CORRELATED EQUILIBRIUM STRATEGIES WITH MULTIPLE INDEPENDENT RANDOMIZATION DEVICES
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ABSTRACT. A primitive assumption underlying Aumann (1974,1987) is that all players of a game may correlate their
strategies by agreeing on a common single 'public roulette’. A natural extension of this idea is the study of correlated
strategies when the assumption of a single random device common to all the players (public roulette) is dropped and (ar-
bitrary) disjoint subsets of players forming a coalition structure are allowed to use independent random devices (private
roulette) ala Aumann. Under multiple independent random devices, the coalitions mixed strategies form an equilibrium
of the induced non-cooperative game played across the coalitions—the 'partitioned game’-when the profile of such coali-
tions’ strategies is a profile of correlated equilibria. These correlated equilibria which are the mutual joint best responses
of the coalitions are called the Nash coalitional correlated equilibria (NCCEs) of the game. The paper identifies various
classes of finite and infinite games where there exists a non-empty set of NCCEs lying outside the regular correlated equi-
librium distributions of the game. We notably relate the class of NCCEs to the ’coalitional equilibria’ introduced in Ray
and Vohra (1997) to construct their "Equilibrium Binding Agreements’. In a’ coalitional equilibrium’, coalitions’ best re-
sponses are defined by Pareto dominance and their existence are not guaranteed in arbitrary games without the use of
correlated mixed strategies. We characterize a family of games where the existence of a non-empty set of non-trivial NC-
CEs is guaranteed to coincide with a subset of coalitional equilibria. Most of our results are based on the characterization
of the induced non-cooperative "partitioned game’ played across the coalitions.

JEL Classification Numbers: C72; C92; D83

INTRODUCTION

A key motivation for the introduction of the correlated equilibrium (CE) solution concept (Aumann 1974, 1987)
has been that correlated equilibrium strategies could improve upon Nash equilibrium outcomes (see e.g., Aumann
1974, Moulin and Vial 1978, Ray (1996) and Moulin et al., 2014).! For arbitrary n-player games, the mechanics to
achieve these better outcomes is based on the introduction of a unique public lottery for all the players: There is a
(unique) mediator who informs each player of his own recommendation, without revealing the recommendation
to any other player. The key underlying assumption of such Aumann’s class of correlated strategies is thus that all
the players of a game can correlate their strategies via a single common random device or 'public roulette’. Under
this assumption, the class of Aumann correlated strategies forms a set of (canonical) correlated equilibria of the
original game if and only if the players’ strategy profile of deviation plans is trivial (i.e. each player follows the
mediator’s recommendations) and forms a Nash equilibrium of the extended game.

The initial motivation for this paper is the remark that in more general settings, the source of random signals may
not be common to all players, because different disjoint subsets of players will typically have access to stochasti-
cally independent randomization devices. When this happens, the different coalitions of players are only allowed
to use independent ’private roulettes’. This paper explores this natural extension of Aumann’s original definition by
relating the possible coalitions of (disjoint) subsets of players that can be formed to the existence of independent
randomization devices (one for each coalition). In this extended framework, the class of correlated strategies be-
comes induced by a tuple of correlation devices, one assigned to each coalition of players so that correlation may
now take place within some subsets of players i.e., coalitions only, while there is stochastic independence across
the strategic choices of the coalitions. Analysing this extended setting, we study the associated expanded class of
correlated equilibrium strategies by demanding that the tuple of correlated mixed strategies used by each coalition
is a tuple of correlated equilibria which forms itself a mixed Nash equilibrium of the induced non-cooperative game
played between the coalitions. For an arbitrary coalition structure a Nash coalitional correlated equilibrium (NCCE)
of the original game is then a tuple of correlated strategies such that, given the strategic choice of the other coalitions,

Date: * Email: yohanpelosse@googlemail.com. Tel: (01792) 606161. Postal address: SA1 8EN, Bay& Singleton Campus, University of
Swansea, Swansea, UK.
1Forges (2012) provides a concise overview of the literature.



no player in a coalition can deviate from its recommendation. The set of all the the possible NCCEs of a game is
defined for all the coalition structures. It is represented by the class of correlated strategies inducing a tuple of cor-
related equilibria within some coalitions of players corresponding to a Nash equilibrium of a game played across
the coalitions.

This class of correlated equilibrium strategies (for an arbitrary coalition structure) is the main object of study of
this paper.

Examples where disjoint subsets of players make their decisions by observing some independent random signals
coming from stochastically independent randomization devices abound. This goes from the existence of indepen-
dent mediating institutions, like government agencies or international bodies (see e.g., Arce, 1995, 1997) to com-
panies adhering to different alliances or countries regrouped in different international agreements. In all these
examples, the strategic decisions of the individual players is differently affected by the different randomization
devices that they may receive from their mediator representing their ’coalitior’.

We provide a formal analysis of these scenarios and ask what happens when such disjoint coalitions of players
have access to stochastically independent randomization devices. We shall answer this question for the class of
normal form games with finite strategies and certain classes of games with infinite space of actions. We analyse this
set of games by defining the Nash coalitional correlated equilibria (NCCE) solution concept which allows disjoint
subsets of players to independently correlate their strategies inside their coalition given the profile of correlated
strategies used by the other coalitions of players. More precisely, a NCCE is a profile of correlated mixed strategies
one for each coalition of players that no player and no coalition of players has incentives to change unilaterally.
Because such correlated equilbrium strategies are generated by a tuple of independent randomizations across
some coalitions of players rather than by a single public roulette common to all players, the resulting distributions
over actions will typically differ from what can be achieved by a regular Aumann correlated equilibrium. For a
fixed arbitrary coalition structure, a NCCE captures scenarios wherein there are some self-enforcing equilibria a
la Aumann occurring simultaneously within and across some arbitrary disjoint subsets of players forming disjoint
coalitions. At a conceptual level, the notion of NCCE provides a solution concept that (i) requires self-enforcing
agreements within each coalition of players (ii) imposes the resulting profile of non-binding agreements to be self-
enforcing between all coalitions. Hence, from this perspective the NCCE permits to encapsulate two notions of
rationality. The first is a notion of “group rationality”, where a coalition of players is represented by a mediator
who selects optimally a profile of recommendations for his group members. The second, is a standard notion of
individual rationality, where each player cannot benefit from deviating unilaterally from the recommendation of
the mediator of the coalition.

A central property of the NCCE solution is to simultaneously model the noncooperative interaction across coali-
tions in the spirit of Nash while allowing players to only use self-enforcing deviations from the recommendations
inside their coalition a la Aumann. These two characteristics permit to view the NCCE solution as a simultaneous
extensions of the Nash solution-at the level of coalitions—-and a natural extension of the regular Aumann correlated
equilibrium concept-with coalitions using stochastically independent random devices. To the best of our knowl-
edge, Ray and Vohra (1997) notion of ’coalitional equilibrium’ is the only existing solution concept in the literature
that models the noncooperative interaction across coalitions a la Nash. The notion of ’coalitional equilibrium’ has
been introduced in the construction of Ray and Vorha’s equilibrium Binding Agreements (EBA). The idea of a’coali-
tional equilibrium is that the Nash equilibria of a fixed non-cooperative game are analyzed by dividing the players
into disjoint subsets of players forming a partition of the players set'— a ’coalition structure’. However, unlike a
NCCE, a coalitional equilibriuny’ does not initially impose to coalitions the use correlated strategies a la Aumann.
In fact, Ray and Vohra ’s original definition only demands that the joint optimal strategies are based on the possi-
bility for players inside a coalition to form some binding agreements by coordinating their moves on the existing
undominated Pareto strategy profiles (given the tuple of optimal mixed strategies used by the other coalitions).
However, as noted by Haeringer (2004), the existence of an equilibrium across the coalitions, (hence fixed point
of the combined joint best response set of all the coalitions), may require that each coalition of players mutually
attains their efficient outcomes inside their coalition (via binding agreements ) by using some correlated strate-
gies-rather than mixed strategies based on independent randomizations.” Since one of the motivations for the
study of Aumann correlated equilibrium strategies is their potential to improve the welfare of players upon Nash
equilibrium outcomes, one of our leading question will be to characterize some classes of games where all the
coalitional equilibria of Ray and Vohra and all the NCCE:s of the game being played coincide. When this happens,

2When the quasi-concavity of payoffs is not assumed, the existence of coalitional equilibria is not guaranteed unless coalitions are allowed
to use correlated mixed strategies (see Haeringer (2004)).
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each correlation device of a coalition which acts as a "public roulette’ for the players inside a coalition models the
’binding agreement’ assumed by Ray and Vohra: Hence, for the set of games where the class of coalitional equilib-
ria (forming EBAs) and NCCEs coincide, we will have the appealing property that the profile of the coalition mixed
strategies is simultaneously Pareto improving and self-enforcing inside and across the coalitions of players.

Our results. The first series of results established in this paper is on the identification of the class of games where
the existence of non-trivial NCCEs which do not coincide with the regular correlated equilibria of the game is guar-
anteed. Taken together, the combinations of our various results pin down some sets of games where there exists a
non-empty set of non-trivial NCCEs which are guaranteed to coincide with the coalitional equilibria of the game
being played. To achieve this identification we need to answer two separate questions, which form the two main
streams of our central results.

We first need to identify the class of games where some non-trivial NCCEs which are not simply some regular
correlated equilibria of the original game exist. Second, we need to characterize the class of games where there
is coincidence between the coalitional equilibria of Ray and Vohra and and NCCEs. As shown in this paper, one
way to achieve these two characterizations is to analyze the non-cooperative game played between the coalitions
of players. While this non-cooperative game which we refer to as ’partitioned game’ is implicit in Ray and Vohra
(1997), it is formally undefined and several of our results are geared towards its characterization. In particular,
since NCCEs in pure strategies are trivial, the class of games that possesses a non trivial subset of NCCEs must
have partitioned games admitting some properly mixed Nash equilibria. Hence, some of our results are based on
the characterization of partitioned games wherein the coalitions are playing some profiles of non-degenerate cor-
related equilibrium distributions which do not induce some regular mixed Nash equilibria of the original game.
This class of games may notably include those where the 'sub-games’ played by the players inside each coalition—
given the profile of correlated strategies used by the other coalitions-belong to that class of (anti)-coordination
games where completely mixed equilibrium payoffs may be strictly Pareto dominated by some correlated equi-
libria (see Moulin and Vial, 1978). The characterization of the "partitioned games’ is also crucial to determine the
supports of the correlated equilibrium distributions used by the coalitions in the NCCEs : even for games which
have partitioned games with properly mixed Nash equilibria, we need to find some conditions that guarantee that
the set optimal undominated Pareto correlated strategies used by a coalition in a EBA will be inside the support of
the correlated equilibrium distributions used by the coalitions.

Our analysis of the existence of non-trivial NCCEs for the class of infinite convex partitioned games exploits the
property of potential games (Monderer and Shapley, 1996). The hallmark of this class of games is that every maxi-
mizer of a potential function is a pure-strategy Nash equilibrium (PSNE). Here we apply a much more generalized
form of the potential techniques by considering the ’partition potentials’ introduced by Uno (2007, 2010). In this
class of games, the single global function—the potential—for all the players is replaced by a tuple of ’local poten-
tials’, whose maximizers only give the optimal strategies for a certain subsets of players. This technique notably
allows to obtain some conditions for the existence of those non-trivial NCCEs in which each coalition of players
plays into a non-degenerate correlated equilibrium distribution.

Examples of Nash coalitional correlated equilibria.
Example 1: trivial Nash coalitional correlated equilibria

Az B3 Cs

H; T H; T, H; T
H; | 0,1,3 | 0,0,0 H; | 2,2,2 | 0,0,0 H; | 0,1,0 | 0,0,0
T; | 1,1,1 | 1,0,0 T; | 2,20 2,2,2 T, | 1,1,1 | 1,0,3

In this game, player 1 is the row, player 2 the column and player 3 chooses a matrix. The pure strategy space of
each player is a two-point set ©;,i = 1,2,3. Let {S12,S3} defines a coalition structure for the player set N = {1, 2, 3}
with S;2 = {1,2} and S3 = {3}. An example of a correlated equilibrium of this game is when players 1 and 2 condi-
tion their actions by jointly observing the outcome of a fair coin as follows: If heads comes up they play (H;,H>)
and if tail occurs, they pick (T;,T2), while player 3’s best reply is to always plays matrix Bs. The resulting corre-
lated equilibrium distribution, p = p12 ® p3, where p3 = 8, is the Dirac probability measure onto Bz, forms what
we shall refer to as a €(1,2,3) = {S12,S3}-trivial Nash coalitional correlated equilibrium (NCCE) of the game
I'. In general games, this coincidence between a NCCE and a regular correlated equilibrium distribution will fail

3



because unlike the Aumann assumption, for arbitrary games and arbitrary coalition structures the NCCE class of
correlated strategies requires a different correlating device to each coalition of players (rather than a single one for
all the players). The terminology ’'trivial’ will be used throughout this paper when a NCCE forms a regular cor-
related equilibrium of the original game. In this particular example, the NCCE (p;2, p3) corresponds to a regular
correlated equilibrium of the game because the induced correlated equilibrium distribution p* = p1, ® p3 only
involves a proper randomization for one of the coalitions with one player (player 3) with a constant best reply (
always choose B3). The NCCE (p12, p3) is a particular (degenerated) case which is compatible with the use of a
single 'public roulette’ d for the entire coalition structure €'(1,2,3). Indeed, one may equivalently view d as gener-
ated by a pair of mediators using a pair of correlating devices (d; 2 d;) such that player 3 makes his constant choice
following his extraneous constant signal Bz coming from dé, while players in coalition S; » make their choices as a
function of extraneous random signals coming from d;z. As illustrated in the following examples below, the coin-
cidence between NCCEs and regular generally fails, thereby showing why correlated equilibria are a strict subset
of the class of all the NCCEs of a game.

This example also features the most characteristic property of the class of NCCE correlated strategies : In Table 1,
the correlated strategies p* = p},®p3, induces a Nash equilibrium of the B3-non-cooperative game (we shall refer
to it as a’ partitioned coalitional game’) played between the subsets of players S1 = {1,2} and player 3. The gen-
eral notion of partitioned coalitional game’ is formally defined below and a characterization of these games is at
the core of our main results. Compared to a regular correlated equilibrium, a NCE possesses another key property
since for the class of canonical NCCEs —the class of correlated equilibria used by each coalition of players is based
on a canonical correlation device whose signals are defined by the coalition joint strategies— the profile of corre-
lating devices becomes endogenously determined: Even in the simple game of example 1, the randomized strategy
py, over the joint strategy profiles (H;,H;) and (T, T2 ) depends on the degenerate strategy ps = 8¢ of player 3. For
an arbitrary mixed strategy choice p; (which puts some mass onto C), the new correlated equilibrium strategy pi"zl
will typically require the mediator of S; » to randomize with a different probability distribution pi"zl # piy. T12( p;)

correlated strategy pi"zl Hence, for an NCCE to happen, it must be that the mediators have a 'more active role’
than what they are assumed in a regular correlated equilibrium: Given the coalition structure, {S12,S3}, the the
randomized strategy p;, of coalition Sy, induces the distribution p according to which the mediator of player 3
should send a his recommendations. Symmetrically, the randomized strategy p3 of coalition S3 induces the dis-
tribution p¥, according to which the mediator of players S;» should send a his recommendations. Hence, for the

class of arbitrary NCCE, the correlation devices d;z and dé become some mutually dependent objects. This prop-
erty is another clear break with the exogenously given single correlation device d,,, assumed to define the class
of regular correlated equilibria. It is also useful to note how the NCCE relates to the Nash solution concept. For
the finest partition of players €*(N), a ¢*(N)-NCCE boils down to a Nash equilibrium of the game being played.
So, one can also view the class of NCCEs as being the extension of the Nash idea to an arbitrary coalition struc-
ture € (N) of disjoint subsets of players: each coalition of players S plays an optimal correlated strategy whenever
it is playing into a correlated equilibrium of the non-cooperative game induced by the profile of (independent)
correlated strategies used by the other coalitions.

Example 2: Intersection of NCCEs and Ray and Vohra’s 'Coalitional Equilibria’.

The game below is taken from Haeringer (2004) in his discussion of the existence of the first step of Ray and
Vorha’s Equilibrium Binding Agreement (1997). Player 1 chooses the row, player 2 chooses the column, and player
3 chooses the matrix.

