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Abstract

In recent years, the underground market of counterfeit products has grown into
a global network, causing the raised concern of the general public and initiating
a series of reforms in governmental requlations and policies worldwide. As the
largest independent metal decorating business in the UK, Tinmasters is at the
centre of these developments. The overall aim of this project was the development
of a novel anti-counterfeiting technology that is compatible with Tinmasters’ man-
ufacturing process, food contact/safe, and preferably overt, with a special focus on
aesthetic appeal. A review of pre-existing technologies revealed a trend toward
systems relying on the fast-growing capacity of wireless internet and smartphone
devices. The latest anti-counterfeiting systems are track-and-trace enabled and
offer user-based product authentication. The review narrowed the scope of the
project to the development of a scheme for the creation of printable 2D codes,
capable to store information that can be retrieved using a smartphone device. The
core element of the feature is a trajectory of a 3D nonlinear dynamical system
operating within its chaotic region, which is captured by the system’'s “strange”
attractor. These types of trajectories are known for their high complexity and
thought, by many, to possess beauty. More importantly, they can be retrieved
via a mechanism known as chaotic synchronisation. In order to create a printable
code, a 3D chaotic trajectory is projected to two dimensions. The printed feature
is captured by a smartphone camera and is subsequently processed in order to
retrieve the trajectory. An almost equally important element of the feature is a
frame, especially designed to address matters of alignment, perspective correction,
and coordinate transformations. Aside form the main field of nonlinear dynamics,
the proposed scheme makes use of concepts and methods from the fields of image

processing, digital photography, and numerical analysis.
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Introduction

The project whose initial phases, definitive decisions, and gradual progress up
to the final results are presented in this thesis, was an initiative of Tinmasters’
Chief Executive Officer (CEO), Mr. Richard O’Neill. Given the widespread of
counterfeit products, managing a major supplier of steel packaging to premium
brands in various parts of the world, raises the demand for added security features
that offer user-based product authentication. In order to keep Tinmasters on top of
the newest developments in the anti-counterfeit packaging industry, Mr. O'Neill
established a continuing collaborative relationship with Swansea University. This
project stemmed from this collaboration.

The amazing opportunity offered by this project to a physicist with computa-
tional tendencies — about to dive into an engineer’s world, has always been the
project's openness. “The development of an anti-counterfeiting technology from
first principles”, or something along those lines, is indeed a project title for the
creative theorist with a handy toolset.

As one may have expected, this project bequn somewhere in a wide spectrum
of options and blossomed into a multidisciplinary topic. This introductory chapter
focuses on providing the reader with the broader scope of this project, and a clear
view of the choices involved in the narrowing of that scope and the creation of the
coding scheme presented.

Section 1.1 lists the objectives of this thesis from an academic perspective. As
the reader will come to realise by this end of this chapter, the proposed scheme
met most of its industry-oriented requirements from the early drafts of its design,
if not upon conception; its academic requirements are what fills the gaps between
“ticked boxes”, so to speak. The socioeconomic background relating to counterfeit
and pirated goods that motivated this project provides context, and is briefly sur-
veyed in Sec. 1.2. The project’s objectives from an industrial perspective formed
the criteria based on which an initial set of anti-counterfeiting technologies was
gathered, grouped, and evaluated. This initial phase of the project is what one
might call Literature Review, and is presented in Sec. 1.3. The industrial objec-
tives are listed within that section (Subsec. 1.3.1), and the proposed scheme is

given a brief overview in Sec. 1.4.



2 1. INTRODUCTION

1.1 Thesis Objectives & Main Focus

The research presented in this thesis was initiated with the purpose to provide
the current landscape of brand protection, with an alternative security feature.
In order to make a meaningful contribution to any field, the first two objectives

should always be to

m Understand and place the problem into context, and

m Thoroughly review the existing solutions, or attempts to a solution.

The problem, in the present context, is counterfeiting, and the solution includes
a wide variety of anti-counterfeiting technologies. The context, which helps narrow
down the available options and/or alternative courses of action, is provided by

identifying

m The source of the problem, and

m The application area of a potential solution.

The source of the problem in the case presented is not simply counterfeiters,
but maybe more importantly the operational capabilities of counterfeiters, which
underlie and are reflected upon the spread of the counterfeit market. The ap-
plication area identifies with the project initiator (Tinmasters), and is one of the
main application areas of anti-counterfeiting technologies, that is, the packaging

of products. A thorough Literature Review addresses the above matters and helps
m Define the precise field of research.

Soon after the completion of the Literature Review, the project took a definitive
direction toward the specific field of printable two-dimensional (2D) codes that
use chaotic trajectories, which can be retrieved by means of synchronisation, using
a smartphone camera. Placing the focus of this research on the development of a
coding scheme adhering to the above specifications, defined the following set of

objectives and subordinate tasks:

m Design: At the highest level, the two main components of the proposed scheme
are a code generator, and a code reader. Firstly, since the code must be
printable and aesthetically pleasing, it has to be 2D and form an interestingly

complex pattern, possibly coloured by way of visual appeal. Chaotic attractors
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do possess the latter characteristic, but in 2D, the underlying dynamical systems
are discrete (Chapter 2). Continuous dynamical systems only exhibit chaotic
attractors in three or more dimensions (Sec. 2.1, footnote 9, and Sec. 2.6).
Suppose that the above remarks determine that the code generator is to create
trajectories evolving within a chaotic attractor; in 2D the code would utilise
both of the trajectory’s components, and in 3D just two of them. Secondly, the
code must be readable based on a photograph of its printed copy. This means
that any code generator, must be accompanied by, and enable, an appropriately
chosen code reader, capable to retrieve the trajectory.

The seemingly “casual” mention in the above description, of terms such as
continuous/discrete dynamical system, and chaotic attractor, is not accidental;
it aims at defining the main areas that needs to be included in the background

research of this project:
» Nonlinear Dynamics & Chaos (3D continuous dynamical systems)

Image processing was not mentioned above, not because it is not an integral part
of the scheme’s design and operation, but because it also involves the second
main element of the feature, which has not yet been mentioned. Getting from a
“pretty” line drawn, printed, and subsequently captured by a smartphone cam-
era, to extracting a a sequence of numbers forming that line, requires a series of
preprocessing steps that include colour/feature detection, alignment, perspec-
tive correction, and coordinate transformations. Most of those steps heavily rely
on image processing techniques, which are enabled by a frame especially de-
signed for this purpose. This frame encloses the chaotic trajectory and defines
the feature’s bounds. Most of the image processing techniques used in this
project are preexisting and well known, but some of them received appropriate
treatment in order to accommodate the needs of the developed scheme. Their
application comes into play later in the design process — borderlining with the
next central objective of the thesis, which is implementation, but constitute a

main topic of research nonetheless:
» Image Processing (masking, filtering, feature extraction, warping)

» [mplementation: As challenging as the design of any kind of system may be, as
thorough as the background research necessary to bring insightfulness into it
must be, ultimately, the design itself simply provides the prescription according

to which the system is to be created. The implementation of each individual
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system component identified in the design, as well as the link between those

components, is one of this thesis’ main objectives, and is mainly computational.

m Report: Reporting — or otherwise publicising — one’s findings is an inextricable
part of any type of research. This is how any kind of progress works; by building

upon the work of others instead of keeping busy reinventing the wheel.

1.2 The Counterfeiting Problem

The term counterfeiting refers to the intentional alteration of a product itself,
its packaging, or any identifying and/or certifying information related to it, with
the malicious intent of illicit trade (National Electrical Manufacturers Association
(NEMA), 2009). In recent years, the underground market of counterfeit prod-
ucts has grown into a global network that poses an increasing threat to modern
societies on all levels. The diversity of the product types targeted by counter-
feiters — ranging from automotive parts, computer hardware and mobile phones to
pharmaceuticals, packaged foods/beverages, and tobacco products — turned what
has since become known as the counterfeiting problem into a major concern of
increasing priority for the general public, brand owners, and governments.
According to the latest — 2021 — study conducted jointly by the Organi-
sation for Economic Cooperation and Development (OECD) and the European
Union Intellectual Property Office (EUIPO), in 2019, the counterfeit and pirated
products comprised 2.5% of the world trade (equivalent to US$464 billion), and
5.8% (US$134 billion) of the products imported in the European Union (EU)
(OECD/EUIPO, 2021). Earlier analyses performed by OECD and EUIPO showed
that in 2016, counterfeit and pirated goods amounted to 3.3% of the international
trade (equivalent to US$509 billion in nominal terms) and 6.8% (US$134 billion)
of EU imports (OECD/EUIPO, 2019), while the respective estimates based on data
from 2013 are 2.5% (US$461 billion) and 5% (US$116 billion) (OECD/EUIPO,
2016). These results indicate that in the recent 6-year period from 2013 to 2019,
the counterfeit market has only been subject to insignificant variations which left
it virtually unaltered and as dangerous as it has been since its accelerated rise

during the first decade of the century.
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Figure 1.1 shows the market share of the world trade, the total international
trade in counterfeit and pirated goods, the anti-counterfeit packaging, the metal
packaging, and the market of anti-counterfeit technologies, over a span of several
years. The plot shown was created using data collected from the websites of ten
global market research and analysis companies'. These companies issue analysis
reports on various markets which typically cost a few thousand US dollars each.
The data used to make this plot were gathered from the report overviews included
in the companies’ websites for promotional purposes. The kind of analysis per-
formed by each of those teams set their original requirements in input data, and
determined their forecast period — a central feature in these kinds of reports. The
effect of this is evident in the plot where each plot-line starts and ends at different
years from the rest. Note that, due to the wide range of market share values, the
corresponding axis is displayed in logarithmic scales.

100

—

World Trade

10}

Counterfeit & Pirated Goods
. Anti-counterfeit Packaging

Market Share %

Metal Packaging

Anti-counterfeit Technologies
001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

N
S $ S

Figure 1.1: Market share of various industries relevant to this study, against
world trade. The market values obtained from the sources (footnote 1) in US$,
were converted to market shares by setting the highest value of the world trade
— US$19.3 trillion in 2021 — to 100%, and then calculating the rest using that
as a point of reference. The qualitative picture drawn by this graph (s that the
markets dedicated to combating the trade of counterfeit products are expected
to grow at a faster pace than those unrelated to anti-counterfeiting.

T(Credence Research, 2018; Goldstein Research, 2019; Market Research Future, 2019; Mar-
ketsandMarkets, 2021; Mordor Intelligence, 2020; Orbis Research, 2019; Reports & Data, 2019;
Research Nester, 2022; Smithers, 2019; Verified Market Research, 2018)
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Finally, it is important to stress the fact that this plot is provided merely as
an indication that the trend of rapid growth established in the OECD/EUIPO
reports mentioned earlier, seems to be reflected on the global market of security
packaging and anti-counterfeit technologies, both of which appear to exhibit a
similar trend and a projected increase up to year 2026.

The most serious danger posed by counterfeit products is to public health
and safety. Counterfeit medicines, foods and beverages, or even clothes, toys
and home electrical appliances that may contain hazardous chemical substances
or substandard components, enter the legal market unchecked in terms of com-
pliance to safety reqgulations. As a consequence, consumers using such inferior
products are exposed to severe or even life threatening conditions. Jeopardized
brand integrity causes manufacturers and brand owners to face liability issues and
major loss of revenues. The decrease in sales of legitimate products caused by
the counterfeit markets leads to increased prices on one hand, and higher unem-
ployment rates on the other. At the same time, governments suffer losses from tax
revenue while being forced to increase the law enforcement measures to combat
counterfeit markets.

Recognizing the need to offer manufacturers the tools necessary to protect
their brands and more importantly their clients and general public from counter-
feiting, the International Organization for Standardization (ISO) issued in 2012
a standard, specifying performance criteria for the technical solutions adopted
by companies as a means to validate the authenticity of their products, as well
as an evaluation methodology for these technologies. According to 1SO’s web-
site?, ISO 12931:2012 - Performance criteria for authentication solutions used to
combat counterfeiting of material goods (ISO, 2012), has since been revised and
the updated version was published in 2020 as ISO 22383:2020 - Security and
resilience — Authenticity, integrity and trust for products and documents — Guide-
lines for the selection and performance evaluation of authentication solutions for
material goods (ISO, 2020). The essence in both versions remains the same; these
standards are intended to act as a guide to industries, which are only required to
find suitable anti-counterfeiting technologies that meet the performance criteria
specified, but are in no way restricted as to how their selected approaches will

achieve that. For this reason, the performance criteria are provided in the form of

2Link to 1ISO’s web page containing information about ISO 12931:2012 and 1SO 22383:2020:
https://www.iso.org/standard/52210.html
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general guidelines for any organisation to develop and apply an effective crime
prevention strateqgy against product fraud. The development process proposed in-
cludes risk assessment, identification of the intentions, motives and opportunities
for product fraud, a classification of product fraud activities and fraudsters’ pro-
files, the selection and implementation of suitable countermeasures, and finally
an assessment of the overall effectiveness of the approach adopted.

Tinmasters, the industrial sponsor of this project, specialise in the commercial
printing and coating of tinplate and aluminium substrates for the metal packag-
ing industry. As a company with a well-established position among the leading
industries in the field since 1909, it has always been highly invested in keeping
up to date with the newest developments and maintaining the highest standards
of excellence. Tinmasters have been continuously commissioned by infant formula
manufacturers since 1978. The types of services they offer, along with the rapid
rise of the counterfeit market which culminated in the 2008 Chinese milk scandal
(Wikipedia Contributors, 2023a, and references therein), placed the company at
the centre of the aforementioned developments. Tinmasters took on this challenge
by initiating the current project with the aim to first identify the anti-counterfeiting
technologies that best suit their manufacturing process, and subsequently develop

and provide their clients with an efficient brand protection scheme.

1.3 Overview & Evaluation of Anti-Counterfeiting
Technologies

Any countermeasure against counterfeiting meant to be incorporated into a prod-
uct or the product’s packaging and add some form of technology-based authen-
tication capability is called anti-counterfeiting technology. If the classification
given in the ISO 22383:2020 standard is to be taken as “the standard”, then anti-
counterfeiting technologies are divided into three broad categories: Overt, covert

and forensic technologies (Spink, 2012, and references therein). Specifically,

m Overt technologies are implemented in security features which are readily vis-
ible, or more precisely detectable and verifiable without the use of specialised
equipment such as the wide variety of proprietary scanning devices of the past,

and smartphones and smartphone applications of the present.
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Table 1.1: Extended classification of anti-counterfeiting technologies. Manufacturers
of security features and market analyst firms go beyond ISO’s coarser classification
into overt, covert and forensic technologies, by introducing the semi-overt and semi-
covert types, and eliminating the forensic class, whose technologies are absorbed
by the general class of covert technologies. The left column gives an all inclusive
list of the proposed types of anti-counterfeiting technologies, and the right column
provides representative examples of each category (L. Li, 2013; National Electrical
Manufacturers Association (NEMA), 2009).

Type \ Anti-counterfeiting Technology ‘

Tamper evident closures & labels

(shrink sleeves, tear tapes, delaminating/destruct films)
Security substrates (papers, threads)

Watermarks

Optically variable films & inks

(floating/sinking, colour shifting)

Pearlescent & metallic inks

Overt
Readily visible

Intaglio printing
Guilloché patterns
Holograms

Product serialisation

Fluorescent & Phosphorescent inks
Semi-overt Photochromic & thermochromic inks

Inconspicuous Metameric inks

Reactive inks

Barcodes

Matrix codes (2D, 3D)

Electronic Product Code

Radio Frequency ldentification tags
Near Field Communication tags

Semi-covert
Machine readable

Infrared & Ultraviolet inks

qugrt Halftone dots designs
Invisible } o
Micro/nano printing
Forensic Taggants (biological, chemical, micro/nano-technology)

Lab equipment | Quantum Dots
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m Covert technologies include all those features that are

» Inconspicuous, in the sense that one has to be aware of their existence in

order to notice them,
» Detectable but not verifiable without specialised devices, or

» Completely invisible, in which case both the detection and the verification of

the feature rely on specialised equipment.

m Forensic technologies are essentially covert technologies of the third of the
above types; their detection and verification however, can only be performed in

laboratories by specialised personnel.

Adding to the above classification, every manufacturer of security features and any
market research company like the ones cited earlier, classifies anti-counterfeiting
technologies based on more refined sets of criteria. This results to the addition of
one or two categories between the overt and covert classes, named semi-overt and
semi-covert technologies, and the elimination of the forensic category in favour of
the class of covert technologies. Table 1.1 groups several anti-counterfeiting tech-

nologies based on an extended classification that includes all proposed categories.

1.3.1 Project Objectives from an Industrial Perspective

The project presented in this thesis is titled “Brand Protection for Steel Pack-
aging Products”. The two main tasks during its phase of initiation were first,
a comprehensive overview of the technologies forming the current landscape of
the anti-counterfeit packaging market in general and, pertinent to Tinmasters'
specialty, the metal packaging market in particular. The second task was the
development of a scheme to evaluate a selection of those anti-counterfeiting tech-
nologies that — for one reason or another — stood out during the review process.

The objectives of this project from an industrial perspective, as they translate

into general guidelines for the first part of the research, were the following:

1. To strive for the development of a novel technology from first principles.

2. To place emphasis on overt technologies, since apart from being objectively

safe, a product must also be perceived as safe.
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3. To aim for the development of a technology with high aesthetic appeal, target-
ing premium brands not only through their investment in high quality package
designs, but also because an aesthetically pleasing feature creates an image of

sophistication and reliability.

4. To nonetheless proceed allowing the possibility for certain covert and/or foren-
sic technologies to serve as additional layers of security, moving toward a very
well known approach referred to as layering (National Electrical Manufacturers
Association (NEMA), 2009). Layering is based on one of the fundamental prin-
ciples often applied in the development of security systems, which states that
no single technology will ever be able to provide absolute protection against
fraud. 1t aims at finding suitable ways to combine multiple technologies, each
providing different levels of protection. In the context of anti-counterfeiting, this
approach can help manufacturers and brand owners address multiple objectives

with a single solution (van Renesse, 1998).

5. To carefully consider and, if possible, try to minimise the impact of implementing
the developed technology on the manufacturing process. Without it meant to
be restrictive, this guideline immediately places emphasis on security features

that can be printed on the metal substrates Tinamasters work with.

1.3.2 Candidate Technologies & a Scheme for Their Evaluation

The technologies reviewed during the initial phase of this project are the result of
years of scientific research and technological advancements. Some of them were
implemented as security features at an industrial scale using well established and
standardised manufacturing processes 30 years ago, while others involve more re-
cently developed techniques and processes. These technologies are specifically
used in security printing and are divided in two categories. The first category
is called security inks and includes fluorescent, phosphorescent and quantum dot
pigments, metameric inks, pearlescent and metallic inks, as well as photochromic
and thermochromic inks. The second one, called security patterns, includes tech-
nologies such as halftone dots design, micro and nano printing, multi-parametric
fine-line patterns, e.qg. quilloché, and “strange” or “chaotic” patterns, 2D matrix
codes, holograms, and printed electronics including Radio Frequency Ildentifica-
tion (RFID) and Near Field Communication (NFC) tags (Nathe, 2012). Table 1.2

provides a brief overview of these technologies.
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The rating scheme developed for the evaluation of the technologies considered
consists of the criteria listed below. Each of the technologies listed in Table 1.2
was rated on a scale from 1 to 5 according to the selected criteria. The results
of the evaluation process are presented in the discrete density plot of Fig. 1.2.
Since other factors, such as experience and intuition also play an important role
in the evaluation process, this scheme is only meant to serve as a guide toward
the identification of the technologies with the highest potential to offer an effective

solution.

1. Maturity: The maturity of a technology refers to the extent, scale, and types
of products this technology has been applied to in the past. A mature tech-
nology offers the advantage of a standardised method of implementation. This
same advantage, however, becomes a disadvantage if one considers the ease
with which such a technology can be copied or otherwise manipulated by an

adversary.

2. Security: The security a technology provides is evaluated based on whether it
is overt, covert, or forensic, and whether it has the ability to store information
or not. Its level of security also depends on the type of authentication it offers,

and the stage of the supply chain it is addressed to.

3. Food Safety/Contact: Some of the existing technologies use materials which
have either be proven to be toxic, or are perceived as hazardous. Considering
that Tinmasters offer their services to the foods and beverages packaging in-
dustry, this criterion evaluates a technology based on its compliance to health

and safety regulations, and is applied with high sensitivity.

4. Aesthetics: With an enhanced capability to positively predispose potential
buyers, an aesthetically appealing security feature (also see Subsec. 1.3.1)
becomes a great fit for premium brands and their products, adding value to the

services Tinmasters offer as a result.

5. Compatibility: Each of the technologies considered is also evaluated in terms of
its ease of implementation. A highly favoured technology is expected to be fully
compatible with, or at least have minimal impact on Tinmasters’ manufacturing

process.

6. Cost Efficiency: A technology is initially assessed in terms of production costs.
Its final rating according to this criterion attempts to reflect the trade-off be-

tween the technology’s cost and its estimated added value.
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Table 1.2: Anti-counterfeiting technologies used in security printing.

SECURITY INKS

SECURITY PATTERNS

Fluorescent Invisible/white under Halftone Dots Customized dot
visible light displays shapes or patterns
another color under with a recognizable
UV/IR light design

Phosphorescent |pyisible/white under | Micro/Nano Print  printed patterns

visible light re-emits
several hours after
exposure

or characters
detectable upon
magnification

Quantum Dots

Semiconductor nano-
particles with a
highly tunable, size
dependent emission

Guilloché Printing

High resolution
interlaced patterns
of lines with variable
interline distances

Metameric Pairs of inks whose “Strange” Patterns  Complex patterns
colour contrast is produced by non-
visible only under a linear dynamical
certain light source systems

Pearlescent Layered, flake-like 2D Matrix Codes  |nformation storing
particles interact patterns of uniquely
with light and create configured cells with
an effect of luster contrasting colours

Metallic Specular and diffuse Holograms Interference patterns
reflection of light on from a scene act as
particles creates diffraction gratings
a metallic sheen to recreate it

Photochromic Disappears when RFID Printed electronic
exposed to artificial devices (tags), store
light other than information to track
natural or UV light and trace products

Thermochromic Exhibit colour- NFC Similar to RFID

changing effects
controlled by
temperature

tags, these devices
operate at different
(shorter) distances
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Figure 1.2: Evaluation scheme for the anti-counterfeiting technologies considered.
Every technology is rated on a 1 — 5 scale, in terms of its performance on each of
the suitability criteria set. With the exception of the criterion related to maturity,
which can be interpreted as having both a positive and a negative impact on the
suitability of a technology, the rest of the criteria are defined in a way that a
higher rating indicates better performance.

In the beginning of this subsection, while introducing the two types of tech-
nologies used in security printing, the technology related to some “strange” or
“chaotic” patterns was mentioned in passing, without any explanation as to what
this technology is. The author assumes that, having read Sec. 1.1, which intro-
duces the main objectives of this thesis, the reader has become ever so slightly
familiar with the coding scheme presented in this thesis, whose formal introduction
will be given in Sec. 1.4. The reason it was made a part of the evaluation process,
is that it seemed interesting to see how it compares against the other candidate
technologies, and maybe partially justify its prevalence over them.

Judging by the dominance of the warm colours in general, and yellow in par-
ticular, the colour-coded density plot of Fig. 1.2 suggests that most technologies
fared quite well against the criteria they were tested on. It also indicates, how-
ever, that the selection process that preceded the evaluation, created a high quality
sample of candidate technologies to begin with. Without delving too much into
details, the technology or technologies with the highest potential should have the
highest ranking across the list of criteria which, in terms of Fig. 1.2, it translates

to columns dominated by red. At first glance, the technology with the highest
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score is immediately seen to be the quilloché pattern, with the highest score — 5
— in 4 out of 6 criteria. It is followed by “strange” patterns, halftone dot designs,
and micro/nano printing, all of which scored a 5 in 3 out of 6 criteria.

However, as already noted earlier, the maturity of an anti-counterfeiting tech-
nology is a property that cuts both ways. This starts to become obvious when
noticing that maturity is the criterion in which the quilloché pattern received one
of its highest scores. Indeed, guilloché patterns have been used against coun-
terfeiting since the middle of the 19th century (De Leeuw & Bergstra, 2007). It
is therefore fair to say that adversaries have had plenty of time to hone their
skill at faithfully reproducing these fine-line patterns. “Strange” patterns, on the
other hand, are completely new and therefore only as mature as the technologies
surrounding their implementation, i.e. printing and photographic capturing. The
fact that the implementation of 2D matrix codes — a technology that is considered
quite mature — has exactly the same dependencies, suggests that a viable design
can easily push this new technology to first place, a claim that is strongly comple-
mented by the observation that with their potential to store information, “strange”
patterns match 2D matrix codes in security and completely outrank the guilloché

patterns.

1.3.3 A Quick Look at Recent Trends

Anti-counterfeiting technologies that rely on the fast-growing capabilities of
smartphone devices in order to provide user-based product authentication, started
becoming the favoured approach to the battle against counterfeiting a little more
than 10 years ago. That was when smartphones began featuring high-resolution
cameras (Wikipedia Contributors, 2023b, and references therein). Today, smart-
phones implement several more advanced technologies that allow them to perform
a series of highly sophisticated tasks. Pairing only a few of the fundamental tech-
nologies in a smartphone’s “arsenal” with the tasks facilitated by each of them,
enables smartphone applications that implement anti-counterfeiting features, to
pack instructions for data collection, processing and data exchange, as well as the
final decision regarding the authenticity of a product. The three main pairings

between tasks and technologies are the following (Baldini & Pons, 2017):
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m Data acquisition:

» High-resolution cameras — above 5 megapixel (MP) — enable smartphones to
capture the details necessary for the adequate processing of certain optical

security features.

» RFID/NFC functionality enables smartphones to authenticate products car-
rying RFID and NFC tags.

m Data processing:

» High-performance Systems on a Chip (SoCs) equip smartphones with ad-
vanced processing capabilities and enable them to carry through the compu-
tationally intense calculations often required by anti-counterfeiting applica-

tions.
» Data exchange:

» Wireless connectivity of a fast-growing capacity gives instant download ac-
cess to the dedicated application of any anti-counterfeiting feature a user
may come across. More importantly, however, it establishes a line of com-
munication with a remote server for data matching, that is, the comparison of

the acquired data against the data hosted in a remote database.

A typical anti-counterfeiting system utilising smartphone technology for prod-
uct authentication includes all the functional elements listed above and has the
workflow schematically represented in Fig. 1.3. In the context of this operation
scheme, the brand owner and the potential customer, or consumer, can be respec-
tively referred to as the client — of the company offering the anti-counterfeiting
solution, and the end-user — of the anti-counterfeiting smartphone application or
app, for short, and ultimately of the product. Assuming, as an example, that the
anti-counterfeiting feature works by somehow encoding a serialisation number at
the batch level®, once the client issues the serial number identifying a particular
batch of products, two processes get initiated: The batch number is (i) used to
initialise the generator of the anti-counterfeiting feature — a computer program
or other device that embeds the identifying information (serial number) into the
feature, and (ii) registered in the remote database server for later use in data

matching. After this stage, the database server enters a standby mode while the

30f course, instead of a number it can be any other identifying information, as long as there
exist appropriate mechanisms by which this information can be embed into the feature and later
be retrieved from it.
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generator passes onto the application process, the instructions for the incorpora-
tion of the feature into the product. The product then gets passed along the rest
of the manufacturing stages (not shown), and is distributed reaching the shelves
of the retailers. The interested customer points their smartphone to the anti-
counterfeiting feature which collects the necessary data and issues a request for
authentication. This request is handled in two steps: The initial data gathered
usually need to be processed in order to retrieve the identifying information, and
the identifying information retrieved must then be sent to the remote database
for data matching. Depending on the computational intensity of the initial data
processing, this stage can be performed on site, i.e. by the smartphone, or the
data can be sent to the remote server for processing. Either way, the final decision
regarding the authenticity of the product is issued by the server and sent back to

the smartphone which notifies the end-user accordingly.

/ N\
Initialisation ( ] (( ‘y Distribution

| S

Generator 1 l Appllcatlon
_ \ J L ( \
*’*‘ m —3 | rl
Brand Owner L atch No =\ LRetaller LConsumer
*l E}
Smartphone Authentication

Figure 1.3: Workflow of a typical anti-counterfeiting system utilising smartphone tech-

Registration atabase Serve

nology for product authentication: The brand owner issues a serialisation number that
initialises the security feature generator, and gets registered in to remote database.
From this point onward the process follows the top branch first to the incorporation of
the feature into the product or its packaging, and then the distribution channels until
it reaches the potential buyer. The authentication process follows the bottom branch
with data either being processed on the smartphone or being sent to the remote server
for processing and data matching, and the final decision regarding the authenticity of
the product is sent back to the smartphone which notifies the user accordingly.

The anti-counterfeiting features presented in Table 1.3 are a small but rep-
resentative sample of the technologies developed since 2009. These features all
utilise smartphone technology for product authentication, they all implement the
layered approach discussed in Subsec. 1.3.1, and as systems, share more or less

the workflow represented in Fig. 1.3.
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Table 1.3: Anti-counterfeiting features utilising smartphone technology. A representative
sample of the anti-counterfeiting technologies introduced since 2009, that rely on the
advancements on smartphone hardware and software to offer user-based product authen-
tication. All of these systems implement a layered approach to anti-counterfeiting and
operate on a scheme similar to the one shown in Fig. 1.3.

Authentic Vision (2018) Track and trace security tag that provides user
authentication via a smartphone app as well as real time
information about the status and location of the product.
It consists of three components: A “random” holographic
structure (patented), a 2D barcode data matrix and
human readable serialisation.

Certilogo offers its clients a choice between the NFC
Code which offers product authentication via an
NFC-enabled smartphone , a QR Code which can

be scanned using a smartphone camera, and their
Certilogo Number Code which can typed in a dedicated
smartphone app and receive instant verification.

Hard NFC tags or printable labels that offer product
identification, authentication and tracing, via an NFC
enabled smartphone. Confidex has created a patent-
pending RFID antenna which overcomes the performance
issues caused by metallic surfaces and moisture. These
tags can be programmed by a smartphone app.

Cypheme/Noise Print (2015) | Cypheme’s solution is a tag that consists of a proprietary
—= label called Noise Print, made using a special ink that

|| creates a unique and copy resistant pattern when it dries.
This is surrounded by several detection enabling features,
s \/ all enclosed in a frame printed in a second special ink of
| a unique orange tint. No app installation required.

2
)

DSS/Authentisuite (2013) Document Security Systems, Inc. (DSS) offers a three-

component system. The Mark is a QR code hidden using
&wi E E a copy resistant technology called Prism (patented). The
pr— e Application is a smartphone app used to read the
' _ \J h invisible QR code, and the Portal is a database that
T o provides instant authentication and business intelligence.
AlpVision/Cryptoglyph (2009) Cryptoglyph is an invisible marking that embeds a
pseudo-random pattern of micro-dots in the imperfections
of the printed material (prepress), or a pattern of micro-
holes to the coating (overprint). These patterns contain
encrypted information which can be retrieved from a
photograph taken by a mobile phone.
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1.4 Proposed Scheme: The NLCode

The coding scheme developed can be succinctly described as ‘A 2D code for data
representation”. Even though the terms coding scheme, or simply scheme, and
feature have been and will be used interchangeably throughout this thesis, tech-
nically speaking, the feature is the visual realisation of the scheme, an example
of which is shown in Fig. 1.4. What one sees in this figure is an overlay of two
plots, that is, a graphical representation of the main components of the scheme,

which after being plotted, become the main structural elements of the feature.

(
S

Figure 1.4: Proposed feature: The NLCode: The main structural elements of the
Non-Linear Code, are the folllowing: (a) The nonlinear pattern, which is a trajectory
of a 3D, continuous dynamical system operating within its chaotic region, projected
in 2D. In the example shown, that system is the well known Lorenz system (E. Lorenz,
1963). (b) The colour gradient applied on the pattern, called the colour profile of
the feature. It consists of a small number of distinct colours, which are interpolated
and repeated on the pattern in a periodic fashion. In the case presented, the base-
colours are six: yellow, red, magenta, blue, cyan, and green. (c) The frame enclosing
the pattern, called arced circular frame. It consists of a small number of arcs ending
in progressively increased widths. in this case shown, the arcs are four. Each struc-
tural element of the feature corresponds to a main component of the coding scheme
developed, and serves a distinct purpose (Subsec. 1.4.1).
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1.4.1  Structure & Name Origin

Starting from the center of the feature and moving radially outward, the three

main structural elements of the feature shown in Fig. 1.4 are the following:

= Nonlinear Pattern: This is the coloured interlaced line shown in Fig. 1.4. As
already mentioned in several parts of the preceding sections, this nonlinear
pattern, is a trajectory captured by the “strange” attractor of a 3D, continuous,
nonlinear dynamical system displaying chaotic behaviour, projected to two di-
mensions. This type of system is mathematically represented by a system of
three 1st order Ordinary Differential Equations, and its numerically obtained
solution consists of a sequence of points in 3D, each representing a state of
the system. A projection of this trajectory onto one of the three mutually per-
pendicular planes of a 3D Cartesian coordinate system, is obtained by simply
dismissing the trajectory’s component that corresponds to the axis normal to the
projection plane. The main function of the nonlinear pattern is to quide the

process of its own retrieval.

» Name Origin: The nonlinear pattern, as well as the proposed scheme/feature
as a whole, take their names from one of the main properties of the dynamical
systems producing these types of trajectories, which is nonlinearity®. The
name of the coding scheme developed abbreviates the hyphenated word non-
linear as NL, uses it as a prefix, and appends to it the defining noun Code
to form NL Code, or better yet NLCode, according to the author’s preference.
This name is also meant to distinquish this feature from other 2D coding
schemes, such as the very well known QR Code (I1SO, 2015), the Data Matrix
(1SO, 2006), the Aztec Code (1SO, 2008), Apple’s latest App Clip Code (Apple
Inc., 2021) — to name a few, all of which represent data by contrasting light,
medium(-brightness), and dark modules arranged in some canonical order —
either along the horizontal and vertical directions, or along the paths formed

by concentric squares or circles.

“The fact that most previous mentions of the types of systems this thesis places its focus
on — and most things related to them — were termed chaotic, should not be taken to imply any
equivalence between the latter term and nonlinearity. While continuous linear systems can only
be chaotic in infinite dimensions, which implies that nonlinearity is a necessary condition for a
system in finite dimensions to exhibit chaos, the converse is not true, that is, not all nonlinear
systems are chaotic.



20 1. INTRODUCTION

m Colour Profile: This is the colour gradient applied on the nonlinear pattern
(Fig. 1.4). Even though it may seem like just a feature of the pattern added for
visual appeal, it is more than that. The colour profile of the NLCode is a gradient
created from an original set of distinct colours using an interpolation formula,
after providing it with weights of those colours, based on a periodic function
of each point's index in the pattern. Despite this being a standard technique
used to create colour gradients, the period of the function assigning weights to
colours is then used to endow the colour profile with a functionality which is of
great value to the entire scheme. As mentioned in Sec. 1.1, in order to retrieve
the trajectory, the code reader has to apply a tracing method on the nonlinear
pattern. The purpose of the colour profile is to assist that method, and for this
reason, its functionality is anticipated and heavily elaborated on, long before
the code reader enters the workflow of the development process, that is, in the
code generator. Different periods of the colour profile create different colour
schemes — by altering the “spread” of each base-colour, without changing the
order in which these colours appear. One of the code generator’s main tasks is

to identify periods that facilitate the tracing method of the code reader.

m Arced Circular Frame: This is the black frame surrounding the nonlinear pattern
of the feature. The arced circular frame consists of a small number of arcs, all of
which begin with the same width, which is the line width of the nonlinear pattern.
Each of the arcs ends wider than it beqgun, but also wider than the previous arc
ended. Its two main characteristics are its black colour, which contrasts with the
white background of the feature, and more importantly, the corners of the arcs.
The detection of those corners, and their identification, both in terms of the arc
they belong to, and the place they have on that arc, is one of the most crucial
processes of the entire scheme. By establishing a correspondence between the
corners of the frame — in pixel positions, on the captured image of the feature,
and the known coordinates those same corners have — by definition — when the
feature is plotted, the code reader is able to perform the following tasks: (a)
transform the image in order to remove the distortions introduced by perspective
projection, i.e. warping, or the more descriptive term perspective correction, and
(b) use the above correspondence, in the form of a variable transformation, to
go back an forth between pixel and plot coordinates during the tracing of the

pattern.
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1.4.2 Operation Principle

The tracing of the pattern and the retrieval of the projected trajectory relies on
a mechanism known as chaotic synchronisation. When two nonlinear, dissipative,
self-sustained oscillators are coupled via a shared component, their rhythms ad-
just. Rhythm adjustment, in the present context, means that after a certain period
of time, their non-interacting components evolve synchronously, i.e. they coin-
cide. The type of synchronisation the NLCode utilises, involves the unidirectional
coupling of two systems, such that one of them affects the other, but is not itself
affected by it.

Specifically, one of the components of the 2D projected trajectory plotted, acts
as the shared component of two systems: The first one is that which created the
trajectory in the first place, called drive. The second system is the one implemented
for the retrieval of the trajectory, called response. The response system is given
random initial conditions within a reasonable range of values, and is integrated
while accessing the image of the NLCode, in search of the pattern. The response
trajectory is drawn into the attractor of the system, and that forces it to cross
paths with the pattern. When that happens, the response system is driven by one
of the components of the printed trajectory and starts synchronising with it. The
synchronisation allows the response system to trace the pattern and retrieve the

sequence of points in it.
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Theoretical Background:

Nonlinear Dynamics & Chaos

A dynamical system is the mathematical description of the evolution of a phys-
ical system’s state in time. Time is considered an independent variable which can
be continuous or discrete. In the former case the dynamical system is referred to as
Continuous-time (CT), and in the latter case as Discrete-time (DT). The states of
the physical system are represented by points in an m-dimensional space called
state space. The dependent variable of the system — an m-dimensional vector
called state variable — is the symbolic representation of those points in state
space. The evolution of the state variable in time is governed by a deterministic
rule, also known as the time-evolution law of the system, based on the known
state(s) at one, several, or all previous times. If time can take both negative and
nonnegative values, i.e. extend into the past as well as into the future, then the
dynamical system is said to be invertible, whereas if time is restricted to taking
only nonnegative values the system is noninvertible (Katok & Hasselblatt, 1995).
Lastly, if the time-evolution law is not explicitly dependent on time the system is
called autonomous, and if there is an explicit dependence on time, nonautonomous.

