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Elastomeric polyurethane (EPU) is characterised by distinctive mechanical properties, including high 

toughness, low glass transition temperature, and high impact resistance, that render it indispensable 

in diverse engineering applications from soft robotics to anti-collision devices. This study presents a 

thermo-mechanically coupled constitutive model for EPU, systematically incorporating hyperelasticity, 
viscoelasticity, thermal expansion, and self-heating effect in a thermodynamically consistent manner. 
Experimental data, obtained from previous studies, are then used for parameter identification and 

model validation, including iterative updates for temperature parameters considering the self-heating 

effect. Subsequently, the validated model is integrated into finite element codes, i.e., user subroutine to 

define a material’s mechanical behaviour ( UMAT ) based on the commercial finite element software ABAQUS , 
for the computation of three-dimensional stress-strain states, facilitating the analysis of the structural 
response to various mechanical loads and boundary conditions. The results obtained from simulations 
are compared with analytical solutions to confirm the precision of Finite Element Method (FEM) 
implementation. The self-heating effect is further analysed under different strain rates and temperatures. 
To validate the engineering significance of the FEM implementation, a plate with a hole structure is also 

simulated. In conclusion, this research provides a robust tool for engineers and researchers working 

with soft materials, enhancing their understanding and predictive capabilities, notably addressing the 

self-heating effect in thermo-mechanical behaviours. 

 

 

 

 

 

1 Introduction 

Soft materials exhibit unique mechanical properties, including
high toughness, low glass transition temperature, and high
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impact resistance [1–5] , making them indispensable in various
engineering applications ranging from soft robotics to anti-
collision devices. This work specifically focuses on elastomeric
polyurethane (EPU), a soft polymer widely used in fields such
as coatings, low-speed tyres, automobile carpets, and laminated
windproof glass. The earliest experimental study of EPU may
date back to the work of Petrović et al. [6] in 1991, and
subsequent studies [3–5,7–19] have delved into more systematic
experimental characterisation, including uniaxial tension, cyclic
e ( http://creativecommons.org/licenses/by/4.0/ ) https://doi.org/10.1016/j.giant.2024.100278 
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oading, relaxation, and creep tests. Within these studies, typical 
nherent characteristics of EPU such as deformation nonlinearity, 
hermal sensitivity, rate sensitivity, and hysteresis have been 

xperimentally detected. 
As a theoretical tool for predicting material properties, 

onstitutive models for soft materials have been a long-lasting 
ocus due to the ever-increasing usage. These models can be
oughly categorised into hyperelastic, viscoelastic, and thermo- 
iscoelastic constitutive models. Established hyperelastic models, 
uch as the Neo-Hookean model, Mooney-Rivlin model [20] , 
gden model [21] , and eight-chain model [22] , predominantly

dopt phenomenological methods, assuming the presence of a 
train energy function. As hyperelasticity alone is insufficient to 

apture the inherent time-dependent characteristics of soft 
aterials, viscoelastic models are further developed. This 

eld commonly employs three approaches: the decoupling 
ethod [23,24] , the integration method [9,18,25–27] , and the

eformation gradient decomposition method [2–4,7,8,28–34] . 
owever, while some models consider the thermo-mechanical 
ehaviours of soft materials [4,35–43] , the exploration of the
onstitutive models incorporating the self-heating effect remains 
nadequate. In a recent study, Felder et al [44] introduced
 thermodynamical constitutive model incorporating heat 
eneration to investigate semi-crystalline polymers, offering 
nspiration for the exploration of the thermal-mechanical 
ehaviours of soft materials. 

In accordance with the theoretical principles, the 
ncorporation of constitutive models into finite element 
odes (e.g., UMAT ), demands attention. Note that after the
nite element method (FEM) implementation, user-developed 

onstitutive model can be used for complex structures [45] . For
mplicit implementation, achieving rapid convergence hinges 
n the consistency of the stress tensor and tangent modulus
ensor. This underscores the necessity for a rigorous three- 
imensional generalisation of the constitutive models. The 

mplementation of viscoelastic constitutive models presents 
dditional challenges due to the consideration of evolution 

unction solutions to the internal variables in three-dimensional 
omains [28,46] . Raghunath et al. [47] successfully used 

he concept of representative directions [48] to generalise a 
ne-dimensional microstructure-based model into its three- 
imensional case to describe the non-linear and viscoelastic 
echanical behaviour of filled elastomers. The viscoelasticity 

s considered by using time-dependent parameters for the filler 
luster. By using the perturbation method, [46,49,50] , Collins 
t al. [51] numerically implemented a nonlinear viscoelastic 
ramework into finite element codes to predict the viscous 
issipation of a submerged elastomeric membrane. While some 
iscoelastic implementations have been explored, the complexity 
scalates when considering thermal behaviours such as heat 
eneration and heat convection. The complexity arises from 

he additional consideration of the heat conduction equations, 
ecessitating simultaneous solutions of the deformation field 

nd the temperature field. Sharma et al. [37] reported a three-
imensional finite element framework based on the coupled 

onlinear theory of thermo-electro-elasticity, investigating 
hermal effects on the electromechanical performance of non- 
 

omogeneously deforming dielectric elastomer actuators. The 
elf-heating effect is another challenge that lacks enough focus. 
valleRodas et al. [52] developed a thermo-visco-hyperelastic 

onstitutive model in accordance with the second law of 
hermodynamics for elastomeric materials. This model was 
ubsequently implemented into finite element codes to describe 
he time-dependent and self-heating behaviour during low-cycle 
atigue. The combined influence of temperature and strain rate 
n the mechanical behaviour is also investigated by Johnsen 

t al. [53] in simulating a low-density cross-linked polyurethane, 
ncorporating thermo-elastic, thermo-viscoplastic, and entropic 
train hardening parts. After the implementation, the volumetric 
train, local strain rate, and self-heating can be observed in the
ensile simulations. Felder et al. [44] implemented their thermo- 

echanically coupled constitutive model, incorporating heat 
eneration for semi-crystalline polymers, into the finite element 
ramework so that their developed complex crystallisation 

henomena can be validated in a structural example with 

ufficient accuracy. 
However, there remains a gap in the existing literature 

oncerning the systematic consideration of the temperature 
ependence and self-heating effect in soft materials especially 

n low-temperature cases. Therefore, this study endeavours to 

mploy a thorough methodology to investigate the thermo- 
echanical behaviour of EPU. Initially, the experimental 

erformance of EPU at different temperatures is presented and 

 thermo-mechanically coupled constitutive model reproducing 
hese material performances is introduced based on continuum 

echanics and thermodynamics. This model considers not 
nly the hyperelasticity and viscoelasticity inherent in EPU 

same practice as [ 5 ]), but further, thermo-mechanical coupling 
esponse, along with the incorporation of the self-heating 
ffect. After parameter identification and model validation, 
he constitutive model is implemented into a finite element 
ramework, allowing for a comprehensive exploration of the 
elf-heating effect in FEM simulations. Our objective is to 

urnish engineers and researchers working with soft materials 
ith a valuable tool for understanding and predicting thermo- 
echanical behaviour under diverse circumstances, with a 

articular emphasis on scenarios where self-heating is a key 
onsideration. 

The following is a breakdown of the structure of this study.
n addition to the current section, Section 2 summarises the 
xperimental setup and results from previous work. Subsequently, 
ection 3 specifies the derivation of the thermal-mechanically 
oupled constitutive model based on continuum mechanics and 

hermodynamics. Parameter identification and model validation 

re also included in this section. Further, Section 4 explains the
mplementation of the proposed constitutive model into the FEM 

ramework, and then a plate with a hole structure is used to
urther validate and demonstrate the structural performance of 
he FEM implementation. Finally, a summary of the results and 

onclusions is presented in Section 6 . 

