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Abstract

In previous simulations of train-bridge interaction systems (TBIS), the sup-
porting system for the train are commonly treated as beam structures, lead-
ing to less accurate results, particularly for small-span cases. To address this
limitation, a modified vertical TBIS is proposed. In the presented TBIS, the
supporting system is considered as a Reissner-Mindlin plate, and the dis-
placement field is described by first-order shear deformation theory (FSDT).
To establish the model, radial point interpolation method (RPIM), a mesh-
less method, is employed. Finally, a coupled dynamic equation is established
to calculate various responses of the system. Several numerical examples
are presented to illustrate the disparities between the system based on plate
model and traditional beam model. The results indicate that the beam model
yields higher estimates of the mid-span vertical displacement of the bridge,
while the peak of the mid-span vertical acceleration is smaller compared to
the plate model; additionally, it is observed that the carbody is primarily
influenced by rail irregularities. Consequently, the proposed plate model of-
fers distinct advantages over the beam model in providing comprehensive
structural response information, thereby offering novel insights into bridge
design and analysis. Additionally, this marks the inaugural application of the
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meshless method in the field of TBIS, which further extends the application
scope of meshless methods.

Keywords: Train-bridge interaction system, Meshless method,
Computational plate-shell mechanics, High-speed railway, Rail irregularity

1. Introduction

By the end of 2022, the total length of Chinese high-speed railway has
exceeded 42,000 km. In this extensive network, a significant portion of the
railway lines is composed of bridges [1, 2]. The construction of high-speed
railways frequently faces various challenges related to terrain and environ-
mental conditions. Therefore, it is necessary to conduct demonstrations to
assist in the design process. Numerical simulation is highly recommended
in this regard, primarily due to the substantial costs associated with con-
ducting physical tests. In recent decades, researchers have created a variety
of TBIS utilizing various numerical methods. These TBIS can be broadly
classified into three distinct categories: programming-based, finite element
software-based, and co-simulation-based.

The first category of TBIS relies entirely on programming. It involves
processes such as utilizing MATLAB to simplify each component of the TBIS
and establishing a mechanical model for each part [3–5]. Subsequently, these
models are integrated using multi-body dynamics principles to formulate the
dynamic equations governing the TBIS. For example, in this approach, the
trains are simplified to mass points, while the tracks, piers, bridges, and other
components are represented as simplified beam structures [3, 6–11]

::::::
[6–11].

These components are then interconnected, taking into account the wheel-
rail interaction and multi-body dynamics. Beam structures are widely used
in buildings, especially frame structures [12]. However, for many complex
structures in TBIS, the beam structures do not represent thier mechanical
performance well. For instance, it is not reasonable to approximate track
slabs [13–15] and box girder bridges [16, 17] solely as beam structures, given
their intricate nature. Hence, a crucial research focus lies in determining
a reasonable and accurate approach for modeling track slabs and bridges
within the first category of TBIS.

The second category of TBIS primarily relies on commercial software for
modeling purposes. The components within the system are modeled using
software such as ABAQUS or ANSYS or some other software, and subsequent

2

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



assembly and calculations are performed within the software framework [18].
This approach takes advantage of well-established commercial software with
robust modeling capabilities. In this type of TBIS, components like rails,
track slabs, and bridges receive more intricate modeling, but the simulation
of inter-component relationships, especially the wheel-rail relationship, is a
complex task.

The third category of TBIS represents a combination of the first two. In
this hybrid TBIS, components located above the bridge are typically mod-
eled using MATLAB, while commercial software is uesd to tackle the intricate
modeling of complex structures, such as bridges and piers [19]. This approach
capitalizes on the strengths of the first two TBIS and often yields heightened
modeling accuracy. However, it is worth noting that this approach comes
with a relatively high threshold due to the concurrent use of multiple mod-
eling platforms.

The first category of TBIS is the most commonly employed and offers ex-
tensive utility in conducting various analyses. These applications involve the
investigation of factors such as impact of prestressed concrete bridge creep
[20], as well as integrating it with neural networks to formulate predictions
regarding train running safety [21]. Meanwhile, the first category of TBIS is
entirely based on the programming platform, offering researchers significant
flexibility. In contrast, the second category of TBIS faces limitations imposed
by commercial software and the challenges of secondary development, and has
some difficulties in introducing advanced mechanical theories. For academic
research, the first category of TBIS proves more advantageous. Furthermore,
the first category of TBIS is implemented on a single platform, eliminating
the need for multi-platform data exchange as required in the third category of
TBIS. Moreover, in some cases, the third category of TBIS requires the intro-
duction of supercomputing platform support, which is costly. This reduction
in development cost and complexity further supports its academic appeal.
Therefore, the research object of this paper is the first category of TBIS.
To enhance the accuracy of programming-based TBIS, the primary research
focus is directed towards optimizing structural modeling. We drew inspi-
ration from the enhancements achieved by researchers in refining the track
slab model and embarked on an effort to enhance the bridge model. Many
high-speed railway bridges are designed with simply supported box girder
bridges, with dimensions more closely resembling plate structures than beam
structures. Furthermore, these bridges exhibit intricate mechanical responses
that cannot be replicated using beam elements alone. Consequently, in the
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pursuit of enhanced accuracy and the ensurance of reliability in train running
safety analysis, this paper tries to substitute the beam model with a plate
model, coupled with the train, in the development of TBIS.

Finite element method (FEM) [22] and its extensions, implemented in
various commercial software, are the predominant approaches for modeling
of plate structures [23]. However, FEM requires the construction of complex
mesh to discretize and solve partial differential equations. Consequently, re-
searchers must focus on mesh quality to achieve accurate results, and the
cost of generating high-quality mesh is much higher than the computational
cost [24]. While meshless methods has no mesh limitation, they do not re-
quire an explicitly defined connectivity between nodes for the definition of the
shape functions. Moreover, the approximation and interpolation functions
of meshless methods are usually high-order continuous, without the distor-
tion effect of the mesh, ensuring the global smoothness of stress and making
it easy to handle large deformation problems [25], dynamic analysis [26],
acoustic analysis [27], etc. In addition to the classical methods like moving
least squares method [24, 28–30]

:::::::
[28–30], smoothed particle hydrodynamics

method [31, 32], reproducing kernel particle method [33, 34], general finite
difference method [35, 36], point interpolation method [37], etc., several new
meshless methods have emerged, building upon these classical approaches.
Radial basis functions (RBFs) have played a crucial role in the advancement
of meshless methods. RBFs can be either compactly supported or globally
gained, and their introduction has enhanced the performance of many clas-
sical methods. For example, in order to prevent the occurrence of matrix
singularity issues in point interpolation method, RBFs have been introduced
to guarantee the compatibility of the approximate function, which is called
radial point interpolation method [38, 39]; Wei [40–43] introduced RBFs into
reproducing kernel particle method and successfully used this method to ana-
lyze the mechanical behavior of a variety of structures and materials. These
examples illustrate the advantages of meshless methods and demonstrate
their feasibility for modeling bridge plates.

In this paper, we propose a computational framework based on RPIM
and FSDT. The framework improves the bridge model and helps to improve
the accuracy of the TBIS. Furthermore, the introduction of this framework
opens up opportunities for creating more intricate bridge models utilizing
multiple plates, and multiple plate structures hopefully yield more accurate
simulation results. Meanwhile, the utilization of FSDT in conjunction with
RPIM [44–46], as employed in this paper, enjoys broad recognition within
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the realm of computational mechanics for plates and shells, but it is the first
attempt in the field of TBIS. The work path of this paper is shown as Fig.
1.

FSDT

RPIM

Modeling approach Plate model

Train

Displacement

field

Numerical

discretization

Wheel-rail 

interaction
Multi-body 

dynamics

TBIS (Plate model)

Rail 

irregularity

Response of 

bridge

Response of 

Train

TBIS (Beam model)

Beam model

FEM

Comparison 

and analysis

Figure 1: The work path of this paper.

2. Vertical TBIS

Vertical TBIS primarily concentrates on the vertical structural response.
Despite its reduced degrees of freedom, this system proves conducive to val-
idating novel approaches, including stochastic analyses[16, 47]

:::
[47]. It is also

suitable for scrutinizing factors significantly affecting vertical structural re-
sponse, such as structural concrete creep [20, 48]

:::
[48]. In this paper, we opt

to employ vertical TBIS for the validation of our proposed computational
framework, with the intention of later extending its applicability to spatial
TBIS in future research. Moreover, both vertical and spatial TBIS can be
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established by the principle of total potential energy with stationary value
in elastic system dynamics proposed by Zeng [17, 49]

:::
[49], so only derivation

results are given in this paper. In addition, the modified vertical TBIS pro-
posed in this paper is shown in Fig. 2, and the variables in the figure are
explained by Tab. 1.

cz

cfcm cJ

sk sc

pk pc

Rigid ground

Simply supported bridge

(plate model)

Rail irregularity

cL

tm tJ

wm

tL

tz

tf

Figure 2: The proposed vertical train-bridge interaction system.

Based on the vertical TBIS presented in Ref. [16], the wheel and rail
exhibit a close-fitting relationship expressed by the following equation:

zwi = zbi + zri (1)

where z represents the vertical displacement, and the subscript w denotes
the wheel, b denotes the bridge, r denotes the vertical rail irregularity, and i
denotes the i−th wheel. Eq. (1) indicates that the vertical displacement zwi

of the i−th wheel is the sum of the vertical displacement zbi of the bridge
and the vertical rail irregularity zri at its location.

Due to the relationship between the wheel and rail, a vehicle contains 6
DOFs, i.e.

U v =
[
zc ϕc zt1 ϕt1 zt2 ϕt2

]
, (2)

6
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Table 1: Explanation of variables in Fig. 2.

Variable Explanation

zc Vertical displacement of carbody
ϕc Rotational displacement of carbody
mc Mass of carbody
Jc Mass moment of inertia of carbody
zt Vertical displacement of bogie
ϕt Rotational displacement of bogie
mt Mass of bogie
Jt Mass moment of inertia of bogie
mw Mass of wheel
ks Spring stiffness of the second suspension
cs Damping coefficient of the second suspension
kp Spring stiffness of the primary suspension
cp Damping coefficient of the primary suspension
Lc Half of longitudinal distance between the centers of front and rear bogies
Lt Half of bogie axle base

The mass matrix corresponding to the vector of DOF is denoted as follows.

M v =


mc 0 0 0 0 0
0 Jc 0 0 0 0
0 0 mt1 0 0 0
0 0 0 Jt1 0 0
0 0 0 0 mt2 0
0 0 0 0 0 Jt2

 , (3)

Meanwhile, in Fig. 2, the suspensions are modeled as springs and damp-
ing elements. Thus, the stiffness matrix [50] of the car can be written as

Kv =


2ks 0 −ks 0 −ks 0
0 2ksL

2
c ksLc 0 −ksLc 0

−ks ksLc 2kp + ks 0 0 0
0 0 0 2kpL

2
t 0 0

−ks −ksLc 0 0 2kp + ks 0
0 0 0 0 0 2kpL

2
t

 , (4)

The damping matrix Cv has the same form as Kv, except that ks and kp are
replaced by cs and cp.
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A train often consists of multiple vehicles. The stiffness matrix Kvv of
the train can be written as

Kvv = diag
[
Kv1 Kv2 · · · KvN

]
(5)

where N represents the train contains N vehicles; Kv1 andKvN are normally
motor cars, and Kv2 ∼ KvN−1 are trailer cars. Similarly, M vv and Cvv can
be obtained in the same form.

The TBIS in this study consists of two components, train and bridge.
Therefore, the dynamic equation of the vertical TBIS can be written as[
M vv

Mbb

]{
üvv

übb

}
+

[
Cvv Cvb

Cbv Cbb

]{
u̇vv

u̇bb

}
+

[
Kvv Kvb

Kbv Kbb

]{
uvv

ubb

}
=

{
F vv

F bb

}
,

(6)
where the matrices associated with the bridge, such as Mbb, Kbb, Kvb, etc.,
are obtained after determining the mechanical model of the bridge.

3. Plate mechanics

In computational plate mechanics, different theories exist to describe the
mechanical behavior of thin [51], medium-thick, or thcik plate [52] structures.
These theories include Kirchhoff-Love theory [53, 54], Reissner-Mindlin the-
ory (FSDT [55–57]), and several higher-order shear deformation theories. In
this study, FSDT is employed to describe the displacement field of the plate.

