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Abstract: Small-scale Acacia decurrens plantation forests, established by farmers on degraded lands,
have become increasingly prevalent in the Northwestern Highlands of Ethiopia. This trend has been
particularly notable in Fagita Lekoma District over the past few decades. Such plantations play a
significant role in addressing concerns related to sustainable agricultural land use, mitigating the
adverse effects of deforestation, and meeting the livelihood and energy requirements of a growing
population. However, the spatial distribution of Acacia decurrens and the essential remote sensing
and environmental variables that determine its distribution are not well understood. This study
aimed to model the spatial distribution of Acacia decurrens plantation forests using PlanetScope
data and environmental variables combined with a species distribution model (SDM). Employing
557 presence/absence points, noncollinear variables were identified and utilized as input for six SDM
algorithms, with a 70:30 split between training and test data, and 10-fold bootstrap replication. The
model performance was evaluated using the receiver operation characteristic curve (AUC) and true
skill statics (TSS). The ensemble model, which combined results from six individual algorithms, was
implemented to predict the spatial distribution of Acacia decurrens. The highest accuracy with the
values of 0.93 (AUC) and 0.82 (TSS) was observed using random forest (RF), followed by SVM with
values of 0.89 (AUC) and 0.71 (TSS), and BRT with values of 0.89 (AUC) and 0.7 (TSS). According
to the ensemble model result, Acacia decurrens plantation forests cover 22.44% of the district, with
the spatial distribution decreasing towards lower elevation areas in the northeastern and western
parts of the district. The major determinant variables for identifying the species were vegetation
indices, specifically CVI, ARVI, and GI, with AUC metric values of 39.3%, 16%, and 7.1%, respectively.
The findings of this study indicate that the combination of high-resolution remote sensing-derived
vegetation indices and environmental variables using SDM could play a vital role in identifying
Acacia decurrens plantations, offering valuable insights for land use planning and management
strategies. Moreover, comprehending the spatial distribution’s extent is crucial baseline information
for assessing its environmental implications at a local scale.
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1. Introduction

Plantation forests are forests established by planting or deliberate seeding to achieve
principally economic goals [1] such as timber, energy, fiber, and non-woody forest prod-
ucts [2]. They are also established for soil and water conservation and carbon sequestration
in the process of afforestation and reforestation [3]. According to the FAO [2] report, planta-
tion forests cover about 131 million ha worldwide and account for 3% of the global forest.
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Between 1990 and 2020, their area increased by 55.8 million ha, with the biggest jump
(21.2 million ha) recorded between 2000 and 2010.

The impact of plantation forests on the environment will depend on what land use they
replace [4]. If they are established on frequently cultivated land for a long time or degraded
lands, they may provide substantial opportunities for biodiversity conservation [5] and
deliver vigorous ecosystem service [6], but plantations converted from the natural forest
have adverse impacts on biodiversity [7]. Plantation forests are essentially significant in
fragmented landscapes, where they may account for a large amount of remaining forest
habitat [8] and can serve as corridors between habitats [4].

Small-scale plantation forests initiated by farmers on degraded lands have become
important in Ethiopia, particularly since the mid-1990s [9]. An estimated area of 754,900 ha
of the country is covered by small-scale plantation forests, and of this, 84.7% (639,400 ha) is
found in the Amhara Region [9]. Critical levels of land degradation and reduced productiv-
ity forced farmers to start planting trees, often with predominantly exotic and fast-growing
species at the expense of crop production [10–12].

In the Northwestern Highlands of Ethiopia, specifically in the Fagita Lekoma District,
the study site and one of the districts in the Amhara Region, growing Acacia decurrens
plantations on small-size farmlands have been rapidly increasing and are widely planted
because of the economic and environmental benefits. This species is preferable due to
its advantages of a fast-growing rate and adaptability to degraded and acidic soil condi-
tions [13]. Additional reasons that motivate farmers to plant this species are its use as fuel
and construction wood, animal fodder, charcoal production and availability of market, and
soil fertility maintenance [14]. It also creates job opportunities for landless community
parts and supports local livelihoods and rural developments, especially when managed
by smallholders [13,15]. Land-use change from cultivated land and grassland into Acacia
decurrens plantation has been common in the district in the past three decades and resulted
in an increase in the forest cover of the district by more than 250% between 1887 and
2015 [16], and around 400% between 2006 and 2017 [17]. A range of ecosystem services
can be obtained from plantation forests established on degraded lands that require restora-
tion [18]. New plantation forests generated from former agricultural land can improve
ecosystem service [19].

