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Abstract: Vegetation is an essential component of the terrestrial ecosystem and has changed signif-
icantly over the last two decades in the Northwestern Highlands of Ethiopia. However, previous
studies have focused on the detection of bitemporal change and lacked the incorporation of entire veg-
etation time series changes, which are considered significant indicators of ecosystem conditions. The
Normalized Difference Vegetation Index (NDVI) time series dataset from the Moderate-Resolution
Imaging Spectroradiometer (MODIS) is an efficient method for analyzing the dynamics of vegetation
change over a lengthy period using remote sensing techniques. This study aimed to utilize time series
satellite data to detect vegetation changes from 2000 to 2020 and investigate their links with ecosystem
conditions. The time-series satellite processing package (TIMESAT) was used to estimate the seasonal
parameter values of NDVI and their correlation across the seasons during the study period. Break
Detection for Additive Season and Trend (BFAST) was applied to identify the year of breakpoints, the
direction of magnitude, and the number of breakpoints. The results were reported, analyzed, and
linked to ecosystem conditions. The overall trend in the study area increased from 0.58 (2000–2004) to
0.65 (2015–2020). As a result, ecosystem condition indicators such as peak value (PV), base value (BV),
amplitude (Amp), and large integral (LI) exhibited significant positive trends, particularly for Acacia
decurrens plantations, Eucalyptus plantations, and grasslands, but phenology indicator parameters
such as start of season (SOS), end of season (EOS), and length of season (LOS) did not show significant
trends for almost any vegetation type. The most abrupt changes were recorded in 2015 (24.7%), 2012
(18.6%), and 2014 (9.8%). Approximately 30% of the vegetation changes were positive in magnitude.
The results of this study imply that there was an improvement in the ecosystem’s condition following
the establishment of the Acacia decurrens plantation. The findings are considered relevant inputs for
policymakers and serve as an initial stage for the assessment of the other environmental and climatic
implications of Acacia decurrens plantations at the local scale.

Keywords: BFAST; ecosystem condition; Fagita Lekoma; TIMESAT; time series; vegetation trend

1. Introduction

Vegetation is one of the main elements in terrestrial ecosystems [1], and is directly
connected to a variety of ecosystem services, such as soil retention, water infiltration, and
carbon sequestration [2]. Through the process of photosynthesis, vegetation regulates the
exchange of energy and water vapor, influencing their interaction between the Earth’s
surface and the atmosphere [3], and it plays an essential role in ecological conservation and
restoration [1].
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Vegetation cover changes over time due to various anthropogenic or environmental
drivers, such as increased agricultural activities, residential development, livestock hus-
bandry, and climate change [4]. Changes in vegetation trends reflect environmental changes
at different temporal and spatial scales [5].

These changes influence the structure and services, and it is important to monitor
them to inform decision makers about the design of strategies for sustainable resource
management [6,7]. The acquisition of time series imagery from Earth observation satellites
with frequent worldwide coverage makes it possible to monitor vegetation trends by
recognizing and interpreting changes within these datasets [5].

Earth observation science has developed a set of tools that are widely applicable for
monitoring the temporal and spatial trends in vegetation status [8]. Medium-resolution
optical satellite imagery, which is abundant and widely available, is a valuable tool for
monitoring ecosystem changes and disturbances over time [7]. For example, Landsat
and the Moderate-Resolution Imaging Spectroradiometer (MODIS) are widely used in
ecosystem studies owing to their free availability [9]. Landsat data have been utilized
to acquire ecological information, such as ecosystem services modeling and land-cover
change detection, over the last few decades [10]. However, the 16-day revisit cycle and
cloud contamination limit its applicability for monitoring biophysical processes and surface
changes [11]. Since the beginning of 2000, MODIS has provided improved temporal
resolution and intermediate-spatial-resolution (250 m) data resources, covering the globe
with scientifically reliable spatial data sources [12]. It has undergone rigorous validation
with enhanced satellite products [13] and assists in the extraction of essential information
for time series ecosystem condition research [12].

Sensor capabilities in terms of temporal, spatial, and spectral resolutions have consid-
erably improved in recent years and deliver more information with better precision [14].
Consequently, more complex analysis employing novel algorithms to detect changes in
vegetation cover using time series data is becoming more prominent [15].

Vegetation indices (VIs) are the most commonly applied data transformation tech-
niques for assessing and monitoring vegetation changes [16], wherein the vegetation signal
is enhanced across certain parts of the spectrum, and the data are more valuable when at
least two bands are combined into a VI [17]. Likewise, when VI time series are generated,
they provide information on the dynamic patterns of vegetation [18]. At this point, the
time series can be used to extract useful metrics, such as trends, seasonal variations [19],
and abrupt breakpoints [20]. Decomposing time series data into their components allows
us to recognize each element of the series independently.

Seasonal changes, which define the vegetative state and seasonal development, form
the basis of phenological studies [21], determining interannual vegetation changes in terres-
trial ecosystems [22]. They also serve as indicators of vegetation productivity changes [23]
and play a crucial role in assessing climate–vegetation interactions [24]. Interannual changes
can be used to track multi-year land surface modifications and conversion processes [21].
They are widely accepted as leading indicators of ecological response to climate varia-
tion [25]. Changes in the trend component also suggest the existence of human activities
(afforestation or deforestation) and disturbances (e.g., fires).

The Normalized Difference Vegetation Index (NDVI) is one of the most prevalent
metrics that provides a good indication of vegetation change in seasonal and interannual
variations in vegetation and the environment [17] and is the most used VIs in phenological
studies [23]. The time-series NDVI has been used to extract numerical observations related
to vegetation dynamics [26] and to depict the growth status of vegetation, along with its
dynamic interactions and changes in land use [27].