The employment of FSDT is based on the following primary considera-
tions:

(1) In comparison to Kirchhoff-Love theory, the displacement field in Reissner-
Mindlin theory is independently interpolated at displacement and ro-
tating angle, respectively, which holds significant importance. This
arises from the fact that, following the discretization by the meshless
method, the nodal displacement vectors in the Kirchhoff-Love theory
do not incorporate the rotating angle (as shown in Eq.(7)), rendering
it unsuitable for assembling box girder structures with multiple plates
in subsequent studies.

uK =


u
v
w
(Kirchhoff-Love) ,uR =


u
v
w
θx
θy

(Reissner-Mindlin) (7)
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(2) The higher-order shear theories have a larger number of degrees of
freedom compared to FSDT, leading to an increase in computational
requirements. Given that the thickness of the bridge plate is thick, the
applications of higher-order shear theories do not yield substantial ben-
efits in terms of model accuracy; instead, it diminishes computational
efficiency.

To summarize the belongings, the employment of FSDT is crucial in this
study and its follow-up.

3.1. First-order shear deformation theory

Establishing the plate model as shown in Fig. 3, the displacement field
based on FSDT can be defined as

u = u0 + zθx (8)

v = v0 + zθy (9)

w = w0 (10)

where u, v, and w represent the displacements in the x, y, and z directions,
respectively; the subscript 0 denotes the mid-plane of the plate; θx and θy
represent the rotations of a transverse normal about positive y and negative
x axes. Therefore, u0, v0, w0, θx, and θy are the basic unknowns of the
displacement field.

The geometric equations of the plate can be listed as
εx
εy
γxy

 = ε0 + zκ,

{
γyz
γxz

}
= γ0, (11)

ε0 =


∂u0

∂x

∂v0
∂y

∂u0

∂y
+ ∂v0

∂x

 , κ =


∂θx
∂x

∂θy
∂y

∂θx
∂y

+ ∂θy
∂x

 , γ0 =

θy +
∂w0

∂y

θx +
∂w0

∂x

. (12)

Meanwhile, the constitutive equations can be written as
σx

σy

σxy

σyz

σxz

 =


Q11 Q12 0 0 0
Q12 Q11 0 0 0
0 0 Q44 0 0
0
0

0
0

0
0

Q44

0
0

Q44

×


εx
εy
γxy
γyz
γxz

, (13)
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b

a

z

x

y

h

Figure 3: The geometry of the plate model.

assuming that the bridge plate behaves isotropically, we have

Q11 =
E

1− v2
, Q12 =

vE

1− v2
, Q44 =

E

2(1 + v)
, (14)

where E is Young’s modulus and v is Poisson’s ratio.
According to Eqs. 12 and 13, the relationship between in-plane force P

and strain ϵ can be obtained as

P = Sϵ (15)

where S can be given by

S =

A B̄ 0
B̄ D 0
0 0 As

, (16)

with {
Aij Bij Dij

}
=

∫ −h/2

h/2

(
1, z, z2

)
Qijdz

As
ij = K

∫ −h/2

h/2

Qijdz (17)

and the transverse shear correction coefficient K = 5/6.
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3.2. Radial point interpolation method

Compared with the meshless methods where penalty functions are used
to impose boundary conditions, the shape function of radial point interpola-
tion method [38] has the property of Kronecker δ function, which can easily
impose the essential boundary. At the same time, the coupled polynomial
and radial basis point interpolation method constructs a shape function that
preserves the linear regenerative characteristics of the polynomial basis point
interpolation method. It also possesses the compatibility advantage of the
radial basis point interpolation method, allowing for automatic adaptation
to an arbitrary number of supporting nodes, typically resulting in high ap-
proximation accuracy. Therefore, this study employs RPIM as a numerical
discretization tool.

The approximation displacement fiedl function uh(x) of RPIM can be
written as

u (x) ≈ uh (x) =
m∑
t=1

pt (x) at +
NP∑
s=1

Rs (x) bs = pT (x)a+RT (x) b, (18)

where p(x) is the polynomial basis functions and R(x) is the radial basis
functions; .

:::::
For

::::
the

::::::
plate

::::::::::::
structures,

::::
the

::::::::::
complete

::::::::::
quadratic

::::::
basis

::::::::::
functions

:::
are

:

p (x) =
[
1 x y x2 xy y2

]T
::::::::::::::::::::::::::::::::

(19)

::::
And

::::
the

:::::::
radial

::::::
basis

::::::::::
functions

::::::
R(x)

::::
are

::::::::
defined

:::
as

:

R (x) =
[
R1 (x) , R2 (x) , · · · , RNP (x)

]T
::::::::::::::::::::::::::::::::::::::::::::::

(20)

::::::
where

::::
the

:::::::::
number

:::
of

::::
the

:::::::
terms

:
NP denotes the number of the supporting

node contained in the supporting domain ΩS with the coordinate x as the
center. The supporting domain encompasses the supporting nodes, as illus-
trated in Fig. 4, with all the black supporting nodes contained within the
blue box. It then interpolates to generate information about the compu-
tational node x through the shape function. The extent of the supporting
domain is determined by the scale influence factor χ, and achieving a rea-
sonable range for the supporting domain is crucial to produce results with
relatively high accuracy.
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Supporting node

Computational node x

Supporting domain

Figure 4: Supporting domain and supporting nodes of the meshless method.

The value of the radial basis function depends only on the distance func-
tion r, and in this paper, the multi-quadratic radial basis function is em-
ployed, i.e.

Rs (x) =
[
r2 +

(
αh)2

]β
, (21)

where
:::::::::::::::::::::::::::::
r =

√
(x− xs)2 + (y − ys)2 ; h is the average node spacing; α and β are

the shape coefficients, and they are set to 1 and 1.03 respectively according
to Ref. [39].

On the supporting domain ΩS of the computing node x, the functional
J1 and J2 is constructed based on the set of the scattered supporting nodes{
xI}NP

I=1 (∀xI ∈ ΩS) .

J1 =
NP∑
I=1

[
P T

I (x)a+RT
I (x) b− ûI

]
, (22)

J2 =
NP∑
I=1

pt (xI) bI , t = 1, 2, · · · , 6. (23)

Let J1 = 0, J2 = 0, Eq. (24) can be obtained.[
A P
P T 0

] [
b
a

]
=

[
û
0

]
, (24)
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::::::
where

:::
P

::::
and

:::
A

:::::
can

:::
be

::::::::
written

:::
as

:

P =


p1 (x1) p2 (x1) · · · p6 (x1)
p1 (x2) p2 (x2) · · · p6 (x2)

...
...

. . .
...

p1 (xNP ) p2 (xNP ) · · · p6 (xNP )


::::::::::::::::::::::::::::::::::::::::::::

(25)

A =


R1 (x1) R2 (x1) · · · RNP (x1)
R1 (x2) R2 (x2) · · · RNP (x2)

...
...

. . .
...

R1 (xNP ) R2 (xNP ) · · · RNP (xNP )


::::::::::::::::::::::::::::::::::::::::::::::::

(26)

By solving Eq. (24), we have

a =
(
P TA−1P

)−1
P TA−1︸ ︷︷ ︸

Ga

û = Gaû, (27)

b =
[
A−1 −A−1P

(
P TA−1P )−1P TA−1

]︸ ︷︷ ︸
Gb

û = Gbû. (28)

Therefore, for the computing node x, its approximate displacement field
function can be rewritten as

uh (x) = pT (x)a+RT (x) b =
[
pT (x)Ga +RT (x)Gb

]
û

=
NP∑
I=1

ΦI (x) ûI = Φ (x) û, (29)

and the shape function Φ (x) is defined as

Φ (x) = pT (x)Ga +RT (x)Gb. (30)

::::
The

::::::::::
equations

::::
for

:::::::::::
calculating

::::
the

::::::::
partial

:::::::::::
derivative

::
of

::::
the

:::::::
shape

:::::::::
function

::::
can

:::
be

:::::::::::::::::
correspondingly

::::::
given

:::
by

:{
Φ,i (x) = pT

,i (x)Ga +RT
,i (x)Gb

Φ,ij (x) = pT
,ij (x)Ga +RT

,ij(x)Gb
::::::::::::::::::::::::::::::::::::

(31)

::::::
where

: {
RT

,i = RT
,rr,i

RT
,ij = RT

,rrr,ir,j +RT
,rr,ij

:::::::::::::::::::::::::::

(32)
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4. Vertical TBIS based on the plate model

4.1. Bridge mechanical model built by meshless method

First, the mechanical model of the bridge is constructed using the ap-
proaches described in 3.1 and 3.2, and the stiffness matrix Kb, mass matrix
Mb, and damping matrix Cb of the bridge can be calculated.

The approximate displacement field established by RPIM can be ex-
pressed as

û0 =


u0

v0
w0

θx
θy

 =
NP∑
I=1

ΦI


u0I

v0I
w0I

θxI
θyI

 = Φû (33)

Therefore, we have

ε =


ε0
κ
γ0

 =


BI

BII

BIII

 û = Bû (34)

where BI, BII, and BIII are the derivative matrix of the shape function,
which can be written as

BI =
[
B1

I B2
I · · · BI

I · · · BNP
I

]
, BI

I =

ΦI,x 0 0 0 0
0 ΦI,y 0 0 0

ΦI,y ΦI,x 0 0 0

 (35)

BII =
[
B1

II B2
II · · · BI

II · · · BNP
II

]
, BI

II =

0 0 0 ΦI,x 0
0 0 0 0 ΦI,y

0 0 0 ΦI,y ΦI,x


(36)

BIII =
[
B1

III B2
III · · · BI

III · · · BNP
III

]
, BI

III =

[
0 0 ΦI,y 0 ΦI

0 0 ΦI,x ΦI 0

]
(37)

where ΦI,x and ΦI,y denote that ΦI takes first-order partial derivatives with
respect to x and y, respectively.
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According to Ref. [58], we define Kb =
∫
Ω
BTSBdΩ, then we have

Kb =

∫
Ω

BTSBdΩ =

∫
Ω


BI

BII

BIII


T A B̄ 0

B̄ D 0
0 0 As


BI

BII

BIII

 dΩ

=

∫
Ω

BT
I ABI +BT

IIB̄BI +BT
I B̄BII (38)

+BT
IIDBII +BT

IIIAsBIII dΩ (39)

Defining Mb =
∫
Ω
NT

ΦρNΦdΩ, where NΦ is the shape function matrix,
which can be expressed as

NΦ =
[
NΦ1 NΦ2 · · · NΦI · · · NΦNP

]
(40)

where

NΦI =


ΦI 0 0 0 0
0 ΦI 0 0 0
0 0 ΦI 0 0
0 0 0 ΦI 0
0 0 0 0 ΦI

 (41)

and

ρ =


I0 0 0 I1 0
0 I0 0 0 I1
0 0 I0 0 0
I1
0

0
I1

0
0

I2
0

0
I2

 (42)

where I0, I1, and I2 denote the normal, coupled normal-rotary and rotary
inertial coefficients, respectively, and they can be given by

(I0, I1, I2) =

∫ h/2

−h/2

ρ(z)
(
1, z, z2

)
dz (43)

For the damping matrix Cb, we use Rayleigh damping, i.e.

Cb = arMb + brKb (44)

with

ar =
2ζbω1ω2

ω1 + ω2

(45)

br =
2ζb

ω1 + ω2
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where ω1 and ω2 are the first two orders of natural frequencies of the bridge,
and ζb denotes the bridge damping ratio.

4.2. The block matrices and vectors of the TBIS

In this subsection, the bridge matrices Kbb, Mbb, and Cbb, as well as
the train-bridge coupling matrices Kvb, Kbv, Cvb, and Cbv, are calculated
using the principle of total potential energy with a stationary value in elastic
system dynamics, as described in the Ref. [17, 49]. The load vectors F vv,
F vv, and F bb are also determined using the same principle.

Kbb contains two components: the stiffness matrix for all spans of the
bridge, and the stiffness of the primary suspensions bound to the bridge, i.e.

Kbb = diag
[
Kb1 Kb2 · · · KbM

]
+Nbl

TkbNbl +Nbr
TkbNbr (46)

where the subscript M indicates that the bridge has a total of M spans. The
matrix kb consists of the spring stiffness matrices of the primary suspensions,
which are connected to the bridge stiffness matrix through the time-varying
shape function matrix Nb. The subscripts l and r denote the left and right
wheels of the wheelset, respectively. The expression for kb is given by

kb = diag
[
kb1 kb2 · · · kbJ

]
(47)

where the subscript J denotes the left (right) wheel of the J-th wheelset,
then kbi can be written as

kbi = diag
[
0 0 kp 0 0

]
(48)

Since wheelsets are constantly moving along the rail, the shape function
matrix Nb also varies with time. Specifically, for Nbl, it can be expressed
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as

Nbl =



...
...

...
...

...

· · ·

Φx,i 0 0 0 0
0 Φx,i 0 0 0
0 0 Φx,i 0 0
0 0 0 Φx,i 0
0 0 0 0 Φx,i

· · ·

Φx,j 0 0 0 0
0 Φx,j 0 0 0
0 0 Φx,j 0 0
0 0 0 Φx,j 0
0 0 0 0 Φx,j

· · ·

...
...