H3 T3

H; T, H T,
H; | 2,20 | 0,0,0 H; | 1,1,0 | 0,0,0
T; |1 0,00 | -1,-1,2 T; | 0,00 22,0

Consider the coalition structure defined by: S12 = {Row, Column} and S3 = {Matrix}. A class of {S;2,S3}-NCCE
of this game is induced when the coalition formed by Row and Column plays in a correlated equilibrium by ran-
domizing onto the pure Nash equilibrium strategy profile (H;,Hz) with a probability p;» and pure Nash equilib-
rium strategy profile (T;,T,) with a probability 1 — py2 for p12 = 1/2 and while 'Matrix’ S3 picks H3 with proba-
bility ps = 1/2. The {S12,Ss} mixed strategy profile p;, = ((1/2® (H1,H2),1/2® (T1,T2); (1/2® (H3),1/2® (T3))
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which forms a {S;2,S3}-NCCE coincides with an coalitional equilibrium as defined in Ray and Vorha (1997) in
the construction of their 'binding equilibrium agreement’. However, unlike example 1, such a NCCE is not a reg-
ular Aumann correlated equilibrium: Both coalitions of players are now using a non-degenerate mixed strategy
(corresponding to a correlated equilibrium for S;2) rather than a pure strategy for the singleton coalition S3. The
fundamental reason for the departure from the Aumann class of correlated strategies is that any partial non-trivial
correlation that takes place within a non singleton coalition of players breaks the Aumann’s definition of correlated
equilibria of a single correlating device.

So, we note that the coalitional equilibrium of Ray and Vohra intersects with the class of NCCEs with the follow-
ing proviso: While NCCE requires players inside the coalition to randomize in a correlated equilibrium over some
joint strategies profiles of their coalitional game (induced by the correlated strategies used by the other coalitions),
in a coalitional equilibrium, the joint best replies of a coalition of players are defined via Pareto dominance. The
coincidence between some coalitional equilibria and non trivial NCCEs for some coalition structures of a given
game arises whenever the (coalitional) game played by each coalition have some pure strategy Nash equilibria onto
which the players can jointly randomize. This is exactly what happens in the case in example 3 below.

Example 3 :Non-trivial NCCEs and coalition-proof equilibria.

The next example shows that the class of non-trivial NCCEs have the potential to be used to characterize several
other solutions concepts of the literature. The game below is taken from Moreno and Wooders (1996) and dis-
cussed in Heller (2008). Player 1 chooses the row, player 2 chooses the column, and player 3 chooses the matrix.

Hs T3

H, T, H; T,
H, | 1,1,-2 | -1,-1,2 H, | -1,-1,2 | -1,-1,2
T | -1,-1,2 | -1,-1,2 T | -1,-1,2 | 1,1,-2

The tuple of probability distributions wherein players 1 and 2 correlate their strategies against player 3 given by
correlated strategy profile

1 1 1 1
PS12.53 = (P12, P3) = ((5 ®(T1T2), 5® (HiHy)), (5 ®Hs, 5 ®T3)),

forms a non-trivial {S12,S3} Nash coalitional correlated equilibrium, which does not form a regular correlated
equilibrium. Indeed, unlike the previous example 1, this NCCE required a pair of correlating devices (d;z,dé)
whose associated pair of mediators select a pair of correlated pure strategies (012,03) according to a pair of non-
degenerate probability distributions (ps,,, ps, ). Specifically, the mediator of Sy, privately recommends a pure
strategy T; or H; to player 1 and T» or H; to player 2, according to p;» ,while the mediator of S3 privately rec-
ommends a pure strategyTs or Hs to player 3 according to p3. The coincidence between this NCCE and a cor-
related equilibrium of the game breaks down in this example because both coalitions of players are now using
non-degenerate mixed strategies thereby making impossible to obtain a profile (ps,,, ps,) by using a single corre-
lating device dj23 # (d;z, d;) with a single mediator.

In fact, it turns out that this particular {S;2,S3}-NCCE coincides with a correlated strategy forming a coalition-
proof correlated equilibrium (CPCE)(see Moreno and Wooders, 1996): It is a self-enforcing agreement for each
player i inside the coalition S;» and player j of coalition S3 in the sense that neither of these player wants to uni-
laterally deviate from the agreement. As remarked by Moreno and Wooders (1996), this is indeed the unique CPCE
of this game. As in example 1, the correlated strategy profile (pi2, p3) is outside the set of the regular Aumann’s
correlated equilibria. For two-player games the set of CPCEs is the set of correlated equilibria which are not Pareto
dominated by other correlated equilibria. Hence, if they exist, the set of ¢ (N)-NCCEs in any game T defined for
the coalition structures € (N) = {Sk}y_, such that [Sk| = 2 for all K = 1,..., m, are identified by a tuple correlated
equilibria ( Ps)m_, which coincide with the CPCEs of the family of coalitional games {T's; (ps_i)}¢- ;- 3

The hallmark of all the above examples is that non-trivial NCCEs which are not forming a correlated equilibrium
of the original n player game are not guaranteed to exist. For nontrivial coalition structures made up of at least
two non singleton coalitions of players, a tuple Nash equilibrium of the game played between the coalitions may
not correlated play into a properly mixed correlated strategy (against the other coalitions) is guaranteed to exist

3The set of correlated equilibria which are not Pareto dominated by other correlated equilibria is convex and compact. Hence, applying
standard Kakutany fixed point theorem shows that this set of € (N)-NCCEs is always non-empty.

5



for arbitrary coalition structures even in 'well-behaved’ (compact and convex) class of games. If they exist, such
NCCEs where a tuple of correlated equilibria is simultaneously played within some subsets of players does not
form a regular Aumann correlated equilibrium. The bulk of the paper consists in identifying those 'extended cor-
related equilibria ’ wherein there is a simultaneous profile of joint best responses for each coalition corresponding
to a profile of correlated equilibria induced by a tuple of correlating devices only tailored for each coalition. As
discussed in the next example below, it turns out that even in the case of a simple coalition structure of a three
player game, a NCCE which only involves a correlation between player 1 and 2 is not in general forming a regular
Aumann correlated equilibrium. *

1. NASH COALITIONAL CORRELATED EQUILIBRIUM: DEFINITION AND BASIC PROPERTIES

Consider a finite set of players N = {1,2,..., n} playing a normal-form game, I = (N, (0;,U;) ;e ), where ©; isis a
nonempty compact set @; — R (of finite dimension m;) for each player i. Given a subset S — N, the joint strategy
set ©s = | [;cq ©;, of subset of players S is assumed to be a compact normed space and U; : [ [ ;. ©; — R desig-
nates the continuous and measurable payoff function of player i. We denote the set of Borel probability measures
over aset M c R by A(M) and endow A(M) with the topology of weak convergence. > When M is a finite set, A(M)
is the unit simplex on M in R™. We will provide the characterization of various NCCEs for finite games i.e., games
in which the spaces of pure strategies is finite and also establish some existence results for continuous gamesi.e.,
games with compact and convex strategy spaces and continuous payoff functions. A coalition structure, € (N), is
a partition of N, and its elements are called coalitions. We denote € = {€(N)} as the set of all the partitions of a
set of N players. To simplify exposition, the next series of definitions leading to the class of NCCEs is given for finite
games (we discuss below why the finiteness assumption of signals is without loss of generality when we deal with
some classes of continuous games where the mediators of the coalitions use canonical correlation devices).

For any non-singleton coalition S, an element ps of A(®s) is called a correlated strategy distribution for S. For any
coalition structure € (N), let p—s = (pg' )g/ s (N)\ (s} NOw, take a finite collection of probability spaces (8s, ps )se(n)
and denote the associated product measure p in [ [seq(n) A(Os) by p = Qsees () Ps-

A generic correlation device (Qs, gs, (23 ies ) = ds, for a coalition S is described by a finite set of signals Qs, a prob-
ability distribution gs over Qg and a partition '@sl of Qg for every player i € S. Since Qg is finite, the probability
distribution gs is just a real vector gs = (gs(w)) weqs- In the following we shall express our definitions of a NCCE
and results in terms the ’canonical representation’ of the Aumann correlated equilibrium: For a (finite) games, with
a coalition structure ¢ (N), and an arbitrary profile of correlated strategies g = (qs)Se%(N) we denote the tuple
of canonical correlation devices under q by de () (q9) = (Qs, qs,?}’s)Se%(N) where the finite set of signals of each

coalition S is given the joint strategy space of pure strategies Qg = Os. ° From I'and (ds) se¢(N) = deg(n), we define
the extended game I'¢; () as follows:

e for each coalition S € €(N), w = (w;);es is chosen in Qg according to gs
e every player i € S is informed of the element P¢ (w) of 22 which contains w.
e Tis played: every player i chooses a strategy 6; in ©; and gets the utility U; (6x) where Oy = (0;) jeN-

A (pure) strategy for player i € S in 'y is a mapping i : Qs — ©; which is 2! -measurable.” Let 1 = (T} )es be
a strategy profile in game I' () and ¢ = (b;)ies be the corresponding behavioral strategy profile with

b wi = i (- [w;).
The interpretation is that in, I'¢ (), every player i in a coalition S chooses 0; (or more generally a probability dis-
tribution ¢;) as a function of his private information on the random signal w € Qg which is selected before the

“Interestingly, in this example, the NCCE induced by the distribution p also corresponds to the unique (ex-ante) strong correlated equi-
librium of Moreno and Wooders (1996) i.e. a correlated strategy profile that is immune to joint deviations. More precisely, an ex-ante strong
correlated equilibrium (Moreno and Wooders, 1996) is immune to deviations that are planned before receiving the recommendations. The
correlated distribution in example 1 is also reported to be the only equilibrium played in experiments (see Moreno and Wooders (1998)).

5A sequence (m) from A(M) is said to converge weakly to p € A(M) if Sfdp/ — { fdu for all continuous functions f:M — R.IfMis a
compact metric space, so is A(M) see e.g. Theorem 6.4 in Parthasarathy (1967).

6Here, we apply Myerson (1982) to the correlated strategies played inside each coalition S which guarantees the equivalence between a
correlated equilibrium associated with an arbitrary correlation device and the corresponding correlated equilibrium distribution, pg in the
coalitional game I's(p_g) that is induced by the correlated strategy profiles of the other coalitions —S, namely, the probability distribution
induced over Og by ps and behavioral strategy ¢ps = (¢; ) jes, defines a canonical correlated equilibrium in Tg(p_g) .

In other words, Té(w/) = ‘ré (w) if we Pé(w).



beginning of T'.
In this paper our analysis is geared towards the induced equilibrium probability distributions over the action pro-
files i.e., the correlated equilibrium distributions. Let (ds,Ts) be a correlation device for coalition S with strategy
profile ¢ = (¢;);es of a game extended by the correlation device ds(Qs, gs ). The pair induces a probability distri-
bution ps € A(@s) given by

W05 € Os,ps(8s) = > as(w) [ [di(Bifwi).

weQg ieS

Fix a coalition S € € (N), and any strategy profile, p_s. We define, U; (-, p—s) : ©s — R, as the payoff function of
player i € S. Hence, for each p_g we obtain a p_g-coalitional game for coalition S, denoted I's (p—s) =<S, (0;,U; (-, p—s) ) ies )-
The multi-linear extension of U; (-, p—s) to A(®s) is still denoted by U; (-, p—s).

The set of correlated equilibria CE(T) of a N-player game I is contained in A(®y).Thus, in general, a correlated
equilibrium will only involve the correlation of certain subsets of players. By definition, in the particular extreme
case of a correlated equilibrium p that forms a mixed Nash equilibrium, there is complete independence of all the
players i.e., no correlation occurs within any subset of players.

Let Og be set of pure strategy profiles s = (0; : i € S) for a subcoalition of players S of a game I'. Consider a par-
tition €' (N) of N and take any finitely supported probability distribution p in A(@y). For a coalition S € € (N), let
S; denotes the player i € S and S_; € Og, the set of all the other players j i in S i.e., S_; = S\{i}. A tuple of distri-
butions p = (ps, p—s)-coalitional games for a coalition structure € (N) is denoted 'y () (p) = (I's(ps), T's(p—s)).
Now note that a tuple of action distributions p = (py) S%(N) S (N) A(®g) forms a tuple of € (N)-correlated

equilibrium distributions if each pys is a correlated equilibrium distribution of the p_ ¢/ - coalition T's ( p_g ). The
Aumann canonical correlated equilibria of a game I are fully specified by a probability distribution g over Oy.
For finite games and an arbitrary coalition structure , a NCE of I' is fully specified by a tuple probability distribu-
tion p = ( pS)Se%(N) so that each ps is a canonical correlated equilibrium of I's (p—g over Og in the p_g-coalitional
game I's (p_s). With the definitions given above, we are now in a position to state a natural extension of the original
definition of Aumann to an arbitrary coalition structure of players..

Definition 1.1. Fixa finite game I' and a set of canonical tuple of correlation devices {di(x) (q) = (25, g5, 25 )se(n) |G €
[ Isew(n) A(Os)}. We say that a profile of action distributions p = (ps)sce(n) € [ [sew(n) A(Os) is a € (N)-Nash
coalitional correlated equilibrium (NCCE) of I' if p is a tuple of correlated equilibrium distributions of I'¢ ) (p)
(induced by a tuple of canonical correlated devices de () (p) ) in a collection of coalitional games {I's(p—s)[S €

% (N)} On.° Formally:

Atuple p = (ps)sece(n) forms a € (N)-NCCE of game I if for each coalition of players S € € (N) and each player
i€,

2 ps(6s,,0s_;)U;i(0s;,0s_;;p—s) = 2 ps(e;i,esfi)Ul-(e'si,esﬂ.;p,s),

Os_;€0s_; Os_;€0s_;
!
forall 6s;,04  €0s.
—1

The above definition extends to continuous games in the obvious manner with the appropriate usual require-
ments. A tuple p = (ps)se¢(n) forms a A (canonical ) NCCE of T if it is a ¢'(N)-NCCCE induced by a profile of
correlation devices dig(n) (P) = (Qs, ps, Ps )se(n) With Qs = Og. This requires that a tuple of action distributions

p=(pg )s’e%(N) defines a ¢ (N)-NCCE if each mixed strategy py of each coalition S’ € ¢(N), simultaneously

forms a correlated equilibrium distribution of the p_s- coalitional game I's(p—s). Intuitively, a n action distri-
bution p = [ [/ € €(N)pg on the original players’ choice combinations ©y forms a 6 (N)-NCCE of a game T

if each p¢/ is a canonical correlated equilibrium for each coalition of players S e % (N). Equivalently put, in a
% (N)-NCCE, every choice 8s, of i in coalition S that receives positive probability ps (8s,) = margps (6s,,-) > 0 is
a best response ( for player i ) given the conditional probability measure ps(-|8s,) on the distribution of choices
Bs ,€0s , =] j#iljes 0; of the other players S_; of the same coalition S and given the probability measure

8The relation between correlated equilibria associated to an arbitrary correlation device and the induced correlated equilibrium distribu-
tions defining the 'canonical correlated equilibria’ is discussed in Myerson (1982).
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p-s=1lg ee)\s' Ps’ induced by the action distribution of the other coalitions over ®_g. Hence, a NCCE in-
duces a probability distribution of actions p(8;,0_;) = HSeC(N) ps(0s) where there is only a correlated equilib-
rium correlation ps € A(Og) inside each coalition of players S € € (N), given the profile of correlated equilibrium
distributions p_g € A(®s) implemented by the mediators of the other coalitions. Next say that coalition S has a
joint or coalitional best response ps when ps is a correlated equilibrium for the players in S playing I' given the
tuple of correlated strategies p_s used by coalitions —S. When this is the case we write ps € BRs(p_g) with the
understanding that BRs is the coalitional best reply of S. So, an equivalent restatement of the above definition of
a NCCE is that when a coalition structure ¢ (N) forms, the mediators of each coalition S € € (N) choose a tuple
of correlation devices ds(ps) = (Os, ps,gz‘s)Secg(N) choose a tuple of correlation devices with the property that a
profile p forms a NCCE if it is a fixed point of the € (N)-combined coalitional best response mapping

BRy(ny:= || BRs.
Se€(N)

Clearly, this definition of a NCCE expands the Aumann’ definition. Indeed, by definition, a tuple of action distri-
butions p = (p;); forms a €*(N)-NCCE of I with ¢*(N), the finest partition of N i.e., €*(N) = {{i}: i e N} if it is
amixed Nash equilibrium of I'. And it is a regular correlated equilibrium if p is a ¢**(N)-NCCE of I with €**(N),
the coarsest partition of N i.e., €**(N) = {N}. So, the Aumann set of correlated equilibria CE(T') of a game T is
in general only a subset of all the % (N)-NCCEs that can be induced in a game for all the other possible coalition
structures € (N) # €**(N),¢**(N). The addition of these ¢ (N)-NCCE can therefore be viewed as the natural
complement of the original definition of Aumann. The Aumann original definition of correlated equilibrium de-
mands that action distributions p € A(®y) is over the correlated strategies of the entire space of players’ choices
so that for every player i € N, every choice 8; that receives positive probability margp(6;,-) > 0 under p is optimal
given the conditional probability measure p(-|8;) given i’s choice itself:

> p(0,0-)U(0;,0-1)=> > p(6,0_1)U;(6;,0_,),
0_;e0_; 0_;e0_;

for all 6;, 6/_1. € ©_;. So, for an arbitrary game, a n action distribution forming a regular Aumann equilibrium dis-
tribution, p, does not form a € (N) # €*(N),¢**(N) -NCCE. An immediate consequence of the above definition,
is thus that for an arbitrary partition of the players in a coalition structure € (N) # € *(N), €¢**(N) the existence of
anon-empty set of non-trivial ¢ (N)-NCCE which does not boil down to some correlated equilibria of the original
game is not guaranteed. The next section tackles this issue.