The rapid expansion of plantation forests significantly affects climate, hydrology,
biodiversity, and the terrestrial carbon cycle. The expansion of plantation forests can amend
the understory climate condition and soil properties [20], and water quality [21]. These
changes occur as a result of changes in temperature, rainfall, land use type, and storm
frequency and magnitude [4]. In addition, plantation forests can contribute strongly to
regulating the environment, biodiversity, and socioeconomic functions, especially carbon
sequestration [22]. To monitor such dynamics, remote sensing is an essential and effective
source of data [23].

Remote sensing technologies drive developments in forest resource assessments and
monitoring at various scales. They enable the provision of airborne and spaceborne data
with a higher spatial resolution, frequent coverage, and expanded spectral coverage [24].
The remote sensing-based assessment of forest study is repetitive, affordable, competent,
and non-destructive for monitoring [25]. Recently, in complementarity with field data, it has
shown great adaptability in environmental studies such as droughts [26], floods [27], the
spread of invasive species [28], disturbance [29], and other human-induced pressures [30].
The contribution of satellite data is becoming impressive to monitor the spatial distribution
and temporal dynamics of plantation forests [31]. Optical data are spectrally sensitive to
different species and can distinguish phenological characteristics unique to a particular
plantation [32]. Different plantation forests can have distinct implications for the local
ecosystem service [33].

The geographic distribution of species is dynamic at accelerating rates because of
anthropogenic pressures, the introduction of non-native species, and climate change [34].
To understand the distribution of introduced or expanding species, researchers often map
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the suitability status of the habitat or the potential occurrence probability of species using
different techniques such as expert opinion [35], mathematical models [36], or machine
learning algorithms [37]. These methods help researchers and decision-makers to identify
priority areas for environmental conservation [38], examine landscape planning approaches
on the management and restoration of protected areas [39], assess species distribution
under changing anthropogenic or environmental conditions [40], investigate the impact of
environmental changes on the biodiversity [41], and model the invasion status of invasive
species [28,42].

The species distribution model (SDM) is a popular technique in ecology and conser-
vation biology to assess the impact of land use and climate changes on biodiversity distri-
bution [43], predict species diversity and composition patterns over space and time [44],
and provide spatially explicit and compressive maps that are specifically important to
understand the distribution level and extent of a given species. It combines observations
of species occurrence or abundance with environmental variables [45]; its performance
depends on the collected data during field surveys and exists as simple presence/absence
records, which are crucial to train and validate the model [46]. Moreover, the accuracy of
SDM varies among algorithms [47], and integrating multiple algorithms is more reliable to
get robust estimations of species distribution [48].

The use of SDM algorithms in combination with remotely sensed datasets is effec-
tive for mapping plant species across different management levels at local and regional
scales [49]. In Sub-Saharan Africa, agricultural landscapes are highly fragmented and this
is one of the challenges complicating their mapping [50]. Fragmented parcels of land with
verities of coverage highlighting the need of methods based on high resolution satellite
imageries [51].

PlanetScope (PS) satellite constellation can achieve daily coverage with a spatial reso-
lution of 3–5 m, visible to near-infrared and atmospherically corrected imagery [52], which
has been successfully applied in many fields, for example, rubber plantation mapping [53],
forest canopy height estimation [54], biomass estimation [55], leaf area index produc-
tion [56], cropland mapping [51], and crop yield prediction [57]. It provides effective spatial
data for the extraction of plantation forest and agricultural information in the tropical and
subtropical regions [58], and offers a good opportunity to overcome challenges in mapping
smallholder agricultural fields [51].