The dynamical systems this study is mainly focused on are CT, autonomous
and invertible systems in a three-dimensions (3D) state space, whose deterministic
rule is described by systems of 1st order Ordinary Differential Equations (ODEs)

written in vector form as

x =f(ps;x), (2.1)

where x(t) = ()(1(1‘),)(2(t),x3(t))T is the system’s 3D state vector, x(t) € R3 is xs
first order derivative with respect to time t € R, and f = (f', 2, f3)T a continuously
differentiable vector field — a C' function f : R? — R3, with a C" inverse for all t.
Vector ps = (p%, ..., p%) represents the set of real valued parameters influencing

the system’s behaviour, which for this reason are often referred to as system,

23
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control or bifurcation parameters5. In its reqular, expanded form, Sys. 2.1 becomes

X% = (X", X% x3) (2.2)
X = f3(x1,x2,x3),

where the parameter vector ps has been omitted, as is usually done, for clarity.

2.1 Solution of a System of ODEs

For a given set of /nitial Conditions (ICs) xo = (XS,X&,XS)T, where x} = x/(to),

j=1,...,m(=3), and t, some initial point in time, the solution of a system of
ODEs is denoted by either x(xo; t) or ¢(xo; t) when it is thought of as a function of
time parametrised by x that satisfies Sys. 2.2, and by ¢;(xo) when it is considered
a function of xo parametrised by time t, that is, @; : R — R (see e.g. Cvitanovic
et al., 2020)°. The latter two types of notation are often used to denote flows, and
X(xo; t) is one, since it possesses the three properties characterising flows, namely
(i) x(xo; t) is C* for k > 1, (ii) x(xo; to) = xo, and (iii) x(xo; t + T) = x(x(x0; T); t)’
(Cvitanovic et al., 2020; Wiggins, 2003).

Depending on the type of vector field f(ps; x) is, the solution of a system of
ODEs such as Sys. 2.2 can generally be obtained in integral form by any of a
large number of analytical methods/techniques available, or, as is the case for
most high-order, nonlinear systems of ODEs, in an approximate form by various
types of numerical methods that have been developed for this purpose.

One such numerical method, and certainly one of the most widely used methods
in Science and Engineering applications, takes its name from the German mathe-
maticians Carl Runge (1856 — 1927) and Martin Wilhelm Kutta (1867 — 1944) who
developed it around 1900 (O'Connor & Robertson, n.d.). The 4th-Order Runge-

Kutta (RK4) method, as its name suggests, numerically integrates the dependent

°According to Sprott (2003) the term bifurcation is of Latin origin and means two branches.
Bifurcation theory studies the qualitative/structural changes effected to a system as the parameters
entering its mathematical description vary (Devaney, 1989; Sprott, 2003).

®0ne of the reasons for the introduction of the ¢ and ¢; symbols is that when xq is treated as a
variable, it might be more convenient to denote as x instead, in which case function and argument
would be assigned the same symbol leading to the ambiguous notation x(x; t) (see Wiggins, 2003,
p. 93) also see footnote 7).

’Another reason to use ¢; to represent flows, is to avoid cumbersome expressions such as
x(x(xo; T); t) to denote functional composition. Using ¢; and denoting functional composition
by - o -, the latter expression becomes ¢;1.(xo) = ¢: 0 d-(xp) (see e.g. Cvitanovic et al., 2020).
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variables of a system of ODEs, taking into account only up to fourth-order terms in
the iteration step (increment) of the independent variable. Since the present study
mostly treats 3D nonlinear dynamical systems that cannot be solved analytically,
their solutions are obtained numerically, using the RK4 scheme.

The recurrence relation that defines the RK4 method in the general case of a
nonautonomous system of ODEs of the form x = f(x, t) in m dimensions, reads,
in vector form,

Xnt1 =X + R, (2.3)
where x,.1 is each new value of the state vector calculated based on the previous
one x,, R is an m x 4 matrix whose i-th column’s entries are the components of
the m-dimensional column vector r; = (r!,...,r™ T, and K is the constant column
vector %(1 ,2,2,1)". The vectors r; that fill up matrix R for i = 1,2, 3, 4 are defined

as follows:

ri=(ri,....r"N" = Atf(x, t,)

1 1
r = (r;, ce, rg’)T = At f(x, + §r1, t, + ZAt)
(2.4)

1 1
rs=(r), . . T =Atf(x, + 12 ta + 501

ry = (rj‘,...,rf}")T = Atf(x, + r3, t, + At),

where At is the iteration step in time previously mentioned. Note that the second
argument of vector field f in Eqgs. 2.4, which represents time ¢, is only relevant when
the treated system is nonautonomous. This dependence of f on time is included
here for completeness and will be absent in the rest of this presentation which
treats only autonomous systems. Using Eq. 2.3 and Eqgs. 2.4, the j-th component
of x,,1 can now be written as

x£+1:xg+%(r{+2r§+2r§+d), j=",..m. (25)

A numerical solution of a 3D (m = 3) system like Sys. 2.2 for a specific f and

known parameter vector ps is obtained using the RK4 scheme as follows:

1. For n = 0, which corresponds to some initial value of time t;, (usually
to = 0), the initial state vector xo = (xJ, X3, x3) and the constant iteration
step At = t,.1 —t,, n=0,1,..., are given values appropriate for the system

and the particular application.
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2. Using the values specified in the previous step, vectors r; for i = 1,2, 3,4
are calculated from Eqs. 2.4.

3. Using the values determined for the components r{ i=1,234j;=123
of the r-vectors and the ICs, the state vector is updated to x; = (x{, x7, x3)

using Eq. 2.3 or Eqgs. 2.5.

4. The process is repeated for n = 1, ..., N, where N is the number of iterations
required for time t to reach a predefined value ty = NAt.

The output of an algorithm implementing the RK4 scheme is a sequence {x,}
of N + 1 points (x!, x2,x7) in the system’s 3D state space — including the ICs,
each corresponding to a time instant ¢, = nAt, n =1, ..., N. The solution x(x; t)
of Sys. 2.2 is called trajectory or state curve of the system passing through xg
at tp, and the sequence of pairs (x,, t,) — particularly their graph, when plotting
X, over t, is possible — is called an integral curve of the system, initiating at
(xo0, to). Finally, sequence {x,} is sometimes referred to as the system’s orbit
passing through (x, x3, x3) (Wiggins, 2003). It is worth noting that while the
above terminology is valuable in situations where the distinction between, say a
trajectory and an orbit is important, it is not at all uncommon for some of the terms
just introduced to be used almost interchangeably.

Figure 2.1 illustrates what has been discussed in this section with a plot of
the 3D solution of the famous Lorenz system, for the parameter values known to
produce the attractor known as Lorenz attractor®.

Note that the trajectories of an autonomous deterministic system cannot
(self-)cross in state space, except at an unstable equilibrium point (Sec. A4). A
heuristic argument for this statement, which is formally substantiated by Exis-
tence and Uniqueness Theorems (see e.g Hirsch et al, 2004, Sec. 7.2), comes
from considering what a potential intersection of two trajectories, or a trajectory
with itself, would imply. In both cases, a trajectory arriving at such point of
intersection, could take one of two possible directions. If the choice of which one
to take was a probabilistic one, then the system would not be deterministic; and
if it was dependent on the time of intersection, then the system would not be
autonomous. As will become obvious in Chapter 4, one of the major obstacles
faced in this study, is that this “no-intersection” rule collapses in 2D projections

of the trajectories (see e.g. Fig. 3.5).

8 The concept of an attractor is introduced in Secs. 2.5 and 2.6, and the Lorenz system and
its attractor are discussed in detail in Sec. 3.3.
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Figure 2.1: Lorenz attractor: Solution of the Lorenz system (Sys. 3.45) using the
RK4 scheme presented in this section. The parameter values are the ones originally
used by E. Lorenz (1963) (see Sec. 3.3, Eq. 3.46a), with ICs xo = (10.0,10.0,10.0),
iteration step At = 103 seconds, and a number of iterations N = 100, 000.

Solving a system of ODEs like Sys. 2.2 for a given set of ICs is only a first step
toward an understanding of the dynamics that govern the system’s behaviour which
can, and quite often does, become very complex. Generally speaking, complexity
in dynamical systems, in the form known as chaos, arises from the nonlinearities in
the deterministic law of a system, i.e. in the case of Sys. 2.2, the nonlinear terms
in x present in vector field f(ps; x). Apart from nonlinearity, chaos additionally
requires — among other conditions that will be discussed in some detail in Sec. 2.6
— that a CT, autonomous system of ODEs be at least three-dimensional’. The
dynamical systems treated from this point onward will be considered nonlinear,

unless otherwise specified.

9 The Poincaré-Bendixson theorem, named after French mathematician and physicist Jules
Henri Poincaré (1854 — 1912) and Swedish mathematician Ivar Otto Bendixson (1861 — 1935),
restricts the types of asymptotic (or limiting) solutions of 2D systems to fixed points and closed
trajectories. By doing that, it rules out the possibility of chaotic behaviour in 2D, therefore setting
the implicit requirement of at least three dimensions for chaos to appear (Hirsch et al., 2004;
Sprott, 2010).
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2.2  Volume Deformation in State Space

Consider Sys. 2.1 defined on R® and a 3D infinitesimal neighbourhood Uy of some
state vector xo at time ty (Fig. 2.2). Let 0xo be any infinitesimal displacement at
Xo, such that xo + dxg is always in Uy; Uy then contains any and all points xo + dxo
that are infinitesimally close to xp at time t;. Assuming that xo and xo + 0xp are
the ICs of two of Sys. 2.1's distinct solutions, then as illustrated in Fig. 2.2, at time
t those two points will have transformed by the system'’s flow to points x(xo; t) and

x(xo + 0xo; t) respectively, and 0xp = 0x(xo; to) to 0x(xo; t), such that

0x(xo; t) = x(xo + 0xo; t) — x(x0; 1) . (2.6)

o
X0 = x(xo;10) X(xo+0x0,t) = x(Xo;t)+0x(x0,1t)
Xo+0x0 = X(xo+0xo;t0) U = x(Ub;t)

Figure 2.2: Deformation of an infinitesimal neighbourhood in Sys. 2.1's state
space: An infinitesimal neighbourhood Uy of initial volume dVy at time to,
is deformed under the system’s flow ¢ to an ellipsoid U of volume dV (also
see Fig. 2.3) at a finite — but not “too long” — time t. Within Uy, two ICs xg
and xg + 0xg separated by an infinitesimal displacement dxqg are transformed by
d+:(x0), and as 0xp = dx(xp; to) becomes dx(xp; t) at time t, they become x(xop; t)
and x(xo + 0xo; t) = x(xo; t) + 0x(xo; t) respectively.

From Eq. 2.6, it is possible to devise a system of ODEs for the displacement
0x(xo; t) of x(xo; t)'s infinitesimally close solution x(xo + dxo; t). That system has
the form

Ox(xo; t) = Df(x)| ) 0x(x0; 1) + O(|0x(x0; 1)), (2.7)

x=x(xo;t

and is obtained by differentiating Sys. 2.6 with respect to time t, replacing
X(xo + 0xo; t) with f(x(xo + 0xo; t)) by virtue of x(xo + 0xo; t) being a solution of
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Sys. 2.1 — therefore satisfying it, taking f(x(xo + 0xo; t))'s first-order Taylor ex-
pansion near x(xo; t) — but keeping the terms O(|0x(xo; t)|?) of second and higher
order in 0x, and after a final rearrangement of terms which, at this point, all refer
to the trajectory that passes from xy at t.

Following the terminology and notation used in Cvitanovic et al. (2020), Df(x)
in Sys. 2.7 is an m x m (3 x 3) matrix also denoted by A(x), defined as

af',... "

A(x) = DF(x) = (2.8)

which, in Sys. 2.7, is calculated along the trajectory x(xq; t). Despite A(x) having
the form of what is known to most of us as the Jacobian matrix'’ of a vector field
— f in this case, the authors in Cvitanovic et al. (2020) vehemently arque that this
is not the case, and follow Tabor (1989) in referring to it as the stability matrix.
For reasons that will become much clearer in Sec. 2.3, A(x) will be referred to as
the stability matrix here as well, in what is hoped to be a successful attempt to
clearly distinguish it from the fundamental solution matrix introduced below (after
Wiggins, 2003) which, according to Cvitanovic et al. (2020), should be called the
Jacobian matrix of the flow.

By performing a different sequence of operations on Eq. 2.6, it is also possi-
ble to obtain a relation that expresses 0x(xp; t) in terms of x(xo + 0xp; t)'s initial

displacement from x(xo; t), 0xp. This relation is of the form
5x(x0; 1) = Débu(x0) %0 + O(|8x0[?) (29)

and is obtained by first substituting x(xo + 0xo; t) on the right hand side of Eq. 2.6
by its notational equivalent ¢:(xo + 0xp), then taking the same term’s first-order
Taylor expansion around xo — but keeping the terms O(|dxo|?) of second and higher
order in 0xp, and noticing that the Taylor series’ first term ¢¢(xg) and Eq. 2.6's
original term x(xo; t) cancel each other out.

Equation 2.9 introduces the m x m (3 x 3) matrix D¢(xp) known as the funda-

mental solution matrix of Sys. 2.1, also denoted by X;(xo) and defined as

¢y, .-, OF)

o) = Déilxo) = oxg, ..., xJ)

(2.10)

1%According to J.C. Sprott (2003, p. 74), the term Jacobian matrix “was coined by the eccentric
and gifted English mathematician James Joseph Sylvester (1814 — 1897) in 1852 in honour of the
German mathematician Carl Gustav Jacob Jacobi (1804-1851)” (for the biographies of the latter
two mathematicians the reader is referred to O’Connor & Robertson, n.d.).
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It should be noted that Sys. 2.7 and Eq. 2.9 are most commonly used in situa-
tions where the problem statement permits the omission of their nonlinear terms.
It is therefore in the context of problems of this kind that matrices A(x) and X;(xo)
are referred to as stability and fundamental solution matrix respectively. Using
the linearized versions of Sys. 2.7 and Eq. 2.9 in such a context, it can be shown
(see e.g. Cvitanovic et al,, 2020) that A(x) and X;(xo) are related by a system of
ODEs which, in matrix form reads

Xt (xo) = Alx) Xi(x0) - (2.11)

In the general case where the solution of Sys. 2.1 is not known analytically, which
means that Eq. 2.10 is of no practical use, Sys. 2.11 with Xy (xo) = L as IC, where I
is the identity matrix, is solved numerically alongside Sys. 2.1 (Cvitanovic et al,,
2020). A special case where the analytical solution of Sys. 2.11 is straightfor-
ward is only touched upon in a later subsection discussing Sys. 2.1's equilibrium
solutions (see discussion following Eq. 2.18, Sec. 2.3).

A rather intuitive physical interpretation of the two matrices A(x) and X;(x),
comes from the linearised versions of Sys. 2.7 and Eq. 2.9 respectively. The
two matrices describe the deformation of the infinitesimal neighbourhood U along
trajectory x(xo; t), under the flow ¢:(xo) generated by vector field f(x), from two
different perspectives'': The stability matrix A(x) describes, as the linearised
version of Sys. 2.7 suggests, the instantaneous rate of deformation of U, and
by virtue of the linear version of Eq. 2.9, the fundamental solution matrix X;(xo)
describes the finite-time deformation of U.

Dissipation

Dynamical systems are categorised based on whether the volume of an infinites-
imal neighbourhood in state space is increased, preserved, or decreased by the
deformation of state space under the system’s flow. In the first case the systems
are called volume expanding, in the second volume preserving or most commonly
conservative, and in the third case which is of particular interest here, the systems
are called volume contracting or dissipative.

In order to determine which of the above categories a system falls into, one is

required to calculate the rate of volume change dV|dt — its sign, to be precise —

System 2.7 and Eq. 2.9 describe the dynamics of a single flow from two different perspectives
which are known, especially in Continuum/Fluid Mechanics, as Eulerian and Lagrangian points
of view respectively (see e.g. Cvitanovic et al,, 2020).
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either at a single point in state space, in which case one refers to a local property,
or for all points in state space if that is possible, thus characterising a global
property of the system (Cvitanovic et al., 2020). S. Wiggins offers a quite intuitive
derivation of a formula for dV//dt (Wiggins, 2003, Sec. 7.6), however, one can reach
the same goal in one step by making use of the Reynolds Transport Theorem. For
any quantity B = B(x, t) — not strictly a scalar — associated with a flow with
a velocity field u = u(x, t), which is integrated over a time-dependent volume

element V/(t), the Reynolds transport theorem is expressed as follows:

V()

where V is the nabla operator. This theorem is a 3D generalisation of the Leibnitz
rule in 1D; it describes the rule according to which a total derivative operator with
respect to some variable — here d/dt — can be moved inside an integral “when
both the integrand and the limits of integration depend on that variable” (Leal,
2007, p. 22). For the present purposes B(x, t) is set to 1 so that the integral on
the left hand side of Eq. 2.12 becomes the volume element V/(t) itself, and the
velocity field u = u(x, t) is the system’s (autonomous) vector field f(x), such that

the final formula for the rate of volume change dV/dt is

M:/[ V- f(x)dV, (2.13)
dt
(1)
where
— of/
V.o f= ) 5= Tr(A) (2.14)

is the divergence of f(x), which is equal to the trace of the stability matrix A(x)
(Eq. 2.8) denoted by Tr(-).

From Eq. 2.13 one concludes that depending on whether V - f is positive,
equal to zero or negative in some region of state space, the dynamical system
under consideration is volume expanding, conservative or dissipative in that region
respectively (Ott, 1993)."?

2 1t was pointed out as early as 1992 (X. Gan et al, 2021, and references therein), and
was certainly encountered by D. Li (2008), a case which will be discussed in the Appendix, that
the divergence criterion might not be conclusive in every possible scenario, in which case the
dissipation of a system can only be determined via alternative routes. A recent treatment of this
issue for 2D systems can be found in X. Gan et al. (2021).
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2.3 Equilibrium Solutions & Local Stability

The simplest type of solutions possessed by autonomous dynamical systems are
those that do not change in time, or equivalently, solutions for which the system’s

vector field vanishes, i.e.

dx
== =f(x)=0, 2.15
g =10 (2.15)
where
X" = x(x";t) = ¢(x), for all ¢, (2.16)

denotes such a solution. This type of solutions are known as equilibrium or
stationary solutions and fixed points, among quite a few other terms used in the
literature (see e.g. Perko, 2001; Wiggins, 2003).

All solutions of dynamical systems are characterised by a property known
as stability. In qualitative terms, a solution x(xo; t) is said to be (asymptotically)
stable if all other solutions that start arbitrarily close to x(xo; t), (converge) remain
arbitrarily close to it (as t — oo) for all t > #,. A solution that is not stable is
referred to as an unstable solution (Wiggins, 2003).

Albeit not particularly technical in their description, the above definitions
suggest that the stability of a solution of an autonomous dynamical system like
Sys. 2.1 can, in principle, be inferred from the solution of Sys. 2.7, provided that
can be obtained, of course. Unfortunately, Sys. 2.7 is not linear — due to the non-
linear terms in 0x(xg; t), and even if it were, it does not have constant coefficients
— since matrix A(x) (Eq. 2.8), through x = x(xo; t), depends not only on xp but on
t as well. The first obstacle is overcome in matters regarding stability, because
the requirement that solutions remain arbitrarily close, i.e. 0x(xop; t) arbitrarily
small, allow the nonlinear terms O(|dx(xo; t)]?) to be considered negligible and
omitted as such. In fact, stability problems are the most characteristic examples
of the type of problems mentioned earlier, that make use of the linearised versions
of Sys. 2.7 and Eq. 2.9. The second hurdle, i.e. that of A(x)’s time-dependence,
which still implies that a solution to Sys. 2.7 is not guaranteed, is avoided al-
together when the system refers to the displacement 0x(x*; t) between Sys. 2.1's
equilibrium solution x* = x(x*; t) (Eq. 2.16) and its close neighbour x(x* + 0x*; t).

Under the above conditions, and using Eq. 2.8 to replace Df(x)|,_,. with A(x*),
Sys. 2.7 becomes

Ox(x*; 1) = A(x*) 0x(x*; t), Ox(x*; t) arbitrarily small for all ¢, (2.17)
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which is a linear system of ODEs with constant coefficients formally known as sys-
tem of variations, or when separately referring to its components, as variational
or stability equations (Cvitanovic et al., 2020), although it is more often referred
to as associated linear system. Provided A(x*) is nonsingular, i.e. detA(x*) # 0,
Sys. 2.17 has the unique equilibrium solution dx* = dx(x*; t) = 0, while its gen-

eral solution in terms of the matrix exponential is
ox(x*; t) = eA¥) 1 oxy,  Ox(x*; t) arbitrarily small for all ¢, (2.18)

where 0xp = 0x(x*; ty). Note that when comparing Eq. 2.18 with the linearised ver-
sion of Eq. 2.9 around x* = x(x*; t), which is dx(x*; t) = X;(x*) 0xo, where X;(x*)
has replaced D¢(xp) using Eq. 2.10, it is seen that in this particular case, the
fundamental solution matrix is given by X;(x*) = e**)!. The same result is ob-
tained by also noticing that Sys. 2.11's general solution around a fixed point is
Xi(x*) = eAT X, (x*) or, since Xy (x*) = I, Xy(x*) = eAX)L

Due to the condition that dx(x*; t) be arbitrarily small, Eq. 2.18 describes the
behaviour of the linear Sys. 2.17’s solutions in the neighbourhood of its fixed point
ox* = 0. However, as already implied earlier, it also describes the behaviour of
the solutions of the nonlinear Sys. 2.1 in the neighbourhood of its equilibrium
point x* = x(x*; t), at least in qualitative terms. To make things more precise, one
can invoke two important theorems of Dynamics that prove, in conjunction, that
the stability of a fixed point x* of a nonlinear vector field f(x) (Sys. 2.1) is the
same as that of the linear vector field Df(x*)'s fixed point at the origin (Sys. 2.17),
provided none of the eigenvalues of the linear field have zero real parts.

The first theorem is known as the Stable Manifold Theorem and says that
the stable and unstable sets of the nonlinear vector field’s equilibrium point are
smooth manifolds whose tangent spaces are the stable and unstable subspaces
respectively, of the linear vector field's fixed point (Perko, 2001). The second
theorem is named after mathematicians Philip Hartman and David M. Grobman
who proved it independently in Hartman (1963) and (Grobman, 1959) respectively.
The Hartman-Grobman Theorem says that the flow of the nonlinear vector field
in the neighbourhood of its fixed point is qualitatively the same as the flow of the
linear field near its own fixed point at the origin (Perko, 2001; Wiggins, 2003).

A first step toward the characterisation of a nonlinear system’s equilibrium
solution in terms of stability, is to note that the two theorems cited above have

already created a category of fixed points based on the eigenvalues of matrix
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Df(x*) = A(x*): The equilibrium solutions at which none of the eigenvalues of
A(x*) have zero real parts are called hyperbolic equilibrium points. If even one
of A(x*)’s eigenvalues has zero real part, x* is nonhyperbolic (Perko, 20071).

The fact alone that the two cited theorems apply only to hyperbolic points
suggests that the process of identifying the stability type of x* will probably be
more involved when that fixed point is nonhyperbolic. This is indeed the case;
Lyapunov’s Direct Method, as it is often referred to (in Salle & Lefschetz, 1961,
for example), is one of the basic methods used for determining the stability of
nonhyperbolic points (also see Perko, 2001). Its treatment, however, is far beyond
the scope of this thesis, which in turn means that any mention of equilibrium
solutions from this point onward will strictly refer to hyperbolic equilibrium points,
unless otherwise specified.

As it turns out, the eigenvalues of matrix A(x*) also enable a finer categori-
sation of hyperbolic equilibrium points into different stability types. In fact, this
is the reason A(x*) is called the stability matrix. It is therefore worth recall-
ing a few simple facts about eigenvalues from Linear Algebra: The eigenvalues
A7 of the 3 x 3 matrix A(x") are the roots of A(x*)'s characteristic polynomial

det[A(x*) — AT], i.e. the solutions of equation
det[A(x*) — Al] =0, (2.19)

where det[-] denotes the determinant of a matrix. The degree of A(x*)'s charac-
teristic polynomial is 3, i.e. the same as the order of the matrix, which means
that A(x*) has three eigenvalues. Moreover, since A(x*) is a real matrix, i.e. its
characteristic polynomial has real coefficients, any complex eigenvalues will occur
in complex-conjugate pairs. As a result, one of A(x*)'s eigenvalues is definitely
real, and the other two are either real, or a complex-conjugate patr.

Table 2.1 summarises the rules that determine the stability of a hyperbolic
equilibrium solution x* of a nonlinear and autonomous dynamical system in 3D,
based on the eigenvalues of the stability matrix A(x"). Letting p; and w; denote

the real and imaginary parts of A(x*)'s eigenvalues A7 respectively, i.e.
A=y +iw;, j=1,2,3, (2.20)
where i is the imaginary unit, these rules are the following'*:

m The existence of even one eigenvalue with zero real part creates the category

of nonhyperbolic points; if y7 # 0 for all j, the fixed point is hyperbolic.

3Further details can be found in Perko (2001, chap. 2).
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A hyperbolic fixed point x* is called a saddle and it is unstable, when there is
at least one eigenvalue with a positive real part, and one with a negative real

part; the third eigenvalue must be non-zero to ensure that x* is hyperbolic.

m A hyperbolic fixed point x* is called a source and is unstable, when all of A(x*)’s

eigenvalues have positive real parts.

= A hyperbolic fixed point x* is called a sink and it is asymptotically stable, when

all of A(x*)'s eigenvalues have negative real parts.

m Hyperbolic equilibrium solutions can either be asymptotically stable, or unsta-
ble; for a fixed point to be stable without being asymptotically stable, at least

one eigenvalue must have a zero real part — but then the point is nonhyperbolic.

m Nonhyperbolic equilibrium solutions — which are not treated here — can be
stable, asymptotically stable or unstable, but the criteria determining the type

of stability are the subject of more advanced methods.

Table 2.1: Stability of equilibrium solutions in 3D, autonomous and nonlinear dynamical
systems. The set of parameters whose signs form the criteria that determine the stability
of a fixed point x*, are the real parts 7 of the eigenvalues X} of the stability matrix A(x¥)
defined by Eq. 2.8. The first column presents the criterion that determines whether an
equilibrium solution of a system like Sys. 2.1 is hyperbolic or nonhyperbolic. Hyperbolic
fixed points are classified into two finer stability types: Unstable saddles and sources and
asymptotically stable sinks. The criterion determining this stability type of a hyperbolic
equilibrium solution is presented in the last column. For reasons explained in the main
text, the finer classification of nonhyperbolic points into three stability types — stable,
asymptotically stable and unstable — is not presented here.

A())(\*f)i el?gins/z)l’fues Stability Types pf = Re(X})
j j =t
py >0
Unstable Saddle (Zi ; 8)
* . . B
g #0, V) Hyperbolic Source | 7 %0, V]
Asymptotically , . .
Stable Sink | pf <0,
Stabl
ur=0 a .e
for at least one Nonhyperbolic Asymptotically
value of j =1,2,3 Stable
Unstable
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2.4 Lyapunov Spectrum

One of the defining characteristics of chaos is known as sensitive dependence on
initial conditions; any two solutions of a system exhibiting chaos that start arbi-
trarily close to one another, e.g. at the state vectors xp and xo + dxp introduced in
Sec. 2.2, separate exponentially with time. As a consequence of that separation,
small deviations from an intended initial state — an inescapable reality of practi-
cally any application of interest — are exaggerated, oftentimes dramatically, lead-
ing to long-term unpredictability. The quantities used to quantify this sensitive
dependence on initial conditions are called Lyapunov exponents — often collec-
tively referred to as the Lyapunov spectrum — or simply characteristic exponents (as
in Eckmann & Ruelle, 1985). They are named after Aleksandr Mikhailovich Lya-
punov (1857 — 1918), the Russian mathematician who developed the fundamental
theory of stability for dynamical systems (O’Connor & Robertson, n.d.).

A first step toward a definition of the Lyapunov exponents is to express the
stretch ratio'* of the distance between trajectories x(xo; t) and x(xp + 0xq; t)

(Fig. 2.2) at time t to their original distance at time t; as

||0x (xo; t)| Le-(t—to)
2250 U = glelt=to), (2.21)
|60l
where ||-|| denotes the Euclidean vector norm, and L; = L¢(ty, X0, 0xg). Since the

two trajectories start infinitesimally close, i.e. 0xp is arbitrarily small, Eq. 2.9's
nonlinear terms are omitted and 0x = X}(xg) 0xp, which means that Eq. 2.21 can

be written as
|| X¢(x0) O] — plrlt=to)
|| 00|

The stretch ratio in the above form is sometimes also called coefficient of expansion

(2.22)

in the direction of 0xy along trajectory x(xo; t) that passes from point x, at time

to (see e.g. Wiggins, 2003). Solving Eq. 2.22 for L; gives

1 Xi(xo) 0x
L¢(to, X0, 0X0) = _— ln I ]?5(;()0” ol

, (2.23)

which is sometimes called finite Lyapunov exponent, a name that will soon be
justified (see Eq. 2.24).

"In Continuum Mechanics, the ratio of the final length to the respective initial length of a
deforming “material” is called extension ratio, stretch ratio, or simply stretch; when referring to
the undeformed state, the stretch equals 1.
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As will hopefully become intuitively clear in the following, the Lyapunov
exponents are as many as the dimensions of the system, denoted here by L;,
j=1,...,m(=3). The Lyapunov exponent L; = L(xo, 5Xé) in the direction of 5xé
along trajectory x(xo; t) that passes from point xo at any time — notice in Eq. 2.24
below that t, is no longer a dependency — is defined as the limit of L(to, xo, 6xé)
as t — oo, Le.

1 1Xi(x0) 6x)

b= Hhorox) = i g ! 165

L j=1,...m(=3),  (2.24)

provided, of course, that the limit exists. In fact, Oseledec’s multiplicative ergodic
theorem showed that the infinite-time limit in the above definition exists for al-
most all trajectories (Wiggins (2003), Geist et al. (1990) and references therein,
most prominently Oseledets (1968) — also spelled Oseledec, published in Rus-
sian). Note that the superscript j in 5Xé indicates that the Lyapunov spectrum is
calculated in the directions of m(= 3) vectors which, while they can quite literally
be any vectors, can be chosen in a quite effective and intuitive way. The Lyapunov
exponents are conventionally indexed in descending order with repetition (Sprott,
2010), from the least negative to the most negative, as is usually stated in order

to place emphasis on their relative signs, that is,
L>L>...>L,. (2.25)

There is a second approach to the definition of the Lyapunov exponents, that
offers a very intuitive geometric interpretation of these quantities. This approach
is illustrated in Fig. 2.3 and throughly discussed below, following the outline
provided in Geist et al. (1990). It relies on the singular value decomposition of

the fundamental solution matrix X, i.e. a factorisation of the form
X =UFUy , (2.26)

where for X; a real, square matrix, as is the case here, Uy and U are orthogonal ma-
trices whose columns, seen as vectors, form two orthonormal bases {ah} and {&'},
j=1..., m(= 3) respectively. F is the diagonal matrix F = diag (02, o?, Uf)
whose diagonal elements are called singular values of X; and are by definition

non-negative.
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Using only the orthogonality of Uy and U, which means that U;"' = U] and
similarly for U, and the fact that for any two matrices A and B the relation
(AB)T =BT AT holds true, multiplying Eq. 2.26 with its transpose which is
X = (Z/{]-"Z/IOT)T, from the left and from the right, leads to equations

X! X =Uy (F?) Uy (2.27a)
X x =u(F)u'. (2.27b)

The above equations represent a particular type of factorisation of the matrices
on their left hand side which, provided all matrices involved are square and F?
is diagonal — both of which are true in this case, is called eigendecomposition,
or diagonalisation of X X, and X; X/ respectively. The columns of matrices Uy
and U as vectors are eigenvectors of the respective matrices, and the diagonal
elements ((th)2 of F2, the same matrices’ corresponding eigenvalues AL which are
known to be non-negative. Note that according to the last statement, matrices
X! X; and X; X both have the same eigenvalues.

In a similar way, multiplying Eq. 2.26 from the right with U, easily leads to
equation X;Uy = U F which can be expressed in terms of Uy and U's columns —

represented by vectors ﬁ{) and &’ respectively, as
Xeihy=0oltl, j=1,...,m=3). (2.28)

The above equation shows that the action of matrix X; on vectors @i}, transforms
them to vectors &/, but stretched or shrank by a factor ol.

The geometric representation of the Lyapunov exponents is derived from a
setting based on the above observations and illustrated in Fig. 2.3. Consider
the orthonormal basis {0{)} affixed at point xp in Sys. 2.1's state space and an
infinitesimal sphere ¥ of radius € < 1 centred at xp at time tp, whose equation in
vector form is (dxg)? = €. The infinitesimal displacement dxy was introduced in
the beginning of Sec. 2.2 (Fig. 2.2), but in the present context it is best viewed as
just an infinitesimal vector at xp, confined by the equation of X to the surface of
the sphere. If s{J =€ O{J are m(= 3) infinitesimal vectors at xp at time t;, then were

it not a triviality to attribute to a geometric object of highest symmetry such as the

sphere principal semi-axes, one might say that vectors s|, were exactly that. Note

that just as dxg is transformed to dx by matrix &} (linearised version of Eq. 2.9),

s} is transformed to some vector s/, such that s/ = X, s}
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Figure 2.3: Geometric interpretation of the Lyapunov spectrum: When the Lya-
punov exponents are calculated in the direction of (X X;)’s eigenvectors sh,
they express the mean logarithmic expansion (or contraction) rates of the princi-
pal semi-axes of an ellipsoid E : (dx)" (Xt XtT)_1 /% dx =1 that resulted from
the deformation of an infinitesimal sphere ¥ : (0xp)’ = €> when acted upon by
the fundamental solution matrix Xy of Sys. 2.1. All of the quantities indicated in
the figure have been introduced and thoroughly discussed in the main text.

Following the reasoning presented in E. N. Lorenz (1984), it is arqued that at
time t, the infinitesimal sphere ¥ will have transformed under Sys. 2.1's flow ¢;(xo)
to an ellipsoid E centred at x(xp; t), and the following sequence of operations

shows that this is indeed the case:
Sphere I : (dx0)* = € (2.29)
Invertible system 1 2 2
X7 'ox) =¢
Oxo=X;" dx ( ! )

Dot product
—_—

(X7 ox) - (X7 ox) = €

Matrix multiplication

(A" ax) " (X7 ox) = €2

T_rT T
B =5 A, ((5x)T (Xf1)TXt_1 ox = €

(AT)JZ('AA)T (5X)T (XtT)_1 X;1 Ox = 82

“_p—1 g1 _
AB =B AT (5x)T (X, x7) " ox = &

(xan)

— (0x) 2

ox =1 : Ellipsoid E . (2.30)



40 2. THEORETICAL BACKGROUND: NONLINEAR DYNAMICS & CHAOS

Equation 2.30 defines an ellipsoid whose principal semi-axes are in the di-
rections of the eigenvectors of matrix (X, XtT)_1 /€2, and have lengths that are
the reciprocals of the square roots of the same matrix's eigenvalues. Noting that
a matrix and its inverse have the same eigenvectors and reciprocal eigenvalues,
and that multiplying a matrix with a scalar leaves its eigenvectors unaffected and

multiplies its eigenvalues by the same scalar, leads to the following conclusions:

= Matrices (Xt XtT)_1 /e? and (X, XtT) have the same eigenvectors which, accord-

ing to the above discussion are the vectors &/ of matrix U's columns.

m If the eigenvalues of matrix (X, )(tT)_1 /€% are denoted by A~, then the eigenval-
ues of its inverse matrix €2 (X, X7 ) will be 1/A~ and (X, X[)'s A} = 1/(e? X7).

According to the above observations, E’s principal semi-axes are (1/v/A~) &/, or
sﬁﬁf, and remembering that A} = (¢/)?, they become € o/ &/. Now, multiplying
both sides of Eq. 2.28 by € gives equation X; ¢ L“l{) = £ g/ i/ whose left hand side
is equal to s/, and the right hand side is the ellipsoid’s semi-axes found just above,
now shown to be s/ = £ o} &/. In light of this, the relation s/ = X, s}, noted earlier
shows that the action of &} on the infinitesimal sphere’s “principal semi-axes”
transforms them to the principal semi-axes of ellipsoid E which apart from their
orientation are also stretched (or shrank) by a factor U,j.

In order to see how all of the above lead to the geometric interpretation of
the Lyapunov exponents, consider L; in the direction of the infinitesimal vectors
s{), along the trajectory identified by the point xo from which it passes (Eq. 2.24).

The squared coefficient of expansion in this case will be

i 112
| Xa() ShIP

”S/'HZ a{))T (XTT X’) LAI{) = (i\’{))T )‘{ f’{) = )\{ = (Utj)z ' (2.31)
0

which means that the Lyapunov exponents of Eq. 2.24 can now be written as

L; = L(xo, sh) = lim Ing/, j=1,...,m=3). (2.32)

t—o0 — 1o
In this form, i.e. when calculated in the direction of (X" X;)’s eigenvectors s), the
Lyapunov exponents express the mean logarithmic expansion (or contraction) rates
of an ellipsoid’s principal semi-axes (Geist et al.,, 1990), and in a more general
setting, they are global asymptotic measures of the average logarithmic rates of

change — growth or shrinking — of state space volumes in different directions.
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Apart from quantifying the sensitivity to initial conditions and enabling the
detection of chaos, the Lyapunov spectrum also relates to certain statistical prop-
erties of dynamical systems exhibiting chaos, such as the the Lyapunov dimen-
sion of strange attractors (Sprott, 2003). For these reasons, the calculation of
the Lyapunov spectrum has been and still is of special interest to all relevant
studies. However, the same systems that require a numerical solution (Sec. 2.1)
also require a method for the numerical computation of their Lyapunov exponents.
The literature on such numerical methods is vast'” and dates at least back to
the 1970s, with the seminal article by Oseledets (1968) and the method devel-
oped in Benettin et al. (1980a, 1980b) which is considered the standard. The
Lyapunov exponents of the systems presented and discussed in Sec. 3.3 were cal-
culated using the Julia software library for chaos and nonlinear dynamics called
DynamicalSystems.jl (Datseris, 2018), which implements the method proposed in
Benettin et al. (1980b), as presented in Geist et al. (1990).