...
...

...

· · ·

Φy,k 0 0 0 0
0 Φy,k 0 0 0
0 0 Φy,k 0 0
0 0 0 Φy,k 0
0 0 0 0 Φy,k

...

Φy,l 0 0 0 0
0 Φy,l 0 0 0
0 0 Φy,l 0 0
0 0 0 Φy,l 0
0 0 0 0 Φy,l

...

...
...

...
...

...


(49)

where the subscripts x and y represent the wheelset serial numbers, while i,
j, k, and l represent the serial numbers of the supporting points within the
supporting domain centered on the wheel. For ease of understanding, the
shape function matrix at moment t, Nbl, can be determined by Fig. 5.

Next, the train-bridge coupling matrix Kvb can be given by

Kvb = kvbNbl + kvbNbr (50)

where Nbl, Nbr have been given before, and kvb can be written as

kvb =


kvb1

kvb2

. . .

kvbN

 (51)

where the subscript N indicates that there are N vehicles in the train, then
kvbi can be written as

kvbi =

 0 0
λvb 0
0 λvb

 (52)

with

λvb =

[
0 0 −kp 0 0 0 0 −kp 0 0
0 0 −kpLt 0 0 0 0 kpLt 0 0

]
(53)
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Figure 5: The shape function matrix Nbl at moment t.
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and transposing Kvb gives Kbv, i.e. Kbv = Kvb
T.

For the mass matrix Mbb, it has a similar form to Kbb, i.e.

Mbb = diag
[
Mb1 Mb2 · · · MbM

]
+Nbl

TmbNbl +Nbr
TmbNbr (54)

with
mb = diag

[
mb1 mb2 · · · mbJ

]
(55)

mbi = diag
[
0 0 mw 0 0

]
(56)

For the damping matrices Cbb, Cbv, and Cvb, we can obtain them by
replacing Kbb, Kbv, and Kvb with the corresponding damping coefficients.

For the load vectors F vv and F bb, we have

F vv = kvbuirrl + cvbvirrl + kvbuirrr + cvbvirrr (57)

F bb = −Nbl
Tcbuirrl −Nbl

Tkbvirrl −Nbl
Tmbairrl −Nbl

Tgirrl (58)

−Nbr
Tkbuirrr −Nbr

Tcbvirrr −Nbr
Tmbairrr −Nbr

Tgirrr

where cvb can be obtained by replacing kp in kvb with cp. Similarly, cb
can be obtained by replacing kp in kb with cp. uirr, virr, and airr are the
corresponding rail irregularity (i.e., vertical displacement), rail velocity, and
rail acceleration of the train at moment t. Taking uirrl as an example,it can
be written as

uirrl =
[
uirrl1 uirrl2 . . . uirrlJ

]T
(59)

with
uirrli =

[
0 0 uli 0 0

]
(60)

where uli denotes the rail irregularity corresponding to the left wheel of the i-
th wheel pair at moment t. virr and airr can be obtained by taking first-order
and second-order differences on uirr.

By now, we solve all block matrices in Eq. (6). Then we can get the
displacement, velocity, and acceleration of the train and bridge at each time
step by Newmark-β method.

5. Rail irregularity

To facilitate a comparison with the model discussed in Ref. [16], we
adopt German low-interference rail irregularity spectrum in Ref. [16] for
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this study, which applies to high-speed railway with speeds of 250 km/h and
above. The power spectral density of rail irregularity primarily encompasses
spectra from China, Germany, and United States. However, different rail
irregularity spectrums do not affect the conclusions of model comparisons.

The spectrum is used to generate the vertical rail irregularity [59], i.e.

SV =
Av

(Ω2 +Ω2
r ) (Ω

2 +Ω2
c )

(61)

where,for the case of low-interferenc, the parameters Ωr = 0.0206, Ωc =
0.8246, and Av = 4.032× 10−7. The trigonometric series method [60] is used
to generate the rail irregularity and the spatial frequencyΩ ∈ [0.05, 0.3] rad/m.

Using Eqs. (62) and (63) to modulate the rail irregularity on the bridge
[61], i.e.

zr(x) = Φ(x)ẑr(x) (62)

Φ(x) =


0.5 (1 +

√
c) + 0.5 (1−

√
c) sin

(
πL−1

0 (x+ 1.5L0)
)

−L0 ≤ x < 0√
c 0 ≤ x < L

0.5 (1 +
√
c) + 0.5 (1−

√
c) sin

(
πL−1

0 (−x− L− 0.5L0)
)

L ≤ x < L+ L0

1 other
(63)

where ẑr(x) is the original rail irregularity generated by trigonometric series
method, and Φ(x) is the modulation function. c is the modulation coeffi-
cient, L is the total length of the rail irregularity, and L0 is the modulation
transition length. In this study, c is taken as 0.7, L0 is taken as 20 m.

6. Numerical examples

Based on the previous sections, we construct a vertical TBIS consisting
of a 1-span 32-meter simply supported bridge and a train, as depicted in
Fig. (6). In TBIS programs, simply supported box girders are commonly
used for bridges, where different spans are not directly connected to each
other, but the response is transmitted through the rails and piers. To more
directly highlight the differences between the plate and beam models, we
have excluded the track and pier models, resulting in no interaction between
different span bridges. Therefore, a single-span bridge model is sufficient to
achieve the research objectives. Meanwhile, it allows for more detailed mesh
division, which is particularly beneficial when dealing with limited computing
power. The train consists of 4 cars arranged as motor car + trailer car +
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trailer car + motor car. German power spectrum is used to generate the
rail irregularity for a total length of 1000 m. To ensure the stability of the
initial condition, the train starts at 150 m at the first car distance from the
bridgehead, and the calculation is over after the first car passes the bridge
150 m. The train speed is 300 Km/h. We list the main train parameters in
Tab. 2.

Motor carTrailer car

BridgeRigid ground Rigid ground

Figure 6: The TBIS of the numerical example.

Table 2: The parameters of cars.

Parameter Unit Motor car/Trailer car

mc kg 4.4× 104 / 4.8× 104

Jc kg ·m2 2.7× 106 / 2.7× 106

mt kg 2.4× 103 / 3.2× 103

Jt kg ·m2 2.2× 103 / 7.2× 103

mw kg 1.2× 103

ks N/m 6× 105 / 8× 105

cs N · s/m 8× 104 / 9× 104

kp N/m 1.4× 106 / 2.08× 106

cp N · s/m 8× 104 / 6× 104

Lc m 8.6875/8.6875
Lt m 1.25/1.25

We consider two different approaches to model the bridge: One of them
is FEM using two-node four-DOF Euler beam element [16], the other is
the meshless method discussed in the previous section. The comparison
between the beam model and plate model presented in this paper is, in fact,
a comparison between the conventional TBIS and the proposed modified
TBIS. In previous studies of TBIS, including the work cited in Ref. [1,
16, 17, 62], utilized Euler beams rather than Timoshenko beams to model
simply supported girder bridges. In our work, the plate model-based TBIS
is an improvement upon the approach introduced in Ref. [16]. The earlier
literature simplified simply supported girder bridges to Euler beams, leading
us to employ Euler beams-Reissner-Mindlin plates for the comparison in our
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study. The material properties of the bridge are as follows: Young’s modulus
is 3.451 × 1010 N/m2, Poisson’s ratio is 0.2, density is 2.65 × 103 kg/m3,
damping ratio is 0.05, and bridge width is 13 m.

In the FEM modeling, the bridge is divided into 64 equidistant elements.
For the meshless method, a total of 27×65 nodes are distributed equidistantly
in both the x and y directions, and the discretization of the model by FEM
and RPIM can be seen in Fig. 7. In RPIM, particularly for two-dimensional
problems, the quadratic complete polynomial basis functions can be written
as

p (x) =
[
1 x y x2 xy y2

]T
. (64)

The scale influence factor χ, which is used to control the size of the supporting
domain, is typically chosen within the range of 2.0 to 3.0. As suggested by
Ref. [39, 63], in this paper, a specific value of 2.4 is adopted. At this setting,
the support domain can accommodate up to 25 supporting nodes. At the
end of this section, we will perform a sensitivity study on these parameters.
Finally, the TBIS can be established as Fig. 8. The time step length for
Newmark-β method is set to ∆t = 6×10−4 s, i.e., the train runs ∆L = 0.05 m
for each time step. Thus, a total of 8524 time steps are required to complete
the entire journey.

Finite element discretization Meshless discretization

Figure 7: Discretization of the model by FEM and RPIM.

As most real engineering bridges are box girders, accurate determina-
tion of plate thickness parameters based on current literature is challenging.
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Moreover, the width-thickness ratio Wt significantly affects the vibration of
the plate. To address this, we calculate the dynamic responses of the plate
model for different Wt values and compare them with the beam model. It is
important to note that the cross-sectional area and flexural stiffness of the
beam model vary with Wt. In both finite element and meshless methods,
during the numerical modeling of Reissner-Mindlin plate, displacement and
rotating angle are interpolated independently. This approach can introduce
a new challenge known as shear locking. In civil engineering, the ratio of
thickness to width, denoted as h/a, is commonly employed to classify plate
structures as either thin or thick. Generally, when h/a < 0.125, a plate is
considered thin; otherwise, it is categorized as thick or medium-thick. Shear
locking tends to increase significantly when h/a is substantially less than
0.125. However, the width-to-thickness ratios investigated in this study range
from 4 to 7, ensuring a minimum h/a of 0.143, which is greater than 0.125.
Consequently, this paper eliminates the necessity to address shear locking
concerns. In case shear locking does become an issue, reduced integration
can be employed as a mitigating measure, if necessary.

Close fitting

x

z

Carbody

Bogie

Wheel

sk sc

pk pc pk pc

cz

cf

65001500 25002500

y

z

cL

1tz

t1ft2f

2tz

Figure 8: The TBIS based on plate model established by RPIM.

Fig. 9 shows the curve of mid-span vertical displacement of the two
models changing with time when Wt = 5. The beam model is constructed in
the same way as we used in the Ref. [64], i.e., each span is modeled separately.
In this modeling approach, each span of bridge (the width is 13 m, length is
32 m, and height is 2.6 m) is simplified into Euler beam elements. In terms of
size, it seems to make more sense to simplify it to a plate. The beam model
curve is plotted at a width coordinate of −0.5 m. The width coordinates
ranging from 0 m to 13 m correspond to the changes in mid-span vertical

23

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



displacement of the plate model along the width direction of the bridge. For
the plate model, it can be clearly observed that the vertical displacement
gradually increases in the width direction 0 m to 13 m. This occurs because,
in this specific example, the train is set to run on the side of the width
direction within the range of 0 ∼ 6.5 m. The specific position and wheel
trajectories are depicted in Fig. 8. By comparing the projected curves of the
beam model and plate model, it can be observed that the overall trends are
similar. The bridge begins to bend down as the train drives onto it, and it
starts to reset when the train begins to exit the bridge. Once all the cars
of the train have completely crossed the bridge, the bridge enters a state of
free vibration, and the amplitude gradually decreases due to the presence of
damping. Eventually, the bridge returns to its initial state. Although both
the beam model and plate model exhibit similar dynamic trends, substantial
disparities in their response values are evident. These discrepancies can be
attributed to differences in mechanical assumptions. Mechanically, beam and
plate structures, characterized by significantly smaller scales in two directions
and one direction, respectively, allow certain assumptions to be introduced in
the analysis. These assumptions aim to simplify beams and plates into one-
dimensional and two-dimensional problems, respectively, thereby facilitating
their analytical solutions. In the specific example considered, the dimensions
in the thickness direction are notably smaller than those in the width and
length directions. Consequently, certain mechanical assumptions applicable
to beam structures become invalid, leading to distorted calculation results.
This discrepancy represents a critical factor contributing to the observed
differences between the two models.