In Fagita Lekoma District, the primary threat was land degradation caused by soil
erosion, particularly gully erosion due to water runoff. This was evident from the pres-
ence of numerous gullies in various areas. To alleviate this problem, adopting land-use
practices that can provide economic benefits for farmers and contribute to environmental
sustainability, such as planting selected commercial trees, could significantly improve the
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sustainable use of natural resources. From this perspective, plantation forests can generate
additional income for farmers [28], reduce poverty [29], provide firewood [30], improve
soil fertility and health [31], improve degraded ecosystems [32], and contribute to curbing
global warming by sequestering more carbon from the atmosphere [33].

In this district, Acacia decurrens plantations have been developed for the last two
decades. As a result, forest cover has expanded at the expense of other types of land
use/land cover, such as croplands and grasslands [34–38]. However, previous studies
in the district were based on a bitemporal approach that focused on comparing images
at two different times. This approach is commonly used in change detection methods
because of its advantages of simple mathematics and low storage consumption, but it lacks
comprehensive information on the dynamics of the Earth’s surface [15]. The time series
change detection approach provides more information in a single analysis, such as the type
and consistency of the changes [39]. Moreover, considering the entire time series enables
the characterization of the temporal vegetation dynamics of clear cuts and restorations
by detecting both abrupt and gradual changes [40]. Positive and negative changes in
vegetation growth are indicators of the ecosystem status [41]. The underlying process of
change can be obtained from the temporal trajectory of a given pixel with different curve
shapes, which can be interpreted as an ecological response [42]. Therefore, this study aimed
to utilize satellite time series data to detect seasonal and interannual vegetation changes
and investigate their linkage with ecosystem conditions.

The vegetation cycles reveal significant short- and long-term ecological processes [21].
The results of this study are important to demonstrate the role of plantation forests in
determining vegetation trends and their implications for ecosystem conditions at the local
scale. Furthermore, it can be utilized to demonstrate the contribution of the local community
to vegetation regeneration and ecosystem improvement.

2. Materials and Method
2.1. Study Area

This study was conducted in the Northwestern Highlands of Ethiopia, specifically in
Fagita Lekoma District. The total area of the district is 65,579 ha [34], and it is located at
10◦56′–11◦12′N and 36◦40′–37◦06′E (Figure 1). The landscape is characterized by rugged
and undulating topography, with elevations ranging from 1879 to 2922 m above sea level.
Climatic conditions include humid subtropical (Weynadega) and moist subtropical (Dega)
agroecological zones, which cover 84% and 16% of the study area, respectively [34]. The
mean annual precipitation of the area is 2454 mm yr−1, and the peak rainfall occurs between
June and September, with a unimodal rainfall pattern. The mean daily temperature ranges
from 15 ◦C to 24 ◦C [43]. In 2015, the main types of land use/land cover in the district were
cultivated land (56%), grasslands (23%), forests (19%), and urban areas (2%) [34]. In the last
two decades, plantation forests have become among the dominant land-use types due to
the expansion of Acacia decurrens plantation forests. Acacia decurrens is a fast-growing exotic
tree species that is extensively grown in the district by small-scale farmers [44]. Acrisols are
the dominant soil type in the district and are characterized as severely weathered, acidic
soils [45]. Most of the steep slope areas of the district are covered with Leptosols, which
are thin, degraded soils. The district is drained by various streams flowing westward and
northeastward to join the Tinbil and Abay Rivers, respectively (Figure 1).

2.2. Data

Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra satellite vegetation
index products (MOD13Q1, h21v07) with 250 m spatial resolution were retrieved from the
National Aeronautics and Space Agency (NASA) using Google Earth Engine (GEE). MODIS
imagery is preferred as a data source over Landsat imagery because of the availability of a
sufficient number of images at regular intervals of time, its strong correlation with changes
in vegetation biomass because of higher temporal resolution, and its relatively cloud-free
temporal signal [46].
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The MODIS NDVI product employs a maximum NDVI value compositing technique,
which selects the most representative value for each pixel during a 16-day period [47].
This approach offers a significant advantage in reducing the effect of clouds on the NDVI
product, particularly during summer season in the study area. MODIS data are effective
for monitoring human-driven vegetation changes aimed at ensuring sustainable land
management that requires the localized implementation of best-management practices [48].
The time series spans from February 2000 to December 2020 with a 16-day interval, resulting
in twenty-three images for each year except 2000 because of data inaccessibility for the first
three acquisition time intervals.

Data quality flags from MOD13Q1 were used to identify and remove low-quality
pixels from the data, interpolate data gaps, and smooth the images using an adaptive
Savitzky–Golay filter series [49]. All images were reprojected to the WGS 84/UTM zone
37 N and spatially fitted to the extent of the study area shapefile using ArcGIS 10.8.

The NDVI time series was extracted from the MOD13Q1 Vegetation Index product.
MOD13Q1 product provides an NDVI layer calculated from the reflectance values of the red
(R) and near-infrared (NIR) spectral bands [50] and is correlated with the photosynthetic
activity of green vegetation [51].

