥
—01rp 1 0.025
* b

~0.2 L L L L L L 0.02 L L s s s s
4 6 8 10 12 14 16 18 10 11 12 13 14 15 16 17 18

F1GURE 8.2: Condensates with Wilson kernel, denoted W in the legend. N80 specifies
80 fields were used for the noisy estimation. Left panel: auxiliary field with s=0.5.
Right Panel: auxiliary field with s=1.0. Note both x and y axis scales differ.

Figure 8.3 continues to show this more distinctly on another s = 1.0 configuration.
However, as the right panel shows, the problem is merely than the Ls value was not
large enough. The plot further indicates that the solution is not oscillating around the
asymptotic limit, but oscillating around a monotonic curve with the same asymptotic

limit instead. We note care must be taken in extrapolating to the L, limit.
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FiGURE 8.3: Condensates with Wilson kernel, denoted W in the legend. N20 specifies
20 fields were used for the noisy estimation, and N80 specifies 80 fields. Left panel: the
problem. Right panel: the solution.

Considering a N2 x N; mesh, we find the thermodynamic limit as the lattice spatial
extent Ny goes to infinity, keeping the temporal extent fixed at a lattice size Ny = 12.
The left panel of fig. 8.4 shows the quenched condensate for three different values of
B = 1/5%, and suggests that the spatial extent of N, = 12 lattice vertices is sufficient for
our purposes, with the potential to even move to a smaller mesh. The right panel shows
the condensates for mesh sizes varying the time extent equally with the spatial extents.
Sending N; — oo corresponds to zero temperature. We suggest a 122x12 mesh is (close

to) sufficient to investigate zero temperature cases in the thermodyamic limit.
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FIGURE 8.4: Quenched Condensates calculated with the Wilson kernel. Left panel:
thermodynamic limit varying Ng, and N; = 12. Right panel: Varying both Ny, = N
together, denoted Ng; in the x-axis.

8.2 Eigenvalue Extrema and Condition Number of Kernel

The evaluation of the overlap operator requires the evaluation of the sign function. The
relative computational ease or difficulty of evaluation of the sign function is in part
dependent on the condition number and extrema of the eigenvalues of the sign function
kernel. The Wilson Dirac operator Dy has complex eigenvalues and is s-hermitian,

i.e. 75Dy is hermitian, and hence v5Dy has real eigenvalues, and v5DwysDw =
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DEVDW has real semi-positive eigenvalues. Figure 8.5 shows the eigenvalue extrema
of the Wilson and Shamir overlap kernels, given by Hy = v3Dw(—M), and Hg =
73% respectively, where now we use (the domain wall height) M = 1. Since
quenched auxilliary fields are generated independently from the fermions, the quenched

kernel has no dependence on the fermion mass m.

There is a lattice size independent increase in the upper bound for the Wilson kernel,
which continues to increase as 8 — 0. Noting from section 8.9 ahead that the critical
region is in the vicinity of 5 = 0.7, we observe that for the Shamir kernel, the upper
bound is largely lattice size independent only on the symmetry unbroken side. Only the
top halves of the standard deviation is plotted, since the values are too large on a log
plot. The lower bounds for both kernels are strongly dependent on lattice size as 8 moves
into the strongly coupled region. The lower bounds reach a minimum value somewhere
around the critical region and then increase again. Similarly for the strongly coupled
side for Shamir kernel, the maximum eigenvalue decreases again. However, the upper
bound for the Wilson kernel is monotonic. Whether the trends in these volume effects
continue arbitrarily is unclear from this data, although if continued it would suggest an

unbounded maximum eigenvalue for the Shamir case around the critical region.
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FIGURE 8.5: Minimum and maximum eigenvalues with standard deviation on different
grid sizes. NC denotes non-compact links. 8x8 denotes gird extents Ny, = 8, N; = 8.
Left panel: Wilson kernel. Right panel: Shamir kernel.

Figure 8.6 shows the condition numbers. In the weakly coupled limit the Shamir kernel
has the lower condition number, and hence better numerical properties, whereas moving
towards the stronger coupling and through the critical point the Wilson kernel has a

much smaller condition number, although the value declines again for the Shamir kernel.
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FIGURE 8.6: Condition number. Left panel: Non-compact link fields, eqn. 2.8. Right
panel: Compact link fields, eqn. 2.7.

Fig 8.7 shows a similar plot for the compact link formulation. The bounds appear
to be largely independent of the lattice size. The plots are qualitatively similar for
both Wilson and Shamir, being bounded above, and bounded below in both the strong
and weak coupling limit. It is unclear if the spike is bounded. The condition number
shown in the right panel of figure 8.6 suggests that the Shamir kernel is numerically

advantantageous under all coupling strengths.
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FIGURE 8.7: Minimum and maximum eigenvalues for compact quenched cases. Left
panel: Wilson kernel. Right panel: Shamir kernel.

The effect of the domain wall height is considered in fig. 8.8, and the results are stark.
Although the maximum eigenvalue on average becomes slightly higher with decreasing
M, the minimum eigenvalue becomes significantly larger around stronger couplings, with
the consequent improvement in condition number shown in the left panel of fig. 8.10.
There are similar improvements with the Shamir kernel, as shown in fig. 8.9 and the
right panel of fig. 8.10. The Shamir plots have a greater extent in the strong coupling
region, and the benefits, although still there, are reduced. As will be seen this is a region

beyond the critical coupling strength.
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FIGURE 8.8: Average

eigenvalues for quenched Wilson kernels, varying domain
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height M. Left panel: Minimums. Right panel: Maximums.
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FIGURE 8.10: Average condition number for quenched kernels, varying domain
height M. Left panel: Wilson kernel. Right panel: Shamir kernel.

8.3 Eigenvalues

of Overlap Operator

wall

We turn to eigenvalue ranges of the overlap Dirac operators, eqns. 3.60, 3.59, 3.57, with

the twisted mass variant and both the Wilson and Shamir formulations. The left panel

of fig. 8.11 shows the average minimum eigenvalues for m = 0 and m = 0.03, and for
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Zolotarev with Ly = 24 (Z24) and HT with Ly = 36 (H36) for the Wilson cases. We see
that the mass term controls the minimum value as the coupling gets stronger, and this
allows for the H36 case giving equal results to the Z24 case. For m = 0 we see that H36
is not sufficient and curtails the smallest eigenvalues, which are better captured by the
724 case. Shamir cases are shown in the right panel, and again show the suppression of

the smallest eigenvalues when the L, limit has not been reached.
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FIGURE 8.11: Average minimum eigenvalues of the overlap operator using 122 x 12
quenched auxiliary fields. Left panel: Wilson kernel. Right panel: Shamir kernel.

8.4 Computational Cost of Overlap Operator

We want to evaluate the computational cost of inverting the overlap operator. This can
very roughly be done by counting the number of times the Dirac Wilson operator, Dy
or D‘T}V7 is called. The inversion includes an outer loop for which we count the number
N, of applications of DTO 1 Dor in the CG algorithm. For the inner loop we count the
number N; of calls to the multishift CG [38] routine used for the calculation of the sign
function with each application of Dpy. Each inner loop has a twin application of the
Wilson Dirac operator D}L,VDW, and hence the total number of calls to Dy or D;EV is

N; = 4N,N;.

Fig. 8.12 shows for the direct calculation with the Wilson kernel (eqn. 3.66). The
outer loop count demonstrates a dependence beyond the condition number, although
for the larger masses at stronger coupling the condition number dependence on the
mass does appear to be the dominant factor. However, surprisingly and contrary to
the condition number, the HT formulation requires more outer loops than the accurate
Zolotarev formulation. Further the Zolotarev formulation at smallest mass requires more
outer loops with zero mass. On the other hand, the right panel shows the significantly
increased inner loop count with Zolotarev and strong coupling. Of course, since in the
quenched case the auxiliary field is independent of the mass term, the inner loop is

independent of the mass term, which is reflected in the plot.
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The indirect method! is used to calculate the overlap operator with the Shamir formula-
tion (eqn.3.93). This requires the inversion of the domain wall operator (eqns.3.42 and
3.44) which only has outer loops for the CG algorithm, each loop calling DjijDW.
Fach call to the domain wall operator has L calls to either of the Wilson Dirac operators
Dy or D‘T,V. The total count is then Ny = 2N L.

In the left panel of fig.8.13 we see the CG loop count N, increasing as L increases.
Further we see that the addition of a small mass term further increases the loop count,
but again larger mass terms constrain the loop count, which we see at stronger cou-
plings. The right panel shows the total Wilson Dirac operator counts. While not a fair
comparison on which to base the choice of one method over the other, it is interesting
to note that both the nominally Ls converged formulations, H300 for the Shamir case,
and Z24 for the Wilson case, have the same order of magnitude in counts at the stronger
couplings. The increase in cost with the addition of a small mass is further demonstrated

in the total count.
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FI1GURE 8.12: Average Dirac operator application count for direct Wilson inversion.
The HT results are slightly offset for clarity. Left panel: Outer loop count. Right panel:
Inner loop count.
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!Meaning the domain wall formulation including Paulli-Villars terms and the compacting matrices,
eqn. 3.92
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8.5 Wailson Condensates

We are interested in the condensate C' = (1)), which is the order parameter. Beyond
the critical point, 8 < B., and at m = 0, we expect the value to become non zero.
Unfortunately we cannot calculate this directly using m = 0, and must instead consider
the lim,,_,o curves in order to find the critical point, as has been done for the (dynamic)
Shamir case [46].

Convergence with Lg is shown in the left panel of Figure 8.14 for m = 0.05 for Ls; = 60
for the HT formulation and Ly = 24 for the Zolotarev formulation. L, = 60 is shown to
be insufficient for the HT case with m = 0.01. The right panel, showing m = 0.005 cases,
similarly indicates that Ls = 84 is not sufficiently converged in the HT case, although

the Zolotarev formulation may be converged.
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FicUre 8.14: Condensate for non-compact Wilson. Zolotarev cases use range
[0.001, 10]. Left panel: HT and Zolotarev cases for m = 0.01 and m = 0.05. Right
panel: Ls convergence for m=0.005.
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FI1GURE 8.15: Wilson condensates vs Ly for different coupling strengths. The solid line

is for the Zolotarev approximation and corresponds to the upper x-axis. The dashed line

is for the HT approximation and corresponds to the lower x-axis. Left panel: m = 0.01.
Right panel: m=0.005.

Despite the kernel eigenvalues being independent of the mass (since quenched there is

no dependence on any aspect of the fermion), the condensate Lg convergence is clearly
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highly dependent on the mass value, as can be seen in fig. 8.15. The left panel indicates
that with Ls; > 100 at m = 0.01 the HT formulation is reasonably L, converged for all
the coupling strnegths considered. However, for m = 0.005, shown in the right panel, L
convergence has not been achieved, and is still a way off. The Zolotarev formulations,

noting that they are plotted at 3 times their L, value seem to be converged.

The set of Zolotarev results are shown in the left panel of Figure 8.16. The right panel
shows the extrapolation to m = 0 and clearly indicates the non broken phase at 5=1.56
and the broken phase at 5=0.51.
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FIGURE 8.16: Wilson. Non-compact. Zolotarev range [0.001,10], Ls = 24. Left panel:
C vs 8. Right panel: C vs m.