Fig. 10 displays the mid-span vertical displacements for different values
of Wt (4, 5, 6, 7) in the models. The plot utilizes three colors: the red curve
represents the beam model, while the blue and gray curves represent the
plate model. Specifically, the blue curve corresponds to the displacements
at the width coordinates of 0 m and 13 m, while the gray curve represents
the displacement between 0 m and 13 m. By observing the variation in the
longitudinal scale, it can be inferred that the mid-span vertical displacement
increases with an increase in Wt. However, it is noteworthy that the increase
is more pronounced in the beam model compared to the plate model. Fur-
thermore, the amplitude of free vibration is much larger in the beam model
than in the plate model. Consequently, larger values of Wt result in greater
discrepancies between the two models. It is important to acknowledge that
due to computational limitations, our simulation only considers a one-span
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Figure 9: Curves of vertical displacements at mid-span with time for the plate and beam
models (Wt = 5).
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bridge. In this context, utilizing a beam model for the simulation is not
rigorous, considering the dimensions of the bridge. On the other hand, the
proposed plate model in this paper provides more realistic data. For in-
stance, while the beam model can only represent the overall displacement
of a bridge section, the plate model offers variation in displacement along
the width direction. The blue curve depicts the maximum and minimum
vertical displacements of the section, while the gray curve envelopes the blue
curve, demonstrating the variation in vertical displacement from one side of
the bridge to the other.
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Figure 10: Mid-span vertical displacement of bridge built by plate model and beam model
with different width-thickness ratio Wt
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The trend analysis of the bridge span is performed and presented in Fig.
11. Upon examining the figure, it is evident that the analysis results of
the beam model only provide the overall acceleration variation at the mid-
span, whereas the plate model offers more detailed information. In the plate
model, a noticeable disparity in acceleration variation can be observed be-
tween the traffic side and the other side. Furthermore, on the traffic side,
the acceleration variation at the corresponding position of the wheel is more
pronounced, with peaks reaching 0.5 m/s2. In terms of the overall trend,
the mid-span acceleration variation increases with an increase in Wt for both
models. However, the peak acceleration in the beam model is smaller than
that in the plate model. Naturally, the two models exhibit similarity when
considering only peak acceleration values when W t is lager. However, when
examined in the frequency domain, variations may become evident. Further-
more, as Wt increases, the disparity in vertical displacement between the
two models also magnifies. Consequently, we believe that the plate model
continues to maintain its competitive edge. As a result, the plate model can
provide more comprehensive response information for targeted analysis and
design.

The analysis results of the carbody acceleration, specifically the vertical
acceleration of the first motor car, are presented in Fig. 12. It is evident that
the carbody acceleration exhibits a high degree of similarity between the two
models, with only slight variations observed during the bridge crossing phase
as Wt changes. This suggests that the bridge model has minimal influence on
the carbody acceleration, which is primarily governed by rail irregularities.
Since the same rail irregularities are employed in both models, the obtained
figures exhibit similar patterns.

To validate the applicability of the proposed meshless computational
framework, we conducted computations of the bridge (Wt = 5) response
at various train speeds, as depicted in Figs. 13 and 14. The figures reveal
a gradual increase in the fluctuation of the bridge response with the rise
in speed, consistent with analogous observations in the Ref. [16].

:::
We

:::::
plot

:::
the

:::::::::::
mid-span

:::::::::::::::
displacements

:::::
and

:::::::::::::
acceleration

::::::
under

:::::::
trains

::::::::::::
comprising

:::
6,

:::
8,

::::
and

:::
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:::::
cars

::::::::::::
traversing

::::
the

:::::::
bridge

:::
in

::::::
Figs.

:::::
15

:::::
and

::::
16.

:::
It

:::
is

:::::::::
evident

:::::
that

:::
the

:::::::::
number

:::::
peak

:::::::::::
responses

:::::::::
increase

:::::
with

::::
the

:::::::::
number

::
of

::::::
cars,

:::::::::::
indicating

::::
the

::::::::::::
adaptability

:::
of

::::
the

:::::::::::
proposed

:::::::
model

:::
to

::::::::
diverse

::::::
train

::::::::::::::
compositions.

::::
In

::::::
Figs.

::
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:::::
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::::
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::::
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:::::::
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::::
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:::::::::::::::
discretization

::::::::::
accuracy

::::
and

:::::::::
plotted

::::
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::::::::::
mid-span

::::::::::
responses

:::
for

:::::
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:::::
final

::::::
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::
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:::::
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:::::::
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:::::
with

:::
2,

:::
3,

:::::
and

::
4

:::::::
spans.

:::::::
With

:::
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::::::::
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:::
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::::
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:::::::::
number

:::
of

:::::::
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:::::
the

::::::::::
mid-span

:::::::::::
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:::
of

::::
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:::::
final

::::::
span
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Figure 11: Mid-span vertical acceleration of bridge built by plate model and beam model
with different width-thickness ratio Wt (The figures on the left and center represent the
mid-span acceleration surface and scatter point figure of the plate model, respectively.
The figures on the right display the mid-span acceleration figure of the beam model)
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Figure 12: Vertical acceleration of the car body of the first motor car under plate model
and beam model with different width-thickness ratio Wt
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::::::::::
gradually

:::::
rise.

:::::
This

:::
is

:::::::::::
attributed

:::
to

::::
the

::::::::::
increased

:::::::::
number

::
of

::::::::
spans,

::::::::
causing

:::
the

::::::
train

:::
to

::::::::::::
experience

::::::
more

:::::::
bridge

::::::::::
influence

:::::::
before

:::::::::
reaching

::::
the

:::::
last

::::::
span,

::::::::
thereby

:::::::::
resulting

:::
in

::
a

::::::
slight

::::::::::
elevation

:::
in

:::
the

::::::::::
response

::
of

::::
the

:::::
last

:::::
span

::::::::
bridge.

Hence, the computational framework presented in this paper demonstrates
commendable applicability.
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Figure 13: Mid-span vertical displacement of the bridge under different train speeds (Wt =
5).
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Figure 14: Mid-span vertical acceleration of the bridge under different train speeds (Wt =
5).

The stability and convergence of numerical simulation methods play cru-
cial roles in determining their widespread applicability to such problems.
Hence, we investigate the sensitivity of the structural response to discretiza-
tion density and the scale influence factor χ. In Tab. 3, the vertical displace-
ments of the bridge at coordinates (0, 16) during the initial passage of the
first motor car onto the bridge mid-span are provided. The results indicate
that as the density of meshless discretization nodes increases, the structural
response gradually converges and stabilizes regionally, ultimately reaching
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Figure 15:
::::::::
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vertical
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::::::
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under

::::::::
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number

:::
of
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cars

::::::::
(Wt = 5).
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Figure 16:
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Figure 17:
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Vertical
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displacement

::
of

::::
the

::::
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span
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bridge
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with
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different
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number

::
of

::::::
spans

::::::::
(Wt = 5).

31

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



1000
2000

3000
4000

5000
6000

7000
8000

9000 0 1 2 3 4 5 6 7 8 9 10
11

12
13

-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Width (m)

V
ertical acceleration (m

/s 2)

Time step

(a) 2 spans

1000
2000

3000
4000

5000
6000

7000
8000

9000 0 1 2 3 4 5 6 7 8 9 10
11

12
13

-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Width (m)

V
ertical acceleration (m

/s 2)

Time step

(b) 3 spans

1000
2000

3000
4000

5000
6000

7000
8000

9000
10000 0 1 2 3 4 5 6 7 8 9 10

11
12

13

-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Width (m)

V
ertical acceleration (m

/s 2)

Time step

(c) 4 spans

Figure 18:
:::::::
Vertical

:::::::::::
acceleration

:::
of

:::
the

::::
last

:::::
span

:::::::
bridge

::::
with

::::::::
different

::::::::
number

::
of

::::::
spans

::::::::
(Wt = 5).

a converged value around −1.31 × 10−4 m. The scale influence factor χ,
also affects the convergence speed. The fastest convergence is observed at
χ = 3. However, regardless of χ in the range of 2 ∼ 3, the structural re-
sponse successfully converges and stabilizes with a 27 × 65 meshless node
configuration. Consequently, the chosen value of χ = 2.4 in our numerical
examples is deemed appropriate in this study. This leads us to the conclu-
sion that the proposed computational framework exhibits reliable stability
and convergence.

Table 3: Sensitivity of stability and convergence for the structural vertical displacement
(×10−4 m) at coordinates (0,16) to the discretization density and scale influence factor χ
when the first motor car runs into mid-span of the bridge (Wt = 5).

χ 27× 65 14× 65 27× 33 14× 33 14× 17 8× 17

2.0 -1.130 -1.131 -1.130 -1.130 -1.128 -1.125
2.2 -1.130 -1.130 -1.127 -1.128 -1.117 -1.116
2.4 -1.131 -1.131 -1.128 -1.128 -1.115 -1.114
2.6 -1.131 -1.132 -1.129 -1.129 -1.118 -1.116
2.8 -1.130 -1.132 -1.129 -1.130 -1.126 -1.123
3.0 -1.130 -1.131 -1.130 -1.130 -1.129 -1.127

For the computational efficiency, an increase in model dimensionality
(from one-dimensional to two-dimensional) almost inevitably leads to a re-
duction in computational efficiency. We list the CPU computation times
for various models in Tab. 4. While computational efficiency experiences a
significant decrease, it is not an insurmountable challenge. In our previous
work, we successfully integrated various types of neural networks into the
train-bridge system computational framework to predict dynamic responses,

32

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



and the related results have been published [65–67]. These artificial intel-
ligence agents effectively accelerate computations. Therefore, a similar ap-
proach could be considered to address the efficiency problem in our future
work.

Table 4: CPU computation time for different models with different number of nodes.

Model Node Time (s)

Beam model
26 1.101
51 3.046
101 5.285

Plate model
8× 17 116.750
14× 33 563.506
27× 65 3216.619

Until this juncture in the paper, we have verified the dynamic system of
the vehicle coupled with the plate structure. We now propose a more refined
system, as illustrated in Fig. 19, based on the findings of this study. Utiliz-
ing the FSDT-RPIM framework introduced in this paper, the top, web, and
bottom plates with varying thickness [68] of the box girder bridge can be
simulated and separately assembled, culminating in a higher level box girder
model. The TBIS validated in this paper can be readily employed to couple
the vehicle with the top plate. Simultaneously, the beam structure can be
employed to simulate the pier and assembled with the bottom slab. This
approach facilitates the construction of a higher level TBIS. The viability of
this concept can be substantiated in future research. However, it is essential
to note that the utilization of RPIM for discretizing the plate model in this
study does not preclude the use of other methods. This research has demon-
strated the applicability of meshless methods in the TBIS domain. Classical
meshless methods such as the moving least square method, reproducing ker-
nel particle method, and general finite difference method can be incorporated
into the computational framework proposed in this paper. They only differ
slightly in the imposition of boundary conditions and the wheel-plate cou-
pling relationship. Thus, researchers can choose different methods based on
specific needs when addressing this type of problem.
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Figure 19: A higher level TBIS with multiple plates.

7. Conclusions

In this study, we propose a modified vertical train-bridge interaction sys-
tem. To model the bridge, we utilize radial point interpolation method, a
meshless method, while incorporating first-order shear deformation theory to
represent the displacement field of the bridge. We provide the form of each
block matrix in the coupled dynamics equations of the presented system.
This is the first attempt to combine FSDT and RPIM to build a plate model
for bridge simulate within TBIS. Furthermore, we conduct an analysis of the
mid-span vertical displacement, vertical acceleration, and carbody accelera-
tion for both the beam model and the proposed plate model. A comparison
between the two models is performed, and the results yield the following
findings:

(1) The analysis of the mid-span vertical displacements reveals that they
exhibit an increasing trend as the width-thickness ratio increases. It
is noteworthy that for lower span numbers, the mid-span vertical dis-
placements obtained from the beam model are notably larger than those
obtained from the plate model. In contrast, the plate model offers the
advantage of providing more detailed information, such as the vertical
displacement at any specific point within the bridge surface.
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(2) The mid-span vertical acceleration exhibits an upward trend as the
width-thickness ratio increases. Notably, the plate model surpasses
the beam model in terms of its ability to provide vertical acceleration
information at every point along the entire bridge surface. Additionally,
it is observed that the vertical acceleration is greater on the traffic
side compared to the opposite side. Moreover, the vertical acceleration
amplitude is significantly larger at the section of the bridge surface
in contact with the wheels compared to other locations. In contrast,
the beam model can only offer the overall vertical acceleration of the
bridge, limiting its utility in targeted analysis and design of the bridge.

(3) The carbody acceleration exhibits minimal dependence on the bridge
model and width-thickness ratio. Instead, it is primarily influenced by
track irregularities.

As we mentioned in Section 1, this study establishes a theoretical founda-
tion and validates the feasibility of implementing TBIS with precision bridge
modeling within a unified platform. In engineering practice, a majority of
simply supported girder bridges employ box girder structures, which prove
challenging to simulate accurately using either beam or single-plate models.
However, this paper demonstrates the feasibility of train-plate coupling,
which implies that it is also feasible to model box girders using multiple
plates and embed them in TBIS. For instance, the top, bottom, and web
plates of a box girder can be simulated by four plates. Such simulations
exhibit high accuracy, on par with solid element modeling. Meanwhile,
beam model features only a single point in the width direction, limiting
further customization of boundary conditions. Conversely, the platemodel
utilized in this study permits intricate adjustments in the width direction.
In particular, with the introduction of multi-plate structures and piers, it
is possible to establish interrelationships between the bottom plate and the
piers that are compatible with actual situation. This will directly affect
the accuracy of the TBIS. Additionally, there is potential to expand the
internal structure of the system. For instance, the track slab could also be
modeled using the plate model, or even a laminated plate structure could be
considered. This would allow for the development of a more comprehensive
train-track-bridge interaction system.