2. EXISTENCE OF NON-TRIVIAL COALITIONAL CORRELATED EQUILIBRIA IN FINITE GAMES

At this stage, it remains unclear when one should expect to find the existence of non-trivial NCCEs which do
not simply form regular correlated equilibria of the original game. In this section we provide a first identification
of such games when the spaces of actions are finite.

"Partitioned games’ and joint best responses of a coalition. : In the introductory examples of this paper, we noted
that a non-cooperative game between the coalition is implicit in the definition of a coalitional equilibrium of Ray
and Vohra and the class of correlated strategies forming a NCCE: The goal of this section is to precisely characterize
this ’'partitioned game’ induced by the tuple of correlated strategies used by the coalitions. This game will be the
main new object of study to establish most of our results. We start by a definition and elementary characterization
of these non-cooperative games in general. Our analysis is formulated for finite games to avoid unnecessary tech-
nicalities.

Given an arbitrary partition structure 6 (N), we refer to the game played between the coalitions as the % (N)-
partitioned game of T'. In equilibrium, this game contains the (mixed) Nash equilibria forming the tuple of corre-
lated strategies for the whole game. Such partitioned games which are by construction implicit in Ray and Vohra’s
definition of ’coalitional equilibria’ , have to the best of our knowledge not been analyzed in the literature. Here,
we provide a formal analysis of the NCCEs and ’coalitional equilibria’ in terms of these partitioned games. As
shown in our main results, these games contain some crucial pieces of information about some structural prop-
erties characterizing the existence of certain classes of NCCEs which coincide with the ’coalitional equilibria’ of
Ray and Vohra. Several of our results seek to identify some class of games which possesses some specific classes
of NCEs like e.g., the ones where each coalition use completely mixed (and correlated) strategies by randomiz-
ing over some pure Nash equilibria of their (induced) coalitional game. As shown below, the characterization of
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these games played across the subsets of players allow to characterize some classes of games whose NCCEs are
non-trivially forming some regular correlated equilibria of the original game. As such, these partitioned games
played across the subsets of players will constitute one of the essential new objects introduced in this paper. To
understand why a partitioned game is a crucial element to analyze NCCEs re-consider the induced correlated dis-
tribution p = p12 ® p3 of Example 1. When pj, and p3 are two non-degenerate probability measures, the induced
correlated distribution p cannot form a correlated equilibrium distribution of the original game. This is exactly
what happens in this example. More formally, if we denote by I'12(p3) the coalitional game played between play-
ers 1 and 2 when player 3 chooses a mixed strategy ps, then the correlated equilibrium distribution,

prz = (5 (T1T2) 5 (HiF2))),

of the subcoalition of players {{1,2} in T'12(p3) is a best response to the mixed strategy ps = (%Hg, %Tg) played by
player 3 and, conversely, the distribution p3 of player 3 is a best response to the correlated equilibrium distribution
p12 that is played by the subgroup of players 1 and 2 in I'12(p3). While the induced correlated distribution p =
P12 ® ps does not form a correlated equilibrium, the resulting profile (p12, p3) forms a mixed Nash equilibrium of
a’partitioned game' Ty played between the coalition of players S12 = {1,2} and S3 = {3} . In this game, the set
of players are defined by the elements of the partition € (N) = {S12,S3}. This motivates the following definition.

Definition 2.1. Fix a non-trivial partition € (N), of the N players of a game I'. A partitioned game of T is a game,

T(n) = <‘€(N), {©s,Us }SECK(N)>

where each coalition’s payoff function Ug,S € €(N) is derived from I' and whose aggregate pure best response
correspondence of the subset of players S denoted BRg (-) is non-empty for every profile p_g in ©_g

The definition of a partitioned game raises in turns two issues:

(1) What is the characterization of the payoff function Ug representing each subset of players S ?

(2) Evenif each Og is a finite space of pure strategy profiles and there exists an aggregate representation Ug of
each subset of players, what is the characterization of the nonempty set of pure best reply profiles 85 of S
to conjectures p—_g in the coalitional game T's(p_g) ?, i.e., BRs(p—s)()Os # &, Vp_s.

As discussed below, the answers to (1) and (2) rely onto the aggregate deviation function of a normal form game
I which gives the necessary and sufficient condition for the existence of a correlated equilibrium (see Hart and
Schmeidler ,1989) and the notion of 'coherent strategies’ introduced by Nau and McCardle (1990). As formally
stated in the next result, it follows that the best response correspondence of each subset of players S in the parti-
tioned game is characterized by the parametrized version of the aggregate deviation function (also referred to as
the Nikaido-Isoda-function (1955) or Ky-Fan function) (Fan,1972) of the family of coalitional game I's(-).
Let a; » 1 denote the distribution on O that results if a mediator tries to implement p € A® in I' but player i e N
deviates according to a;. We set a* i = (a; * 1) jen for a vector of i = 1,..., n, unilateral deviations of a distribution
p. We have the following definitions.
Let I be a N-person normal form game. Then I' has a non-empty set of correlated equilibria p € CE(T) # ¢ if and
only if for every profile p € CE(T) in CE(T) the aggregate deviation function Wy of the game T is defined by:

Wn(,-) A0 X AO — R,

verifies:
W (ax ) = Y [0 (g * ) = U ()] <0,Ya = (o)) jen
jEN
with o * p.(e_l-,él-) = Ze,— (xl-(é,-|6i)p(6_,-,6i) for every 0; € ®; and forall 6_; € O_;.
Call coherent the pure strategies that are played with positive probability in at least one correlated equilibrium.
The set of jointly coherent strategies, denoted C(S), in the gameT for a subset of players S is the set

C(S) = {es GGSHPGCE(F),p(eS X (973) > 0}.

Our aim will be to characterize the set of pure best replies for the subset of players S of an arbitrary coalition

structure € (N) in the partitioned game, 'y (v for profiles of correlated p(x) = (Ps)se(n) Where each ps is a

correlated equilibrium distribution of a coalitional game I's(p_g) with the additional property that P<(N) forma
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mixed Nash equilibrium of T' () i.€., p4(x) is @ Nash coalitional correlated equilibrium of the whole game T
Next, we let define the set of jointly coherent strategies for S in each coalitional gameT's(p—s) as:

Cs(p—s) :={0s:3ps € CE(I's(p—s)),supp(ps) 65}
where CE(I's(p—s)) denotes the set of correlated equilibrium distributions of S into the coalitional game I's (p—s).
It is well-known that the set of correlated equilibria is nonempty (see Hart and Schmeidler (1989)) and one can
therefore deduce that thebest reply correspondence of every coalition of players S € € (N) —~which represent the
players— of the partitioned game is always non-empty.

Feasible deviation plans of a coalition under the class of NCCEs strategies. Now, fix a non-trivial coalition struc-
ture € (N). To each —S = {S’ # S|S’ € €(N)}, we denote p_s as the product measure p_s = [Igc_gpgy and we
(ab)use of the notation A®_g = x__AO for the set of probability measures ps. lf p=p = (ps, p—s) is aNCCE
of I', we consider the induced € (N) -profile of coalitional equilibrium game I's(p) = (I's(p—s),T's(p—s))-

The following result gives a characterization of the ¢ (N) -’partitioned games’. It notably shows that the joint best

Proposition 2.2 (Characterization of the ¢ (N)-’partitioned games’). The € (N)-partitioned game
F%(N) = <(€(N),(:)3,WS :0s x O_g —R)
of a gameT is given by the multi-linear payoff functions

p—s —> Ws(Bs; p—s) = > Ui(Bs; p—s).
=
For the class of € (N)-NCCE, the joint best response set of a coalition is defined by the p_s-parametrized Ky-fan
aggregate deviation function of S inT :

p—s+— ¥s(ps;as; p—s) = Ws(as * ps; p—s) —Ws(ps; p—s)

relative to the vectors of feasible unilateral deviations ((xé * ps)ies With (xé * ps € D(ps, i) of players i €S from a
recommendation ps.

Proof. Let OSPA(p_s) denote the set of actions that survive the iterated elimination of strictly dominated actions
(IESDA) in the p_g-coalitional subgame I's(p_g) played by the players in coalition S € ¢ (N). By definition of
a NCCE, p, ps € BRg(p—s) = CEs(p—_s) and the subset ©1°PA(p_g) contains the supports of all the correlated
equilibrium distributions CEs(p_s) of I's (p—s). Hence, supp(ps) < OFSPA(p_s). To express a € (N)- NCCE in
terms of the IESDA of T, we first need to define and characterize the % (N)-partitioned game played across the
coalitions in ¢’ (N) defined by:

F%(N) =(€(N),0s,Ws:0g x O_g —> R).

We say that ég (resp. ps € ABg) is a feasible pure deviation by coalition S from 8s (resp. ps) if there is a map
og : O — ABg such that for all 05 € Og, we have cxs(és|95) =1 (resp. Ps = Og * pg = Zés (és|95)p5(95). Let
D(ps,S) denote the set of feasible deviations by coalition S from ps and note that D(ps,S) is always non-empty
since a coalition always has the trivial "deviation" consisting of each member of the coalition obeying his own rec-
ommendation i.e., ps € D(ps,S).
A joint mixed strategy strategy ps for a coalition S is a self-enforcing joint best response in coalitional game
[s(p—s) ie., ps € BRs(p—s) only if ps is a correlated equilibrium of I's(p—s). Consider a set of deviation plans
for players i € S as a set of mappings 1; : ©s — A(®;),i € S (a transition probability). Denoting by n;(8;]6;) the
probability that player i € S will play 6; when recommended 6;. Let 1 (és [6s) = (n; (éi |6;))ies be a profile of unilat-
eral deviation plans for players i in coalition S. We have a best response ps € BRs(p—s) for coalition S in T's(p—s)
when there is no i € S with an unilateral feasible deviation plan n; inducing a distribution n; * ps = ps :
ps (0 = (0;,0s_,)) =nixps(0) = > 1i(6:]6:)ps(0;,05_,)

65=(6i)€@i
such that U;(ps; p—s) > U;(ps; p—s). Let denote the set of feasible deviation plans for i € S from ps by D(ps, i).
We write .

ni*ph(0:)=ps(0,0s_)= >, mixps(0;,0s_,)
6571,6957 .

i
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for the marginal probability of i to play 8; under i’s feasible deviation plan n;.
A correlated equilibrium for S in I's (p—s) is a correlated strategy from which no individual has a feasible improving
deviation. Hence, we consider the correlated equilibrium distributions of I's (p_s) as the subset

CEs(p—s) :=D*(ps,S; p—s) = { ps € ABs|Haf, » ps = ps € D(Ps, 1), Us (ps; p—s) > U;(ps; p—s)}

and notes that it corresponds, by construction, to the joint best responses of coalition S in I's(p—s). The mixed
best response correspondence of the % (N)-partitioned game I'4(n) defined by

p—s+——BRs(p_s) =CEs(p—s) = {ps € AOs|Ws(ps; p—s) = Ws(ps; p—s), Vs € Os}

Hence, it follows that the payoff functions Wg defining the ¢ (N)-partitioned game Leg(n) must be such that

BRs(p—s) = CEs(p—s) = {ps € AOs|Ws (ps; p—s) — Ws(ps; p—s) = 0,¥ps = as + ps € D(ps, S) }.
The above implies that
p—s+— Ws(ps;ip—s) = Y Ui(ps; p—s),
=
so that
BRs(pfs) = {ps € A(:)S |Vi € S,‘l’s(ps;()(s; pfs) < O,V(xé * ps = Ps € D(ﬁs, l)}
where each p_g — Ys(ps;as; p—s) = Ws(as * ps; p—s) — Ws(ps; p—s) defines the (p_s-parametrized Ky-fan
aggregate deviation function of S in T’ with respect to the vectors of feasible unilateral deviations (g * ps);es of
players i € S from a recommendation ps, (xé * ps € D(ps, i) (Equivalently, Wg(-,; p—s) is the Ky-fan aggregate
deviation function of the coalitional game I's(p_sg)).

O

3. EXISTENCE AND CHARACTERIZATION OF NON-TRIVIAL NASH COALITIONAL CORRELATED EQUILIBRIA IN FINITE
GAMES

As remarked in Examples 2-3, there may exist some non-trivial NCCEs which are not forming a regular corre-
lated equilibrium of the original game but for which not every coalition is a non-singleton subset of players using
a proper correlated strategy.

In this section, we want to analyze the conditions for the existence of such %6 (N)-NCCEs wherein we only re-

quire that there exists at least one non-singleton subset of players S that plays into a properly mixed-non-degenerate—
correlated equilibrium distribution pg that does not form a regular mixed Nash equilibrium of their induced coali-
tional game I's (p* ).
As formally discussed below, the identification of the class of non-trivial NCCEs, which do not form a regular mixed
Nash equilibrium of the original game follows from the characterization of € (N) -partitioned games which pos-
sess some properly mixed Nash equilibria. The definitions below provide the formal elements to establish a first
characterization of the games where the existence of non-trivial NCCEs is guaranteed, in terms of their € (N) -
partitioned games.

3.1. Proper Nash coalitional correlated equilibria and 'nice partitioned games’ in finite games. Fix a non-trivial
partition ¢ (N) of the player set N of game T, S in ¢'(N) and suppose that I' admits a partitioned game I'(y) (see
the definition above). Let € (N) and €’ (N) be two partitions of N in the set of partitions €. We say that € (N) is
a refinement of € (N) and write €' (N)  €(N) if every T € €’ (N), is such that T = S € € (N) and there is at least
one element T € €’ (N), such that T — S for some S € % (N). For every non-singleton coalition S, let A* (s) denote
the set of proper probability measures over Og, which is the subset of probability measures ps in A(@s) where
all the players’ strategies in S get correlated so that measure ps cannot be further decomposed into a finer (finite)
product measure i.e.,

A*(0s) =4 ps€A(Os): Bps = (Pr)rew(s) € | | AlOr) st ps = ®req(s) pr for some €(S)
Te6(S)

With the above, we obtain the following refinement of NCCE.
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Definition 3.1. The set of proper € (N)-Nash coalitional correlated equilibria of a game I' is the subset NE* (€' (N))
of the properly mixed Nash equilibrium distributions NE(¢(N)) of the induced nice partitioned game I}, N =

(A(®s),Us s (n)- This set is given by:
NE*(€(N)) ={p=(py )s' (x| P ENE(€(N)) and 3S € €(N), |S| > 2, ps € A*(0s)}.

Definition 3.2. Fix a non-trivial partition € (N), of the N players of a game I'. The € (N) nice partitioned game of
I is a partitioned game denoted,

T = <‘€(N), {®S»Us}se<g(N)>
where:
(1) The payoff function of each coalition S is defined by :
Us (95, 6_5) := min ¥Ys (és, 0s;0_g)
0s€0g
and for each 0_g, the function,
\PS(') ';e—s) : G)s >< G)—S I IR)
is the aggregate deviation function of the coalitional gameT's(6_g):
Ws (05, 05:0_5):= [U,-(e’j,es\jl;e,s) —Uj(ej,es',-;e,s)] .
jes

(2) The set of pure best replies of each coalition S, BRs(p—s), is non-empty for every profile p_s in ©_g and

coincides with the intersecting set of jointly coherent strategies and non-empty set of pure Nash equilibria
Cs(p—s) "NE(T's(p—s)) of the subset of players S of the coalitional gameT's(p—s).