2.5 Attracting Sets, Attractors & Basins of Attraction

The asymptotically stable equilibrium solutions introduced in Sec. 2.3, also called
sinks, are an example of what is known as an attractor. Informally speaking, an
attractor is a subset of a dynamical system’s state space onto which state space
volumes contract. The set of all ICs that evolve toward the attractor is known as its
basin of attraction. In 3D, an attractor can be an equilibrium point, a limit cycle,
a torus, or a strange attractor (see Table 2.2, Sec. 2.6). Lastly, it is important
to note that the above informal definition of an attractor indicates that attractors
only appear in the state space of dissipative systems (Sprott, 2003).

Attractors actually belong to a more general class of characteristic sets called
attracting sets. In order to help distinquish between the two, it is preferable
to work toward a formal definition of an attractor by first providing one for an
attracting set.

m With the system of ODEs x = f(x) (Sys. 2.1) and its flow ¢(xo) into focus, a
subset A\ of the system’s state space is called an attracting set if it satisfies the
following conditions (Guckenheimer & Holmes, 1983; Wiggins, 2003):

5The interested reader can find a thorough survey of the numerical computation of Lyapunov
exponents in Skokos (2010).
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1. A'is closed and invariant'®.

2. There is some neighbourhood U of A such that for each x € U, ¢(x) € U

for all t > 0, i.e. U maps onto itself under the forward evolution of ¢,, and
Neso (V) = A.
m The basin of attraction or domain B of the attracting set A is the set [ J,_, ¢+(U),

i.e. the set of all points that under the forward evolution of ¢; are captured by
the attracting set (Cvitanovic et al.,, 2020; Guckenheimer & Holmes, 1983).

The motivation for introducing the concept of an attractor on top of that of
an attracting set comes from the importance of being able to describe the set
which state space states fall into as precisely as possible, or more specifically,
as an indecomposable entity. The need for that arises once it is noted that there
is nothing in the definition of an attracting set that prevents it from being a
collection of sets that are attracting in their own right, in which case the original
set is decomposable. An attracting set meets this added requirement when it is

topologically transitive. The definition of topological transitivity is given below.

m A closed invariant set M is topologically transitive if for every pair of open sets
U and V in M, there exists a non-negative time t € R such that ¢,(U)(V # 0.
What this means is that under the forward evolution of ¢, every point in M

eventually comes arbitrarily close to every other point in M (Hirsch et al., 2004;
Wiggins, 2003).

Having provided all definitions prerequisite to that of an attractor, this char-

acteristic set of a dynamical system'’s state space is defined, according to Wiggins
(p- 110 2003), as follows:

m “An attractor is a topologically transitive attracting set”.

2.6 Chaos & Strange or Chaotic Attractors

The introduction of the terms discussed in this section is almost always accompa-
nied by the following “disclaimer”: There is no universally accepted definition of
chaos or strange/chaotic attractors... ". This however, implies that for each of those

terms there exists one or more definitions, with regards to which the Nonlinear

16According to J.C. Sprott's qualitative definition, “a set is invariant if a trajectory that starts
on it remains on it for all time” (p. 56 Sprott, 2003)



2.6. CHAOS & STRANGE OR CHAOTIC ATTRACTORS 43

Dynamics community has not been able to reach a consensus. The reason for this,
apart form it being a multifaceted and complex subject matter, is that depending on
the research topic, every author delves into different aspects of it and oftentimes,
different aspects imply different properties and justifiably so, different definitions.
Furthermore, the latter two terms, namely strange and chaotic attractor, are often
used interchangeably (Sprott, 2003), but not always, which means that one must
stay alert while multisourcing.

Making a clear distinction between different definitions and choosing one over
the other is of no particular interest in the present study, since it does not con-
cern itself with identifying strange/chaotic attractors, or confirming their status as
such. Strange/chaotic attractors however, are the central feature of the technology
presented here, so the need to provide even a rough description of them cannot
possibly be overlooked. For these reasons, the definitions and general material
provided in this subsection aim at offering just enough information to enable the
conceptualisation of those terms.

According to R.L. Devaney (Devaney, 1989, p. 50), a dynamical system with
vector field f : R3 — R3, like Sys. 2.1, is chaotic if

1. It has sensitive dependence on initial conditions (unpredictability).
2. It is topologically transitive (indecomposability).
3. It's periodic orbits are dense in R? (element of reqularity).

The only property of the above that has not been mentioned so far is the density
of periodic points. As a subset of the system’s state space R>, the set of periodic
points P is said to be dense in R3, if its closure P = R3 7.

While the above definition is one of the most technical definitions of chaos,
and certainly one that has sparked many formal discussions — there are quite a
few articles dedicated to various aspects of it — the latter two properties of chaos
it focuses on are not easily established for most systems of interest (Hirsch et
al., 2004; Sprott, 2003). The sensitive dependence on initial conditions, however,
is quantified by the Lyapunov exponents introduced in Sec. 2.4. For this reason
chaos is very often defined using more relaxed sets of properties, which do however,
always include sensitive dependence on initial conditions. An example of this is
the definition given in Sprott (2003, p. 104):

The closure P of set P is the set that includes P itself and all of P's limit points. A limit
point of a set P C R3 is a point x in R? — but not necessarily in P — every neighbourhood of
which contains a point in P other than x (in case x € P).
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m “Chaos is the aperiodic, long-term behavior of a bounded, deterministic system

that exhibits sensitive dependence on initial conditions”.

In this definition a chaotic trajectory needs to be aperiodic, since periodic motion
is of highest order — quite the opposite of chaotic motion, bounded, so that there is
the necessary state space folding'® capable of creating fractals — objects closely
related to chaotic motion (see below), and to have sensitive dependence on initial
conditions, or state space stretching'®, which causes exponential separation of
initially nearby trajectories (Sprott, 2003).

The definitions of an attracting set and an attractor were given in Sec. 2.5.
Strange/chaotic attractors, as their name suggests, are attractors, but endowed
with additional properties. When the distinction between the two terms is impor-
tant, it is generally said that the term strange attractor describes objects with
a particular geometric structure, and the term chaotic attractor objects in which
trajectories exhibit a particular dynamical behaviour (Ditto et al., 1990; Grebogi
et al., 1984). Specifically,

m Strange attractors have fractal structure (Feudel et al., 2006), and

m Chaotic attractors have sensitive dependence on initial conditions (Ditto et al.,
1990; Grebogi et al., 1984).

Even though there are attractors that are both strange and chaotic — in fact, all
attractors used in this study fall into this category — there are also attractors that
are strange but not chaotic and vice versa (Sprott, 2010, and references therein).

Determining whether an attractor is strange or not is most often done via
its fractal dimension Dr, which has a non-integer value when the attractor is

indeed strange. The fractal dimension usually used for this purpose is known as

0
Cap

a parametric family of dimensions called generalised dimensions, with (integer)

the capacity or box-counting dimension D¢, (Farmer et al., 1983), a member of
parameter g. The parameter values of primary interest are 0, 1 and 2; the capacity
dimension corresponds to g = 0, while ¢ = 1 and g = 2 define the information

dimension D) . and correlation dimension D?,, respectively (Feudel et al., 2006).

8The general comment made in Sec. 2.1 about complexity in dynamical systems arising from
nonlinearities can now be partly justified by noting that the presence of nonlinearities in the
deterministic law of a system are necessary for folding to take place in state space (Sprott, 2010).

9A prototypical example of state space stretching and folding is the Smale horseshoe or
horseshoe map (Smale, 1967); a map that produces a fractal set after repeated stretching and
folding in state space.
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Lastly, there is the Kaplan-Yorke or Lyapunov dimension, defined in terms of the

Lyapunov exponents L;, j =1..., m(= 3) (Kaplan & Yorke, 1979) as

Z Li, (2.33)

D, =
o |LD+1 | &

where D is the the largest index j for which 2{21 L; > 0 — which J.C. Sprott calls
the attractor’s topological dimension (Sprott, 2003, p. 121).

For systems with more than two dimensions, it has been conjectured that
the Lyapunov dimension is equal to the information dimension D| , (Farmer et al.,
1983; Frederickson et al., 1983; Kaplan & Yorke, 1979). Note that the generalised

dimensions are ordered in descending order as
DCap > Dlnf > DCorr' (234)

Since D = DY, if D, = D}nf then D > D, which means that the Lyapunov

dimension might be a lower bound for the fractal dimension. Since establishing

Cap’

the “strangeness” of an attractor is of no interest in this study, but calculating the
Lyapunov exponents is, the Lyapunov dimension will be used as an “estimator” of
the fractal dimension, to indicate that the attractors discussed in Sec. 3.3 are in
fact strange.

In the subsection introducing the Lyapunov spectrum (Sec. 2.4), it was stated
and demonstrated geometrically (Fig. 2.3) that the Lyapunov exponents L;, j =
1,...,m(= 3) are measures of the average growth, or shrinking, of state space
volumes, in different directions. More importantly, it was also mentioned that
the Lyapunov exponents quantify the sensitive dependence on initial conditions,
thus enabling the detection of chaos. What this latter statement implies, without
expressly stating it, is that for exponential separation of nearby trajectories to
take place in any direction, at least one of the characteristic exponents must be
positive (see Eqs. 2.22 — 2.24). Due to the convention that puts L; in descend-
ing order (Eq. 2.25), that one Lyapunov exponent will necessarily be L;, which
is why it was given the “special” name largest or maximal Lyapunov exponent.
Since, based on the definition given above, identifying a chaotic attractor means
establishing sensitive dependence on initial conditions, if upon calculation of the
Lyapunov spectrum the maximal Lyapunov exponent is positive, the attractor is

deemed chaotic.
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Before closing this section on Nonlinear Dynamics and Chaos, it might be con-
structive to list the type of attractors a dissipative dynamical system can exhibit in
3D, especially as they relate to the signs of the Lyapunov exponents. J.C. Sprott
did that in a very interesting way in (Sprott, 2010): The properties of the Lya-
punov spectrum in 3D impose certain rules on the signs the three characteristic
exponents can have, which limit them to four possible combinations. Each of those
combinations corresponds to a different type of attractor. The properties of the

Lyapunov spectrum in 3D are the following:

m |f the trajectory is not a fixed point (stable, since it is an attractor),

1. The Lyapunov exponents cannot all be negative — they are for the fixed
point. This means that L; > 0.

2. At least one Lyapunov exponent must be zero (Haken, 1983).

m The sum of the Lyapunov exponents L;, j = 1,2,3 of a dissipative system must

be negative’’. This means that L3 < 0.

The four allowed combinations are given in Table 2.2, paired with the name of
the attractor they correspond to and the type of motion taking place in them. The
type of motion named quasiperiodic refers to trajectories that consist of two — in
the 3D case — independent periodic motions, with incommensurate frequencies,
i.e. frequencies whose ratio is an irrational number (Sprott, 2010). To indicate
the presence of two incommensurate frequencies, this type of attractor is called
a 2-torus. A quasiperiodic trajectory winds around the surface of the torus and
without ever intersecting itself, fills it completely. An attracting fixed point has
three negative exponents. A limit cycle has a zero maximal exponent — it corre-
sponds to the direction of the flow parallel to the cycle — and the other two are
negative. A 2-torus has its two largest exponents equal to zero — they correspond
to the two independent periodic motions — “one the short way around the torus,
an the other the long way” (Sprott, 2010, p. 19) — and the last one negative. And
finally, a chaotic attractor has a positive maximal exponent, one equal to zero and

a negative one.

20A heuristic argument for that links the rate of volume change dV/dt — known to be negative
for a dissipative system (Sec. 2.2, Eq. 2.13) - to }_; L, by noting that the volume of an ellipsoid is

proportional to the product of its semi-axes, or, using the analysis made in Sec. 2.4, V |—]j a{.

The Lyapunov exponents are given by Eq. 2.32, which implies that L; ocn Utj and ultimately that
V should contract as e>i%" and dV//dt o< V 2L
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Table 2.2: Types of attractors in 3D dissipative systems, identified by the signs of
their Lyapunov exponents: The left column gives the combination of signs of the three
Lyapunov exponents — or their value, when it is zero — based on the properties of the
Lyapunov spectrum discussed in the main text. The second column lists the names
of the attractors based on the combination they correspond to, and the third column
specifies the type of motion associated with each of the attractors.

Lyapunov exponents Attractor Name | Type of Motion

— — — Fixed Point Stationary
0 — — Limit Cycle Periodic

0 0 — 2-Torus Quasiperiodic
+ 0 — Chaotic Chaotic

2.7 Chaotic Synchronisation & Homogeneous Driving

Synchronisation is a universal phenomenon observed in a wide variety of non-
linear, dissipative dynamical systems. Synchronisation generally refers to the
adjustment of rhythms occurring when two self-oscillating systems, i.e. systems
capable of producing their own rhythms without any external forcing, interact
with one another (Pikovsky et al., 20071). One of the first class of chaotic systems
shown to have the ability to synchronise, were actually subsystems forming com-
posite systems of higher dimensionality, known as drive decomposable systems.
Homogeneously driven systems are a subset of the latter class of systems. The
subsystems of homogeneously driven compound systems, exhibit one of the sim-
plest types of synchronisation, which is the main topic of the present subsection.

The interaction between two (sub)systems that (a) are unidirectionally coupled
by one or more of their components, meaning that the coupling components allow
one system to affect, or drive the other, without itself being affected by the driven
system, and (b) the driven system is identical to the driving system's components
not involved in the coupling, is known as homogeneous driving (Pecora & Carroll,
1991). The driving system is called the drive (Pecora & Carroll, 1990), or, de-
pending on the context, transmitter (Cuomo, 1994) or master (see Ramirez et al,,
2020, and references therein), the driven system is called the response, receiver, or
slave respectively, and the pair of them forms the homogeneously driven compound

system mentioned above.
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Pecora and Carroll (1991) mathematically described the above concepts by
introducing a formulation which is best understood using a dynamical system of
known, specific dimensions. Let x = f(x) be an m-dimensional autonomous dy-
namical system like Sys. 2.1, after omitting the parameter vector ps for notational
simplicity. If m = 3, which is the dimensions of the system implemented in this
thesis (Fig. 2.1), then consider Sys. 2.1 in its expanded form of Sys. 2.2, repeated

here for convenience.

The system formed by duplicating one, or two of the above equations, say the
first and the third, and appending them to the above system after some change in

notation whose purpose will be become clear below, is

=P x% x) (2.35)

This is an (m + 2)-dimensional compound system, whose subsystems are unidirec-
tionally coupled by the x? component, which allows the top subsystem to drive the
bottom subsystem, without being affected by its X' and %3 components. Moreover,
the bottom subsystem (response) is identical to the driving subsystem’s compo-

nents x'

and x3, which are not involved in the coupling. Therefore, Sys. 2.35,
is a homogeneously driven, and drive decomposable system. Note, however, that
the above construction of a drive decomposable system cannot be applied on any
system like Sys. 2.1, since not all vector field components f' depend on all state
variables, which means that certain components cannot always drive the dupli-
cates of others. This points will be made clear in Subsec. 3.3.7, where the Lorenz

system will be used as the basis for homogeneously driven composite systems.
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Pecora and Carroll (1990) showed that, when the response subsystem of a drive
decomposable compound system is stable, the two subsystems will synchronise.
The stability of the response subsystem is confirmed when all of its Lyapunov
exponents (Sec. 2.4), which in this case are called partial or conditional Lyapunov
exponents, are negative. Synchronisation, in this context, means that starting

" and %> components of the

from different ICs, after a certain period of time, the X
response subsystem will coincide with the respective components of the drive. The

above concepts will be further illucidated in Subsec. 3.3.7.
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3

Structural Elements of the NLCode

3.1 Arced Circular Frame

The 2D pattern of the NLCode is enclosed in an arced circular frame which defines
the functional area of the feature. As Fig. 3.1 suggests, this frame can, in principle,
consist of any number n, of arcs. The frame's arcs begin with a certain width —
the same for all arcs — which increases along the arcs such that each successive

arc, except for the first one, ends wider than the one preceding it.
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(a) 4-arced frame starting thin (b) 6-arced frame starting thick (c) 12-arced frame starting thin
(6ry =1073) at 0 rad angle.  (¢ry = 1072) at /6 rad angle. (74 = 1073) at O rad angle.

Figure 3.1: NLCode’s arced circular frame for three different sets of parameters. The
complete set of parameters that specify the frame is given in Table 3.1 at the end of this
section, and is illustrated in Fig. 3.2. In the frames shown here, the parameters varied
are the number of arcs na, the polar angle 6] .. at which the first arc begins, the angles
64 and Bcap spanned by a single arc and the blank space separating two successive
arcs respectively, the thickness factor ¢y of the plotted lines, and the width of the end
of the last arc Wi4. All these quantities are discussed in detail in the main text.

The two geometrical components of the NLCode, i.e. the 2D encoded pattern
in the center of the feature and the arced circular frame placed at a certain radial
distance from the pattern, define three separate areas on the NLCode (see Fig. 3.2).

Specifically, if the outer radius of the entire feature is denoted by Ry, then let
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Bcap
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d+0+3A

d+0+2A
< 2Router

NLC
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Figure 3.2: Detailed view of the arced circular frame’s structure. Apart from in-
troducing the parameters involved in the specification of the arced frame (also see
Table 3.1), this illustration aims to highlight the technical aspects of the frame’s de-
sign and provide visual aid in the clarification of certain implications involved in its
creation using a computer software. For this purpose, line widths, circular areas and
other features of the frame are presented in disproportion to one another and greatly
exaggerated in size. In this figure one can see the three areas of the NLCode, namely
the central area defined by R;pner which contains the 2D encoded pattern (inner green
dashed circle), the inner quiet area of width W,pa, and separated from the latter via
a larger green dashed circle, the outer ring of width Wy a, enclosed within a circle
of radius R, ter Which contains the arcs. The scheme for the determination of the
widths at the beginning d and the end d + 0 + (i — 1) A of the i-th arc is indicated
around the circumference of the frame in red. In this particular instance the first arc

1

starts at zero polar angle 6;,;

¢ and spans an angle of 64 rad, followed by the blank
space that spans Ocap rad and separates the first from the second arc. The inner
edges of the frame’s arcs are plotted using the parametric equations of a circle given
by Egs. 3.4, with variable radius r = r(0) (Eq. 3.5). Lastly, the plot range Sgﬁﬁ is
defined by Eq. 3.10, i.e. with an added term dependent on the thickness ngt of the
lines drawn, in order to prevent erroneous clippings caused by the finiteness of the

width of those lines (see main text for more details).

3. STRUCTURAL ELEMENTS OF THE NLCODE
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m W4 be the width of the outer ring”' occupied by the frame, i.e. the width of the

end of the last arc of the frame which is also the widest,

® Wpa the width of the ring defining the inner quiet area of the NLCode, i.e. the
blank space separating the frame and the encoded pattern, which ensures that

during the decoding of the NLCode one is not mistaken for the other, and

8 Riner the inner radius of the disc containing the nonlinear pattern.

The last three quantities W4, Wjpa and Riner can now be defined in terms of

R,uter as follows:

WLA = fLA Router (316)
Wioa = fioa Router (3.1b)
R[nner = finner Router ’ (31C)

with the non-zero fi4 < 1, fipa < 1 and fi,e, < 1 representing the fraction
of Ryuter €ach of the three quantities is defined as. It becomes obvious upon a
quick inspection of Fig. 3.2 that W4 + Wioa + Rinner = Router Which leads to the
relation
fia+ fioa + fipner = 1. (3:2)
The beginnings and the endings of the arcs are determined as follows: The
width all arcs begin with is denoted by d. The end of each arc is then increased
by 0 > 0 ensuring that each arc will end wider than it began. This makes the
end of every arc equal to d + 8. By adding (i — 1)A to the latter sum, with
i =1,...,n,4 representing the i-th arc, it is ensured that, for some suitable value
of parameter A — to be determined below, each successive arc except for the first
one will end wider than the one preceding it, according to the requirement earlier
specified. Figure 3.2 complements the above description by indicating the terms
and quantities just introduced. From all the above, the width at the end of the

last arc W4 is seen to also be given as

Wia=d+6+(ns—T1)A. (33)

The inner edges of the frame’s arcs are plotted using the parametric equations
of a circle centred at (cy, ¢,), with a variable (decreasing) radius r = r(6'), that s,
x'= ¢, + r(6") cos 0"

) . . (3-4)
y'=c, +r(0)sin0, i=1,...,n4.

2In mathematical terms, the region between two concentric circles, here referred to as ring, is
called an annulus, which in Latin means little ring.
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The polar angle 6" in the above equations takes values from an interval
(6,1, 6..] which is different for each arc, but such that 6, — 6., = 6,4 for all
i=1,...,na where 6, is the polar angle spanned by a single arc. Consider-
ing that the variable radius r forming the inner edge of the i-th arc must be

r(6: ) = Router —[d+ 0+ (i — 1) A]

init

) = Ryuter — d at the arc’s beginning and r(6!

fin
at its ending, one easily deduces that
o+ (i—1)A

r(ei) = Router —d QA

(6" = Binie) (3-5)

Another element of the arced frame, present through its absence of colour, is
the space between the end of each arc and the beginning of the one succeeding it,
at distance R, from the center, which will be referred to as gap (see Fig. 3.2).
The gaps are initially defined as circular arcs whose length is a fraction/multiple
of Wia, te. as fgap Wia, where foap < 1. However, the quantity of immediate use

is the angle B;4p spanned by the gaps, which at a radius Ry, is
QCAP = fCAP WLA/Router . (36)

Note that, just as is the case for the factors f;4, fjpa and fipner, the number of arcs

na and the angles 84 and B¢ap are not independent from one another, since
na(6a + Ocap) = 2. (3.7)

After specifying the number of arcs ny, it is preferable to choose G¢ap and let 64
be determined through Eq. 3.7, since the separation of the arcs plays a far more
important role in the functionality of the frame than the span of the arcs.

Before moving on to a brief study of the range of values of the parameters 0
and A, it might be beneficial to discuss a few important factors involved in the
creation of the frame, which relate to certain plotting specifications and quite
possibly the particular software used to render the final image.

The software used to create and render NLCode samples is Mathematica
12.3.1.0 Student Edition. According to its documentation, the thickness of the
lines drawn with Mathematica can be specified in one of two ways: (i) In an ab-
solute manner, independent of the size of the final image, using units of printer’s
points, and (ii) As a fraction ¢7y of the plot range SHLC along the horizontal
axis of the plot. Since resizing an image does not change the plot range of the

graph but rather “stretches” or “shrinks” it to fit the new size, the line width



3.1. ARCED CIRCULAR FRAME 57

must change in order to remain the same fraction of the “stretched” (“shrank”)
plot range. This second approach is more suitable for most applications, and is
the one used throughout this study, exactly because it allows the thickness LL!!.
of the lines drawn to be scaled up or down following the resizing of the image.

Based on the above description, L} is defined as

Lptor = €74 Spio; - (3-8)

» A comment on notation

The rather heavy notation used for the line width L]/} and the plot range SHL¢

above, is due to the fact that these two quantities, as well as a few more that will
appear in later chapters, can be expressed with respect to different coordinate
systems, or refer to different processes. This creates the need for a comprehen-
sive notation that enables all relevant distinctions. The coordinates all quantities
introduced in the present section will be called plot coordinates (Sec. 3.2), hence
the Plot subscript. The subscript Print will be used in Sec. 4.4 to indicate “in-
stances” of the same quantities associated with the NLCode’s printed version. The
letter el in different fonts, e.q. L, ¢, indicated by the super/subscript TH, is used
to denote various instances of the thickness of the lines drawn, and the letter
S stands for size and usually refers to the size of the entire NLCode along the
horizontal or vertical dimension (its size is the same in both dimensions). SpLS in
this particular instance is referred to as the plot range along the horizontal axis

of the plot, but it is also the size of the NLCode expressed in plot coordinates. <

There is one intrinsic artifact — if it can be called that — related to plotting
lines of finite width. In the case of a circle, for example, one might set the radius
equal to a dimensionless 1, but if the line width is, say 0.05, then the line forming
the circle will extend by 0.05/2 inwards and outwards of 1 in most software. This
can be seen in Fig. 3.2 where the line widths have been exaggerated in order
to illustrate this point. As a result, in order to avoid erroneous clippings of the
NLCode’s frame, one must account for this artifact when specifying the plot range.

This is achieved by letting
Sﬁl@? =2 Router + fPR L;ﬁt ’ (39)

where fpg > 1 is a factor allowing the adjustment of the plot margins. By substi-
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tuting L5 from Eq. 3.8 into Eq. 3.9 one can obtain a relationship for SPLC that

. TH .
does not involve L, ie.

2R
NLC outer
Spif = : N
1—1tpr¥rH (310)

SAEC is indeed the plot range of the NLCode, in the literal sense of the term.

However, when plot ranges are given as arguments to plotting functions, they are
given in the form of intervals along each dimension, that is, for a 2D plot the
plot range would be specified as [(Xmin, Xmax)s (Ymin: Ymax)] Which, in the case of
the NLCode means that S5 = Xpax — Xmin(= Ymax — Ymin). Given that the arced

circular frame is centred at (c,, ¢;), a plot range specification in the above form

Shiat Shiat Shiat Shiat
[(CX— > ,cX+T N 5 ,Cy—I-T . (3.11)

would be

The finiteness of the lines drawn obviously affects the width of the arcs as well.
This means that, by giving d some specific value, the i-th arc actually plotted
begins with width d + L}}!. and ends with width d + 0+ (i—1) A+ L5 (Fig. 3.2).
Setting d to zero remedies the situation for the beginnings of the arcs, but does
little for their endings. Similar, but not as profound — or as easily quantifiable, is
the effect on the gaps separating the arcs. Factor f;ap can be used here to make
the appropriate adjustments. In any case, as long as the effects of the finiteness of
the plotted lines is acknowledged and taken into consideration, there is no need
to hardwire them into the equations (other than Eq. 3.9), a measure which would
make things needlessly complicated and prone to errors.

After introducing all parameters and definitions pertinent to the arced circular
frame of the NLCode, the construction of a frame that is visually as well as func-
tionally successful depends on the appropriate specification of 0 and A which are
related via Eq. 3.3. Parameter A's lower bound can — arbitrarily yet reasonably,
see Fig. 3.2 — be set to

d+ 0

Apin = ——. 312
. (312)

Note that the above limit implies that it is best to specify 0 before A. Solving

Eq. 3.3 for 4 and using the fact that 8 > 0, leads to an “exclusive maximum” for A

ASXC — WLA— d
nA—’I

max

>A. (3.13)
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The “exclusive minimum”?? — value of J is known to be
5 —0< 3. (3.14)

A maximum value for 0 is obtained by first noting that, for prespecified W4
and nya, if 0 = Opeyx in Eq. 3.3, then A must equal A,,. Since Ay, through
Eq. 3.12, is determined by whatever value d is given, which in this case is 9,4y,
Apin = (d + 0pax)/2. The maximum value of J is obtained after these substitutions

into Eq. 3.3, which allow it to be solved for 0,4y giving

2 Wia

5ma)(:—_
na+1

(3.15)

Returning to a comment made earlier — that it is best to specify 0 before A —
and as an example, a choice that is simple and seems to work quite well is to set
0 = Opmax and then calculate A using Eq. 3.3, L.e.

_  Wia—d—-9

A(9) Py

(3.16)

Table 3.1 lists all the parameters involved in the specification of the arced
circular frame of the NLCode. The order in which they are listed is that in which
they need to be calculated in order to specify and plot the frame. Some of the
values given, such as the center (c,, ¢,) = (0, 0) and the outer radius R,,ser = 1 of
the frame, are fixed values in the sense that other features of the NLCode have been
thought through and designed around them (see Subsec. 3.2.1). With the single
exception of the thickness factor ¢74, the rest of them are reasonable suggestions
that have been confirmed through testing. The thickness factor and its suggested
range of values are further discussed and partially derived respectively, as part
of a parametric study regarding the operating window of the NLCode scheme
(Sec. 4.4).

2’The term exclusive is used here somewhat abusively to indicate characteristic values — “ex-
clusive minimum/maximum” that despite being set as lower/upper bounds of a parameter, remain
themselves unattainable by that parameter.
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Table 3.1: Parameters involved in the specification of the arced circular frame of
the NLCode, divided in two columns. The independent parameters are given with
one or more of the values that have been seen to render a functional frame and the
dependent parameters are accompanied by the equations needed to calculate them.
No dependent parameter is listed in the right column unless all of its dependencies
have been first specified in the left column. The range of suggested values for the
thickness factor €T given here, is derived in Sec. 4.4.

Independent Parameters Dependent Parameters
(cx ¢y) = (0,0) (x, y") arc boundaries, Eqs. 3.4
Router = 1
fia=1/6 Wia =1J6, Eq. 3.1a
floa=1/6 Wioa = 116, Eq. 3.1b
finner = 2/3, Eq. 3.2
Rinner = 213, Eq. 3.1c
Or1y=1073 (up to 1072)
frrR=>5
SpEC =2.01, Eq. 3.10
LLH. =2.01x 1073, Eq. 3.8
na=4
d=0.0
Omax = 1/15, Eq. 3.15
0 = Onax,
A = A(0), Eq. 3.16
6l = 0 (up to 71/2)

fGAP = 3/4 QGAP = 1/8, EC| 3.6
04 = (4 —1)/8, Eq.37
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3.2 Geometry of the Digital NLCode

The three main components of the NLCode are listed below.

m The arced circular frame, which has already been presented in detail in Sec. 3.1.

m The nonlinear pattern of the feature, whose creation from a generating system
is the subject of Sec. 3.3.

m The colour profile of the NLCode, which is thoroughly discussed in Sec. 3.4.

The geometry of the NLCode is mostly an attribute of the first two of its compo-
nents, expressed in their geometrical properties. The equations that represent the
circular frame and the system of ODEs that generates the NLCode pattern are
each expressed with respect to a certain frame of reference, and the two are not
the same, not even in dimensions; the frame is 2D, while the dynamical system’s
state space is 3D. Moreover, when all is said and done and a digital NLCode
is created and ready for use, it will be in the form of a digital image, which is
accessed and navigated using pixel positions.

The 2D reference frame of the NLCode’s arced circular frame will be referred
to as plot coordinate system, due to the fact that the circular frame sets up the
coordinate system for the plotting of the entire NLCode (Subsec. 3.2.1). The
coordinates in the 3D reference frame of the dynamical system will be called
system coordinates, and the coordinates of the 2D reference frame with respect to
which digital images are processed pixel coordinates, both for obvious reasons.

In order to discuss the transformation between plot coordinates in 2D and
the system coordinates in 3D without conflicting issues, one must first eliminate
the dimensional mismatch between them. To that end, one can rather abstractly
consider the system of plot coordinates as initially being a 3D system — and the
circular frame of the NLCode a spherical shell, if one must — and then consider a
2D projection that creates the 2D plot coordinates and circular frame, in the same
way as a 2D projection creates the NLcode’s nonlinear pattern from the original
3D attractor. As a consequence of this mental exercise in rigour’s honour, any
reference to the plot coordinate system from this point onward will be accompanied
by an explicit declaration of the dimensions implied, except in situations where
the context allows no ambiguity.

As will be seen in Subsec. 3.2.1, the transformation of system coordinates to 3D

plot coordinates is very important for the systematic development of the NLCode,
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and involves scaling and subsequently translating the system coordinates. In
Chapter 5 introducing the NLCode Reader, it will also become clear that the
ability to transform back and forth between 2D plot and pixel coordinates is so
crucial to the decoding of the NLCode, that it actually dictated most aspects of

the feature’s design. This transformation will be presented in Subsec. 3.2.2.

3.2.1 Variable Transformation: System to Plot Coordinates

In many practical applications dealing with dynamical systems, it is often conve-
nient, or necessary, to perform a transformation of variables in order to express the
system of ODEs that describes the deterministic rule of the dynamical system, in
terms of a new set of state variables. The new state variables will usually take val-
ues from a range more suited to the particular application. As an example consider
an electronic implementation of Sys. 2.1, for a specific f and known ps. The dy-
namic range of the system variables, which in this case represent circuit voltages,
cannot exceed the power supply limits?>. While in these situations it is usually
sufficient to scale the system, for the application presented here it is required that
the system be translated as well. The reasons for that are explained below.

The nonlinear pattern at the center of an NLCode is a strange and chaotic
attractor like those discussed in Sec. 2.6. This thesis will present two different
dynamical systems in the form of Sys. 2.1, whose attractor properties make them
suitable for use in the creation of NLCode patterns. This is done in order to
show that the NLCode scheme relies on certain general properties shared by
many chaotic attractors, and can therefore perform equally well while displaying
a variety of interesting looking patterns. The first system is discussed in Sec. 3.3
and, in order not to disrupt the flow of this presentation by reporting results of the
same nature twice, the study of the second system is provided in the Appendix.
Having a “library” of attractors to choose from, creates one issue: No two systems
will ever exhibit an attractor of the same scale and at the same location in state
space. This means that in order for the NLCode to be developed and applied
in a systematic way, all available attractors must be brought to the same size
and location. One function of the arced circular frame is to provide an appropriate

coordinate system with respect to which an attractor can be scaled and translated.

23Examples that also relate to the present work include (Cuomo & Oppenheim, 1993; Strogatz,
1994).
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The general idea behind the scaling and translation applied to Sys. 2.1 is to
have the entire 3D pattern, e.g. the Lorenz attractor shown in Fig. 2.1 (also see
footnote 8), centred around a particular point in state space — the 3D version
c=(c' % )T =(0,0,0)" of the circular frame’s center (cy, ¢,) = (0, 0), at a size
just large or small enough to fit within a sphere of radius Rj,,er, which is no
other than the radius of the central area of the NLCode dedicated to the encoded
pattern (see Table 3.1, Sec. 3.1).

Since the system is going to be subjected to two successive transformations,
it is natural to wonder whether the order in which these transformations are
performed matters or not. Before attempting to answer this question, one should
bear in mind that, in general, the order of translation and scaling (and rotation,
for that matter) of 3D objects does make a difference to the outcome of the entire
operation as a whole. In this particular situation, if one were to first translate the
3D pattern’s original center to the new center ¢ and then scale it according to
some prescription, one would find that the subsequent scaling had displaced the
center of the pattern away from its originally intended position, which is point c.
However, if the scaling is performed first, one need only mind that the subsequent
translation moves the pattern’s new (scaled) center — instead of its original center —
to its intended position, which again is point ¢. Based on the above reasoning,
every system implemented in the present work will first be scaled and then have
its scaled attractor’s center’® translated to the final point c.

The system worked upon almost exclusively throughout this thesis is the fully
transformed system, so it is preferable to reserve x(t) = (x'(t), x%(t), x>(t)) " for this

system'’s state vector and assume that the original, untransformed system is

X =¢(psix). (3.17)
where y = x(t) and T denotes the time before any transformation of variables
takes place (the scaling transformation can, optionally, change the time variable
as well). The scaled system will be denoted by X = F(ps; X), where X = X(t),
and the scaled and translated system by x = f(ps; x), where x = x(t).

In order to formulate the two transformations in a concise and uniform way,
all vectors and matrices will be extended in dimensions by 2 — just for the cal-
culations related to this transformation. This is done in two steps: In the first

step the originally m-dimensional state vectors x, X and x are added the extra

24The center of an attractor like the Lorenz attractor shown in Fig. 2.1 is defined in Par. 3.2.1.1.
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dimension of time and become x(7) = (x', x% x>, 1), X(t) = (X", X%, X3, 1)7,
and x(t) = (x',x%, x>, )T respectively. In the second step the same vectors are
expressed in homogeneous coordinates (see e.g. Mortenson, 1999) and become
x(t) =" % 3 o )T X)) = (XN, X2, X3, 6,17, and x(t) = (x', x%, X3, 6, 1)T
respectively.

In the formulation of homogeneous coordinates, the scaling transformation is

represented by the scaling matrix S = diag(S', S?, S, S, 1) and reads

X' S0 0 0 O X!
X? 0 S2 0 00 N
X=8Sxy=| X2 | = 0 0 S 00 x> | (3.18)
t 0O 0 0 S"O0 T
1 0O 0 0 0 1 1
where S/, j=1,..., m(= 3) are the spatial scaling parameters and S' the tempo-

ral scaling parameter such that t = S* 7. The method for calculating the spatial
scaling parameters is presented in Par. 3.2.1.1. Note that the requirement that
the attractor is scaled simply to fit inside a sphere of a certain radius, implic-
itly assumes that this scaling is uniform, or, in other words, that the aspect ratio
of the pattern is maintained. What this means is that the three spatial scaling

parameters should be the same, i.e.
S'=52=5"=1/s, (3.19)

where the inverted S, if anything, is a choice for intuition which may become clear
in later paragraphs (Subsec. 3.3.2 and Sec. A.2). The temporal scaling parameter
S* will be set equal to one, that is, S* = 1, throughout this thesis.

The subsequent translation transformation is represented by the translation

matrix 7 and reads

X! 1000 T X'
x? 0100 T2 X?
x=TX=|x |=]0010T° X (3.20)
t 0001 T t
1 0 000 1 1
where T/, j =1,..., m(= 3) are the spatial translation parameters and T' the tem-

poral translation parameter. The latter is always assumed to be zero, i.e. T' =0,
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because the dynamical systems treated here are autonomous and a translation
in time is not expected to make a difference. The spatial translation parameters
are calculated as follows: If x. = (x/!, x? x2,0,1)" is the original center of the
3D pattern, then after the scaling its new center will be, according to Eq. 3.18,
X. =S x.. With this in mind for later use, the translation of a pattern centred

around X, to the new center c is expressed by
x=X+(c— X)), (3.21)

where ¢ = (c',¢?,¢%,0,1)7 and X, = (X!, X2, X3,0,1)T. Comparing the above
equation with Eq. 3.20 leads to the conclusion that the spatial translation param-

eters are
Ti=cd—-Syl, j=1,...,m=3). (3.22)

The one-step transformation that achieves the initial goal set is found by
substituting X from Eq. 3.18 into Eq. 3.20. This gives

x! sST0 0 0 T !

X
x? 0 S 0 0 T? N
x=TSx=| x> | = 0 0 S o0 T3 x> |- (3.23)
t 0O 0 0 Ss"T! T
1 0O 0 0 0 1 1

Equivalently, if X is substituted into Eq. 3.21, the one-step transformation is

expressed in the concise form
x=8x+(c—Sx.). (3.24)

In order for this transformation to be complete it needs to be differentiated
with respect to time, so that it can be applied to both sides of a system of ODEs
such as Sys. 2.1. By noting once more that X = X(t) while x = x(7), Eq. 3.18 is

differentiated with respect to time t giving

1

X S SX. (3.25)

where X = dX/dt = (X', X2,X3,1,0)7 and x = dx/dt = (x", x% x°,1,0)7.
Similarly, differentiating Eq. 3.20 (or Eq. 3.21) with respect to time t gives

x=X, (3.26)
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so that the overall transformation for the time derivatives is
. 1 ..
X = i Sx. (3.27)

Note that solving Eq. 3.24 and Eq. 3.27 for ¥ and x respectively is quite easy in
this case, since the inverse of scaling matrix S is simply a new diagonal matrix

whose non-zero elements are the reciprocals of the original matrix’s corresponding
elements, i.e. S~' = diag(1/S',1/5%,1/S3,1/S") = diag(S, S, S, 1/SY).