NDVI =
NIR− R
NIR + R

(1)

The NDVI value ranges from −1 to 1, where higher values indicate healthier and
denser vegetation. Values lower than 0.1 represent bare areas of soil, rock, or snow [52]. This
vegetation index has the advantage of minimizing noise in the imagery from the difference
in solar illumination and cloud shadows [53]. Nevertheless, in regions characterized by
high biomass, such as the Amazon, the NDVI may approach saturation asymptotically [54].
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2.3. Seasonal Change Detection

Seasonal changes in vegetation have been monitored using various methods [23].
TIMESAT 3.3 is a widely used program designed primarily to the process products of
satellite spectral measurements, such as vegetation index time series [49]. This algorithm
boasts the ability to rectify errors and enhance data quality using the Savitzky–Golay (SG)
adaptive filtering method [55], which effectively eliminates spikes, noise, and irregularities
stemming from factors like clouds and weather conditions. Moreover, TIMESAT enables the
exploration and extraction of seasonality parameters from NDVI time series data and then
characterizes the vegetation responses. Compared to the other two curve-fitting algorithms
in TIMESAT (double logistic and asymmetric Gaussian), the SG algorithm has a high fitting
accuracy [56] because it maintains the width and shape of the original signal while filtering
the noise [57] and providing more accurate seasonal parameters [18]. It is effective for
NDVI data and can manage complex behaviors, such as a rapid increase followed by a
decreasing plateau [55]. The SG filtering calculation formula is shown in Equation (2) [58]:

Yj =
i=n

∑
i=−n

ciYj + i
N

(2)

where Yj is the reconstructed NDVI value, Yj + i is the original NDVI value, ci is the
coefficient obtained via SG filtering, and N is the smoothing window size.

The seasonal parameters of the vegetation from the NDVI time series were calculated
using linear regression Equation (3), as follows [58]:

Slope =
n×∑n

i=1 i× Pi −∑n
i=1 i ∑n

i=1 Pi

n×∑n
i=1 i2 − (∑n

i=1 i)2 (3)

where Slope represents the trend change, Pi is the seasonal parameter value for the ith year,
and n is the length of the time series. If the Slope > 0, the seasonal parameter is increasing;
if the Slope < 0, the seasonal parameter is decreasing; and if the Slope = 0, the seasonal
parameter remains unchanged.

TIMESAT employs a computationally simple and robust threshold method to iden-
tify the beginning and end of growing seasons [59]. A threshold value of 25% seasonal
amplitude is defined for both the start and end dates of the season, which are the thresh-
old distances from the left minima and right maxima of the seasonal curve, respectively.
The threshold value was chosen from the TIMESAT graphical user interface in MATLAB
after inspecting the seasonality parameter values and graphs of the time series curves
for different thresholds in different vegetation covers of the study area. To sample the
study area, known locations were identified for each vegetation type, avoiding mixed or
heterogeneous representations. The seasonal parameters extracted from TIMESAT are
the start of the season (SOS), signifying an upward trend at a 25% threshold in the NDVI
time series due to photosynthesis activities in the vegetation; the end of the season (EOS),
denoting a downward trend at a 25% threshold in the NDVI time series; and the length of
the season (LOS), representing the duration between the SOS and EOS. Collectively, these
parameters are referred to as phenological indicators.

The seasonal changes in vegetation were also described using the following ecosystem
condition indicators: peak value (PV), the maximum value of the NDVI during the season;
base value (BV), the average between the left and right minima values; seasonal amplitude
(Amp), the difference between PV and BV; large seasonal integral (LI), the integral of the
fitted function describing the season and the zero level from the SOS to EOS, which is
an estimate of the annual vegetation productivity; and small seasonal integral (SI), the
integral of the difference between the fitted function describing the season and the BV
from the SOS to EOS (Figure 2). LI has the biological significance of expressing the relative
amount of vegetation biomass within a given season, while SI holds biological significance
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by expressing the relative amount of vegetation biomass within a given season above the
base level [60].
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The correlation between the seasons of the study period detected by TIMESAT and
the above parameters was calculated to explore the trajectories of each parameter and to
link them with ecosystem conditions in response to vegetation changes. The total number
of seasons detected by TIMESAT based on the supplied NDVI was twenty (n − 1, where n
is the number of years) [49].

2.4. Interannual Trend Changes

The interannual NDVI trends with the number of breakpoints in the time series,
magnitude, and direction of changes were extracted using the Break Detection For Additive
Season and Trend (BFAST) algorithm. BFAST is an iterative algorithm that decomposes
time series data into three components: trend (frequency variation in pixels), seasonal
(variation in seasonal frequency), and remainder (the remaining variation from the sensing
environment) [20]. The decomposition algorithm is as follows:

Yt = Tt + St + et (t = 1, . . . , p) (4)

where Yt is the observed data at time t. Tt, St, and et are the trend, seasonal, and remainder
components at time t. p represents the number of observations. Tt is fitted with linear
piecewise models with specific intercepts αi and slopes βi on different m + 1 segments, as
in Equation (5):

Tt = αi + βit (ti−1 < t ≤ ti, i = 1, . . . , m) (5)

where ti is the time at breakpoint i and m is the number of breakpoints in the
trend component.

The BFAST breakpoints refer to an abrupt change in the NDVI, while the NDVI time
series trend is different on opposite sides of the breakpoint [41]. The magnitude and
direction of abrupt changes are derived using the intercept (αi) and slope (βi) of consecutive
linear models. Magnitude is the difference, Tt, between ti−1 and ti, and is calculated
as follows:

Magnitude = (αi−1 − αi) + (βi−1 − βi)t (6)

The BFAST algorithm was applied for all pixels in the study area through the bfast
package [62] using R program version 4.2.2. The irregular time series were extracted,
transformed into daily time series, and finally to monthly time series [63]. BFAST was
run using the dummy model that focuses on trend change detection rather than temporal
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shifts in land surface phenology. The seasonal component was derived using this model to
track the variations in the trend component [64]. For parameter h, we used 1/20 evaluating
several values, considering that plantation activities in the study area commenced affecting
the vegetation status during the second half of the study period. Additionally, we con-
sidered the primary tasks undertaken by the community related to plantation, including
activities, such as establishment and harvesting. The interannual changes in direction and
magnitude of breakpoints before and after plantation practice were used to analyze the
ecosystem condition.