*
€¢(N
coalition S in T's(p—s) to a tuple of mixed strategies p_g of the other coalitions —S if and only if 65 is a pure Nash
equilibrium of T's(p_s), which is equivalent to the condition:

The hallmark of a nice partitioned game T’ ) is that a profile Og is a pure best response Nash equilibrium of

Ys (els,es; p—s) < 0,\16; € Bg.
*
€¢(N
pure best replies BRg(p—s) of each coalition Sin%(N) forms a pure Nash equilibrium of the coalitional game
['s(p—s) induced by the mixed strategy profile p_s of coalitions —S € € (N)\S. This property will generally fail for
a € (N)-NCCEs p = (ps, p—s) of an arbitrary game since the support of a correlated equilibrium distribution ps is
only guaranteed to lie inside the set of iterated non strictly dominated actions (IESDA) of the induced coalitional
game I's (p_g ). Note that the property that every element in the support of a mixed Nash equilibrium p = (ps, p—s)
of a nice partitioned game is a pure Nash equilibrium of the coalitional game I's(p—s) follows from the property
of the aggregate deviation function of a normal form game introduced by Nikaido and Isoda (1955) and Fan (Fan,
1972). This function is notably used by Hart and Schmeidler (1989) to prove the existence of a correlated equilib-
rium.

For each coalition S we then have:

Hence, a game I' possesses a nice partitioned game I' ) iff in every mixed Nash equilibrium p = (ps, p—s) the

VS e € (N),BRs(p—s) = arg  max Us(6s, p—s)
—-S —S

which gives the pure best reply correspondences, BRg(-), of the subset of players S in l"c*g ()"

(N)
defined by (1) and (2). Below we want to find some sufficient conditions that guarantee that the set of mixed Nash
equilibria of the partitioned game NE* (I'(y)) is non-empty.

Consider the (non-empty) set of jointly coherent strategies, C*(S), of a non-singleton coalition S of F;(N) that

are played by S under a correlated equilibrium distribution ps when there is a profile of CEDs py () = (ps,p—s)

which forms a mixed Nash equilibrium of l“C*g ™) ie.,

Thereafter we say that a game I' admits a nice partitioned game Fc’; for a non-trivial partition € (N) if it is

C*(S):= {es :3pe(n) = (Ps :S € 6(N)) € NE(Ts () ), supp(ps) 2 es} .
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We say that a (non-singleton) coalition S is a meta-player of Fc’; if the optimal set of pure choices 0s = (0; :

(N)

i €8S) eBRg(p—s) S C*(S) of coalition S is not equal to the individual pure best replies of its components 0; €
BRg(p—s) =BR;(p—s), forallieS, inevery I's(p—s) i.e.,

BRs(p—s) € C*(S) = BRs(p—s) # X BR¢(p—s).
i€S
The property that a non-singleton subset of players S’s pure best replies is not the sum of its parts is a key property
to guarantee the existence of non-trivial NCCEs which does not boils down to the regular correlated equilibria of
the original game. It is helpful to express this property to the following well-known exchangeable or rectangularity
property of Nash equilibria in 'nice games’ (see e.g., Moulin (1986)). In the simplest case of bi-matrix gamesT, a
set of Nash equilibria NE(T') of a game I are exchangeable or the game has the rectangular property if

(p1.p2), (P1, p2) €NE(T) = (py, p2), (p1, py) € NE(T).

Here, we need to extend this property to the set of jointly coherent strategies in N-player games. More specifically,
take a subset of S players playing the coalitional games I's(p_g).

Joint coherent strategies in ’'nice partitioned games’. The extension of the rectangular property to the set of
jointly coherent strategies of S in the nice partitioned game l"(*g ) is that every set of jointly coherent strategies

that can be played into one of its Nash equilibria, C¢ (p—s) S C*(S), writes as the Cartesian product of its compo-
nents:
VCS (p—s) = C*(8),C5 (p—s) = X G (p-s),
ies
where C}(p—s) designates the set of pure strategies of i € S which lies into the support of a correlated equilib-
rium distribution ps of players S in coalitional game I's(p_g), that induces a mixed Nash equilibrium of the nice
partitioned game l“C*g N As demonstrated in Theorem 2, in the case of convex potential games, the failure of the

rectangular property will indeed concerns the set of pure strategy Nash equilibria of the coalitional games.

Proposition 3.3. Consider a finite game " which admits a nice partitioned game Fc’; ) for a non-trivial partition
€ (N). The game F;(N) is played by a meta-player S € € (N) if and only if there is a set C{ (p—s) < C*(S) of jointly
coherent strategies of S which fails the rectangularity property for some coalitional gamesT's(p_g).

Proof. See Appendix B.2.

Nice partitioned games with the rectangularity property of their set of jointly coherent strategies that are played
into some Nash equilibria are not played by meta-players. It is well-known that for two-player games, the rect-
angularity property holds if and only if the set of Nash equilibria is a convex set (see e.g., Moulin, 1986). So, this
means that coalitions of partitioned games made-up of exactly two players cannot be viewed as meta-players if
the game has a convex set of Nash equilibria. It is also useful to note that when S is a meta-player, then the set of
jointly coherent strategies PNEg((p—s)) cannot be a singleton set forming a PSNE since

{65} =BRs (07 5) = X {07} = X BR;(0%),
ieS ies

would contradict the definition of S as a meta-player. Hence any game I's(p_g) with a meta-player cannot have a
unique PSNE 0F = (07 : i €S). On the other hand, observe that if there exists a unique PSNE 0§ = (07 : i € S), then
the rectangularity property is true (since there must have at least two PSNEs in PNEg((p—s)) to have a failure of the
rectangularity property).

A key argument behind the proof of existence of proper NCCEs then relies onto the observation that the failure
of the rectangular property for a subset of players S (that belongs to a nontrivial partition) and the existence of a
mixed Nash equilibrium in the partitioned game guarantees the existence of a correlated equilibrium distribution
of the whole game I which cannot coincide with a regular mixed Nash equilibrium. In the light of the above
discussion, it thus follows that there exists a proper NCCE in I' (which does not form a regular Nash equilibrium of
I') whenever there exists at least one meta-player S in 1":’;0 (N) with the property that

Iy = (ps),Cs (p—s) # B, YS € €(N).
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A first method that ensures that the above condition holds for some profiles pe () is to look directly at the corre-
lated equilibrium polytope of the partitioned game and apply the results of Nau et al. (2004).

The existence of a non-trivial ¢ (N)-NCCE is guaranteed If a coalition structure % (N) with a cardinality | (N)| >3
possesses a € (N) -partitioned game which admits a properly mixed Nash equilibrium (p{, p* ;) with p¢ a corre-
lated equilibrium distribution in A*(®s) for the non-singleton subset of players S. For coalition structures where
there only exist two coalitions i.e., |6 (N)| = 2, itis also sufficient that ¢ (N) has a non-singleton subset of players S
and there exists a properly mixed Nash equilibrium (p, p* ;) of the partitioned game of I has a ¢ (N) -partitioned
game wherein both coalitions of players S and —S use a non-degenerate optimal mixed strategy p¢ and p* .

Proposition 3.4. Consider a finite game " which admits a nice partitioned game Fc’; ) for a non-trivial partition
€(N). SupposeI’, ) has at least one non-singleton subset of players S € € (N) that forms a meta-player and the

existence of a Nash equilibrium in the relative interior of its correlated equilibrium polytope, CE(F(*g ).9 ThenT

(N)
has at least one proper €' (N)-NCCE (not necessarily properly mixed) for a (non-trivial) partition, €' (N) # €*(N),
that is a refinement of € (N).

Proof. See Appendix B.3.

Properly mixed Nash coalitional correlated equilibria through 'nice and tight partitioned games’. The above
result has a limitation. It indeed deals with proper NCCEs which can be "pathological’ in the sense that some
coalitions may play into a degenerate correlated equilibrium distribution, as in the case of the three-player game
of Example 1. In this example, the trivial {{1,2},{3}}-NCCE p = p12® g, corresponds to a correlated equilibrium
distribution which is a product measure of the NCCE p12 = %(Hl,Hg) @% (T1,T2) of player 1 and 2 played into their
coalitional gameT'12(8p,) and the degenerate distribution 8g, for player 3.

The object of the following sections will be to give some sufficient conditions for the existence of proper NCCEs
wherein all coalitions uses a proper randomization. More precisely, we carry our analysis by looking at the exis-
tence of those proper NCCEs wherein each coalition plays into some finitely supported non-degenerate correlated
equilibrium distributions.

We say that a mixed Nash equilibrium p* = (p}') of a game I is properly mixed (the term is taken from Echenique
and Edlin, 2004) if the equilibrium that is not in pure strategies i.e., the support, supp(p;) is not a singleton set for
all i. The next definition extends this property to the case of NCCEs.

Definition 3.5. Consider a finite game I' and fix a non-trivial partition € (N) ¢ {€*(N),€¢**(N)}. We say that
a non-trivial NCCE p7, N = (p¢ :Se€(N)) of a game I' is a properly mixed ¢ (N)-Nash coalitional correlated

equilibrium (for short PNCCE) of " if the correlated equilibrium distribution p¢ of every subset of players S in
coalitional game I's (p* ¢ ) is properly mixed.

The class of PNCCEs does capture the richness of what NCCEs can be used for in the modeling of the inter-
actions occurring simultaneously within and between coalitions. An example of a PNCCE is the NCCE found in
Example 1. In this game, there indeed exists a {{1,2},{3}}-NCCE in which every subset of players in the partition
plays a non-degenerate mixed strategy, which corresponds to a correlated equilibrium distribution (CED) that does
not induce a regular mixed Nash equilibrium for the two coalitions of players.

The identification of the existence of PNCCEs is based upon the following notion of tight game introduced by
Nitzan (2005). (Nitzan, 2005) A finite game T is tight if in every correlated equilibrium p* € A(O), all incentives
constraints are tight i.e., for each i € N, and for all9;, 6;. €0,

Z p*(8;,0_;) [Ui(ei,e—i) —Ui(e;,e—i)] =0,
67.

forallOn = (0;,0_;).

If the game is tight, then every pure strategy, hence also every mixed strategy of player i is a best-response to
p—i. The three-player matching pennies game of Example 1 is not tight. Indeed, the game has two pure Nash
equilibrium strategy profiles: One in which the row and column players (players 1 and 2) play (H;,H,) and the
matrix player 3 plays (T3) and another one in which the row and column players (players 1 and 2) play (T;,T2) and

9 The 'relative interior’ of a convex set P in R is the interior of P in the affine hull of P.
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the matrix player 3 plays (Hs). Since every (pure) Nash equilibrium is a correlated equilibrium, this shows that this
game does not have the property to be tight.

We are now in a position to obtain some sufficient conditions for the existence of PNCCEs for finite games by
imposing the tightness’ property to the (finite) partitioned game.

Proposition 3.6. Consider a finite game " which admits a nice partitioned game Fc’; ) for a non-trivial partition

% (N). If the game l“f‘g ™) is a tight game with at least one meta-player S, thenT has at least one <€’ (N)-PNCCE with

€' (N) # €*(N) a partition that is a (possibly weak) refinement of € (N).

Proof. See Appendix B.4.

4. EXISTENCE OF NON-TRIVIAL NCCES IN CONTINUOUS GAMES: THE CASE OF (EXACT) PARTITION POTENTIALS

In this section we now formulate some results for games which possess non-trivial NCCEs by characterizing the
continuous potential games subclass of infinite games where some non-singleton coalitions use some indepen-
dent non-degenerate correlated equilibria resulting in a tuple of correlated strategies lying outside the set of the
correlated equilibria of the original game. Combined with our last main theorem 3—characterizing the class of
games where there is coincidence between coalitional equilibria of Ray and Vohra and the NCCEs—will provide
the identification of a class of games where there exist some coalitional equilibria a la Ray and Vohra forming some
non-trivial NCCEs.

4.1. Existence of non-trivial NCCEs in mixed strategies in continuous convex games. The above existence for
arbitrary coalition structures, € (N) # €*(N),¢**(N), of a ¢ (N)-Nash coalitional correlated equilibrium is for-
mulated for the class of finite games. Hence, it cannot be directly applied to the class of games where players have
compact and convex sets of pure strategies (in short, continuous games). In order to apply the 'tightness property’
in the class of convex and compact games, we shall therefore introduce a method which consists in exploiting the
combined properties of smooth partition potential games (see Monderer and Shapley (1996), Uno (2007, 2011))
and the property of the correlated equilibrium distributions in convex games (Neyman, 1997), by converting the
analysis of the initial continuous game to the one of a tight finite game. More specifically, a key step in the proof
is to analyze an auxiliary finite partitioned game that guarantees the existence of at least one proper NCCE where
all coalitions play a non-degenerate CED. The next example below gives an illustration of how partitioned games
arise in partition potential games (Uno, 2007, 2011) and motivates the focus onto the refined subset of non-trivial
NCCEs wherein each coalition of players plays a non-degenerate correlated equilibrium distribution over a set of
pure Nash equilibria.

The idea is to characterize the specific case where players inside each coalition of players S randomizes according
to a correlated equilibrium distribution pg that is a mixture of the set of pure Nash equilibria PNEs (p* ), of their
coalitional game I's (p* ).

Example 4 : Existence of € (N)-canonical Nash correlated equilibria in (finite) potential games.

Consider the game I described by Table 4 below. This is a four-player game N = {1,2,3,4}. We analyze the scenario
where the players are split into two coalitions, {{1,2},{3,4}}. Let S denote a coalition of players S € {S;,S2} with
S1 ={1,2} and S, = {3,4}. Let O, be the set of pure strategies of player [ of coalition Sy and 6¢; be one of the
pure strategies available to player [ of coalition Sy with a space of pure strategies, ©; = {Ax;,Bx;},k = 1,2 and
1=1,2,3,4. The tables below describe the payoff matrices which are mutually induced for each coalition Sy when
the other coalition S_j plays its pure Nash equilibrium profiles PNEs_, (As_,) = PNEs_, (Bs_,) = {(As, ), (Bs,)}
where Ag, = (Aki;Akj) and Bs, = (Bki’Bkj)» k=1,2.

Ts,(As_, ), k=12 | Ayj | By Ts,(Bs_, ), k=1,2 | Aj | B
AL 22 10,0 AL 11100
B, 0,0 | 1,1 By, 0,0 | 2,2

In this example, there exists some % (N)-mixed Nash equilibria wherein each coalition randomizes over the
set of pure Nash equilibria of his coalition given the randomization of the other coalitions and the resulting tuple
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forms a mixed Nash equilibrium across the two coalitions. To see this, consider the table below representing the
payoff values taken by the potential functions associated to the two coalitional games I's, (As_ k) andI's_, (Bs_ )

Psk(-,Asik),k=l,2 Agj | Bij Psk(-,Bsik),k=l,2 Agj | Bij
Ay 2 0 Agi 1 0
Bri 0 1 Bri 2

As can be read out from the table above in this particular example, the set of maximizers of the parametrized
potential function, Ps, (-,08s_, ), of each coalitional game, I's () is such that:

{ {Ask} ifesfk :AS,kvk = 1;2;

argmpaxPs, (9500500 =\ (B, } it05_, =Bs , k=12.

Sk

To find out the set of {{1,2},{3,4}}-mixed Nash correlated equilibria we need to look for the set of mixed Nash

equilibria of the partitioned game induced between the coalitions when they randomize over their respective sets

of pure Nash equilibria in their partitioned game. This game played between the two coalitions is given in the table
below.