Understanding the interplay between the spatial distribution of a species and its
environmental determinants is a fundamental concept in ecology and conservation [59]. Es-
tablishing plantation forests on agricultural or degraded land presents significant prospects
for biodiversity conservation [60]. Consequently, the impact of plantation forests is con-
tingent upon their spatial extent of landscape coverage [61] and the specific land use they
replace [4]. Despite prior studies in the study area focusing primarily on land use/land
cover changes across all classes [11,16,17,62,63], there is a noticeable gap in research specif-
ically addressing the species-level identification of Acacia decurrens plantations through
the utilization of high-resolution satellite imagery and environmental variables combined
with machine learning algorithms. Examining such a spatial pattern is crucial in any study
aiming to ensure the provision of goods and services [61]. Therefore, the objectives of this
research were (i) to model the spatial distribution of Acacia decurrens plantation forests
using high-resolution satellite imagery, (ii) to evaluate the performance of SDM algorithms
for Acacia decurrens distribution modeling, and (iii) to identify the relative importance of
predictor variables for Acacia decurrens distribution modeling. Modeling and understand-
ing the spatial spread of such species are high priorities for resource managers to assess
the environmental implications of the sustained use of plantation forests and to scale up
for the other degraded areas of the country based on scientific findings and with great
attention. This is because in Ethiopia, it is believed that small-scale tree plantations can
contribute to addressing issues related to sustainable agricultural land use, mitigating the
negative impacts of deforestation, and meeting the needs for the livelihood and energy of
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the growing population [64]. Having comprehensive information about its distribution
enables effective control and management.

2. Data and Methods
2.1. Study Area

The study was conducted in Fagita Lekoma District which is part of the Northwestern
Highlands of Ethiopia. The total area of the district is 65,579 ha [16], where the elevation
extends from 1879 m to 2922 m above sea level (Figure 1). The mean daily temperature
in the district ranges from 15 ◦C to 24 ◦C, and it receives an average annual rainfall of
2454 mm, with peak precipitation occurring between June and September [65]. The climatic
conditions in the study area comprise 84% humid subtropical (Weynadega) and 16% moist
subtropical (Dega) agroecological zones [16].
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Figure 1. Map of Fagita Lekoma District.

The major economic activity in the area is a mixed crop–livestock system [66] and
recently, charcoal production from Acacia decurrens plantation has become another sig-
nificant source of income for residents [67], replacing crop and grazing lands [16]. Con-
sequently, the vegetation status of the district has increased over the last two decades,
resulting in an improvement in the ecosystem condition [68].

2.2. Data
2.2.1. Remote Sensing Data

The PS satellite constellation comprises more than 180 satellites in orbit, allowing it to
provide high-resolution data with daily global coverage [69]. For this study, cloud-free data
from the PS satellite for February 2022 were collected. The images were a level 3B product
that had undergone pre-processing, including radiometric and geometric correction [58].
They had a spatial resolution of 3m and consisted of four bands in the visible (blue, green,
and red) and near-infrared regions of the spectrum. An image mosaic was created for six
scenes of the PS image using QGIS 3.28 to fully cover the study area. Then, it was projected
to Adindan Universal Transvers Mercator (UTM) Zone 37N.
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Vegetation indices (Appendix A), known for their capabilities in detecting and map-
ping the distribution of plant species, were selected from the Index Database
(https://www.indexdatabase.de/ accessed on 17 March 2023). Indices that have proven
effective in characterizing various vegetation types were selected, particularly those sen-
sitive to reflectance in the visible and NIR regions. These regions have been recognized
as effective in discriminating commercial forest species [70]. The four spectral bands of
PS and the thirty-one vegetation indices derived were tested to identify Acacia decurrens
plantation forest species.

2.2.2. Environmental Variable Data

In addition to the remote sensing data, environmental variables such as elevation,
slope, aspect, road proximity, temperature, and rainfall were used in this study. These
variables can be categorized as climatic and topographic variables.