3.21.1 Scaling & Translation Specifications

Having introduced and thoroughly discussed the NLCode's arced circular frame in
Sec. 3.1, and in anticipation of applying to the dynamical systems of Sec. 3.3 the
transformation from system to 3D plot coordinates just discussed, it is necessary
to introduce the simple methods used to calculate the center x. of the 3D attractor
exhibited by the original, untransformed, system x = @(ps; x) (Eq. 3.17), as well
as the elements of the scaling matrix S which, after the additional requirement
that the aspect ratio of the pattern be maintained — Eq. 3.19, are reduced to the
single parameter S.

As already mentioned in Sec. 2.1, the numerical solution of a system of 1st
order ODEs is a sequence {x,}, n =0,1,..., N —1 of N points in state space.
This is what is visualised in the 3D plot of Fig. 2.1, and this is what has almost
interchangeably been referred to as the system’s attractor, the NLCode’s nonlinear
pattern, or simply the pattern. The center of this pattern is a geometrical concept
subject to the definition ascribed to it, a fact that leaves one with a few options. For
example, the pattern’s center can be defined as the mid-range (Xmax + Xmax)/2 of
the sequence, or — and this is the option taken here — as the sequence’s arithmetic

mean, or average defined as

z

—1

1
— ) 2
Xe = : Xn (3.28)

Il
o

Estimating the center of a particular system’s attractor is done here by producing
via the RK4 scheme a large sequence of points — anywhere from N = 100, 000 to
500, 000 depending on the system (see Sec. 3.3) — and then apply Eq. 3.28 to it.
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The scaling parameter S is determined by first defining the farthest point x;
of sequence {x,} from its center x., and then demanding that the two points’

scaled versions Xy and X, respectively are at distance Rj,,.,, that is,
| Xr — Xc| = Rinner - (3.29)

X; and X, are given from Eq. 3.18 after substituting S/, j = 1,2, 3 with 1/S from
Eq. 3.19. Letting X; = (1/S) xr, Xc = (1/S) x. and then solving Eq. 3.29 for S
leads to

_ Ixr — x|
S= R (3.30)

Note that x; is the farthest point from the center . strictly in 3D and that its
projection on any of the 2D planes x'x?, x'x>, and x?x> will generally not be
the farthest from the center’s respective projection. This, however, does not affect
the construction of the frame which is centred around (c,, ¢,) and has radius Ri;,e,
irrespective of the projection being used and the relative placement of x; in that

projection. This point is demonstrated in Sec. 3.3 (Figs. 3.5 and A.2).

3.2.2 Variable Transformation: Plot to Pixel Coordinates

A digital image is a representation of a picture as a 2D array of values that
correspond to colours. The elements of the array are called pixels and they are
arranged in it just like the elements of a 2 x 2 matrix; in rows numbered from top
to bottom, and in columns numbered from left to right. A pixel of the ith row and
the jth column of an image is identified by the pair of indices (i, j). These two
indices are also the pixel coordinates treated in this subsection. Figure 3.3 shows
the NLCode’s frame — a very coarse raster image of it for illustration purposes —
centred at the origin of the 2D plot coordinate system, overlaid with the axes of
the pixel coordinate system whose origin is at the top-left corner of the figure.
After the first variable transformation — from system to 3D plot coordinates —
all quantities characterising the geometry of the NLCode are expressed in plot
coordinates (3D or 2D projected). However, this coordinate system belongs to the
back-end of the feature. On the front-end, a finished NLCode is a digital image
whose pixel locations are expressed in pixel coordinates. Any process hoping to
utilise the rich dynamics of even a 2D projection of a chaotic attractor, which is

exactly what the NLCode Reader does, will have to be able to transform back
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and forth between 2D plot and pixel coordinates. Establishing the transformation
between these two coordinate systems is the second, but probably the most impor-
tant function of the arced circular frame. The method used for the definition of a
unique transformation between plot and pixel coordinates is called least squares

adjustment, and its following description is mostly based on Wolf et al. (2014).

Figure 3.3: Transformation between plot and pixel coordinates, based on the arcs of
NLCode’s circular frame. The plot coordinate system is shown in black and has its
origin at the center of the frame. The pixel coordinate system is shown in light blue
and its origin is at the top-left corner of the figure. The arced circular frame shown
has na = 4 arcs and is very coarsely rasterised for illustration purposes. Its 3nx
corners are shown as colour-coded pixels, with the four colours red, green, magenta,
and cyan, each used on the corners of a single arc. The transformation between
the two coordinate systems is obtained via the method of least squares adjustment
presented in this subsection. This method makes use of a redundancy in points
whose coordinates are known in both systems. By design, in the case of the NLCode
these points are the corners of the frame’s arcs, which can be located on a digital
photograph of the NLCode using a corner detection algorithm (Subsec. 5.2.3).

Generally speaking, a transformation of variables is defined by a set of param-
eters, whose size n depends on the dimensions of the space which the transforma-

tion takes place in, and the type of the transformation. A quick inspection of the
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two coordinate systems in Fig. 3.3 shows that the overall transformation between
them, from either of the two systems to the other, should consist of a scaling,
followed by a rotation of +5/2 rad about the origin, and finally a translation to
bring the two origins together. This transformation belongs to a particular class
of transformations called affine transformations. Assuming anisotropic scaling, i.e.
a different scaling parameter in each dimension, this transformation introduces
one scaling parameter per dimension, denoted by S’ and S? as usual. The rota-
tion transformation adds the rotation angle 6, and the translation introduces two
more transformation parameters denoted by T' and T2. Therefore, in this case,
the defining parameters of the transformation — and therefore the unknowns of
the problem at hand — are five. However, for reasons that have to do with the
formulation of the method employed, it will be assumed that they are six, i.e. n = 6.

Consider k points X;, j =1,..., k on the NLCode, with known coordinates in
both systems. The k pairs of corresponding sets of coordinates of those points in
the two systems are the input to the method of least squares adjustment. Since
the space in this case is 2D, i.e m = 2, each pair of coordinates introduces two
equations. In order to set up an algebraic system that will produce a unique
solution, i.e. a unique transformation, the equations must be at least as many
as the unknowns, that is, mk > n, or kK > 3. Having said that, sometimes the
available points exceed this minimum requirement, and mk > n. The least squares
adjustment method was actually developed with the purpose to make use of this
redundancy; it is a statistical method that utilises the additional information given
by the excess pairs of coordinates, in order to also provide the standard deviations
of the estimated transformation parameters.

Let x; = (X],sz) represent one of the k points X; in pixel coordinates, and
X = (X],ij) the same point in 2D plot coordinates. The transformation between
the two, described above as consisting of a scaling, a rotation and a translation,
can be written as

x; + r; = (S" cos 6) X,~1 + (=S? sin 0) ij + T

(3.31)
xi4rf=(S'sinO) )] +( STeosO) i+ T, j=1,. 0k,

where r; = (r}, rjz) is the residual of x;, which is defined below. In order to bring

the above equations to a form that elucidates the workings of the method, the

coefficients on their right hand side are assigned to a more uniform — notationally
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wise — set of transformation parameters:

pr=S"cosH, p7 =—S%*sin@, p3 =T
(3.32)
py=S'sing, py =S%cosB , ph =T
Notice that despite having only five proper transformation parameters, the coeffi-
cients of Eqgs. 3.31 required n = 6 assignments, as anticipated. Of course, only
five of those are independent.

Instead of just being vaguely “known” beforehand, let x; = (x;,sz) be an ob-
servation or measurement of X;'s pixel coordinates, and note that in any practical
implementation of the NLCode, every run of the NLCode Reader will produce one
such measurement using a corner detection algorithm. With a sample of x;'s mea-
surements one can apply the well known formula of the arithmetic mean (Eq. 3.28)
on each of the vector's components, to calculate what is also known as x;'s most
probable value, often denoted by X;. The (observation) residual is defined for each
individual measurement of a quantity, as the difference between the observation
and the quantity’s most probable value, i.e, r; = x; —X;. This latter relation im-
plies that when the transformation parameters are known and Eqs. 3.31 are used
to transform a point’s plot coordinates to pixel coordinates, the obtained quantity
will actually be the most probable value of the pixel coordinates.

Having named one side of the known pair of coordinates observations (or
measurements), let the other side, which is Xj's plot coordinates, be referred to as
control coordinates or more precisely control points, as is accustomed in studies
implementing the method of least squares adjustment (Wolf et al., 2014).

Equations 3.31 were explicitly written for a single point X}, but as the range
of the j index implies, they apply to the entire set of the k points available. The

algebraic system of mk equations can be written in matrix form as

1 1 1 2 1

X r xi xi 1.0 00 Pr

X? r? 0 0 0 xf xt 1 p2

X r x2 x3 1.0 00 3

o+ |2 =] 0 0 0y x2 1 4T (3.33)
: : . . . pT

X} rl Xt xt 1 0 0 0 Py

X; i 0 0 0 x¢ 1 PT

|
|
|

X[mk x1] R[mk x 1] X[mk x n] Prn x 1]
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or in the concise form
X+R=X:Pr. (3.34)

where X is the observation vector — input data/pixel coordinates, R the resid-
ual vector — observation residuals, X is the coefficient matrix — input data/plot
coordinates/control points, and Py the vector of unknowns — adjusted quanti-
ties/transformation parameters.

When the number of the observations (and control points) creates more equa-
tions than the number of unknowns, i.e. when mk > n, Sys. 3.34 is said to be
overdetermined. In these cases, the objective of the least squares adjustment is
not to simply find the solution of the system, but to optimise it so that it best fits
the entire set of data (the k pairs of coordinates). This optimisation is also called
adjustment, hence the term adjusted quantities in reference to the transformation

parameters, used above.

The method achieves the adjustment of Sys. 3.34’s solution by minimising the
sum of the squared residuals. This process is best described using Eqgs. 3.31 as
a starting point; it involves solving each equation for the respective observation
residual r/‘f , squaring both sides, and then summing the resulting equations to
obtain an expression of the form

m:2) l:1,,m(:2)
i\2 .
> D () =Gxx:ph)., j=1..k (3.35)
j=1 =1 ¢=1,...,n(=6),

where G(x, x; p%) is a scalar function of the adjusted quantities p%, parametrised
by the observation and control data points. The above sum of squared residuals
is minimised by taking its partial derivatives with respect to each of the adjusted
quantities, p%, and setting them equal to zero. This step creates a new algebraic

system of equations, called normal equations, of the form

aG(x, x; p§
M:o, ¢=1,...,n(=6), (3.36)
pT
and its solution gives the optimised transformation parameters p%.
Returning to the matrix formulation which is what is used for the actual nu-

merical calculations, the normal equations (Eq. 3.36) are written as

(XTXx) Pr=X"X, (3.37)
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and the final solution in matrix form is given by

Pr=(xTx)" XX, (3.38)

When there is no reason to assume that certain measurements are less, or
more precise than others, which is the working hypothesis here, the method of
least squares adjustment weighs all of them equally. The covariance matrix Ct of

the transformation parameters in this case, is given as (Ogundare, 2018)

Cr=o0 (XTX)7", (3.39)

where X is the coefficient matrix, and gy is the variance of an observation of unit

weight (Ghilani, 2017), which is estimated by equation

__RR
O mk—n'

(3.40)

where R is the residual vector and (mk—n) the number of adjustment equations mi-
nus the number of unknowns, which quantifies the redundancy, or degrees of free-
dom of a particular application of the method (Ogundare, 2018; Wolf et al., 2014).

The standard deviations s, of the adjusted quantities are equal to the square
roots of the variances gy, of pqr, which can be obtained from the diagonal of the

covariance matrix, tL.e.
See = /C [(?,é], ¢=1,...,n(=6), (3.41)

where Cr[¥, ¢] denotes the element in the ¢th row and the #th column of the
covariance matrix Cr.

Provided there exists a set of kK > 3 points on the NLCode with known 2D
plot coordinates, for which the pixel coordinates can somehow be found (see
Par. 3.2.2.1), Eqgs. 3.38 and 3.41 will give the transformation parameters that best
fit these data pairs. The transformation from plot to pixel coordinates of any point
X for which only the homogeneous 2D plot coordinates x = (x', x?, 1) are known,

is defined by the matrix equation

X' PT PT PT X'
| =1 rF p7 P% x> |- (342)
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3.2.2.1 Specification of Control Points and Observations

Just as the position and size of the NLCode's arced circular frame define the
transformation between system and 3D plot coordinates, the arcs of the frame,
and in particular the corners of the arcs, define the transformation between 2D
plot and pixel coordinates.

Figure 3.3 of the previous subsection shows a pixelated frame with ny =4
arcs whose corners are indicated by colour-coded pixels: Red, green, magenta,
and cyan — one colour for all three corners of each arc. In Sec. 3.1, the equations
that form the frame’s arcs were given in Cartesian and polar coordinates (Eqgs. 3.4
and Eq. 3.5 respectively), both with respect to the 2D plot coordinate system.
Reiterating the discussion around equation Eq. 3.5, the three corners of the ith arc

are named, denoted and defined by the following equations, in polar coordinates:

Beginning Az : (rg, 65) = [Router, Oy + (i — 1) (62 + Bap)]  (343a)

Outer Ending ALz : (r'f, 0. F) = [R,,ute,, 0l +i0a+(i—1) GGAP] (3.43b)
Inner Ending Al : (rig, 0r) = [Router — (d + 0+ (i — 1)A),

Ol + 104+ (i—1)6cap]  (343¢)

If the frame can be plotted, all parameters entering the above equations are already
specified (Table 3.1). This means that the plot coordinates of the 3n4 corners of the
frame are known. These are the control points x; = (X;,ij), j=1..., 3n,, that
fill the coefficient matrix X defined in Eq. 3.33, and they are obtained from Eqgs. 3.4
after substituting the polar coordinates from the above Eqs. 3.43. What remains
to be determined before the transformation parameters p% can be estimated using
Eq. 3.38, is the set of observations, i.e. the pixel coordinates x; = (X},sz) of the
frame’s corners.

In the final implementation of the NLCode, the NLCode Reader will process a
photograph of the feature, taken by a smartphone camera. This is the situation
of highest complexity faced by the developed technology, and is discussed in
Chapter 5. What is treated in the present paragraph, is the simplest scenario

possible, in which the following conditions apply:

m There is no noise present in the digital image of the frame, which suffers
only from the artifact due to the finiteness of the line widths discussed at the
end of Sec. 3.1.
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m The image is a direct display of the frame’s plot, with absolutely no perspective
distortions.

m The image is not padded; there are no white pixels around the frame. This also

NLC

means that the image is square, i.e. its size Sp,, in pixels is the same in both

dimensions.

The latter condition allows one to establish a correspondence between the size
SPEC of the NLCode in plot coordinates (Sec. 3.1), and the image size SpLS, in
pixels. What this means is that if one knows of a certain length, like a coordinate,
in one of the two systems, one can apply the rule of three to express it with
respect to the other coordinate system. In other words, this correspondence gives
the scaling factor between the two systems which is the ratio SPLC,/SKLC for the
transformation from plot to pixel coordinates” (and its reciprocal for the inverse
transformation). Note that, in the particular scenario examined, the scaling factor
is the same in both dimensions.

As already stated in Subsec. 3.2.2, the transformation from plot to pixel co-
ordinates also includes a rotation by +s/2 rad and a translation. Noting that
coordinates transform opposite to their reference bases, which means that the
transformation described here is the opposite of the transformation the plot coor-
dinate axes would have to undergo in order to coincide with the pixel coordinate
axes, leads to the following conclusions: (i) The plot coordinates need to be ro-
tated about the origin by +7/2 rad (see Fig. 3.3). (ii) Given that the image is
square and the NLCode frame is centred in it, the translation following the scaling
and rotation, should be the same in both dimensions, with a translation parameter
equal to SPLC /2 .

Putting the three transformations just described into one matrix equation, the

overall transformation from homogeneous plot to pixel coordinates reads

GNLC - - GNLC
X] 10 2Bl cos = —sin= 0 Pixel 0 0 X;
, ) [0 [ s |
| ne | | oo 7 . NLC 1.,
X1 =101 sztxel Sm? cos§ 0 0 ‘Sgi\ﬁ? 0 X |- (3.44)
Plot
1 00 1 0 0 1 o o 1/ \]

PTypical pixel coordinates are of the order of 300 pixels, while plot coordinates, are of the
order of Ryyter = 1.



3.3. NONLINEAR PATTERN: THE LORENZ SYSTEM 75

One very important remark about the transformation defined by Eq. 3.44 is
that it appears to be exactly the transformation given by Eq. 3.42, that is, the
transformation the entire Subsec. 3.2.2 was dedicated in finding (!) This is actually
true, but only because of the special conditions listed in the beginning of this
paragraph, under which this entire chapter operates. So in the present context,
the transformation given above by Eq. 3.44 is all that is required by the NLCode
Reader. However, in a practical implementation of the NLcode, it will be safer
to use a corner detection algorithm in order to obtain actual observations of the
corners of the arced frame, than to perform a series of corrections on the image —
which will include corner detection anyway — and then exclusively rely on a single
measurement of SpLE to set up the transformation of Eq. 3.44. In conclusion,
the least squares adjustment method presented in Subsec. 3.2.2 is the preferred
approach to estimating the transformation between plot and pixel coordinates in
non-ideal conditions, based on observations of the arced frame’s corners.

Having obtained the coordinates of the frame corners with respect to both
systems, the observation vector X and the coefficient matrix X are fully popu-
lated (Eq. 3.33), and Eq. 3.34 can be applied to give the vector of unknowns
Pr = (pT.pT. P, PT. PT. P
dard deviations of the adjusted quantities p%, the number of frame corners observed

. In order for the method to also provide the stan-

must be k > n/m = 3, out of the 3n, in the frame.

3.3 Nonlinear Pattern: The Lorenz System

The Lorenz system describes a simplified model for atmospheric convection in-
troduced by E.N. Lorenz in 1963 (E. Lorenz, 1963). It is the first system ever
observed to possess what is today known as a strange attractor — a name first
used in print by Ruelle and Takens (1971) — or chaotic attractor Sec. 2.6. For this
reason, it is probably the best known, most extensively studied and widely used
system in a variety of theoretical studies and engineering applications.
The Lorenz system is mathematically described by the following 3D system of

1st order ODEs

x'=0o(x*—x")

X' =px' = x"=x'x° (3.45)

X*=x'x* = Bx’,
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which — apart from the use of x instead of x to indicate that the system has not yet
been transfromed — is of the general form of Sys. 2.2. The system’s state variables
x', x? and x> represent the rate of convection and the horizontal and vertical
temperature variation of the fluid Lorenz considered in his model respectively.
The system parameters o and p are the Prandtl and the Rayleigh numbers — both
describing the relationship between certain fluid properties, and B relates to the
physical dimensions of the system (Hirsch et al., 2004). All three of them are
positive (Sparrow, 1982).

3.3.1  Numerical Solution

Figure 3.4 shows a 3D trajectory of the Lorenz system (Sys. 3.45), solved using
the RK4 method presented in Sec. 2.1 with the original parameter values and ICs
used by E. Lorenz (1963), i.e.

o=10, p=28, B=283 (3.46a)
xe =00, x2=10, x2=00. (3.46b)

Figure 3.4: Lorenz attractor in 3D before the transformation: Solution of the Lorenz
system (Sys. 3.45) using the RK4 scheme presented in section Sec. 2.1. The parameter
values and ICs are the ones originally used by E. Lorenz (1963) (Eqs. 3.46). The
iteration step is At = 1073 seconds and the total number of iterations N = 80, 000.
The plot also shows in red the center x. of the attractor, calculated using Eq. 3.28,
and in black the farthest point xy from the center defined in Par. 3.2.1.1.
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3.3.2 Variable Transformation

The transformed form of the Lorenz system is obtained after applying on Sys. 3.45
the one-step transformation given by Eq. 3.24 (Eq. 3.27), and significantly simpli-
fied by setting S" = S? = S3 =1/S (Eq. 3.19):

W= % (XZ_X1)
XZ—lT(pX1 —X? - SX'X?) (3.47)
3= lT (SX'x? - BxY),
where
X', X2 X)=X=x—c+ (x./5) (3.48)

is a “collective variable” introduced to further simplify the transformed system’s
algebraic form by taking advantage of a repeating expression. Note that even
though X/ = X/, the original state variable x on the left hand side of Sys. 3.47
was retained for clarity.

The calculation of the center ). of the Lorenz attractor according to the defini-
tion given in Par. 3.2.1.1 (Eq. 3.28), was done using a trajectory of N = 500, 000
points. With ), known, the computation of the farthest point xy of the same trajec-
tory from the center of the attractor was done simply by calculating the distance of
every point in the trajectory from ., finding the maximum distance, and matching
it to a point which, evidently, is yy (Par. 3.2.1.1). The results are given in the

following set of equations and shown in Fig. 3.4:
Xc = (—0.5966, —0.5996, 23.5845) (3.49a)
xr = (19.6953, 22.6041, 40.8823) . (3.49b)
The specification of the one-step transformation given by Eq. 3.24 (Eq. 3.27)
is complete as soon as the scaling parameter S is calculated using Eq. 3.30,

leading to
S =53.02. (3.50)
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(a) Scaled and translated Lorenz
attractor in 3D.
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Xq

(c) Projection of the 3D trajectory
on the x'x3 plane.

-06 -04 -02 00 02 04 06
Xq

(b) Projection of the 3D trajectory
on the x'x? plane.

-06 -04 -02 00 02 04 08
X2

(d) Projection of the 3D trajectory
on the x*x3 plane.

Figure 3.5: Lorenz attractor in 3D and 2D projections, after the transformation:
(a) Solution of the transformed Lorenz system (Sys. 3.47) using the RK4 scheme pre-
sented in section Sec. 2.1. The parameter values are the same as before (Fig. 3.4), and
the ICs are the transformed versions of the original ones given in Eq. 3.46b, specif-
ically, xo = (0.0113, 0.0302, —0.4448). The iteration step and the total number of
iterations are the same as in Fig. 3.4. The plot also shows in red the transformed
center x. = (0.0, 0.0, 0.0) = ¢ of the attractor (Eq. 3.24), and in black the transformed
farthest point x; = (0.3827, 0.4376, 0.3262) from the center. (b), (c), and (d) are the
2D projections of the trajectory and points x. and x; shown in Fig. 3.5a respectively.
These plots also include the cross-sections (meridians) of the enclosing sphere of ra-
dius Ripner = 2/3 (Table 3.1) cut by the three planes. As discussed in the main text,
the plots in this figure demonstrate the point that, while the two-dimensional pro-
jected xr may not be farthest from the projected x., the cross-sectioned sphere by the
respective plane will always encircle the attractor entirely — provided x. and xr were

estimated with a sufficient accuracy to begin with, of course.
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Figure 3.5 shows the Lorenz attractor after the scaling and translation trans-
formations, and its three 2D projections on the x'x?, x'x3, and x%x> planes. The
scaled and translated versions x. and x; of the center and farthest point from cen-
ter respectively are also shown in both 3D and 2D. These plots also demonstrate
a point made earlier in Par. 3.2.1.1, that while x; is the farthest point from x.
in 3D, its 2D projection will not necessarily be the farthest from the projected
center. However, since the scaling is defined such that the transformed attractor
is enclosed within a sphere of radius Ri,,.,, any 2D projection of the attractor is

bound to be contained in a circle of the same radius.

3.3.3 Dissipation

In order to determine whether the Lorenz system expands, preserves or contracts
volumes in state space, one can use Eq. 2.14 (Sec. 2.2) to calculate the divergence
of the system’s vector field, or equivalently, the trace of its stability matrix. Taking
the second route, the stability matrix of the transformed Lorenz system, Sys. 3.47,

is found using Eq. 2.8,

’ —0 g 0
AX) = T p—SX2 -1 -SX ) (3.51)
Sx? sx! —B

and its trace is then calculated in order to show, through Eq. 2.14, that
1
V-f:—?(1+a+/9)<0 (3.52)

which, according to the theory developed in Sec. 2.2 around Eq. 2.13, means that

the Lorenz system is dissipative.

3.3.4 Equilibrium Solutions and Local Stability

For the set of system parameters used here (Eq. 3.46a), where most importantly
p > 1, the Lorenz system has the three real equilibrium solutions given below.

The fixed points xZ, xi and x* (the latter two jointly denoted by x}) are the
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solutions of Eq. 2.15, for f(x*) equal to the vector field defined by Sys. 3.47:

xg:c—)% (3.53a)
1
(X VBlp=1)
e e
2 _
o X VBl=T)
S S
3
3_Xe , p—1
-t ). (3.53b)

In the case of the first fixed point — which, for the original, untransformed Lorenz
system (Sys. 3.45) is the origin xg = 0, hence the © subscript — the “collective
variable” X% = 0 and the stability matrix (Eq. 3.51) becomes

—0 O 0
AXE) = 1? . p =1 0 . (3.54)
0 0 -B

The eigenvalues of A(XY) are found by solving Eq. 2.19:

X = —g (3.55a)

—(o+N)=/(c+1)2+40(p—1)
2T

*
Aoy =

. (3.55b)

A first thing to note is that all three of the above eigenvalues are real. Secondly,
Ay <0, A5 <0, and for p > 1, which is the case treated here, A%, > 0. Thus,
with “at least one eigenvalue with a positive real part, and one with a negative
real part”, according to Sec. 2.2 (also see Table 2.1), x§ is an unstable equilibrium
solution of the saddle type.

Repeating the same process for the other two equilibrium solutions, that is,
explicitly writing — or in some instances attempting to write — the analytical
expressions of the stability matrix A(X?%) and its eigenvalues, will turn out to be
quite cumbersome and of little use to the essence of this presentation. For this
reason, these results — including the first fixed point — are provided in numerical
form, i.e. after substituting the parameter values of Eq. 3.46a into all relevant
equations, in Table 3.2. The software used to perform all necessary calculations
is Mathematica 12.3.1.0 Student Edition.
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Table 3.2: Stability of the three equilibrium solutions of the Lorenz system. The
first column lists the fixed points of Sys. 3.47, given by Eqs. 3.53, after substituting
the parameter values from Eq. 3.46a. The second column lists the eigenvalues of the
stability matrix calculated at the respective fixed points (entries of the same row).
In the case of x, the eigenvalues were found from Eqs. 3.55, whereas in the case
of the other two fixed points, the parameter values where first introduced into the
computed stability matrix A(X?%), in order to then calculate its eigenvalues. Finally,
the third column lists the stability type of the fixed points, based on the signs of the
real parts of the eigenvalues, and according to the criteria presented in Sec. 2.2 and
summarised in Table 2.7.

’ Equilibrium Point x* \ Eigenvalues of A(x*) \ Stability Type ‘
X = —2.6667
x5 =(0.0113,0.0113, —0.4448) Ao = 11.8277
xi=(0.1713,0.1713,00644) | . _ i3acuc (unstable)
X" = (~0.1488, —0.1487,0.0644) | A== = 0.0940 1101945

3.3.5 Lyapunov Spectrum & Lyapunov Dimension

The Lyapunov spectrum of the Lorenz attractor was calculated using the Julia

software library DynamicalSystems.jl cited in Sec. 2.4, and was found to be
Ly =0.905 L, =00, L3=-14.569. (3.56)

Using the above results, the Lyapunov dimension is calculated from Eq. 2.33

and turns out to be
D, =2.062. (3.57)

With D, a non-integer and one positive, one zero and one negative Lyapunov
exponent (see Table 2.2, Sec. 2.6), the Lorenz attractor is confirmed to be both

strange and chaotic, as expected.
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3.3.6 Basin of Attraction

Figure 3.6 shows the basin of attraction (Sec. 2.5) of the Lorenz attractor. This
set was computed using DynamicalSystems.jl, on a discrete 3D grid of size
(330 x 300 x 300), which means that it cannot fully represent continuous regions
occupied by it. However, it is seen to fade with distance from the attractor, which
indicates that even close to the attractor, there can be points which belong to
neither of the two objects. A list of points belonging to the basin of attraction —
which can, of course, be continuously updated — will later be used as a pool of
ICs by the NLCode Generator (Chapter 4, Subsec. 4.2.1), in search of trajectories

that satisfy a set of suitability criteria.

Figure 3.6: Basin of attraction of the Lorenz attractor. The Lorenz attractor is shown
in red, and its basin of attraction in green. For the Lorenz attractor it is known that
its basin of attraction extends to infinity (Sprott, 2003).
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3.3.7 Homogeneous Driving & Synchronisation

According to what was presented in Sec. 2.7, the transformed Lorenz system can
be used as a base for the construction of two composite homogeneously driven
systems. The first composite system is Sys. 3.58. The coupling component in this
case is x? of the drive subsystem, and the response subsystem consists of replicas

of the first and third equations of the drive.
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For the system parameters used in this implementation (Eqgs. 3.46), the conditional

Lyapunov exponents of this response system are both negative. Specifically,
Ly =—-10.000, L, =—-2.667. (3.59)

The second composite homogeneously driven system is Sys. 3.60, in which
the coupling component is the drive’s x', and the response subsystem consists of

replicas of the second and third equations of the drive.
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The conditional Lyapunov exponents of this response system are also both nega-

tive, and specifically,
Ly =-1.800, L,=-1.866. (3.61)

Since the response subsystems in both cases have negative conditional Lya-
punov exponents, it is expected that starting with ICs different from their respective
drives, after a certain period of time, the components of the response subsystems
will coincide with those of the drives. As can be seen in Figs. 3.7 and 3.8, this is

indeed the case.
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Figure 3.7: Synchronisation of (x', x3) response, with x* drive: The top plot shows the

coupling component. The other two plots show the corresponding components of the
drive and response subsystems. Synchronisation is occurs at some point after 2 sec.
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Figure 3.8: Synchronisation of (x*, x?) response, with x' drive: The top plot shows
the coupling component. The other two plots show the corresponding components of
the drive and response subsystems. Similarly to the previous case, synchronisation is
seen to occur at some point after 2 sec.
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3.4 Colour Profile of the NLCode

The colour profile of the NLCode describes the colour gradient of the plot line
that forms the nonlinear encoded pattern. This feature of the NLCode serves two
purposes: (i) It adds to the feature’s aesthetic appeal considerably and by doing
that, it strengthens the identifiability of the brand or branded product utilising
the NLCode. (ii) With the right settings — determined by the NLCode Generator
(Chapter 4) — the colouring of the nonlinear pattern acts as an auxiliary component
to the main process implemented by the NLCode Reader, by making sure the latter
“stays on track” in a both literal and metaphorical sense.

The colour profile of the NLCode is a sequence of colours creating a smooth
gradient which is applied on the nonlinear pattern in a periodic fashion. It is de-
fined by a sequence of elementary colours called colour base, a sawtooth function
dictating the manner in which the colours of the base are interpolated in order to
create smooth transitions from one colour to the next — a colour gradient effect,
the interpolation formula itself, and the period of the sequence.

Let {i,j}, with i,j =1,2,3 and i # j, denote the 2D projection of the strange
attractor that forms the NLCode's nonlinear pattern, and assume that the projected
trajectory consists of N points (x,‘;,x,/;), n=1,...,N. According to the above
description, the colour profile of the NLCode, denoted by C, can be defined as the

following sequence:

C={ci,cs ..., en} ={cy}, with ¢cjup=c¢, forall n=1,...,N, (3.62)

where ¢, are distinct colours, each assigned to its corresponding point (x, x4) in
the nonilear pattern, and P the period of C, which must be P < N. Note that the
use of boldface fonts in Eq. 3.62, as well as in any other colour notation introduced
in this section, makes sure that colours are treated as vectors, in anticipation of
their mathematical representation using any of the colour models in wide use.
Figure 3.9 illustrates an example colour sequence C, for N = 63 and P = 21.
The construction of the NLCode’s colour profile begins with the definition of

its colour base. This is a sequence of colours denoted by B, which has the form
B={by, by, ..., bn, 1} =1{bi}, i=1,..., Ny+1 (3.63)

where b; are N;, +1 base colours with by, +1 = by, which means that only N;, of

them are distinct. The reason for that is explained below.
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Figure 3.9: A sample periodic sequence of the NLCode’s colour profile, for N = 63
and P = 21. Note that while this example is unrealistic in terms of the sequence’s
length and period — a typical 2D trajectory is expected to consist of 1000 to 8000
points — it highlights the two basic properties of C, namely its periodicity and the
smooth transition from one constituent colour to the next (gradient effect).

The next step is to introduce a function f of the index n of the colours in
C (Eq. 3.62), parametrised by the period P of the colour profile, i.e. f = f(n;P).
This function should be periodic with period P, and there should be an established
correspondence between its values and the sequence of base colours, such that as
the index n progresses, the base colours are periodically “selected” one by one
from the beginning to the end of B. In this current implementation of the NLCode,

f is the sawtooth function defined as

n—1
P

f(n; P) = (mod 1). (3.64)
Figure 3.10 shows the plot of f(n; P), for P = 2. Assuming a smooth increase
of n from 1 to higher values, every time n = sP +1, s =0,1,2,..., f starts
from 0 and linearly increases with n, approaching 1 as n’s increment from the
previous integer value approaches P. It then sharply drops to O again, and the
cycle repeats.

Since f(n; P) varies from 0 to 1, the aforementioned correspondence between
the function’s values and the base colours b; is established by creating the pairs
(Bi, b;), where B; are the N;, + 1 numbers that divide the interval [0, 1] into N;,
equal subintervals [Bx, Bxs1l, k =1,..., N, Le.

i — 1
Bi=- i=1,....Nin+1. (3.65)

Let (c,, ¢,) be a point with abscissa ¢, = f(n; P) € [B«, Bk+1], for one of k's
values. The colour of the nth point in the nonlinear pattern of the NLCode is

defined as the above point's ordinate c¢,. With f(n; P) known, the two points
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(Bk, bi) and (Bki1, bry1) are also known, and ¢, can be calculated from the linear

interpolation formula (see e.g. Hamming, 1973)

f(n; P) — B
Bi1 — B

where once more k, indicates the subinterval [Bx, Bx:1] which f(n; P) belongs to.

ch = by + (bee1—by), n=1...,N, (3.66)
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Figure 3.10: Plot of function f(n; P) as defined by equation Eq. 3.64, for P = 2.
This function belongs to a family of functions known as sawtooth functions, describing
non-sinusoidal waveforms.

At the present stage of development, the NLCode has two colour bases. The
first one uses a colour theme called Hue, which includes the primary additive and
subtractive colours, in the order they appear on the colour wheel, i.e. yellow, red,
magenta, blue, cyan, green, yellow; the repetition of yellow at the end of this
colour sequence is a consequence of the definition of the colour base by Eq. 3.63,
where by, +1 = by, and is explained below. This colour base is denoted by BHue

and its vector representation using the RGB colour model is
BHue = {(1,1,0), (1,0,0), (1,0,1), (0,0,1), (0,1,1), (0,1,0), (1,1,0)} . (3.67)

The second colour base is denoted by B™, with TM abbreviating the name Tin-
masters after this project’s sponsoring company, because this base’s theme con-
sists of the colours that make up their brand’s gradient, namely yellow, red, purple,

yellow. This colour base’s RGB vector representation is

B™ ={(1,1,0), (1,0,0), (0.5,0,0.5), (1,1,0)} . (3.68)

Figure 3.11 shows the two colour bases of the NLCode’s colour profile.
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(a) The BHv¢ colour base (Eq. 3.67) in-
cludes the primary additive and sub-
tractive colours as they appear on the
colour wheel. For this base, the number
of non-repeating colours is N;, = 6.

(b) The B™ colour base (Eq. 3.68) in-
cludes the colours that make up the
Tinmasters’ gradient, i.e. yellow, red
and purple. For this base, the number
of non-repeating colours is N, = 3.

Figure 3.11: The two colour bases of the NLCode’s colour profile. Note that while

the number of non-repeating colours in these bases is N;j,, their total length is Ni,+1.

The repetition of the first colour (yellow) at the end of each sequence is explained in

the main text.

The reasons for having the first colour (yellow) of the colour bases B'“¢ and B™M

repeat at the end of these sequences are the following:

1. It ensures that the final colour sequence C (Eq. 3.62) includes colours rep-

resenting a smooth transition from green (purple) — the last non-repeating

colour of each sequence, to yellow — its first (and last) colour, thus main-

taining the gradient effect of the profile.

2. It makes sure none of the colours in the colour base is inadequately repre-

sented in the final sequence C. The possibility of this happening stems from

the fact that, depending on n's increment (equal to 1 in NLCode's appli-
cation) relative to the period P of the sawtooth function (Eq. 3.64), f(n; P)

may not approach 1 sufficiently to reproduce the last colour of the sequence.

Repeating yellow at the end of the sequence B"“¢ (B™), ensures that green

(purple) — the last distinct colour in the base — is adequately represented.

Figure 3.12 demonstrates the effect of the relative values of P — the colour

profile’s period, and N — the number of points in the nonlinear pattern, on the

appearance of the NLCode.

m |n the first case examined, P = N = 6000, which means that the input base B

is spread over the entire pattern once, without repetition. This creates a slow,

seemingly uneventful transition between colours, which unfortunately allows for

overlaps of same colours at the line’s crossings; colour overlaps are treated in

Sec. 4.3.
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m:RGB {1., 1.36x 1073, 0.} ® :RGB {1.00, 0.50, 0.00}

(a) Colour base: B¢, Period: P = 6000. (b) Colour base: B™, Period: P = 6000.
B is repeated exactly once. B is repeated exactly once.

V.
)

\\..

:RGB {0.97, 1.00, 0.00}

(c) Colour base: B¢, Period: P = 200. (d) Colour base: B™, Period: P = 200.
B is repeated 30 times. B is repeated 30 times.

=™

™\
T\
N
\\ ‘\\\_Q/r y
\ Y
s\{'_‘l“‘l. 'ﬁ

oy

o i
W :RGB {0.11, 0.00, 1.00} B :RGB {0.78, 0.00, 0.22}

(e) Colour base: B¢, Period: P = N/105. (f) Colour base: B™™, Period: P = N/105.
B is repeated 57.143 times. B is repeated 105 times.