 Experimental setup and results 
efore the derivation of the constitutive modelling, the thermo- 
echanical experimental setup and results for EPU from [ 5 ] 
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Fig. 1 

The dimension of the specimen used in experiments [ 5 ]. 

Table 1 

Experimental schedule [ 5 ]. 

Deformation mode Strain rate Relaxation time Prescribed strain Temperature 

253K 273K 293K 333K 

Loading-unloading uniaxial tensile test 0.001 /s – 200% – – –
0.01 /s – 200% – – –
0.1 /s – 100%, 150%, 200% 

Single-step stress relaxation 0.1 /s 6000 s 200% 

Multi-step stress relaxation 0.1 /s 3600 s 25%, 50%,...,200% – – –
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are summarised briefly for completeness and clarity of this
work. 

2.1 Experimental setup 

Dumbbell-shaped specimen is used in all of the experiments, with
the geometry shown in Figure 1 . All experiments are conducted
according to the experimental schedule listed in Table 1 using
an Instron 5567 universal test machine equipped with a bespoke
temperature chamber. The experimental data is presented in the
form of nominal stress and nominal strain. More experimental
details can be seen in [ 5 ]. 

2.2 Experimental results 
The main experimental data, that will be used in the constitutive
modelling, is plotted in Figure 2 . The purpose of these experiments
is as follows: 

the single-step relaxation Figure 2 (a): to explore the temperature
influence on the hyperelastic entanglement network; 
the multi-step relaxation Figure 2 (b): to extract the equilibrium
path at referential temperature, i.e., 293K; 
the cyclic uniaxial tension: to investigate the rate-dependent
Figure 2 (c) and temperature-dependent Figure 2 (d) viscoelastic
mechanical behaviours. 

3 Thermo -mechanical- coupled constitutive modelling 

at finite strains 
One key step of the study is to incorporate a thermo-mechanically
coupled constitutive model, accounting for the self-heating
effect, into Finite Element Analysis for predicting the thermo-
mechanical response of the EPU material and its applied
structures. This model is introduced briefly here. 

3.1 Kinematics 
As the basis of continuum mechanics, kinematic relations
are introduced first. In the context of soft materials, the
classic multiplicative decomposition divides the deformation
gradient F into isochoric part F̄ and volumetric part ˆ F [28] .
Furthermore, to facilitate a better understanding of the thermo-
mechanically coupled framework, a rheology model of the
isochoric deformation of our material is presented in Figure 3 .
As seen in this figure, the mechanical response is divided
into two parallel parts, i.e., the hyperelastic branch and the
viscoelastic branch. Note that these two branches share the
same deformation gradient F̄ as they are in parallel. Regarding
the deformation gradient F̄ of the viscoelastic branch, it is
decomposed multiplicatively into two parts: the elastic part of the
deformation gradient on the viscoelastic branch, Fe (represented
by the spring in the viscoelastic branch in Figure 3 ), and the
viscous part of the deformation gradient on the viscoelastic
branch, Fv (represented by the dashpot in the viscoelastic branch
in Figure 3 ). The decomposition relationship is F̄ = Fe Fv [4,51] .
Using the relationship between the right Cauchy-Green strain
tensor and the deformation gradient, we introduce Ce = FT 

e Fe and
Cv = FT 

v Fv , respectively. Note that the volumetric response, which
will be discussed later, is determined based on the volume change
of the body J = det F. Essential kinematics variables are declared in
Table 2 . For more details, refer to [ 5 ]. 

3.2 Stress derivation based on the Clausius-Duhem inequality 
Here, the existence of a Helmholtz free-energy function,
decomposed as 

� = �
M + �θ = �

EQ 

iso (C̄ ) + �
NEQ 

iso (C
e , θ ) + �vol (J) ︸ ︷︷ ︸ 

�
M 

+�θ (J, θ ) , 
(1)

is assumed. Note that in the above equation, “iso”, “vol”, “EQ”,
and “NEQ” denote the isochoric, volumetric, equilibrium, and
non-equilibrium parts, Ce = FT 

e Fe is the internal variable tensor
and θ is the absolute temperature, respectively. To derive the
constitutive model in a thermodynamic manner, the Clausius-
3 
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Fig. 2 

Experimental data summary [ 5 ]. (a) Nominal stress with time relationships of the single-step relaxation tests at the strain of 200%. (b) Nominal stress with nominal 
strain relationship of the multi-step relaxation test under 293K. (c) Nominal stress with nominal strain relationships of loading-unloading tests at 0.1 /s, 0.01 /s, and 
0.001 /s under 293K. (d) Nominal stress with nominal strain relationships of loading-unloading tests at 0.1 /s under 253K, 273K, 293K, and 333K. 

Fig. 3 

The rheological model of isochoric deformation for elastomeric polyurethane. The model is divided into two parts, namely, hyperelastic branch and viscoelastic 
branch. 

4 
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Table 2 

A summary of the kinematics variables. 

F ∂x 
∂X The deformation gradient 

d 

1 
2 

[
Ḟ F−1 + (Ḟ F−1 )T ] The rate of deformation tensor 

C FT F The right Cauchy-Green strain tensor 
Ċ 2 FT d F [28] The time rate of change of the right Cauchy-Green tensor 
I1 tr C The first invariant of C 

I2 1 
2 

[
(tr C )2 − tr (C2 )

]
The second invariant of C 

I3 det C The third invariant of C 

J det F The volume change of the body 
F̄ (J−1 / 3 ) F The volume-preserving deformation gradient 
ˆ F (J1 / 3 ) I The volume-changing deformation gradient 
C̄ (J−2 / 3 ) C The modified right Cauchy-Green strain tensor 
Ī1 tr ̄C The first invariant of C̄ 

Ī2 1 
2 

[
(tr ̄C )2 − tr (C̄2 )

]
The second invariant of C̄ 

Ī3 det ̄C The third invariant of C̄ 

Fe – The elastic part of the deformation gradient on the viscoelastic branch 
Fv – The viscous part of the deformation gradient on the viscoelastic branch 
Ce FT 

e Fe The right Cauchy-Green strain tensor of Fe 
Cv FT 

v Fv The right Cauchy-Green strain tensor of Fv 
Ie 
1 tr Ce The first invariant of Ce 

d v 
1 
2 

[
Ḟv F−1 

v + (Ḟv F−1 
v )T ] The viscous rate of deformation tensor 

Table 3 

A summary of the specific form of the constitutive framework at reference configuration. 