A significant correlation exists between climatic factors, such as temperature and
rainfall, and the spatial distribution of forest cover [71]. Rainfall data from Climate Hazard
Group InfraRed Precipitation with Station data (CHIRPS) were acquired from the Famine
Early Warning Systems Network (FEWS NET) dataset, accessible at a spatial resolution
of 5 km (https://earlywarning.usgs.gov/fews accessed on 24 March 2023). Additionally,
land surface temperature (LST) data from Moderate Resolution Imaging Spectroradiometer
(MODIS), with a spatial resolution of 250 m, were utilized for temperature data. It is
noteworthy that forests can influence local temperatures, including LST [72].

Vegetation dynamics were determined using topographic factors such as elevation,
slope, and aspect [73,74], as well as road accessibility [75]. Aspects, elevations, and slopes
intricately govern the spatial and temporal distribution of critical elements, including
radiation, temperature, and precipitation, thereby significantly influencing species compo-
sition [76]. A digital elevation model (DEM), extracted from ALOS PALSAR with a spatial
resolution of 12.5 m (https://search.asf.alaska.edu/#/ accessed on 24 March 2023), was
used to generate topographic variables such as the elevation, aspect, slope, and streams
of the study area. The heterogeneity of soil types gives rise to niches characterized by
specific conditions, consequently influencing the distribution patterns of plants [77]. All
variables underwent various pre-processing stages, which involved resampling to match
the spatial resolution of PS imagery and masking to align with the study area’s extent using
QGIS 3.28.

2.2.3. Presence/Absence Data

Presence/absence data were collected in the field using Garmin eTrex GPS with an
error below two meters, concurrently with the capture of PS imagery in February 2022.
A stratified random sampling, based on land use/land cover types, was employed. A
total of 557 points were collected, with the distribution proportional to the extent of
each land use/land cover type in the district. Of these, 195 points (35%) represented
presence data in Acacia decurrens planted areas, while the remaining 362 points (65%) were
collected in croplands, grasslands, natural forests, and settlement areas. The proportions
were determined based on previous studies conducted in the district by Teshome and
Wondimu [62] and Worku et al. [63]. The minimum distance between two consecutive
points was two hundred meters, and the Spatially Rarefy Tool in the SDM ToolBox v2.10
under ArcGIS 10.8 was used to reduce the spatial autocorrelation between points.

2.3. Variable Selection

Multicollinearity among predictor variables (i.e., remote sensing and environmental
variables) was assessed using the Variance Inflation Factor (VIF) step (vifstep) function of
usdm package. Variables above the threshold (greater than 10) were considered as collinear
and excluded from further processing [78]. This test aids in the selection of predictor
variables by assessing their relative importance [79].

https://www.indexdatabase.de/
https://earlywarning.usgs.gov/fews
https://search.asf.alaska.edu/#/
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2.4. Modelling Algorithms

Numerous SDM algorithms have been developed to predict species distribution based
on environmental factors [80]. In this study, SDM was employed using six commonly used
algorithms, which can be categorized into two regression methods, namely, generalized
linear models (GLMs) [81] and multivariate adaptive regression spline (MARS) [82]; three
machine learning methods, namely, boosted regression trees (BRT) [83], random forest
(RF) [84], and support vector machine (SVM) [85]; and one classification and regression
method, namely, classification and regression trees (CART) [86]. Furthermore, the pre-
diction results of individual algorithms were combined based on their weighted mean of
TSS to create an ensemble model [87], which is widely recognized as a powerful, well-
referenced, and stable method for tree species prediction [88]. The weights assigned to
the ensemble model were determined proportionally to the computed TSS derived from
the cross-validation runs of the best performing models. This methodology ensures a
nuanced and optimized weighting scheme for the ensemble model within the context of
each model’s performance across multiple cross-validation iterations [89], and significantly
enhances the accuracy of SDM [47].

2.5. Model Evaluation

Models were calibrated with 70% of the presence/absence data, while the remaining
30% were utilized to evaluate the predictive performance of each model [90]. This eval-
uation involved a 10-fold bootstrap replication, employing both threshold-independent
metrics, such as area under a receiver operating characteristic (ROC) curve (AUC) [91], and
threshold-dependent metrics, such as the true skill statistic (TSS) [92].