Moreover, the NDVI time series were decomposed using the STL package in R, and
the trend component was used to show the rate and direction of the average change in
vegetation for the period 2000–2020 and the possible implications for the condition of the
ecosystem. The general methodological workflow is depicted in Figure 3 below.
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3. Results
3.1. Seasonal Changes

Indicators of seasonal changes in the annual cycle of the NDVI were extracted for
the identified vegetation types using TIMESAT. In vegetated areas with similar vegetation
types and homogeneous compositions, monitoring indicators of seasonal change using
satellite NDVI can prevent the effects of various ground-based observation noises [65].
For each vegetation type, the average value of all identified parameters was calculated
from 2000 to 2020. The NDVI value of the study area showed an increase throughout the
study period, with variation from season to season observed for most types of vegetation.
In Figure 4, the sample pixel (latitude: 11.0453◦N, longitude: 36.8631◦E) representing an
Acacia decurrens plantation in the central part of the study area shows the harmonic model
fitted to the NDVI raw values and SG smoothed data across the study period. The trend
decomposition of the NDVI shows that there was a remarkable increase, especially starting
around 2010 (Figure 4).

Seasonal parameter values were extracted for the phenology indicators SOS, EOS,
and LOS and the ecosystem condition indicators PV, BV, Amp, LI, and SI for distinct
types of vegetation: natural forest, Acacia decurrens plantation forest, Eucalyptus plantation
forest, grassland, and croplands. The results reveal specific variations in the patterns of
the vegetation type responses across the study period. Cropland and plantation forests
showed a relatively similar pattern for SOS and EOS. Grasslands showed slight variation
throughout the study period for all phenological indicators. The earliest and latest growing
events were recorded in natural forests, but the changes from year to year were relatively
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gradual (Figure 5A). Croplands were the first to be identified by EOS across the entire study
period (Figure 5B).
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The phenology indicator parameters are shown in Figure 6 using error bar plots, sorted
based on the mean values from the largest number of days to fewest.

For most of the vegetation in the study area, the SOS occurs in April, May and June,
while the EOS is observed from November to February (Figure 7).
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The ecosystem status indicator parameters showed that the natural forest had the
highest values of PV and BV and the lowest values of Amp and SI across the entire period
(Figure 8). The patterns of Acacia decurrens and Eucalyptus plantation forests were relatively
similar for most parameters. For example, the PV, BV, and LI of Acacia decurrens and
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Eucalyptus plantation forests increased during the study period, while the Amp and SI
values decreased (Figure 8). The grassland pattern remained without noticeable variations
in Amp and SI, similar to the phenology indicator parameters (Figure 8C,E).
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The ecosystem condition indicator parameters are displayed in Figure 9 using error
bar plots, sorted based on the mean values from the highest value to smallest.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 25 
 

 

 
Figure 9. Error bar plot of ecosystem condition indicators: (A) PV, (B) BV, (C) Amp, (D) LI, and (E) SI. 

The correlation values of SOS were below 0.2 for all vegetation types. EOS and LOS 
did not show significant changes for any vegetation type during the study period either. 
Acacia decurrens (0.97), Eucalyptus (0.95), and grassland (0.91) showed a higher correlation 
than the other vegetation types based on PV. Croplands and natural forests exhibited rel-
atively low changes across the study seasons in terms of BV, Amp, and LI (Table 1). 

Table 1. Correlation coefficients of seasons during the study period and seasonality parameter val-
ues. 

Vegetation 
Types 

Phenology Indicators Ecosystem Condition Indicators 
SOS EOS LOS PV BV Amp LI SI 

Acacia decurrens 
Plantation 

0.016 0.32 0.256382 0.971338 0.927024 −0.9298 0.674328 −0.49035 

Eucalyptus Plan-
tation 

0.034 0.12 0.369648 0.951077 0.554967 −0.73172 0.621987 −0.3359 

Natural Forest 0.178 −0.14 −0.22337 0.14324 0.363887 −0.02876 −0.23459 −0.50731 
Grassland 0.071 0.03 −0.38195 0.917557 0.902911 −0.73747 0.907974 −0.69206 
Cropland −0.15 −0.03 0.181415 0.361984 0.116899 −0.07865 0.233017 0.123548 

3.2. Interannual Changes 
The BFAST algorithm was run for all NDVI pixels for the entire period to extract the 

year of the largest breakpoint, the magnitude of change for the largest breakpoint, and the 
number of breakpoints in each pixel. The magnitude and number of breakpoints in vege-
tation indicate the ecosystem condition and stability status, respectively. Most of the study 
areas (63.32% of the total) experienced breakpoints. The spatial distribution and area per-
centage of the largest breakpoints in all pixels for each year are shown in Figure 10A,D, 
respectively. The results show that the highest percentage of breakpoints occurred in 2015 
(24.7%), 2012 (18.6%), and 2014 (9.8%). By contrast, the lowest percentage of breakpoints 
was observed in 2004 (0.1%), 2007 (0.2%), and 2005 (0.5%). 

Figure 9. Error bar plot of ecosystem condition indicators: (A) PV, (B) BV, (C) Amp, (D) LI, and (E) SI.

The correlation values of SOS were below 0.2 for all vegetation types. EOS and LOS
did not show significant changes for any vegetation type during the study period either.
Acacia decurrens (0.97), Eucalyptus (0.95), and grassland (0.91) showed a higher correlation
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than the other vegetation types based on PV. Croplands and natural forests exhibited
relatively low changes across the study seasons in terms of BV, Amp, and LI (Table 1).

Table 1. Correlation coefficients of seasons during the study period and seasonality parameter values.