Energy functions Second Piola-Kirchhoff stresses 

� = �
EQ 

iso + �
NEQ 

iso + �vol + �θ ( Equation 1 ) 
S = Siso + Svol + Sθ ( Equation 5 ), where 
Siso = J−2 / 3 

P : (S̄
EQ + S̄

NEQ 
) 

�
EQ 

iso (C̄ ) =
[ 

θ
θ0 

+ g 
EQ 
] [ 

Ī1 + bĪ4 1 + c
√ 

Ī2 
] 

S̄
EQ =

[ 
θ
θ0 

+ g 
EQ 
] [ [

2 a + 8 b(Ī1 )3 ]I + c
[

Ī1 I − C̄ 

]
(Ī2 )- 1 2 

] 
�

NEQ 

iso (Ce , θ ) =
[ 

θ
θ0 

+ g 
NEQ 

] [ ∑ 2 
j=1 c j 

(
[ Ie 

1 ] j − 3
)] 

S̄
NEQ =

[ 
θ
θ0 

+ g 
NEQ 

] [ ∑ 2 
j=1 2 c j C−v 

j 

] 
�vol (J) = K 

2 (J − 1)2 Svol = Jpvol C−1 , where pvol = K (J − 1) 

�θ (J, θ ) = c
[ 
θ − θ0 − θ ln ( θ

θ0 
)
] 

− 3 α(θ − θ0 )
∂�vol 

∂J Sθ = Jpθ C−1 , where pθ = −3 αK (θ − θ0 ) 

Evolution functions The nonlinear relaxation time 

Ċv 
j = 1 

τ j 

[ 
C̄ − Cv 

j 

] 
τ1 = τ11 + τ12 exp (−k13 ‖d̄ ‖ )(Ī1 − 3) 
τ2 = τ21 + τ22 exp (−k23 ‖d̄ ‖ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Duhem inequality reads 

S : 1 
2 Ċ − �̇ − ηθ̇ − 1 

θ
Q · Grad θ ≥ 0 , (2)

which is the expression of the second law of thermodynamics
in continuum mechanics. In Equation 2 , S is the second Piola-
Kirchhoff stress tensor, η is the entropy density, Q is the heat flux,
and Grad θ is the temperature gradient, respectively. 

Note that the definition of Ce shown in Table 2 gives the
following relationship as 

Ċe = F-T 
v 

˙̄CF−1 
v − 2 Ce d v . (3)

Then, as Ċ and θ̇ are arbitrary, following the argumentation by
Coleman and Gurtin [54] ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

S = 2 ∂�
EQ 
iso 

∂C̄ 
: ∂C̄ 

∂C + 2 F−1 
v 

∂�
NEQ 
iso 

∂Ce F-T 
v : ∂C̄ 

∂C + J ∂�vol 
∂J C−1 + J ∂�θ

∂J C−1 (4a)

η = −
(

∂�θ

∂θ
+ ∂�

NEQ 
iso 
∂θ

)
(4b)

2 Ce ∂�
NEQ 
iso 

∂Ce : d v ≥ 0 (4c) 

− 1 
θ
Q · Grad θ ≥ 0 (4d)

where Equation 4 c and Equation 4 d satisfied
Equation 2 sufficiently. Analogous to the decomposition of
�, 

S = Siso + Svol + Sθ , (5)

where isochoric stress 

Siso = J−2 / 3 
P : (S̄

EQ + S̄
NEQ 

) , (6)

volumetric stress 

Svol = J pvol C−1 , (7)

and thermal stress 

Sθ = J pθC−1 , (8)

respectively. Note that 

P = I − 1 

3 

C−1 
� C (9)

is the projection tensor, 

S̄
EQ = 2

∂�
EQ 

iso 

∂C̄ 

and S̄
NEQ = 2 F−1 

v 
∂�

NEQ 

iso 

∂Ce 
F-T 

v (10)

are the equilibrium and non-equilibrium parts of the fictitious
second Piola-Kirchhoff stress tensor, and 

pvol = ∂�vol 

∂J 
and pθ = ∂�θ

∂J 
(11)
5 



Giant, 18, 2024, 100278 

Full-length
 article

 

a
T
o  

t

3
V  

e  

t
t
t
f

N
v  

s  

b

3
C
a  

a
t  

a

w

i  

b  

a

F  

a

w

3
F
f  

•

 

 

 

•
 

 

•

•

3
T
o
m

3

d

r
t  

i
i
a
b
i

 

t
i
s

6

re the different parts of hydrostatic pressure, respectively. 
herefore, through this decomposition, different versions of �
nly influence S̄

EQ 
, S̄

NEQ 
, pvol , and pθ , which are the crucial tensors

hat need to be derived. 

.3 Heat generation 

iscoelasticity is inevitably accompanied by a loss of the potential
nergy causing heat generation due to dissipation. It is important
o underscore that the dissipation energy density concerning 
he reference configuration, which contributes to the strain-, 
ime-, and stress-dependent heat generation in our constitutive 
ramework (refer to Equation 4 ), is specifically derived as 

R = 2 Ce ∂�
NEQ 
iso 

∂Ce : d v = 1 
2 ̄C ̄S

NEQ 
: [ Cv ]−1 Ċv ≥ 0 . (12) 

ote that the expression [ Cv ]−1 denotes the inverse of internal 
ariable Cv . It should be emphasised that a similar expression is
een in [44] through the operation of the local form of the energy
alance. 

.4 Evolution function for the internal variables 
onsidering the relationship between the rate of volume change 
nd the rate of deformation tensor, i.e. J̇ = Jtr d [28] and the
ssumed almost incompressibility of Ce , we have tr d v ≈0. Then, 
o satisfy the non-negativity of Equation 4 c, it is reasonable to
ssume that 

d v = 2 

η

∂�
NEQ 

iso 

∂Ie 
1 

DEV (Ce ) (13) 

here 

DEV (•) = (•) − 1 

3 

tr (•) I (14) 

s introduced to obtain the deviatoric part of (•) . By using the pull-
ack operation, the evolution function of Cv can then be expressed
s 

Ċv = 4 

η

∂�
NEQ 

iso 

∂Ie 
1 

[
C − 1 

3 

[ 
C :

[
Cv ]−1 

] 
Cv 

]
. (15) 

urther, if the low-rate case is considered, the linear form of the
bove evolution function is reasonably given as 

Ċv = 1 

τ

[ 
C − Cv 

] 
, (16) 

here τ is the relaxation time. 

.5 Specific form 

or convenience, the specific form of the proposed constitutive 
ramework at the reference configuration is summarised in Table 3 .

Explanations to Table 3 are given as follows: 

The hyperelastic part �
EQ 

iso : a modified phenomenological model 
originally developed in [55] is used to describe the isochoric
hyperelastic deformation. a , b, and c are hyperelastic parameters. 
The introduction of the second invariant is necessary to describe
highly nonlinear hyperelastic behaviour and make the model 
more expedient [56–58] . The temperature influence on the 
hyperelastic stress is considered by using a double-exponential 
amplification factor as 

g 
EQ = − θ

θ0 
+ n

EQ 

1 exp (n
EQ 

2 θ ) + n
EQ 

3 exp (n
EQ 

4 θ ) , (17) 

where θ0 , n
EQ 

1 , n
EQ 

2 , n
EQ 

3 , and n
EQ 

4 are reference temperature (293K
in this study) and the temperature parameters, respectively. 
 

The viscoelastic part �
NEQ 

iso : this is a modified version of the Neo-
Hookean model to describe the viscoelastic behaviour. c j are 
the viscoelastic parameters. The temperature influence on the 
viscoelastic stress is assumed to be similar to [4] as 

g 
NEQ = − θ

θ0 
+ 1 

2 

[ tanh ( θ − Ts ) + 1] 
(

θ

θ

)n
NEQ 
1 

+n
NEQ 

3 

2 

[ − tanh ( θ − Ts ) + 1] 

⎡ 

⎣ 

(
θ

θ

)n
NEQ 
2 

− 1

⎤ 

⎦ exp 

(
n

NEQ 

4 ‖ C ‖
)
, 

(18)

where n
NEQ 

1 , n
NEQ 

2 , n
NEQ 

3 , and n
NEQ 

4 are the temperature parameters 
and Ts = 281.95K. Here, ‖ • ‖ denotes the norm of the tensor •. 
The volumetric part �vol : a so-called penalty function is used 

to describe the volumetric deformation for mitigating the 
numerical difficulties and instabilities associated with enforcing 
material incompressibility in computational and finite element 
simulations [58] . K is the bulk modulus chosen as 2000MPa 
directly to promise almost incompressible behaviours. More 
available versions can be seen in [59–67] . 
The temperature part �θ : two terms contributed from the 
increased internal energy 

(
c[ θ − θ0 − θ ln ( θ

θ0 
)]
)

and thermal 

expansion 

(
−3 α(θ − θ0 )

∂�vol 
∂J 

)
are introduced to complete the 

general structure of the thermodynamic potential [4,28,37,47] . 
c and α are the specific heat capacity and the thermal expansion 

coefficient, respectively. 