The AUC metric evaluates a model’s ability to distinguish between sites where a
species is present and those where it is absent. It serves as an indicator of how effectively
the models prioritize areas based on their suitability as habitat for a particular species [93].
A model is deemed excellent when the AUC is greater than 0.9, good for values between
0.8 and 0.9, acceptable for values between 0.7 and 0.8, poor for values between 0.6 and 0.7,
and invalid for values between 0.5 and 0.6 [90].

The TSS is calculated as sensitivity (the proportion of observed presence to predicted
presence, or true positive rate) plus specificity (the proportion of observed absence to
predicted absence, or true negative rate) minus one [91]. TSS is not sensitive to prevalence,
while keeping all the advantages of Kappa, such as considering omission and commission
errors [92]. The TSS value ranges from −1 to 1, where +1 indicates perfect agreement
between observations and predictions, and values of 0 or less implies results not better
than random grouping [94]. The overall workflow adopted in this study is outlined
in Figure 2 below.
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3. Results
3.1. Multicollinearity Test

Strongly correlated variables were eliminated using the multicollinearity test. Out
of forty-two variables used on the test, eleven predictor variables with a VIF below the
specified threshold were selected (Table 1). Atmospheric Resistant Vegetation Index (ARVI),
Aspect, Chlorophyll Vegetation Index (CVI), Green Index (GI), Modified Soil Adjusted
Vegetation Index (mSAVI), Elevation, Rainfall, Road, Soil type, Slope, and Temperature
were the variables that satisfied the VIF threshold value. After excluding the collinear
variables, the linear correlation coefficients ranged between 0.004907765 (Soil type~GI) and
0.8013945 (CVI~ARVI).

Table 1. VIFs of the predictive variables after multicollinearity test with a cut-off threshold of 10.

No. Variables VIF

1 ARVI 7.414995
2 Aspect 1.190828
3 CVI 6.169403
4 Elevation 3.323751
5 GI 3.797256
6 mSAVI 3.771155
7 Rainfall 3.080133
8 Road 1.192230
9 Slope 1.220056
10 Soil type 1.724052
11 Temperature 5.638469

3.2. Performance of Modelling Algorithms

All modelling algorithms for Acacia decurrens identification were generally effective in
terms of both AUC and TSS values (Figure 3 and Table 2). AUC values ranged between
0.84 (GLM and CART) and 0.93 (RF). TSS ranged from 0.64 to 0.81 (Table 2). RF received
the highest TSS, and GLM received the lowest TSS among all SDM algorithms. GLM,
CART, and MARS had the lowest performance out of all six algorithms based on both
AUC and TSS values, and RF achieved the highest performance. ROC plots are graphical
representations of sensitivity (the true positive rate) plotted against 1-specificity (the false
positive rate). In these plots, an algorithm that exhibits a curve closer to the top-left corner
demonstrates superior performance compared to an algorithm with the curve closer to
the 45-degree line within the ROC space. For instance, the ROC plots generated using the
GLM and CART algorithms (Figure 3) exhibit a section of the plot that leans closer to the
45-degree line, indicating relatively lower performance. These results are different from the
RF ROC plots, which illustrate relatively higher performance. Sensitivity and specificity
scores were high across all algorithms, signifying the effective identification of both the
presence and absence areas of Acacia decurrens (Table 2). This indicates that the proportion
of correctly classified samples was maximum.

The presence values of Acacia decurrens plantation forest for the GLM, MARS, BRT,
RF, SVM, and CART algorithms were 19.07%, 23.56%, 19.09%, 23.48%, 24.15%, and 24.72%,
respectively. The best performing RF algorithm shows that Acacia decurrens covered an
area of approximately 15,818.53 ha within the study area.

Ensemble modeling was employed to combine all the selected algorithms, reducing
bias, and providing a relative evaluation of the significance of each predictor variable
across all chosen modeling algorithms, with the intention of enhancing prediction perfor-
mance [45]. According to the ensemble model result, 14,203.97 ha (22.44%) of the district
was covered by Acacia decurrens, with a higher prevalence in the Southcentral and Central
regions (Figure 4).
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Table 2. Performance of SDM algorithms for Acacia decurrens prediction.