:::::::::
however,

::::::::
certain

:::::::::
terrains

::::::::::::
necessitate

:::
the

:::::::::::::
construction

:::
of

:::::::::::
large-span

:::::::::::
continuous

:::::::
girder

::::::::
bridges.

::::::
The

:::::::::
proposed

:::::::
model

:::::
faces

:::::::::::
challenges

::
in

::::::::::::
simulating

:::::
such

:::::::::::
large-span

:::::::::
bridges.

:::
As

::::
the

::::::
span

::::::::::
increases,

:::
the

:::::::::::::
mechanical

:::::::
model

:::::::::
becomes

:::::::
closer

:::
to

::
a
:::::::
beam

:::::::
rather

::
a
:::::::
plate.

:::::::::::
However,
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:::::::::::
traditional

::::::
beam

::::::::
models

::::
are

:::::
also

::::::::::::
inadequate

:::
for

::::::::::::
simulating

::::
this

::::::::
bridge

:::::
type

:::::::::::
effectively.

:::::
We

:::::::::::::
recommend

::::::::::::
employing

::
a

:::::::::::::::
co-simulation

:::::::::::
approach,

:::::::::
wherein

::::::::::::::
programming

:::::::::
software

:::::
like

:::::::::::
MATLAB

:::
is

:::::::::
utilized

:::
to

:::::::::
simulate

:::::
the

::::::::::
structure

::::::
above

::::
the

::::::::
bridge,

::::::
while

::::::::::::
commercial

:::::::::
software

:::::
such

:::
as

:::::::::::
ABAQUS,

::::::::::
ANSYS,

::::
and

:::::::::::
SIMPACK

::::
are

::::::::::
employed

::::
for

::
a

:::::::
refined

:::::::::::
modeling

::
of

::::
the

::::::::
bridge.

:
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fied perturbation stochastic finite element method, Comput Mech 71 (5)
(2023) 917–933. doi:10.1007/s00466-022-02259-7.

37

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://doi.org/10.1002/nme.624
https://doi.org/10.1002/nme.624
https://doi.org/10.1007/s43452-021-00266-8
https://doi.org/10.1007/s43452-021-00266-8
https://doi.org/10.1016/j.istruc.2023.04.086
https://doi.org/10.1007/s40999-023-00846-0
https://doi.org/10.1016/j.compstruct.2009.09.024
https://doi.org/10.1016/j.compstruct.2009.09.024
https://doi.org/10.1016/j.matdes.2016.12.061
https://doi.org/10.1016/j.matdes.2016.12.061
https://doi.org/10.1016/j.compstruct.2015.07.052
https://doi.org/10.1016/j.compstruct.2016.11.048
https://doi.org/10.1016/j.compstruct.2016.11.048
https://doi.org/10.1007/s00466-022-02259-7


[13] Z.-P. Zeng, F.-S. Liu, P. Lou, Y.-G. Zhao, L.-M. Peng, Formulation of
three-dimensional equations of motion for train–slab track–bridge inter-
action system and its application to random vibration analysis, Appl
Math Model 40 (11-12) (2016) 5891–5929. doi:10.1016/j.apm.2016.

01.020.

[14] W. Zhou, L. Zu, L. Jiang, J. Yu, Y. Zuo, K. Peng, Influence of damping
on seismic-induced track geometric irregularity spectrum in high-speed
railway track-bridge system, Soil Dyn Earthq Eng 167 (2023) 107792.
doi:10.1016/j.soildyn.2023.107792.

[15] Y. Tang, Z. Zhu, Z. Ba, V. W. Lee, W. Gong, Running safety assessment
of trains considering post-earthquake damage state of bridge–track sys-
tem, Eng Struct 287 (2023) 116187. doi:10.1016/j.engstruct.2023.
116187.

[16] X. Liu, P. Xiang, L. Jiang, Z. Lai, T. Zhou, Y. Chen, Stochastic analysis
of train–bridge system using the karhunen–loéve expansion and the point
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Abstract

In previous simulations of train-bridge interaction systems (TBIS), the sup-
porting system for the train are commonly treated as beam structures, lead-
ing to less accurate results, particularly for small-span cases. To address this
limitation, a modified vertical TBIS is proposed. In the presented TBIS, the
supporting system is considered as a Reissner-Mindlin plate, and the dis-
placement field is described by first-order shear deformation theory (FSDT).
To establish the model, radial point interpolation method (RPIM), a mesh-
less method, is employed. Finally, a coupled dynamic equation is established
to calculate various responses of the system. Several numerical examples
are presented to illustrate the disparities between the system based on plate
model and traditional beam model. The results indicate that the beam model
yields higher estimates of the mid-span vertical displacement of the bridge,
while the peak of the mid-span vertical acceleration is smaller compared to
the plate model; additionally, it is observed that the carbody is primarily
influenced by rail irregularities. Consequently, the proposed plate model of-
fers distinct advantages over the beam model in providing comprehensive
structural response information, thereby offering novel insights into bridge
design and analysis. Additionally, this marks the inaugural application of the
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meshless method in the field of TBIS, which further extends the application
scope of meshless methods.

Keywords: Train-bridge interaction system, Meshless method,
Computational plate-shell mechanics, High-speed railway, Rail irregularity

1. Introduction

By the end of 2022, the total length of Chinese high-speed railway has
exceeded 42,000 km. In this extensive network, a significant portion of the
railway lines is composed of bridges [1, 2]. The construction of high-speed
railways frequently faces various challenges related to terrain and environ-
mental conditions. Therefore, it is necessary to conduct demonstrations to
assist in the design process. Numerical simulation is highly recommended
in this regard, primarily due to the substantial costs associated with con-
ducting physical tests. In recent decades, researchers have created a variety
of TBIS utilizing various numerical methods. These TBIS can be broadly
classified into three distinct categories: programming-based, finite element
software-based, and co-simulation-based.

The first category of TBIS relies entirely on programming. It involves
processes such as utilizing MATLAB to simplify each component of the TBIS
and establishing a mechanical model for each part [3–5]. Subsequently, these
models are integrated using multi-body dynamics principles to formulate
the dynamic equations governing the TBIS. For example, in this approach,
the trains are simplified to mass points, while the tracks, piers, bridges,
and other components are represented as simplified beam structures [6–11].
These components are then interconnected, taking into account the wheel-
rail interaction and multi-body dynamics. Beam structures are widely used
in buildings, especially frame structures [12]. However, for many complex
structures in TBIS, the beam structures do not represent thier mechanical
performance well. For instance, it is not reasonable to approximate track
slabs [13–15] and box girder bridges [16, 17] solely as beam structures, given
their intricate nature. Hence, a crucial research focus lies in determining
a reasonable and accurate approach for modeling track slabs and bridges
within the first category of TBIS.

The second category of TBIS primarily relies on commercial software for
modeling purposes. The components within the system are modeled using
software such as ABAQUS or ANSYS or some other software, and subsequent
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assembly and calculations are performed within the software framework [18].
This approach takes advantage of well-established commercial software with
robust modeling capabilities. In this type of TBIS, components like rails,
track slabs, and bridges receive more intricate modeling, but the simulation
of inter-component relationships, especially the wheel-rail relationship, is a
complex task.

The third category of TBIS represents a combination of the first two. In
this hybrid TBIS, components located above the bridge are typically mod-
eled using MATLAB, while commercial software is uesd to tackle the intricate
modeling of complex structures, such as bridges and piers [19]. This approach
capitalizes on the strengths of the first two TBIS and often yields heightened
modeling accuracy. However, it is worth noting that this approach comes
with a relatively high threshold due to the concurrent use of multiple mod-
eling platforms.

The first category of TBIS is the most commonly employed and offers ex-
tensive utility in conducting various analyses. These applications involve the
investigation of factors such as impact of prestressed concrete bridge creep
[20], as well as integrating it with neural networks to formulate predictions
regarding train running safety [21]. Meanwhile, the first category of TBIS is
entirely based on the programming platform, offering researchers significant
flexibility. In contrast, the second category of TBIS faces limitations imposed
by commercial software and the challenges of secondary development, and has
some difficulties in introducing advanced mechanical theories. For academic
research, the first category of TBIS proves more advantageous. Furthermore,
the first category of TBIS is implemented on a single platform, eliminating
the need for multi-platform data exchange as required in the third category of
TBIS. Moreover, in some cases, the third category of TBIS requires the intro-
duction of supercomputing platform support, which is costly. This reduction
in development cost and complexity further supports its academic appeal.
Therefore, the research object of this paper is the first category of TBIS.
To enhance the accuracy of programming-based TBIS, the primary research
focus is directed towards optimizing structural modeling. We drew inspi-
ration from the enhancements achieved by researchers in refining the track
slab model and embarked on an effort to enhance the bridge model. Many
high-speed railway bridges are designed with simply supported box girder
bridges, with dimensions more closely resembling plate structures than beam
structures. Furthermore, these bridges exhibit intricate mechanical responses
that cannot be replicated using beam elements alone. Consequently, in the
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pursuit of enhanced accuracy and the ensurance of reliability in train running
safety analysis, this paper tries to substitute the beam model with a plate
model, coupled with the train, in the development of TBIS.

Finite element method (FEM) [22] and its extensions, implemented in
various commercial software, are the predominant approaches for modeling
of plate structures [23]. However, FEM requires the construction of complex
mesh to discretize and solve partial differential equations. Consequently, re-
searchers must focus on mesh quality to achieve accurate results, and the
cost of generating high-quality mesh is much higher than the computational
cost [24]. While meshless methods has no mesh limitation, they do not re-
quire an explicitly defined connectivity between nodes for the definition of the
shape functions. Moreover, the approximation and interpolation functions of
meshless methods are usually high-order continuous, without the distortion
effect of the mesh, ensuring the global smoothness of stress and making it
easy to handle large deformation problems [25], dynamic analysis [26], acous-
tic analysis [27], etc. In addition to the classical methods like moving least
squares method [28–30], smoothed particle hydrodynamics method [31, 32],
reproducing kernel particle method [33, 34], general finite difference method
[35, 36], point interpolation method [37], etc., several new meshless meth-
ods have emerged, building upon these classical approaches. Radial basis
functions (RBFs) have played a crucial role in the advancement of meshless
methods. RBFs can be either compactly supported or globally gained, and
their introduction has enhanced the performance of many classical methods.
For example, in order to prevent the occurrence of matrix singularity issues
in point interpolation method, RBFs have been introduced to guarantee the
compatibility of the approximate function, which is called radial point in-
terpolation method [38, 39]; Wei [40–43] introduced RBFs into reproducing
kernel particle method and successfully used this method to analyze the me-
chanical behavior of a variety of structures and materials. These examples
illustrate the advantages of meshless methods and demonstrate their feasi-
bility for modeling bridge plates.

In this paper, we propose a computational framework based on RPIM
and FSDT. The framework improves the bridge model and helps to improve
the accuracy of the TBIS. Furthermore, the introduction of this framework
opens up opportunities for creating more intricate bridge models utilizing
multiple plates, and multiple plate structures hopefully yield more accurate
simulation results. Meanwhile, the utilization of FSDT in conjunction with
RPIM [44–46], as employed in this paper, enjoys broad recognition within
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the realm of computational mechanics for plates and shells, but it is the first
attempt in the field of TBIS. The work path of this paper is shown as Fig.
1.

FSDT

RPIM

Modeling approach Plate model

Train

Displacement

field

Numerical

discretization

Wheel-rail 

interaction
Multi-body 

dynamics

TBIS (Plate model)

Rail 

irregularity

Response of 

bridge

Response of 

Train

TBIS (Beam model)

Beam model

FEM

Comparison 

and analysis

Figure 1: The work path of this paper.

2. Vertical TBIS

Vertical TBIS primarily concentrates on the vertical structural response.
Despite its reduced degrees of freedom, this system proves conducive to val-
idating novel approaches, including stochastic analyses[47]. It is also suit-
able for scrutinizing factors significantly affecting vertical structural response,
such as structural concrete creep [48]. In this paper, we opt to employ verti-
cal TBIS for the validation of our proposed computational framework, with
the intention of later extending its applicability to spatial TBIS in future
research. Moreover, both vertical and spatial TBIS can be established by
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the principle of total potential energy with stationary value in elastic system
dynamics proposed by Zeng [49], so only derivation results are given in this
paper. In addition, the modified vertical TBIS proposed in this paper is
shown in Fig. 2, and the variables in the figure are explained by Tab. 1.

cz

cfcm cJ

sk sc

pk pc

Rigid ground

Simply supported bridge

(plate model)

Rail irregularity

cL

tm tJ

wm

tL

tz

tf

Figure 2: The proposed vertical train-bridge interaction system.