.6 One-dimensional reduction 

his section aims to identify the constitutive parameters by the 
ne-dimensional degenerated form of the proposed constitutive 
odel. 

.6.1 Uniaxial tensile stress 
The deformation gradient and the right Cauchy-Green 

eformation tensor, in the uniaxial case, are specifically given as 

F =

⎡ 

⎢ ⎣ 

λ 0 0 

0 λ−1 / 2 0 

0 0 λ−1 / 2 

⎤ 

⎥ ⎦ 

and C =

⎡ 

⎢ ⎣ 

λ2 0 0 

0 λ−1 0 

0 0 λ−1 

⎤ 

⎥ ⎦ 

, (19) 

espectively, where λ is the axial elongation during uniaxial 
ension process. While the thermal stress ( Sθ ) is not yet considered
n the previous experiments, the nominal uniaxial tension stress, 
.e., P11 = F11 (S11 − pC−1 

11 ) is decomposed into hyperelastic part P
EQ 

11 

nd viscoelastic part P
NEQ 

11 . The following consideration should 

e mentioned in the uniaxial reduction situation: the almost 
ncompressibility is promised by using a scalar Lagrange multiplier 
p, which is determined by setting the lateral stress as zero, and
his operation describes the volume behaviour of soft material 
ndirectly [ 5 ]. Following the proposed constitutive model, the 
pecific expressions of nominal stresses are finally given as 

P
EQ 

11 =
[ 

θ
θ0 

+ g 
EQ 
] [ 

2 a + 8 b
[ 2 

λ
+ λ2 

]3 + c
[
1 + 2 λ3 

]- 1 2 

] [
λ − 1 

λ2 

]
(20) 

and P
NEQ 

11 =
[ 

θ
θ0 

+ g 
NEQ 

] [ ∑ 2 
j=1 2 c j 

(
λ

(λv 
1 , j )

2 − 1 
(λv 

2 , j )
2 λ2 

)] 
, (21) 
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Fig. 4 

Parameter identification for (a) hyperelastic part, (b) viscoelastic part, and (c) temperature part, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

respectively, where λv 
1 , j , λ

v 
2 , j , and λv 

3 , j are the eigenvalues of [ Cv 
j ]

1 / 2 ,
respectively. Note that under the strict incompressible situation
of internal variables, the above expressions can be simplified
to the same form as the expressions shown in [ 5,51 ]. More
discussion about the one-dimensional reduction of Cv is included
in Appendix: A . 

3.6.2 Parameter identification and model validation 

Material parameter identification is then performed. Based on
the codes written in MATLAB using the least squares method, the
optimum series of parameters is found to fit the experimental data.
The fitting results are seen in Figure 4 , as well as the corresponding
parameters listed in Table 4 . Explanations about how experimental
data are used for parameter identification are explained as follows.

1 © In the equilibrium part, the multi-step relaxation
experimental data (see Figure 2 (b)) is utilised to determine
the hyperelastic parameters, as shown in Figure 4 (a).
This experimental process involves stress decay as the
system approaches the equilibrium state, allowing the
extraction of the hyperelastic stress at every sub-relaxation
point. Taking the data under 293K as the reference, the
hyperelastic stresses under different temperatures are
amplified according to the data from the single-step
relaxation tests (see Figure 2 (a)). 

2 © In the non-equilibrium part, the data under different strain
rates (see Figure 2 (c)), i.e., 0.1/s, 0.01/s, and 0.001/s, are
used to identify the viscoelastic parameters while keeping
the hyperelastic stress constant, see Figure 4 (b). Inside
the algorithm, the Newton method is used to solve the
evolution functions of the internal variables in the one-
dimensional case. 

3 © In the temperature part, while keeping the hyperelastic and
viscoelastic parameters frozen, the temperature parameters
can be further identified by using the data under different
temperatures (see Figure 2 (d)), as illustrated in Figure 4 (c).
7 
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Table 4 

Constitutive model parameters. 

Hyperelastic parameter a [MPa] b [MPa] c [MPa] 
2.85e-1 1.50e-5 1.74e0 

Viscoelastic parameter c1 [MPa] τ11 [s] τ12 [s] k13 [s] c2 [MPa] τ21 [s] τ22 [s] k23 [s] 
4.00e0 2.26e-14 9.88e0 5.55e + 1 7.42e-1 1.30e1 2.54e3 3.01e3 

Temperature parameter n
EQ 

1 [-] n
EQ 

2 [-] n
EQ 

3 [-] n
EQ 

4 [-] n
NEQ 

1 [-] n
NEQ 

2 [-] n
NEQ 

3 [-] n
NEQ 

4 [-] 
1.15e8 -7.22e-2 7.33e-1 7.96e-4 2.62e0 8.20e-4 1.44e + 4 1.92e-1 

Fig. 5 

Model validation under (a) 253K , (b) 273K , (c) 293K , and (d) 333K , respectively. 
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t
c

4
I
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8

Here, we should note that the temperature parameters 
can not be identified simply without the consideration 

of temperature rise, i.e., the self-heating effect. While the 
actual temperature rise is currently unavailable, a local loop 

is needed for updating these parameters. 

Model validation is performed by comparing the analytical 
esults with the experimental data (has not been used in
arameter identification), see Figure 5 . As seen in these figures,
 

he experimental results are well captured by the proposed 

onstitutive model as a whole. 

 Finite element implementation 

n this section, a FEM framework is developed taking the 
forementioned constitutive model, employing the user-material 
ubroutine UMAT within the ABAQUS/Standard solver. It is 
mportant to note that for this coupling problem, the analysis 
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should be done within the subroutines of UMAT in combination
with UMATht for ABAQUS versions released after 2020, otherwise,
the subroutine HETVAL is necessitated [68] . 

4.1 Weak form of thermo-mechanical coupled constitutive 
equation 

The nonlinear thermo-mechanical coupling problem is solved
using an incremental-iterative strategy based on Newton-Raphson
approach as [37] 

Kuu 	u + Ku θ	θ = Ru , (22)

Kθu 	u + Kθθ	θ = Rθ , (23)

where Kuu , Ku θ , Kθu , Kθθ are the components of Jacobian
matrix, 	u is the displacement increment, 	θ is the temperature
increment, and Ru and Rθ are the corresponding increments
resulting from the displacement and temperature, respectively.
Note that Ku θ and Kθu , despite being relatively small in most cases,
are intentionally not omitted. Otherwise, the inaccuracy of the
Jacobian matrix could lead to convergence issues. 