Vegetation Types
Phenology Indicators Ecosystem Condition Indicators

SOS EOS LOS PV BV Amp LI SI

Acacia decurrens Plantation 0.016 0.32 0.256382 0.971338 0.927024 −0.9298 0.674328 −0.49035

Eucalyptus Plantation 0.034 0.12 0.369648 0.951077 0.554967 −0.73172 0.621987 −0.3359

Natural Forest 0.178 −0.14 −0.22337 0.14324 0.363887 −0.02876 −0.23459 −0.50731

Grassland 0.071 0.03 −0.38195 0.917557 0.902911 −0.73747 0.907974 −0.69206

Cropland −0.15 −0.03 0.181415 0.361984 0.116899 −0.07865 0.233017 0.123548

3.2. Interannual Changes

The BFAST algorithm was run for all NDVI pixels for the entire period to extract the
year of the largest breakpoint, the magnitude of change for the largest breakpoint, and
the number of breakpoints in each pixel. The magnitude and number of breakpoints in
vegetation indicate the ecosystem condition and stability status, respectively. Most of the
study areas (63.32% of the total) experienced breakpoints. The spatial distribution and area
percentage of the largest breakpoints in all pixels for each year are shown in Figure 10A,D,
respectively. The results show that the highest percentage of breakpoints occurred in 2015
(24.7%), 2012 (18.6%), and 2014 (9.8%). By contrast, the lowest percentage of breakpoints
was observed in 2004 (0.1%), 2007 (0.2%), and 2005 (0.5%).
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change; (E) area percentage of the magnitude of change; and (F) area percentage of the number
of changes.
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The magnitude and direction (positive changes or increasing NDVI trends and neg-
ative changes or decreasing NDVI trends) of the breakpoints for the time series data are
shown in Figure 10B,E. The magnitude of the annual change varied from −0.54 to 0.38. The
observed changes between −0.2 and 0.2 accounted for 93% of the area. The frequencies of
magnitudes with values near zero were relatively high.

The number of largest breakpoints detected in the NDVI for each pixel varied from
one to seven. Approximately 38.08% of the districts had one breakpoint, 15.47% had two
breakpoints, 6.83% had three breakpoints, and 2.28% had four breakpoints. Areas with five,
six, and seven breakpoints represented only 0.76% of the study area (Figure 10C,F).

4. Discussion

This study investigated the potential of using NDVI time series data to track and
interpret local-level vegetation trends following plantation practices in the Northwestern
Highlands of Ethiopia. The NDVI value of the study area exhibited a typical increase,
which was characterized by seasonal and interannual vegetation changes. Our findings
demonstrate that these changes can be exploited using satellite time series images to analyze
vegetation trends and their implications for ecosystem conditions. These techniques can
be used to monitor vegetation trends across decades, depending on the availability of
satellite data and plantation types. The findings presented here hold promise for their use
in identifying different parameter trajectories for vegetation types and their implications
for ecosystem conditions. The ability of forest managers to assess ecosystem conditions
following plantation practices can inform and optimize restoration strategies.

4.1. Seasonal Changes

The SG algorithm in TIMESAT revealed that the SOS for most vegetation in the study
area was May and June. This is when most of the highlands of the country, including the
study area, start receiving rainfall [35]. Throughout the study period, the order of growth
initiation was as follows: grasslands followed by Eucalyptus plantation forests, croplands,
and Acacia decurrens plantations. Grasslands begin to grow early and are relatively sensitive
to weather conditions. Natural forests begin growing late, mostly in mid-June, and some of
them did not show growth within the specified threshold, which may have been due to the
maturity stage of vegetation (Figure 5A). This might be the reason that remotely sensed
NDVI time series have difficulty detecting phenological changes in evergreen forests,
because the NDVI tends to be saturated in areas with large amounts of biomass, such
evergreen forests [54].

The average EOS for croplands and grasslands was December, which is the start of the
winter (dry) season. Among the identified vegetation types, EOS starts early on croplands,
and this is due to most of the crops in the study area being annual crops that are harvested
mostly in the months of December and January. In contrast, January was the EOS time
for Acacia decurrens and Eucalyptus plantations during the study period. Natural forests
stopped growing around February, which is relatively late compared to other vegetation
types. The eastern part of the study area began the EOS earlier (Figure 6B). Some natural
forests in the southwestern part of the study area had an EOS that continued to the next
season, extending the growing period for more than one natural year. Evergreen forests
lack a distinct seasonal cycle in the NDVI [66]. The average LOS in the last two decades was
highest for Eucalyptus plantations (8.85 months) followed by Acacia decurrens plantations,
grasslands, natural forests, and croplands (8.65, 8.45, 8.29, and 7.56 months), respectively.
Between the first half (2000–2009) and the second half (2010–2020) of the study period,
there was a significant increase in LOS for Acacia decurrens and Eucalyptus plantations from
8.03 months to 9.27 months, and 8.85 to 9.36 months, respectively. The LOS in the first
half for both plantations was relatively similar to that of grasslands and croplands, which
implies that before the practice of plantations, the land was covered by grasslands and
croplands (Appendix A Figure A1). This result complements the findings of previous
studies conducted in the study area [34], which found that, before the establishment of
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plantation forests, the district was predominantly covered with croplands and grasslands.
The LOS of natural forests showed a slight decrease between the two decades from 8.78
to 7.8 months. Unlike for the other vegetation types, for natural forests, a seasonal cycle
takes a relatively prolonged time, which might be related to the maturity level of the forests
and their year of establishment (Figure 5). Most vegetation types did not show significant
differences in the values of phenology indicators before and after the plantation developed,
and this result is in line with the findings of Sharma [67], which showed that there was no
significant difference in phenology parameters between protected and unprotected areas.