) | As, | Bs,
As, | 22|11
Bs, | 1,1 |22

The reading of the payoff matrix representing the partitioned game I'¢;(y) shows that (As,,As,) and (Bs,,Bs,)
are two {{1,2},{3,4}}- Nash correlated equilibria of the whole game in pure strategies. Moreover, the set of mixed
Nash equilibria of the two-player symmetric game played across the coalitions on in the partitioned game—gives
the set of Nash correlated equilibria of the whole game. Here, we can check that the tuple of probability measures,

1 1 1 1
(P12, P34) = (EASI’ EBS1)’ (EAsz’ EBSZ))

is the unique mixed Nash equilibrium of the partitioned game. In addition, note that this equilibrium has the prop-
erty to be a properly mixed {{1,2},{3,4} }-NCCE, since, in equilibrium,each coalition k = 1,2 properly randomizes
over the set of pure Nash equilibria of their respective coalitional games. In the above Nash correlated equilib-
rium (p;,, C), the mediator of coalition of players 1 and 2 properly randomizes over the set of pure Nash equilibria
PNE(T'12(C)) = {TA,SB} of the induced coalitional game I'12(C) of players 1 and 2. Actually, in this game, every
profile (p},,C) such that pj, lies in the convex hull of PNE(I'12(C)) with, 0 < p},(TA) < £ and 0 < pf,(SB) < £,
is a € (N) = {{1,2},{3}}-NCCE with this property. Clearly, this class of NCCEs requires 'nice games’ wherein the
collection of coalitional games played by the mediators of each coalition S in equilibrium possess a non-empty set
of pure Nash equilibria. Thus, we cannot obtain the existence of NCCE with this property for arbitrary games.
Given a topological set ©; , let A(©;) denotes the set of regular probability measures over the Borel - algebra on
©; . A N-player compact gameT is given by a compact set of strategies ©; for each player i and by a continuous
payoff function U = (U;);en from © to RN. The set of mixed strategies for player i is 0©; = A®; and U is extended
to © = A([],en ©:) by U(p) = E,U(0) with 'E’ the expectation operator. Let p* ¢ = (p;‘, :S' £8,8 € €(N)).
Definition 4.1. Given a N-player compact game T, say that a 6 (N)-Nash coalitional correlated equilibrium pc’; N =

)

(P )see(n) of I is a € (N)-canonical (mixed) Nash coalitional correlated equilibrium if each coalition of players
S € ¢ (N) randomizes in a correlated equilibrium distribution over a subset of the pure Nash equilibria PNEs (p* ¢ )
of the coalitional game I's (p* ¢ ).

The first requirement for the existence of a ¢ (N)- canonical Nash coalitional correlated equilibrium is the
existence of a non-empty set of pure Nash equilibria PNEs(p* ) of I's(p™* ), for each coalition S. In a €(N)-
canonical Nash coalitional correlated equilibrium, every (non-degenerate) correlated equilibrium distribution pg
is a (proper) mixture of (certain) pure strategy Nash equilibria of the coalitional game I's(p* ;). As stated below,
the existence of such particular ¢ (N)-NCCE is guaranteed by weakening the notion of exact potential (Monderer
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and Shapley, 1996), as follows.
Fix a partition ¢ (N) of the N set of players. A exact potential for a coalitional game I's(8_s) is a function P%-s :
©®s —> R such that for all i € S the condition,

U;(8},05::0—s) — U;(8;,05\;;6—s) = P°-5(8),65,;) — P*~5(8;,65,),

holds for all 8;,85\1- and 6;. A game is smooth if for each i € N, U;(0y) has continuous partial derivatives with
respect to each variable 0;. We say that I' has a partitioned %4 (N)-smooth (or C!)-exact potential if and only if
each game T's(0_g) of the family of games Ts(-) = {Ts(6_s) :0_s € ®_g} is a exact potential game. When there
is a ¢ (N)-partitioned potential function, the partitioned game Leg(ny, can be directly defined with space of all
pure strategies of of each coalition S by the |S|-fold Cartesian product g = [ [ ;=5 ©; of the original spaces of pure
strategies in . When T has a partitioned % (N)-smooth (or C!)-exact potential, this induces a smooth partitioned
game,

Te(n) = <<€(N), {6s,Us }SECK(N)>

where the 'coalitions’ payoff functions {Us } e (N) are given by the potential functions:

0_
Us:0s X O_g —>R;Us(95,9_s) =Py S(es).

The next example illustrates how the existence of a ¢ (N)-mixed Nash equilibria arises in a four-player poten-
tial game when there are two proper subsets of players and each mediator of each coalition S randomizes over the
set of pure Nash equilibria. This provides the intuition behind the proof of our next result, which guarantees the
existence of a ¢ (N)-mixed coalitional correlated equilibrium for the class of continuous games.

Theorem 1. Consider a N-player strategic game with compact and convex strategy spaces and bounded and con-
tinuous payoffsT = (N, (0;,U;)en). Fix a partition € (N) and assume that T has a partitioned € (N)-C! -concave
exact potential. Then, T has at least one non-trivial € (N)-NCCE and this equilibrium is necessarily a canonical
% (N)-mixed Nash coalitional correlated equilibrium of T.
Proof. Exact potential games with continuous payoff functions have continuous exact potential functions and
continuous functions on a compact set achieve a maximum. Hence, since every coalitional game I's(6_g) is a
continuous exact potential game with compact strategy sets, the Lemma of Monderer and Shapley, (1996, Lemma
4.3) ensures the existence of (at least) a pure Nash equilibrium to each game I's(6_s). Moreover, when each sub-
game I's (0_s) is an exact C!-concave, potential game, Neyman’s Corollary (1997) implies that the set of (necessar-
ily non-empty) pure Nash equilibria PNEg(0_s) of I's(6_s) is a convex subset of g given by the set of maximizers
of the potential function Po-sie,

PNEs(0_g) = gargéfleégi U;(6;, es\i; 0_;) = argesnle po-s (0s).
Consider the coalitional game I's(p—s). The potential function of coalition S in game I's(6_g) defines the best
response correspondence BRg of S i.e.,

0_s+—> BRg(0_g) = arg max P95 ().
0s€0g

The collection of potential functions, 8_g —> P%-s (Bs) of each coalition S induces a payoff function,

(0s,6—5) —> Us(0s,0—s)
where

Us(6s,0_5) =Ps(6s,0_s)
for S in the partitioned game,

Ton) = <‘€(N)» {GS’US}SE%(N)>'

So, it is w.l.0.g to consider the partitioned game,

Ty =(€(N),(Os,Ps)).
Since each coalitional game is an exact smooth potential game with convex strategy sets and bounded payoffs,
Neyman (1997) entails that the set of pure NE, G)ISDNE, of each coalition S is a convex set and any correlated equilib-

rium of I's (©_g) is a mixture in ©¢"*.
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Hence, one can define the (restricted) partitioned game,

T (0%) = (€ (N), (05", Ps) ),

wherein each set of strategy profiles of each coalition S is restricted to their (convex) set of pure Nash equilibria
©FME. Thus, taking the mixed extension of T'4(n)(©%), the compactness and convexity of strategy sets of () (0%),
means that one can apply Kakutani fixed point theorem to the game I'; () (©*) to guaranty the existence of at least
one mixed Nash equilibrium in the partitioned game I'4(y)(©*) and hence the existence of at least one €(N)-
PNCCE in T wherein each mediator of S recommends to his coalition members to play a correlated equilibrium P
by randomizing over their set of pure Nash equilibria ©g" .

The second part of the proof consists in checking that the resulting ¢ (N)-PNCCE is also forming a € (N)-
partitioned mixed Nash equilibrium of I'. In order to see this, note that when the other coalitions’ profile of prob-
ability distributions is p_s, the mediator of coalition S has a best reply p¢ € BRs(p—s) given by the maximizers of
the potential function P”-3(8s) of game I's (p—s). That s,

p—s+—>BRg(p_s)=arg max PP-5(pg).
psEA(@s)

The set of pure Nash equilibria of I's (p—g ) are the set of pure strategies contained in BRs(p—s ). This follows since
in a NCCE where each coalition properly randomizes the induced non-degenerate correlated distributions p* =
g’ 45 p;‘, must render each coalition S indifferent between any profile 6% in the (finite) support of pg, since in a

NCCE, the tuple (pg) must form a regular mixed Nash equilibrium of the partitioned game I'(y)(©*). From this,
it follows that, VS € € (N), we have

03 (p*s),0% (p*s) €BRs (p*s), iff 0% 5,0% € supp(p).
By construction, when the potentials are exact, every pure Nash equilibria 6% (p* ;) of the coalitional game I's (p* ¢ )

is a local maximum of the potential function PP" - (6%) i.e.,

PPs(Bs)= > POs(0s)p*s(0os).
8_sesupp(p* _g)

Since each profile 6 (p* () must be a pure best reply of coalition S to p* ¢, each such profile of pure strategies

%
is a maximizer of the induced potential function PP=s of 0% (p* ) i.e.,

supp(ps) < arg max PP* -5 (0s).
Now note that when the collection of potentials of the family of games I's(-) are exact potentials, then the support
supp(p$ ) of the correlated equilibrium distribution p*g of S must necessarily be contained in the set of pure Nash
equilibria PNE(p* _g) of game I's (p* ¢ ). This follows from the application of Theorem 1 of Neyman (1997) to each
game T's(p*): Every correlated equilibrium p{ of I's(p*) is a mixture of pure Nash equilibria of T's(p* ). It
remains to prove that the set of pure Nash equilibria PNEs (p* i) of I's(p™ ¢ ) is given by the set:

PNEs(p*¢) = lJ  PuEs(0-s).
8_sesupp(p™)

To see this, consider the convex hull

conv(6g") = {6§ 05 (p—s)= Y, 0%(0-s)p—s(0-5),0%(0_s)PNEs(6_s),p—s€ A(GS)}
0_ge@_g

of the set of pure Nash equilibria ©¢"" = {PNEs (6_s) : 0_s € ©_s} of the family of games I's (0_g). By construction,
when the family of games I's (-) has an exact C!-concave potential game, we can use, once more time, the fact have
that every pure Nash equilibrium 0% (0_s) of I's (8—s ) is a maximizer of the potential,

0 (0_ P95 (0g).
s ( s)eargesmeegS (6s)
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On the other hand, by construction, every distribution,

pi(p-s)=05(p—s)= D,  0%(6—s)p—s(6_s)e conv(OF™),
0_s€esupp(p—s)

forms a correlated equilibrium distribution pg of I's (p—s). As a result, every distribution, pg (p—s) lies in the best
response correspondence BRs(p—s) of S. Hence, in a ¢ (N)-NCCE the set of pure Nash equilibria PNEs(p* ) of
[s(p*g) is the set

PNEs (p*g) = |J  PuEs(6-s) SBRs(p*s), VS G(N).
8_sesupp(p*y)
From this we have that every such correlated equilibrium distribution p¢ lies in the convex hull conv(@ENE) of
the set of pure Nash equilibria of the family of games I's(). From this it follows that every ¢ (N)-NCCE is a tuple

pc*g(N) = (pd :S e €(N)) which verifies that
)€ H BRs(p*s) H O,

SE€(N SeE€(N

O

EXISTENCE OF NON-TRIVIAL NASH COALITIONAL CORRELATED EQUILIBRIA IN INFINITE GAMES: THE CASE WHERE
COALITIONS ARE 'META-PLAYERS’

4.2. Spans of convex nice partitioned games. To formulate our result concerning the existence of non-trivial Nash
coalitional correlated equilibria (NCCEs) in games with infinite space of actions with continuous payoffs, we shall
study the property put onto the structure of the constraints in the correlated equilibrium strategies used by the
coalitions. To do so, we shall make use of the above notion of tight game we used in our characterization of finite
games, by introducing the notion of a ’span of a convex (finite) game'. The imposition of the 'tightness’ condition
to this finite game will then be one of the key properties to guarantee the existence of a set of the use of finitely
supported correlated equilibrium distributions for each coalition that form NCCEs in the class of infinite games
which are continuous convex smooth partition potential games.

Definition 4.2. Consider a ¢ (N)-player nice partitioned game I'* ©(N) = (®g, Us y with compact and convex strategy
spaces and bounded and continuous payoffs. We say that

fZkg(N) = <©S’GS>

isaspan of I'* . induced by a finitely supported mixed Nash equilibrium Pe(n) = (ps) of T denoted ﬁg(N) =

€(N)
Span(l"cg(N)) if the space of the pure strategy profiles of each subset of players S, Os, is a finite subset of the pure
best replies (of the restricted game ﬁg(N)) ,BRs(p_s) of SinTs(p_s) i.e., O S BRs(p—s).

The span of a convex game requires a non-empty set of pure Nash equilibria (PSNEs). In the class of nice par-
titioned games, the set of PSNEs is non-empty and it coincides with the set of best replies of S to each profile of
correlated (equilibrium) distributions p_g of players —S induced by a mixed Nash equilibrium ﬁcg(N). The ex-
istence of nice partitioned games is guaranteed in continuous convex potential games by applying the theorem
of Neyman (1997, Theorem 1) which establishes that every correlated equilibrium distribution is a mixture of the
(convex) set of pure strategy Nash equilibria to each I's(p_g). As in the previous section, an essential property to
ensure the existence of a non-trivial NCCE is that the aggregate optimal behavior of a coalition of players S does
not coincide with a tuple of the independent optimal choices of its members. When these properties are met, we
obtain that the set of jointly coherent strategies is only made-up of pure strategy Nash equilibria. The upshot is
then that the partitioned game Leg () of I is nice and the set of jointly coherent strategies for S, C*(S), that are
play into a Nash equilibrium of the span of the nice partitioned game 'y coincides with the set of PSNEs of the
induced collection of coalitional games of S. From this, we then conclude that the existence of a meta-player S in a
nice partitioned game will only require the failure of the rectangular property for the set of PSNEs of the coalitional
games. Formally, let

P/NTE'.Z'(pfs) = {el € @,‘ : 365\,- € @S\i’ (ei,es\l-) € PNE(pfs)}

be the set of pure strategies for player i in the span of a game I’ for which there exists a profile for players S\ in the
span of the game whose resulting profile (6;, es\i) forms a best reply, hence a PSNE in I's (p_g). As formally stated
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in Appendix B.5 and C., with the application of Neyman Theorem to the partition potential nice partitioned game,
l"(*g (n) We obtain the equality of the set of PSNEs and the set of jointly coherent strategies for subsets of players S
which are played into a Nash equilibrium of the partitioned gamei.e.,

VS € €(N),PNEs(p—s) = C& (p—s)

Let BR; (p—s) be the best response set of player i in the game I's(p_s). It follows that the best response of a player
i corresponds (by construction) to the set of i-components that induce a PSNE in game I's (p—s)ie,

—~ def ——. .
BR;(p—s) = PNE;(p_s),i€S.
So similar to the previous sections, we have that a span lA"j’;p () of the nice partitioned game 1":’;0 () has a meta-player

S ifand only if it fails the rectangularity property in the set of jointly coherent strategies PNEg (p_s) = C¥ (p—s) for

S, so that either, ©g = BRg (p—s) # X BR;(p—s) is a finite set of best replies, or B c BRg(p—s) is a finite subset of
ieS

PSNEs of I's (p_s) with Og # >< BR;(p—s) and >< BRi(p—s) < >< BR;(p—s),i €S. When this holds for every subset

of players S, we have by constructlon aspan of the partltloned game that is played only by a set of meta-players.
With the induced finite span of the partitioned game, we can directly study the analysis of the initial continuous
convex game in terms of the analysis of its correlated equilibrium polytope. This results in the theorem below
whose claim can be summarized as follows: Take a partition potential (convex and compact) game and fix a non-
trivial partition of the player set N. Then, the existence of a proper NCE (wherein at least one coalition of players
plays into a non-degenerate correlated equilibrium over their set of PSNEs) is guaranteed when there exists a par-
titioned game played by at least one meta-player S — N whose span is tight. Hence, the final statement which
asserts that the existence of a PNCE is guaranteed when the partitioned game is only played by meta-players.

Theorem 2. Consider a N-player strategic game T = (N, (0;,U;)ien). Fix a non-trivial partition € (N). IfT has
compact and convex strategy spaces and bounded and continuous payoffs with a nice partitioned C' -concave € (N)-
exact potential function. Then the following two equivalent properties guarantee the existence of a non-trivial Nash
coalitional correlated equilibrium P, N) = (ps)inT:
(1) The nice partitioned game has at least one meta-player S and a finitely supported mixed Nash equilibrium
Py N) = = (ps) for € (N) # €*(N) a (possibly weak) refinement of € (N) ;
(2) There exists a span of the nice partitioned game,

e =(65.Us),
played by at least one meta-player S i.e., ©F # X (:);.l< where (:);.l< C BR;(p—s),i€S and l“c*g(N) is a tight game
ies
with @g‘ CBRg(p_s) = @;‘(ﬁfs);
(3) When in addition of (2), each player T in €(N) is a meta-player, then there exists a non-trivial NCCE
Dy N = (Ps) (with €' (N) # €*(N)), wherein each component ps is a proper (joint) probability measure

= X A*(©}), such that €(S) #€*(S).
VEE(S)

in some space, A* (07

€(s) )
Proof. See Appendix C

The stronger statement (3) in Theorem 2 is obtained by adding the extra requirement that the partitioned game is
only made of meta-players. This allows to obtain the existence of a proper PNE wherein each coalition of players
properly randomizes over the set of PSNEs of their (induced) coalitional game. In such PNCCEs p(n) = (ps), the
CED ps of each coalition S is a joint probability measure which never forms a regular mixed Nash equilibrium of
their coalitional game. However, notice that it is still possible that some of such CEDs are not proper: There may
exist some CED ps which do not belong to the set of proper probability measures over Og ps ¢ A*(0g). Thus,
as stated, claim (3) of theorem 2 ensures the existence of a PNCCE but does not allow to identify the (non-trivial)
partition for which there exists a PNCCE. The characterization of the PNCCE can be obtained by imposing the
additional requirement that every meta-player S € € (N) cannot be decomposed into a subset of meta-players
%/(N) < €(N) such that for all the possible refinements of the partition of the subset of players in S,%(S), the
rectangularity property fails:

supp(ps) # X with @T c PNEs(ﬁ_s),@; CPNEr(p_s) = Cfrk(ﬁ_s)
Te?(s)
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When this condition holds, one cannor indeed find any refinement €’ (N) of ¢ (N) such that there is a properly
mixed Nash equilibrium of FEZ (N) forming the proper PNCCE of T since every component s of the properly mixed
Nash equilibrium ﬁcg(N) = (ps) (whose non-degenerate measure is asserted by the tight property of the partitioned
game) cannot be decomposed into a product probability measure

Pe(s) = Ps =®vew(s) Pi V€ (S) & €7 (S)
and it follows that the partition ¢ (N) must necessarily be the one inducing the PNCCE p, ) = (Pg) of T.