4.1.1 Mechanical material laws 
The solution of the governing equations using FEM requires the

weak forms [37] . By considering the virtual displacement δu , the
weak form of energy balance integrating over the entire volume
in the reference state is expressed as [28] ∫ 

�0 

S :
1 

2 

δC dV −
∫ 

∂�0 

T̄ · δu dS −
∫ 

�

B · δu dV = 0 , (24)

where δC = 1 
2 

[
(FT Grad δu )T + FT Grad δu

]
, ̄T denotes the prescribed

first Piola-Kirchhoff traction, B is the reference body force, ∂�0 is
the surface of the continuum �0 at the referential configuration,
respectively. For the thermo-mechanical coupling problem, the
differential form of the second Piola-Kirchhoff stress tensor is 

d S (C , θ ) = C : 1 
2 d C + Td θ, (25)

where 

C = 4
∂�2 

∂ C ∂ C 

(26)

is the referential fourth-order elasticity tensor and 

T = 2
∂�2 

∂ C ∂ θ
(27)

is the referential second-order stress-temperature tensor,
respectively. These two quantities measure the changes in
stress which result from a change in strain and temperature,
respectively. According to the relationship between Cauchy stress
and second Piola-Kirchhoff stress, i.e., σ = JF−1 SF−T , as well as
Equation 25 , the rate-form constitutive law for Cauchy stress is
derived as 

σ̇ =
(

2σ � I + 1 

J 

[(
F � FT ) : C :

(
FT 

� F
)])

: d + 1 

J 
FTFT θ̇ . (28)

As per the requirements for UMAT , the above equation gives the
spatial Jaumann tangent moduli as 

∇ 
C 

= 2σ � I + 1 

J 

[(
F � FT ) : C :

(
FT 

� F
)]

(29)

and the spatial stress-temperature tensor as 

t = 1 

J 
FTFT . (30)
After the aforementioned derivation, the crucial aspects for the
FEM implementation regarding the mechanical material laws are
identified in the derivations of referential elasticity tensor C and
referential stress-temperature tensor T of a specific form for the
constitutive model (see Table 3 ). 

Referential elasticity tensor 
Following the characterisations of additive decomposition for

the energy function and the stress tensor, the referential elasticity
tensor is decomposed as 

C = Ciso + Cvol + C
θ . (31)

According to the specific form shown in Table 3 , the
components of the referential elasticity tensor C are derived as
follows. 

The isochoric part. 

Ciso = 2
∂Siso 

∂C 

= 2
∂
(
J−2 / 3 

P : S̄ 

)
∂C 

= P : C̄ : PT + 2 

3 

Tr 
(
J−2 / 3 S̄ 

)
˜ P − 2 

3 

(
C−1 

� Siso + Siso � C−1 
)
.

(32)

Note that 

Tr (•) = (•) : C , ˜ P = C−1 
� C−1 − 1 

3 

C−1 
� C−1 , 

and C−1 
� C−1 = − ∂C−1 

∂C 

, (33)

respectively. Furthermore, the fourth-order fictitious elasticity
tensor 

C̄ = C̄
EQ + C̄

NEQ 
, (34)

where 

C̄
EQ = 2 J−4 / 3 ∂S̄

EQ 

∂C̄ 

= 2 J−4 / 3 
[

θ

θ0 
+ g 

EQ 
](

24 b[Ī1 ]2 I � I + c[Ī2 ]- 1 2 [ I � I − I] 

− c 
2 

[Ī2 ]- 3 2 
[
Ī1 I − C̄ 

]
� (Ī1 I − C̄ )

)
(35)

and 

C̄
NEQ = 2 J−4 / 3 ∂S̄

NEQ 

∂C̄ = 2 J−4 / 3 
[ 

θ
θ0 

+ g 
NEQ 

] [∑ 2 
j=1 2 c j 

∂C−v 
j 

∂C̄ 

]
. (36)

The volumetric part. 

Cvol = 2
∂Svol 

∂C 

= (J pvol + J2 d pvol 

d J 
) C−1 

� C−1 − 2 J pvol C−1 
� C−1 .

(37)

The thermal part. 

C
θ = 2

∂Sθ

∂C 

= (J pθ + J2 d pθ

d J 
) C−1 

� C−1 − 2 J pθC−1 
� C−1 . (38)

Referential stress-temperature tensor 
Similarly, the referential stress-temperature tensor is

decomposed as 

T = Tiso + Tvol + Tθ . (39)

According to the specific form shown in Table 3 , the components
of the referential stress-temperature tensor T are derived as
follows. 
9 
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Table 5 

Thermal parameters. 

Parameters Value 

Thermal expansion coefficient ( α) 14 × 10−5 K−1 [12] 
Thermal conductivity ( k) 0.29 Wm−1 K−1 [69] 
Specific heat capacity (c) 0.42 × 103 J g−1 K−1 [12] 
Emissivity 0.95 [70] 
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The isochoric part. 

Tiso = ∂(J−2 / 3 
P :S̄ ) 

∂θ
= J−2 / 3 

P : T̄ , where T̄ = T̄
EQ + T̄

NEQ (40) 

and 

T̄
EQ = ∂S̄

EQ 

∂θ
, T̄

NEQ = ∂S̄
NEQ 

∂θ
. (41) 

The volumetric part. 

Tvol = ∂Svol 
∂θ

. (42) 

The thermal part. 

Tθ = ∂Sθ

∂θ
. (43) 

.1.2 Thermal material laws 
The classic internal energy conservation law integrating over 

he entire volume in the current state reads ∫ 
�

ρU̇ d v =
∫ 

∂�

qd s +
∫ 

�

rd v , (44) 

here ρ is the material density, U̇ is the power of internal thermal
nergy U , ∂� is the surface of the continuum � at the current
onfiguration, q = −q · n ( q is the heat flux vector and n is the
nit outward normal vector of the surface of �) is the heat flux

nto � per unit time, and r is the natural heat source inside � per
nit time, respectively. By using Gauss’s theorem and the Newton
ethod, the weak form of Equation 44 is expressed as 

1 

	t 

∫ 
V 

δθρ
∂	U 

∂θ
θdV + 1 

	t 

∫ 
V 

δθρ
∂	U 

∂∇θ
∇θdV 

+
∫ 

V 
(δ∇θ )

∂q 

∂θ
θdV +

∫ 
V 

(δ∇θ )
∂q 

∂∇θ
∇θdV −

∫ 
S 
δθ

∂q 
∂θ

θdS 

−
∫ 

V 
δθ

∂r 
∂θ

θdV = 0 , (45) 

here δθ is the virtual temperature, δ∇θ is the virtual temperature 
radient, and ∇θ is the temperature gradient. For the proposed 

onstitutive framework, 

U is only the function of temperature, 
no natural heat source exists during the deformation, 
the heat flux is not affected by the temperature value, 

re assumed. Therefore, once the spatial thermal conductivity 

κ
def = − ∂q 

∂∇θ
(46) 

nd specific heat capacity 

c def = 

∂	U 

∂θ
(47) 

re given, the internal energy conservation law ( Equation 44 )
s solved. Note that for a thermally isotropic material, κ is an
sotropic tensor, i.e., κ = k I , where k denotes the coefficient of
he thermal conductivity defined according to the Fourier’s law 

f heat conduction q = k ∇θ . The thermal parameters of EPU are
ited from other studies, as shown in Table 5 . 