Based on the vertical TBIS presented in Ref. [16], the wheel and rail
exhibit a close-fitting relationship expressed by the following equation:

zwi = zbi + zri (1)

where z represents the vertical displacement, and the subscript w denotes
the wheel, b denotes the bridge, r denotes the vertical rail irregularity, and i
denotes the i−th wheel. Eq. (1) indicates that the vertical displacement zwi

of the i−th wheel is the sum of the vertical displacement zbi of the bridge
and the vertical rail irregularity zri at its location.

Due to the relationship between the wheel and rail, a vehicle contains 6
DOFs, i.e.

U v =
[
zc ϕc zt1 ϕt1 zt2 ϕt2

]
, (2)

The mass matrix corresponding to the vector of DOF is denoted as follows.

M v =


mc 0 0 0 0 0
0 Jc 0 0 0 0
0 0 mt1 0 0 0
0 0 0 Jt1 0 0
0 0 0 0 mt2 0
0 0 0 0 0 Jt2

 , (3)
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Table 1: Explanation of variables in Fig. 2.

Variable Explanation

zc Vertical displacement of carbody
ϕc Rotational displacement of carbody
mc Mass of carbody
Jc Mass moment of inertia of carbody
zt Vertical displacement of bogie
ϕt Rotational displacement of bogie
mt Mass of bogie
Jt Mass moment of inertia of bogie
mw Mass of wheel
ks Spring stiffness of the second suspension
cs Damping coefficient of the second suspension
kp Spring stiffness of the primary suspension
cp Damping coefficient of the primary suspension
Lc Half of longitudinal distance between the centers of front and rear bogies
Lt Half of bogie axle base

Meanwhile, in Fig. 2, the suspensions are modeled as springs and damp-
ing elements. Thus, the stiffness matrix [50] of the car can be written as

Kv =


2ks 0 −ks 0 −ks 0
0 2ksL

2
c ksLc 0 −ksLc 0

−ks ksLc 2kp + ks 0 0 0
0 0 0 2kpL

2
t 0 0

−ks −ksLc 0 0 2kp + ks 0
0 0 0 0 0 2kpL

2
t

 , (4)

The damping matrix Cv has the same form as Kv, except that ks and kp are
replaced by cs and cp.

A train often consists of multiple vehicles. The stiffness matrix Kvv of
the train can be written as

Kvv = diag
[
Kv1 Kv2 · · · KvN

]
(5)

where N represents the train contains N vehicles; Kv1 andKvN are normally
motor cars, and Kv2 ∼ KvN−1 are trailer cars. Similarly, M vv and Cvv can
be obtained in the same form.

The TBIS in this study consists of two components, train and bridge.
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Therefore, the dynamic equation of the vertical TBIS can be written as[
M vv

Mbb

]{
üvv

übb

}
+

[
Cvv Cvb

Cbv Cbb

]{
u̇vv

u̇bb

}
+

[
Kvv Kvb

Kbv Kbb

]{
uvv

ubb

}
=

{
F vv

F bb

}
,

(6)
where the matrices associated with the bridge, such as Mbb, Kbb, Kvb, etc.,
are obtained after determining the mechanical model of the bridge.

3. Plate mechanics

In computational plate mechanics, different theories exist to describe the
mechanical behavior of thin [51], medium-thick, or thcik plate [52] structures.
These theories include Kirchhoff-Love theory [53, 54], Reissner-Mindlin the-
ory (FSDT [55–57]), and several higher-order shear deformation theories. In
this study, FSDT is employed to describe the displacement field of the plate.

The employment of FSDT is based on the following primary considera-
tions:

(1) In comparison to Kirchhoff-Love theory, the displacement field in Reissner-
Mindlin theory is independently interpolated at displacement and ro-
tating angle, respectively, which holds significant importance. This
arises from the fact that, following the discretization by the meshless
method, the nodal displacement vectors in the Kirchhoff-Love theory
do not incorporate the rotating angle (as shown in Eq.(7)), rendering
it unsuitable for assembling box girder structures with multiple plates
in subsequent studies.

uK =


u
v
w
(Kirchhoff-Love) ,uR =


u
v
w
θx
θy

(Reissner-Mindlin) (7)

(2) The higher-order shear theories have a larger number of degrees of
freedom compared to FSDT, leading to an increase in computational
requirements. Given that the thickness of the bridge plate is thick, the
applications of higher-order shear theories do not yield substantial ben-
efits in terms of model accuracy; instead, it diminishes computational
efficiency.
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To summarize the belongings, the employment of FSDT is crucial in this
study and its follow-up.

3.1. First-order shear deformation theory

Establishing the plate model as shown in Fig. 3, the displacement field
based on FSDT can be defined as

u = u0 + zθx (8)

v = v0 + zθy (9)

w = w0 (10)

where u, v, and w represent the displacements in the x, y, and z directions,
respectively; the subscript 0 denotes the mid-plane of the plate; θx and θy
represent the rotations of a transverse normal about positive y and negative
x axes. Therefore, u0, v0, w0, θx, and θy are the basic unknowns of the
displacement field.

b

a

z

x

y

h

Figure 3: The geometry of the plate model.

The geometric equations of the plate can be listed as
εx
εy
γxy

 = ε0 + zκ,

{
γyz
γxz

}
= γ0, (11)
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ε0 =


∂u0

∂x

∂v0
∂y

∂u0

∂y
+ ∂v0

∂x

 , κ =


∂θx
∂x

∂θy
∂y

∂θx
∂y

+ ∂θy
∂x

 , γ0 =

θy +
∂w0

∂y

θx +
∂w0

∂x

. (12)

Meanwhile, the constitutive equations can be written as
σx

σy

σxy

σyz

σxz

 =


Q11 Q12 0 0 0
Q12 Q11 0 0 0
0 0 Q44 0 0
0
0

0
0

0
0

Q44

0
0

Q44

×


εx
εy
γxy
γyz
γxz

, (13)

assuming that the bridge plate behaves isotropically, we have

Q11 =
E

1− v2
, Q12 =

vE

1− v2
, Q44 =

E

2(1 + v)
, (14)

where E is Young’s modulus and v is Poisson’s ratio.
According to Eqs. 12 and 13, the relationship between in-plane force P

and strain ϵ can be obtained as

P = Sϵ (15)

where S can be given by

S =

A B̄ 0
B̄ D 0
0 0 As

, (16)

with

{
Aij Bij Dij

}
=

∫ −h/2

h/2

(
1, z, z2

)
Qijdz

As
ij = K

∫ −h/2

h/2

Qijdz (17)

and the transverse shear correction coefficient K = 5/6.
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3.2. Radial point interpolation method

Compared with the meshless methods where penalty functions are used
to impose boundary conditions, the shape function of radial point interpola-
tion method [38] has the property of Kronecker δ function, which can easily
impose the essential boundary. At the same time, the coupled polynomial
and radial basis point interpolation method constructs a shape function that
preserves the linear regenerative characteristics of the polynomial basis point
interpolation method. It also possesses the compatibility advantage of the
radial basis point interpolation method, allowing for automatic adaptation
to an arbitrary number of supporting nodes, typically resulting in high ap-
proximation accuracy. Therefore, this study employs RPIM as a numerical
discretization tool.

The approximation displacement fiedl function uh(x) of RPIM can be
written as

u (x) ≈ uh (x) =
m∑
t=1

pt (x) at +
NP∑
s=1

Rs (x) bs = pT (x)a+RT (x) b, (18)

where p(x) is the polynomial basis functions and R(x) is the radial basis
functions. For the plate structures, the complete quadratic basis functions
are

p (x) =
[
1 x y x2 xy y2

]T
(19)

And the radial basis functions R(x) are defined as

R (x) =
[
R1 (x) , R2 (x) , · · · , RNP (x)

]T
(20)

where the number of the terms NP denotes the number of the supporting
node contained in the supporting domain ΩS with the coordinate x as the
center. The supporting domain encompasses the supporting nodes, as illus-
trated in Fig. 4, with all the black supporting nodes contained within the
blue box. It then interpolates to generate information about the compu-
tational node x through the shape function. The extent of the supporting
domain is determined by the scale influence factor χ, and achieving a rea-
sonable range for the supporting domain is crucial to produce results with
relatively high accuracy.

The value of the radial basis function depends only on the distance func-
tion r, and in this paper, the multi-quadratic radial basis function is em-
ployed, i.e.

Rs (x) =
[
r2 +

(
αh)2

]β
, (21)
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Supporting node

Computational node x

Supporting domain

Figure 4: Supporting domain and supporting nodes of the meshless method.

where r =
√

(x− xs)2 + (y − ys)2 ; h is the average node spacing; α and β are
the shape coefficients, and they are set to 1 and 1.03 respectively according
to Ref. [39].

On the supporting domain ΩS of the computing node x, the functional
J1 and J2 is constructed based on the set of the scattered supporting nodes{
xI}NP

I=1 (∀xI ∈ ΩS) .

J1 =
NP∑
I=1

[
P T

I (x)a+RT
I (x) b− ûI

]
, (22)

J2 =
NP∑
I=1

pt (xI) bI , t = 1, 2, · · · , 6. (23)

Let J1 = 0, J2 = 0, Eq. (24) can be obtained.[
A P
P T 0

] [
b
a

]
=

[
û
0

]
, (24)

where P and A can be written as

P =


p1 (x1) p2 (x1) · · · p6 (x1)
p1 (x2) p2 (x2) · · · p6 (x2)

...
...

. . .
...

p1 (xNP ) p2 (xNP ) · · · p6 (xNP )

 (25)
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A =


R1 (x1) R2 (x1) · · · RNP (x1)
R1 (x2) R2 (x2) · · · RNP (x2)

...
...

. . .
...

R1 (xNP ) R2 (xNP ) · · · RNP (xNP )

 (26)

By solving Eq. (24), we have

a =
(
P TA−1P

)−1
P TA−1︸ ︷︷ ︸

Ga

û = Gaû, (27)

b =
[
A−1 −A−1P

(
P TA−1P )−1P TA−1

]︸ ︷︷ ︸
Gb

û = Gbû. (28)

Therefore, for the computing node x, its approximate displacement field
function can be rewritten as

uh (x) = pT (x)a+RT (x) b =
[
pT (x)Ga +RT (x)Gb

]
û

=
NP∑
I=1

ΦI (x) ûI = Φ (x) û, (29)

and the shape function Φ (x) is defined as

Φ (x) = pT (x)Ga +RT (x)Gb. (30)

The equations for calculating the partial derivative of the shape function
can be correspondingly given by{

Φ,i (x) = pT
,i (x)Ga +RT

,i (x)Gb

Φ,ij (x) = pT
,ij (x)Ga +RT

,ij(x)Gb

(31)

where {
RT

,i = RT
,rr,i

RT
,ij = RT

,rrr,ir,j +RT
,rr,ij

(32)

4. Vertical TBIS based on the plate model

4.1. Bridge mechanical model built by meshless method

First, the mechanical model of the bridge is constructed using the ap-
proaches described in 3.1 and 3.2, and the stiffness matrix Kb, mass matrix
Mb, and damping matrix Cb of the bridge can be calculated.
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The approximate displacement field established by RPIM can be ex-
pressed as

û0 =


u0

v0
w0

θx
θy

 =
NP∑
I=1

ΦI


u0I

v0I
w0I

θxI
θyI

 = Φû (33)

Therefore, we have

ε =


ε0
κ
γ0

 =


BI

BII

BIII

 û = Bû (34)

where BI, BII, and BIII are the derivative matrix of the shape function,
which can be written as

BI =
[
B1

I B2
I · · · BI

I · · · BNP
I

]
, BI

I =

ΦI,x 0 0 0 0
0 ΦI,y 0 0 0

ΦI,y ΦI,x 0 0 0

 (35)

BII =
[
B1

II B2
II · · · BI

II · · · BNP
II

]
, BI

II =

0 0 0 ΦI,x 0
0 0 0 0 ΦI,y

0 0 0 ΦI,y ΦI,x


(36)

BIII =
[
B1

III B2
III · · · BI

III · · · BNP
III

]
, BI

III =

[
0 0 ΦI,y 0 ΦI

0 0 ΦI,x ΦI 0

]
(37)

where ΦI,x and ΦI,y denote that ΦI takes first-order partial derivatives with
respect to x and y, respectively.