As shown in Figure 8A,B, there was a marked increase in PV and BV starting around
2010 for the Acacia decurrens plantation, Eucalyptus plantation, and grasslands. However,
the PV and BV of croplands and natural forests remained relatively stable, with almost the
same values (Figure 8). On the other hand, the Amp and SI of both plantations declined
due to a positive change in BV, which implies an increase in green vegetation. The SI
of evergreen vegetation may be small even if the total productivity of the vegetation is
high [68]. The LI showed a relatively higher increase in the second half of the study
period for the Acacia decurrens and Eucalyptus plantations. A relatively slight increase was
also observed in grasslands and croplands, and a slight decline was recorded in natural
forests. The LI value of plantations in recent years has been increasing, and the SI value
has decreased, indicating that the ecosystem is highly productive with dense evergreen
vegetation [69]. The presence of a homogenous and young canopy with a fast-growing
nature and high stand density indicates a higher biomass expansion [69].

4.1.1. Seasonal Parameter Value Distribution for Vegetation Types

The phenology indicators are shown in Figure 6, using error bar plots, which were
sorted according to the mean values, from a larger number of days to fewer. The mean
value of SOS was earliest in grasslands, and this proves that grasses were highly responsive
to spring rains. In other ways, natural forests require a relatively long time to show growth
following the change in season. The EOS of cropland appears earlier, and the EOS of natural
forest appears the latest. The observed range of EOS was between 322 and 536. Eucalyptus
plantation forests have the largest mean value, which indicates the quality of the species’
ability to continue growing, even in dry months, by extracting underground water using its
deep roots. This can be attributed to the fact that the roots of Eucalyptus are long, can grow
up to 20–30 feet, and extract more water from the deepest parts of the soil [70]. Cropland
exhibited the lowest mean LOS value because the crops were harvested approximately five
months after planting. The LOS range for all vegetation types was 8.96 and 24.57, both
recorded for natural forests in the 14th and 3rd seasons of the time series, respectively.

Natural forests had the highest mean PV because dense forests in the study area
are green almost all days of the year and have higher NDVI values. The mean PV value
of the croplands was the lowest (Figure 9A), suggesting that the crops remained green
for some months of the year and that after harvest, the area could be bare land. The
order of vegetation types based on PV and BV was the same (Figure 9A,B), which shows
the existence of a strong relationship between the parameters. PV and BV values were
high, especially in the last few years of the study period, for most of the vegetation types.
These parameters are best for distinguishing the productivity level of vegetation classes,
where higher NDVI values correspond to vegetation in ecosystems under recovery [71].
Unlike the PV values, croplands and natural forests had the highest and lowest mean Amp,
respectively (Figure 9C). Grasslands and natural forests had the narrowest and widest Amp
ranges, with values between 0.365 and 0.389 and 0.103 and 0.351, respectively. A narrow
Amp is characteristic of mature forests [72]. Generally, increasing trends in PV and BV and
decreasing trends in Amp values were observed for most vegetation types. These results
are consistent with the findings of Leeuwen [73], who assessed the vegetation condition in
a restored forest at risk of wildfire.

Natural forests had the highest mean LI, followed by Eucalyptus and Acacia decurrens
plantations (Figure 9D). In terms of the mean SI value, Acacia decurrens had the highest and



Remote Sens. 2023, 15, 5032 14 of 23

natural forests had the lowest. The range of SI values for both plantations was relatively
wider than that for other vegetation types, which shows the significant effect of plantation
practices on NDVI values (Figure 9E). According to the ecosystem condition indicator
parameters, the order of vegetation types is the same for PV, BV, and LI. Likewise, Amp
and SI also had a relatively similar order of vegetation types. The Amp and SI of grasslands
did not show significant differences, indicating consistency for most of the parameters.

4.1.2. Correlation between Seasons and Seasonality Parameters

For phenology indicators, the correlation coefficient of SOS was higher than that of
EOS in natural forests, grasslands, and croplands. The EOS correlation was higher than that
of SOS and LOS for the Acacia decurrens plantation. This might be because the greenness
of the plantation forests in the study area was relatively less affected by the beginning of
the rainfall.

The correlation of PV was higher than that of Amp for all vegetation types. Amp
decreased for all vegetation types, which correlated with an increase in the minimum
seasonal NDVI rather than a decrease in the maximum NDVI. A reduction in Amp is
an indicator of improved vegetation growth [59]. The Acacia decurrens plantation has
the highest correlation of Amp, followed by the Eucalyptus plantation and grassland. In
contrast, the lowest growth rate was observed in natural forests. The PV was higher than
the BV for all vegetation types, except for natural forests. Among the other indicators of
ecosystem conditions, the correlation of LI was higher than that of SI in vegetation types.
This indicates that there were differences in these two ecosystem condition indicators before
and after the plantation was established because of the difference in aboveground primary
productivity. Land-use activities, such as conservation measures, have significant positive
effects on LI and SI values [67].

4.2. Interannual Changes Analysis

Breakpoints provide evidence of the statistical significance of variations in NDVI
values. Thus, when a breakpoint emerges, it indicates a substantial shift in NDVI values
that cannot be statistically attributed to preceding periodic or linear trends [74]. This may
be related to disruptions in anthropogenic or environmental factors [75]. For instance,
negative breakpoints correspond to periods associated with drought, flooding, and fire
events [76]. Most of the breakpoints occurred during the early years of the study period
and corresponded with natural forests and wetlands, which implies the existence of defor-
estation activities at the time and the drying out of water-logged areas. The percentage of
wetland cover in the area also shrank from 18.58% in 1973 to 0.2% in 2015 [34]. During the
first half of the study period, the forest cover in the study area decreased, mainly due to
population growth and related effects, such as increased demand for arable land, fuelwood,
and construction wood [35]. The magnitude map (Figure 10B) also confirms that the south-
ern parts of the study area, where natural forests are found, exhibited relatively extreme
negative values. The largest area percentage of breakpoints was detected during 2015,
and this value agrees with the TIMESAT result. The highest abrupt change in vegetation
during 2015 caused a decrease in LI in plantations in 2016 (Figure 8D), which was highly
correlated with plantation activities. Plantation practices may result in the detection of two
breakpoints from a single pixel: during the greening period and after harvest. The effect
seen in 2015 (BFAST) and 2016 (TIMESAT) might have been due to the harvest of more
plantations for charcoal production. Farmers usually harvest plantations after four years
and above to generate income [77].