8.6 Compact Wilson Condensate

We also consider the compact formulation for comparison, and because they are found
with considerably less computational requirements than for the non-compact cases. We
find the somewhat surprising results indicated in Figure 8.17, comparable to the non-
compact cases in Figure 8.16. Now the left plot shows the magnitude of the condensate
decreasing with coupling strength, contrary to expectation. All mass fit lines go through
the origin (or at least significantly closer to the origin than for NC) in the right panel,
suggesting that there is no spontaneous chiral symmetry breaking, at least with the mass

as the order parameter.
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FIGURE 8.17: Wilson. Compact. Zolotarev range [0.01,10], Ls; = 16. 96 aux fields. 10
noise. Left panel: Vs . Right panel: vs m.

8.7 Shamir Condensates

We may surmise from the kernel eigenvalue ranges given in the right panel of fig. 8.5,
and the accuracy plots of the hyperbolic tanh approximation given in fig. 3.4, that
an L, value of around 300 may be sufficient to capture the stronger couplings we are
interested in. Fig. 8.18 shows the Ls convergence for m = 0.01 and m = 0.05. Ly = 300
does appear to be sufficient for strong coupling and the smaller mass values, although
is unnecessarily large for weaker coupling and larger masses. This is in alignment with
the findings of Hands [46], although the larger meshes used in that work would require
yet higher values of L.
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FI1GURE 8.18: Quenched condensates with Shamir kernel. Left panel: m=0.01. Right
panel: m=0.05.

Fig. 8.19 shows the condensates, both with L, = 300, with the domain wall height
M = 1.0 in the left panel and M = 0.5 in the right panel. There is a very clear shift and
increase in the gradient, suggesting a rescaling so that ma—g5 < may—o5(mar=10). It
would be interesting to see if any potential computational cost increases trade off more
or less than the likely cost advantages provided in the improved eigenvalue range of the

kernel indicated earlier in section 8.2.
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FiGURE 8.19: Quenched condensates with Shamir kernel, Ly = 300. Left panel:
M=1.0. Right panel: M=0.5.

8.8 Compact Shamir Condensate

Again we turn to the compact formulation for comparison, and find the same absence of
spontaneous chiral symmetry breaking. Fig. 8.20 shows similar behaviour to that of the
Wilson formulation but is no longer monotonically decreasing with coupling strength.
Fig. 8.21 shows a comparison of the Shamir and Wilson data, multiplying the Shamir
condensates by a factor of 3. Results with the Shamir kernel have a sharper gradient

through the transitional region, perhaps giving a hint of the difference in scaling between

the models.
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FIGURE 8.21: Compact quenched condensates comparing Shamir and Wilson kernels.
Masses are m = 0.01,0.03, 0.05.

8.9 Wilson EOS

We turn to the evaluation of the equation of state, and the critical exponents. We use
the n, = 5 parameter EoS = EoS(C,m, §; p) introduced in section 5.2, with C' = (W),
where the 5 parameters are p = {A, B, ¢, Am, 0}, including the two critical exponents
Bm, and &, and also the critical coupling strength f3..

EoS = A(8 — B.)C%Y/Pm - BC® —m =0 (8.1)

‘We have simulation data {C,-, mi, Bi, af} where o is the error in the calculation of C;.
We wish to find the best parameters for the EoS to fit this data with a least squares

minimisation of x? according to eqn. 8.2.

k

Xt(p) = ) _(EoS(Ci,m;, §i; p)/of (82)
i=1

of, the error in the fit, is given by %—Egsof. The reconstructions are carried out using a

python script?, providing a least squares fit using the Levenberg-Marquardt algorithm
[62]. A goodness of fit is given by x2/dof, where the degrees of freedom is given by
dof = k — np, where 1 is the ideal fit, greater than 1 has the data overprescribing the
problem, and less than 1 indicating the errors in the data are large relative to the amount

of data available.

Fig. 8.22 shows the fit with the data taken in the ranges m € (0.01,0.05), 8 € (0.5,1),
which gives critical exponents

2Courtesy of S. Hands
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Be = 0.777(23)
Bm = 1.09(10) (8.3)
§ = 2.344(117)

and the corresponding exponents 1 = %g and v = 2f,,/(1 + n) given by

n = 0.796(46)

v = 1.214(116) (84

Ly=24,B.=0.777(11), B, =1.09(5), 6 = 2.344(58) L, =60, B.=0.748(15), B, = 1.15(7), 6 =2.118(74)
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FIGURE 8.22: Quenched Wilson. Mass range m = [0.01,0.5]. Data range 3 = [0.5, 1].
Left panel: Zolotarev L, = 24. Right panel: HT L, = 60 .

Although the goodness of fit value x? /dof is an important parameter and improves from
case qwzl, defined below, from case qwz2 by changing the window of reconstruction with
the addition of the m = 0.005 data, looking at the data (left panel, fig. 8.23) suggests
we should not consider this parameter blindly. In particular, if some data region is
overprescribed (small error bars and lots of localised data points leading to values much
greater than 1) and some data region is underprescribed (large error bars and few data
points leading to values much less than 1), these effects may cancel to misleadingly
good (close to 1) goodness of fit values. And hence we must be judicious in choosing
our data ranges. It was with this in mind that qwzl was singled out for representative

presentation above.

Corresponding to the seven Zolotarev cases with Ls = 24 plotted in the left panels of
figs. 8.22 through 8.28, the right panels hold plots with HT L = 60 cases. As has been
pointed out with staggered formulations [1], the calculation of the exponents is sensitive

to the window used for the reconstruction, although ballpark figures are reasonably
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id Ls 5 m Bc 5m d gof gof? Ny
qwzl | 724 | 05-1.0 | 0.01-0.05 | 0.777(11) | 1.09(5) | 2.344(58) | 3.782 | 0.945 | 85
qwz2 | 724 | 0.5-1.0 | 0.005-0.05 | 0.810(12) | 1.22(5) | 2.231(51) | 3.984 | 0.987 | 101
qwz3d | 724 0.5-1.0 0.01-0.04 | 0.813(15) | 1.20(7) | 2.225(68) | 2.266 | 0.567 | 68
qwzd | 724 | 0.5-0.99 | 0.005-0.05 | 0.837(14) | 1.32(6) | 2.131(52) | 3.044 | 0.761 | 95
qwzd | Z24 | 0.5-0.99 0.01-0.05 0.800(13) | 1.18(6) | 2.248(61) | 2.867 | 0.717 | 80
qwz6 | Z24 | 0.5-1.0 | 0.02-0.05 | 0.739(12) | 0.96(5) | 2.474(76) | 3.396 | 0.849 | 68
qwz? | Z24 | 0.5-0.99 | 0.02-0.05 | 0.762(15) | 1.05(7) | 2.361(81) | 2.570 | 0.643 | 64
qwz8 | 724 | 0.5-0.92 | 0.01-0.05 | 0.819(16) | 1.25(7) | 2.185(65) | 2.12 | - | 75
qwhl | HT60 | 0.5-1.0 | 0.01-0.05 | 0.748(15) | 1.15(7) | 2.118(74) | 2.55 | 0.638 | 83
qwh2 | HT60 | 0.5-1.0 | 0.005-0.05 | 0.752(15) | 1.37(8) | 1.908(56) | 8.76 | 2.19 | 100
qwh3 | HT60 | 0.5-1.0 | 0.01-0.04 | 0.813(24) | 1.46(12) | 1.833(80) | 1.72 | 0.43 | 66
qwh4 | HT60 | 0.5-0.99 | 0.005-0.0.05 | 0.750(15) | 1.37(8) | 1.926(59) | 9.03 | 2.26 | 95
qwh5 | HT60 | 0.5-0.99 | 0.01-0.05 | 0.756(16) | 1.19(8) | 2.097(77) | 2.09 | 0.523 | 79
qwh6 | HT60 | 0.5-1.0 0.02-0.05 0.708(16) | 0.94(8) | 2.377(109) | 2.58 | 0.645 | 66
qwh7 | HT60 | 0.5-0.99 | 0.02-0.05 | 0.714(18) | 0.96(8) | 2.375(118) | 1.91 | 0.477 | 63
qwh8 | HT60 | 0.5-0.92 0.01-0.05 0.771(18) | 1.25(9) | 2.033(79) 1.9 75

TABLE 8.1: Critical exponents. Numbers in brackets are the errors. Goodness of fit
gof = x*/dof.

consistent (within error bars) for both Zolotarev and HT formulations, although there

is better consistency for the Zolotarev formulation.

With the removal of the m = 0.05 curve, cases qwz3 and qwh3 nominally provide the
best results respectively, although it should be noted that removing the m = 0.01 curves

also improves the nominal results for cases qwz7 and qwh?7.

In the 6th and 7th cases, where mass ranges of 0.02-0.05 are chosen and where it is
thought the HT60 cases are also reasonably well Lg-converged, the HT exponents still
differ from the Zolotarev generated exponents. They should be near identical with
sufficiently good statistics, and we conclude that more data points are needed to improve

the consistency of the results.

It appears from looking at the data that the errors are smaller than they should be.
There are kinks in the constant mass curves, which the error bars suggest are real, and
we may presume are not. Scaling the errors o; in eqn.8.2 does not change the exponent
values, but does scale the error values of those exponents, and also the goodness of
fit. As such we may work backwards to find an inferred error in the source data. For
example, the error scaling required to find gof = 1 for case qwzl is 1.945, whereas the

scaling for case ghz1 is 1.598.

Using unweighted least squares, and working backwards to estimate the error we have
for qwzl, . = 0.808(20), B, = 1.20(8), 6 = 2.257(80), and for qwhl, 5. = 0.752(23),
Bm = 1.18(11), 6 = 2.115(103), in reasonable agreement with the weighted versions. It

would seem to be a matter of taste at this juncture whether using weighted, with its
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unmatched assumptions of equal variance in the data points, is a better choice than

unweighted.

We also note in passing that [63] investigated strongly coupled quenched QED in 4d and
found critical exponents 3, = 0.8(1) and § = 2.2(1), who further noted the narrowness

of the window around the critical point for which the EoS holds.
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FIGURE 8.23: Quenched Wilson. Window: Mass range m = [0.005,0.05]. Data range
B =[0.5,1]. Left panel: ZL, = 24. Right panel: HT L, = 60.
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FIGURE 8.24: Quenched Wilson. Window: Mass range m = [0.01,0.04]. Data range
B =[0.5,1]. Left panel: ZL, = 24. Right panel: HT L, = 60.
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L, =24, B.=0.800(13), B, =1.18(6), 6 = 2.248(61)

06
Re.
N 2 ldof=287
05 e
:\‘::: 0.5<£<093,001=m=0.05
0a] X0
N

V031

02

0.1

00
0.5

Ly =60, B =0.756(16), B = 1.19(8), 6 =2.097(77)

0.6

0.5 1%,

0.4 1

v 031

0.2

0.1

S X2/dof=2.09
o 05<£<099,0015m =005
Mot 79

0.0
05
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8.10 Shamir EOS

We turn to the EoS for the Shamir kernel, using the HT L = 300 formulation. While
the first case, gshl, matches the Wilson cases reasonably well, reducing the analysis
window from the weak coupling side appears to reduce § and increase (3, in a manner
not matched by the Wilson cases. Although the data is noisier than for the Wilson cases
and the errors relatively large, one would be inclined towards the qsh3/qsh4 cases with
B, ~ 0.9, B,, = 1.48 and é = 1.84. However, there is no reason to expect the exponents

to match for the non-physical quenched cases, and we shoouldn’t be disheartened.

We also consider a couple of cases, gsm3 and gsm7, in which we use a domain wall
height of M = 0.5. The critical value has shifted to the left, to roughly 3. = 0.6, ¢ has
increased again to values similar to the Wilson cases, and f3,, has dropped lower than
both the Shamir and Wilson M =1 cases.