We finally note that in the class of games identified by Theorem 2, PNCCEs are no longer guaranteed when each
meta-player is made-up of a subset of players equal to two. This claim follows directly from the observation that
in bi-matrix tight games, Nash equilibria are necessarily exchangeable. '

CLASS OF GAMES WHERE THE NASH COALITIONAL CORRELATED EQUILIBRIA INTERSECT THE COALITIONAL
EQUILIBRIA OF RAY AND VOHRA

We are now in a position to give some (tight) sufficient conditions that single out a class of games where NCCEs
and coalitional equilibria coincide. In their definition of a coalitional equilibrium , Ray and Vohra, define the join
best response of a coalition S € € (N) as a subset of undominated (or not strictly dominated ) Pareto action profiles

Bs(p—s) = {0s € O|#0s, Us (Bs, p—s) >> Us (65, p—s)}.

where Ug (ég, p—s) = (Ui(és, P—s))ies € RIS| denotes the payoff vector of coalition S when they play profile s
in coalitional game I's(p—s). On the other hand, the joint best response in every ¢ (N)-NCCE p = (ps, p—s) of
a game I' must be robust to the set of unilateral deviations of players inside each coalition S € € (N) in the in-
duced p_s-coalitional game I's(p—s). The proof below find the conditions to obtain a non-empty convex and
compact intersection between each coalition’s best responses fs(p—s) (relative to a € (N)-coalition structure ) in
the construction of the Ray and Vohra’s coalitional equilibrium, and the best response subset of correlated equi-
librium distributions BRg(p—s) from which the ¢ (N)- NCCEs of T are defined. To do so will require to consider
the counterpart of the set @ISESDA( p—s) by defining the set of actions that survive the iterated elimination of strictly
dominated Pareto actions (IESDPA) in subgame the p_g-coalitional subgame I's(p—s) played by the players in
coalition S € € (N). When the sets OFSPA(p_g) = ©FSPPA(p_) for each coalition S € € (N) , we then obtain the
identity between the class of Ray and Vohra’s EBAs and the extension of Aumann correlated equilibrium to multi-
ple random devices across a disjoint subsets of players.

The Theorem below is stated for identifying the class of finite games where all the € (N)- coalitional equilibria of
a game I' coincide with all the ¢ (N)-NCCEs of the game.

Theorem 3. Consider a N-player gameT = (N, (0©;,U;);en) which satisfies the properties of Theorem 1 or 2 with
finite action spaces ©;,i = 1,.., n and continuous payoff functions U;,i = 1, ..., n. Fix any non-trivial coalition struc-
ture € (N) # €*(N),€**(N). Assume there exists a non-empty set of (non-trivial) € (N)-NCCE p = (ps, p—s) of T
(as e.g. per Theorem 1 or 2). Then, a sufficient condition for having this set of NCCEs to coincide with all the 6 (N)-
coalitional equilibria of T is that the set of € (N)- iterated elimination of strictly dominated Pareto actions in T is

(weakly) contained in the set of actions that survive the € (N)- iterated elimination of strictly dominated actions i.e.,

Oiny (P) S Ogiy) (p) inT.

One can obviously weaken the requirement of a weakly inclusion of the ¢ (N)- Pareto undominated actions being
contained into the %' (N)-IESDA set and still obtain for certain games that some of the € (N)- coalitional equilibria
form some of the € (N)-NCCEs. Also notice that the result does not make any claim about the (im)possibility of
games where all the € (N)- coalitional equilibria coincide with the ¢ (N)-NCCEs. There may exist some games
where this may happen even if the inclusion property fails. However, the theorem is tight in the sense that we are
not guaranteed that some of the €' (N)- coalitional equilibria will indeed all form a ¢ (N)-NCCE (and conversely)
for arbitrary games where the inclusion property does not hold. The (quasi-) concavity of the vectorial payoff
functions Us(-; p—s) = (U;(-; p—s)ies € RISI automatically holds since every subset of players S is allowed to use
correlated strategies over Og (see Haeringer, 2004)."2

Proof. See Appendix D.

104 discussed in Viossat (2003), this property however fails for tight games with more than two players. 1

127hig property in turns guarantees that the coalitions’ best response correspondences are convex-valued.
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Remark 1: For finite games, Moreno and Wooders (1996) show that if the collection of correlated strategies with
support in the IESDA set has a Pareto-best element i.e., one that simultaneously maximizes the payoff of ev-
ery player over that set of correlated strategies, then that strategy is a coalition-proof correlated equilibrium.

Hence, an immediate corollary of Theorem 3 is that if @P;?I%A( p) < @E;?l%m( p) with p a (non-trivial) € (N)-NCCE

p = (ps, p—s) where each ps is a correlated equilibrium distribution containing a Pareto-best element, then the
coalitional equilibrium p is a NCCE with the additional property that p is made-up of coalition-proof correlated
equilibria (one for each coalition of players).

Remark 2: It is well-known that infinite games may not possess undominated strategies for some players or that
some strategies are dominated only by other dominated strategies. Hence, the additional qualifications of payoff
continuity and compact space of actions is necessary to obtain the counterpart formulation of Theorem 0 for the
class of infinite games (see e.g., Milgrom and Roberts, 1996).

5. CONCLUDING REMARKS

In this paper we have pointed out to a natural extension of Aumann notion of correlated equilibrium. In this
extension, different disjoint coalitions of players are characterized by some independent sources generating the
random private signals observed by each player of a coalition. Such a tuple of ’private roulettes’ across the coali-
tions induces each player to play in a correlated equilibrium relative to the subgame played by the players of his
coalition, given the correlated strategies used by the other coalitions. Using different tools ( potential techniques
and results on various properties of correlated equilibria), we have identified some games where these profiles of
correlated equilibrium strategies are representing the mixed Nash equilibria of an induced non cooperative game
played by the coalitions themselves. The bulk of the paper has identified the class of games where the resulting
mixed Nash equilibria played by the coalitions (or the 'mediators’) are neither the regular mixed Nash equilibria
nor correlated equilibria of the original game, but coincide with some (of the non-trivial) coalitional equilibria of
Ray and Vohra (1997).

Our main results show that the equilibrium played between the coalitions in Ray and Vohra can be seen as a gener-
alization of the class of Aumann correlated equilibria when (disjoint) coalitions of players have access to different
correlation devices (one correlation device per coalition). This generalization of the Aumann’s original correlated
equilibrium notion is not innocuous. It notably implies that the building block of Ray and Vohra’s EBA is for cer-
tain classes of games characterized by the correlated equilibria of the game played within each coalition of players.
Hence, when they exist, the pure strategies Nash equilibria of the game played by the players inside the coalition
must be part of the pure best responses of the coalition. However, every time the game played inside a (non-
singleton) coalition has a pure strategy Nash equilibrium profile that is Pareto dominated by another strategy
profile, the original definition of a best response in Ray and Vorha (1997) exclude these strategies i.e., the pure
strategies Nash equilibrium (hence degenerate correlated equilibria of the game played inside a coalition of play-
ers) cannot belong to the set of the joint best response set of the coalition.'®

Our analysis opens several questions. Even in games where the set of CE of a coalition is larger than the set of NE
and some CE outcomes may strictly improve upon the NE outcome for a coalition (given the correlated play of the
other coalitions), the efficient outcome maximizing the total welfare for the coalition may not be attainable by the
class of Aumann correlated strategies. Hence, while we have identified a class of games where the set of NCCEs and
the set of Ray and Vohra’s 'coalitional equilibria’ (Ray and Vohra, 1997) coincide, there may have a class of games
wherein the coalitions need to use some extended class of correlated strategies which might involve other forms
of 'binding agreements’ than an agreed correlation device as la Aumann. This will typically happen if the players
of a coalition are playing a game of the class of the Prisoners’ Dilemma game (given the correlated strategies of the
other coalitions). In this class of games players may need to resort to an extended class of correlated strategies like
e.g. soft correlated equilibrium (SCE) of Forgé (2005, 2010). Hence, the forms of correlated strategies—via 'bind-
ing agreements’— that will need to be used by the players in a EBA depend on the class of games this concept is
being applied to. Other induced games played inside the coalitions in a ABE may be compatible with the use of
another form of binding agreements like the class of “coarse correlated equilibrium” ( CCE ) strategies introduced
by Moulin and Vial (1978) in order improve upon a completely mixed NE (see Ray and Gupta, 2013 and Moulin et

1Bag an example, take a 3 -player game where the best replies of a third player induces a prisoner dilemma for the two players forming
a coalition. While the coalition must use some correlated strategies for their mixed strategies in general, the (Pareto dominated) pure Nash
strategy profile of the game played by the coalition is not part of the pure best response set of the coalition in this case.
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al, 2014). This might notably be the case if the game played by a coalition belongs to the class of strategically zero-
sum games (where CEs cannot improve upon NE). Finally, we have only started to explore some of the ramification
between the NCCEs of a game and the various refinement solution concepts of the correlated equilibrium such as
strong correlated equilibria coalition-proof correlated equilibria with and without communication (see Moreno
and Wooders, 1996 and Milgrom and Roberts, 1996). We leave this to some future research.

APPENDIX

Appendix B.2

Proposition 2 A nice partitioned gameT’;, ) is played by a meta-player S € € (N) if and only if the set PNEs((p—s))

of PSNEs of S fails to have the rectangularity property in some coalitional gameT's(p—s).
Proof. Suppose

BRs(p—s) # X BRi(p—s).
i€S
Then, this implies that
C*(p—s) # X Cf(p-s)
i€S
where

This proves that S is a meta-player only if there is a failure of the rectangularity property for a subset of players S
in the coalitional game I's(p_s). The converse direction is established symmetrically.

O
Appendix B.3
Proposition 3 Consider a finite game I' which admits a partitioned game L) for a non-trivial partition € (N).
Suppose the partitioned game, I'¢ () has at least one subset of playersS that forms a meta-player and the existence
of a Nash equilibrium in the relative interior of its correlated equilibrium polytope, CE(ch(N) ). ThenT has at least
one proper €' (N)-NCCE (not necessarily properly mixed) for a (non-trivial) partition, €' (N) # €*(N), that is a
refinement of € (N).
Proof. Fix a non-trivial partition ¢ (N). When the finite partitioned game I'¢(n) has a mixed Nash equilibrium,
Pe(N) = (ps), the set of best reply profiles of each S is non-empty and must satisfy the indifference condition at
the level of groups, as in any regular mixed Nash equilibrium. Hence, in a mixed Nash equilibrium, P (n)» We must
have
supp(ps) S BRs(p—s), VS € €(N),

where as remarked in the main text, each profile 6s in BRg(p—_s) is a jointly coherent strategy for S in the game
['s(p—s). Note that the equality holds whenever P« (n) is a quasi-strict mixed Nash equilibrium of the partitioned
game. Now, let

NEs(©—s):=1{ p-s€ X A(Or):3Ipgn) = (ps,p—s) ENE(Ty(n))
Te€(N):T#S

denote the set of CEDs profiles in Ag (@cg(N)) = X A(Ot) which correspond to the set of Nash equilibrium
Te€ (N):T#S

components for —S in the nice partitioned game I'¢(y) . We then obtain the set of all the best response strategy

profiles for the subset of players S, denoted BRg (NEs(®_g)), (in the collection coalitional games I's(-)) which are

in the supports of some mixed Nash equilibria P¢(N) = (ps, p—s) of Leg(ny- This set writes as:

BRs(NEs(©-s))= | ]  BRs(p-s).
p—s€ENEs(0_s)
Recall that the set of jointly coherent strategies, (denoted C*(S) in the main text), for S in the gameT is the set

C*(8) = {05 : Ingn) = (ps) €NE(Tg()), 5upp(ps) 365 |
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From the above, it thus follows-using the definitions given in the main text-that the set of coherent strategies for
players in subset S is the set C*(S) which contains the non-empty subsets of all the best replies of players S i.e.,

(5.1) BRs (NEs(®_s)) = C*(S).

Notice the implication of Eq.(1) for the subset of players S to be a meta-player. Indeed, when Eq. (1) holds, the set
of jointly coherent coherent strategy profiles C*(S) of the subset of players S fails to have the rectangular property
if and only if S is not a meta-player:

(5.2) BRs (NEs(©—_s)) # X BR;(NEs(0_g)) = C*(S) <= C*(S) # X Ci(S),

i€s i€s
where C (S) is the set:
C*(i):= {ei 136 (N), 3pg (n) = @sewp(n) Ps € CE(T), supp(p§) 2 ei} :

of coherent strategies for i in the game I" with pé :=margg, ps the marginal probability of i under the CED ps. In
addition, as mentioned in Remark 1, when S is a meta-player, then the correlated equilibrium polytope of Ly
cannot be made-up of a singleton i.e.,

BRy(n) (NEg(n)) # X BRs(NEs(O—s)) = {0s}

SE€(N)
for all €(N).
The claim of the proposition is finally obtained by applying the next result of Nau et al. (2004) to the partitioned
game.

Nau et al. (2004) [proposition 2] If there is a Nash equilibrium in the relative interior of the correlated equilibrium
polytope, then the Nash equilibrium assigns positive probability to every coherent strategy of every player.

It follows that if there is a Nash equilibrium in the relative interior of the non-singleton correlated equilibrium poly-
tope of the partitioned game, CE(F%(N)), then, ch(N), has a (not necessarily properly mixed) Nash equilibrium,
Pe(N) = (ps) whose component are the correlated equilibrium distributions, ps, which assign positive probabil-
ities to every coherent strategy in C*(S) i.e., ps(C*(S)) = 1. From the above it thus follows that p¢ (y) cannot be a
regular mixed Nash equilibrium of " since there must exist at least one subset of players S in the partitioned game
T () with at least two coherent strategy profiles, which corresponds to the set of pure best replies of meta-player
S (otherwise the polytope of Tem) would be a singleton and hence violates the property that S is a meta-player).
The correlated equilibrium distribution ps for S is thus a non-degenerate mixture of the coherent strategy profiles
C*(S). The existence of a non-degenerate CED ps for at least one S of the non-trivial partition 6 (N), implies that
there is indifference condition for every pair of coherent profiles 8s € supp(ps) = C*(S). Finally, the resulting CED
ps cannot be a regular mixed Nash equilibrium of T's(p—_s). To this, it suffices to note that when the set of jointly
coherent strategy profiles C*(S) of group S fails to have the rectangularity property, i.e.,

P(n) = (Ps) € NE(T'(N)), supp(ps) = C*(S) s.t. supp(ps) # X supp(ps),

i€eS

then this implies that the support of ps cannot be written as a Cartesian product and hence it follows that

ps= >, ps(0s)do
GSGC*(S)

cannot induce a finite product measure ps = Qies pé. It thus follows that ps cannot form a regular mixed Nash
equilibrium of I's(p—s). From the above series of observations, we have therefore obtained the existence of a
mixed Nash equilibrium pe;(n) = (ps) of the partitioned game whose at least one component ps cannot be a regu-
lar mixed Nash equilibrium of I's (p_g ). This implies that the resulting non-degenerate PCE Pe(N) = (ps) of T'isa
proper PCE, which does not form a regular mixed Nash equilibrium of I" and such that there only exists a possible
non-trivial refinement €' (N) < ¢ (N) that makes P! () @ proper-PCE.