Figure 3.12: Application of the NLCode’s colour profile that demonstrates the effect
of the profile’s period P relative to the size N of the 2D projected trajectory, on the
appearance of the feature. All the NLCodes shown have the same nonlinear pattern
which consists of N = 6000 points. The profiles on the left column all use the same
colour base, B¢, and vary the period P. The right column shows the effect of the same
periods on the second colour base, BH¢ (Fig. 3.11). A black circle covers a small area
around the n = 1000th point of the nonlinear pattern, and its RGB colour — as calculated
by the method presented in this section — is given in the legend of each figure. Further
details are provided in the captions of the individual figures, and in the main text.
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m The second period applied is P = 200, which divides N = 6000 equally. In this
case, the colour base B is repeated on the nonlinear pattern 30 times, which
in effect, brings the colour transitions closer together and creates a more vivid

picture.

m Lastly, in the third case examined P = N/105 with N = 6000, which makes
P = 57.143 and shows first of all that P does not have to be in integer —
in fact, the same applies to the number of B’s repetitions over the nonlinear
pattern. The colour transitions in this instance are quite fast, and that puts the

functionality of the NLCode as well as its aesthetics in jeopardy.

The period of the NLCode’s colour profile is one of the main adjustment pa-
rameters used by the NLCode Generator, in order to create nonlinear patterns
which the NLCode Reader can process successfully. The precise function of this
feature of the NLCode will be thoroughly discussed in Sec. 4.3 and Chapter 5.






4

The NLCode Generator

4.1 Obijectives of the NLCode Generator

The nonlinear pattern of the NLCode is a trajectory of a 3D dynamical system
like Sys. 2.1, projected on the 2D planes x'x%, x'x3, and x’x> (see e.g. Fig. 3.5).
Generally speaking, the area coverage of a 2D projected trajectory and its density
in state space — both qualitative measures, should be such that the NLCode has a
pattern that is well positioned and distributed in the allocated area of the feature
(Sec. 3.1, Fig. 3.2). The NLCode Generator is the algorithmic process developed
for the creation of nonlinear patterns with the above qualities. The reason it is
sufficient for the desirable characteristics of suitable patterns to only be given
a qualitative description, is that the NLCode Generator is mainly a process of
elimination, i.e. it is designed to create patterns with certain qualities by reject-
ing those that have certain other, undesirable characteristics, at the same time
advancing toward secondary, predefined goals. The need for a relatively complex
process like the NLCode Generator to create readable NLCodes is illustrated in
Figure 4.1, which shows three not at all uncommon examples of nonlinear patterns
with devastatingly poor area coverage and high density in state space.

In order to effect visible changes to the 2D trajectory, one can (i) alter the
parameters of the system — without moving it out of the chaotic regime in which the
system’s behaviour is known, (ii) use a different set of ICs, (iii) slightly increase (or
decrease) the number of points in the 2D trajectory, and (iv) alter the colour profile
applied to the pattern by changing its period (Sec. 3.4, Eq. 3.64). However, since
these trajectories evolve in a chaotic attractor, which according to the discussion
of Sec. 2.6 is characterised by sensitive dependence on ICs, options (i)*° and (ii)
will not simply “effect visible changes” to a trajectory; they will in all likelihood
change the entire trajectory. Concerning option (iii), note that this trajectory is

aimed to be a readable pattern, which implies that at the very least, there have to

%A chaotic system is equally sensitive to small deviations from an intended set of system
parameters — again, within a certain chaotic regime — as it is to similar departures from an
intended set of ICs. So in the present context, the term “initial conditions” generally refers to the
initialisation of the system, which includes the system parameters and the actual starting point
of the trajectory.

93
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be discernible elements in it. This means that in order to prevent it from becoming
too dense, the number of iterations used for its creation — forward and/or backward
in time, if need be — should not exceed a certain limit. Finally, while the colour
profile — option (iv) — can have a substantial visual effect on a pattern, it cannot
affect its geometric characteristics. For this reason, alterations of the colour profile
are only employed last, and only for patterns that have already been reviewed
and accepted based on their spatial attributes.

In conclusion, “slight adjustments” in the geometry of the trajectories forming
the nonlinear patterns of the NLCode are generally not possible. In most cases,
if a trajectory fails the tests imposed by the NLCode Generator, there is little
any reasonable adjustments to the number of iterations or the period of the colour
profile can do; it has to be replaced by an entirely different trajectory. Once
a trajectory meets certain geometrical criteria (see Sec. 4.2), it enters a second

processing phase which is dedicated to colour profile adjustment (Sec. 4.3).

(b) ()

Figure 4.1: Patterns with poor area coverage and high density in state space. The
example trajectories shown are fairly common occurrences in the search for suitable
patterns by the NLCode Generator. One important note about these trajectories is that
they were all produced by solving the Lorenz system for the same number of iterations
N = 5,000. (a) 3D ICs: (XO,XO,XO) (—0.4928,0.0201, —0.5998). This trajectory
started outside the attractor, but ended up revolving around one of the equilibrium
points, xi (Table 3.2). (b) 3D ICs: (XO,XO,XO) (0.4615, —0.1538, 0.4303). Similar
situation to (a), but with a wider and more visible twirl around x*. (c) 3D ICs:
(xo,xo,xo) (—0.6533, —0.5864, —0.5017). This trajectory’s way to the attractor led
it not only outside the pattern area of the NLCode, but outside the entire feature
whose boundary is the arced frame?’. The rest of the parameters entering Sys. 3.47
are p=(0,p,B) from Eq. 3.46a, T =1, S =39.2741, ¢ = 0, and x. from Eq. 3.49a.
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Figure 4.2 shows another example of a trajectory that failed to meet the criteria
it was tested against during different phases of the Generator. This trajectory is
well positioned and distributed in the pattern area and does not appear to be
too dense to have different parts of it resolved. Even with a good coverage area
and density, however, this trajectory failed not one, but all tests of the Generator.
The figure points out and briefly describes the main undesirable attributes a
trajectory might be afflicted by, that the Generator is built to identify and act
against. Each of the characteristics descriptors provided corresponds to a task the
Generator performs in order to ensure the viability of the NLCode. The remaining
of this chapter breaks down the NLCode Generator to its constituent processes

and discusses each of them in detail.

Abrupt Ending

The trajectory appears
to end abruptly due -
to the colour of its
last segment

. Colour Overlaps
Spatially overlapping
segments may have the
same colour, or colours
that are too close in the
pattern’s colour profile

& Spatial Overlaps
Different segments of
the trajectory, either
running parallel or
crossing, overlap

Hidden Beginning )
The initial point of the ) Y '

trajectory is hidden -~
underneath other

parts of it

Figure 4.2: The four main tasks of the NLCode Generator correspond to undesirable
characteristics of the trajectories created. The Generator is tasked to identify these
inadequacies and act accordingly. The issues described as Abrupt Ending, Hidden Be-
ginning and Colour Overlaps can be treated or even prevented, whereas the one described
as Spatial Overlaps requires a change of trajectory, that is, a new set of ICs. What-
ever the case is, the main challenge of the NLCode Generator is to accurately identify
the culprits. Trajectory specifications: 3D ICs: (xa,xg, xg) = (0.0528, 0.0935, —0.1385),
N = 5,000, p=(0,p,B) from Eq. 3.46a, T =1, S = 30.2108, ¢ = 0, and x. from
Eq. 3.49a. Frame/Plot specifications: Ryyter =1, b1 = 1072, and fpr = 3 provide Sgﬁg

from Eq. 3.10 and L;gt from Eq. 3.8.

27A discussion regarding the optimal method for choosing ICs as well as the standard practice
of discarding several points from the beginning of the trajectory in order to eliminate its transient
part, are discussed in Subsec. 4.2.1.



96 4. THE NLCODE GENERATOR

4.2 Spatial Overlaps

The term Spatial Overlaps (SOs) refers to either one of two situations:

m Self-crossings: Different sections of a trajectory running non-parallel to one
another pass through the same point, i.e. intersect. As already noted in Sec. 2.1,
trajectories in the original 3D state space can neither intersect with one another,
nor self-cross. The self-crossings discussed here are a direct consequence of
the projection of the 3D trajectory on the 2D planes. This effect is exacerbated

as the number of iteration increases.

m Contiquities: In this case, different segments of a trajectory running parallel, or
almost parallel to one another share several consecutive points, i.e. they are
contiguous, or simply, they touch. The projection of the 3D trajectory in 2D is
partly responsible for this type of SOs as well, but contiguities are also caused
—even in 3D — by the finite line width “artifact” discussed in Sec. 3.1 (Eq. 3.9),
i.e. the fact that while geometrical lines are one-dimensional, the lines drawn
are inevitably two-dimensional. Increased line width and number of iterations
unavoidably give rise to more contiquities, that also tend to extend to longer

line segments.

SOs of the two types just described are an inevitable occurrence in any trajectory
worth processing further. This means that the NLCode Generator needs some sort
of quantifiable criteria based on which it can accept certain trajectories and reject
others. This set of criteria and the methods for testing trajectories against them
are presented in this section in the order in which they are applied to any given
trajectory tested.

The first few steps of the NLCode generation process include the initialisation
of the process, followed by the solution of the chosen dynamical system expressed
in 3D plot coordinates using the RK4 method, and the creation of the arced circular
frame. The latter also includes the calculation of the plot range SPLS (Sec. 3.1,
Eq. 3.11) required for the plotting of the two main geometrical components of the
feature, thus allowing a completely unprocessed NLCode to be visualised from the

early stages of its creation.
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4.2.1 Initial Conditions & Transient Intervals

During the initialisation process of the NLCode Generator, the parameters that
specify the main components of the feature are set according to a certain desired
result. From that point onward, the Generator starts creating patterns based on
these specifications, and puts them through a series of tests until it finds at least
one that satisfies a set of criteria (Fig. 4.2). In order to do that, the Generator
needs access to a large set of ICs, all of which create trajectories that evolve within
the attractor of the system implemented. As was briefly mentioned in Subsec. 3.3.6,
the basin of attraction of any given attractor provides an excellent pool of ICs, since
all points in it will eventually be captured by the attractor (Sec. 2.5). The basin
of attraction is also a large set — and can be added to or updated, which allows
the Generator to pick ICs at random and also reuse the pool, since a trajectory
rejected under one configuration might be suitable for another.

The implication of choosing ICs from the basin of attraction instead of the
attractor itself, is that the trajectories created will only eventually start evolving
within the attractor, that is, after a certain period of time. The parts of trajec-
tories that correspond to these periods of time — or the time periods themselves,
depending on the context — are called transient intervals. Figure 4.3 shows what
a trajectory with ICs taken from the basin of attraction looks like including its
transient interval, and what it looks like without it. Based on this figure, it be-
comes obvious that the NLCode Generator can only benefit from the use of basins
of attraction as pools of ICs, provided it makes sure that the transient intervals
are discarded prior to the processing of trajectories. Fortunately, this is as easy
as taking this procedure into account when setting the total number of iterations
N for the RK4 method, so that when the first N;.4,s iterations are discarded from
the trajectory, its size is still the one intended. The number of iterations that
correspond to transient intervals vary not only per system, but per trajectory as
well. Provided the final trajectory is required to do a few “windings” inside the
attractor, a good rule of thumb is to set N 4,5 to approximately a third of the
total number of iterations required for those “turns” to take place. In the case
of the Lorenz system, for example, N = 3,000 — 5,000 is a reasonable number of
iterations for a trajectory. The Generator in this case may set N4, = 1,000 and
then reset N by adding Ny q,s to it in order to compensate for the iterations lost

in the the omission of the transient interval.
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(a) Transient intervals included (b) Transient intervals omitted

Figure 4.3: The effect of transient intervals on the NLCode pattern. When the ICs
do not belong to the attractor of the system — as is the case for points taken from the
attractor’s basin of attraction, trajectories spend a period of time outside the attractor
before being captured by it. Those initial parts of the trajectories are called transient
intervals and can have a devastating effect on the patterns created. As figure (a) on
the left shows, a trajectory initiating from within the basin of attraction may have
to cross the entire attractor — in the 2D projection — before it starts evolving in it.
3D ICs: (XS,X&,XS) = (0.7080, —0.6214, 0.4071). Figure (b) on the right shows the
same trajectory with a transient interval of only Ntrqpns = 570 iterations omitted, for
demonstration purposes (new 3D ICs same as in Fig. 4.2). This is a necessary step
the NLCode Generator must take before processing trajectories any further. The rest

of the trajectory and frame/plot specifications are the same as in Fig. 4.2.

4.2.2 Sampling of the 2D Projected Trajectory

The NLCode Generator begins the processing of a candidate pattern by sampling
the 2D projected trajectory, in preparation for the subsequent methods requiring
it as input. Note that this kind of sampling is neither periodic, nor uniform in
the time domain, as one might expect; the sampling performed by the NLCode
Generator is based on spatial considerations. Specifically, if x[n] is the initial, 2D

projected trajectory and x,[n] the sampled trajectory, then

_ |l n=0 |xs[n — xJ[n n
XS[”]—{X[HH, SN (L B Y. P

where as before,

|-|| denotes the Euclidean vector norm. What the above expres-

sion means, is that the sampling of the 2D projected trajectory starts with the first
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point x[0], and each subsequent point is added in the sampled trajectory only if
its Euclidean distance from the previous point that entered the sample is greater
than or equal to some prespecified distance D — to be determined in the next
subsection. Alternatively, one might say that the sampled trajectory is formed
by taking every k points from the original trajectory, where the variable k = k[n]
indicates the non-uniformity of the sampling due to the dynamics of the trajectory

causing similar distances to be traversed in quite disparate time intervals.

Figure 4.4: Sampling of the 2D projected trajectory by the NLCode Generator.
At this stage of the NLCode’s creation there is no need for the colouring of
the pattern. The trajectory and frame[plot specifications are the same as
in Fig. 4.2, and the newly introduced parameter is the minimum interpoint
distance D defined in Subsec. 4.2.3 by Eq. 4.9, with distance factor fp = 0.419.

Figure 4.4 shows the sampling of the same trajectory shown in Fig. 4.2, for a
specific value of the minimum interpoint distance, or simply sampling distance D
given in the caption, in plot coordinates. D and a few other parameters that specify

the processes of the Generator relating to SOs will be discussed in Subsec. 4.2.3.

4.2.3 General Method: Squares & Occupancies

The first method to take the sampled 2D trajectory as input and process it further
is called Squares and Occupancies (S&0s). Its name comes from the main element
all tasks performed by it rely on, and a characteristic property of that element. The
main element is a set of square areas — usually referred to simply as squares —

defined around each sample point with their sides normal to the axes of the 2D
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plot coordinate system — and not to the edges of the line representing the pattern.
The characteristic property of these squares is the total number of sample points
that occupy each of them, including their centers, called square occupancy and
denoted by Os.

The S&0s method is built to detect SOs as instances where one — trivially,
or more segments run through the area covered by a square, such that at least
one sample point of each of those segments occupies the same square, that is,
the Os of that square is at least equal to the number of the segments involved.
That number, i.e. the number of overlapping segments causing a SO, is called the
multiplicity Mo of a SO, such that Mp =1 means that there is no SO present,
Mo = 2 indicates the presence of a SO caused by two overlapping segments and
so on. As already suggested, the multiplicity of a SO is generally at most equal to
the occupancy Os of the square detecting the overlap, that is, Mp < Os, and the
equality only holds true when the sample points that contribute to Os — other than
its center — definitively and non-redundantly indicate the presence of an overlap.
The distinction between this latter class of points and the sample points generally
occupying a square will be revisited near the end of this section (Fig. 4.9), as it
is a vital attribute of the S&Os method. Since by design, S&0Os detects SOs
a certain way, this method will be considered successful only if it manages to
detect all the SOs present in the 2D projected trajectory, as those were defined
in the beginning of Sec. 4.2. The method’s success is therefore dependent on its
parametric configuration which is the main topic of the present section.

Figure 4.5 demonstrates the general idea behind S&0Os using the same tra-
jectory shown previously (Figs. 4.2 and 4.4), but for a much larger number of
iterations, N = 12,000, in order to dramatically increase the number of SOs and
fill up all multiplicity slots available (see legend of Fig. 4.5).

The set of square areas defined on the sampled trajectory is specified by two
parameters, both expressed in plot coordinates. The first one is the size of the
squares, which is represented by their side Sg;4e, and the second is the minimum
interpoint distance D of the sample introduced in the previous subsection. The
relative values of Sg4e and D play a key role in the setup of S&0Os, but in order
to properly weigh in on the process, at least one of them must be linked to some
known spatial characteristic of the pattern. This link is established according to

a few considerations which are presented below and illustrated in Figs. 4.6 — 4.8.
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Figure 4.5: Visual demonstration of the Squares and Occupancies process via a
worst case scenario of SOs. The trajectory is the same as in Figs. 4.2 and 4.4, but for
a larger number of iterations, N = 12,000. The squares plotted around the sample
points in the plot on the left are colour-coded based on the multiplicities of the SOs
detected. As indicated, the use of a much larger N caused a dramatic increase of
SOs of both types (self-crossings and contiguities). The colour scheme used tracks
SOs with multiplicity 1 up to 6, and the 7th multiplicity slot (black), includes all
occurrences of SOs with Mo > 7. The numbers in parentheses in the legend of
the figure report the number of SOs in each multiplicity slot. The plot on the right
is included for visual confirmation. Apart from the total number of iterations, the
trajectory and frame/plot specifications are the same as in Figs. 4.2 and 4.4. The
newly introduced parameters are the sampling distance D and the square size, which
is represented by their side Ss;4., and are defined by Eq. 4.9 and Eq. 4.8 respectively,
with distance factor fp = 0.628 and square factor fs = 1.5.

The fact that the general purpose of S&0Os is to go through a series of 2D
projected trajectories and accept or reject them using criteria based on SOs, makes
the notion of a smallest resolvable feature — a term borrowed from the world of
optics and optical systems — immediately relevant to this process. The smallest
features that need to be visually resolved in the current implementation are line
segments, which also happen to have a natural measure associated with them,
that is, the line width L.} . Specifically, assuming that two line segments run
parallel to one another (contiguity), since intersecting segments (self-crossing)
have no hope of being (spatially) resolved in the vicinity of the intersection, and
taking into account that the sample points are located at the midpoint of the line
width, the shortest distance between two segments that still allows them to be
distinguished as two separate entities is naturally defined as the line width L} .

This point is illustrated in Fig. 4.6a.
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Figure 4.6: Line width Vs square size in the SGOs method. (a) The shortest distance
between two contiguous line segments that still allows them to be distinguished as
two separate entities is the line width L}Egr (b) The smallest size of the squares —
represented by their side Ssiqge — S&0s should implement is ZLHZI, since it allows the
presence (absence) of a sample point within a detecting square to determine whether
a SO is present (absent) in the area covered by that square. This figure also shows a
contrary case, where an existing overlap is missed because the sample point that should
signify its presence falls outside a detecting square of less than the required size.

Each square is defined around a point of the sampled trajectory and its purpose
is to enable the identification and counting of other sample points occupying it,
as a means to detect SOs. In order to ensure that the S&0Os method does not
miss existing SOs due to it failing to cover a sufficient area around the segments
tested, the squares used for that purpose should be no less than a certain size.
Using the point made above, i.e. that the shortest distance between two line
segments that allows them to be visually resolved is L}, Fig. 4.6b shows that
the smallest size the squares should be allowed to have is 2L} . This condition
lets the presence (absence) of a sample point within a detecting square be an
indication of the presence (absence) of a SO. On the contrary, if Sgqge < 2L},
the sample point that should indicate the presence of a quite substantial overlap
would lie outside the test square and therefore be missed. The condition Sg4e is

subject to, is mathematically expressed as
Sside 2 ZLEgt ' (42)

where LI was defined in Sec. 3.1 as L.l = €1 SPLEC (Eq. 3.8), with SBEC given
by Eq. 3.9 (or Eq. 3.10), which simply involves other known parameters.
Having defined the minimum size Sg4. of the squares in terms of the line

width LL? (Eq. 4.2), allows the sampling distance D to be determined in relation
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to either of these two quantities. Generally speaking, D can be as large (small)
as one wishes it to be — within the bounds of any given trajectory (respecting the
limits imposed by the finite iteration step At of the RK4 integrator), but for the
purposes of S&0s the question is this: “Given L,Zﬂ)t and Ssig4e, how large can D
become before S&0s starts to fail detecting SOs?”. This immediately implies that
D should also be defined in terms of a limiting value, but contrary to Sg;4e, the
sampling distance will have a maximum value D,,,y.

A geometrical formulation of the above question in search of D, is schemat-
ically represented in Fig. 4.7, where it is seen to utilise a pair of overlapping seg-
ments, one of which (black) is used as a reference because the detecting squares
are defined around its sample points, and the other (blue) as the test segment,
since it contains sample points which must fall within the detecting squares in

order to indicate the presence of a SO. It is assumed that:

1. The angle between the horizontal axis of the plot coordinate system and the
reference segment is any 6,.¢ (counterclockwise), while the respective angle for

the test segment is any Orest.

2. The point of intersection — if there is such a point, since the lines treated here
are of finite width and segments running parallel to one another (O;est = 6;¢f)
can have zero up to infinite points of “intersection” — is located at the middle

of the line segment connecting two reference sample points.
. . o . . _ TH
3. The square size takes its minimum value, i.e. Ssqge = 2Lp,

4. The geometrical setup of the problem is “marginal”, i.e. it is such that the SO
is borderline missed — if the distance between the sample points is increased

even slightly.

In Fig. 4.7, as well as in the following discussion, the two types of SOs are
addressed separately. Despite this fact, however, it will soon become clear that the
search of D,,, presented is by no means exhaustive. In the case of self-crossings
(Fig. 4.7a), the “marginal” setup of the problem requires that the longest interval
x defined by the intersection of the test segment’s bisector and the two squares
be greater than or equal to the sampling distance D, that is, x > D. After close
inspection of Fig. 4.7a, it can be shown that the above condition is equivalent to
2L ply;

sin B,0f + sin Oeqt

D<

= Dinax(Brer, Btest)  (self-crossings), (4.3)

which defines D,,,, as a function of the two segments’ angles 6,.r and Oyes;.
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Figure 4.7: Partial derivation of the maximum sampling distance Dpqx as a function of
the angles O,.r and B:es¢ formed by the horizontal axis of the plot coordinate system
and the reference (black) and test (blue) segments respectively. The figures present the
“marginal” geometrical setup used in the derivation of Dpax = Dpax(Bref, Btest) for the
two types of SOs. The term “marginal” setup implies that S&Os will fail to detect the
overlap present if the sampling distance D becomes even slightly greater than x, which
is defined differently for self-crossings and contiguities. The detecting squares belong
to the reference sample points (black) and the test sample points (green) that signify
the detection of the SOs are shown as ticks. (a) Self-crossings: The condition x > D
with x the longest interval defined by the test segment’s bisector and the two reference
squares, leads to the definition of Dy,qy given by Eq. 4.3. (b) Contiguities: In this case
Otest = Brer. The condition x > D with x in this case the shortest respective interval,
leads to a different expression for D,,qy, given by Eq. 4.4. This derivation is incomplete
(partial), since the two cases examined are sufficient to reveal that D4 is a piecewise
function of the two angles, but fail to define it over its entire domain [0, 27] x [0, 21].

In the case of contiguities the situation differs slightly. According to Fig. 4.7b,
the “marginal” setup of the problem requires that it is the shortest interval x
defined by the intersection of the test segment’s bisector and the two squares that
should be greater than or equal to the sampling distance D. In other words, the
condition x > D stays the same, but x is defined differently. Closer — in this case —
inspection of Fig. 4.7b leads to a different condition for D and consequently, a
different expression for Dy, L.e.

Qref) LFT’gt

2 ) w056, Diax(Bref, Brest)  (contiguities) , (4.4)

D < (1—tan

where the two arguments of D,,,, remain in order to maintain a unified approach

despite the special cases treated.
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The results just presented invite a few important remarks:

m Defining D,,qx as a function of 8,.s and 6., means that it is a variable quan-
tity. For the sampling process of the 2D projected trajectory presented in
Subsec. 4.2.2, this means is that D,,, would have to be calculated multiple

times for each sample point while sampling the trajectory.’®. Alternatively, if

Dinax(Bref, Brest) has a global minimum value (Dmax)i[ﬁ,b, a perfectly viable option
would be to set D to some value less than or equal to that global minimum,
for which S&0s cannot fail under any circumstances. Maybe counterintuitively
but nonetheless in essence, this option makes the search of a constant D,y a

minimisation problem, which brings forth the next important remark.

m Having derived two functional dependencies of D, on 6, and 6. means
that D,y is a piecewise function; the seemingly inconsequential distinction
between the two expressions given by Eqgs. 4.3 and 4.4 using the two types
of SOs, namely self-crossings and contiguities, silently defines two different
domains of applicability for those expressions, with respect to the two angles

Oer and Bsesr. If at all present, the minima of D,,, as a piecewise function

loc
min’

are bound to be local, denoted by (Dyax) o5, Which explains the earlier mention
of a global minimum as the proper assignment for D. Another earlier mention,
however, concerning the fact that the cases presented in Fig. 4.7 do not represent
an exhaustive search of D,,,,, implies that the two expressions derived above —
with their implied sub-domains — do not cover the entire domain [0, 27t] x [0, 2]
this piecewise function is expected to have. In other words, the above results
do not include all the pieces of D4, and 6, and 6;.5; are not any angles as

stated in the initial assumptions.

If the purpose of deriving the complete piecewise function D,gx = Duax(Oref, Btest)

is to gain access to its local minima and from those obtain its global mini-

mum (D,,,ax)i’;;b allowing D to be defined as a constant, as is the case here, it
is worth noting that (a) it takes a laborious effort to derive all the pieces of
Dpax = Dinax(6rer, Btest), Which is “quadrupled” by the fact that the subsequent

calculation of its local minima requires the employment of the actual definition

ZWhat one would do in this scenario is start with the first sample point — used as reference —
and then find the next one through trial and error, i.e. by testing other points until one finds the
farthest point for which the condition D < Dax(6ref, Btest) is met. This process, which includes
the calculation of the two angles for every test point, would have to be repeated for every point
in the sampled trajectory.
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of one-sided limits of multivariate functions — instead e.g. of setting two partial
derivatives to zero and solving for the two angles, and (b) the cases examined ge-
ometrically during the derivation of D,,ax = Dinax(Brer, Btest) inevitably reveal its
actual minima before the function itself even gets written down. Adding to that the
fact that the results produced by S&0Os will ultimately be subjected to trajectory
acceptance/rejection criteria of a statistical nature (Subsec. 4.2.4), renders such a
quest futile, at best.

The two local minima competing for the place of D,.'s global minumum are
presented in two critical cases of SOs, one of which is a self-crossing and the other
a contiquity. Figure 4.8 schematically represents these two cases and derives
the respective conditions D must fulfill for each SO to be borderline missed.
Specifically, the self-crossing shown in Fig. 4.8a has the reference segment at
45° with the horizontal axis of the plot coordinate system, and the test segment
is normal to the reference, i.e. 8. = m/4 and By = 371/4. Similarly to the
preceding discussion, requiring that x > D leads to a condition that defines the
first local minimum of D,,,,, that is,

Self-crossing at (Oyef, Orest) = (71/4,37/4) : D < V2 LEH = (Do) 0> (4.5)
In the case of the contiguity shown in Fig. 4.8b, both segments are at 45° with
the horizontal, that is, 6,.f = Ot = 71/4 and the condition x > D leads to the

second local minimum of D,,,,, iL.e.

2
Contiquity at (Byef, Brest) = (11/4, 7/4) : D < Y. Lo = (Dmax) 5<% (4.6)

The two local minima given in Egs. 4.5 and 4.6 are differentiated by the addi-
tional superscripts SC-45 and C-45, which stand for Self-Crossing and Contiguity
at 45° respectively. The global minimum of D,,,, is the smallest of the two local
minima found, i.e. (D,,“,X)f,ffnC ® and is assigned to the maximum constant value
the sampling distance D is allowed to take to ensure that S&0Os will not fail under

any circumstances. D is therefore subject to the following condition:

o 2
D S (Dmax)gq[inb - ,I + \/— /Eﬁt (47)
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Figure 4.8: Calculation of Dy,4x’s global minimum (Dmax),’;,lﬁ,b based on two critical cases
of SOs. The self-crossing and contiguity presented are not simply “marginal” geometrical
setups each corresponding to a piece of D45 as the piecewise function of 6,ef and Byes¢ it
was shown to be (see main text and Fig. 4.7); the values given to the two angles are such
that Dy is locally minimised, i.e. takes the respective (local) minimum values of two of
its pieces. The figures on the left show the “marginal” setups following the same rules as
Fig. 4.7, and the figures on the right present an overview of the calculation of Dp,4x’s local

minima in terms of the line width Lﬁﬁt, both schematically and symbolically. (a) Self-

loc,SC-45
min

crossing with (6;ef, Btest) = (t/4, 37t/4): The local minimum is denoted by (Dy,qx)
and is defined as shown in the figure on the right (also given by Eq. 4.5). (b) Contiguity
With (Oref, Orest) = (1/4, /4): The local minimum is denoted by (Dpay) 5" and is
defined in the respective figure (also see £q. 4.6). The global minimum of Dy, is the

smallest of the two local minima, that is, (Dmax)gfi‘;b = (Dmax)f,ffr;c'45 ~0.83 LM . By
glob

not allowing the sampling distance D to become greater than (Dyax) i, » two important
tasks are achieved: First and foremost, it is ensured that S&GOs will not fail at detecting
SOs under any circumstances and second, having a constant maximum allowed D at its
disposal, the sampling of the 2D projected trajectory is allowed to remain the simple

process described in Subsec. 4.2.2.
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Based on the conditions Sg;4. and D are subject to, given by Eqs. 4.2 and 4.7

respectively, these parameters are defined in terms of L]} as

Sside = fs (2Lpn;) (4.8)

and 5
D=fp, |——— LV ) , 4.9
D (1 +\/§ Plot ( )

where fs > 1 and fp < 1 are multiplicative factors called square factor and
distance factor respectively.

In the beginning of this section, the inequality Mp < Os between the multiplic-
ity of a SO and the occupancy of the square detecting the overlap was attributed
to a distinction between two classes of sample points. The first class consists
of Mo sets of points, each of which corresponds to a segment running through
the detecting square. The sample points in those sets (a) form sequences on the
sampled trajectory, (b) belong to the segments causing the SO, and (c) fall withing
the detecting square. The points forming this class are collectively referred to as
sequential points, and their total number equals the occupancy Os of the detect-
ing square. The second class of points is formed by letting one sample point from
each of the above sets represent the segment it belongs to. The total number of
those points is equal to the multiplicity Mo of the SO, and since they definitively
and non-redundantly indicate its presence on the 2D projected trajectory, they
are called overlap points.

Figure 4.9 assists in making the distinction between sequential and overlap
points by schematically representing three overlapping segments of a trajectory
that was sampled according to the condition Eq. 4.7 imposes on the sampling
distance D. While every sample point shown has a square defined around it, the
figure only depicts three squares for clarity. The multiplicity of the SO detected
by each square as well as its occupancy are also shown in labels.

The number of sequential points in any given square contributed by each of
the segments causing a SO will vary, but generally depend on the density of
the sample — controlled by the sampling distance D, relative to the size of the
squares — controlled by S;4.. By detecting, grouping and counting points, the
main task of S&GO0s is to obtain the multiplicity Mo of each SO, i.e. the number of

segments running through each square. Fortunately, obtaining My is as simple
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a computational task as indexing the points of the sampled trajectory, in order to
later group the total number of points occupying each square into points that form
sequences; for each square, the number of those groups (sets) is the multiplicity
Mo of the detected SO.

Os=10

Figure 4.9: A detailed view of the inner workings of S&0Os. The figure schematically
represents the SOs caused by three overlapping segments using one reference (black)
and two test segments (blue and yellow). The three detecting squares shown in red, green
and blue are defined around three reference points (black — if not engaged). For clarity,
the figure omits the squares centered around every single point depicted. The sampling
distance D is less than the maximum allowed (Eq. 4.7), which causes a redundancy of
sample points within each of the detecting squares. The sequential points match the
colour of the square they fall into and are shown as ticks and stars, as opposed to points
that do not belong to any of the three squares which are shown as bullet points. The
overlap points — a subset of sequential points — are shown as stars and they include the
squares’ centers. As indicated by the labels of the squares, the occupancies Os of the
red, green and blue squares are 10,12 and 5 respectively, reflecting the total number of
sequential points each of them contains. The multiplicities of the SOs detected are 2,3
and 1 respectively, and they reflect the number of overlap points in each square.

Figure 4.9 also highlights a different aspect of the important effect the relative
values of D and Ss;4. have on S&0s. Conditioning this method not to miss existing
SOs is, admittedly, a “just cause”, but with a sampling distance as small as Eq. 4.7
dictates — always relative to the size of the squares, S&GOs is bound to detect and
record the same overlap multiple times. This shortcoming is remedied by deleting
duplicate records of SOs, i.e. instances of squares containing the same sample
points. Note that S&0Os only reports based on unique records of squares, which
means that the numbers in parentheses in the legend of Fig. 4.5 correspond — as

stated — to SOs and not squares.
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Figure 4.10: S&Os addresses the issue described in Fig. 4.2 as Hidden Beginning. The
segment around the ICs of the sampled trajectory in Fig. 4.4, also shown as figure (a) here
for comparison, overlaps with other segments of the trajectory. In figure (b) the trajectory
begins at the first sample point that occupies its square on its own, and is therefore
“free” from SOs. 3D ICs: (x&,xg,xg) = (—0.0381, —0.0846, —0.4230). As a result of the
process recreating the trajectory with the same number of iterations, N = 5,000, and

altering only the ICs, the treated trajectory has the same length as the original one.

After detecting the SOs present in the trajectory examined and before sub-
jecting it to the acceptance/rejection criteria discussed in Subsec. 4.2.4, S&0s
addresses the issue described in Fig. 4.2 as Hidden Beginning. This simple task
consists of checking whether the beginning of the pattern, i.e. the segment around
the point representing the trajectory’s ICs, is hidden by other segments of the
trajectory due to SOs, and if the ICs are indeed hidden, finding the first point
in the sampled trajectory that occupies its square on its own. The method then
resets the ICs to the point found, and starts over, i.e. solves the system using the
new ICs, samples the 2D projected trajectory and recalculates the multiplicities
of the SOs present. This is done in an attempt to maintain as much of the total
length of the pattern as possible; it is possible for the first “free” sample point to
be so far down the trajectory, that S&GOs ends up omitting a great part of it. This
process is illustrated in Fig. 4.10.
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4.2.4 Acceptance/Rejection Criteria

The data obtained from S&Os’ search for SOs on a 2D projected trajectory come
in the form of 7 integers, denoted by /\/g”g, with My indicating the multiplicity of a
SO. Each of those numbers represents the number of SOs of multiplicity Mo found,
after making sure the ICs are free of overlaps and deleting duplicate records. For
Mo =1,...,6, and (>)7 the number of multiplicity slots are 7, and NQ/IOO are the
numbers in parentheses in the legend of Fig. 4.5. The slot with My > 7 groups
together all SOs with multiplicities 7 and above.

The ultimate purpose of S&O0s is to determine the viability of a trajectory as
an NLCode pattern, in terms of its spatial characteristics, i.e. SOs. Using the data
obtained from its search, the method does this by applying two simple criteria.
Let Nsp be the total number of SOs found, that is

(2)7

Nso= Y Ni§. (4.10)

Mo=1

The fraction of SOs with multiplicity Mo is the ratio

Mo
Mo _ Nso
Nso

Mo=1,...,6 and (>)7. (4.11)

Considering that My = 1 indicates the absence of a SO, r' should ideally be
equal to 1 — for a trajectory completely free of SOs. Realistically, however, for
an acceptable trajectory r' is expected to be above some critical value r] .. less
than, but not too far from unit. On the contrary, since all Mp > 1 indicate the
presence of SOs, in these cases r™o should ideally be 0, and realistically below
some critical value r™ greater than, but not too far from zero. Tests performed on
a series of candidate trajectories confirmed that in order to determine whether a
2D projected trajectory is too overwhelmed by SOs to be worth processing further,

it suffices for it to be tested against the above criteria only for Mp =1 and 2, i.e.

>l (4.12a)
< (4.12b)

2

A set of values for r] .. and r?, that seem to accept trajectories which are later

confirmed to be viable NLCode patterns , are the following:

rl, =08, r’,=0.05. (4.13)

crit crit
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Figure 4.11 shows the above criteria in action not by listing entirely differ-
ent trajectories that either pass or fail them, but by using a single trajectory
as reference, start it from a state of complete rejection, and observe the drastic
changes required in order to make it pass the first and then both criteria given
by Eqgs. 412 and 4.13. The trajectory used as reference is the same trajectory
used so far (Figs. 4.2 — 4.5 and Fig. 4.10), and is shown in Fig. 4.11a in a state
of complete rejection. This trajectory only differs from the one shown in Fig. 4.5
in that S&0s has treated the former for overlapping ICs, according to the process
described at the end of Subsec. 4.2.3 (Fig. 4.10).

The initial trajectory is made to pass the first criterion by reducing the number
of iterations from N = 12,000 to 5,000 and more importantly, the square factor
from fs = 1.5 to 1. Note that either one of these alterations alone would not suffice
to make the trajectory pass this criterion. While reducing the number of iterations
might be an acceptable remedy in many situations where the trajectory can afford
it, changing the square factor can only be done during process standardisation,
i.e. when the optimal values of the control parameters are still being assessed.
This also brings forth the rather obvious observation that the real objective is not
to make a trajectory pass the criteria by any means necessary, but to make it
readable; contrary to what was done in this example, this may actually require to
tighten the conditions, i.e. increase the square factor fs instead of decreasing it.

Having observed the effects of N and fs on its performance, the trajectory was
next made to pass the second criterion as well, by decreasing the thickness factor
Oy from 0.01 to 0.006. As Eq. 4.8 suggests, this decrease has an effect similar
to that of the square factor’s decrease, and having already decreased fs in the
previous step, simply exacerbates it. The advantage of altering ¢74 instead of fs
is that, as a spatial characteristic of the pattern itself, 7 is more accessible than
fs which, as a parameter internal to the Generator, should be kept fixed across
several tests performed on different trajectories. The range of allowed values for
fryy is discussed in Sec. 4.4, where it is seen to span approximately one order of
magnitude between 10~3 and 10~2 (Eqs. 4.31 and 4.37).
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(a) Rejection with r' = 0.0625 < r! ., = 0.8 and r* = 0.1218 > r?,, = 0.05.