.2 Flow chart of the numerical algorithm 

he algorithm framework is elucidated in this section for a more
lear understanding of the finite element implementation. We 
hould note that within a finite element algorithm, variables are
pdated iteratively. For each increment, the task of UMAT is to
pdate the variable at the end of the current increment (denoted
0 
s {•}n +1 ) based on the variable at the beginning of the same
ncrement (denoted as {•}n ). It is important to clarify that {•}n are
lready updated at the end of the previous increment, and then
assed into the current increment for information. These include, 
ut are not limited to, the time increment 	t , temperature at the
eginning of the increment { θ}n , the deformation gradient at the
eginning of the increment { F}n , the deformation gradient at the
nd of the increment { F}n+1 , and the user-defined variable at the
eginning of the increment { Cv 

j }n . It is important to note that
ime-dependent variables like Fe and Fv have inter-dependencies 
F̄ = Fe Fv ). Therefore, in our algorithm, we only consider Cv 

j 

s the user-defined variable that necessitates updating. In our 
ramework, the updating process is mainly divided into four steps: 

) Firstly, the kinematic variables are determined according to 

Table 2 . For instance, given the deformation gradient { F}n+1 ,
its determinant is calculated to obtain { J}n+1 , and its tensor
invariants are calculated to obtain { I1 }n+1 , { I2 }n+1 , and { I3 }n+1 .
The isochoric variables, such as {F̄ }n+1 and {C̄ }n+1 , could then 

be obtained. From the input of UMAT from the last increment,
the value of { Cv 

j }n is a known quantity, and { Cv 
j }n+1 is updated

based on its evolution equation. 
) The next step involves the calculation of the Cauchy stress, as

per the requirement of UMAT . Note that the stress calculation is
based on the kinematic variables at the end of the increment,
e.g., { F}n+1 . According to our constitutive framework, we 
calculate the second Piola-Kirchhoff stress tensor, and then 

push-forward it to the spatial description to obtain the Cauchy 
stress tensor. 

) Subsequently, we calculate the referential elasticity tensor and 

the referential stress-temperature tensor, and then push-forward 

them to the spatial Jaumann tangent moduli and the spatial 
stress-temperature tensor, respectively, as required by UMAT . 

) Lastly, the volumetric heat generation per unit time at the end
of the increment is calculated. 

he flow chart is presented in Table 6 to facilitate a further
nderstanding of the finite element implementation. 

.3 Validation of the finite element implementation 

s a first step, simulations of homogeneous deformations are 
onducted for a validation purpose due to the simplicity of 
he deformation pattern and this choice facilitates a meaningful 
omparison with analytical results, such as those obtained from 

ATLAB . The specimen used in the validation process is a cuboid
tructure, with 25 mm in length, 2.5 mm in width, and 1.5 mm
n thickness, as depicted in Figure 6 . Note that this specimen is
oaded along the X-direction, with the left-end surface restricted 

rom displacement in the X-direction. 
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Table 6 

Flow chart of the full algorithm for FEM implementation. 

Input: At the beginning of the increment: �t, { θ}n , { F }n , { F }n+1 , { Cv 
j }n 

01: Kinematic variables determination. � Table 2 
02: Calculate ̄S

EQ 
and ̄S

NEQ 
� Table 3 & Table 3 

03: Siso = J−2 / 3 
P : (S̄

EQ + S̄
NEQ 

) � Equation 6 
04: Calculate pvol and pθ � Table 3 
05: Svol = Jpvol C−1 � Equation 7 
06: Sθ = Jpθ C−1 � Equation 8 
07: Assemble the second Piola-Kirchhoff stress tensor S = Siso + Svol + Sθ � Equation 5 
08: Calculate the Cauchy stress σ = 1 

J FSFT 

09: Calculate C̄
EQ 

and C̄
NEQ 

� Equation 35 & Equation 36 
10: Ciso = P : (C̄

EQ + C̄
NEQ 

) : PT + 2 
3 Tr 

(
J−2 / 3 S̄ 

) ˜ P − 2 
3 

(
C−1 

� Siso + Siso � C−1 ) � Equation 4.1.1 

11: Cvol = (J pvol + J2 d pvol 

d J ) C−1 
� C−1 − 2 Jpvol C−1 

� C−1 � Equation 37 

12: Cθ = (J pθ + J2 d pθ

d J ) C−1 
� C−1 − 2 Jpθ C−1 

� C−1 � Equation 38 
13: Assemble the referential elasticity tensor C = Ciso + Cvol + C

θ � Equation 31 

14: Calculate the spatial Jaumann tangent moduli 
∇ 
C 

= 2σ � I + 1 
J 

[(
F � FT ) : C :

(
FT 

� F
)]

� Equation 29 
15: Calculate ̄T

EQ 
and ̄T

NEQ 
� Equation 41 

16: Tiso = J−2 / 3 
P : (T̄

EQ + T̄
NEQ 

) � Equation 40 
17: Tvol = ∂Svol 

∂θ
� Equation 42 

18: Tθ = ∂Sθ

∂θ
� Equation 43 

19: Assemble the referential fourth-order elasticity tensor T = Tiso + Tvol + Tθ � Equation 39 
20: Calculate the spatial stress-temperature tensor t = 1 

J FTFT � Equation 30 
21: Calculate R and its derivations to the strain and temperature increments. � Equation 12 

Output: At the end of the increment: {σ}n+1 , {
∇ 
C 

}n+1 , { t }n+1 , { Cv 
j }n+1 , { R }n+1 

Fig. 6 

The dimension and boundary condition of the cuboid structure used to validate the accuracy of the FEM implementation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The numerical simulations employ the thermal-mechanically
coupled 8-node hybrid element (C3D8HT) to simulate the almost
incompressible behaviour. It should be noted that for this type
of hybrid element, an additional degree of freedom, namely ̂  J , is
introduced to displace the actual volume change J. Consequently,
two additional derivatives 

ˆ K = J
∂2 �(ˆ J ) 

∂ˆ J2 
(48)

and 

∂ ˆ K 

∂ˆ J 
= J

∂3 �(ˆ J ) 

∂ˆ J3 
(49)

are involved based on the total hybrid formulation within the
FEM implementation. Furthermore, heat convection is considered
at the external surface of the specimen. The simulated results,
including nominal strain and nominal stress along the X-
direction, are then compared with the analytical results. 

Figure 7 (a) to Figure 7 (d) suggest that the FEM implementation
reaches the same values when compared with analytical results.
Note that the comparison ignores the consideration of thermal
stress ( Sθ ), as it is not accounted for in the analytical solution
as mentioned before. After the comparison process, the results
incorporating thermal stress are shown in Figure 8 , revealing only
a minor difference for each temperature. This observation aligns
with expectations, given the relatively low thermal expansion
characteristic for the EPU material. 

So far, the validation of the thermal-mechanically coupled
FEM implementation has been fully evaluated, presenting good
results in accuracy. Additionally, it should be noted that all of the
simulations reach almost quadratic convergence (see Appendix
B ). 

4.4 Investigation of self-heating effects 
Self-heating, a temperature-increasing process caused by internal
dissipation during deformation, is a physical characteristic of
viscoelastic material. It should be emphasised, that the heat
generation is solely derived from the chosen Helmholtz strain
energy and is consequently a complex function of the strain, strain
rate, absolute temperature, and stress value. 
11 
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Fig. 7 

FEM Implementation validation against analytical results from MATLAB . (a) The equilibrium paths under different temperatures. (b) The stress-strain curves at 
different strain rates. The temperature is 293K. (c) The stress-strain curves under different temperatures. The strain rate is 0.1/s. (d) The stress-strain curves under 
different maximum strain levels. The temperature is 293K and the strain rate is 0.1/s. 

t  

f
a
o  

b

1  

 

 

 

 

2

3

F
t
c
i
t
c
(  

n
s

5
T
s

1

Figure 9 illustrates the temperature increase with regard to 

he strain relationship under 0.1/s and 0.001/s. Each rate case
eatures two curves, namely the simulated temperature increase 
nd the adiabatic temperature increase, respectively, depending 
n whether heat convection is considered. Some findings are listed
elow. 

. An adiabatic temperature increase of 4.99K is observed for the
case of 0.1/s and 200% deformation, consistent with a previous
study [12] , where 4.27K was reported for polyurea (a soft
material similar to EPU) at 0.08/s and 200% strain. Additionally,
the adiabatic temperature increase is larger at 0.1/s compared to
0.001/s, reflecting increased internal dissipation. 