More usefully, we observe that the curves have sharpened significantly, suggesting we
are more zoomed in, with the reduced value M, lessening the requirements on m — 0

to find an analysis window independent set of of results.

id M B m Be Pm 4 gof | Na
gshl | 1.0 | 0.5-1.2 | 0.01-0.05 | 0.840(12) | 1.20(6) | 2.099(52) | 2.07 | 100
qsh2 | 1.0 | 0.5-1.1 | 0.01-0.05 | 0.884(17) | 1.39(8) | 1.915(64) | 1.71 | 90
gsh3 | 1.0 | 0.5-1.0 | 0.01-0.05 | 0.904(20) | 1.48(9) | 1.838(68) | 1.63 | 85
qshd | 1.0 | 0.5-0.99 | 0.01-0.05 | 0.905(22) | 1.48(10) | 1.843(77) | 1.68 | 80
gsh5 | 1.0 | 0.54-1.0 | 0.01-0.05 | 0.908(25) | 1.50(13) | 1.839(88) | 1.72 | 75
qsh6 | 1.0 | 0.54-1.1 | 0.01-0.05 | 0.884(21) | 1.39(11) | 1.931(84) | 1.8 | 80

(10) )

(11) )

1

17

20
22
25
21
1
1

gsm3 | 0.5 | 0.5-1.0 | 0.01-0.05 | 0.599 0.91(10) | 2.157(125) | 6.17 | 85
gsm7 | 0.5 | 0.5-0.95 | 0.01-0.05 | 0.625 0.92(11) | 2.285(144) | 1.87 | 75

0
1

TABLE 8.2: Critical exponents. Numbers in brackets are the errors. Ly = 300. Good-
ness of fit gof = x2/dof.

L; =300, B, =0.840(12), By, = 1.20(6), 6= 2.099(52) L;= 300, B.=0.884(17), B, =1.39(8), 6 = 1.915(64)
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FIGURE 8.30: Shamir. L, = 300. Mass range m = [0.01,0.05]. Left panel: Data range
B =1[0.5,1.2]. Right panel: Data range 3 = [0.5,1.1].
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FIGURE 8.31: Shamir. L, = 300. Mass range m = [0.01,0.05]. Left panel: Data range
B = [0.5,1.0]. Right panel: Data range 8 = [0.52, 1.0].
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8.11 Summary

Although quenched measurements are not physical, they still provide a good foundation
in which to explore numerical techniques. Importantly in this section we went through
the prototype analysis to be carried out on the dynamical fermions in the next chap-
ter. The importance of the eigenvalue range of the kernel was highlighted, and most
significantly the unboundedness of the largest Shamir kernel eigenvalue was established
which is part of the explanation of why the Thirring model is as computationally chal-
lenging as it is. That the Wilson formulation is a computationally advantageous method
rather than the Shamir formulation was indicated, although we will continue to compare
both methods. That the Shamir and Wilson kernel formulations should be physically
equivalent was not borne out in the EoS results, although the statistical challenges of
the associated calculational methods were highlighted, especially the difficulty of get-
ting critical exponents independent of the chosen window of analysis. Disappointed by
the lack of apparent physical equivalence it is hoped that this is either a non-physical
consequence of the quenched approximation or due to insufficient data for the statistical

analysis.

Also, computational costs of the methods were considered and although not a fair com-
parison, in outcome from this data it would be recommended to use the Wilson Zolotarev
method rather than the Shamir HT scheme for the the condensate measurement. It was
also shown that there is potential benefit to be gained from using a smaller value of the
domain wall height M.



Chapter 9

Dynamic Overlap Condensate
Results

We now look at results in which the auxiliary field is dynamically generated using the
RHMC algorithm [57] as set out in chapter 6. The FORTRANO90 code, available on
github [64], was adjusted in this work for use with the HT Wilson domain wall formula-
tion. This required the change of the domain wall operator from eqn. 3.40 to eqns. 3.45,
3.47, and the addition of extra force terms accompanying those changes, also in chapter
6. A corresponding new condensate measurement routine was also implemented. All
results are on a 122 x 12 mesh unless otherwise stated. Extensive work [3, 50, 65] has
demonstrated the numerical advantage of the =3 twisted mass formulation, and hence

that is used in the following.

We provide some validation of the code, before looking at the autocorrelation of the
condensates and the acceptance rates in the hamiltonian dynamics steps. Then following
a similar approach as in the quenched case we look at the kernel eigenvalue extrema
and condition numbers. Then we look at the Lgs-convergence of the condensates before
moving on to the evaluation of the equation of state for the different formulations.

Finally we look at the overall computational cost of the methods.

9.1 Validation

Validation of the Wilson kernel domain wall measurement routine was achieved by check-
ing the condensate results could be reproduced using the direct overlap formulation as
shown in Figure 9.1. The results aren’t identical due to the use of noisy estimators
(see section B.3) and the use of the left formulation of the direct overlap (eqn. 4.16),
rather than the right formulation (eqn. 4.15) which has exact correspondence to the

domain wall formulation used in the software. Nevertheless, it indicates that the results

81
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are aligned, and that we may proceed to use the methods interchangably, and more
particularly to take fields generated with the domain wall formulation and remeasure

with overlap formulations.
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FIGURE 9.1: Condensate measurements using domain wall (DW) and overlap (OL)
formulations. Auxiliary fields generated with domain wall formulation. H36 denotes
HT scheme with L, = 36.Twisted mass formulations are used in all cases.

Validation of the generation of the auxiliary fields is more difficult, but we gain some
confidence from consideration of the history of hy = 0.569127 /Ny calculated at the end of
each RHMC trajectory. Plots of the hy history with cold starts (A, = 0 at beginning of
simulation) are shown in Figure 9.2 and we see that choosing different parameters leads
to different times to reach equilibrium (thermalisation). The stronger the coupling, the
slower it is to reach equilibrium. When they have reached equilibrium, we see that it is

still auto-correlated.
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FIGURE 9.2: hg calculated at the end of each dynamic trajectory. Average trajectory
length is 0.5 with 10 steps. Left panel: m = 0.01. Right panel: m = 0.05.

Following [50] we show the averages of hg, plotted against 3, in Figure 9.3. The left
panel takes the averages from trajectory 1000, and the right panel from trajectory 2000.
The right panel, despite significantly less data, seems to match the trend of [50] in

which at coupling strengths stronger than the critical point there is an upturn in the



Ch.9 Dynamic Owverlap Condensate Results 83

avarage value. This is less clear in the left panel data. We now go on to look at the

autocorrelation in the data.
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FIGURE 9.3: h, plotted with standard deviation. Left panel: Averages taken from
trajectories 1000-3000. Right panel: Averages taken from trajectories 2000-3000.

9.2 Autocorrelation

Fig. 9.4 shows the autocorrelation of the auxiliary field metric hy for varying 8 and
m. There is not sufficient data for numerically precise statements, as indicated by the
difference in results between the left and right panels. However, it would appear that
the autocorrelation increases strongly with coupling strength, and the impact of mass
being inconclusive. As in the previous section, equilibirium is deemed to be achieved

when the average value of hy reaches a constant value.
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FIGURE 9.4: Autocorrelation time of hy. Time scale is the number of hamiltonian
trajectories. Left panel: calculated from trajectories 1000-3000. Right panel: calculated
from trajectories 2000-3000.

We further look directly at the histories of some condensates for the Wilson formulation
in fig. 9.5 and for the Shamir formulation in fig. 9.6. The hamiltonian dynamics steps
are the same for both Shamir and Wilson cases, using a timestep of 0.05 and an average

number of 10 steps before the acceptance step'. The only cases which differ are the

IThere is a fixed probability of the trajectory coming to an end after each dynamic step.
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B = 0.20 and S = 0.22 Wilson cases which use an average number of 9 steps. There
appears to be a stark increase in the autocorrelation in the strongly coupled Wilson case.
Fig. 9.7 confirms this, calculating the autocorrelation directly, with the Shamir case in
the left panel, and Wilson case in the right panel. Although the 8 value is smaller for the
Wilson case, as we will see more clearly in chapter 10, we probably do not want to push
the § values significantly lower. We also note that it appears to be mass independent

for the given range.
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FI1GURE 9.5: Condensate histories for Wilson with Ly = 36. Left panel: 8 = 0.2. Right
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F1GURE 9.7: Condensate autocorrelation. Left panel: Shamir, Ly = 96. Right panel:
Wilson, Lg = 36.
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FiGURE 9.8: Condensate autocorrelation. Left panel: Wilson, Ly = 36. Right panel:
Wilson, Lg = 28.

We compare L values of 36 and 28 in the left and right panels of fig. 9.8. While
it appears that there is mostly no dependence, the 8 = 0.2 lines differ, although it
is difficult to conclude that this difference would not vanish with more data. For the
condensate autocorrelation, the Shamir measurements were based on trajectories 500-
2500, and the Wilson measurements on trajectories 1000-3000, and measurements of the

condensate taken every 5 trajectories.

While with correlated data the mean data continues to be calculated in the same way
we should no longer assume reliance on the usual calculation of the standard error
se = o/ \ﬂN ), although in the condensate measurements with the Shamir kernel we
do exactly that since the correlation decay rate is large. A formal remedy to the error
calculation is to multiply the error of uncorrelated formula by a timescale based on the
correlation, se = \/%a where 7 is the correlation time scale as described in appendix

B.4.

9.3 Acceptance Rates

We look at the acceptance rates of the Monte Carlo step in fig. 9.9. The hamiltonian
dynamics controls are the same for both Wilson and Shamir setups as decribed in section
9.2 above. It is clear that under these conditions the Wilson formulation has a lower
acceptance rate. In the weaker coupling range, the acceptance rate is between 0.9 and
0.95 for the Wilson formulation and between 0.95 and 1 for the Shamir formulation, and
dropping to 0.65 to 0.75 and 0.8 to 0.95 respectively at the stronger coupling end of
the plots. The acceptance rates make a difference to the autocorrelation, but we would
suggest that this factor is not sufficient alone to provide a complete explanation. How far
a single trajectory “moves” the auxiliary field relative to the starting point also controls

the autocorrelation time. Hence we suggest that for the Wilson case the auxiliary field
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generated at the end of a single trajectory is relatively closer to it’s starting point than

for the Shamir case. The trajectory distance may be increased by taking more steps.?

It is also notable that the acceptance rate decreases with Lg. This could be a L
volumetric effect, due to the momentum marching term in the hamiltonian dynamics
step, P = —%, eqn. 6.1b, getting larger since the action® seems to scale with L.
Whether it is also connected to the accuracy, or rather the damping effect of lower L
would be interesting to explore. In this case it might be expected to find the acceptance

rate stops decreasing after achieving sufficient L.
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FI1GURE 9.9: Acceptance Rate in the Monte Carlo Step. Left panel: Wilson kernel.
Right panel: Shamir kernel.

9.4 Eigenvalue Extrema and Condition Number of Kernel

Again it is very useful to look at the eigenvalue range of the kernels. Since the auxiliary
fields are now generated dynamically, they are dependent on the L, extent of the domain
wall. When viewed from the overlap perspective this is not considered an extra physical
dimension, but merely an expression of the level of accuracy of approximation. Figure
9.10 shows the maximum and minimum eigenvalues for the Shamir kernel, and we see
that the average values are largely independent of either the mass or the value of Ls. The
bars are for the maximum and minimum rather than the standard deviation. At least
100 fields were used for each data point. As with the quenched non compact case, the
eigenvalues are no longer bounded from above and there is a significant increase in the
maximum eigenvalue beyond the critical § value, roughly 0.3. The compact values are,
however, bounded from above, and also have much larger smallest eigenvalues with very
little variance. This parallels the qualtitative behaviour of the quenched field kernels,
although we have not taken g to strong enough couplings to confirm that the maximum

value will fall again.