Alternatively, positive peaks in the breakpoints are related to the practices of afforesta-
tion, ecological restoration, and policy-driven land-use conversions [75]. The breakpoints
that happened in the second half of the study period were more intense, and this attributed
to the expansion of plantation forests in the area. The results are consistent with the
findings of Wondie and Mekuria [35], who demonstrated that the forest cover of Fagita
Lekoma District increased by 5.2% between 2010 and 2015, from 11,397 ha to 17,330 ha.
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The area coverage of Acacia decurrens plantations has progressively increased since 2006 in
the Guder watershed, which is one of the watersheds found in the district. The study by
Birhan et al. [78] in the same watershed showed that between 2006 and 2017, a remarkable
amount of land use/land cover was converted to plantation forests from cropland and
grazing land, so the forest cover of the watershed increased by more than 400%. The forest
cover of Fagita Lekoma District expanded by 1.2% per year between 1995 and 2015, mainly
due to the planting of Acacia decurrens at the expense of cultivated land, which decreased by
1% per year [35]. The soil in Fagita Lekoma District is highly acidic [45], which is attributed
to heavy rain and results in low crop productivity. This was one of the main driving factors
that promoted the expansion of Acacia decurrens plantations in the district over the past few
decades because this species has a leguminous character, which enables it to reduce soil
acidity [79].

The spatial distribution of breakpoints that occurred in the natural forest during
the early years of the study period shifted to other types of vegetation in the later years
in various parts of the study area (Figure 10A). The findings of Belayneh et al. [37] also
confirmed that the expansion of Acacia decurrens plantation forests in the study area reduced
human and livestock pressure on natural forests by prioritizing firewood and reducing
free grazing. Acacia decurrens plantation forest cover progressively increased across the
district by 16% between 2000 and 2017 [38]. These changes in land use have enhanced
vegetation regeneration and significantly altered the dynamics of vegetation status in the
area. This might be related to the potential of Acacia decurrens in terms of soil erosion
reduction and the recovery of soil fertility [79]. Moreover, Acacia decurrens serves a dual
purpose by alleviating pressure on the natural forest, which has been suffering from a high
rate of forest degradation due to the collection of fuelwoods and the production of charcoal,
and by serving as an alternative land use that is more economically lucrative [80].

In the study area, apart from protected natural forests and some irrigated croplands,
most of the land experienced at least one abrupt change in the NDVI between 2000 and
2020. The number of breakpoints was mostly linked to the establishment and harvesting
of Acacia decurrens plantations. The spatial distribution map of the number of changes
detected in the NDVI is shown in Figure 10C, where more than half of the district (53.55%)
had one or two breakpoints. Most of the areas with frequent breakpoints were unevenly
distributed in various parts of the study area and characterized by the early adoption of
Acacia decurrens plantations.

4.3. Implications for the Ecosystem Condition

Fagita Lekoma District has degraded soils due to its large population density and
higher rainfall distribution [81], in addition to continuous cultivation of the land for longer
periods [43], as well as extensive deforestation that resulted in acidic soils of low fertil-
ity [82]. Programs implemented by the local and national government focused on the
regeneration of the ecosystem may have produced a positive change in the condition of
the vegetation [75]. The Acacia decurrens plantation has been promoted by both govern-
ment and nongovernmental organizations because this species thrives on degraded lands,
including gullies.

The trend component of the NDVI in the study area increased from year to year during
the study period (Figure 11). The mean NDVI of the entire study area at the beginning and
in the final years of the study period differed, which confirms how the high vegetation
cover of the district has expanded. The five-years mean NDVI, which was 0.58 for the
years 2000–2004, rose to 0.65 during 2015 and 2020. Such a positive change in the NDVI
has shown implications for the productivity of the land and indicates the existence of
changes in the overall ecological pattern [83]. A study by Mola and Linger [84] reported
that there has been an improvement in soil fertility on land parcels covered by Acacia
decurrens plantation forests. These results are consistent with another study conducted
in the study area that also confirms that the expansion of Acacia decurrens plantations has
affected the soil’s physical and chemical properties. For instance, the total nitrogen of
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the soil under Acacia decurrens plantations is 43.5% higher than that under cropland [78].
Likewise, the pH value of the soil under an Acacia decurrens plantation is 2% lower than the
soil under cropland, whereas the availability of phosphorus in Acacia decurrens plantation
soil is 1.25 mg kg−1 lower than that in cropland soil [78]. The degraded soils of the district
have been considerably improved, mainly through the planting of Acacia decurrens and
enhanced natural capital [82], and the ecosystem service value increased by 54% from 2006
to 2017 [36]. Acacia decurrens plantations are typical biological measures for the restoration
of highly degraded land and improving resilience to climate shocks [85].
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The TIMESAT results for ecosystem condition indicators (Figure 8) show that there was
a significant change in most parameters within the identified study period. For example, the
PV, BV, and LI increased, especially for Acacia decurrens plantations, Eucalyptus plantations,
and grassland. These indicators account for the most substantial variations and exhibit
strong correlations with the presence of vegetation cover [86].