ICs after corrections (—0.0381, —0.0846, —0.4230), N = 12,000, fs = 1.5, éry = 0.01.
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(c) Acceptance with r' = 0.9461 > r! .. and r* = 0.0374 < r?,,,.

Q)

(b) Passed 1st criterion with r' = 0.8156 > r! ., but failed 2nd with r* = 0.1248 > r
ICs after corrections (0.0674,0.1054, —0.1969), N = 5,000, fs =1, ¢7y = 0.01.

2

crit*

ICs after corrections (0.0614,0.0993, —0.1732), N = 5,000, fs = 1, #ry = 0.006.

Figure 4.11: Spatial overlaps: From complete rejection to pattern acceptance: (a) The
reference trajectory passes from complete rejection due to failing both criteria given by
Egs. 4.12 and 4.13 to (b) passing the first criterion (Eq. 4.12a), to (c) passing both the
first and the second criterion (Eq. 4.12b). The trajectory specifications — prior to the
correction for overlapping initial conditions and unless otherwise stated in the captions

— are the same as in Figs. 4.2, 4.4, 4.5 and 4.10.
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4.3 Colour Overlaps — Input Palette

An NLCode pattern with no SOs at all would have all of its different sections
sufficiently separated from one another, and this spatial separation would be per-
ceived as a colour difference between the pattern and the white background of
the feature. Unfortunately, an NLCode pattern cannot be entirely free of SOs. A
colour difference between its overlapping segments, however, can be perceived the
same way spatial separations are perceived, which means that colour similarities
can be used in a way similar to the way SOs are used by S&0Os. As soon as
a trajectory passes the first round of tests concerning SOs, the next task of the
NLCode Generator is to test it for colour overlaps.

A Colour Overlap (CO) is defined as a SO of segments with matching colours.
Since the colouring of the pattern is the last fort against the undesired effect
of SOs, the criterion here is strict: There can be no COs. In order for a rigid
approach like this to be able to confirm trajectories as viable patterns of the
NLCode, the trajectories that passed S&0Os’ tests need to be inspected for COs
under several different colour schemes. According to Sec. 3.4, the period P of the
feature’s colour profile is the appropriate parameter to vary in this case, since it
controls the colour gradient formed on the pattern (Fig. 3.12).

The NLCode Generator begins the creation of the colour schemes that are to
be tested by defining a set of periods as follows: Given an appropriately chosen
interval [Ppin, Pnax], which the periods of interest should be drawn from, and a

desired number Np of those periods,
Pmax - ’Dmin
Np — 1
AP

Pl.:{Pmm—k (i—1)J, i=1,...,Np, Np>1, (414

defines a sequence of periods {P;} in ascending order. The floor function, denoted
by |-], rounds down its argument to the nearest integer’’, which means that the
periods P; are defined as integers after all (see end of Sec. 3.4) — a choice made
simply for convenience. The minimum and maximum periods are defined with

respect to the length of the trajectory, i.e. the number of iterations /N, by equations

Poin = /r:i”, and P = /n\jl.n, (4.15)
rep rep

29Formally, the floor function of a real number returns the greatest integer that is less than or
equal to its argument.



4.3. COLOUR OVERLAPS — INPUT PALETTE 115

max max
rep and nrep

of times the colour base B (Eq. 3.63) of the profile is to be repeated on the

where the divisors n indicate the maximum and minimum number

pattern respectively. The suggested values for these parameters are n;* = 20

min — 3, but they can be set to any reasonable values between N and 1

and nyg,

deemed appropriate, in any given application. Lastly, the number of periods tested
should be relatively large, for example Np ~ 10, or even larger, in order to give
trajectories a chance to pass the COs test.

A trajectory that passed the SOs test needs to be examined for COs under
every colour scheme defined by the periods in the above sequence {P;}. In order
to do that, the Generator makes use of S&GOs’ results. For every colour scheme
defined, a new process begins at the top level of SGOs’ structured output, which is
the multiplicities My of the detected SOs, and descends to the individual squares
that have detected SOs with Mp > 1 — no point in looking for COs in the absence
of SOs, before it can calculate and compare the colours of the overlap points
(Subsec. 4.2.3) contained in each square.

The calculation of the gradient colour ¢, an overlap point has under a given
colour scheme of period P;, is done using the interpolation formula defined in
Sec. 3.4 (Eq. 3.66). It is reminded that the subscript n marks the indexed position of
the overlap point in the complete 2D projected trajectory, i.e. before the sampling.

Colour models represent colours as vectors, and in the case of the RGB colour
model used in this study, these vectors are 3D and their three components corre-
spond to the red, geen and blue channels. Generally speaking, colour comparison
can be performed simply by using the Euclidean distance d(c;, ¢;) between colours

¢ = (c], ¢, c}) and ¢; = (c], ¢}, ¢}), which is defined as

dlci, ) = lei— ¢l = /(] = 2+ (P = PR+ (P — )2 (416)

The colour profile of the NLCode, however, forms a smooth gradient (Sec. 3.4),
which means that expecting d(c;, ¢;) to be exactly zero in order to match colours
¢; and ¢; is not the best practice; a process that reports a mismatch between two
colours based on the fact that d(c;, ¢;) # 0, even though d(c;, ¢;) may be less
than, say 10~*, would utterly fail at detecting any COs at all. One could instead
define a critical value d..; close to zero and demand that d(c;, ¢;) > d..i; before
recording a colour mismatch, but determining an appropriate value of d;; can

also be troublesome.



116 4. THE NLCODE GENERATOR

A more robust way to compare colours is to define a colour palette, i.e. a short
sequence of appropriately chosen distinct colours, and then assign to each of the
overlap points tested, the palette colour closest to the gradient colour c, of that
point. In practice, this is done by calculating the distance d between the gradient
colour ¢, of an overlap point and every colour of the palette (Eq. 4.16), and
identifying the palette colour that corresponds to the minimum of the calculated
distances. The fact that each palette colour has a certain index in the palette
sequence conveniently makes colour (mis)matching a simple matter of comparison
between integers.

The colour palette is also referred to as input palette, complementing the
output palette introduced in Par. 5.2.2.3. The input palette is denoted by P;,, and
an obvious choice for it is either one of the colour bases B¢ and B™ defined in
Sec. 3.4 (Egs. 3.63, 3.67 and 3.68), including only the first N;, distinct colours in
them, i.e.

Pin = {bi}, for by €B and k=1,...,N;,. (4.17)

Once each overlap point has been associated with the index k of one of the colours

in the palette sequence, a colour mismatch between two points is confirmed if
|ki — ki| > &, (4.18)

where k¥ > 1 is the minimum index distance two colours can have in order to be
considered distinct or non-overlapping. The obvious choice in the case of P;, is to
set k = 1, since both colour bases are relatively small. Generally speaking, the
less contrasting — or more similar — the colours in a palette are, the more strict
this condition can become, by setting x to a higher value.

In summary, for every colour scheme defined by sequence {P;}, the Generator
accesses the multiplicity slots with My > 1 and at least one square in them —
since the presence of a SO is a necessary condition for a CO to exist. It then
descends to the square level of each multiplicity slot worth testing, and accesses
the overlap points of each square in that slot. A pairwise comparison of the palette
colours assigned to each of the overlap points occupying a square based on the
condition given by Eq. 4.18, determines whether a CO is present or not. If at least
one pair of overlap points is found to have matching colours, the entire colour
scheme is discarded and the Generator moves on to the next period P;. The two-
page Fig. 4.12 demonstrates the results of this process with a few characteristic

examples of colour schemes that either failed or passed the COs test.
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1(314)
2 (13)

o

(a) SOs: Acceptance with r' = 0.9602 > r! .. = 0.8 and r* = 0.0398 < r?,, = 0.05
ICs after corrections (—0.0308, —0.0675, —0.3341), N = 4,000, fs =1, ¢y = 0.01.

atial Overlaps
w
C

Period: 832
Palette: Input

(b) COs: Rejection with 2 COs in slot with SO multiplicity of M = 2.
Colour scheme: P = 832 — slow gradient, P;, = B¢ (Eq. 3.67).

W70

Period: 233
Palette: Input

(c) COs: Rejection with 4 COs in slot with SO multiplicity of M = 2.
Colour scheme: P = 233 — fast gradient, P;, = BHve.

Figure 4.12: Colour overlaps: Varying the period P of the feature’s colour profile allows
the creation of one or more colour gradients which render the pattern completely free of
COs. Since spatial separations are perceived as colour differences between the pattern
and its white background, relieving a pattern of COs provides a workaround to the
undesired effect of SOs. (a) Trajectory passes the SOs test. (b) Colour scheme with
large period is discarded due to COs. (c) Discarded colour scheme with small period.
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Period: 1002
Palette: Input

(d) COs: Acceptance with 0 COs in all SO multiplicity slots.
Colour scheme: P = 1002 — slow gradient, P;, = B¢ (Eq. 3.67).

Period: 609
Palette: Input

(e) COs: Acceptance with 0 COs in all SO multiplicity slots.
Colour scheme: P = 609 — moderate gradient, P;, = BHue.

1(0)

2]
SH2(0
g W30
O M40
3 M5
S M6 ()
W70

Period: 386
Palette: Input

(f) COs: Acceptance with 0 COs in all SO multiplicity slots.
Colour scheme: P = 386 — fast gradient, P;, = BHue,

Figure 4.12 (cont.): Colour overlaps: The colour-coded squares detecting SOs (Fig. 4.5)
are overlaid with a darker theme to indicate the presence of COs, the number of which
in each multiplicity slot is shown in parentheses. In the figures to the right, the gradient
colours have each been replaced by the colour of the input palette closest to it (see main
text). Figures (d), (e) and (f) show successful colour schemes with large, medium and
small periods, which correspond to slow, intermediate and fast gradients respectively.
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The last task of the Generator before rendering the final form of NLCode, is
to address the aesthetic issue referred to as Abrupt Ending in Sec. 4.1 (Fig. 4.2).
According to the definition of the NLCode’s colour profile, the first colour in all
patterns is yellow, that is, provided the ICs are free of SOs, which at this stage
of the generation process has already ben taken care of. An Abrupt Ending is
defined as an instance where the pattern ends with any colour other than yellow,
and it is addressed simply by finding the position of the last yellow point in the
2D projected trajectory, update N to that number and thereon only render the
trajectory up to that point. Note that for a slow to moderate gradient, i.e. a large
to medium period P (see e.g. Fig. 4.12b, Fig. 4.12d, and Fig. 4.12e), this process
may have to discard large portions of the trajectories, and end up reducing the
length of the patterns significantly. This is why fast gradients (see e.g. Fig. 4.12)
— but not too fast (Fig. 4.12c) — are generally preferred, and one of the reasons
the Generator at the present stage of development offers a few choices regarding
the final form of the NLCode. Figure 4.13 shows the effect of this last process on
a trajectory. The final result is a pattern that gradually emerges from the white
background in the beginning and fades into it at the end, thus taking a small

amount of effort to locate its two ends.

Y

Y Y
NG

(a) Abrupt — red — Ending (b) Yellow Ending

e

A
N

A
\

b
b

Figure 4.13: The Generator addresses the issue described in Fig. 4.2 as Abrupt
Ending. The first colour in all patterns is yellow; even if its initially hidden, this
attribute becomes unequivocally visible after a pattern is treated for Hidden Be-
ginning (Fig. 4.10). The last task of the Generator is to make sure the patterns also
end in yellow. This is an aesthetic issue that once treated, it allows patterns to
fade in and out of the background, sometimes making it seem like they are closed
curves with no beginning and end. Both figures show the same trajectory earlier
treated for COs (Figs. 4.12 and 4.12f in particular), but for N = 5,468. Figure (a)
on the left shows the pattern before being treated for Abrupt Ending, where it is
seen to end in red, and figure (b) on the right after the treatment.
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4.4 Bridging Worlds: NLCode’s Operating Window

The NLCode — NLC in notation — is a feature that is generated digitally with the
purpose to be printed in a given print size SPLC,, and be captured by a digital
camera with certain specifications (Table 4.1), at some working distance W from

the feature. In this context, the term Operating Window (OW) refers to:

m The range of allowed print sizes of the NLCode for a given working distance,

and conversely,

m The range of allowed working distances for a given print size of the feature.

As the following analysis will show, the theoretical estimation of the NLCode’s
OW requires the employment of quite a few important concepts, models and for-
mulas, most of which relate to the capabilities of digital photography to faithfully
reproduce images of physical objects. However, before the NLCode becomes a
physical object, it needs to be digitally created, which is why the three-step pro-
cess generation-printing-capture outlined above starts with a digital object, which
is transferred to the analog world via printing, and is then captured as a digital
object once again.

Notice that Eq. 3.8 (Sec. 3.1) and Eq. 4.19 below, both express the same
relationship between the line width and the feature’s size, but each does so in
terms of different “instances” of the these quantities; the former is written with
respect to the plot coordinate system and the latter with reference to the printing
process (also see the comment on notation earlier made), i.e.

Lprne = Cri Sprist (4.19)

rint

where L} is the physical line width of the pattern when printed, and 74, the
thickness factor introduced in Sec. 3.1. Equation 4.19 reveals the silent — yet rea-
sonable — assumption that the proportionality constant between L}/ and SAHLC,
i.e. the thickness factor 74, is not affected by the conversion of the digitally gen-
erated NLCode to its printed version. This equation is important for the following

reasons:

1. It is, in essence, a relationship innate to the first digital medium, i.e. the

NLCode Generator, whose effect is transferred to the analog world.
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2. As will soon become clear, L. = is a quantity directly related to limits of
resolution in general and as such, is of highest importance to both printing and
capture. Therefore, through L1 . Eq. 4.19 also provides a link between the

analog and the second digital medium.

3. Last but not least, the thickness factor #ry is the only parameter the Generator
heavily relies on, that has not yet been specified. By making it a part of the
present analysis, Eq. 4.19 creates the opportunity for certain choices made
with regard to ¢r4's range of suitable values, to be properly addressed and

substantiated.

For the above reasons, Eq. 4.19 is thought to form a “bridge” between the dif-
ferent media associated versions of the NLCode, and the best formula to begin a
parametric study that involves all three of them.

Given a particular camera with a lens of focal length f and assuming a dis-

tance W between the captured object and the camera sensor, often called working
Obj

cens to the physical size

distance, the ratio of the size of the object on the sensor S
of the object 5,9,‘,7;5 equals the ratio of f to W. This relationship is mathematically

expressed as
D (4.20)
j
SPhgs

and is derived based on the simplest camera model, called pinhole camera (Jahne,
2004). Note that the letter ‘'S’ is used here to denote size, which can refer to either
width or height, as long as this choice is consistent throughout all calculations.
The resolution of a digital camera is usually given as either the number of
pixels in the horizontal, Nf, ., and vertical, N}, ., dimensions of the sensor, e.g.
(N o; X NY...;) pixels, or as the evaluated product Np;. of these two numbers
in megapixels (MP), along with the sensor’s aspect ratio a:b, i.e. 107° Np;o; MP,
in a:b ratio. The camera used for the development of the NLCode for example, is a
12 MP camera in 4:3 ratio, or 4032 x 3024 pixels (Table 4.1). It is an obvious fact
that for a picture of a physical object to contain its entire image without cropping
any parts of it, the object’s size on the sensor must not exceed the smallest of the

two sensor dimensions, i.e.

SSOE?I{S S min [N:‘I;Iixel' Ngixel] : SPixel . (421)

Sens

Notice that, since the above inequality refers to sizes on the sensor, it does not

involve the distance W between the camera and the object, even though, for a
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given size of the physical object, it is W which must be adjusted in order to
satisfy the inequality.

Cropping is the first undesired effect of moving the camera too close to the
object. If that is ignored, or if the object is too small to cause this issue, the
next possible problem is the inability of the camera to focus on the object. The
last camera specification of relevance to this study is the minimum focusing dis-
tance W2bs which, for a camera equipped with a particular lens, is the minimum
distance between the object and the camera that allows an optimal focus on the
object. The obvious limit set by W/ on the working distance is expressed by the
following inequality

W > Wi (4.22)
Table 4.1 lists the specifications of the camera used for the development of the
NLCode that are necessary for the theoretical estimation of the NLCode's OW.

Table 4.1: Specifications of interest of the iPhone 6S Plus’
primary (rear) camera (Device Specifications, n.d.).

Model | Sony IMX315 Exmor RS
Focal Length f | 4.02 mm
Pixel Size S£*¢l 1 1.19 x 1073 mm
Camera Resolution (N5, ., x N§...) | (3024 x 4032) pixels
or Npjer in a:b | 1219 MP in 4:3

Minimum Focusing Distance W25 | 50 mm

min

One of the first quantities of interest to any system relying on the processing
of images captured by a digital camera is the Smallest Resolvable Feature (SRF)
that can be utilised by that system. In Subsec. 4.2.3 it was argued that the
smallest features of the NLCode that need to be visually resolved are transverse
line segments, and the shortest distance between two segments that still allows
them to be distinguished as two separate entities, i.e. the SRF, was defined as
the line width L. of the pattern (Fig. 4.6a). However, Subsec. 4.2.3 makes a
heuristic use of the term SRF, and the context of SOs and the S&Os process
used to identify them is quite different from the present context, which this term
properly belongs to. In order to be visually resolved, the line width L} = on a

printed NLCode must be at least equal to the respective size of the SRF, i.e.
LLH > SpRE (4.23)

Print = ~Print *
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According to the Nyquist-Shannon sampling theorem (see e.g. Couch II, 2013),
a CT, bandlimited signal can be perfectly reconstructed by samples taken at a
rate f; greater than twice the signal’s highest frequency content B, i.e.

fo=1T. 1

fi>2B——> T, < —, 4.24
> <ZB (4.24)

where f; is called sampling frequency or sampling rate and is measured in Hertz
(Hz), and T, = 1/f; is the sampling interval, measured in seconds. Equation 4.24
is often referred to as Nyquist criterion, the minimum sampling rate f; i, = 2B
Nyquist rate or Nyquist frequency, and similarly the maximum sampling interval
Tsmax = 1/2B Nyquist sampling interval.

The sampling theorem is stated the same way regardless of whether it is
applied to signals in 1D, such as audio or electrical signals, or in 2D, such as
images (Gonzalez & Woods, 2008). This is despite the fact that the independent
variable in the former type of signals is time, and in the latter is space in 2D. This
suggests that the quantities sampling rate f; and its conjugate sampling interval
T, may be subject to different interpretations in the case of images. Taking as
reference the right hand side version of Eq. 4.24 expressing the Nyquist criterion,
note that 75 is the interval representing the “shortest addressable element” in the
discrete or discretised (sampled) signal, while 1/B is the interval representing
the “shortest lived occurrence” in the original, CT (unsampled) signal, as that is
measured on the recording instrument. In the case of digital images, the “smallest
addressable element” in the image is the pixel, and the “smallest occurrence” on

the original scene captured is the SRF, as that is measured on the camera sensor.

Pixel
Sens

By letting the size S of the pixels on any given sensor replace 7, in the above

SRF

inequality, and the size S27,.

of the SRF on the sensor replace 1/B, the Nyquist

criterion reads

SSRF > ZsPixel

Sens Sens !

clearly stating that the image of a physical object can be perfectly reconstructed
by a digital sensor, if the size of the image’s SRF on the sensor is at least twice

the size of the sensor’s pixels.

307 signal is said to be (absolutely) bandlimited, if there exist two finite frequencies f,;, and
fmax, such that the signal has no spectral components outside the interval [fuin, fmax] (Couch I,
2013). The term highest frequency content of a signal refers to the maximum frequency f,4x, and
is usually denoted by B.



124 4. THE NLCODE GENERATOR

Note that, as Gonzalez and Woods, 2008 emphasize, perfect recovery is en-
sured only if the sampling rate exceeds the Nyquist frequency. On a similar note,
a more conservative criterion suggests that since the sampling theorem was orig-
inally formulated for 1D signals, it does not sufficiently accommodate the needs
of signals in 2D. According to this criterion (see e.g. Andor Oxford Instruments,
2017), a faithful representation of objects can only be achieved if the size of the

SRF on the sensor is at least three times the size of the sensor’s pixels, i.e.

SSRF 2 3 SPixel ) (425)

Sens Sens

Equations 4.19 — 4.23 and 4.25 form the basis for the subsequent analysis.

For a given working distance W and thickness factor #r4, the size SHLC. of the
printed NLCode should not be so small that the SRF is not adequately resolved.
The minimum print size SYC. - is found form Eqs. 4.19, 4.20, 4.23 and 4.25, by

Print, min

taking S2R7 equal to 3 SE*¢!, i.e. adopting the conservative version of the Nyquist

criterion, and making the appropriate substitutions and rearrangements of terms:

Pixel

3
SNLC, Ly = S5es < GLE (4.26)
' f-lry

In order to prevent erroneous clippings of the NLCode’s image, SH.¢, should also

not be too large for the given working distance; for the purpose of this calculation,

W is assumed fixed and less flexible than the feature's size. Using Eqgs. 4.20

and 4.21, the NLCode’s maximum print size SpS, .., is found to be
min INE. NY ] . SPixel
NLC [NPixet: Nbivel] - S8 NLC
SPrint,max = = f = 4 > SPrint : (427)

Equations 4.26 and 4.27 can be rearranged in order to provide the maximum
Wiax @and minimum W,,;, working distances for a given print size Sprmt and fry,
that is,

flry
max = 3 gPixel “Shine = W (4.28)
Sens
and f
Woin = e SPrint S W, 4.29
min [Nllg’lixel' NI\D/iXé‘[] . Sg:;’i[ Print = ( )

respectively. The physical meanings of W, and W,,;, are analogous to those

of their size counterparts. Specifically, W,,4x is the maximum working distance
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from an NLCode of print size SPC, that will allow the SRF to be adequately
defined on the captured image, and W,,;, the minimum distance that will prevent
the cropping of the same NLCode's image.

Winax and W, are subject to two conditions, each of which provides more

insight into the parameters involved in the specification of the NLCode's OW.

1. The first condition simply states the obvious — but not trivial — fact that the
minimum working distance must be less than or equal to the maximum working
distance, i.e.

Wmin S Wmax .

Making the appropriate substitutions to the left and right hand side of the

above inequality defines an absolute lower threshold €777 . for the thickness

factor as

eAbS 3

TH, min — < €TH ' (430)
mun [Ngixel' NI\D/ixel]

If the denominator in the equation above is set to the approximate value of 3000

pixels (see Table 4.1), then the lower threshold of ¢4 is estimated to be
o 1073 (4.31)

Note that the term absolute is generally used to indicate that the threshold
in question — minimum, maximum — does not depend on one or both of the two
main variables S}LC. and W, nor does it depend on the parameter ¢r; — all

subject to the threshold defined and the relevant context.

2. The second condition has already been discussed. It relates to the second issue
raised when W becomes too small; the camera is unable to properly focus on
the NLCode. Since according to Eq. 4.22 the working distance must always
be greater than or equal to the minimum focusing distance W25, so does W,,;,

given by Eq. 4.29. The inequality

Wm[n 2 W,:‘S,Sr (432)
defines the absolute minimum print size Sﬁ,ﬁgﬁnﬁ’fn of the NLCode
GNLC,Abs 3 Sens WAbs « gNLC 433
Print,min — ”T ’ min < Print ( : )
TH, min

which, for the known values of all the parameters involved is found to be

SNECADS 4 44 cm (4.34)

Print, min
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Like the limiting values of the working distances, SRS, .., and SRS, ... that

is, the minimum and maximum print sizes of the NLCode respectively, are subject

to analogous conditions:

1. The fact that the minimum print size must not be larger than the maximum print
size of the NLCode, i.e.

gNLC gNLC

Print, min

simply reproduces Eq. 4.30 concerning the absolute minimum value of #74.

2. Before subjecting the working distances to their respective conditions, there

was no absolute minimum value for the print size of the NLCode. Equation 4.33

NLC

Print.min Must also be

changed that, so now S

SNLC > GNEC.Abs (4.35)

Print,min < ~Print, min

This condition sets an upper limit to the thickness factor ¢, for a given working
distance W, that is,

Uit max = —2eM0 W > Ory (4.36)

This limit simply — although not straightforwardly — enforces the “hard” limits
Sﬁ,ﬁﬁ;f*ﬁfn and W2bs set on the print size of the NLCode and the distance between

the camera and the feature respectively. The main observation is that if, for any

given W, ¢14 is allowed to become greater than €74 ey, then Eq. 4.35 might

be violated, since the increased €7y will decrease Sp5, ., (Eq. 4.26), without
affecting S%g;f‘n&fn (Eqg. 4.33). Ignoring the existence of sﬁ,ﬁffnﬁ’fn, one might

create an NLCode of size less than that. In such an event, even if one uses
the raised value of ¢7y, and therefore preserve a value of L. =~ that meets
the condition set by Eq. 4.23, i.e. ensure that the lines of the pattern are
adequately defined, that smaller size of the NLCode will cause a decrease in
Winin — possibly making it less than W55 thus creating the potential to face
a focusing problem. Moreover, if one creates a small NLCode but using a low
Ory, LLH . might become less than SR’ . adding low definition to an already
poor setup. In other words, this last condition set on 74 ties up the one loose

end that could jeopardise the consistency of this analysis.
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Determining an absolute upper limit for #ry is not as straightforward. The
requirement that L} = > SaRF (Eq. 4.23) has already led to the definition of

SPES, min (EQ. 4.26), and it would be trivial — to say the least — and of no practical
use to suggest that Sp1S, . > SpR!.. The upper threshold for ¢7;; can only be

determined iteratively, i.e. through trial and error, by the NLCode Generator which
tests different trajectories against criteria based on spatial considerations. The
thickness factor ¢ry was introduced into the NLCode scheme exactly in order to
render the Generator independent of the intended print size S5LC. of the feature.
Therefore, regardless of the intended print size of the NLCode, by increasing 74
from some small value, the Generator will start failing an increasing number of
trajectories, and eventually reach a point — for some critical value of ¢ry — where
it can no longer find any trajectories that meet the criteria. The upper threshold
for the thickness factor should be set lower than that critical value. Note that
since this process is independent of the size of the NLCode, and therefore also
independent of any intended working distance, this upper threshold is an absolute
one, and for this reason is denoted by ¢77 . A search based on the description
just given suggested that

0302 g =2 1072 (4.37)

is a good estimate for this upper threshold.

H H s Pixel H 1%
For a given camera, i.e. for known, fixed values of f, S, Np.. .., and Ng, ..,

as well as some preset value for 14, Eq. 4.26, 4.27, and Eq. 4.29, 4.28 define a

linear dependence of

m The minimum and maximum print size of the NLCode, on the working distance

and

m The maximum and minimum working distance, on the print size of the NLCode
respectively.

SNLC

Print, min and

Note that (a) while the thickness factor enters the definitions of
NLC

Print, max

Wiax @s a parameter, S and W,,;, do not depend on ¢4, and (b) the slope

of SPE, in @s a function of W is inversely proportional to €1y, and the slope of
W,ax as a function of SPLC. is proportional to frpy.
Taking the values of the parameters entering Eqs. 4.26 and 4.27 from Table 4.1,

the quantities Sp-C:A% " SNLC (9, W), and SKLC, (W) are plotted in log-

Print, min’ ~Print, min Print, max

arithmic scales — such that the slopes of the straight lines plotted are indicated

by the ordinates of the respective lines — and shown in Fig. 4.14. This figure
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describes a situation in which, given a specific working distance W, one inquires
as to the minimum and maximum allowed print sizes of the NLCode, as well as

the maximum thickness factor ¢y nax (EqQ. 4.36).

Figure 4.14: NLCode’s Operating Window: Print size Vs Working distance: Absolute

NLC, Abs NLC (6ry; W) and maximum SNLC (W) allowed

Print, min’ mintmum SPrint, min Print, max

minimum S
print sizes of the NLCode, the second parametrised by the thickness factor ¢ty — as
indicated in the legend to the right, and the latter two as functions of the working
distance W. The light blue shaded area marks the NLCode’s OW in terms of print size
and working distance. The absolute upper threshold E?‘b,f' max imposed on ¢ty by the
NLCode Generator creates a critical working distance Wi+ (Eq. 4.38) which sets the
upper limit of the thickness factor to €11 max(W-) (Eq. 4.36) for W = W_ < W, and
to a fixed ﬁ?‘,lfflmax (Eq. 4.37) when W = W, > W,it. The dark grey arrows show the
range of allowed values of the thickness factor, in each case. The minimum print size
of the NLCode is given by Eq. 4.26 in all cases, simply becoming Sgﬁgl’f\n?fn (Eq. 4.33)
when W < W,,is. The grey areas surrounding the OW represent the forbidden ranges
of the parameters involved. Each of those areas is marked by a light grey arrow whose
beginning indicates the limiting value of the relative parameter, and its end leads
to a descriptor of the ultimate cause of the limitation. For example, the descriptor
Definition refers to the print size becoming too small for the SRF to be properly
defined (Eq. 4.23). Given a fixed value of 01 within the feature’s OW — in the example
shown in orange, ¢y = 0.002 — and an intended working distance, say W = Wq,s, the
minimum and the maximum allowed print sizes of the NLCode are found from Eqs. 4.26

and 4.27 respectively.
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According to the preceding analysis, Eqs. 4.26, 4.27 and 4.36 should straight-
forwardly provide the answer to the above inquiry. However, the absolute up-
per threshold €7% =~ (Eq. 4.37) is not a result of the analysis, but rather an

additional restriction imposed by the NLCode Generator. In Fig. 4.14, this re-
NLC

striction is shown in the lines representing Sp,;; min

(¢7H; W) for various values

of 7. If the thickness factor was allowed to increase beyond €77 . those

lines would extend to lower ordinates — remember the inverse proportionality

between SNEC, . (¢ry; W)'s slope and fry — without limitation. Because of

0 . however, this is not the case. The effect of this “externally” imposed
GNLC, Abs

Print, min

threshold is that, through the intersection of the lines representing and

SPES min(€29 maxi W), it creates a critical value W, of the working distance,

Print, min

given by
i
Werit = 5 S Wibs. (4.38)
TH, min

For W =W_ < W, the maximum thickness factor is &1y max(W-), given by
Eq. 4.36, and the print size's lower threshold is SNLE, Abs given by Eq. 4.33

Print, min’
(also by Eq. 4.26 for the appropriate parameter values). When W = W, > W,

the maximum thickness factor is fixed to €777 . ie. it stops following Eq. 4.36,
and the print size’s lower threshold is given by Eq. 4.26.

Figure 4.15 describes the opposite situation, where given a specific print size

SNLC

priny ONE inquires as to the minimum and maximum allowed working distances

of the NLCode, as well as the maximum thickness factor 7y nax (Eq. 4.36). This
case is much simpler than the previous one, since the absolute threshold £7%7
imposed by the Generator does not create any critical values of the print size
— analogous to W, of the case earlier examined. The reason for this is that
this time, the thickness factor ¢7; parametrises the maximum working distance
Winax(€rr; SREC.) (Eq. 4.28), which is not linked to any “hard” limits of the pa-

rameters involved — as was the case with SYLC (07, W). Provided the de-

Print, min
NLC, Abs
Print, min

sired print size remains above the absolute minimum threshold S given by
Eq. 4.33, the thickness factor is free to take any value within its absolute range
given by Eqs. 4.31 and 4.37, and the range of allowed working distances will be

defined by Eqs. 4.28 and 4.29, after the appropriate parameter assignments.
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Figure 4.15: NLCode’s Operating Window: Working distance Vs Print size: Abso-

lute minimum Wnﬁ‘f’,f, minimum Wmm(Sﬁrﬁ.gt) and maximum W ax (O7H; ngigt) allowed
working distances, the latter parametrised by the thickness factor ¢y — as indicated

in the legend to the right, and the latter two as functions of the print size Sﬁrﬁgt of

the NLCode. The light blue shaded area marks the NLCode’s OW in terms of working
distance and print size. Given a fixed value of 1y within the feature’s OW — in the
example shown in magenta, ¢Ty = 0.004 — and an intended print size Sﬁfigt, the min-
imum and the maximum allowed working distances are found from Eqs. 4.28 and 4.29
respectively. The thickness factor in this case is free to take any value within its ab-
solute range given by Eqs. 4.31 and 4.37. This figure is colour-coded and marked the

same as Fig. 4.74.
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Results & Discussion

It is however certain, that no estimate is more in danger of

erroneous calculations than those by which a man computes
the force of his own genius.

SAMUEL JOHNSON,

Rambler, No. 154 (Murphy, 1840)
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5

The NLCode Reader via a Demo App

5.1 NLCode Capture: Target Area

@ & @

Figure 5.1: Demo App - Camera View with Target Area On: The first view of the Demo

App shows the current scene from the camera’s viewpoint. The Target Area Button
(top-left) is a toggle switch which controls the UIE called target area. The target area
is a semi-transparent view with a transparent ring at its centre, whose purpose as a
UIE is to help the user take a “good” picture of the NLCode, i.e. a picture that can
be used by the processes of the Demo App following capture. The Torch Button (top-
centre) is another toggle switch which turns the torch of the iPhone on and off. The
torch can, in some cases, improve the lighting conditions and therefore the feature’s
performance. The user also has the option to scan a picture of the NLCode previously
taken, by tapping the Photo Library Button (top-right). The Capture Button (botton-
centre) has the obvious main use of the view, which is to take a picture of the NLCode
aimed at. Lastly, a Focus Indicator (not shown), is an animated “blinking” circle which
appears when the user taps in the area they wish the camera to focus on.

133
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Figure 5.1 shows the first view of the Demo App. This view is called camera
view because it displays the current scene from the camera’s viewpoint. In the
instance shown, the iPhone’s primary (rear) camera (Table 4.1), hereon simply
referred to as camera, is pointed at an NLCode, which was printed on regular matte
paper using a consumer inject printer. The User Interface (Ul) on the camera view
presents the user with the options available to them. Each option corresponds to

one of the User Interface Elements (UIEs) described below.

= Top View (left to right):

» Target Area Button — All User Interface Buttons (UIBs) are control elements,
and a large majority of them are called toggle switches because they operate
two states of the function they perform, or the UIE they control. The Target
Area Button is a toggle switch, and its function is to insert/remove another
view into/from the camera view. This overlay view contains a very important
element of the Demo App called target area, which serves as more than
a UIE, and whose purpose will be discussed in this section, as well as in
Subsecs. 5.2.3 and 5.2.4. The Target Area Button takes its name from that

element, and its icon is a target or, more appropriately, a reticle®'.

» Torch Button — The Torch Button is also a toggle switch, which turns the
torch of the iPhone on and off. The use of colours in the NLCode scheme
makes it very sensitive to lighting conditions and an illuminated scene can
counteract both low light conditions, and interference form ambient lighting
or other light sources (see Subsec. 5.2.2). The icon of the Torch Button is a

flashlight which is crossed out when the torch is off.

» Photo Library Button — The Photo Library Button gives the user the option to
use a picture of the NLCode previously taken. Tapping this button opens the
Photos App on the user’s device and provides access to their Photo Library.
The Photo Library Button is mostly a developer’s tool, which is necessary in
order to reproduce bugs and apply fixes during development. The icon of the

Photo Library Button is a standard system symbol of a photo stack.

31 A reticle, or reticule is “A grid or other pattern of fine threads, wires, lines, etc., in the
focal plane or eyepiece of a telescope or other optical instrument in order to facilitate positioning,
aiming, and measurement. Also called reticule. Cf graticule n. 2.” (reticle - OED, 2023).
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= Bottom View (centre):

» Capture Button — The main control UIE of the camera view is the Capture
Button — technically a gesture recogniser — which enables the user to take
a picture of an NLCode, if they choose to. The Capture Button's icon is a

camera aperture.
m Anywhere in the Camera View:

» Focus Indicator (not shown) — The Focus Indicator is another gesture recog-
niser, which enables the user to indicate the area of the scene they wish the
camera to focus on. When the user taps anywhere in the Camera View, the Fo-

cus Indicator appears as a “blinking” animated circle around the point tapped.

The view controlled by the Target Area Button is a semi-transparent white
layer with a transparent ring in its center (Fig. 5.1). This ring will mostly be
referred to as target area, as earlier mentioned, but it can also be called scanner
reticle, or scanner cutout. The general purpose of the target area is to define
the area in which the arced circular frame is expected to be in the captured
image of an NLCode. As a UIE, the scanner reticle helps the user position the
camera at an appropriate distance from the feature, and place the NLCode at
the center of the view, before taking a picture; it therefore fits the “positioning-
aiming-measurement” part of a reticle’s description (footnote 31). From a back-
end’s perspective, the target area forms the basis a series of three consecutive
processes are build upon. This function of the target area is discussed in detail
in Subsecs. 5.2.1, 5.2.3 and 5.2.4.

The size of the ring is defined by its outer and inner radius R/, and R!A
respectively, where the superscript TA stands for "Target Area". In order to find
suitable values for the two radii, one must first take into account the different
coordinate spaces utilised by Apple’s native drawing technologies and system
frameworks. According to the company’s Documentation Archive for iOS develop-
ers (Apple Inc.,, 2012), views, and therefore any native technology used for drawing
on them, make use of a logical coordinate space, in which lengths are measured
in Logical Points (LPs). The target area is a graphics object drawn on a view of
the Demo App, which means that R/ and R/%  must be specified in LPs. The
mapping of logical points to pixels is done by system frameworks, which use the
device's pixel coordinate space. Since each device has different screen resolu-

tion, system frameworks are tasked with calculating a property of graphics objects
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called scale factor, which the drawing technologies require as input in order to
create those objects. The scale factor, denoted here by fpieis p for clarity, is the
number of pixels that correspond to one logical point.

Formally, the scale factor is calculated based on the device’s screen resolution
— not its camera resolution, which means that in the above definition of fp;yess/1p,
the term pixels refers to screen pixels. This is because most applications are
interested in rendering objects on the device’s screen — not drawing them on the
camera scene with the intention to later apply them on an image of the scene
obtained through capture. The latter is, however, exactly what the Demo App
needs to do. For this reason, the scale factor is defined here as the the number
of camera or sensor pixels that correspond to one LP.

Apart from the camera resolution, which is given in Table 4.1, in order to
calculate fpiers;.p One also needs to know the logical resolution (NI, x N)p), i.e.
the number of logical points along the horizontal and vertical dimensions of the
views implemented in the Demo App, denoted by N!%, and N/, respectively. The

logical resolution of the Demo App is
(NfL x Nb) = (375 x 667) LPs. (5.1)

Having different resolutions along the horizontal and vertical dimensions means

that the scale factor can be calculated based on either one of them — as long

as both Np;. and N;p used in the calculations refer either to the horizontal,

or the vertical dimension. Since the Demo App only operates in portrait mode,

the smallest — camera and logical — resolution is along the horizontal dimension.