2Simplectic integrators bind the solution to a shadow hamiltonian, limiting the long term accumula-
tion of time step discretisation errors.
3 At least the variance of the action
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Plots for the Wilson kernel are shown in Figure 9.11, again with the bars showing the data

point maxima and minima rather than standard deviation. These eigenvalues provide

a guide for choosing the Zolotarev range to be used in the overlap operator, unless the

range is to be reset for every auxiliary configuration. Since the latter is costly, especially

for the dynamic step, it is generally preferable to choose a fixed range. Although the

eigenvalues are strictly only bounded below by zero, a practical range can be identified

from the plots. In practice, we have found stricter adherence to the upper bound is more

important to the evaluation of the condensate than the lower bound.
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FIGURE 9.11: Min/max Wilson kernel eigenvalues. Left panel: Noncompact. Right
panel: Compact (using non-compact generated auxiliary fields)

The independence from Lg, at least for all L above an unexplored lower bound, com-

bined with our a priori belief that the condensate measurements will require signif-

icantly higher L, values, suggests the possibility of using different Ls values for the

sea-fermions (the Dirac operator used in the generation of the auxiliary fields) and the

valence fermions (the Dirac operator used for the condensate measurements).
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9.5 Eigenvalues of Overlap Operator

The condition number for the Wilson kernel overlap operator is briefly considered via fig.
9.12 where the smallest eigenvalues are plotted. The largest eigenvalues in all instances
are just short of 1. Again, the minimum eigenvalue is constrained by the mass term,
although in the HT36 case is only just reaching this limit as 8 — 0.24. The same limits
apply for the Z30 case, but the minimum eigenvalues are lower when the calculations
are with m=0 (still with the massive auxiliary fields) compared with the HT36 case.
Similar to the quenched case, when setting the valence mass to 0, the higher auxiliary
mass terms correspond to a reduction in the lowest eigenvalue. A similar situation is

shown in the left panel of Fig. 9.13.
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FiGUure 9.12: Wilson Overlap Minimum Eigenvalues. am = 0 denotes the mass that
the auxiliary fields were generated with, if different from the measurement mass m.
Left panel: HT approximations. Right panel: Zolotarev approximations.
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L.
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9.6 Computational Cost of Overlap Operator

We again look at the Wilson Dirac operator count required by inversion of the overlap
operator. As in section 8.4 the total count is given by N; = 4N,N; for the direct
evaluation using the Wilson kernel, and the indirect formulation has N; = 2N, L which
is used for the Shamir kernel. The outer loop operation count for the Wilson inversion
is in fig. 9.14, and find the count in accordance with the condition number for the H36
cases. For the Z30 cases this only holds for m = 0.03 and m = 0.05. Fig. 9.15 shows the
inner count in the left panel, indicating the significant increase in cost with the Zolotarev
formulation, especially at strong coupling. For the HT36 case there is essentially no
difference for either mass term, or whether the calculation matched the auxiliary field
mass. However there is a little auxiliary mass dependence in the Zolotarev cases. The
right panel shows the average count for the indirect Shamir loop at HT200 for which
setting the measurement mass to zero reduces the computational cost. Further Shamir
plots are in the left panel of fig. 9.16. The right panel gives the total costs in terms
of number of calls to the Wilson Dirac operator per inversion of the overlap operator.
The absence of the HT300 Shamir plots for the m = 0.01 (in the 12hr computational
window allowed® these did not complete - no cases were run for Shamir at 8 = 0.24 for
this plot) highlights that there are more factors than just this count. Nevertheless, they

are a useful indicator, and support the use of the direct Wilson Zolotarev formulation.
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FIGURE 9.14: Operator counts for inversion. Outer loop (CG iterations) counts for
overlap operator with Wilson kernel. Left panel: HT36. Right panel: Z30.

4Simulations were run on the Skylake nodes of the Dirac supercomputing cluster.
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cations of Wilson Dirac operator for indirect Shamir overlap and direct Wilson overlap
operators.

9.7 Shamir Condensates

Following in the footsteps of [46, 50] we look again at the condensates evaluated with
the Shamir kernel, but here we continue to use the smaller 122 x 12 mesh size rather
than the 162 x 16 meshes in those works. This is computationally beneficial not only
from the decreased mesh size, but also the expected decrease in eigenvalue range of the
kernel, as noted from the quenched cases (see fig. 8.5). Although diminished, the L-
limit challenges remain, and indeed the condensates plotted in the left panel of fig. 9.17,
which include Lg values of 24, 60, and 96 for mass values 0.01, 0.03, and 0.05, do not
suggest convergence in the strongly coupled region, even for the larger masses. The right
hand panel replots two S values against m reemphasising this. We scale the error bars
by a factor of 3 uniformly over the § range, somewhat more than would be suggested
by the autocorrelation even in the strong coupling region, but the lack of smoothness in

the curves suggests smaller error bars would be highly improbable.
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FIGURE 9.17: Dynamic condensate plots with the Shamir kernel varying L,. Left
panel: C vs . Right panel: C vs m.

Following the intuition that there may be no requirement for the auxiliary field to be
generated with such a stringent Lg value, we look at partially quenched condensates in
fig. 9.18. In the left panel, the 8 = 0.4 case is considered. Fig. 9.17 indicates that the
solution is Ls converged by Ls = 60. To the two curves with sea and valence fermions
calculated with the same L values, are added curves where the valence fermions, and
hence the condensate is measured, with a different L, value. In the first additional
curve, the auxiliary fields are generated with Ly = 24 and the measurements are made
with Ls = 60. In the second, we reverse the procedure and generate the auxiliary fields
with Ly = 60 and measure with Ly = 24. Pleasingly, it seems sufficient to use the
Ls = 24 auxiliary field to capture the converged Ls measurement. On the other hand,
there seems to be nothing to be gained from overextending the L, value of the auxiliary
field if it is not to be matched in the measurement. This pattern seems to be matched
in the right panel, considering the 5 = 0.24 case, although slightly less convincingly at
the m = 0.01 datapoint, even though the L, limit has not been reached. Given the
high costs of dynamically generating the auxiliary fields, this represents a significant

potential in compuational cost cutting.
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F1GURE 9.18: Partially quenched Shamir condensates. AXMY in the legend denotes
the auxiliary fields were generated with Ly = X, and the measurements were taken
with Ly =Y. Left panel: 8 = 0.4. Right panel: 5 = 0.24.
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There is a certain inevitability that utilising different but sufficiently large L, values for
valence and sea fermions should give the same measurement results, given the nature of
L convergence. Beyond high enough values of L the limits of machine precision will be
reached. Given any measurements will only ever be wanted to a certain accuracy it seems
quite reasonable that different parts of the measurement process require differing levels
of accuracy, which is what varying L represents, at least when using the domain wall
formulation as an equivalent of the overlap operator - the claim that Ly is a parameter of
accuracy may not hold for more general domain wall formulations, such as the non-bulk

formulation.®

So we take our own advice, and choose Ly = 300 for the condensate measurements,
justified to a certain extent by the apparent convergence in the quenched cases (fig. 8.18)
and the kernel accuracy requirements shown in fig. 9.10. We use the auxiliary fields
generated with Ly = 96, and think the solution should feasibly be close to covering the
necessary range. Fig. 9.19 shows the results. The left panel continues to show that the
convergence continues well beyond the L; = 96 value even at relatively weak coupling
and at the larger mass values. The right hand panel shows the full results, denoted

A96M300 (Auxiliary Lg = 96, Measurement Ly = 300), reemphasizing the same points.
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F1cUrE 9.19: Partially quenched Shamir condensates. AXMY in the legend denotes
the auxiliary fields were generated with Ly = X, and the measurements were taken
with Ly =Y.

Fig. 9.20 vindicates this Ls; quenching approach, demonstrating that the A96M300
results are satisfactorily Ls converged, since the results are close enough to being the
same as the A60M300 results. The measurements are taken every 10 trajectories of the
hamiltonian step (every other auxiliary field used in the non partially quenched results

above).

®We define the non-bulk domain wall operator to be one in which the auxiliary field isnotconstant in
the extra dimension.
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the auxiliary fields were generated with L, = X, and the measurements were taken
with L, =Y. Plots vs m.
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FIGURE 9.21: Reprinted from [7, 8]. The Shamir condensates used in these plots were
generated using a 16x16 mesh, with the same code base [64]. Left panel: m = 0.01.
Right panel: m = 0.05.

In fig. 9.21 data from collaborators is reprinted. Convergence plots are provided from
[7] in the left panel, and [8] in the right panel. The requirement of large Ls-values
had already been amply demonstrated to be beyond the computing resources available.

Instead these papers use the extrapolation

(), — (D) = A(g?, m)e= 2" mLs (9.1)

It was troublingly found that the decay rate coefficient, A\, goes to zero as m — 0, sug-
gesting that eqn. 9.1 is not a suitable curve fit since this corresponds to the hopefully
unreasonable requirement that Ly — oo as m — 0. (While this would be the case for
any auxiliary field resulting in an overlap kernel with a zero eigenvalue, this would be
an exceptional ocurrence.) We worried about the meandering convergence discussed in
the quenched results validation section 8.1. What initially appeared to be exponentially

convergent according to eqn. 9.1, turned out to require considerably larger L. This may
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simply be explained by the nature of HT approximation, and the uneven distribution
of its accuracy over the kernel eigenvalue range. Alternatively, with the Zolotarev ap-
proximation, suitably tuned to the eigenvalue range, one may perhaps more reasonably

expect to find convergence of that form eqn. 9.1 but without a vanishing decay rate.

9.8 Wilson Condensates

Plots of the condensate generated with the Wilson condensate are shown in Figure 9.22.
The left panel shows measurements of the condensate taken every 5 trajectories over at
last 1500 trajectories, with the HT formulation at various Ls. Error bars are shown for
the Lg = 36 cases but are of similar magnitude for the other Ls curves. The m = 0.05
case seems to be well Ly convereged already at Lg = 20, and it appears that it may be
close to satisfactory convergence for Ly, = 28/36 for m = 0.01 and m = 0.03. Preliminary
calculations misleadingly hinted that the Ls may already be sufficiently convergered to
look at the equation of state since the critical exponents found for Ly = 28 and L, = 36
were very similar. The right panel shows the full Ly = 36 data set. The error bars are

scaled according to appendix B.4.
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FIGURE 9.22: Dynamic Condensate with Wilson kernel. Left panel: HT formulation
with various Ly and m. Right panel: HT formulation for L; = 36.