Algorithm AUC Sensitivity Specificity TSS
GLM 0.84 0.81 0.83 0.64

MARS 0.85 0.82 0.83 0.65
BRT 0.89 0.83 0.87 0.7
RF 0.93 0.9 0.92 0.82

SVM 0.89 0.82 0.89 0.71
CART 0.84 0.8 0.85 0.65
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3.3. Variable Importance

CVI is the most contributing variable, followed by ARVI and GI, based on the average
result of all used SDM algorithms. Most of the environmental predictors have relatively
the same contribution for Acacia decurrens prediction (Figure 5). Moreover, the relative im-
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portance of each variable for Acacia decurrens identification determined and variables with
below 1% contribution (Aspect and Soil type) were excluded from the final modelling [95].
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The optimal environmental conditions that best represent the occurrence probability
of Acacia decurrens concerning both the vegetation indices and environmental variables
are presented in Figures 6 and 7, respectively. They provide a quantitative representation
of the relationship between predictors and the logistic probability of an Acacia decurrens
distribution. These curves assist in comprehending the ecological niche of the Acacia decur-
rens within the predictor’s range. Peaks in each curve indicate the values that influenced
optimal model performance. The shape, the location of the peak, and the range of values
around the peak provide valuable information that influences the distribution of Acacia
decurrens. Among vegetation indices, the response curves with the highest peak value
were observed for CVI, with a high probability in areas that have a value between ~30
and 40, followed by GI (~0.8 and 0.9) and ARVI (~0.4 and 0.7). The response curve for
temperature values exhibited the highest peak among the environmental variables, with a
high probability in areas that have a temperature ~28 ◦C, followed by elevation (~2600 m)
and rainfall (~470 mm), respectively (Figure 7).
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4. Discussion

This study modeled the spatial distribution of small-scale Acacia decurrens plantation
forests, utilizing high-resolution satellite data and environmental variables by employing
six different algorithms available in the SDM package.

The assessment of multicollinearity was a crucial phase aimed at identifying and
addressing strong correlations among multiple predictor variables used in the identification
process. The implementation of the VIF method, recognized for discerning collinearity
among predictor variables [78], resulted in the exclusion of almost three-fourths of the
total variables due to collinearity issues, potentially decreasing the efficiency of prediction
and increasing the uncertainty of the SDM [96]. When VIF exceeds 10, it serves as an
indicator of collinearity issues within the model [97]. Furthermore, collinearity represents
a significant concern that can potentially result in the incorrect identification of relevant
predictor variables [98]. The high correlation among many of the input predictor variables
can be attributed to the fact that observations were made within a relatively local scale
and due to the similarity in spectral vegetation indices. It is worth noting that all the
reduced variables were vegetation indices and raw bands, implying a relatively higher
similarity between the generated vegetation indices. This result aligns with the findings
of [99], possibly due to the limited spectral resolution of the PS image with only four bands.

The use of a combination of SDM algorithms, such as GLM, MARS, BRT, RF, SVM, and
CART, in a complementary manner, along with the incorporation of accuracy estimators
based on presence/absence data, enables a more effective representation of the spatial
distribution of species at a local scale. The overall accuracy of the algorithms is relatively
good, with the values exceeding 0.8 for AUC and 0.6 for TSS (Table 2). Predictive accuracy
pertains to the ability of the algorithms to gauge the disparity between observed and
predicted values [100]. RF exhibits an AUC above 0.9 and a TSS above 0.8, signifying
near-perfect agreement. BRT and SVM demonstrate AUC values above 0.8 and TSS values
above 0.7, indicating substantial agreement. The result aligns with the findings of Maxwell
et al. [101], who found that machine learning outperformed regression algorithms for
species identification. RF attains higher values than other algorithms for both evaluation
metrics. This aligns with previous studies that have shown RF’s superior performance in
species identification [28,102–105], remote sensing image classification [106,107], and data
mining [108] compared to other algorithms. This is because the RF algorithm generates pre-
dictions by creating thousands of trees and aggregating their results through averaging [86].
This approach allows the algorithm to prevent overfitting, thereby enhancing predictive
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performance and reducing variance [109]. Thus, RF proves to be a robust technique for
modeling species distribution prediction, as supported by previous studies [110–113]. In
other studies, it has been noted that generative methods such as RF tend to yield improved
results with small sample sizes, possibly due to their faster convergence toward their higher
asymptotic error when compared to discriminative methods [114].