According to Ref. [58], we define Kb =
∫
Ω
BTSBdΩ, then we have

Kb =

∫
Ω

BTSBdΩ =

∫
Ω


BI

BII

BIII


T A B̄ 0

B̄ D 0
0 0 As


BI

BII

BIII

 dΩ

=

∫
Ω

BT
I ABI +BT

IIB̄BI +BT
I B̄BII (38)

+BT
IIDBII +BT

IIIAsBIII dΩ (39)
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Defining Mb =
∫
Ω
NT

ΦρNΦdΩ, where NΦ is the shape function matrix,
which can be expressed as

NΦ =
[
NΦ1 NΦ2 · · · NΦI · · · NΦNP

]
(40)

where

NΦI =


ΦI 0 0 0 0
0 ΦI 0 0 0
0 0 ΦI 0 0
0 0 0 ΦI 0
0 0 0 0 ΦI

 (41)

and

ρ =


I0 0 0 I1 0
0 I0 0 0 I1
0 0 I0 0 0
I1
0

0
I1

0
0

I2
0

0
I2

 (42)

where I0, I1, and I2 denote the normal, coupled normal-rotary and rotary
inertial coefficients, respectively, and they can be given by

(I0, I1, I2) =

∫ h/2

−h/2

ρ(z)
(
1, z, z2

)
dz (43)

For the damping matrix Cb, we use Rayleigh damping, i.e.

Cb = arMb + brKb (44)

with

ar =
2ζbω1ω2

ω1 + ω2

(45)

br =
2ζb

ω1 + ω2

where ω1 and ω2 are the first two orders of natural frequencies of the bridge,
and ζb denotes the bridge damping ratio.

15

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4.2. The block matrices and vectors of the TBIS

In this subsection, the bridge matrices Kbb, Mbb, and Cbb, as well as
the train-bridge coupling matrices Kvb, Kbv, Cvb, and Cbv, are calculated
using the principle of total potential energy with a stationary value in elastic
system dynamics, as described in the Ref. [17, 49]. The load vectors F vv,
F vv, and F bb are also determined using the same principle.

Kbb contains two components: the stiffness matrix for all spans of the
bridge, and the stiffness of the primary suspensions bound to the bridge, i.e.

Kbb = diag
[
Kb1 Kb2 · · · KbM

]
+Nbl

TkbNbl +Nbr
TkbNbr (46)

where the subscript M indicates that the bridge has a total of M spans. The
matrix kb consists of the spring stiffness matrices of the primary suspensions,
which are connected to the bridge stiffness matrix through the time-varying
shape function matrix Nb. The subscripts l and r denote the left and right
wheels of the wheelset, respectively. The expression for kb is given by

kb = diag
[
kb1 kb2 · · · kbJ

]
(47)

where the subscript J denotes the left (right) wheel of the J-th wheelset,
then kbi can be written as

kbi = diag
[
0 0 kp 0 0

]
(48)

Since wheelsets are constantly moving along the rail, the shape function
matrix Nb also varies with time. Specifically, for Nbl, it can be expressed

16
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as

Nbl =



...
...

...
...

...

· · ·

Φx,i 0 0 0 0
0 Φx,i 0 0 0
0 0 Φx,i 0 0
0 0 0 Φx,i 0
0 0 0 0 Φx,i

· · ·

Φx,j 0 0 0 0
0 Φx,j 0 0 0
0 0 Φx,j 0 0
0 0 0 Φx,j 0
0 0 0 0 Φx,j

· · ·

...
...

...
...

...

· · ·

Φy,k 0 0 0 0
0 Φy,k 0 0 0
0 0 Φy,k 0 0
0 0 0 Φy,k 0
0 0 0 0 Φy,k

...

Φy,l 0 0 0 0
0 Φy,l 0 0 0
0 0 Φy,l 0 0
0 0 0 Φy,l 0
0 0 0 0 Φy,l

...

...
...

...
...

...


(49)

where the subscripts x and y represent the wheelset serial numbers, while i,
j, k, and l represent the serial numbers of the supporting points within the
supporting domain centered on the wheel. For ease of understanding, the
shape function matrix at moment t, Nbl, can be determined by Fig. 5.

Next, the train-bridge coupling matrix Kvb can be given by

Kvb = kvbNbl + kvbNbr (50)

where Nbl, Nbr have been given before, and kvb can be written as

kvb =


kvb1

kvb2

. . .

kvbN

 (51)

where the subscript N indicates that there are N vehicles in the train, then
kvbi can be written as

kvbi =

 0 0
λvb 0
0 λvb

 (52)

with

λvb =

[
0 0 −kp 0 0 0 0 −kp 0 0
0 0 −kpLt 0 0 0 0 kpLt 0 0

]
(53)
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Figure 5: The shape function matrix Nbl at moment t.
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and transposing Kvb gives Kbv, i.e. Kbv = Kvb
T.

For the mass matrix Mbb, it has a similar form to Kbb, i.e.

Mbb = diag
[
Mb1 Mb2 · · · MbM

]
+Nbl

TmbNbl +Nbr
TmbNbr (54)

with
mb = diag

[
mb1 mb2 · · · mbJ

]
(55)

mbi = diag
[
0 0 mw 0 0

]
(56)

For the damping matrices Cbb, Cbv, and Cvb, we can obtain them by
replacing Kbb, Kbv, and Kvb with the corresponding damping coefficients.

For the load vectors F vv and F bb, we have

F vv = kvbuirrl + cvbvirrl + kvbuirrr + cvbvirrr (57)

F bb = −Nbl
Tcbuirrl −Nbl

Tkbvirrl −Nbl
Tmbairrl −Nbl

Tgirrl (58)

−Nbr
Tkbuirrr −Nbr

Tcbvirrr −Nbr
Tmbairrr −Nbr

Tgirrr

where cvb can be obtained by replacing kp in kvb with cp. Similarly, cb
can be obtained by replacing kp in kb with cp. uirr, virr, and airr are the
corresponding rail irregularity (i.e., vertical displacement), rail velocity, and
rail acceleration of the train at moment t. Taking uirrl as an example,it can
be written as

uirrl =
[
uirrl1 uirrl2 . . . uirrlJ

]T
(59)

with
uirrli =

[
0 0 uli 0 0

]
(60)

where uli denotes the rail irregularity corresponding to the left wheel of the i-
th wheel pair at moment t. virr and airr can be obtained by taking first-order
and second-order differences on uirr.

By now, we solve all block matrices in Eq. (6). Then we can get the
displacement, velocity, and acceleration of the train and bridge at each time
step by Newmark-β method.

5. Rail irregularity

To facilitate a comparison with the model discussed in Ref. [16], we
adopt German low-interference rail irregularity spectrum in Ref. [16] for
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this study, which applies to high-speed railway with speeds of 250 km/h and
above. The power spectral density of rail irregularity primarily encompasses
spectra from China, Germany, and United States. However, different rail
irregularity spectrums do not affect the conclusions of model comparisons.

The spectrum is used to generate the vertical rail irregularity [59], i.e.

SV =
Av

(Ω2 +Ω2
r ) (Ω

2 +Ω2
c )

(61)

where,for the case of low-interferenc, the parameters Ωr = 0.0206, Ωc =
0.8246, and Av = 4.032× 10−7. The trigonometric series method [60] is used
to generate the rail irregularity and the spatial frequencyΩ ∈ [0.05, 0.3] rad/m.

Using Eqs. (62) and (63) to modulate the rail irregularity on the bridge
[61], i.e.

zr(x) = Φ(x)ẑr(x) (62)

Φ(x) =


0.5 (1 +

√
c) + 0.5 (1−

√
c) sin

(
πL−1

0 (x+ 1.5L0)
)

−L0 ≤ x < 0√
c 0 ≤ x < L

0.5 (1 +
√
c) + 0.5 (1−

√
c) sin

(
πL−1

0 (−x− L− 0.5L0)
)

L ≤ x < L+ L0

1 other
(63)

where ẑr(x) is the original rail irregularity generated by trigonometric series
method, and Φ(x) is the modulation function. c is the modulation coeffi-
cient, L is the total length of the rail irregularity, and L0 is the modulation
transition length. In this study, c is taken as 0.7, L0 is taken as 20 m.

6. Numerical examples

Based on the previous sections, we construct a vertical TBIS consisting
of a 1-span 32-meter simply supported bridge and a train, as depicted in
Fig. (6). In TBIS programs, simply supported box girders are commonly
used for bridges, where different spans are not directly connected to each
other, but the response is transmitted through the rails and piers. To more
directly highlight the differences between the plate and beam models, we
have excluded the track and pier models, resulting in no interaction between
different span bridges. Therefore, a single-span bridge model is sufficient to
achieve the research objectives. Meanwhile, it allows for more detailed mesh
division, which is particularly beneficial when dealing with limited computing
power. The train consists of 4 cars arranged as motor car + trailer car +
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trailer car + motor car. German power spectrum is used to generate the
rail irregularity for a total length of 1000 m. To ensure the stability of the
initial condition, the train starts at 150 m at the first car distance from the
bridgehead, and the calculation is over after the first car passes the bridge
150 m. The train speed is 300 Km/h. We list the main train parameters in
Tab. 2.

Motor carTrailer car

BridgeRigid ground Rigid ground

Figure 6: The TBIS of the numerical example.

Table 2: The parameters of cars.

Parameter Unit Motor car/Trailer car

mc kg 4.4× 104 / 4.8× 104

Jc kg ·m2 2.7× 106 / 2.7× 106

mt kg 2.4× 103 / 3.2× 103

Jt kg ·m2 2.2× 103 / 7.2× 103

mw kg 1.2× 103

ks N/m 6× 105 / 8× 105

cs N · s/m 8× 104 / 9× 104

kp N/m 1.4× 106 / 2.08× 106

cp N · s/m 8× 104 / 6× 104

Lc m 8.6875/8.6875
Lt m 1.25/1.25

We consider two different approaches to model the bridge: One of them
is FEM using two-node four-DOF Euler beam element [16], the other is
the meshless method discussed in the previous section. The comparison
between the beam model and plate model presented in this paper is, in fact,
a comparison between the conventional TBIS and the proposed modified
TBIS. In previous studies of TBIS, including the work cited in Ref. [1,
16, 17, 62], utilized Euler beams rather than Timoshenko beams to model
simply supported girder bridges. In our work, the plate model-based TBIS
is an improvement upon the approach introduced in Ref. [16]. The earlier
literature simplified simply supported girder bridges to Euler beams, leading
us to employ Euler beams-Reissner-Mindlin plates for the comparison in our
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study. The material properties of the bridge are as follows: Young’s modulus
is 3.451 × 1010 N/m2, Poisson’s ratio is 0.2, density is 2.65 × 103 kg/m3,
damping ratio is 0.05, and bridge width is 13 m.

In the FEM modeling, the bridge is divided into 64 equidistant elements.
For the meshless method, a total of 27×65 nodes are distributed equidistantly
in both the x and y directions, and the discretization of the model by FEM
and RPIM can be seen in Fig. 7. In RPIM, particularly for two-dimensional
problems, the quadratic complete polynomial basis functions can be written
as

p (x) =
[
1 x y x2 xy y2

]T
. (64)

The scale influence factor χ, which is used to control the size of the supporting
domain, is typically chosen within the range of 2.0 to 3.0. As suggested by
Ref. [39, 63], in this paper, a specific value of 2.4 is adopted. At this setting,
the support domain can accommodate up to 25 supporting nodes. At the
end of this section, we will perform a sensitivity study on these parameters.
Finally, the TBIS can be established as Fig. 8. The time step length for
Newmark-β method is set to ∆t = 6×10−4 s, i.e., the train runs ∆L = 0.05 m
for each time step. Thus, a total of 8524 time steps are required to complete
the entire journey.

Finite element discretization Meshless discretization

Figure 7: Discretization of the model by FEM and RPIM.

As most real engineering bridges are box girders, accurate determina-
tion of plate thickness parameters based on current literature is challenging.

22

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Moreover, the width-thickness ratio Wt significantly affects the vibration of
the plate. To address this, we calculate the dynamic responses of the plate
model for different Wt values and compare them with the beam model. It is
important to note that the cross-sectional area and flexural stiffness of the
beam model vary with Wt. In both finite element and meshless methods,
during the numerical modeling of Reissner-Mindlin plate, displacement and
rotating angle are interpolated independently. This approach can introduce
a new challenge known as shear locking. In civil engineering, the ratio of
thickness to width, denoted as h/a, is commonly employed to classify plate
structures as either thin or thick. Generally, when h/a < 0.125, a plate is
considered thin; otherwise, it is categorized as thick or medium-thick. Shear
locking tends to increase significantly when h/a is substantially less than
0.125. However, the width-to-thickness ratios investigated in this study range
from 4 to 7, ensuring a minimum h/a of 0.143, which is greater than 0.125.
Consequently, this paper eliminates the necessity to address shear locking
concerns. In case shear locking does become an issue, reduced integration
can be employed as a mitigating measure, if necessary.
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Figure 8: The TBIS based on plate model established by RPIM.