The left panel of Figure 9.23 shows measurements using the Zolotarev formulation with
Ls =24 and a range [0.001, 10], against two different mass plots of the HT formulation.
While we see again that at m = 0.05 the condensate appears Ls converged, we see that
the HT formulation is not for m = 0.01. We argue that similarly to the Shamir case,
we do not require the L, convegence in the generation of the auxiliary field to match
that in the measurements, and hence move forwards with the HT generated auxiliary
fields. We also want to see that the Zolotarev range and L value is sufficient. The right
panel of Figure 9.23 shows the condensates measured (still using the Ly = 36 generated
auxiliary fields) with Zolotarev range [0.001,20] for Ly, = 18 and Ls = 24, expanded to

[0.0005, 20] for Ly = 30. Based on the errors of the scalar sign function approximation
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we might have expected more stringent conditions to be necessary, but it appears that

reasonable L convergence is already achieved with the Ly = 18 case.
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F1GURE 9.23: Dynamic Condensate with Wilson kernel. Auxiliary fields dynami-

cally generated with HT and L, = 36. Left panel: Measurements with Zolotarev

(Ls = 24, Range=[0.001,20]) and HT (L, = 36) formulations at different m. Right

panel: Measurements with Zolotarev (Ls = 18/24, Range=[0.001,20], L, = 30,
Range=[0.0005, 20])

Partial quenching with the sea fermions calculated using higher masses has been carried
out in the past [10], and our kernel eigenvalue range seems somewhat bare mass inde-
pendent, so it seemed worthwhile to see whether such partial quenching could produce
equivalent results, similarly to the Lg partial quenching and plots are shown in Figure
9.24. Somewhat disappointingly, although we can see that while there is some indication
this may be acceptable in the weakly coupled region, it is clearly not acceptable in the
strongly coupled region, with the partially quenched results rapidly diverging from their
non-quenched counterparts. Of course, there is no physical justification for this sort of
partial quenching, unlike the differing L, case, where it may be viewed as different levels

of accuracy in different parts of the calculation.
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FIGURE 9.24: Auxiliary fields dynamically generated with HT and Ls; = 36 with

m = 0.01 designated by “Am=01". Mesurements calculated with Zolotarev L, = 24

with m = 0.01 designated by “Mm=0.01". Partial quenching with m = 0.05 in the
auxiliary field is considered.
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9.9 Wilson EOS

We are now in the position, or at least we are closer than prior work, to be able to
estimate the critical exponents via the equation of state, eqn. 5.10, generated from
dynamic condensate measurements, without the need for further non-trivial (constant)
extrapolation of those condensate measurements to their Ls limit. This constitutes the
primary step forward this thesis takes from previous work in this area. Fig. 9.25 shows
a number of such EOS fits. The upper panels have 3 € [0.2,0.6], the middle panels
have 3 € [0.22,0.55], and the bottom panels have 5 € [0.22,0.50]. The auxiliary fields
used are dynamically generated with Ls = 36 with the HT formulation. In the left hand
panels, the measurements are taken with a Ls = 24 Zolotarev scheme, and in the right
hand panels with a Ly = 30 Zolotarev scheme. The mass range is fixed in all cases
m € [0.01,0.05]. The critical exponent values for the different cases are also tabulated
in table 9.1. We see that the results between the two Zolatarev schemes are very similar,
and suggest that we have found a satisfactory level of L convergence, although it cannot
be ruled out that auxiliary fields generated with higher L, values might provide further
convergence. Although the results differ with the choice of window, the errors are quite
wide and the results remain within the errors of each other. Nevertheless, it seems
that the weaker coupling points, 8 = 0.60 especially, but also perhaps g = 0.55 are
too far from the critical point to be sensibly included. The strongest coupling point
B = 0.20 appears to fit the curves better, although condensate data errors are larger
here. As such, despite the measure of fit being best for cases dwl/dw2 defined below, we
somewhat arbitrarily choose the middle panel as representative to designate our critical

exponents. Then we have

B = 0.336(33)
Brm = 1.04(29) (9.2)
§ = 2.078(325)

and correspondingly the hyperscaled values

n = 0.95(15)

v=11(3) (®3)
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case id | Lg I6] Be Bim 1) x?/dof
dwl 24 | [0.20,0.6] | 0.328(22) | 1.06(19) | 2.111(208) | 0.189
dw?2 30 | [0.20,0.6] | 0.326(26) | 1.01(23) | 2.132(267) | 0.151
dw3 24 | [0.22,0.55] | 0.339(30) | 1.07(27) | 2.067(287) | 0.106
dwd | 30 | [0.22,0.55] | 0.336(33) | 1.04(29) | 2.078(325) | 0.0899
dwhs | 24 | [0.22,0.50] | 0.355(37) | 1.19(32) | 1.942(204) | 0.0738
dw6 | 30 | [0.22,0.50] | 0.349(40) | 1.13(33) | 1.979(339) | 0.0694

TABLE 9.1: Equation of state critical exponents found with partially quenched (aux-

iliary fields generated with HT approximation with Ly = 36 and measurements gener-

ated using Zolotarev approximation) for different 8 data range windows. Mass range
is [0.01, 0.05].

Ls=24, B.=0.328(22), Bm = 1.06(19), 6 =2.111(208) Ls=30, B =0.326(26), Bm = 1.01(23), 6 = 2.132(267)

\
N X2/dof=0.189

AN 0.19<B<0.61,0.01=m=0.05
\

\

X?/dof=0.151
0.19<p<0.61,0.01=m=0.05
Ndat =90

Ndat =90

Ls=30, B =0.336(33), Bm = 1.04(29), 6 = 2.078(325)

X?/dof=0.0899
0.21<p<0.59,0.01=m=0.05
Ndat =80

X?/dof=0.106
0.21<p<0.59,0.01=m=<0.05
Ndat = 80

Ls=24, B.=0.355(37), Bm =1.19(32), 6 = 1.942(294) Ls=30, B =0.349(40), Bm =1.13(33), 6 = 1.979(339)

N
X?/dof=0.0738 NN X?/dof=0.0694

N
0.21<p<0.51,0.01=m=0.05 \\ N, 0.21<B<0.51,0.01=m=0.05
Ndat=75

FI1GURE 9.25: Equation of State fits with different condensate data windows for Wilson

Zolotarev formulations. The critical coefficients at the top of each plot are tabulated

in table 9.1. Left panel: uses Ly = 24 for measurements. Right panel: uses Ly = 30 for
measurements.
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Note we have doubled the errors of the condensate measurement in the fit. As noted for
the quenched cases this only affects the x? value and does not affect any of the exponent

values.

9.10 Shamir EOS

Turning to the EOS for the Shamir cases, again we plot a number of 3 range window
fits in fig. 9.26 and tabulate them in table 9.2. Again eyeballing the plots suggests that
despite case ds1 having the highest x?2 /dof, a better fit is found by discarding the values
at the strongest and weakest coupling. Indeed, it looks like L, = 300 may still not be

sufficient for the strongest couplings. So we take case ds5 to present the critical values.

case id i Be Bm ) x2%/dof | N
dsl | 0.24-0.60 | 0.299(9) | 0.50(8) | 3.057(350) | 0.426 | 80
ds2 | 0.26-0.55 | 0.318(14) | 0.68(15) | 2.456(360) | 0.324 | 75
ds3 | 0.26-0.50 | 0.333(19) | 0.80(18) | 2.171(343) | 0.298 | 65
dsd | 0.26-0.46 | 0.344(24) | 0.88(21) | 1.988(355) | 0.322 | 55
ds5 | 0.28-0.50 | 0.339(24) | 0.89(26) | 2.069(399) | 0.171 | 60
ds6 | 0.28-0.46 | 0.347(29) | 0.95(30) | 1.950(428) | 0.186 | 50

TABLE 9.2: Equation of state critical exponents found with partially quenched Shamir
HT kernel for different 3 data range windows. Mass range is [0.01, 0.05].

Then we have

B, = 0.339(24)
By = 0.89(26) (9.4)
§ = 2.069(399)

and correspondingly the hyperscaled values (eqn. 5.13)

n = 0.96(18)

v = 0.91(28) (35)
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Despite the haphazard method of choosing the case, and in part thanks to the relatively
large errors, the critical exponents are consistent between the Shamir and Wilson for-
mulations. This is particularly pleasing because early results had suggested otherwise,
which would have been a disappointing result. Of course, this data only hints at the
similarity of the results, and more and better data is required. Results in the next chap-
ter will suggest a further refinement of the window should be considered, ie smaller m

values with a more focused S range around the critical value.

We note the significant difference with the values given in [8]. The exponents found
with a Shamir kernel on 162 x 16 mesh were 3. = 0.320(5), 8, = 0.320(5), § = 4.17(5),
corresponding to v = 0.55(1) and n = 0.16(1). Further comparison with a staggered
formulation may be considered which give 3, = 0.57(2), § = 2.75(9), corresponding to
v = 0.60(4) and n = 0.71(3). We attribute the difference to the lack of Ly convergence
in earlier work. Although extrapolation techniques were utilized, as hinted at in section

8.1, we suspect the Ly convergence curves may not be amenable to such techniques.
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Ls =300, B =0.299(9), B = 0.50(8), 6 = 3.057(350) Ls =300, B =0.318(14), By = 0.68(15), 6 = 2.456(360)

X?/dof=0.426 x X?/dof=0.324
0.24<§<0.6,001=m=005 N 0.26 <4 <0.55,001=m=0.05
N\

N X2/dof=0.298 NN X2/dof=0.322
\\ N \\\1\ 0.26<f<0.5,001=m=0.05 N \\{\\l 0.26 <f<0.46,0.01=m=<0.05
\ \

0.30 T 030

0.28<B<0.5,0.01sm=0.05 AR 0.28<f<0.46,0.01=m=0.05

2 dof= 2/dof=
/dof=0.171 \ /dof=0.186
025 7 N\ NN \ X 0254 "\ \ N3 X

N Ndat = 60 NN Ndat = 50

FIGURE 9.26: Equation of State fits with different condensate data windows for Shamir
HT formulations. The critical coefficients at the top of each plot are tabulated in table
9.2. Ly = 300 for the measurements in all cases.

9.11 Summary

Using different L, values for the sea and valence fermions we have been able to calculate
an EoS and critical exponents relating to symmetry breaking condensates measured in
the large L, limit of the overlap operator, a task not achieved before in the context of the
Thirring model, albeit on a relatively small 122 x 12 lattice. This was achieved through
the use of an efficient partial quenching scheme, using the HT approximation in the
generation of the auxiliary fields, and the Zolotarev approximation for measurements,
which loses none of the physics. Although greater refinement of the calculation should

be carried out in the future, the compatible results stemming from the Wilson and
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Shamir formulations give confidence in the process. Counts of the computational costs
suggest that the Wilson formulation is preferable, although without an equivalent scaling

window comparisons are not entirely fair.



Chapter 10

Further Measurements

Finally, we explore two measurements which have proven challenging in the past, namely
the axial ward identity, which relates meson correlators to the condensate via eqn. 10.1.
The ratio of the left and right terms should be equal to one both in the lattice formulation
and hence also in the continuum limit, which was not found to be the case [46, 65].
Suggestions for the cause of this discrepancy included a lack of U(2) symmetry on the
lattice, ie insufficient L. The relation was also found to be independent of the bare mass
leading to the suggestion that the bare mass is not correct to plug into eqn. 10.1 but that
a physical mass should be used. Also the suggestion that the field identification, eqn.
3.41, be altered through renormalisation in some way was put forward, although this
is ruled out when using the domain wall formulation in strict adherence to the overlap

operator.

The chiral susceptibility defined as the derivative of the condensate wrt m, eqn. 10.3,
and equivalently calculated as the variance of X, eqn. 10.4, has also previously been
calculated [7]. In that work the correct qualitative behaviour as a function of 5 was
successfully demonstrated for each mass value, but when evaluated with eqn. 10.4 the
magnitudes increased with increasing m, contrary to the value derived from eqn. 10.3

via the equation of state.

We return to these measurements in the less challenging environment of 122 x 12 meshes
where we are able to push closer to the large Lg limit, using the auxiliary fields and

partially quenched condensate results generated for the results of the previous chapter.