O

Appendix B.4
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Proposition 4 Consider a finite game I' which admits a nice partitioned game Fc’; ) for a non-trivial partition

% (N). If the partitioned game l“fg ™) is a tight game with at least one meta-playerS, thenT has at least one €’ (N)-

PPCE with €' (N) # €*(N) a partition that is a (possibly weak) refinement of € (N).
Proof. We start with the following lemmas.

Recall that a mixed Nash equilibrium p of a game I' is completely mixed (or interior) if it assigns positive prob-
abilities to all the player’s pure strategies i.e., there is full support, supp(p) = ©; for all i.

Viossat (2003, 2010): Every finite tight game has a completely mixed Nash equilibrium.
Proof. See Viossat Proposition 4 (2010).

From this result, we deduce the following.

*

¢(N)
is a tight game, then it has a completely mixed Nash equilibrium pe, (N) = (ps) Se6(N) which necessarily induces the
existence of a €' (N)- PPCE of T (possibly, for a refinement €' (N) # €*(N) of €(N)) if there is at least one meta-

playerS playing inTs(p—s).

Lemma5.3. Take any finite gameT'. If there exists a partitioned gameT'« ) for a non-trivial partition and ifT

Proof. The existence of a completely mixed Nash equilibrium follows directly from the application of the fol-
lowing result of Viossat (2003, 2010) to the partitioned game.
We first note that when the partitioned game has a completely mixed Nash equilibrium (which is the case if it
is a tight game), then the resulting tuple of correlated distributions P4(N) necessarily induces the existence of a
proper PCE in I'. For a proper PCE to exist, we must by definition check that there exists a ¢’ (N)-PCE for a non-
trivial partition. Observe that the claim is not that P¢(N) 1s necessarily the proper PCE, but that there at least
exists a (non-trivial) refinement €’ (N) < €(N) that makes P’ (n) = (pr:Te €' (N)) a proper PCE. When P (N)
is completely mixed, this means that each component ps of the mixed Nash equilibrium of l“c*g ) is necessarily a
non-degenerate CED. Since this tuple of CEDs forms a Nash equilibrium of the partitioned game, it follows imme-
diately that the indifference condition holds for every S. Moreover, as noted in the previous proof of Proposition 3,
when S is a meta player in game I's(p_g), then the distribution pg cannot form a regular mixed Nash equilibrium
of ['s (p—s) since ps cannot be written as a product measure, ps = ®;es pg, and hence cannot form a regular mixed
Nash equilibrium in I's(p—s)."* From this, it follows that there cannot exist the trivial refinement 6*(N) that
would make the Nash equilibrium pe+ () = P(n) = (ps) of T4 (n) a regular mixed Nash equilibrium of I'. Hence,
since any possible existing refinement <’ (N) is necessarily non-trivial, this proves that there exists a non-trivial
partition €' (N) # €*(N) P’ () = (ps) which forms a proper PCE p./ ) of I'. The fact that it is also completely
mixed for each T # S of ¢ (N) shows that the resulting CED must indeed induce a PPCEinT.

O

APPENDIX C: PROOF THEOREM 2

Theorem 2 Consider a N-player strategic game I’ = (N, (0;,U;);eN). Fix a non-trivial partition €(N). IfT has
compact and convex strategy spaces and bounded and continuous payoffs with a partitioned C' -concave € (N)-
exact potential function. Then the following two equivalent properties guarantee the existence of a proper PNCCE
ﬁcg’ N~ (ﬁS) inT:
(1) There exists a € (N)-nice partitioned game with at least one meta-player S and a finitely supported mixed
Nash equilibrium p, N) = (ps) for %I(N) # 6" (N) a (possibly weak) refinement of € (N) ;
(2) There exists a span of the nice partitioned game,

~

L) = <@§,ﬁs>,

14 Again, this follows because the condition to have a meta-player S is equivalent to requiring that one component pg of the mixed Nash
equilibrium peg () = (ps) of T4 (n)» has the property that: supp(ps) # X supp(pg) where pg =margg, ps denotes the marginal probability
i€eS

distribution of i in S.
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played by at least one meta-playerS i.e., % # X ©F where®* — BR;(p_s),i €S and ﬁg(N) is a tight game
ies
with ©f < BRs(P_s);
(8) When in addition of (2), each player T in € (N) is a meta-player, then there exists a PPCE P, Ny = (Ps)
wherein each component ps is a proper (joint) probability measure in some space, A* ((:)(*g ) )= X A*B}),
Ve4(S)

with € (S) # €*(S).

Proof.

The proof of the theorem relies on the following series of lemmas:

Say that a nice partitioned game
o =(85.0).

is non-trivial whenever the set of pure strategies is a non-singleton set for each player i.e.,

0| =2 for everyS.

Lemma 5.4. The partitioned potential game has a properly mixed Nash equilibrium pe(n) = (Ps) wherein each
player randomizes over its set of PSNEs of T's(p—s ) if and only if there exists a span of the partitioned game that is a
non-trivial tight game.

Proof. From proposition 5, recall that Neyman theorem (Neyman, 1997) implies that the set of jointly coherent
strategies for S C*(S) that are played into a Nash equilibrium of the nice partitioned game l“c*g (n) ar€ necessarily
a set of PSNEs and every CED ps is a mixture of these PSNEs. Moreover, as argued in proposition 5, with the
use of Carathéodory theorem (see Aliprantis and Border, 2003), to each profile (ps, p—s), forming a mixed Nash
equilibrium of the partitioned game, one can associate a finite subset of PSNEs, (:)’s“ < PNEg(p—s), which allows to
write every correlated equilibrium distribution ps as a finitely supported probability distribution of at most mgs + 1
points which forms a CED of game I's (p—_s).!° The CED p_s is contained into the convex hull of maximizers of the
potential of game I's(p_s):

@;‘ cPNEs(p—s) = argrré'éles (Bs; p—s).

The existence of a finitely supported probability distribution of at most mg + 1 points which forms a CED of game
['s(p—s) for every subset of players S is ensured by the existence of a finite tight game which defines a span of the
partitioned game. To see this, consider a non-trivial tight span game of the partitioned game defined by,

o PO
%) = €05, Us).

This game is finite because every (:)g‘ is a finite subset of the |(:);< | > 2 PSNEs of players S in T's (p—s ). When lA“(*g ~) is
a tight game, the use of Viossat (2010) applied to the span of the game shows that this is equivalent to the existence
of a totally mixed Nash equilibrium in the span I'* ) of the nice partitioned game. Hence, the tightness of I'*

(N %(N)
implies the existence of a finitely supported mixed Nash equilibrium ﬁcg(N) = (ps) in the partitioned game v
O

Lemma 5.5. The nice partitioned game l"c*g () has a properly mixed Nash equilibrium ﬁcg(N) = (ps) if and only if
the probability distribution i (n) = ®sc¢(n) Ps induced by P (ny = (Ps) is a non-degenerate CED of gameT.

Proof. From Lemma 2, for every fixed profile of correlated equilibrium distributions, p—s we have by construc-
tion of the span of the partitioned game that the correlated equilibrium polytope (parametrized by p_s) of the
span of the partitioned game, equals the correlated equilibrium polytope of the smooth partition potential game
I'sie.,

conv(@é‘) < CE(FS (ﬁ_s)) =CE(Ts (ﬁ_s)) < A(@s).
This is true for every subset of players S in € (N). Hence, if there exists a mixed Nash equilibrium piy(n) = (Ps)
which is properly mixed into the correlated equilibrium polytope of the nice partitioned game l“c*g (n)? We have that
the profile P () = (Ps) induces a correlated equilibrium distribution fiy () = ®gse(n) Ps, Which lies into

CE(T(n)) S MA@ n))-

15The existence of the finite set of pure strategy profiles @g‘ will in general be dependent onto the mixed Nash equilibrium (pgs) under
consideration: What Caratheorodory theorem states is just that for each distribution, there exists a finite set with at most d + 1 points, not that
there exists the same set for every distribution.
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Lemma 5.6. When there exists a (non-trivial) span of the nice partitioned game that is tight and there is also a
meta-player S playing in this game , then there exists a properly mixed Nash equilibrium in the polytope of the nice

partitioned game l“f‘g ™) which does not form a regular mixed Nash equilibrium of T i.e.,

-~

Pen) = (Ps), such that ps # Qics pi
for at least oneS in€(N).

Proof. We first apply the property of tight games of Nitzan (2005) to the span of the partitioned game to ensure
the existence of a non-degenerate mixed Nash equilibrium in the partitioned game. If the span of the partitioned
game is tight, then it has a totally mixed Nash equilibrium ﬁf‘g N = (Pg) where each py is a correlated equilibrium

distribution of fs (P_g) with a support into a subset of the PSNEs of the original partitioned game T ie.

supp(Ps) = O©F < PNEs(p_g)

When the span of the partitioned game fails to have the rectangularity property this means that there exists a
subset ©F of PSNEs of players S in I's(p—s) which cannot be written as a Cartesian product of ©,i € S. On the
other hand, proving that the corresponding tuple of probability distributions pi (n) = (ps) forms a proper PCE of T
is equivalent to showing that there is a probability measure ps of a coalition S which forms a correlated equilibrium
distribution of I's (p_s) that is not a product probability measure in the polytope of I's(p_s). So consider the nice
% (N)— partitioned game
S s o
%) =<05.Us),
which is defined with a space of pure strategies for at least one subset of players S with the property that the set
@;‘ C BRs(p—_g) fails the rectangularity property i.e., the set @;‘ cannot be written as the Cartesian product of the
players’ strategy spaces:
@; #* >< @;k,@;k CBR,‘(p_s),
i€S
then is cannot be that a probability distribution 13s with full support supp(ﬁs) = (:)’s“, can be decomposed as a
product probability measure i.e.,

supp(ps) = 0% s.t. 0F # X 0F = pg # RiesP;.
i€S
=(p;i:i€S)in
['s(p—s) that generates the CED ps of coalition S in a properly mixed Nash equilibrium P (N) = (ps) of the nice
partitioned game 1":’;0 (N)? only if the CED ps can be written as the product probability measure

This follows immediately by noting that there exists a regular mixed Nash equilibrium P+ (s)

P+ (s) = Ps = Qies Pi-

There is existence of such a product probability measure, px(s) = ps, if and only if there is independence of the
sigma-algebras {&;:i €S} (see e.g., Billingsley, 1995). In the partitioned game I'4(n) this property of indepen-
dence can therefore be satisfied only if we have the rectangularity property:

0% = X O c PNEs(I's(p—s)),0; < PNE;(I's(p—s)).
i€S
Lemma 4 allows to conclude that there necessarily exists a Nash equilibrium p ) of a nice partitioned game

re ™) that is proper PNCCE for a possible refinement €' (N) # €*(N) of € (N) if the rectangularity property fails
in a collection of games I's(p_g) for at least one coalition of players S.

From the above series of arguments, we conclude that there exists a span of the partitioned game with at least one
space of pure strategies for a subset of players S that fails to have the rectangularity property in game I's (p_g),
then the resulting correlated equilibrium distribution pg cannot form a regular mixed Nash equilibrium of I's (p_ ).
It is necessarily a joint probability measure that forms a (real) correlated equilibrium distribution of I's (p_g). So,
if lA"s (P_g) fails the rectangularity property—as assumed above—, then there exists at least one player S for which
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cannot be written as a trivial Cartesian producti.e., @;‘ # X (?);". From this it follows that there is at least one com-
ies
ponent of the mixed Nash equilibrium ﬁ("; N = (Pg) of the span of the partitioned game that induces a correlated
probability distribution which cannot be a product probability measure: pg # ®ies ;-
Moreover, by construction, using lemma 3, we have that the correlated equilibrium polytope of the span of the

partitioned game is a subpolytope CE(IA":; (N)) of the correlated equilibrium polytope of game T ()’

conv(@%(N)) =CE(T S CE(T S A(Os).

) & )

U
The following Remark completes the proof of the equivalence of claims (1) and (2). When the span of the parti-
tioned game is tight and one of the player S is a meta-player, then Remark 1 implies that at least one CED pg has
a non-degenerate support. When the span of the game is tight and only played by meta-players, then the span of
the partitioned game is a non-trivial game. In this case, it has a totally mixed Nash equilibrium pe(n) = (ps) with
full support. Hence, ﬁcg(N) is a properly mixed Nash equilibrium whose components ps are probability measures
in A(@g‘) with a finite full support supp(ps) = @;‘. The proof of claim (3) of theorem 2 then follows.

Corollary 5.7. When in addition of property (2) in Theorem 2, each player T in € (N) is a meta-player, then there
exists a PPCE P, N = (pr) wherein each component ps is a proper (joint) probability measure in some space,
A¥(0*, )= X A*(O%), with€ (T) #€*(T) forallT in€ (N).

(1) vee' (T) !

Proof. It suffices to apply the above series of lemmas to every sub-coalition of players T in € (N).

APPENDIX D: PROOF THEOREM 3

Proof Theorem 3: Strictly dominated actions of a coalition under NCCEs. A pure joint action eg € ©; is strictly
dominated for i in coalition S in I's(p_s) if player i € S can unilaterally deviate from his (deterministic) recom-
mendation to play 8; and play according to a distribution n; *; pé (1) = ps(-,0s_,) over ©; which is the marginal
of a correlated equilibrium distribution ps € CEs(p—s) (while the other players S_; follow their recommendations
and play 8s_; with probability onei.e., ns_,(6s_,)|08s_;) =

Definition 5.8. A player i € S € ¢ (N) has a € (N)-strictly dominated action Gé € 0; in a game T’ if there exists a
pi € A®;, and a p_g € A®_g such that

Ui(pi,0s_;ip—s) = Ui(0s = (05,05_,); p—s), ¥0s_, € X jes\ (1} O

In other words, an action eg is a € (N)-strictly dominated action for i € S if there exists a coalitional game
I's(p—s) where 6 is a strictly dominated action.

Definition 5.9. A pure action 6% of player i € S € €(N) is ¢(N)-undominated in T if there exists a conjecture
profile (pi, p—s) € A®s_, x A®_g such that 8} € BR; (s, p—s).

Note that the above definition of a strictly dominated action for a player deviates from the classical standard
definition in several ways. We have the following properties:
(1) The strictly dominating action ﬁé of the deviating player is the marginal of a correlated strategy ps € A®s. Hence,
note that the condition of the definition does not entail the possibility to retrieve the classical equivalence between
the undominated set of actions @* of i in the original game I and and the set of i’s pure best replies BRg, (-) in T
Instead, the above definition says that the set of strictly dominated actions of a player i € S might be larger than
what it would be in the standard definition relative to the game. This follows because under the definition of strictly
dominated actions for a player i in a non-singleton coalition S, the best reply of i is only relative to the subgames
['s(p—s). Hence, this eliminates the possibility for i in a coalition S to regard some actions eg which are only the
best replies (in the original game I') to some correlated beliefs p_; € A(®_;) which cannot be written as a product
distributioni.e., p_; # p—s % ps_i EA(O_g) x A(@sﬂ.). Hence, for a non-singleton coalition S, the set of correlated
beliefs to which an action Gé can be a pure best reply is only given by the subset of beliefs A(©_g) x A(@s_,)
A(®_;). (2) We allow the strictly dominating action ﬁé of the deviating player to be a mixed action. So, in spite
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of (1), this allows to retrieve the classical equivalence between the undominated set of actions G;- (p—s) of player
i €S and the set of i’s pure best replies BRs; (+; p_s) relative to the subgame I's(p—s). That is, the subset of ¢ (N)-
undominated actions G)’s“i for i € S is undominated relative to the existence of a set of i’s conjectures lying into
the product space of probability measures A®s_; x A®_g. That is, an action of player i 0§ € O is a best reply
BRs, (ps_;;p— s) to some belief ps_, € A®s_, w1th ps_, = ps(+0Os,) (the S_;-marginal of ps) in I's(p—s) if and
only if Gé is not strictly dominated by a ps; = ps(-;0s_,) (the S;-marginal of ps).

(3) An immediate consequence of (1-2) is that the subset of ¢ (N)-undominated actions ©F" will generally form a
strict subset of the N-undominated actions G);.“ of T since this classical dominance relation in I" involves the space
of conjectures strictly contained in A(@s_, x ©_g).