The performance of all the applied algorithms was effective, as indicated by the
mentioned measures, enabling their inclusion in the ensemble modeling. The spatial extent
of Acacia decurrens plantation in the study area was 22.44% during 2022. Worku et al. [63]
reported that 17.97% of the district was covered by the plantations during 2017. The
proportion of plantations was described as 33.9% in one of the watersheds in the district
during 2017 [17]. Another study by Wondie and Mekuria [13] stated that 25.6% of the district
was covered by forestlands. The difference in the extent between this study and previous
studies might be attributed to differences in the satellite data properties, methodology used,
and study time.

The ensemble model unveiled the variable importance and response curves in the
prediction of Acacia decurrens distribution. The results indicate that CVI, ARVI, and GI
are ranked as the first, second, and third variables, respectively, with values of 39.3%, 16%,
and 7.1% based on the AUC metric, signifying the relatively strong influence of vegetation
indices. These indices played a predominant role in determining the distribution and
proliferation of Acacia decurrens. Vegetation indices played a crucial role in identifying
tree species, demonstrating the highest relative importance, and can effectively serve as a
classification variable to differentiate evergreen trees [115]. The study by Anna [116] also
reported similar variable importance, with vegetation indices being the best predictors
of tropical evergreen species. This result is consistent with the description of vegetation
index variables exerting a more substantial influence than the bioclimatic variables, sig-
nificantly contributing to defining the distribution range and landscape patterns in the
Chelodina longicollis model, with a total contribution of 50.75 compared to 36.94 for the 11
bioclimatic variables [117]. Moreover, Engler et al. [99] also indicated that variables derived
from remote sensing are significantly crucial for mapping the spatial distribution of both
broadleaved and coniferous tree species at high-resolution data. Elevation, distance to
roads, and mSAVI occupy the fourth, fifth, and sixth ranks, respectively, making significant
contributions to the species’ distribution. Elevation significantly influences the distribution
of plant species [118,119], and in particular, the decision of where and whether to establish
plantations depends on environmental factors such as elevation [120]. Further, the findings
of Altamirano and Lara [121] also indicate that plantation forests tend to be located in
areas characterized by moderate elevation levels and a short distance from roads. Rainfall
holds the seventh rank in terms of its relative importance in determining the distribution
of this species. The lower ranked predictor variables, specifically, temperature and slope,
also play a role in the distribution of Acacia decurrens. However, in relative terms, they
are not as influential as other predictor variables in the model, as indicated by the AUC
metrics. This may be attributed to the size of the study area in relation to the resolution of
the utilized data.

The response curves in Figure 6 show that the probability of Acacia decurrens occur-
rence generally increases with higher values of vegetation indices. Among the environ-
mental variables, the probability of occurrence increases with higher elevation, keeping
other variables constant at their mean value. The probability of occurrence is rare at
low-elevation areas of the district because these areas are more suitable for agricultural
practices, especially small-scale irrigation activities. This is clearly seen in Figure 7, where
the distribution of Acacia decurrens is rare in the Northeastern and Western parts, where
small-scale irrigation activities are being carried out along the Guder and Tinbil rivers, re-
spectively. Conversely, the probability of occurrence decreases with an increase in distance
from roads and slope (Figure 7). The community cultivates Acacia decurrens to generate
income by selling the standing trees or producing charcoal, and road access plays a vital
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role in facilitating this. Access to roads reduces input costs and in certain situations, leads
to higher prices for plantation products [122].

In summary, the findings of this study proved that PS-derived variables and environ-
mental variables integrated with SDM are effective in identifying the distribution of small-
scale Acacia decurrens plantation forests. This can be attributed to the high spatial resolution
of the PS image, suggesting potential applications of PS imagery in small-scale forestry.

5. Conclusions

The Acacia decurrens plantation holds significant importance in the study area. Over
the past few decades, the rapid expansion of these plantations has brought about both
environmental and economic implications. Accurately predicting the spatial distribution
of Acacia decurrens plantations is essential for concerned authorities to develop effective
management policies.