10.1 Axial Ward Identity

Continuous symmetries of the theory are identified with conserved currents, and con-
sideration of infinitessimal transforms of the standard measurements, eqn. 2.1, leads

to the Ward identities [10]. We want to calculate the axial Ward identity, associated

102
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with the U(2) symmetry of the Thirring model, given by eqn. 10.1 [46], where C is the

condensate.

C 3 GO0 @) (101)

We already have the data for the condensate of the left hand component and need to
evaluate the series of of meson-like propagators on the rhs, to which end we use eqn.
A.11, and via M!;EI = 75(M;y1)f75 we have

C_

— =D (Tr[(M") M) (10.2)

This is readily calculable. Although the correlator is defined from 0 to z in eqn. 10.1
we may choose any starting value y instead since it has translational invariance. Indeed,
statistics may be improved using more than one location for each auxilary field, although
all the results presented below just use y = 0. Having chosen y, we then use four point
estimators, one for each Dirac index, to calculate aMI_O1 for all z, where M = Doy,. We
note that using the overlap formulation directly eliminates the need to patch together
the meson correlator from distinct components on each wall as is the case for the domain

wall formulation.

‘We provide plots for both the ratio, mLR where R is the rhs of eqn. 10.1. In fig. 10.1 we
consider the dynamic Wilson case. To match the condensate measurement, we similarly
use the auxiliary fields generated with HT Ls = 36, and measure with Zolotarev Ly = 30
in the generation of the rhs term. An increase with increasing f is found, with the
identity getting close to 1 at the stronger end of the range, although at weaker coupling
the ratio falls off significantly. In figs. 10.2 and 10.3 we show results from the Shamir
cases. The curves also ascend through the critical point with a value of around 0.5. L

improvement does not seem to make a significant difference.

Overall, the ratios we have achieved are closer to one than previous results although
something is clearly still amiss. Perhaps the neglected (disconnected) term in the eval-
uation of eqn. 10.1 is more significant than assumed. Despite the limited statistics it
looks like the underlying issues will not be resolved simply by better data and a more

fundamental remedy will be required.
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Ficure 10.1: Axial Ward identity for dynamic Wilson formulation. Left panel: Ratio
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10.2 Chiral Susceptibility

We move on to the chiral susceptibility x, defined by eqn. 10.3 [7], and detailed in
appendix A.5

_9mz _ac

X= 507 = om (103)

We may calculate this directly either as the numerical derivative of the condensate data
or as the derivative of our equation of state. Alternatively, denoting the condensate
instances ¥ via the the condensate, C = (X) = (¥yD™), we may also evaluate the
susceptibility as the variance of those instances ¥, eqn. 10.4'. Evaluation by either
method should match.

x = (3% — (%)? (10.4)

Figs. 10.4 and 10.5 show the susceptibility calculated from the derivatives of equation
of states chosen from those presented in the previous two chapters. All are qualitatively
similar, with the peak magnitude increasingly increasing as m — 0 around the critical
point. Since this limit, x,, y03—5. = 00, this is what we want to see. The peaks for the
Wilson cases are somewhat more than double those of the corresponding Shamir cases.

This suggests the feasibility of the simple rescaling described in section 5.2.
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FIGURE 10.4: Quenched susceptibilities from EOS. Left panel: Wilson ZLs24, 8 €
(0.5,1.0). Right panel: Shamir Ls300, g € (0.52,1.2).

!This calculation omits the connected components as set out in appendix A.5
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FIGURE 10.5: Dynamic susceptibilities from EOS. Left panel: Wilson ZLs30 (AH36).
Right panel: Shamir Ls300 (AH96).

However, calculations based on eqn. 10.4 are less neat. Of course, variance calculations
are more computationally demanding that mean value calculations, and the data is
rather noisy again. Plots for the quenched Wilson and quenched Shamir cases are
shown in figs.10.6 and 10.7 respectively. The data used in the evaluation is noisy, and of
course, one should mitigate against the use of noisy estimators in the evaluation of X,
but this data was not preserved, and the following is based on a naive evaluation only.
The left panel Wilson plot uses Zolotarev with Ly = 24, and the right panel uses HT
with Lg = 36. The left panel Shamir plot uses HT with Ly = 300, and the right panel
uses HT with Ly = 96. While in all cases we find the correct increase in magnitude with
decreasing m in the strongly coupled region, for the Wilson case with HLs; = 36 the
m = 0.01 curve gives the smallest magnitude in the weakly coupled region. Overall it
seems that limiting the Ly dampens the condensate instances, which makes sense since
this has the effect of reducing the magnitude of eigenvalues in the sign function of the
overlap operator to less than one beyond the range of the approximation. Further, the
susceptibilities increase with decreasing 5, and do not show the downturn beyond the
critical point, although there are hints of this when the better Ls approximations are

used. We believe this is a consequence of ignoring the noisiness of the data.

The calculations using the dynamic data, shown in figs. 10.8, 10.9, 10.10 paint a similar
picture, but perhaps more strongly suggest that the inversion of the magnitude with
decreasing m is simply a consequence of sufficient Ls;. We suggest that away from the
critical point, lattice artifacts may be stronger and are a potential reason for stronger

discrepancies for S-values further from the critical point.

Overall, however, these results suggest that better Ls resolution and better statistical
data is likely to be sufficient to have matching calculations of the susceptibility as we

require.
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Chapter 11

Conclusion

11.1 Summary

This work has investigated different formulations of lattice Dirac operators which obey
the GW relations and recover the U(2) symmetry in the continuum limit; namely the
overlap operator and the equivalent domain wall operator. These have been explored in
the context of the 2+1d Thirring model.

Code development has primarily been a standalone Fortran code implementing a range
of Dirac operators and measurements thereof utilising either quenched or imported aux-
iliary fields. Dynamically generated auxiliary fields were produced with the freely avail-
able Fortran code [64]. This is a Shamir kernel domain wall code, and it was altered to

provide the option of generating fields with the Wilson kernel.

As a modest contribution on the theoretical side, the twisted mass formulation of the
overlap condensate, eqn.4.15 was introduced in this work, corresponding to the twisted

mass formulation of the domain wall condensate introduced in [3].

The locality of the overlap operator was numerically demonstrated for the strongly
coupled 2+1d Thirring model. It had only been demonstrated for a weakly coupled
region with a bounded auxiliary field before. That the Zolotarev formulation improves
L convergence is not new, it being optimal, but this work contributes to the body of

knowledge on convergence rates and the GW error.

A number of different aspects of the Dirac operators and their implementations were
investigated. Eigenvalue ranges of the overlap kernel were explored, and a key finding is
that the non-compact link fields leads to apparently unbounded from above eigenvalue
ranges in the overlap kernel, whereas these are clearly bounded with compact link fields.
This has very significant (detrimental) implications on the computational difficulty of

inverting the Dirac operator. Further, the Shamir formulation appears to become more
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challenging as the mesh gets larger in a way that the Wilson kernel doesn’t. That is,
that the kernel eigenvalue range increases with mesh size around and beyond the critical

coupling strength.

Varying the domain wall height was briefly explored in the quenched cases, and was found
to signifcantly improve kernel eigenvalue ranges for fixed 3, and the improvement is most
pronounced around (.. This benefit may be reduced somewhat since we subsequently
show that 5. moves with M, but there is clearly benefit to be exploited here. Further,
we suggest that reducing the domain wall height appears to zoom in on the mass scaling
in the Shamir formulated EoS.

Using the relatively small mesh size of 12x12 we were able to achieve reasonably well L
converged quenched results with the Zolotarev approximation for the Wilson formulation
with a low Ly = 24 and the utilisation of Ly = 300 was achievable for the Shamir
formulation using the indirect domain wall formulation (eqn.3.91). Shamir cases were
run with both M = 1.0 and M = 0.5. It is clear that M has a significant impact on the

results, and one hopes corresponds to a rescaling of the equation of state variables.

In the dynamic generation of auxililary fields, it was found that the Wilson formulation
had a lower acceptence rate in the hamiltonian dynamics steps, becoming more pro-
nounced at the stronger coupling. Fitting with the perspective that the Shamir results
are rescaled from the Wilson results, we speculate that we might expect to find the same

acceptance rates with suitably rescaled Shamir mass and § values.

Another key finding, or observation, was that the level of accuracy corresponding to
the large L limit required in the measurement of the condensate, is not required in
the generation of the auxiliary fields. Given that the bulk of computational effort in
dynamic simulations is in the generation of the auxiliary fields this has the potential to

save significant computational cost.

Condensates with compact link fields were also considered, largely due to the celerity of
their calculation, and were found not to have a phase change at least not with the mass
as the order parameter. The significance of this is unclear and unexplored, but was a

surprising result.

We calculated an equation of state and critical exponents for both Wilson and Shamir
kernels, using low accuracy for the generation of the auxiliary fields and high accuracy
for the measurements. Although better statistics would be desirable, the results are
consistent between the formulations, as we would hope. This was particularly good
news as lower Lg-range preliminary work had hinted that consistency may not have

been found. This would not have been possible without the partial quenching.

Finally we looked at the axial ward identity and chiral susceptibility, calculations which
have been found challenging in the past. It appears that difficulties in the calculation
of the chiral susceptibility can simply be attributed to insufficient L, resolution. While
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it seems some improvements are made here in the calculation of the axial ward identity,
it does not suggest that the better Ly combined with better statistics will be enough to

resolve the discrepancies found in the data.

A couple of comments are to be made before concluding with the outlook for future
work. At the outset one of the simple question was which kernel to use. It seems to the
author that both should be used, providing a valuable crosscheck. Although we were
able to get away with using the HT scheme with the Shamir formulation in this work,
this will be limited in general since the requirements seem to become more stringent with
increasing lattice size. We see via the denominator coefficients of the partial fraction
representation that the HT approximation needs to achieve a similar smallest coefficient
to the Zolotarev approximation to match its accuracy, but has very many wasteful
partial fraction terms. And hence Zolotarev should almost always be used from that
perspective, notwithstanding the scaled HT formulation may be preferable for relatively

small eigenvalue ranges.

The phrase partially quenched has been used to describe differing L values between the
sea fermions (those used to dynamically generate the auxiliary fields) and the valence
fermions. This is somewhat misleading, as it may more simply be viewed as relative
accuracy between two different parts of the overall calculation, and there is no quenching,

partial or otherwise, of any of the physics, when suitable Ly values are found.

11.2 Outlook

Inevitably, there is much more to do, too many stones were left unturned, and better
statistics would be beneficial in almost all of the simulations. Nevertheless we may set
out the following goals following on the work carried out in this thesis, continuing to

work with a 122x12 mesh for the moment.

e Generate more dynamic Wilson fields with M = 1 and include m = 0.005,
m = 0.075 data. Double the number of 3 data points to improve EoS x? value,
continuing with the same range. We want to see a very clearly window independent
EoS.

e Repeat the process with M = 0.5.

e Generate Shamir auxiliary fields with a narrower window (smaller m, /3 closer to
Bc). Explore whether this is better achieved with M # 1.0.

e Establish scaling relations between the different Dirac operator configurations.

This would provide a significant boost to the confidence in the validity of the EoS.

There are further issues which we would like to explore.
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Designer sign approximations Can we find non-optimal approximations which in-
clude higher order polynomial terms which allow a larger smallest denominator
coefficient for the rational part. Explicitly, can we extend eqn. 3.77 to the form
sgn(r) =3, cjr?d 4 dr(bo + 2%61:1 Tgl_’;’&m) and choose ¢; so that the smallest values
d, are increased, leading to faster evaluation overall.