. Heat convection intensifies during large strain stages, attributed 

to the increasing convective surface area [12] . Furthermore, 
the diminishing strain rate results in a larger difference 
between simulated and adiabatic temperatures, influenced by 
the duration-dependent heat convection. 
2 
. The inset in Figure 9 (a) reveals endothermic behaviour for 
0.001/s case, known as thermoelastic inversion [12,71–74] . 
This phenomenon suggests the competition between thermal 
expansion and entropy elasticity at small strains. 

igure 9 (b) depicts temperature increase curves at various 
emperatures, with all simulations conducted at 0.1/s. The 
ase for 253K exhibits the largest adiabatic temperature, which 

s attributed to the dominant internal dissipation at lower 
emperatures. Additionally, it is noteworthy that none of the 
urves presents endothermic behaviour, even at small strain stages 
see the inset in Figure 9 (b)). This absence is justifiable due to the
on-negligible self-heating effect under 0.1/s even at a small strain 

tage. 

 Structural example 

he objective of this section is to investigate the complex 

tructural deformation to demonstrate the advantages of the FEM 
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Fig. 8 

The comparison between stress-strain curves after the incorporation of 
thermal stress. 

 

 

 

 

 

 

 

 

 

Fig. 10 

The dimension and boundary conditions of the plate with a hole structure. 

 

 

 

 

 

 

 

 

 

 

implementation. A plate with a hole, commonly employed to
assess the robustness of any user-defined FEM codes [44,53,75–77] ,
is selected here. Note that in contrast to the example discussed
above, the deformation within the plate is non-uniform because
of structural anisotropy. 

5.1 Numerical model 
The dimension and boundary conditions of the plate structure are
depicted in Figure 10 . 

Note that along the Y-direction, this specimen is subjected to a
prescribed displacement u , with the bottom surface restricted from
displacement in the Y-direction. Heat convection is considered
at the specimen surface. The loading history is divided into two
stages: 

1 © the plate is loaded up u = 100 mm at the top surface; 
Fig. 9 

Simulated and adiabatic temperature increases for (a) different strain rates and (b) d
2 © then the plate is unloaded until the top surface recovers to
its initial position. 

With the utilisation of ABAQUS/Standard , the finite element
simulation can be conducted with the user-developed constitutive
model to this complex structure. Similar to the setup described
in the above section, the C3D8HT element is selected for the
following simulations. Furthermore, three mesh cases, i.e., Mesh1
( nelem 

= 120 ), Mesh2 ( nelem 

= 256 ), and Mesh3 ( nelem 

= 1932 ), are
considered to investigate the effect of spatial discretisation. The
simulation schedule is detailed in Table 7 . 

5.2 Numerical results 
5.2.1 Spatial discretisation 

The effect of spatial discretisation is first investigated under
293K. The force-displacement relationships and the maximum
ifferent temperatures. 

13 
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Table 7 

The simulation schedule for the plate with a hole structure. 

Deformation mode Velocity [mm/s] Holding time Maximum prescribed displacement [mm] Temperature 

253K 273K 293K 333K 

Uniaxial tension 5 – 100 
Single-step stress relaxation 5 3 mins 100 – – –

Fig. 11 

(a) The force-displacement relationships for the plate with a hole structure under different spatial discretisations. (b) The maximum temperature increase for the 
plate with a hole structure under different spatial discretisations. 

Fig. 12 

Contours of Figure 12 (a) the axial strain distribution and (b) the temperature distribution at u = 100 mm for three different spatial discretisations: (Mesh1) nelem 

= 

120 , (Mesh2) nelem 

= 256 , and (Mesh3) nelem 

= 1932 . 
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emperature increase for different spatial discretisations are shown 

n Figure 11 (a) and Figure 11 (b), respectively. Here, the reaction
orce represents the resultant reaction force in the Y-direction 

elated to all the nodes on the top surface of the specimen.
he results presented in these two figures show that the load-
isplacement responses almost completely coincide, with only a 
mall difference in the maximum temperature rise shown in the
nloading stage. This finding suggests that Mesh1 is coarse, while
he other two mesh cases exhibit minimal differences in both the
4 
orce-displacement relationships and the maximum temperature 
alues. Furthermore, contours of the axial strain distribution and 

he temperature distribution at u = 100mm for three different 
patial discretisations are shown in Figure 12 (a) and Figure 12 (b),
espectively. It turns out that, for this particular specimen, the 
train evolution, as well as the temperature distribution, is almost 
esh-independent. Therefore, Mesh2 is chosen for the following 

nalysis with the consideration of the smoothness of the contour 
nd the computational cost (refer to Table 8 ). 
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Fig. 13 

Reaction force displacement relation and contours of temperature increase 	θ under (a) 253K, (b) 273K, (c) 293K, and (d) 333K, respectively. 

Table 8 

The computational cost in terms of the CPU-time for uniaxial 
tension simulations under different spatial discretisations. 
Note that the simulations are based on the single-core mode 
of ABAQUS 2023 on a CPU with the AMD Ryzen 7 5800H 

processor. 

Mesh1 Mesh2 Mesh3 

Time [s] 122 242 754 

 

 

 

 

 

 

 

 

 

Fig. 14 

The maximum temperature increase values under different temperature cases 
for different stages, i.e., A, B, and C. 

 

 

5.2.2 Load displacement response 
The mechanical response of this structure is illustrated by the

load-displacement curves shown in Figure 13 (a), Figure 13 (b),
Figure 13 (c), and Figure 13 (d) for different temperatures,
respectively. 

It becomes apparent that the loading-unloading is associated
with the dissipation of energy, manifesting by the characteristic
hysteresis behaviour represented by the area enclosed by the
loading and unloading curve. Three points denoted as A
( u = 50mm), B ( u = 100mm), and C (the free force state), are
selected from the load-displacement curve to track the evolution
of the temperature increase distribution. The description of the
temperature increase distribution for these three points is as
follows. 
15 
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Fig. 15 

Temperature distribution for different cases for selected time steps. 

Fig. 16 

(a) The nominal stress time relation for the single-step relaxation simulations. (b) The temperature increase time relation for the single-step relaxation simulations. 
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A . At point A , the temperature increase at each temperature is
marginal, with the peak value situated around the bottom 

edge of the specimen, corresponding to the place with the
highest strain (not plotted here). This aligns with the stress
(or strain)-driven self-heating formulation. 

B . Subsequently, at point B , the temperature increase
reaches almost the maximum extent throughout the 
whole deformation process. The peak temperature increase 
position coincides with that mentioned in point A . For
the 253K case, the maximum temperature rise can reach 

up to 18K. This observation is as expected because of the
large hysteresis phenomenon occurring at low temperatures 
(refer to Figure 2 (d)). The maximum temperature rise extent
also correlates with the specimen’s initial temperature (see 
the blue line of Figure 14 ). The lower the specimen initial
temperature, the more pronounced the temperature rise at 
point B . 

C. Finally, after the top surface returns to its force-free state,
the residual temperature distribution can be seen at point 
C. The maximum temperature increase values at this point 
for 253K, 273K, 293K, and 333K are 16.71K, 8.07K, 4.29K,
and 2.93K, respectively (similar to the situation at point B ,
see Figure 14 ). 
6 
.2.3 Single-step stress relaxation 

In this section, single-step stress relaxation simulations at 253K 

re considered, encompassing three cases: 

1 ©. simulation without considering the self-heating effect; 
2 ©. simulation incorporating the self-heating effect; 
3 ©. simulation considering the self-heating effect, with an 

additional temperature boundary (333K) applied at the edge 
of the hole. This implies that the specimen will experience 
heating up to 333K during the simulation. 