This study successfully employed high-resolution satellite data and advanced tech-
niques to assess the spatial distribution of small-scale Acacia decurrens plantation forests.
The thorough evaluation of multicollinearity using the VIF method was pivotal, leading
to the exclusion of a substantial portion of variables to address collinearity issues, and
enhanced the robustness of the SDM. Among the six algorithms utilized, RF emerged as
the standout performer, exhibiting near-perfect agreement with AUC above 0.9 and TSS
above 0.8. The ensemble model further identified that significant portions of the study
area were covered with Acacia decurrens plantations and emphasized the critical role of
vegetation indices (CVI, ARVI, and GI) in determining its distribution and proliferation,
underscoring their high relative importance. This study also revealed that the decision to
establish plantations is influenced by environmental considerations such as elevation, with
areas of moderate elevation and proximity to roads being favorable for plantation activities.
The geographical rarity of Acacia decurrens in certain areas was attributed to the prevalence
of agricultural practices such as small-scale irrigation.

Ultimately, this research demonstrates the effectiveness of integrating PS imagery-
derived variables with environmental factors within SDM, offering valuable insights for
identifying and managing small-scale Acacia decurrens plantation forests and providing
comprehensive information for efficient decision making in land use planning and forestry
management at a local scale.
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Appendix A

No. Name Abbreviation Formula

1 Atmospherically Resistant Vegetation Index ARVI IR−R−y(R−B)
IR+R−y(R−B)

2 Blue Green Pigment Index BGI B
G

3 Blue Normalized Difference Vegetation Index BNDVI IR−B
IR + B

4 Chlorophyll Vegetation Index CVI IR R
G 2
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No. Name Abbreviation Formula

5 Difference Vegetation Index DVI IR − R

6 Differenced Vegetation Index MSS DVIMSS 2.4IR − R

7 Enhanced Vegetation Index EVI 2.5 IR−R
(IR+6R−7.5B)+1

8 Enhanced Vegetation Index 2 EVI2 2.4 IR−R
IR+R+1

9 Green Atmospherically Resistant Vegetation Index GARI IR−(G−(B−R))
IR−(G+(B−R))

10 Green-Blue NDVI GBNDVI IR−(G+B)
IR+(G+B)

11 Greenness Index GI G
R

12 Green Leaf Index GLI 2G−(R−B)
2G+(R+B)

13 Green NDVI GNDVI IR−G
IR + G

14 Green Optimized SAVI GOSAVI IR−G
IR + G+0.16

15 Green-Red NDVI GRNDVI IR−(G+R)
IR+(G+R)

16 Green Ratio Vegetation Index GRVI IR
G

17 Infrared Percentage Vegetation Index IPVI
IR

IR+R
2 (NDVI + 1)

18 Leaf Area Index LAI 3.618EVI − 0.118

19 Modified NDVI mNDVI IR−R
IR+(R−2B)

20 Modified Simple Ratio mSR IR−B
R−B

21 Modified SAVI mSAVI 2IR+1−
√

(2IR+1)2−8(IR−R)
2

22 Normalized Difference Plant Pigment Ratio PPR G−B
G+B

23 Normalized Difference Photosynthetic Vigor Ratio PVR G−R
G+R

24 Normalized Difference 682/553 ND682/553 R−G
R+G

25 Normalized Difference Vegetation Index NDVI IR−R
IR+R

26 Red-Blue NDVI RBNDVI IR−(R+B)
IR+(R+B)

27 Renormalized Difference Vegetation Index RDVI IR−R√
IR+R

28 Soil Adjusted Vegetation Index SAVI IR−R
IR +R+L (1 + L)

29 Simple Ratio SR IR
R

30 Transformed NDVI TNDVI
√

IR−R
IR+R + 0.5

31 Weighted Difference Vegetation Index WDVI IR − αR

32 Wide Dynamic Range Vegetation Index WDRVI 0.1IR−R
0.1IR+R

where B is blue band, G is green band, R is red band, IR is infrared band, α is 0.2, and L is 0.5.
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