Therefore, the scale factor is defined with respect to the horizontal dimension, i.e.
Npier _ 3024

f ixels = = . 52
PixetsiLP = K 375 (5:2)

The target area is defined as a ring, instead of simply a disk within which the
NLCode is to be placed during capture, for reasons best explained by considering
the specific purpose served by the ring’s outer and inner circular edges. The target
area silently — yet intuitively — prompts the user to move the camera closer, or
further away from the NLCode, in order to make sure the arced circular frame
depicted on the scene is smaller than the outer edge, and larger than the inner
edge of the ring. On the one hand, moving the camera closer to the NLCode
increases the feature’s size on the scene, and risks having the arced circular frame

fall outside the outer edge of the ring. On the other hand, increasing the distance
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between the camera and the NLCode makes the feature appear smaller, and risks
having the arced circular frame become smaller than the inner edge of the ring. A
suitably chosen outer radius R/%A_ can protect against cropping and/or focusing
problems, by preventing the user from moving the camera too close to the feature.
Correspondingly, a suitably chosen inner radius R/?_stops the user from moving
the camera too far from the feature, which can cause issues with definition.

The smallest NLCode print size plays a crucial role in both situations, since it
is a small feature that is associated with the user’s urge to move the camera closer
to it, and at the same time, it is the small feature that has a higher risk of facing
definition issues when captured from large distances. Figure 4.15 of Sec. 4.4 shows

that for an NLCode of the absolute smallest print size, i.e. SNLE, Abs (Eq. 4.33),

Print, min

the camera should not be at a distance less than W25 to prevent cropping and
focusing issues, and at a distance greater than Wa (0775 10, Sﬁrﬁffnﬁ’fn) = Wit

(Eq. 4.38) to prevent definition issues. Using the pinhole camera model (Eq. 4.20),

NLC, Ab NLC, Ab
S WAbS) and ( Aot

the two (print size, working distance) pairs (Sp.;¢ nins Winin Print. min+ Werit),

admit two different sizes of the same NLCode on the sensor, since

NLC SQ/LC
SSens - Mr/mt . (53)

This in turn leads to two different NLCode pixel sizes on the captured image, since

SN
NLC __ Sens
SPixel Sglxe[ ’ (54)
ens

where S£el is the physical size of a pixel on the camera sensor (Table 4.1). Fi-

nally, the two different pixel sizes of the NLCode correspond to two different sizes
of the feature on the views implemented by the Demo App, which are measured

in LPs and calculated using the scale factor fpieis1p given by Eq. 5.2, that is,

SNLC

__ ~Pixel (55)

SNLC
fpixelsiLp

By making a few obvious substitutions, the three above Eqs. 5.3 — 5.5 can be

combined to a single equation, that is,

SNLC ' f . S//;/rLlSt ’ (56)
SPlXe[ . fPixels/LP w

Sens

which directly links pairs of print size and working distance to NLCode sizes in

LPs, using a few known camera specifications.
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The first patr, ie. (SNLC’AbS WAbs) ~ defines through Eq. 5.6 the diameter

Print, min’ min

2RIA,. of the target area’s outer edge; it is the maximum size the NLCode is

allowed to have on the view. Not surprisingly, 2 R/A = 375 LPs, i.e. it is equal

outer

to the horizontal logical resolution N/% of the Demo App views (Eq. 5.1) — after

that, cropping and focusing issues ensue. Correspondingly, the second pair, that is,
(S/\/LC,Abs

Print, min’

W,,i1), defines the diameter 2 RI? . of the target area’s inner edge; it is
~ 37.5 LPs,

i.e. approximately one order of magnitude smaller than 2 R'A_, which accounts

the minimum size the NLCode is allowed to have on the view. 2 R/A

tnner

for the range of #r's values — after that, definition issues ensue.

Letting R/A. = 375/2 LPs and R

outer inner

~ 37.5/2 LPs may be consistent with
the OW of the NLCode, and will certainly provide proper user guidance. However,
the target area serves purposes not yet discussed, which require a better definition
of the arced circular frame’s placement on the Demo App views and ultimately, on
the captured image. For this reason, both R’ and R/” are used in conjunction
with the arced circular frame specifications (see Sec. 3.1), to each provide its own
estimation for R’A_and R/ respectively. This leads to two pairs of outer and

inner radii for the target area, i.e.

RIA  =375/2 = 187.5 LPs L2020, RTA 125 Ps (5.7a)
RIA ~375/2=1875LPs (2020, RIA 08 | Ps. (5.7b)

The final size of the target area is found by taking the mean of each pair of
corresponding values and rounding to a suitable multiple of ten, leading to

R TA

outer

=100 LPs (5.8a)
R4 =60 LPs. (5.8b)

tnner

Note that the above values for the outer and inner radii of the target area are also
an intuitive choice based on the developer’s experience with the Demo App, that
has been seen to allow the successful capture and processing of NLCodes under
various settings permissible by the feature’s OW. The above analysis substantiates
that choice, and provides a roadmap of the reasoning behind it. The target area

shown in Fig. 5.1 was created according to the specifications given in Eqs. 5.8.
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5.2 Image Processing

As soon as the NLCode aimed at is captured, the Demo App transitions to a second
view called initial photo view (Fig. 5.2), because it displays the photograph of the
feature just taken. This view also presents the user with a few options (see Sub-
sec. 5.2.1), one of which is to tap onto a newly presented UIB in order to initiate
the successive application of five image processing techniques. These methods are
the subject of the present section, and include Masking, Colour Detection, Corner

Detection & ldentification, Rotation, and Perspective Correction.

5.2.1 Masking

Figure 5.2 shows the second view of the Demo App. This view is called initial
photo view because it displays the photograph of the NLCode previously captured
(or taken from the Photo Library). The Ul on the initial photo view presents the

user with a few options, each corresponding to a UIE displayed on the view.

= Top View:

» Target Area Button (left) — The Target Area Button (Sec. 5.1) remains avail-
able to the user after capture, offering them a chance to switch the target area

on and inspect the positioning of the feature relative to the scanner reticle.

» Save Button (right) — The Save Button gives the user the option to save the
photo of the NLCode just taken, to their Photo Library. The icon of the Save

Button is a standard system symbol of a downward arrow entering a square.

= Bottom View:

» Back Button (left) — If, for whatever reason, the user wishes to retake a picture
of the NLCode, they can do so by tapping the Back Button. This UIE instructs
the Demo App to display the camera view and initiate a new camera session.

The Back Button’s icon is a standard system symbol of a backward arrow.

» Apply Masks Button (right) — The main control UIE of the initial photo view
is the Apply Masks Button, which enables the user to initiate the processing
of the NLCode. The first image processing technique applied on the captured
image of the feature is masking, which is the main topic of the present subsec-

tion. The Apply Masks Button's icon simply displays the text Apply Masks.
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e Apply Masks

Figure 5.2: Demo App - Initial Photo View & Masking prompt: The second view of the

Demo App shows the captured photograph of the NLCode. The target Area Button is
still displayed on the top-left of the view, giving the user a chance to switch the target
area on, in order to inspect the captured image in terms of the feature placement in
it. The Save Button at the top-right of the view offers the user the option to save
the image to their Photo Library. If the user is not pleased with the result, they can
move back to the camera view in order to retake the picture, by tapping the Back
Button (bottom-left). The Apply Masks Button displayed at the bottom-right of the
view, prompts the user to proceed with the processing of the NLCode image, when they
are ready to do so. The masks applied on the captured image when the Apply Masks
Button is tapped, separate the arced circular frame from the nonlinear pattern by
creating two new images, each containing only one of the two elements of the feature.

Masking is an image processing technique used to isolate specific areas on an
image, and/or separate them from other areas. A most common example of image
masking is background removal. Using a variety of selection criteria, oftentimes
based chromatic and/or spatial characteristics of an image, background removal
techniques identify and separate the subject from its background. This is usually
done in a non-destructive way, using mask layers in order to keep the original
image intact, but masks can also be applied in a destructive way, by permanently

altering the pixels of the original image. The masks discussed in this subsection
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are applied on the original image of an NLCode, and their purpose is to separate
the arced circular frame from the nonlinear pattern of the feature, based on spatial
criteria that make use of the target area.

The target area acts as a guide for placing the arced circular frame inside its
transparent ring, and in effect, causes the spatial separation between the frame
and the nonlinear pattern. However, as can be seen in Fig. 5.1, due to the
inevitable perspective projection applied on the image, the two elements of the
feature are not completely separated — a small part of the pattern lies inside the
ring. Provided the inner quiet area of the NLCode is sufficiently wide (Table 3.1),
this issue can be remedied by increasing the inner radius R/A_ . The method used
for the calculation of the maximum inner radius of the target area, that makes sure
no parts of the pattern are inside the ring without cutting out any parts of the
frame, is described below.

A circle drawn on a digital image consists of a list o pixels which, given the
centre and the radius of the circle (in pixels), can be calculated using a computer
graphics technique known as midpoint circle algorithm (Hearn et al., 2010).

The ring of the target area is located around the centre of the Demo App's
views, which corresponds to the centre C;, 4 of the processed images of the NLCode.
The radii of the target area are known in LPs (Egs. 5.8), but can be converted to

pixels using equation

TA, Pixel TALP
Rinner/outer = fPiXGlS/LP " Ninnerjouter ' (59)
where fpieisjip s the scale factor introduced in Sec. 5.1 (Eq. 5.2), and the su-
perscripts Pixel and LP on the target area radii introduce an obvious distinction.
Based on the above remarks, the centre and the radii of the target area — the

latter rounded down to the nearest multiple of ten, are, in pixels,

Cing = (1512, 2016) Pixels (5.10a)
R Pixel — 800 Pixels (5.10b)
RIAPxel — 480 Pixels. (5.10¢)

The maximum inner radius R/“P¥els of the target area that does not allow

tnner, max

the ring's inner edge to touch the arced circular frame, is found via an iterative

process. Using the midpoint circle algorithm to compute the pixels forming a circle
R-TA' Pixel

centred at C,4, with a radius that starts from R,

and increases by a certain
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number of pixels AR, say 10, in every iterative step, this process accesses the

pixels of the NLCode’s image, looking for pixels that belong to the arced circular
R'TA' Pixels

tnner, max

frame. The maximum inner radius is defined as the radius of the largest

circle that does not contain any frame pixels.

Frame pixels are identified based on their brightness value b, with respect
to the HSB colour space. When the brightness of a pixel is below a certain
(low) brightness threshold by, the pixel is considered a frame pixel. The process
identifying the appropriate threshold by, is part of the analysis relating to colour
detection, which is presented in Par. 5.2.2.2 (Table 5.1).

The iterative process approaching the arced circular frame from the inner edge
of the target area’s ring, is also used in order to approach the frame from the
outside, i.e. using R,,Tﬁ'e':”e{ as the starting radius, and decreasing it by AR in

every iterative step. This results to the minimum outer radius of the target area,
RTA, Pixels

suter,max» that does not allow the ring’s outer edge to touch the arced circular

frame, and ensures that any objects surrounding the feature will not interfere with

the reading process.

Figure 5.3 shows the original image of the NLCode, initially masked by an
image with green background and a transparent ring at its centre, with inner
and outer radii equal to those of the target area displayed on the camera view
(Fig. 5.1). The raster circles with the maximum inner and minimum outer radii found
by the iterative process described above, were calculated using the midpoint circle
algorithm, and drawn on the first masked image (left of Fig. 5.3), in blue and red
pixels respectively. The values of the radii are given in the figure’s main caption.
Note that the two circles closing in on the frame will be different for every captured
image, of even the same NLCode. The second and third images show the same
image of the NLCode, but this time masked by two different images; one with a

transparent ring using the calculated radii, that only exposes the arced circular

R-TA' Pixels

frame (centre of Fig. 5.3), and one with a transparent disk of radius R, .. ..

that only exposes the nonlinear pattern of the feature (right of Fig. 5.3).
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Figure 5.3: Masking of the NLCode'’s captured image: The image on the left is the

photograph of the NLCode captured, masked by an image of green background, with a
transparent ring at its centre, which has the size of the target area displayed on the
camera view (Fig. 5.1, Egs. 5.10). The radii of the blue and red raster circles drawn on
that image are the maximum inner and minimum outer radii calculated using the iterative

G . . TA, Pixel .
process described in this subsection, and their values are R,/ .. """ = 571 Pixels and

RInDiels — 735 Pixels respectively. These radii were computed in order to define the

circular elements of the two masks created for the separation of the frame from the
nonlinear pattern of the NLCode. The image in the center of the figure shows the same
image of the feature, but this time masked by an image with a transparent ring at its
centre, whose radii are those calculated iteratively. This mask exposes the frame of the
NLCode, and blocks all other elements behind its green background. The image on the

R-TA' Pixels

right was masked by an image with a transparent ring at its centre, and radius R, .. "\ .-

This image isolates the nonlinear pattern and blocks every other elements of the feature.

5.2.2 Colour Detection & Filtering

This subsection presents the development process of the output palette of the
NLCode'’s colour profile, starting with the test photographic sample created for
that purpose. Like the input palette presented in section Sec. 4.3, the output
palette is a sequence of distinct colours. Unlike the input palette, however, the
output palette is not a feature of the NLCode that can be predefined. It consists
of a certain number of colours a camera detects on the line representing the
nonlinear pattern of the feature, and for this reason, it needs to be developed

through the processing of a sample of the NLCode's photographs taken under
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different conditions. Moreover, if the output palette developed is to assist the
tracing process implemented by the NLCode Reader (Sec. 5.3), thus fulfilling the
colour profile’s secondary purpose mentioned in Sec. 3.4, it must have certain

properties. These properties are discussed in detail in Par. 5.2.2.3.

5.2.2.1 Test Photographic Sample

The study performed on the test sample presented in this paragraph, aims at de-
termining whether the intended use of colours in the NLCode scheme is a viable
option or not. For this reason, rather than placing emphasis on the exact speci-
fications of the NLCodes photographed, the precise measurement of the working
distance and lighting conditions, and the size of the sample, the test photographic
sample presented here, focuses on exploring a minimal variety of the conditions
required in order to reveal the NLCode's main chromatic features.

The complete photographic sample of the NLCode consists of three sets of pho-
tographs, each depicting a different printed NLCode, created and captured under
six different configurations. The nonlinear patterns of the three NLCodes were all
generated by the Lorenz system (Sec. 3.3, Eq. 3.45). The RK4 method presented
in Sec. 2.1, provided a numerical solution of the system for three different sets
of ICs, with a total number of iterations N = 8,000 for the first and second, and
N = 6,000 for the third NLCode. Unfortunately, the creation and processing of
the NLCode's test photographic sample preceded the parametric study which led
to the determination of the scheme’'s OW (Sec. 4.4). For this reason, the print size
SALE. of the NLCodes, the thickness factor #r4; of the nonlinear patterns, and the
working distances W utilised in the creation of the sample photographs, were all
selected based on trial and error, and therefore do not closely adhere to the rela-
tive specifications the NLCode’s OW would dictate for these quantities. However,
since the use of the photographic sample focuses solely on the detection of colours
without taking any of the spatial attributes of the feature into consideration, and
more importantly, since it was seen to successfully produce the anticipated re-
sults, the recreation of the following analysis using a new photographic sample
was not deemed necessary. All NLCodes have the same print size SH:C. = 2.7 cm,
which is less than the absolute minimum print size Sﬁrﬁﬁ;f‘jfn ~ 4.44 cm derived
and calculated in Sec. 4.4 (Eq. 4.33). For the first NLCode ¢74y = 5 x 1073, which
is greater than the absolute minimum value 1073 given by Eq. 4.31, and the NL-

Codes of the other two sets of photographs utilised the maximum estimated value
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07s .« of the thickness factor given by Eq. 437, and let £,y = 1072, All sample

photographs were taken at a working distance W ~ 6 c¢m between the camera and

the NLCodes. Lastly, all three NLCodes made use of the same colour theme, de-
fined by the colour base B"“¢ (Sec. 3.4, Eq. 3.67), with period P = 291 (Eq. 3.64).

Figure 5.4: NLCode’s Test Photographic Sample 1: From left to right, the photographs of
the NLCode were taken under 1) daylight, 2) daylight combined with tungsten lighting,
3) a combination of daylight, tungsten lighting and flash, 4) same as (3), 5) tungsten
lighting, and 6) same as (5) but with the use of flash. In all photographs except the fourth,
the camera is pointing at the NLCode from an intended zero alpha angle. In the fourth
photograph a > 45°. The rest of the sample specifications are given in the main text.

Figure 5.5: NLCode’s Test Photographic Sample 2: From left to right, the photographs
of the NLCode were taken under 1) afternoon light, 2) afternoon combined with tungsten
lighting, 3) a combination of afternoon light, tungsten lighting and flash, 4) same as (3)
but without the use of flash, 5) tungsten lighting, and 6) same as (5) but with flash. The
alpha angles are as described in Fig. 5.4.

:.-—-z-—-!-'
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Figure 5.6: NLCode’s Test Photographic Sample 3: From left to right, the photographs of
the NLCode were taken under 1) daylight, 2) daylight combined with tungsten lighting,

3) a combination of daylight, tungsten lighting and flash, 4) same as (3) but without the
use of flash, 5) tungsten lighting, and 6) same as (5) but with flash.
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The printer used in this experiment is a consumer model made by Hewlett
Packard. The print resolution was set to 300 ppi, according to the standards most
commercial printing processes comply with. The type of substrate used is a 10 x15
cm glossy photographic paper, chosen as a high quality substrate that minimises
ink bleeding and colour blending.

Five of the photographs in each of the three samples were taken under different
lighting conditions and from an alpha angle (the angle a between the optical axis
of the camera and the normal to the NLCode's surface), of approximately zero
degrees. The lighting conditions tested include indoors daylight, afternoon light,
tungsten light, flash light, and a few combinations of those. The use of flash in
previous tests was seen to significantly improve both the clarity of the image and
the vibrance of the colours. Its use in this test sample aims to determine whether
there are factors definitively prohibiting its incorporation into the scheme. Lastly,
the sixth photograph of each sample was taken from an alpha angle greater than
45°, in order to obtain a first, qualitative estimation of the effect o has on the
scheme; the distortions introduced due to the perspective projection inherently
applied during the capturing of the images, are expected to significantly affect
the scheme’s performance even for slight deviations of o from 0°. This issue is
appropriately treated at a later stage of the scheme’s development (Subsec. 5.2.4).

Figures 5.4 — 5.6 present the test photographic sample of the NLCode.

5.2.2.2 Colour Filters — General Chromatic Trends & Background Removal

The ultimate goal of the study presented in this section, is to facilitate the dis-
tinction between image pixels that belong to the background of the NLCode’s
photographs, and pixels of the circular frame and the nonlineaer pattern of the
NLCode. The image processing performed for this purpose led to the develop-
ment of two filters enabling the unambiguous identification of background pixels
in the NLCode's images. These two filters will be used in the development of
the scheme’s output palette presented in the next subsection, but also have the
potential to further assist the reading process in performing some of its secondary

tasks relating to colour detection.



5.2. IMAGE PROCESSING 147

Apple’s iPhone 6S Plus outputs its images in a particular RGB colour space, or
colour profile, known as standard RGB, or sSRGB. The precise specifications of this
colour space are provided by the International Electrotechnical Commission (IEC),
and its complete name is sRGB IEC61966-2.1:1999 (IEC, 1999). Depending on
the software used to perform the processing of the NLCode’s images and in order
to ensure that the color vectors referenced and used throughout this study are
defined with respect to the correct colour space, there may be a need to convert
between the software’s default colour space and Apple’s device-specific colour
profile. Once this is taken care of, the next step is to crop the sample photographs
to a suitable rectangle containing the NLCode. This is necessary since reducing
the size of the images significantly improves processing time. Figure 5.7 shows

all three samples presented in Par. 5.2.2.1, after the cropping process.
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Figure 5.7: Test photographic sample after cropping the images using a rectangle
defined by its top left vertex and its width and height, in pixel coordinates. From top
to bottom, each row corresponds to one of the samples shown in Figs. 5.4 — 5.6.

The first characteristic feature of the NLCode's test photographic sample is
observed in the brightness channel of the images, after being converted to the
HSB colour space. HSB stands for Hue, Saturation and Brightness, i.e. the three
quantities used by the HSB colour space to provide a representation of colours,

analogous to the amount of Red, Green and Blue used by the RGB colour space.



148 5. THE NLCODE READER VIA A DEMO APP

Roughly speaking, with hue representing the colour of a pixel based on its per-
ceived similarity with any of the colours in the colour wheel (see e.g. Fairchild,
2013), saturation the colour’s purity or richness, and brightness the colour’s inten-
sity, the HSB model is said to provide a more intuitive representation of colours
than RGB, due to its closest proximity to the way the human eye perceives colours.
Figure 5.8 shows the brightness channels of the sample images after their con-

version to the HSB colour space and the separation of their components.

Figure 5.8: Test photographic sample after conversion from RGB to HSB colour
space, and decomposition of the sample images to its three components. From top to
bottom, each row shows the brightness channels of the cropped samples of Fig. 5.7.

If one considers (a) the circular frame, (b) the nonlinear pattern, (c) the back-
ground of the image, and (d) the bright spot created by the camera’s flash, as four
distinct areas in any photograph of the NLCode, then the clear and unambiguous
distinction between these areas during the reading process is a vital part of that
process. The brightness channels of the sample images contain information with
the potential to enable this distinction. Specifically, the smoothed density function
of the pixel intensities in the brightness channel of each sample image, reveals
a characteristic chromatic trend followed by the entire sample. Figure 5.9 shows

the smoothed density functions of all of the NLCode’s images in superposition.
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Figure 5.9: Smoothed density functions of the cropped sample images’ brightness chan-
nels (Fig. 5.8). All curves exhibit the same trend, i.e. local maxima centred around the
same approximate brightness intensities, while the curves corresponding to images cre-
ated using the camera’s flash present an additional peak near the maximum brightness
value 1. The shaded areas indicate the approximate brightness intervals corresponding
to the four distinct areas identified on any photograph of the NLCode.

The smoothed density functions that correspond to sample images created
without the use of flash, exhibit — at least in a loose sense of the term — three
local maxima located at the approximate brightness intensities 0.1, 0.4 and 0.8.
The density functions of the images created using the camera’s flash follow the
same trend, but also present an additional peak near the highest brightness value
1. Note that the first sample’s 4th image — shown in a blue dashed-dotted line
— slightly deviates from that trend, because the cropping process removed the

flash’s bright spot. These observations appear to suggest that the local minima
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around the peaks of the density functions may be able to define the brightness
intervals characterising each of the distinct image areas previously identified. This
brightness-based criterion is summarised in Table 5.1, and is the first filter, called

brightness filter and denoted by Fysp, applied to the NLCode's sample images.

Table 5.1: The brightness filter Fysg applied to the test photographic sample
as a first attempt to separate the four distinct image areas of the NLCode. The
superscripts C, P, B and F in Fysg (top row) are used to denote the circle,
pattern, background, and flash components of the filter respectively.

Frse Fiise
Brightness Interval 0.6 —0.95
Image Area Background

Colour Yellow

The above hypothesis was put to test by first creating a blank image (canvas)
of the same dimensions as the cropped images, and subsequently giving each
of its pixels a different, distinct colour, depending on the brightness interval its
corresponding pixel in the brightness channel belongs to. The results of this test
are visually demonstrated in Fig. 5.10. With the exception of the first sample’s 4th
photograph, the brightness filter seems to confirm the hypothesis made about the
brightness channel containing information enabling the distinction between the
four image areas of the NLCode. However, certain colour overlaps, i.e. instances
of pixels belonging to the NLCode's frame (blue) being identified as pixels of the
nonlinear pattern (magenta) and vice versa, as well as pixels clearly belonging
to the pattern being identified as background pixels (yellow), suggest that the
brightness filter comes with certain drawbacks. The colour overlaps observed are
probably due to the brightness limits separating the area of the frame from the

area of the pattern and the latter from the background, being inherently ill defined.

The inadequacy of the brightness filter in making a clear distinction between
the four image areas of the NLCode, established the fact that any results obtained
exclusively from this filter, must be considered unreliable. Its application does
however require less logical operations, and for this reason, it will serve as an

auxiliary criterion to other tasks (see e.g. Fig. 5.13). It should also be noted that
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from this point onward, the first sample’s 4th photograph will be referred to as the
“outlier” of the sample, since photographs that use the flash but do not contain
the bright spot it creates, are a special case that should be addressed and treated

separately, in later stages of the NLCode's development.
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Figure 5.10: Four-colour canvases created by applying the brightness filter Fysg
presented in Table 5.1. From top to bottom, each row corresponds to each of the
samples shown in Fig. 5.7. A criterion solely based on the brightness of the sample
images appears to perform fairly well in identifying pixels that belong to the image
background and the bright spot created by the camera’s flash. However, the spatial
mixing of blue and magenta pixels, as well as the pixels of the nonlinear pattern being
incorrectly identified as background pixels (yellow), highlight Frjsg’s shortcomings.

The next step of this study moves toward the development of a tool enabling
the unambiguous identification of background pixels, including the flash’s bright
spot. The images shown in Fig. 5.7 were processed in order to identify sixteen
of the most dominant colours they contain. After that process was complete, the
dominant colours most likely corresponding to either the frame or the pattern,

were removed. The list of colours this process led to is shown in figure Fig. 5.11.
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Figure 5.11: List of the dominant colours found in the background of the
NLCode’s sample images. From top to bottom, each row corresponds to one
of the sample photographs shown in figure Fig. 5.7. Note the distinctive
light blue colour in the list (7th row) corresponding to the photograph
taken in the afternoon, with no other identified light sources present.

The most efficient way found to utilise the colours shown in figure Fig. 5.11
in order to identify background pixels, is through the range of colours they cover
in the RGB colour space. This range forms the second filter developed in this

section, and is defined as

Frca = {{rmin, rmax}; {gmin, gmax}; {bmin, bmax}} , (5.11)

where rpin and rpax are the minimum and maximum intensities in the red channels
of all the colours shown in Fig. 5.11, and g and b denote the respective quantities

in the green and blue channels. The precise values found are given below.
Frce = {{0.494, 0.981}, {0.418, 0.975}, {0.436, 0.977}} . (5.12)

Note that depending on the software used for image processing, the colour inten-
sities in each channel may be given in the range [0.0, 1.0], as is the case here, or
in the range [0, 255]. The conversion from one representation to the other, should
such need arise, is as simple as multiplying an intensity in [0.0, 1.0] by 255 and

rounding to the nearest integer.
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In order to test its efficiency in identifying background pixels, Frcs was ap-
plied to the sample images shown in figure Fig. 5.7. Starting again with a blank
canvas of the same dimensions as the processed images, every pixel whose colour
intensities in the r, g and b channels belonged to the corresponding intervals pro-
vided by Eq. 5.12 were coloured yellow, while the rest of the pixels were coloured
blue. Figure 5.12 shows the results of this test. The filter was quite successful in
removing all background pixels, except those belonging to the flash’s bright spot in
the relevant images. However, in the case of the first sample, it incorrectly iden-
tified pixels belonging to the NLCode’s pattern, as being background pixels. This
observation simply stresses the importance of the theoretically derived tolerances

of the parameters shaping the scheme’s OW (Sec. 4.4).
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Figure 5.12: Two-colour canvases created using the filter Frcp developed for background
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removal (Eq. 5.12). From top to bottom, each row corresponds to each of the samples shown
in Fig. 5.7. Every pixel identified as a background pixel is coloured yellow, and the rest
of the pixels are shown in blue. The filter was partly successful, but failed to remove the
pixels of the flash’s bright spot. In the case of the first sample (top row), it also incorrectly
identified pixels belonging to the nonlinear pattern, as background pixels.
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The issue concerning the bright spot created by the camera’s flash was suc-
cessfully treated by incorporating to the pixel classification process the brightness
filter Fsp previously developed. In this final test, for a pixel to be identified as a
background pixel, its RGB values should belong to the intervals of Frgp given by
Eq. 512 — as in the previous test, and/or its brightness intensity to the interval
F/fsg =10.95, 1] corresponding to the flash area of the filter defined in Table 5.1.

The results are shown in Fig. 5.13.
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Figure 5.13: Two-colour canvases created using the Frgg filter developed for background
removal (Eq. 5.12), combined with the FHFSB component of the brightness filter correspond-
ing to the flash area (Table 5.1). The ordering of the samples presented and the colour
scheme used is the same as in Fig. 5.12. The combination of these two filters managed
to successfully identify every background pixel in the images, including the pixels of the
flash’s bright spot.

5.2.2.3 Colour Filters — Output Palette

The colour profile of the NLCode was introduced in Sec. 3.4, where it was de-
fined as a periodic sequence C of colours that form a smooth gradient (Eq. 3.62).
Sequence C is defined by a colour base B of elementary colours (Eq. 3.63), a
periodic (sawtooth) function f(n; P) (Eq. 3.64) that makes C periodic with period
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P, and a linear interpolation formula (Eq. 3.66) that creates the desired gradient
effect. In Sec. 4.3, where the NLCode Generator deals with COs, the colour base
B was defined as the input palette P;, of the colour profile (Eq. 4.17), used for
colour comparison in the detection of COs. The present paragraph completes the
discussion around the scheme’s colour profile, with the development of its last
basic component, called the output palette and denoted by P,,;.

At the beginning of Subsec. 5.2.2, it was mentioned that the output palette
consists of a certain number of colours a camera detects on the line representing
the NLCode's pattern. A simple identification of any number of detected colours,
however, each of which can — and must — be associated with different groups of
pixels on the nonlinear pattern, creates a colour palette which lacks the structure
required in order to assist the reading process in a systematic way. For this
reason, the output colours need to be selected in such a way, so as to meet the

two following conditions:

m Each output colour must associate with pixels of the nonlinear pattern that form
simply connected segments on the line representing it. In other words, when
the detected colours of the pixels on the pattern are matched — according to
some rule — to the colours of the output palette, the pattern must consist of a

sequence of line segments, each containing pixels of a single output colour.

m The sequence of output colours assigned to the line segments the pattern con-
sists of — after the processes of colour detection and matching have been com-
pleted — must be periodic. This means that the colours in the output palette
should form a sequence, i.e. they should be ordered, and that sequence must

repeat itself on the pattern in a canonical fashion.

The development of an output palette that satisfies both of the above conditions,

is an iterative process which takes the following steps:

1. The first step prepares the sample images of the NLCode shown in Fig. 5.7 for
processing, by removing their background using the two filters Fres (Eq. 5.12)
and F,lsg (Table 5.1) developed in the previous paragraph. Figure 5.14 shows
the NLCode's cropped sample with its background removed.
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Figure 5.14: The NLCode’s cropped sample with the image background removed,
using a combination of the filters Frgp and FHFSB developed in Par. 5.2.2.2. From top
to bottom, each row corresponds to each of the cropped samples shown in Fig. 5.7. The
process started with blank canvases of the same dimensions as the cropped images.
The pixels identified as background pixels were left white, and the rest of the pixels
were given the colour of their corresponding pixels in the original cropped images.

2. The periodic sequence C representing the NLCode’s colour profile (Eq. 3.62)
consists of N colours, where N is the length of the NLCode's 2D projected
trajectory. This step’s task is to select a number N,,; of these colours, and
without permuting them, form a sequence with sufficient contrast between ad-
jacent colours. Note that N,,; is expected to be of the order of N;,, which is

the number of non-repeating colours in the input palette (see Eq. 3.63).

3. This next step takes into consideration the fact that the captured colours on
the NLCode's pattern, are dark shades of the input colours sequence C consists
of (also see Fig. 5.17). The first, temporary version of the output palette P,
created in light of this observation, consists of dark shades of the N,,; colours
selected in step 1, with the addition of black, which is the colour of the circular
frame. Note that the vague use of the term “dark shade” is not an overlook.
Depending on the software used for the processing of the sample images, the
“darkness” of a colour may be quantified in different ways. However, a detailed
account of the rules followed by built-in functions performing such tasks, far

exceeds the purposes of this study.
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4. Assuming the vector representation of colours introduced in Sec. 3.4, the colour
of each pixel in the NLCode’s pre-processed sample images (Fig. 5.14), has a
certain (euclidean) distance from each of the colours in the temporary output
palette (also see Sec. 4.3, Eq. 4.16). This step creates N,,; + 1 lists, each
associated with one of the temporary output colours, by classifying the detected
colours according to the following criterion: If the distance between the colour
of a pixel and a temporary output colour is less than a predefined threshold
distance d.;, that colour enters the list associated with the output colour it
was tested against. Note that the above calculations will only be consistent if
the temporary output colours defined in step 3 refer to the same colour space

as the pixel intensities drawn from the preprocessed images.

5. This step creates a new temporary output palette, by letting each of the first
Nyt lists created in the previous step, be represented by the mean of the
colours it contains. Each of these “mean” detected colours is denoted by
d;, i=1, ..., Ny The list associated with the black output colour is pro-
cessed the same way as the background colours were processed in the previous
paragraph (Par. 5.2.2.2). This means that the last list is not represented by a
“mean” colour, but by a range of colours, denoted as Fk (specified in Eq. 5.14),
that is given the form of the background filter Frgp defined by Eq. 5.11. There-

fore, this temporary output palette is a union of the general form
Pout = {d1, da, ..., dn,, } U Fk. (5.13)

6. The new temporary output palette is applied to the NLCode's preprocessed

sample images according to the following rules, applied in succession:

» Each pixel of a blank canvas is given the mean output colour d; that is closest,
in the sense of the Euclidean distance introduced in step 4, to the actual

colour detected in the corresponding pixel of the preprocessed sample image.

» Each pixel already coloured according to the previous rule, is subjected to
a second test. If the intensities of all three channels of the pixel’s original

colour belong to the r, b, and g ranges of Fg, then that pixel is coloured black.

7. The sample images processed in the previous step are evaluated for compliance
with the two conditions imposed on the output palette. If the results are sat-
isfactory, then the second temporary output palette created in step 5 becomes

the final output palette of the NLCode’s colour profile. If the segments the non-



158 5. THE NLCODE READER VIA A DEMO APP

linear pattern consists of are not uniformly coloured to a sufficient degree, but
instead each presents a mixture of colours, then the process is repeated from
step 2 with a different selection of input colours and/or different dark shades of

the input colours selected.

Figure 5.15 demonstrates the development process described above with two
examples, both of which make use of the first image of the NLCode depicted in
the third sample (Fig. 5.7). The output palette applied in the second example
of Fig. 5.15 is the final version of the palette developed by the iterative process
presented in this paragraph. According to its general form given by Eq. 5.13,
Prlue is the union of the sequence comprised by four mean detected colours and

the black filter Fg, both computed in step 5. The numerical representation of the

output palette with respect to the RGB colour space, is the following:

PHue — £(0.73,0.66, 0.15), (0.57,0.11,0.12), (0.11,0.11,0.48), (0.09,0.38,0.13)}

out

mean output colours d;, i=1,..., Ny = 4

U {{0.00, 0.17}, {0.00, 0.17}, {0.00, 0.17}} .

r, g, b ranges of the black filter Fx
(5.14)

Figure 5.15a illustrates a case in which the temporary output palette created in
step 5 failed to satisfy both conditions imposed on it. In this example, the number
N,ut of colours selected in step 2 is 7, namely yellow, orange, red, magenta,
blue, cyan, and green, i.e. Ny, > N;,. Due to an insufficient contrast between
adjacent colours in the temporary output palette created in steps 2 — 5, the line
segments of the nonlinear pattern are not uniformly coloured. Apart from the
bleeding of adjacent colours into one another’s segments, the presence of orange
in the temporary output palette allowed this colour to appear in several transition
areas from green to yellow, which interfered with the ordering of the colours in a
non-reliable manner. These observations are clearly seen in the zoomed-in areas
superimposed on the processed image. Note also, that in some of these zoomed-in
areas, pixels of the pattern are coloured black, while various colours of the output
palette appear in the area of the NLCode's circular frame. This is due to an earlier
version of step 5, in which all the N,,:+ 1 lists created in step 4 were represented
by the mean of the colours they contained, including black, and a version of step 6

which only included the first rule for colour matching.



5.2. IMAGE PROCESSING 159

(a) The output palette applied in this example includes dark shades of the seven colours yellow,
orange, red, magenta, blue, cyan, and green, and made use of the earlier versions of steps 5 and 6
previously described. This output palette failed the first condition imposed on it by providing
non-uniformly coloured line segments, and the second by interleaving orange segments in the
transitional areas between green and yellow, in a non-reproducible manner, which cannot be
reliably considered systematic.

(b) The output palette in this example consists of dark shades of the four colours yellow, red,
blue, and green. Its development made use of the updated versions of steps 5 and 6 presented in
this paragraph, and led to the fulfillment of both conditions, by producing uniformly coloured line
segments that repeat along the projected trajectory in a periodic fashion.

Figure 5.15: Visual demonstration of the process followed for the development of the
NLCode’s output palette. Both figures show the first image of the third test sample of
the NLCode (Fig. 5.7, bottom left). Figure 5.15a illustrates a failed attempt to create an
output palette satisfying the two conditions of uniformity and periodicity described in the
beginning of this paragraph. Figure 5.15b shows the result of the final, successful output
palette created by the iterative process of development. Both figures include snapshots
of zoomed-in areas superimposed on the processed images, which illustrate the details
discussed in the main text.
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Figure 5.15b presents a significantly improved picture. In this case, the colours
selected in step 2 were reduced to N,,; = 4, namely yellow, red, blue, and green.
The line segments of the pattern are uniformly coloured, with minor imperfections
which are not expected to affect the scheme’s performance. The significant reduc-
tion of the size of the output palette — from 6 non-repeating colours (the same as
the input palette) to 4 in the final output palette — also appears to have allowed
the second condition imposed, i.e. that of periodicity, to be fulfilled. Finally, the
updated version of step 5, which identifies black pixels by range, and of step 6
which includes the second rule for colour matching, prevented pixels of the pat-
tern from being coloured black, and enabled the correct identification of the vast
majority of pixels comprising the NLCode's circular frame. However, the circular
frame still appears to have several of its pixels coloured by mean output colours.
This is actually what motivated the spatial separation of the two main elements
of the NLCode, using the masks presented in Subsec. 5.2.1 (Fig. 5.3).
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Figure 5.16: The NLCode’s cropped sample, after background removal (Fig. 5.14) and
the subsequent application of the output palette P!V developed in this paragraph
(Eq. 5.14). From top to bottom, each row corresponds to each of the cropped samples
shown in Fig. 5.7. The process started with blank canvases of the same dimensions
as the cropped images. The white background pixels were ignored, and the remaining
pixels belonging to either the NLCode’s pattern or its circular frame, were coloured
according to the rules described in step 6 of the development process. The palette
managed to meet both conditions imposed on it, by producing uniformly coloured line

segments that repeat on the nonlinear pattern in a periodic fashion.
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Figure 5.16 shows the NLCode's preprocessed images (Fig. 5.14), after the
application of the final output palette P!“¢ to the entire sample. Zooming in on
any of the sample images gives a picture similar to the detailed picture provided
in Fig. 5.15b, proving that the output palette has performed equally well across
the sample.