Three time points are selected for each case, namely t = 10s
the half of the loading), t = 20s (the end of the loading),
nd t = 200s (the end of the stress relaxation). The comparison
mong these cases and time steps provides clearer insights into 

he effects of self-heating and heat transfer. The temperature 
istributions at selected time points for these cases are plotted in
igure 15 . In case 1 ©, where the self-heating effect is neglected,
o temperature change is observed inside the specimen during 

he whole simulation process. For case 2 ©, temperature increases, 
specially near the edge of the hole, propagating throughout 
he specimen. The temperature rises during the loading stage 
ecause of the self-heating effect and then decreases during the 
olding stage mainly due to heat convection. After applying the 



Giant, 18, 2024, 100278 

Fu
ll-

le
ng

th
 
ar

ti
cl

e 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

•
 

 

 

additional temperature boundary in case 3 ©, the temperature rise
becomes obvious, observable even at t = 10s, and continues to
spread towards other borders from t = 20s to t = 200s. This is the
result of the classic heat transfer effect. 

For quantitative tracking, one node of the specimen (marded
in Figure 15 ) is used. Figure 16 (a) and Figure 16 (b) depict the
stress and temperature time relations for all cases. In case 1 ©,
a typical stress relaxation curve is observed, where the stress
decreases over time during the stress relaxation stage. In this case,
the temperature of the specimen remains constant throughout
the simulation. Then, with the consideration of the self-heating
effect in case 2 ©, the nominal stress follows a similar trend
but with a lower value than in case 1 © due to the increased
temperature. The corresponding temperature has a decreasing
trend during the holding stage (t = 20s to t = 200s) due to reduced
heat generation and sustained heat convection. Finally, in case
3 ©, the nominal stress has a similar value to case 2 © during

the loading stage but a slightly higher value of stress because
of the larger thermal stress. Heat transfer has little influence on
the structure at the loading stage (short duration). During the
stress relaxation stage, the stress decreases more rapidly because
of the quickly increased temperature caused by the heat transfer
effect. It is reasonable to infer that, with infinite observation
time, the entire specimen will be heated to 333K, and reach
equilibrium. 

6 Conclusion 

In summary, this study introduces a thermo-mechanically
coupled constitutive model for EPU, incorporating hyperelasticity,
viscoelasticity, thermal expansion, and self-heating in a
thermodynamically consistent manner. Based on experimental
data obtained from our previous studies, model parameters are
identified through the least squares method, with iterative updates
for temperature parameters considering the self-heating effect.
Subsequently, the validated model is implemented into the UMAT
subroutine of ABAQUS to compute three-dimensional stress-strain
states, facilitating the visualisation of structural responses under
various mechanical loads and boundary conditions. The self-
heating effect, incorporating mechanical work and viscoelastic
dissipation, is then systematically analysed under different strain
rates and temperatures, enhancing the comprehension of EPU’s
thermal-mechanical response to diverse conditions. Furthermore,
a plate with a hole is simulated to shed light on the complex
structural performance of EPU and present the engineering
significance of FEM implementation of the proposed model. In
conclusion, this research provides a valuable tool for engineers
and researchers, fostering a deeper understanding and prediction
of thermal-mechanical material behaviour in diverse scenarios.
Future work will focus on applying the constitutive model to
more complex structures (e.g., metamaterial) and more loading
conditions (e.g., impact loading). 
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Appendix A discussion about the incompressibility of 
the internal variable 

In parameter identification, the evolution function of Cv is
reduced into the one-dimensional case by using the Euler
Backward Method (EBM) as 

{
λv 

1 

}
n +1 = 

{
λv 
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}
n + 	t

{
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2 τ

[
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λv 
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− λv 
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]}
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(50)

where 

	t = { t} n +1 − { t} n (51)

and λv 
1 , λ

v 
2 , and λv 

3 are the eigenvalues of [ Cv ]1 / 2 , respectively. 
Furthermore, the differences between the stress-strain

results by applying the strict incompressibility (SI) and almost
incompressibility (AI) of internal variables are compared in this
section. In other words, there are two approaches for determining
the hydrostatic pressure p, leading to two sets of stress results. 

If the strict incompressibility is considered, the second and third
equations of Equation 50 are not necessary to be solved since in
this situation, we have 

Cv =

⎡ 

⎢ ⎣ 

(λv )2 0 0 

0 (λv )−1 0 

0 0 (λv )−1 

⎤ 

⎥ ⎦ 

(52)
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Fig. 17 

Comparison between [ P
NEQ 

11 ]
SI 

and [ P
NEQ 

11 ]
AI 

under different relaxation times. 

Table 9 

The Euclidean norm of the largest residual force for the cuboid and the plate with a hole 
structures at selected time points. 

Iteration LARGEST RESIDUAL FORCE 

5 [s] 10 [s] 15 [s] 20 [s] 

Cuboid 1 4.674E-4 5.833E-6 4.198E-4 1.008E-4 
2 3.131E-10 1.382E-9 2.819E-9 3.538E-10 

Plate with a hole 1 1.787E-02 7.511E-03 7.906E-03 9.628E-03 
2 2.782E-06 1.121E-06 4.923E-07 4.610E-06 
3 5.621E-11 2.719E-11 3.296E-11 3.001E-11 
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where λv 
1 = λv , λv 

2 = λv 
3 = (λv )−1 / 2 . The corresponding nominal 

stress is 

[ P
NEQ 

11 ]
SI = 2 c

[ 
λ

[ λv ]2 − [ λv ] 
λ2 

] 
(53) 

Note that for simplicity, the temperature influence is neglected 

here. 
If the almost incompressibility is considered, 

Cv =

⎡ 

⎢ ⎣ 

(λv 
11 )

2 0 0 

0 (λv 
22 )

2 0 

0 0 (λv 
33 )

2 

⎤ 

⎥ ⎦ 

(54) 

The nominal stress is written as 

[ P
NEQ 

11 ]
AI = 2 c

[ 
λ

(λv 
11 )

2 − 1 
(λv 

22 )
2 λ2 

] 
(55) 

The results are compared to see the differences between [ P
NEQ 

11 ]
SI 

nd [ P
NEQ 

11 ]
AI 

. Without loss of generality, the values of c are chosen
s 1 for both cases, while τ is chosen as 1, 10, and 100. The
omparisons, as plotted in Figure 17 , show that there are indeed
light differences between the two cases. 

Therefore, for consistency with the FEM implementation, 
uring the one-dimensional reduction in Section 3 , C 

v is solved
ith almost incompressibility. We need to state here that both

ases are correct, depending on the specific problem considered. 

ppendix B the convergence situation 

he convergence situation is checked for two structures, i.e., 
he cuboid and the plate with a hole, which is used in the
bove sections. The loading velocity is controlled to promise the
aximum strain and the strain rate inside each structure is around
8 
00% and 0.1/s, respectively. The updates of the Euclidean norm 

f the largest residual force with the Newton iteration are listed in
able 9 . We should note that the convergence situations for both
tructures show approximate quadratic convergence, presenting 
he consistency of the tangent derivation to stress tensors. 

eferences 
[1] D. Chattopadhyay, K. Raju, Structural engineering of polyurethane coatings for 

high performance applications, Progress in Polymer Science 32 (3) (2007) 352–
418, doi: 10.1016/j.progpolymsci.2006.05.003 . 

[2] H. Somarathna, S. Raman, D. Mohotti, A. Mutalib, K. Badri, Rate dependent
tensile behavior of polyurethane under varying strain rates, Construction and 
Building Materials 254 (2020) 119203, doi: 10.1016/j.conbuildmat.2020.119203 . 
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