Strictly dominated action of a player in a (non-singleton) coalition. Let C_g(p_s) = supp(p—s) denote the sup-
port of correlated strategy p_s. To formally define the € (N)-IESDA process of a game T', we first need to define the
notion of ’ strictly dominated action of a coalition’ to arbitrary coalitional games I's(p—s). Given a fixed T's (p—s),
define

D (ps,i) = {ps(-0s_,)|3ps =ni* pi € D(ps,S) N CEs(p—s)}

as the set of marginals ps(-,0s_,) of player i € S derived from the set of feasible deviations of coalition S ps €
D(ps,S) forming a CED ps of I's (p—s). By construction, we must verify that under the play of coalition correlated
equilibrium ps in game I's(p—s), every 0, in the support of the marginal of ps lies in the best response set BR{ of

iie., forall 0f € supp(pl),0L € BRL(ps(6L), p—s).

Definition 5.10 (strictly dominated action of a coalition). Fix a joint action 6 = (Og i 634) € Og for coalition S.
Say that g is a ¢ (N) strictly dominated for coalition S € € (N) in T by a (potentially mixed) action (correlated
strategy) ps € A(@g) if there is a p_s € A(O_g) inducing a p_g- coalitional game I's(p—s) and a i € S with a
feasible unilateral deviation m; * ps € D*(8g,, ) such that el = 0Og,; is strictly dominated for player i in coalitional
game I's(p—s).

% (N)-Iterated Elimination strictly dominated actions (IESDA).

Definition 5.11. A finite ¢ (N)-sequence {(© s)see(N) )i, is a process of € (N)- iterated elimination of strictly
dominated actions (¢ (N)-IESDA) of {T's(p—s)}sex(n) for and all p = (ps, p—s) € ABs x AO_g if for all S € €(N)
we have
i 0 =04ife(p°,)=0,forallicS;andforallSe ¢ (N)and ¢=0,1,..,L—1:
i @ (p“;) cel(ply) 1f®“+1 (P < e (pl) forallies;
iii Bs = (es)les € @f (p )\@Hl(pg‘gl) ifforallieS, 0 e @g (pﬂs)\(agﬂ(pegl) only if 0 is strictly domi-
nated ina pfs— reduced coalitional strategic game I's (p®. g):

FS(@)g;Pgs) =<5, (98 Uﬁ H G)S — R)jes)
SEcg(N)
0
s’ ;ﬁsA(@S )
iv 0s = (6%)jes € G)L if for each 6 € @L entails that 6} is not strictly dominated for i € S in a p" (- strategic
game of coahtlon S:

where p® ¢ is a distribution in [y c6(N)

Ts(@%phg) =S, (GL UL H 05 — R)jes).
56<€(N)

where p ¢ is a distribution in [ [y, ™) A(G)Is“, ).

" #s
The set OF = [],es G)L denote the set of action profiles of coalition S € € (N) that survive the € (N) -IESDA
process in I and @ Hs c6(N @ denotes the set of all the action profiles (BS) of coalition structure

% (N) that survive the Cg( )- IESDA process inT.
The following corollary obtains immediately.

s'e6(N)
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Corollary5.12. Suppose that p = (ps, p—s) is a tuple of correlated equilibria forming a6 (N)- NCCE of T. Then, we
have that
C%(N)(p) = n supp(pg) < ®<Lg(N)-
s'e¢(N)

Proof. Follows from the standard result that every action profile in the support of a correlated equilibrium dis-
tribution cannot be strictly dominated.

O

The above corollary entails that in a 6 (N)- NCCE p = (ps, p—s) of a ', we have the property that for each coali-
tion S € € (N), there exists a sub collection of 8_g -coalitional games {I's (6_s)|60_s € C_s(ps) @Es, } induced by

the set of strategy profiles6_s = (8 in contained in the set of joint coherent strategy profiles C_gs(ps) S

s )S'e%(N)
C_s(As) of the correlated equilibrium distributions of coalitions —S € € (N).

Atuple (0)g/ s () Survives the € (N)- IESDA process in T if the family of p* = (ps, p" )-coalition games Ty ) (P~) =
(Ts(p"g),T—s(ps)) of I is such that each joint action 6/5 of coalition S’ survives the (standard) IESDA process in

Ly (p* g ) with the property that p" g is a correlated strategy profiles of coalitions —S’ over the set of actions O s

that survives IESDA process in games T'_ ( pls“, ). This implies that each joint action 64/ of coalition S’ survives

the (standard) IESDA process in I'y/ ( pP_g ) only if Ly ( p_g ) is a coalitional game induced by a tuple of correlated
. . . L _ L

strategies p_ o whose supports survive IESDA i.e., supp(p_sl) = @78, = H{s;ﬁs’ Ise6(N)} Bg.

We verify that a trivial ¢ (N)-NCCE (8s,8_g ) in pure strategies of I' is a pure Nash equilibrium where each 6s is a
undominated strictly dominated action in coalitional game I's (6_g) for every coalition S. This property becomes a
particular case when the game I is strict-dominance solvable. Say that a game is € (N)-strict-dominance solvable
if iterated deletion of strictly dominated strategies for each coalitions S € € (N)results in a unique strategy profile.
Hence,a game I is € (N)-strict-dominance solvable iff each Fg ~S is strict-dominance solvable. For this class of
games it is then obvious that there exists a unique € (N)- CCE 6x = (0s)sc(n) Which is trivial since it must form a
pure strategy Nash equilibrium of I'. Hence we have the following property:

All the gamesT which are € (N)-strict-dominance solvable have an empty set of non-trivial € (N)-NCCEs.

Existence of NCCEs. The existence of a ¢ (N)-NCCE is trivially guaranteed for every coalition structure € (N)
when one does not require € (N)-NCCEs to form a properly mixed Nash equilibrium p = (ps, p—s) of the par-
titioned game (with at least one component ps required to be proper (non-degenerate) correlated equilibrium
distribution of the coalitional game I's(p—s) for at least one non-singleton coalition of players S). Indeed, if
for each coalition S, each ps is a product probability measure in | [;c A©;, then, the resulting product measure
p = ps®p—s = prodienAB; boils down to a regular mixed Nash equilibrium of T'.

Lemma 5.13. Fix a (in particular finite) game T with continuous payoff functions. Then, a € (N)-NCCE exists for
the coalition structure € (N).

Proof. Using the property of the joint coalitional best responses of each coalition, this follows by a simple appli-
cation of the Kakutani fixed point theorem assuring the existence of a Nash equilibrium in the game played across
the coalitions. The details below are given for finite games.

Given a coalition structure 6 (N), let CE(I's(p—s)) denote the set of all the - correlated equilibria in the p_g-
coalitional game I's(p—s) induced by the correlated strategy profile p_g of the other coalitions —S. If they exist,
CE(T's(p—s)) contains the pure strategy Nash equilibria of I's(p—_s). By construction, given a correlated strategy
profile, p_g, CE(I's(p—s)) coincides with the joint best response BRs(p_s) of coalition of players S. Thus, using
the well-known fact that CE(T's(p—s)) is a convex and compact set (polytope), it follows using the concavity of the
payoff functions U; (-; p—s), that the map BRs:

p—s+— BRs(p—s) = CE(I's(p-s)) = A(®s)

is a non-empty, convex -valued and compact correspondence which has a closed graph. These properties apply

to each coalition —S € € (N). Given a coalition structure ¢ (N), we simply denote a profile of correlated strategies

by p = ( ps)sECg(N) and define for each such p the tuple of induced p_s-coalitional games at p as the collection

Ty (p) ={Ts(ps)|S € €(N)} that is induced at profile p. We then consider the |¢(N)|-Cartesian product of
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coalitional best responses of each coalition S at p. It is given by the Cartesian product of correlated equilibria of
each coalition :

CE(T4(n)(p)) = n CE(Ts(ps))-

Se€(N)

Hence, the combined best response correspondence (which inherit the properties of each BRs) defines a well-
behaved correspondence which satisfies the usual conditions to apply the Kakutani’s FPT and it follows that BRe ()
CE(T4(n)(P)) = CE(T'¢(x)(p)) has a fixed point which is by construction a mixed strategy equilibrium p of the
finite game I'y () (p) played across the coalitions in ¢ (N). This proves the existence of a € (N)-NCCE of finite
game I for each coalition structure € (N).

O

Proof Theorem 3: Mixed Nash equilibria of the partitioned game under a NCCE. We first establish the necessary
and sufficient conditions that must hold in the partitioned game to have a non-trivial € (N)- NCCE p = (ps)sc(n)
of agameI" wherein each coalition of players are using non-degenerate correlated equilibrium distributions as their
mixed Nash equilibrium strategies of the partitioned game.

Lemma 5.14. Given a coalition structureS € € (N), each profile of coalition mixed strategies p = ( ps)secg(N) of the
€ (N)-partitioned game L () generates a mixed Nash equilibrium of L) forming a NCCE if and only if each
ps € BRs(p—s),VS € € (N) verifies the following properties:ForallS € € (N) :

i [coalitions’ indifference condition] :

Wi (0s; p—s) = Ws (; p—s), V05,05 € supp(ps);
ii [coalitions optimality |
W (0s; p—s) = Ws(ps; p—s) = Ws(ps; p—s), Vps = ok + ps € D(ps, 1), Vi €S.
Proof. This follows by applying the standard necessary and sufficient conditions for a mixed Nash equilibrium in a

normal form game to the partitioned game Tem) with the characterization of the best response correspondences
p—s —> BRs(p—s) (see the section ’Joint best response of a coalition and 'partitioned game).

O

Corollary5.15. A coalitional equilibrium of T p = (ps)se(n) forms a‘€ (N)- NCCE of agameT iff for each coalition
S € €(N), the optimal coalitions’ indifference conditions (i-ii) implies the individual indifference condition: For all
i € S and every pair of joint coherent strategies, 0s = (eg) andBs = (éé) insupp(ps):

Ws (s, p—s) = Ws (s, p—s) = U;(8s, p—s) = U;(Bs, p—s).

Proof. If p = (ps)sce(n) is @ NCCE that is also a coalitional equilibrium of T, then each ps € fs(p—s) must be
a Pareto-best from among those strategies with support in @ISESDA(p,S). This implies that all the pure strategies

0s = (Gé) and 05 = (éé) in supp(ps) must be payoff equivalent for all i € S; otherwise, we could construct another
correlated strategy that yielded at least one player i € S a higher payoff, which would contradict that pg also lies in

Ps(p—s)-
[l

Coalitions’ best response correspondences. The next statement says that when Qroﬁle of coalition mixed strate-
gies p = (ps)sece(n) forms a € (N)- NCCE there must exist a feasible deviation 8s = as » 85 such that for every
Bs = (B5) in supp(ps):

W (05,6 o) >W(Bs,0 )
for every p_s(ﬂl_s) > 0.

Lemma 5.16. A profile of coalition mixed strategies p = (ps)sc«(n) forms a € (N)- NCCE of a gameT only if every

0s = (eg) in supp(ps) is an undominated action for coalition S such that for everyi €S , eé is an undominated
action in every coalitional gameT's(0_g) for every p_s(0_g) > 0;
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Proof. By definition, p = (ps)sgg(N) forms a NCCE of T only if each ps is a correlated equilibrium distribution of
['s(p—s). Hence, the following property must hold for every S € €(N):

0s = (eé),‘es € BRs,p_s) — eé € BRé(psiiHeé),p_s),Vi eS.
The above says that every profile 0 in the support of ps is a coalition best response of S in the sense that Og
dominates every feasible deviation 8s = ag * Os iff every individual component 9’8 is an individual best response

for every i € S to a product belief ps_, (|9’S) x p—s € ABs_, x AO_g. Hence, it follows that every component Gé
must be an undominated action of I'. This proves that every profile 8s in the support of a component ps derived

from a € (N)-NCCE p = ( ps)secg(N) of a game I' has the property that for every component 6, there must exist
some coalitional game I's(6_g) for every p_s(6_g) > 0 and profile 0g = (éé, Bs_,) such that

U,‘(eé,es,iye_s) = U,‘(éé,esﬂ.,e_s), p_s(e_s) > 0.
Hence every ps is a correlated equilibrium distribution of I's(p—g) in a NCCE of T only if eg is an undominated

action every coalitional game I's (0_s) for p_s(68_g) > 0.

O

By construction the pure best response correspondence of a coalition S in the € (N)-partitioned game T (n) are
given by the subset of the coherent pure strategies (see Nau and McCardle (1990)) that are played with positive
probability in at least one correlated equilibrium of some p_g-coalitional game I's(p—s). Given a coalition struc-
ture ¢ (N), we define the set of €' (N)-jointly coherent strategies, denoted C () (S), in the gameT for a subset of
players S as the subset of pure actions:
C%(N) (S):= {es €0s|Ip_s € AO_g, ps € CEs(I's(p—s)) = supp(ps) 2 es} .

For each correlated strategy profile p_g, we have the pure best response set of coalition S € € (N) given by the
subset of jointly coherent strategies of players i € S :

p—s — BRs(p—s) := {Bs € Co ) (S)[Ws (Bs; p—s) = Ws (Bs; p—s), Vs € Os } = Cs(Os) (p—s).-
The next result records this fact.

Lemma 5.17. The pure best responses p—s — BRs(p—s) < Og of a coalition S in the € (N)-partitioned game
T'4(n) are given by the subsets of coalition S coherent joint pure strategies Cs (©s)(p—s) of T

Proof. Let ps € CEg(p—_s) be a non-degenerated correlated equilibrium distribution of T's(p—s). For every vec-
tor of feasible deviation as * ps = (ag * ps)es, we have:
Ws (as * ps; p—s) < Ws(ps; p—s) < ¥s(ps;as; p—s) < Ofor all ag » ps = 8¢ .
In particular
Ws(ps;as; p—s) =0, for all ag » ps = 8p, —
D TUi(0%, ps_, (165); p—s)) — Ui(ps; p—s)] = 0,
=
for all vectors of feasible deviations &g, = ((xé * ps)ies induced by joint coherent action profiles 6 = (eé)ies €
Cs(©s)(p—s). Hence,
p—s — BRs(p—s) 1= {Bs € C(n) (S)|Ws (ps; as; p—s) = Ws (as * ps; p—s) —Ws (ps; p—s) <0, for all as * ps = o, }
follows by definition.
U
Proof Theorem 3: Intersection of Ray and Vohra’s ’best response propertyand correlated equilibria. Consider
the joint best response correspondence Pg of a coalition S under an arbitrary coalition structure € (N). A general-

ized definition of the Ray and Vohra's ' best response property (relative to the € (N)-partitioned game T4 (n)) where
each coalition S € € (N) has access to correlated strategies in A®s is introduced in Haeringer (2004) and defined

by:
Bs(p—s) = {ps € AOs[Bps € D(ps, ), Us (psi p—s) = (Ui(ps; p—s)ies) >> Us(Psi p—s) = (Ui(Ps; p—s)ies)}-
For any coalition structure € (N), the set

Ben) ={(p=(ps, p—s) € AOs x AB_s|Bs(p—s) x P—s(ps) # T}
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is non-empty if utility functions are continuous and quasi- concave with respect to the (non-empty compact and
convex) strategy set A®s x A@_g (see Ray and Vohra (1996), Proposition 2.2). Now we suppose that for each coali-
tion S € €(N), there exists a non empty compact and convex intersection @é N ®§Pm‘”° between the subset of
action profiles of coalition S € ¢ (N) that survive the ¢ (N) -IESDA process in I and the set ©,,.,, of all the un-
dominated Pareto action profiles of coalition S € € (N) in I'. Hence, by construction, the Pareto undominated
strategy profiles of each coalition S is given by the (non-empty) projection set, G)g‘" €10 = projoq P () of Pareto
undominated strategy profiles in ¢ (y) onto O i.e.,

O’ = {Ps(p—s) S AGg|p_s € AO g} =ps.
Thus, for each coalition S € € (N), we have the property
OL NP0 o 7« B N BRs #

and
Bs N BRs # J <= Ip_g € AB" ¢ such that fs(p_s) " BRs(p_s) # .
For each coalition S, we obtain a non-empty intersection

BR} =Ps N BRs = {ps € AO§|Ip_s € AG" g, ps € Ps(p—s) N BRs(p—s)}

which is convex and compact if ®]§ N ®]S“P‘”e“’ is convex and compact. With the above, we deduce the existence of

a non-empty and compact and convex valued correspondence

p—s — BR§(p—s) =Ps(p—s) "BRs(p—s)
for each coalition S € € (N). Ray and Vohra's result states that P () is non-empty if continuous utility functions
are quasi- concave with respect to whether each fg is defined over @é or A@é. The proof is then completed by

applying the remark of Haeringer (2004):When fs is defined over A®%, the players’ utility functions get automat-
ically quasi-concave. Hence, the result that BRj‘g N) = HSE%(N) BR{ is non-empty for the class of best response

correspondences BR{ of each coalition S defined over A®]§.

O
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