Figure 5.17 summarises the NLCode’s colour profile and highlights some im-
portant properties of its main components. The input and the output palettes of
the profile are shown as lists of colours on each side of the figure. Apart from the
colours in each of them, these palettes exhibit two more important differences. The
first difference was already mentioned in the beginning of the present subsection
(Subsec. 5.2.2), and has to do with the fact that while the input palette P!¢ is a
predefined feature of the NLCode, the output palette P:“¢ needs to be developed
through the processing of the NLCode's sample images. Secondly, while the input
palette has N;, + 1 components and the output palette N,,; + 1, (a) since the
output palette draws its original colours from the NLCode’s colour sequence C
(step 2), Nout is generally different than N;,, and (b) the “plus 7” component in
each palette is different and serves an entirely different purpose. In the case of
P!lue the additional component is the first colour of the palette, repeated at the
end of the sequence for purposes that have been thoroughly explained in Sec. 3.4.
The output palette has no need for this kind of repetition. The last component of
P!lue is the black filter Fx incorporated to the palette in order to identify as many
pixels of the NLCode’s circular frame as possible.

The circular segments overlaid on the colour wheel at the center of Fig. 5.17
give a visual sense of the range of input colours covered by each of the out-
put colours. The overlapping of these segments implies that pixels with orange,
magenta, cyan, and green-yellow hues, can be classified as either of the two over-
lapping output colours covering their hue range, depending on their other two
colour coordinates, i.e. saturation and brightness. This explains the bleeding,
albeit uniform, of adjacent colours into one another’s line segments observed even
in Fig. 5.15b. Finally, the areas of the circular segments roughly correspond to
the relative percentages of pixels belonging to the nonlinear pattern, associated
with each of the output colours. The exact percentages involved can easily be
calculated and even help in the development of the output palette. However, such
an implementation will only be considered if the use of colours indeed proves to

be valuable to the reading process.



162 5. THE NLCODE READER VIA A DEMO APP

INPUT PALETTE Pj*®
(Nin +1 components - RGB)

OUTPUT PALETTE P ';:,‘:
(Noye + 1 components — RGB)

Yellow

OmovOrm< mOoO

omZ-mmoO
)
E]

Yellow

Figure 5.17: Basic components of the NLCode’s colour profile. The input palette
PHue (Sec. 34) and the output palette PN (Eq. 5.14) are shown to the left and
right sides of the figure respectively. The colour wheel in the middle, is overlaid with
circular segments indicating the range of input colours covered by each of the output
colours. The overlapping of these segments is due to the fact that this illustration
only considers one of the three colour coordinates, namely the hue, while ignoring
the saturation and brightness required to uniquely identify a colour.

The computational intensity of the image processing performed in the last two
sections may raise a concern regarding the scheme’s performance. Regardless of
whether the aim was the identification of pixels belonging to the background of
the sample images or the NLCode’s pattern, each process implemented scanned
the entire sample, performing logical or numerical operations on a pixel-by-pixel
basis. The important point to clarify, is that these processes were implemented
strictly for the development of the filters related to background removal and the
output palette. Even though the computational power required by these processes
can be harnessed, albeit not very easily, form a smartphone, the reading process
has no need to scan an entire image before it reaches a given point of interest.
Instead, it is designed in a way that allows it to navigate an image mostly based
on geometrical considerations, using the pixel coordinate system of the NLCode's
captured image. Once a given pixel on the projected trajectory is located, the
main process responsible for tracing the pattern takes over, and the background

filters and output palette are used as auxiliary quides to that main process.
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5.2.2.4 Application of Colour Filters

Figure 5.18 shows the third view of the Demo App. This view is called masked
photo view because it displays the masked image of the NLCode’s arced circular
frame (Subsec. 5.2.1, Fig. 5.19, center). The second masked image, i.e. that
of the nonlinear pattern (right of Fig. 5.19), is subject to all the necessary image
processing techniques in preparation for the reading process, and is only displayed
in the Demo App’s last views. The Ul on the masked photo view presents the user
with a few options, each corresponding to a UIE displayed on the view. From
this point onward, only UIEs that have not been described in earlier views of the

Demo App will be discussed.

e Colour Filters

Figure 5.18: Demo App - Masked Photo View & Colour Filter prompt: The third
view of the Demo App shows the masked image of the NLCode’s arced circular frame
(Fig. 5.19, center). The target Area Button is no longer available to the user, but
the Save Button still offers them the option to save the masked image to their Photo
Library. By tapping the Back Button, the user can still move to the previous views,
if they wish to. The Colour Filters Button displayed at the bottom-right of the view,
prompts the user to proceed with the processing of the masked image(s). When the
Colour Filters Button is tapped, the colour filters developed in Pars. 5.2.2.2 and 5.2.2.3
are applied to the masked images of the separated elements of the feature, accordingly.
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» Colour Filters Button (bottom view, right) — The main control UIE of the masked
photo view is the Colour Filters Button, which enables the user to initiate the
application of the colour filters developed in Pars. 5.2.2.2 and 5.2.2.3. The
manner in which those filters are applied to the two masked images created in
Subsec. 5.2.1 are the main topic of this paragraph. The Colour Filters Button's

icon simply displays the text Colour Filters.

The development of the colour filters presented in Pars. 5.2.2.2 and 5.2.2.3, was
based on the test photographic sample of the NLCode (Par. 5.2.2.1, Figs. 5.4 = 5.6),
and produced filters that successfully made the distinction between four areas of
a captured image of the NLCode (circular frame, pattern, background, and flash
spot), based on its chromatic attributes (see Fig. 5.9 and related discussion).
However, that analysis had to treat each sample image as a whole, that is, without
considering any spatial characteristics that might help make at least some of the
necessary distinctions. After the application of the masks created in Subsec. 5.2.1,
this is no longer the case.

The masked image separating the arced circular frame from the rest of the NL-
Code’s image (Fig. 5.19, center), only contains the frame itself, and the background
of the image; it is assumed that the flash spot, if at all present, does not fall right
on the circumference of the frame, which would cause the corner detection algo-
rithm (Subsec. 5.2.3) to fail. The colour filters applied on that masked image are
the Frgg filter for background removal (Eq. 5.12), combined with the component of
the F/,s5 brightness filter corresponding to the flash spot (Table 5.1). The result
of this combined filter on the masked image of the frame, is the image on the left
of Fig. 5.19. As is clearly obvious — and expected, using the same colour filters,
the filtering of the masked image is superior to the filtering attempting to detect
the frame using an unmasked image (see e.qg. Fig. 5.15). The arcs of the frame are
uniformly coloured black, that is, no colour mixing is present, and well defined.

The masked image only exposing the nonlinear pattern of the NLCode
(Fig. 5.19, right), also only contains the pattern itself and the background;
again, the flash spot is assumed to only contribute a halo around the feature,
without essentially erasing parts of it. The filters applied in this case are the
Frcs and the F/ g as before, followed by the mean component of the output
palette PHue (Eq. 5.14). The black RGB filter Fx was not used in this case, as

out

it is unnecessary, and could compromise the integrity of the dark colours on the
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pattern. The result of this filtering process is the image on the right of Fig. 5.19.
The pattern is well defined and fairly uniform and the colours of the output palette
follow a canonical order and repeat periodically. However, there is some colour

mixing present, between the colours of sequential and/or adjacent segments.

—\ _
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Figure 5.19: Colour detection on the NLCode'’s masked basic components: The image on
the left is the masked image of the frame, after applying a combination of the Fr¢pg filter
for background removal, and the component of the FﬁSB brightness filter corresponding
to the flash spot. The image on the right is the masked image of the NLCode's pattern,
after applying the combination of the same Frgg and FﬁSB filters, followed by the
mean component of the output palette P'\¢. Both filtering processes show an obvious
improvement compared to the filtering performed on the unmasked images of the test
photographic sample of the NLCode (see e.g. Fig. 5.15). The main features of the
NLCode depicted are well defined, and the colours of the output palette follow a canonical
order and repeat on the pattern periodically. However, while the arced circular frame
is uniformly coloured black, the nonlinear pattern shows some mixing in the transition

between colours of its sequential, or adjacent segments.
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5.2.3 Corner Detection & ldentification

Figure 5.20 shows the fourth view of the Demo App. This view is called filtered
photo view because it displays the filtered image of the NLCode's arced circular
frame (Par. 5.2.2.4, Fig. 5.19, left). The second filtered image, i.e. that of the
pattern (right of Fig. 5.19), is only displayed in the Demo App’s last views, where
it is used in the reading process. The Ul on the filtered photo view presents the

user with a few options, each corresponding to a UIE displayed on the view.

e Corner Detection

Figure 5.20: Demo App - Filtered Photo View & Corner Detection prompt: The fourth
view of the Demo App shows the filtered image of the NLCode’s arced circular frame
(Fig. 5.19, left). The Corner Detection Button displayed at the bottom-right of the
view, prompts the user to proceed with the processing of the displayed image. When
the Corner Detection Button is tapped, the Demo App applies on the image a corner
detection algorithm, followed by an identification process pairing each corner with the
marked position on the arc it belongs to — beginning, outer ending, inner ending — as
well as the arc itself — 1st, 2nd, ... na-th. The remaining UIEs available to the user
are the same as in the previous view of the Demo App (Fig. 5.19).
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» Corner Detection Button (bottom view, right) — The main control UIE of the
filtered photo view is the Corner Detection Button, which enables the user to
initiate the application of a colour detection algorithm on the filtered image of
the frame, and the subsequent identification process of the detected corners. The
corner detection algorithm employed and the identification process developed

are discussed in this subsection.

By design, the corners of the frame's arcs are meant to be used for (a) the
correction of the perspective distortions introduced by the perspective transform
applied on the image of any scene, when captured by a camera, and (b) the appli-
cation of the method of least squares adjustment, in order to calculate the matrix
used for the transformation between plot and pixel coordinates (Subsec. 3.2.2).

The algorithm used for the detection of the arcs’ corners is the Shi-Tomasi
corner detection algorithm (Shi & Tomasi, 1994), which is very commonly used
by many software applications performing tasks related to feature detection on
images. The incorporation of the algorithm into the Demo App made use of Brad
Larson’s implementation, which is included in the open source project for GPU-
accelerated image and video processing, called GPUImage framework. This frame-
work’s second generation — GPUImage 2 — is written in the Swift programming
language, for various platforms, including iOS (Larson, 2019). The Shi-Tomasi
corner detector in this implementation pre-processes the image using a Gaussian
blur (see e.g. Reinhard et al., 2006), in order to smooth out crisp edges or iso-
lated pixels which might mistakenly be identified as corners. The algorithm takes
certain arguments as parameters; the Demo App uses the default values of all
parameters related to the corner detector, and only adjusts the one parameter of
the Gaussian blur. This parameter is called radius of the Gaussian blur (specified
in pixels), and is related to the standard deviation of the Gaussian distribution
used for smoothing; its default value is 2.0, and the Demo App sets it to 4.0 in
order to apply a stronger blur on the image.

The image on the left of Fig. 5.21 shows the result of the corner detection
process. The detected corners are drawn on the filtered image of the frame, as red
crosses. Zooming in on that image, shows that all 3n4 = 12 corners of the frame
have been detected, and with an impressive accuracy. A visual inspection is all the
assessment the corner detector can have at this stage. Its ultimate performance is
of crucial importance to the scheme, but can only be assessed through the success

of the processes dependent on it.



168 5. THE NLCODE READER VIA A DEMO APP

RN N
/) |

Figure 5.21: Corner detection on the NLCode’s arced circular frame: The image on the
left is the filtered image of the frame, with the detected corners drawn on it as red crosses.
The Gaussian blur-facilitated Shi-Tomasi corner detector, has detected all corners of the
arcs with excellent accuracy, but its overall performance can only be evaluated implicitly,
through the performance of the processes dependent on it. The image on the right has
the detected corners drawn in different colours per triad, indicating the quadrant of the
frame each corner triad should be, in the printed NLCode, i.e. before the distortions
introduced by capture. The colours red, green, blue, and cyan, are used to indicate
corners that should be in the 1st, 2nd, 3rd, and 4th quadrant respectively. The detected
corners are also identified in terms of their relative position in the arcs they belong to,
i.e. as arcs’ beginnings, outer endings and inner endings. However, this distinction is

not shown in this image.

The process developed for the identification of the arc each of the detected
corners belongs to, as well as its relative position on its respective arc, performs

the following steps in succession:

1. The detected corners are first clustered into four groups of three corners each,
using a neighbourhood-based clustering algorithm that uses the Euclidean dis-

tance as a dissimilarity measure (see e.g. G. Gan et al,, 2007).
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2. The corner triads are placed in ascending order, by the area of the triangle
they form. Given the increasing width of the arc endings, and the fact that, in
the printed NLCode — before capture, the 1st, 2nd, 3rd, and 4th arc’s beginnings
are on the 1st, 2nd, 3rd, and 4th quadrant of the frame respectively, the ordered
corner triads are matched with the frame quadrants they should be in, as follows:
The first triad (smallest triangle area) corresponds to the 2nd quadrant, the
second triad to the 3rd quadrant, the third triad to the 4th quadrant, and the
fourth triad to the 1st quadrant. This matching process is very sensitive to
the relative widths of the arcs endings and the size of the gaps between the
arcs. Apart from carefully choosing those frame parameters, the result of this
matching can be complemented/replaced by a second matching criterion, based

on the angles of the corner triads, relative to the horizontal.

3. Using the centroid of the entire set of detected corners as representative of
the frame’s center, the three corners in each cluster are then identified as arc’s
beginnings, outer endings, and inner endings, as follows: The angles formed
by every pair of corners in a triad with the centroid, are calculated and placed
in ascending order. The smallest angle is formed by an arc’s outer and inner
endings with the centroid; the outer (inner) ending is the corner farthest (closest)

to the centroid. The remaining corner of the triad is an arc’s beginning.

4. The final output of this process takes into account the fact that the 1st quadrant
contains the 1st arc’s beginning and the last arc’'s endings, the 2nd quadrant

contains the 2nd arc’'s beginning and the 1st arc’s endings, and so on.

The image on the right of Fig. 5.21 shows the result of the corner identification
process. In this case, each corner triad is drawn with a different colour, depending
on the quadrant its corners should be in, that is, in the printed NLCode before
capture. The colours red, green, blue, and cyan, correspond to the 1st, 2nd, 3rd,
and 4th quadrant respectively. It is stressed that the sensitivity of this identifi-
cation process does not only depend on the frame specifications, but also on the
perspective distortions introduced during capture, which can alter lengths signif-
icantly. However, if one triad can be identified reliably — this is the triad with
the smallest triangle area — the rest of the corner clusters can be identified using

relative angle-based criteria.
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5.2.4 Perspective Correction

Figure 5.22 shows the fifth view of the Demo App. This view is called detected
corners view because it displays the image of the NLCode's arced circular frame,
with the detected corners — colour-coded with respect to the frame quadrant as-
signed to them — drawn on it (Subsec. 5.2.3, Fig. 5.21, right). The Ul on the
detected corners view presents the user with a few options, each corresponding

to a UIE displayed on the view.

-
@

e Perspective Correction

Figure 5.22: Demo App - Detected Corners View & Perspective Correction prompt:
The fifth view of the Demo App shows the filtered image of the NLCode’s arced circular
frame (Fig. 5.21, right), overlaid with the corners of its arcs, as the were detected and
identified in Subsec. 5.2.3. The Perspective Correction Button displayed at the bottom-
right of the view, prompts the user to proceed with the processing of the displayed
image. When the Perspective Correction Button is tapped, the Demo App applies
on the image a perspective transform, in order to correct the perspective distortions
introduced by the capture of the NLCode. The remaining UIEs available to the user
are the same as in the previous view of the Demo App (Fig. 5.20).

» Perspective Correction Button (bottom view, right) — The main control UIE of
the detected corners view is the Perspective Correction Button, which enables
the user to initiate the application of a perspective transform on the filtered

image of the frame, as well as the pattern’s. This image transformation heavily
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relies on both the accurate detection of the corners, and their correct assignment
to the four quadrants of the frame they should belong to, and is the main topic

discussed in this subsection.

The algorithm performing the perspective transform on the filtered images of
the frame and the pattern, was developed in the Swift programming language for
i0S, based on Austin (n.d.) and Blinn (2003). The entries of the transformation
matrix applied on the images, depend on two sets of four points each, called
source and destination points. Both sets must be specified in pixels, and every
point in one set, must have an established one-to-one correspondence with a point
in the other set. In principle, the source points can be any set of corresponding
corners of the frame earlier detected, that is, the four arc beginnings, the four arc
outer endings, or the four arc inner endings. Since the corner detection algorithm
consistently detects all of the frame's corners, this implementation will make use
of the arc beginnings. Note that the positions of the frame's corners given in polar
coordinates by Eqs. 3.43, still refer to the plot coordinate system, and cannot
therefore establish a correspondence with the detected corners specified in pixels.

The reason behind the choice of the arc beginnings as the source points, is
simply convenience; in the original, distortion-free frame of the NLCode, those
corners form an upright square. Based on this observation, defining a square
around the center of any of the processed images, will provide another set of four
corners which, if reasonably chosen, can be thought of as the correct locations of
the frame’s corners, i.e. if no distortions were present. As soon as the above square
is assigned with a reasonable size, its corners will be used as the destination
points required for the computation of the perspective transform matrix.

The size of the square is defined via its half-diagonal, which is set equal to
the mean of the radii computed in Subsec. 5.2.1. It is reminded that starting from
the inner and outer radii of the target area, the frame was iteratively “closed in
on” from the inside and the outside, in order to define the masks separating the
two main elements of the NLCode. The values of the maximum inner R;f,\’e’:f;é;li
and minimum outer R/t radius of the target area were given in Fig. 5.3, and
their mean is 653 Pixels.

Figure 5.23 shows the results of the perspective correction on the NLCode
images, including the final image of the pattern, which will be used for its tracing

in order to retrieve of the 2D projected trajectory.
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Figure 5.23: Perspective correction on the NLCode’s images — Top Left:: the
captured photograph of the NLCode, prior to any processing. Top Right: The
same image, after the application of the perspective transform, with the detected
corners of the frame, transformed by the same matrix. Bottom Left: The digital
version of the NLCode, before printing. Bottom Right: The masked and filtered
image of the pattern, after perspective correction. This is the image the tracing
algorithm will be applied on.
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5.3 NLCode Reading

Figure 5.24 shows the sixth view of the Demo App. This view is called per-
spective corrected view because it displays the image of the NLCode’s nonlinear
pattern, after the perspective transform presented in Subsec. 5.2.4 was applied to
it (Fig. 5.23, bottom-right). The Ul on the detected corners view presents the user

with a few options, each corresponding to a UIE displayed on the view.

Y

e Forward Tracing

Figure 5.24: Demo App - Perspective Corrected View & Forward Tracing prompt:
The sixth view of the Demo App shows the image of the NLCode’s pattern, after the
perspective transform was applied to it (Fig. 5.23, bottom-right). The Forward Tracing
Button displayed at the bottom-right of the view, prompts the user to proceed with
the processing of the displayed image. When the Forward Tracing Button is tapped,
the Demo App applies on the image a forward tracing algorithm, which traces the
NLCode’s pattern until its end. The remaining UlEs available to the user are the
same as in the previous view of the Demo App (Fig. 5.22).

» Forward Tracing Button (bottom view, right) — The main control UIE of the
perspective corrected view is the Forward Tracing Button, which enables the
user to initiate the application of a forward tracing algorithm on the corrected
image of the pattern. This algorithm integrates a trajectory forward in time, as
it evolves toward the 2D projected trajectory of the NLCode, at which point it
couples with it and starts tracing it.
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The NLCode captured depicts a 2D projected trajectory on the x'x> plane. Ac-
cording to Subsec. 3.3.7, the coupling component driving the response subsystem
is x. This component must be retrieved from the processed image of the nonlinear
pattern of the NLCode. The forward tracing algorithm begins solving a 3D trans-
formed Lorenz system, with random ICs taken from the basin of attraction, in plot
coordinates. Subsec. 3.3.6. At every step of the RK4 method, the tracing converts
the current 2D projected state to pixel coordinates, and checks the colour of the
current pixel. For as long as the pixels checked are white, the solution contin-
ues without a drive. Note that the solution will eventually cross paths with the
pattern, since the evolving trajectory is drawn to the attractor. The first pixel of
the pattern found on the path of the trajectory is used as a reference, in search
of adjacent pixels of the pattern toward the general direction of the solution. If

! component in favour of the x'

such a pixel is found, the solution ignores its own X
component that corresponds to the pixel of the pattern, that is, it is being driven
as the response subsystem of the composite Sys. 3.60. As can be seen on the left
image of Fig. 5.25, the solution is eventually captured not simply by the attractor,
but by the nonlinear pattern on the image. When this happens, the response
subsystem starts synchronising with the drive, and starts tracing it. This process
continues until the end of the pattern. The response takes a few steps beyond the
end of the pattern in order to confirm its ending and when it does, traces those
extra steps back, and hands over the plot coordinate at the end of the pattern to
the next process.

Figure 5.25 (left) shows the seventh view of the Demo App. This view is called
forward tracing view because it displays the image of the NLCode’s nonlinear
pattern, with the steps taken by the response subsystem during the forward tracing.
For illustration purposes, the trace drawn in green crosses only shows every other

10 iteration steps of the evolving trajectory.

» Backward Reading Button (bottom view, right) — The main control UIE of the
forward tracing view is the Backward Reading Button, which enables the user
to initiate the application of a backward tracing algorithm on the image of the
pattern. This algorithm integrates a trajectory backward in time, and since it
starts on the nonlinear pattern, its is continuously driven and maintains the

synchronisation with the pattern.
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The backward tracing algorithm performs the actual reading of the NLCode.
The system solved this time, is the proper 2D response subsystem of Sys. 3.60.
The ICs are taken from the forward tracing algorithm, and since they are already
on the pattern, the algorithm traces it. This means that the backward tracing has
a constant supply of driving values, which keep it synchronised with the pattern.
As soon as the backward evolving trajectory reaches the beginning of the pattern
it stops, and hands over the traced trajectory to the next process.

Figure 5.25 (right) shows the eighth view of the Demo App. This view is
called request authentication view because it displays the image of the NLCode's
nonlinear pattern, with the steps taken by the response subsystem during the
backward reading. The trace drawn in red crosses only shows every other 10

iteration steps of the evolving trajectory, for illustration purposes.

» Request Authentication Button (bottom view, right) — The main control UIE of
the backward tracing view is the Request Authentication Button which, were
it implemented, could enable the user to initiate an authentication process,
by sending the sequence of numbers (plot coordinates) that corresponds to
the traced pattern to a database server, according to what was discussed in
Subsec. 1.3.3, and illustrated in Fig. 1.3.

Two important remarks regarding the tracing and reading processes described
and visually demonstrated in this subsection, are the following: Both forward and
backward algorithms go back and forth between plot and pixel coordinates, in
every iterative step of the RK4 method. The transformation between those two
coordinate systems was calculated using the method of least squares adjustment
presented in Subsec. 3.2.2, using as observation points the detected and identified
corners of the frame (pixel coordinates), and as control points the known plot
coordinates of the same corners on the plotted version of the NLCode.

The second important note is that not all plot points in the backward traced
trajectory are usable. As can be seen in both images of Figure 5.25, even skipping
10 points between the crosses drawn, there are still several points that are too
close to one another to be considered distinct. The reason fora that is twofold.
Firstly, due to the dynamics of the underlying system, the distances traversed in
equal time intervals, are not equal themselves. This is evident by the presence of
densely and sparsely populated segments of the pattern. Secondly, the iteration
step of the RK4 method is too small (At = 1073 sec) to create a sequence of

points, all of which can be meaningfully represented on the discrete space of a
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digital image. This means that the sequence of numbers returned at the end
of the backward tracing, the reading of the NLCode, should be processed by
an agreed upon method between sender and receiver, in order to facilitate an

authentication process.

) )

e Backward Reading e Request Authentication

Figure 5.25: Demo App - Forward & Backward Tracing Views: The image on
the left is the image of the pattern, with the points traced by the forward tracing
algorithm drawn as green crosses. The solution of the response system begins
from a point taken at random from the basin of attraction, and wanders around the

1 component,

image until it is captured by the pattern. Driven by the pattern’s x
it starts synchronising with it. By the time it reaches the end of the pattern,
the evolving trajectory coincides with the pattern, and is ready to hand over its
last state to the backward reading algorithm. The image on the right shows
the new trajectory evolving backward in time, while staying synchronised with
the driving component of the pattern, until it reaches its end, having obtained a
sequence of traced points on the image. That sequence can be further processed,
or sent directly to a database server for authentication, by tapping the Request

Authentication Button.
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Summary & Conclusion

This thesis begun with a statement of the problem the underlying project
was called to address, that is, counterfeiting. The introduction presented the
main objectives of the thesis, and gave an overview of the counterfeiting problem
from a socioeconomic perspective. The official Literature Review for this project
included the gathering of anti-counterfeiting technologies suited to the sponsor
company’s manufacturing process, and their evaluation in terms of this, as well as
other criteria. A quick look at recent trends revealed a preference toward anti-
counterfeiting technologies that utilise the fast growing capabilities of smartphone
devices, in order to offer user-based product authentication. This first part of the
thesis then turned to the proposed technology. The NLCode scheme was given a
brief overview, focusing on it main components and operation principle, i.e. that
of chaotic synchronisation.

The second chapter gave a brief introduction to those concepts of Nonlinear
Dynamics pertinent to the proposed scheme. This was the “unofficial” Literature
Review of this project. This chapter discussed the numerical solution of chaotic
systems, a fundamental property possessed by some of them, called dissipation,
and their equilibrium solutions. It also introduced the Lyapunov exponents, which
form the basic criterion for the synchronisation of chaotic systems. Attractors
and their basins, are both central in the development of the scheme. These were
briefly reviewed, before a presentation of the type of chaotic synchronisation the
developed scheme relies on, i.e. that occurring between subsystems forming ho-
mogeneously driving composite systems, with very clearly defined properties.

Part | of this thesis was dedicated to the structural elements of the NLCode.
The arced circular frame was thoroughly discussed, and its parameters were de-
fined, listed and specified. The variable transformations between system and plot,
and plot and pixel coordinates were discussed in detail. The former gives a uni-
fled approach to the scheme, allowing the implementation of different dynamical
systems, under the coordinate system defined by the frame of the feature. The
latter bridges events related to the Dynamics of the trajectories, to events taking

place on the captured image of the NLCode.
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The thesis then turned to the Lorenz system, which formed the basis for the
development of the scheme. All the concepts and methods introduced in the theory
chapter, were applied on the Lorenz system, in preparation for their later use in
the development of the Generator and the Reader of the feature. Lastly, the colour
profile of the NLCode was introduced and briefly examined.

The NLCode Generator is maybe the most challenging part of this project,
which makes sense, since it is responsible for producing readable NLCodes. This
means that it has to anticipate numerous issues that might be faced along the
way and treat them accordingly. The Generator treats the candidate trajectories
for spatial and colour overlaps, both of which are crucial to the performance of the
scheme. The operating window of the NLCode, in terms of print sizes and working
distances was also theoretically estimated and provided valuable insight in certain
shortcomings of the test photographic sample later used for the development of
colour filters.

The NLCode Reader was presented using the Demo App developed for the
retrieval of the trajectory depicted on the feature. From the target area facilitating
and enabling several processes following it, to the also challenging and quite
extensive section on image processing. The latter dealt with image masking,
colour detection and filtering, it employed a corner detector and implemented a
perspective correction shader.

The thesis concluded with the forward tracing and backward reading of the
nonlinear pattern of the NLCode. Making use of the synchronisation property of
chaotic systems, these processes were capable to retrieve the trajectory printed

on the feature, and did so in a visually pleasing manner.



Appendix: The Dequan Li System

The Dequan Li system does not model any particular phenomenon. This sys-
tem was synthesised in 2006 by Dequan Li in a successful attempt to fill a gap
in literature, by showing that a 3D autonomous chaotic dynamical system, “with
smooth quadratic terms”, can possess a three-scroll attractor (D. Li, 2008, p. 388).
Up until that point, this type of systems were known to possess one-scroll at-
tractors, such as the Rossler system (Rossler, 1976), two-scroll attractors like the
Lorenz attractor seen in Fig. 3.4 (E. Lorenz, 1963), and the four-scroll attractor
of the Li-Chen system (LU et al,, 2004). It is interesting to note that, after the
discovery of the Lorenz attractor, the motivation behind the pursuit of systems
with a wide range of properties was not only theoretical, but practical as well,
aiming to advance “various chaos-based technologies and information systems”
(D. Li, 2008, p. 388).

The Dequan Li system is mathematically described by the following 3D sys-
tem of 1st order ODEs, which is algebraically reminiscent of the Lorenz system

(Sys. 3.45), with two additional quadratic terms in the first and third equations,
x'=al = x') +dx'x’
kx' + 6 = x'x (A1)

x> = —9(X1)2+X1X2+CX3-

-
|

The system parameters in this case are six, namely a, d, k, f, e, and ¢, and they

are all positive.

A.1  Numerical Solution

Figure A1 shows a 3D trajectory of the Dequan Li system (Sys. A.1), solved
using the RK4 method presented in Sec. 2.1 with the parameter values used in
Letellier and Gilmore (2008)*” and ICs taken from (D. Li, 2008), i.e.

a=41, d=016, k=55 =20, e=065 ¢c=11/6 (A2a)
Xo = 2.0, xe = 2.0, x5 =2.0. (A.2b)

3Letellier and Gilmore (2008) pointed out that for the first parameter value a = 40.0, as
Dequan Li had suggested (D. Li, 2008), the attractor is actually a limit cycle. This was partially
confirmed by the Lyapunov exponents calculated in this study for this value of a, which gave a
maximal Lyapunov exponent close to zero, and two more negative exponents. Setting a = 41.0
after Letellier and Gilmore (2008) gives a positive, a zero and a negative exponent (Sec. A5,
Eq. A.12) which, according to Table 2.2, is consistent with the presence of a chaotic attractor.
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Figure A.1: Dequan Li attractor in 3D before the transformation: Solution of the
Dequan Li system (Sys. A.1) using the RK4 scheme presented in section Sec. 2.1.
The parameter values and ICs are the ones used in Letellier and Gilmore (2008) and
D. Li (2008) respectively (Eqs. A.2). The iteration step is At = 1073 seconds and the
total number of iterations N = 20, 000.

A.2 Variable Transformation

The transformed form of the Dequan Li system is obtained similarly to the two
previous cases, after applying on Sys. A.1 the one-step transformation given by
Eq. 3.24, and then simplifying by letting S' = S? = S3 = 1/S (Eq. 3.19):

[0 (X* = X") +d SX'X?]

-

1
)‘(2:7(kX1 +1X?— SX'XP) (A-3)
1
= [—es (X') +sx'x2+ X7,
where once more, (X', X?,X3) =X = x — ¢ + (x./S) is the “collective variable”
introduced in Eq. 3.48 for the simplification of the algebraic form of the system.
The calculation of the center y. of the Dequan Li attractor, and of the farthest
point xr of the attractor from its center, was performed as for the Lorenz system
(Sec. 3.3, Subsec. 3.3.2), with a number of N =100, 000 points in the trajectory.

The results are given in the following set of equations and also shown in Fig. A.1:

Xc = (—1.2837, —0.9355, 107.5150) (A.4a)
xr = (—116.756, —211.495, 148.410). (A.4b)
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Figure A.2: Dequan Li attractor in 3D and 2D projections, dafter the transformation:
(a) Solution of the transformed Dequan Li system (Sys. A.3) using the RK4 scheme
presented in section Sec. 2.1. The parameter values are the same as before (Fig. A.1),
and the ICs are the transformed versions of the original ones given in Eq. A.2b, specifi-
cally, xo = (0.008986, 0.008034, —0.288764). The iteration step and the total number
of iterations are the same as in Fig. A.1. The plot also shows in red the transformed
center x. = (0.0, 0.0, 0.0) = c of the attractor (Eq. 3.24), and in black the transformed
farthest point xy = (—0.3160, —0.5762, 0.1119) from the center. (b), (c), and (d) are
the 2D projections of the trajectory, and points x. and x; shown in Fig. A.2a, on the

3, and x*x3 planes respectively. These plots also include the cross-sections

x'x?, x1x
(meridians) of the enclosing sphere of radius Ripner = 2/3 (Table 3.1) cut by the three
planes. These plots further demonstrate the point that regardless of whether the two-
dimensional projected x; is farthest from the projected x. or not, the cross-sectioned
sphere by the respective plane will always encircle the attractor entirely (also see

Fig. 3.5).
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The scaling parameter S was calculated using Eq. 3.30 which led to
S =365.402. (A.5)

Figure A.2 shows the Dequan Li attractor after the scaling and translation

transformations, and its three 2D projections on the x'x?, x'x3, and x?x> planes.
The scaled and translated versions x. and x; of the center and farthest point from

center respectively are also shown in both 3D and 2D.

A.3 Dissipation

The case of the Dequan Li system is not as straightforward as the Lorenz
system in terms of confirming dissipation. The stability matrix (Eq. 2.8) of the

transformed Dequan Li system, Sys. A.3, is

] dSX3—a a dSX
AX) = k—SX3 fo—sx' |, (A6)
SX2—-2eSX' sx c

and its trace includes one of X's components, X3, which makes the divergence of
the system’s vector field (Eq. 2.14),

1

V~f:?(dSX3—a+c+f). (A7)

This means that, for the Dequan Li system to be dissipative, i.e. V -f <0, the
X3 component should be less than (@ — ¢ — f)/(d S) or, using Eq. 3.48,

;5 a—c—f+dS—dy?
: A.8
x* < 7S (A.8)

Using the parameter values given by Eqgs. A.Za, A4a and A5, as well as Table 3.1
where it is implied that the attractor should be centred at ¢ = 0, it is seen that
V - f < 0 only in the region of state space where x*> < 0.0336, and non-negative
elsewhere. Moreover, comparing this value against any of the plots in Fig. A.2

showing an x°

-axis, it becomes clear that roughly half of the Dequan Li attractor
falls in a region of state space with non-negative divergence. This, in fact, is the

issue mentioned in Sec. 2.2 (footnote 12) regarding the sole use of the divergence
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criterion to establish dissipation in a dynamical system. Dequan Li encountered
it while examining the basic properties of his synthesised system (Sys. A.1), and
used the Lyapunov dimension D; (Kaplan & Yorke, 1979) to argue that, since
2 < D = 21165 < 3, the system must be dissipative — were it conservative, its
trajectories would fill a 3D volume (D. Li, 2008).

A.4 Equilibrium Solutions and Local Stability

For the set of system parameters used here (Eq. A.2a), the Dequan Li system
has three equilibrium solutions in total, but only one of them is real. Just as all of
the system’s equilibrium solutions, the fixed point xJ is the solution of Eq. 2.15,
for f(x*) equal the vector field defined by Sys. A.3:

* XC

XG5 =C— S (A.9)
For the original, untransformed Dequan Li system (Sys. A.1), the fixed point given
above is the origin and the “collective variable” Xi) = 0. The stability matrix

(Eq. Ab) at X% is
’ —a
AXE) = T k
0

S - Q

0
0. (A10)
C

The eigenvalues of A(XY) are found by solving Eq. 2.19:

., C

K= (A11a)
_ — 4 2

jo, = o= NEVia+Prdak (A11b)

2T

Similarly to the Lorenz system, all three of the above eigenvalues are real. The
first and the second eigenvalues are positive, that is, A7 > 0 and A3, > 0, and the
third eigenvalue is negative, i.e. AL, < 0. With “at least one eigenvalue with a
positive real part, and one with a negative real part”, according to Sec. 2.2 (also
see Table 2.1), x§ is an unstable equilibrium solution of the saddle type.

The above results are provided in numerical form, i.e. after substituting the

parameter values of Eq. A.2a into all relevant equations, in Table A1.
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Table A.1: Stability of the real equilibrium solution of the Dequan Li system. The
first column lists the one fixed point of Sys. A.3 that is real (Eq. A.9), after substituting
the parameter values from Eq. A.2a. The second column gives the eigenvalues of the
stability matrix calculated at x5, found using Eqs. A.11. The third column shows the
stability type of the fixed point, based on the signs of the real parts of the eigenvalues,
and according to the criteria presented in Sec. 2.2 and summarised in Table 2.1.

’ Equilibrium Point x* \ Eigenvalues of A(x*) \ Stability Type ‘
x5 =(3.5130 x 10, Ay = 1.8333

2.5603 x 1072, A5, = —66.9380

—0.2942) Ao_ = 45.9380

Saddle
(unstable)

A.5 Lyapunov Spectrum & Lyapunov Dimension

The Lyapunov spectrum of the Dequan Li attractor was calculated using the
same software library DynamicalSystems.jl (see Sec. 2.4), and was found to be
Ly =0.487, [,=0.0, L[5=-2371. (A12)

Based on the above results, the Lyapunov dimension is calculated from Eq. 2.33

and turns out to be
D, =2.206. (A13)

With D; a non-integer and one positive, one zero and one negative Lyapunov
exponent (see Table 2.2, Sec. 2.6), the Dequan Li attractor is confirmed to be both

strange and chaotic.

A.6 Basin of Attraction

Figure A.3 shows the basin of attraction (Sec. 2.5) of the Dequan Li attractor.
This set appears to extend to infinity, like the basin of the Lorenz attractor, but
also seems featureless. This is an example where the lack of a pool of ICs might
not prove to be detrimental to the search of suitable trajectories by the NLCode
Generator, since all, or almost all 1Cs taken from the large vicinity of the attractor

would quite possibly result in trajectories captured by it.
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Figure A.3: Basin of attraction of the Dequan Li attractor. The Dequan Li attractor
is shown in red, and its basin of attraction in green. Like the Lorenz attractor, the
basin of attraction of the Dequan Li attractor seems to also extend to infinity, but
unlike the basin Lorenz attractor it is quite featureless.
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