GW correction term It would be affirmative to look at eqn. 7.9 for dynamic formu-

lations. We expect it to vanish as we go to critical coupling.



Appendix A

Formulational Issues

A.1 Matthews-Salam Relations

To ensure the correct Fermi statistics the spinors 1,2) must be made up of Grassmann
numbers. We make use of the Matthews-Salam formula to integrate these which is given
by [10]

/D[n,me"M" = det[M] (A.1)

where Dn, 7] = dnydiy - - - dmdii, we have the vectors of Grassmann variables n =
{m, - ,nn}t, » 7=A{m, - ,7n}, and the complex valued N x N matrix M. We then

have Wick’s theorem, for n twin Grassmann numbers,
/D[777 77] nhﬁjl Mgy s ﬁjneﬁMn = f(ihjl) T 7inajn7 M)det[M] (A2)
where

f(il)jla T )invjm M) = (_1)n E Sign(P)(Mﬁl)ilel (Mﬁl)iszz e (Mil)injpn
P(1,-,n)
(A.3)

where we sum over all the permutations of the set P = {1,--- ,n}, and sign(P) is +1 if
the number of element swaps to reach the identity permutation is even, and —1 if odd.

Hence we have the Matthews-Salam relations
f(ihjlaM) = _(Mil)iljl (A4)

fliv, juyiz, g, M) = (M™1)i 5 (M Diggy — (M) (M 1)igj (A.5)
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If terms of our Dirac operator, each spinor has 4 components, although for notational

brevity we consider below a 2 component spinor,

w):(’“’l) 66 = (1 w2 ) (A.6)

;2

so the propagator (1(i)y(5)) is

W) = <<77i,177j71> <77i,177j,2>> _ <<<77k771> (MET+1) )

(Mi2nj1)  (Mi2Mj2) Me1T) (Mt 1741)

(A.7)
- ( —(M e —(M g ) — (MY,
—(M Yy —(M D141 "
and further
(Ce()p(5)) = T (@()d(5)) = ~T(M )i (A.8)
Conversely we have
(W ()(i)) = (ijamin) + (Mj2mi2) (A.9)
= (Tr[(M 1))
and
(PG)T(0)) = (Te[(M);]) (A.10)

For second order terms, corresponding to eqn. A.5, we have a meson like propagator.

(W(OTP()(H)T()) = — (Te[D(M )i ;T (M1);40)

(A.11)
+ (Te[D(M 1)) T[T (M 1))

The second term, the disconnected term, is often neglected [10]. The eqns. A.9, A.10,

A.11 are the Matthews-Salam relations.

A.2 Parity Invariance

The parity of a system describes its “evenness” or “oddness”. A parity invariant system
has its lagrangian remain constant under a parity transformation, defined below.! We

confirm parity of the three different mass terms, transcribing from [44]. For an active

We invert an odd number of axes. Inverting an even number corresponds to a rotation of the
coordinates.[3]
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frame of reference transform we have

r — Az
¢(x) = PIA ]@ZJ(A 'z)
d(x) = P(A ) PIA] (A.12)
Ouo(z) — AT P[A)0, (A )
A(x) = AA(A 1)

where A is the space-time transform, and the form P[A] is to be determined. We choose
our parity transform to reflect all 3 space-time dimensions, so the coordinate transform
matrix is A = —I3. We find two suitable forms, Pi[A] = 3 and P>[A] = 75. This is
distinct from 34+1d where P[A] = ~y. Noting

PIS'] = P(D + m)y]

_ _ _ (A.13)
= Py, 0] + PlpyuiAptp] + Plpmap]
we can then show parity invariance of the individual terms
P1 [77/_)’7/18#7% = l/_}PI [A]_l'Y#A_lPl [A}auw
= Y37 (= 1) 730, (A.14)
= 15%%1/1
Pr[gyuiAut] = O PI[A] 1,0 A A, P ALY
= 1/_")’3’7;1(_1')Au73¢ (A.15)
= QZ’Y“Z'A“@ZJ
Pilymy] = 1?131 [A]™ mPr[A]y (A.16)
= ¢Ymap

P5 follows an identical process since ~y5 also anticommutes with g, 1, v2 similarly to s.
For S2 we need only consider the mass terms, which are only invariant under one of the

two parity transforms.

P[S%] = P[(D — inzm)y)] (A.17)
P1l(—iyzm)] = YPI[A] ™ (—ivyzm) Py [A]y
= y3(—iyzm) sy (A.18)
= p(—iyzm)y

Polt)(—iygm))] = P Po[A] ™! (—iyam) Po[AJe
= 5 (—iy3m)ys1 (A.19)
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is not, since the sign of mass term has been flipped. This situation is reversed for S°.

To see that the irreducible formulation is not parity invariant, note that parity demon-
strated above was contingent on the anti-commutivity of the 3 and 75 matrices with
the ~0,71,72 matrices. For the irreducible formulation we would need to find an anti-
commuting matrix equivalent to 3 or 5 for the Pauli matrices. The Pauli matrices
possess 02 = g5 = 03 = —io10903 = I. If we require some M that anti-commutes with
all o;M = —Mo; then —ioi0903M = iMoioq03, i.e. M = —M, which only holds if
M =0.

A.3 Equivalence of Domain Wall and Overlap Operators

We demonstrate the equivalence of the determinant of the domain wall operator and
the overlap operator. We choose the Wilson kernel and the twisted mass term for
the illustration. The overall approach is taken from [39], and the twisted mass form

derivation was initially provided in [35] for the Shamir kernel.

A.3.1 Some Linear Algebra

Consider [39] the LDU decomposition of a matrix M = LAU with the following structure,

where the T; and C4 are square matrices,

1 0 0 -T7'Cy
| 0
M = 2 . (A.20)
0 Ty 1
0 o -1;' .
then with T = T1T2T3T4,
1 0 0 0\ /1 00 0 100 A on
IAU — | 0 of]o 10 0 010 -Ty'17'cy
~T;1 1 o]0 01 0 00 1 Tyt toy
0 o -17;' 1/J\oo0oo0ocCc -17'cy)\0 0O 1
(A.21)
with the Schur complement S = C_ — T~'C, and
1 0 0 0
T, ! 1 0 0
L™= L . . (A.22)
(=T2)~ (=T3)" =Ty 1 0
(-T) N(=T3) " (-Tw)™' (T3 '(-Tw' -T7' 1
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100 0
1
AL = 8 0 (1) 8 (A.23)
000 St
100 o
g-1_ |0 10 Tty (A.24)
00 1 -Ty'mytrte,
000 1
so M~ ' =U"TA"1L7! and
(M YHy=8't=C_ -17'Cy)™? (A.25)

is the inverse of the Schur complement S. The example 4 x 4 M matrix given can be
extended to a N x N with the same structure. For any Dirac operator that we can put
into this form with suitable T', we can connect to an approximation of the sign function
and hence the overlap operator. The salient feature of the LDU decomposition is that

the determinants of the lower and upper diagonal matrices are 1, so that

det[M] = det[A] = det[5] (A.26)

A.3.2 Wilson Domain Wall M3

Choosing not to simplify? with P_y3 = —P_, P,v3 = P,, we have

w DIl 1 (w1 DIl — 1P, 0 — (w1 DI = Iimys P
M3 _ (wo DI — 1) P_ woDIl 4T (WDl — 1Py 0
bw 0 (3Dl = 1)P_ w3Dll + T (wsDl — )Py
—(wy Dl — Iim~3 Py 0 (wyDI — 1) P_ wy DIl + 1
(A.27)

Using the compacting matrix

P 0 0 P
P, P 0 0
0 P, P. 0
0o 0 P, P

C = (A.28)

Zfor future algbraic consistency and simplicity
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(Dl + NP_+ (Dl —nP, 0 0 (Dl 4+1)Py — (w1 DI = Iim~3 P
M3 o (woDIl = P + (Dl + )Py -~ 0 0
bw 0 .. 0
0 0 - —(wsDl = DimysPy + (wyDl + T)P_
(A.29)
Let
Qf = (w;Dl + 1)P_ + (w;DI = )P
( ) ( )Py (A.30)
Q; = (w;DI'+ )Py + (w;Dl — ) P_
Cy =P, —imysP—
+ + 3 (A.31)
C_ = P_ —imy3P+
so that
Qf 0 0 QCy
5, QF 0 0
ppo— |9 @ N (A.32)
0 0 Q QfC-
Let
Qf 0 0 0
5 0 0
V= 2 (A.33)
0 0 QF 0
0 0 0 QF
then
VIDYRC =M (A.34)

We have det[C] = 1 but det[V] # 1. However, V is independent of m, unlike DX}, and
hence while det[V~1DM3(m)C] # det[M (m)] we do have

det[M (1) "M (m)] = det[(Dy (1)~ Dy (m)] (A.35)

This will provide the crucial link relating the determinants of the overlap operator to
the domain wall operator. Now M has elements C* as given in eqns. A.43 and T} given
by

Qf _1-
Q1+

=

T, = (A.36)

=

where
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Eqn. A.36 is found via

—(@Q) 7M@)

—[(w:D + )Py + (wiDl = N)P_] 7 [(w: Dl + ) P_ + (w; DI = T) Py ]
~[(@Dl) + (Py — P)] " (@i D) — (P4 — P_)]

—[(@iD) + 73] (w; DIy = ~3) (A.38)
[(

wisDI) + 1] (wirsDI) — 1

The Shamir variants have the same structure with H; = 73 2+w DH .

A.3.3 Overlap from Domain Wall
Having laid the groundwork, the final step is to show that
det[Dpyy (1)~ DRy (m)] = det[ D] (A.39)

indicating that operators DY (1)1 D3 (m) and DY are physically equivalent. Ap-

proximations to the sign function, designated ¢ may be expressed as

1—H;
1_H11+Hi - 1—T

sgn(v3D) ~ e = (A.40)
1+ 1+H 1T
Then the overlap operator may be given by
1+ imrys 1-T1—1immys
DYE(m) = A4l
Yo m) = T g (A1)
The Shur complement of M is S = (C_ — T~'C). So then we will show that
1 , :
SM3(m) = —(14+T71)y3 x 5[(1 + im3) + y3sgn(y3 D! (1 — imns3)) (A.42)
We may reexpress eqn. A.43 as
, 14+im 1—im
Cp =P —impP-=———— L
(A.43)

1—sm 1+imys

szpf—' P = —
myst+ 5 5

73
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so then

25M3(m) = [(1 — imy3) — (L +imys)ys — T~ (1 — imys) + (1 + ims)ys)]
=[(1=T7Y(1 —imys) — (L+ T (1 + imys)ys]

= (14 T g1 (U~ i) — (1 + imag)n (A1

+
= —(1+ T YHe(1 —imr3) + (1 4 imy3)7s]
= —(L+T ")y x [(1 4 imys) + yze(1 — imys)]

In the standard mass case, we just replace imvys with m and get
28M1 () = —(1+ T~V x [(1+m) + 5e(1 — m) (A.45)

which we see has
SMI(L) = —(1+T ") (A.46)

Hence we get the result the expression for the overlap in terms of the Schur complement

of domain wall operators

Dy (m) = (SM1(1))715M3(m) (A.47)
from which we see the relationship between the domain wall and overlap operators via
their determinants

det[DGF (m)] = det[(SM1(1)) " 5M% (m)]
= det[(MM1 (1))~  MM3(1m)] (A.48)
= det[(Dpy (1) D (m)]

The relation between the full overlap and domain wall operators is given in the main

text.