Fig. 9 shows the curve of mid-span vertical displacement of the two
models changing with time when Wt = 5. The beam model is constructed in
the same way as we used in the Ref. [64], i.e., each span is modeled separately.
In this modeling approach, each span of bridge (the width is 13 m, length is
32 m, and height is 2.6 m) is simplified into Euler beam elements. In terms of
size, it seems to make more sense to simplify it to a plate. The beam model
curve is plotted at a width coordinate of −0.5 m. The width coordinates
ranging from 0 m to 13 m correspond to the changes in mid-span vertical
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displacement of the plate model along the width direction of the bridge. For
the plate model, it can be clearly observed that the vertical displacement
gradually increases in the width direction 0 m to 13 m. This occurs because,
in this specific example, the train is set to run on the side of the width
direction within the range of 0 ∼ 6.5 m. The specific position and wheel
trajectories are depicted in Fig. 8. By comparing the projected curves of the
beam model and plate model, it can be observed that the overall trends are
similar. The bridge begins to bend down as the train drives onto it, and it
starts to reset when the train begins to exit the bridge. Once all the cars
of the train have completely crossed the bridge, the bridge enters a state of
free vibration, and the amplitude gradually decreases due to the presence of
damping. Eventually, the bridge returns to its initial state. Although both
the beam model and plate model exhibit similar dynamic trends, substantial
disparities in their response values are evident. These discrepancies can be
attributed to differences in mechanical assumptions. Mechanically, beam and
plate structures, characterized by significantly smaller scales in two directions
and one direction, respectively, allow certain assumptions to be introduced in
the analysis. These assumptions aim to simplify beams and plates into one-
dimensional and two-dimensional problems, respectively, thereby facilitating
their analytical solutions. In the specific example considered, the dimensions
in the thickness direction are notably smaller than those in the width and
length directions. Consequently, certain mechanical assumptions applicable
to beam structures become invalid, leading to distorted calculation results.
This discrepancy represents a critical factor contributing to the observed
differences between the two models.

Fig. 10 displays the mid-span vertical displacements for different values
of Wt (4, 5, 6, 7) in the models. The plot utilizes three colors: the red curve
represents the beam model, while the blue and gray curves represent the
plate model. Specifically, the blue curve corresponds to the displacements
at the width coordinates of 0 m and 13 m, while the gray curve represents
the displacement between 0 m and 13 m. By observing the variation in the
longitudinal scale, it can be inferred that the mid-span vertical displacement
increases with an increase in Wt. However, it is noteworthy that the increase
is more pronounced in the beam model compared to the plate model. Fur-
thermore, the amplitude of free vibration is much larger in the beam model
than in the plate model. Consequently, larger values of Wt result in greater
discrepancies between the two models. It is important to acknowledge that
due to computational limitations, our simulation only considers a one-span
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Figure 9: Curves of vertical displacements at mid-span with time for the plate and beam
models (Wt = 5).
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bridge. In this context, utilizing a beam model for the simulation is not
rigorous, considering the dimensions of the bridge. On the other hand, the
proposed plate model in this paper provides more realistic data. For in-
stance, while the beam model can only represent the overall displacement
of a bridge section, the plate model offers variation in displacement along
the width direction. The blue curve depicts the maximum and minimum
vertical displacements of the section, while the gray curve envelopes the blue
curve, demonstrating the variation in vertical displacement from one side of
the bridge to the other.
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Figure 10: Mid-span vertical displacement of bridge built by plate model and beam model
with different width-thickness ratio Wt
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The trend analysis of the bridge span is performed and presented in Fig.
11. Upon examining the figure, it is evident that the analysis results of
the beam model only provide the overall acceleration variation at the mid-
span, whereas the plate model offers more detailed information. In the plate
model, a noticeable disparity in acceleration variation can be observed be-
tween the traffic side and the other side. Furthermore, on the traffic side,
the acceleration variation at the corresponding position of the wheel is more
pronounced, with peaks reaching 0.5 m/s2. In terms of the overall trend,
the mid-span acceleration variation increases with an increase in Wt for both
models. However, the peak acceleration in the beam model is smaller than
that in the plate model. Naturally, the two models exhibit similarity when
considering only peak acceleration values when W t is lager. However, when
examined in the frequency domain, variations may become evident. Further-
more, as Wt increases, the disparity in vertical displacement between the
two models also magnifies. Consequently, we believe that the plate model
continues to maintain its competitive edge. As a result, the plate model can
provide more comprehensive response information for targeted analysis and
design.

The analysis results of the carbody acceleration, specifically the vertical
acceleration of the first motor car, are presented in Fig. 12. It is evident that
the carbody acceleration exhibits a high degree of similarity between the two
models, with only slight variations observed during the bridge crossing phase
as Wt changes. This suggests that the bridge model has minimal influence on
the carbody acceleration, which is primarily governed by rail irregularities.
Since the same rail irregularities are employed in both models, the obtained
figures exhibit similar patterns.

To validate the applicability of the proposed meshless computational
framework, we conducted computations of the bridge (Wt = 5) response
at various train speeds, as depicted in Figs. 13 and 14. The figures reveal
a gradual increase in the fluctuation of the bridge response with the rise
in speed, consistent with analogous observations in the Ref. [16]. We plot
the mid-span displacements and acceleration under trains comprising 6, 8,
and 10 cars traversing the bridge in Figs. 15 and 16. It is evident that
the number peak responses increase with the number of cars, indicating the
adaptability of the proposed model to diverse train compositions. In Figs.
17 and 18, we reduce the discretization accuracy and plotted the mid-span
responses for the final span of the bridge with 2, 3, and 4 spans. With an
increase in the number of spans, the mid-span responses of the final span
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Figure 11: Mid-span vertical acceleration of bridge built by plate model and beam model
with different width-thickness ratio Wt (The figures on the left and center represent the
mid-span acceleration surface and scatter point figure of the plate model, respectively.
The figures on the right display the mid-span acceleration figure of the beam model)
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Figure 12: Vertical acceleration of the car body of the first motor car under plate model
and beam model with different width-thickness ratio Wt
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gradually rises. This is attributed to the increased number of spans, causing
the train to experience more bridge influence before reaching the last span,
thereby resulting in a slight elevation in the response of the last span bridge.
Hence, the computational framework presented in this paper demonstrates
commendable applicability.
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Figure 13: Mid-span vertical displacement of the bridge under different train speeds (Wt =
5).
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Figure 14: Mid-span vertical acceleration of the bridge under different train speeds (Wt =
5).

The stability and convergence of numerical simulation methods play cru-
cial roles in determining their widespread applicability to such problems.
Hence, we investigate the sensitivity of the structural response to discretiza-
tion density and the scale influence factor χ. In Tab. 3, the vertical displace-
ments of the bridge at coordinates (0, 16) during the initial passage of the
first motor car onto the bridge mid-span are provided. The results indicate
that as the density of meshless discretization nodes increases, the structural
response gradually converges and stabilizes regionally, ultimately reaching
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Figure 15: Mid-span vertical displacement of the bridge under different number of cars
(Wt = 5).
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Figure 16: Mid-span vertical acceleration of the bridge under different number of cars
(Wt = 5).
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Figure 17: Vertical displacement of the last span bridge with different number of spans
(Wt = 5).
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Figure 18: Vertical acceleration of the last span bridge with different number of spans
(Wt = 5).

a converged value around −1.31 × 10−4 m. The scale influence factor χ,
also affects the convergence speed. The fastest convergence is observed at
χ = 3. However, regardless of χ in the range of 2 ∼ 3, the structural re-
sponse successfully converges and stabilizes with a 27 × 65 meshless node
configuration. Consequently, the chosen value of χ = 2.4 in our numerical
examples is deemed appropriate in this study. This leads us to the conclu-
sion that the proposed computational framework exhibits reliable stability
and convergence.

Table 3: Sensitivity of stability and convergence for the structural vertical displacement
(×10−4 m) at coordinates (0,16) to the discretization density and scale influence factor χ
when the first motor car runs into mid-span of the bridge (Wt = 5).

χ 27× 65 14× 65 27× 33 14× 33 14× 17 8× 17

2.0 -1.130 -1.131 -1.130 -1.130 -1.128 -1.125
2.2 -1.130 -1.130 -1.127 -1.128 -1.117 -1.116
2.4 -1.131 -1.131 -1.128 -1.128 -1.115 -1.114
2.6 -1.131 -1.132 -1.129 -1.129 -1.118 -1.116
2.8 -1.130 -1.132 -1.129 -1.130 -1.126 -1.123
3.0 -1.130 -1.131 -1.130 -1.130 -1.129 -1.127

For the computational efficiency, an increase in model dimensionality
(from one-dimensional to two-dimensional) almost inevitably leads to a re-
duction in computational efficiency. We list the CPU computation times
for various models in Tab. 4. While computational efficiency experiences a
significant decrease, it is not an insurmountable challenge. In our previous
work, we successfully integrated various types of neural networks into the
train-bridge system computational framework to predict dynamic responses,
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and the related results have been published [65–67]. These artificial intel-
ligence agents effectively accelerate computations. Therefore, a similar ap-
proach could be considered to address the efficiency problem in our future
work.

Table 4: CPU computation time for different models with different number of nodes.

Model Node Time (s)

Beam model
26 1.101
51 3.046
101 5.285

Plate model
8× 17 116.750
14× 33 563.506
27× 65 3216.619

Until this juncture in the paper, we have verified the dynamic system of
the vehicle coupled with the plate structure. We now propose a more refined
system, as illustrated in Fig. 19, based on the findings of this study. Utiliz-
ing the FSDT-RPIM framework introduced in this paper, the top, web, and
bottom plates with varying thickness [68] of the box girder bridge can be
simulated and separately assembled, culminating in a higher level box girder
model. The TBIS validated in this paper can be readily employed to couple
the vehicle with the top plate. Simultaneously, the beam structure can be
employed to simulate the pier and assembled with the bottom slab. This
approach facilitates the construction of a higher level TBIS. The viability of
this concept can be substantiated in future research. However, it is essential
to note that the utilization of RPIM for discretizing the plate model in this
study does not preclude the use of other methods. This research has demon-
strated the applicability of meshless methods in the TBIS domain. Classical
meshless methods such as the moving least square method, reproducing ker-
nel particle method, and general finite difference method can be incorporated
into the computational framework proposed in this paper. They only differ
slightly in the imposition of boundary conditions and the wheel-plate cou-
pling relationship. Thus, researchers can choose different methods based on
specific needs when addressing this type of problem.

7. Conclusions

In this study, we propose a modified vertical train-bridge interaction sys-
tem. To model the bridge, we utilize radial point interpolation method, a
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Figure 19: A higher level TBIS with multiple plates.

meshless method, while incorporating first-order shear deformation theory to
represent the displacement field of the bridge. We provide the form of each
block matrix in the coupled dynamics equations of the presented system.
This is the first attempt to combine FSDT and RPIM to build a plate model
for bridge simulate within TBIS. Furthermore, we conduct an analysis of the
mid-span vertical displacement, vertical acceleration, and carbody accelera-
tion for both the beam model and the proposed plate model. A comparison
between the two models is performed, and the results yield the following
findings:

(1) The analysis of the mid-span vertical displacements reveals that they
exhibit an increasing trend as the width-thickness ratio increases. It
is noteworthy that for lower span numbers, the mid-span vertical dis-
placements obtained from the beam model are notably larger than those
obtained from the plate model. In contrast, the plate model offers the
advantage of providing more detailed information, such as the vertical
displacement at any specific point within the bridge surface.

(2) The mid-span vertical acceleration exhibits an upward trend as the
width-thickness ratio increases. Notably, the plate model surpasses
the beam model in terms of its ability to provide vertical acceleration
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information at every point along the entire bridge surface. Additionally,
it is observed that the vertical acceleration is greater on the traffic
side compared to the opposite side. Moreover, the vertical acceleration
amplitude is significantly larger at the section of the bridge surface
in contact with the wheels compared to other locations. In contrast,
the beam model can only offer the overall vertical acceleration of the
bridge, limiting its utility in targeted analysis and design of the bridge.

(3) The carbody acceleration exhibits minimal dependence on the bridge
model and width-thickness ratio. Instead, it is primarily influenced by
track irregularities.

As we mentioned in Section 1, this study establishes a theoretical foundation
and validates the feasibility of implementing TBIS with precision bridge mod-
eling within a unified platform. In engineering practice, a majority of simply
supported girder bridges employ box girder structures, however, certain ter-
rains necessitate the construction of large-span continuous girder bridges.
The proposed model faces challenges in simulating such large-span bridges.
As the span increases, the mechanical model becomes closer to a beam rather
a plate. However, traditional beam models are also inadequate for simulating
this bridge type effectively. We recommend employing a co-simulation ap-
proach, wherein programming software like MATLAB is utilized to simulate
the structure above the bridge, while commercial software such as ABAQUS,
ANSYS, and SIMPACK are employed for a refined modeling of the bridge.
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