The Amp and SI for most of the vegetation types were characterized by negative
changes due to the increase in the BV, which is an indicator of stable vegetation condition
and the restoration of the ecosystem. Lower values of SI and higher values of LI imply that
the vegetation under consideration is a highly productive ecosystem with dense canopy
cover [69]. The growth of the relative amount of vegetation biomass is an indicator of
gradual ecosystem restoration [41].

The BFAST results also confirm that there was a change in the ecosystem in terms of the
magnitude and number of breakpoints during the study period. The study area exhibited
breakpoints for the identified years at different percentages (Figure 10A,D). Changes at the
beginning of the study period were mostly characterized by a negative magnitude. Before
the start of the plantation practice, the forest cover was diminishing in the district [78]
due to population growth and related effects, such as increased demand for arable land,
fuelwood, and construction wood [35]. However, around 2010, positive changes dominated,
and around half of the area with abrupt changes was characterized by positive changes.
This finding is in line with that of Wondie and Mekuria [35], who reported that forest cover
has increased since 2010 because of the expansion of Acacia decurrens plantations. The forest
cover of the district has shown an upward trend over the last two decades because of Acacia
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decurrens plantations and the regeneration of previously degraded natural forests because
of a reduction in the normal pressure on natural forests achieved through the replacement
of fuelwood and construction materials [37]. The expansion of Acacia decurrens plantation
forest plays a vital role in biophysical environment rehabilitation and conservation [38].
As a result, more than 30% of the study area exhibited a positive breakpoint magnitude
during the study period, and approximately 36% remained without abrupt changes. The
negative changes experienced in recent years are related to the harvesting of plantations
that the community replants immediately after.

In general, the analysis in this study shows that seasonal and interannual changes
enable the inference of changes in the ecosystem. Both the TIMESAT and BFAST out-
puts, along with the increasing trend of the average NDVI, indicate significant vegetation
regeneration, serving as significant indicators of ecosystem restoration.

5. Conclusions

Changes in seasonal and interannual vegetation trends play a significant role in
determining the condition of an ecosystem. Plantation-mediated shifts in seasonal and
interannual vegetation changes underscore the importance of identifying parameters and
methods for analyzing ecosystem conditions. In line with our objectives, we conducted a
study in the Northwestern Highlands of Ethiopia focused on utilizing NDVI time series
data to monitor and interpret local-level vegetation trends, especially following plantation
practices. The findings and implications of this research provide valuable insights into the
dynamics of vegetation and ecosystem conditions in the area.

The spatiotemporal behavior of most types of vegetation showed that in the study
area, vegetation changes in the last two decades have had a more pronounced effect
on ecosystem condition indicators than on phenology indicators. Breakpoints in NDVI
data highlighted significant shifts in vegetation cover. Negative breakpoints during the
early years of the study period were associated with deforestation. Most of the largest
breakpoints were detected during the second half of the study period and were linked to
afforestation and land-use conversions, primarily due to the expansion of Acacia decurrens
plantation practices. Positive changes in NDVI trends suggest an improvement in ecosystem
condition, particularly in vegetation cover and productivity. The findings of applied data
decomposition algorithms have significant implications for ecosystem restoration and
conservation efforts in the study area. The promotion of plantation practices, particularly
Acacia decurrens, has positively impacted vegetation regeneration, contributing to improved
ecosystem health.

Overall, the study demonstrates that the adoption of afforestation practices, such
as the cultivation of Acacia decurrens plantation forests, has led to positive changes in
ecosystem conditions in Fagita Lekoma District. These findings provide valuable guidance
for land-use planning, conservation, and sustainable ecosystem management in regions
facing challenges like soil degradation and deforestation. The study highlights the potential
of leveraging remote sensing data to monitor and manage ecosystems effectively over
time, contributing to ecological resilience and improved environmental conditions in the
study area.
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Table A1. Definition of seasonal parameters.

Phenology Indicators Ecosystem Condition Indicators

1. SOS: time for which the left edge has increased to 25% seasonal amplitude as measured
from the left minima of the curve.

1. PV: maximum NDVI value for the fitted function during the season.

2. BV: average between left and right minima curve. NDVI value during dormancy.

2. EOS: time for which the right edge has decreased to 25% seasonal amplitude from the
right minima of the curve.

3. Amp: the difference between PV and BV.

4. LI: integral of the fitted function describing the season and the zero level from the SOS
to EOS.

3. LOS: time from the SOS to EOS. 5. SI: integral of the difference between the fitted function describing the season and the BV
from the SOS to EOS. Vegetation production between dormancy and peak growth.

Table A2. NDVI time series data processing input setting in TIMESAT used for this study.

Parameter Value Description

Spike method 1 Spike method: 0 = no spike filtering, 1 = method based on median filtering, 2 = weights from STL, 3 = weights from STL
multiplied with original weights.

Spike value 2 Determines the degree of removal and a low value will remove more spikes.

STL stiffness value 2 STL trend stiffness parameter. Its value is between 1 and 10 with a default of 3.

Seasonal parameter 1 A value close to 0 will attempt to fit two seasons per year and a value near 1 attempt to fit one season.

Number of envelope iterations 1 Number of iterations for upper envelope adaptation (3,2,1).

Adaptation strength 2 Envelope adaptation strength. The maximum strength is 10.

SG window size 4 The half window for SG filtering. Large values will give a high degree of smoothing.

Start/end of season 1

Season start method for determining the start/end of the season based on the intersection of the fitted curve: 1 = Seasonal
amplitude, at the point where the curve intersects a proportion of the seasonal amplitude; 2 = absolute value, at the point where

the curve intersects an absolute value in units of the data; 3 = relative amplitude, at the point where the curve intersects a
proportion of a relative seasonal amplitude; 4 = STL trend, at the intersection with the trend line from STL.

Season start/end 0.25 Values for determining season start/end. If the start method is 1 or 3, the value must be between 0 and 1.
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