A.4 Thirring Model

The physical equivalence of the original Thirring model Lrpiy = W(7,0,+m) ¥+ %\Tﬁyu\l!
with its auxiliary field form £4 = U(v,0, +m +igA,v,)V + $A, A, can be seen via

1
La=V(+m+igAy,)V + §AHAH

_ _ 1 2 2

:@@+mw+m&yww+ng+%mmyf—%@WQQ
2 . (A.49)

7 9 3 2 Ay 9 = 2
— (P +m)U + 2 (T, 0)2 + (£ 4 D Gy, O

(2 +m) 2(7#)(\/5\@%)

1[12

=£Thir+7u
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where flu =A,+ ig\ilvullf. Now we have the auxiliary form partition function

Zy= /D[\P,\TI]D[A“]e_fz[:A

A2
_ /D[\I’, \ii]e_ [, Lrnic /D[Aﬂ]e_ /. AQN (A.50)
= const Zrnir
The last step holds since A, is linear in A, so D[A,] = D[A,] and hence
i y 2
/D[Au]e J: =" = /D[A“]e J: =" = const (A.51)

Hence the physics is the same since scaling the partition function does not change the

physics. The constant is regularisation dependent.

A.5 Measurement Derivations

The following derivative

_omz_ 10z
 Om ZOm

C

combined with

= /D[Qp,&];n[exp(—lﬁ(l)o +mD"™)y)]

(A.53)
_ / D[y, Y] D™ pexp(—) D)
= — ($D")
leads to
0= — (D" )g
- 7% (Tr[D™D~det[D]) 4 (A.54)

= —(Ta[D™ D))
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Taking the next derivative

_821nz_i[l<8ZF> |
X om2 T oam'Z Vom'a
-1,0Zp* 1 0°Z

: <%>G n S <W>G (A.55)
_ % (iﬁ)a - (% <%if>c)2
and
WF / Dl B[ D™ esp(~G DY)
_ / D[, $Jd D™ bp D™ pexp(— D) (A.56)
= (D™ YD)
= (Te[D™D™'? = TY[(D™D~")?])det(—D)
leads to
A T (A57)
- % (YD P D) ) ¢, — (% (WD) p))?
And hence
X = % (Te[D"D*Zp)
(D" D)) Zr) (A.58)
~ (5 (T{D" D] Zp) )
And finally

= ($D" YD) — (D)
= (Tt[D™D~1%) — (Tx[(D™D)3)) — (Te[D™ D)) (A.59)
= (£2) = (Ty[(D™D™)?)) — (%)?

The middle terms, the connected terms, are typically discarded since they are computa-
tionally relatively expensive and assumed to be negligible. We have along the way given

the general definition of susceptibility of an observable O, xo = (02) — (0)?.

Note the difference in meaning between (-) containing Grassmann variables and those
just containing numbers, the former referring to measurement integrals of form eqn. 2.1,

and the latter meaning the averages according to eqn. 2.18.
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A.5.1 Overlap Condensate with Standard Mass Term

The overlap operator with standard mass term is given by

1+m 1—m
Dby = stV (A.60)

We separate the mass term D%)L = D?)L + mDé‘)/% to get
1 1
DY, = 3 +t35V (A.61)

11
DM = 53V (A.62)

1
2Dg—1-m
1-m

and want to find the trace Tr[DY} (D}, )] and we have, making use of V =

1
Dy (Do)~ = :

1
D (A.63)

Twisted Mass Formulation

Now we consider the overlap operator with twisted mass term and it carries through in

exactly the same way.

1+ 1—1
Dy = sy (A.64)
2 2
which separates into D%L = D%L + ngE, with DOOL as above, to get
1 1
DY, =-+2V A.65
oL =515 ( )
DM3 = (1-v)2 (A.66)

2
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Now we have V = (2D}, — 1 — im~3)(1 — imy3) ™! and so

DY TDor = (1= V)ip[l+V + (1 — V)imys] ™!
= (1— (2D} — 1 — imys) (1 — imys) ™" )ivs

X L+ (2D%, — 1 —imys)(1 —imy3) ™" + (1 — (2D%, — 1 — imeys) (1 — imys) ™" )imns]~

= (1= D p)insl(—imys + D) + (1 — Dpyp,)imys] ™"

= (1= D3 p)ivsl(Dyy,) (1 — imys)] "

=(1- DOL)W3(1 — imy3) " (D)
( )

=(1-D}y W?)er(DOL)
(A.67)
And by the cyclic property of traces of matrices we have
DY} D} = Tol(1 = D) (D))
= T (D41) (1= Dby (A.68)
= Tl (Db ~ 1)

Left Twisted Mass Formulation

Now we consider the overlap operator with twisted mass term and it carries through in

exactly the same way.
1 +imns n 1 —immys
2 2

which separates into DéL = D%L + ngLS, with D%L as above, to get

D}, 1% (A.69)

11
DMA = l;?’ 1-V) (A.71)

1
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Now we have V = (1 —imy3) "1 (2D}, — 1 — im~y3) and so

DL (D)™ = ing(1 = V)L +V +imys(1 - V)]~

=ivy3(l — (1 — im’yg)*l(2D4OL —1—imn3))

X [14 (1 —im~3) 2D, — 1 —imys) + imys(1 — (1 — imys) L (2D%, — 1 — imas))] !
= iy3(1 — im3) " (1 — imys) — (2Dg;, — 1 — im~y3))
x [(1— im’yg)_l((l —imys3) + (2DéL —1—1imvs)
+imys(1 — imas) (1 — imys) — (2Dgy, — 1 — ims))] ™!

=iy3(1 — D4OL)[(—im73 + D4OL) +imy3(1 — DéL)]_l

= iv3(1 — Do) [(1 — imys) (Do) ™
= i3(1 — Dbp) (Do)~ (1 — imeys) ™!
= i3((Dby) ™ = 1)(1 = ims) ™!

(A.72)

And by the cyclic property of traces of matrices we have

Te[DGL (Do)~ = Tr[DGL (Do)~ (A.73)
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Numerical Aspects

B.1 Monte Carlo Integration

Monte Carlo integration is the go-to tool for integration over high dimensional spaces.

Consider the integral
I—/ dx f(z) (B.1)
v

and

Z:Aﬂx (B.2)

then we may approximate the integral with

A
1= 23 fa) = 2{f) (B.3)

where the same points x; are taken uniformly randomly from the domain of integration
V. However we may choose the points x; from a non-uniform distribution in order to
improve the convergence rate. This is importance sampling. The points thus chosen are
more likely to contribute significantly to the calculation. Consideration of the Gaussian
integral I = f_oooo e dx highlights the benefit (need) of sampling near the peak rather

than the tails. To proceed, we may reexpress the integration as

= x w(x f(x)
I_Ad (z) (B.4)

w(z)

with

Z:/de w(x) (B.5)

and then we may approximate the integral with

A VIt w
I~ 52w = 21w (B.6)
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where the same points x; are taken non-uniformly randomly with weighting w(x) from

the domain of integration V.

For our measurements in chapter 4 we then have

= % / DUexp(—Se[U])det[D[U|O[U]

1 A (B.7)
=N > O]
where the U; are chosen with weighting exp(—Sq[U])det[D[U]] and
7z / DlU]exp(—Se[U])det[D[U]] (B.8)

B.2 Markov Chain Monte Carlo Integration

Markov chain Monte Carlo integration methods use Markov chains to produce the sam-
ples used in Monte Carlo integration. A slightly more detailed presentation of the
Metropolis algorithm, which is the foundation of the hybird method given in the main

text, is given below, following online lecture notes [66].
In general we want to find a vector A with probability distribution function p(A). This
can be achieved as follows.
1. Choose any initial vector Ay.
2. Choose a proposal probability distribution J(A’[A4), so that [D[A’] J(A'|A) = 1.
3. Loop forn=1,...N

e Choose a proposal A’, with probability p(A4’) = J(A’|A""1)

e Calculate Metropolis-Hastings ratio

L (A A
" AT

e Assign A™ according to

A A with probability: min{1,r)}
A"l otherwise

If we insist on the proposal distribution being symmetric, then the ratio reduces to

p(A")

m (B.10)
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which results in the Metropolis algorithm given in section 6.1. The two key properties
of the algortihm are ergodicity and having detailed balance. The first is the ability to
reach all possible distributions from any starting distribution, i.e. the space of possible
distributions has no isolated states or subsets of states from which the algoithm cannot

escape. Formally, for some N large enough, VA, A°
P(AN = A|A%) >0 (B.11)

The second property is that the probability of going from one state to another is equal

to the probability of the reverse. Detailed balance may then be expressed as
P[An — A1|Anfl _ A2] _ P[An — A2|An71 _ Al] (B12)

Observing that the probability to get from one state to another is the combination of

the proposal and acceptance probabilites we have that

PA™ = A/|A"Y] = rJ(A'| A1) (B.13)

B.3 Noisy Estimators and Point Sampling

For sparse matrices, multiplying a vector by the inverse of the matrix is often much faster
than calculating the full inverse matrix. Further, individual entries of a matrix may
be estimated through multiplication with a vector of random numbers. This provides
a rough and (relatively) rapid method for calculating the trace of the inverse action
matrix.

Let M be an n x n real matrix, and 1 be an n vector of standard Gaussian random

variables, then let

E=M"1p=Any (B.14)
and so
&= A (B.15)
k
hence
Emi=ni&G =i Y Ajrmi (B.16)
k
and thus
(&) = (Y Ajkmk) = Y Aji (mink) = Aji (B.17)
k k

For complex Gaussian random variables (1;1;) = 24, so must multiply by the conjugate
T

instead since < n;n; >= 0, so

< n;rfj >= T];r ZAjknk >= Z Ajk < n;rnk >= Aj,‘ (B.18)
k k



Appendix B Numerical Aspects 129

The complex normal random variables have half variance components, i.e. 7; = X, +14Y,

where X; ~ N(0, 3) and similarly Y; ~ A(0, ). This ensures <77;'77j> =1

Note it is not required to populate the entirety of the n vector. Each entry provides for
the corresponding column of the matrix, i.e. if 7y is a random variable, and the rest are

zeros, then we still have (ng§i> = Ap;.

With Gaussian random vectors the more samples used, the closer the approximation gets

to the target value <77;[77k:> — 1, and the smaller the contributions of the off-target values

<77iT nk) — 0, i # j. However, Gaussian rvs are not the only option available. A uniform
distribution over the elements —1, 1, —i, ¢ instead may be used (Zg noise), and in certain
circumstances it can provide a better solution more quickly. The target value is always
exact (U;“?H = 1, and it is only the off-target values which must decay. On testing,
we found no advantage in our simulations, though, since to achieve a sufficient level of
decay in the off-target values, the approximation to the target value was sufficient. The

Zo noise has a slightly smaller variance.

Alternatively, we can extract the kth column of A, £ = An exactly by setting n; = 0 for
k # j and n = 1. Then & = Aj;. This is the point method.

B.4 Autocorrelation

The error in non correlated data is given by err = ﬁa where o is the standard deviation.

Correlated data error may be corrected through the integrated time scale Ting.

Tint

err =4[ 0 (B.19)
where -
Tt = 1+2) &) (B.20)
t=1
and .
oy = W (B.21)
C(0)
E(t) = (CE Wy (B.22)
When we have C(t) = e /7 we also have
o0 2¢—1/7
ra = 1423 e e =1 4 e ¢ e (B.23)
—e T

1
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