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A B S T R A C T

This paper introduces a novel Smooth Particle Hydrodynamics (SPH) computational framework that
incorporates an Arbitrary Lagrangian Eulerian (ALE) formalism, expressed through a system of first-
order conservation laws. In addition to the standard material and spatial configurations, an additional
(fixed) referential configuration is introduced. The ALE conservative framework is established based
on the fundamental conservation principles, including mass, linear momentum and the first law of
thermodynamics represented through entropy density. A key contribution of this work lies in the
evaluation of the physical deformation gradient tensor, which measures deformation from material to
spatial configuration through a multiplicative decomposition into two auxiliary deformation gradient
tensors. Both of the deformation tensors are obtained via additional first-order conservation equations.
Interestingly, the new ALE conservative formulation will be shown to degenerate into alternative
mixed systems of conservation laws for solid dynamics: particle-shifting, velocity-shifting and Eulerian
formulations. The framework also considers path- and/or strain rate-dependent constitutive models, such
as isothermal plasticity and thermo-visco-plasticity, by integrating evolution equations for internal state
variables. Another contribution of this paper is the evaluation of ALE motion (known as smoothing
procedure) by solving a conservation-type momentum equation. This procedure is indeed useful for
maintaining a regular particle distribution and enhancing solution accuracy in regions characterised by
large plastic flows. The hyperbolicity of the underlying system is ensured and accurate wave speed
bounds in the context of ALE description are presented, crucial for ensuring the stability of explicit
time integrators. For spatial discretisation, a Godunov-type SPH method is employed and adapted. To
guarantee stability from the semi-discretisation standpoint, a carefully designed numerical stabilisation
is introduced. The Lyapunov stability analysis is carried out by assessing the time rate of the Ballistic
energy of the system, aiming to ensure non-negative entropy production. In order to ensure the global
conservation of angular momentum, we employ a three-stage Runge–Kutta time integrator together with
a discrete angular momentum projection algorithm. Finally, a range of three dimensional benchmark
problems are examined to illustrate the robustness and applicability of the framework. The developed
ALE SPH scheme outperforms the Total Lagrangian SPH framework, particularly excelling in capturing
plasticity regimes with optimal computational efficiency.
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1. Introduction

In the field of computational solid dynamics, traditional methodologies predominantly employ the Lagrangian (Total or Updated) framework
or continuum representation, as extensively documented in literature [1–5]. These methodologies ensure alignment between the computational
nd material domains, enabling computational nodes and material particles (carrying physics) to move concurrently. This significantly simplifies
roblem formulation and the development of algorithm for discrete solutions. Naturally, Lagrangian formulations are effective in directly tracking
f evolving boundaries and interfaces. However, in scenarios involving very large deformations, Lagrangian-based formulations may encounter
xcessive distortion within the material domain, potentially compromising the accuracy of the results and, in severe instances, jeopardising the
tability of the overall algorithm. In contrast, some researchers advocate for Eulerian-based computational methods, where the computational
omain is anchored to a fixed spatial domain. In this case, the material continuum is permitted to convect freely within this fixed spatial domain,

thus accommodating large scale distortions. The convective nature of this approach requires specific strategies, such as employing the level set
method, to accurately track the evolution of boundaries and interfaces.

Given the advantages and limitations inherent to both Lagrangian and Eulerian methods, Arbitrary Lagrangian Eulerian (ALE) based
techniques have been developed to harness the strengths of each approach. The fundamental principle of the ALE formulation [6–17] involves
utilising a referential (fixed) domain for motion description. This referential domain is different from the material domain (used in Lagrangian
descriptions) and the spatial domain (used in Eulerian descriptions). For instance, in ALE methods, the computational nodes do not strictly
adhere to the material particles nor remain fixed in space. Instead, the computational nodes dynamically adjusts to follow the material to a
certain extent, being continuously updated to mitigate irregular distribution of material particles. This adaptability of the ALE framework makes
it particularly suited for addressing challenges in large strain solid dynamics, such as those encountered in dynamic impact/contact scenarios
and crack propagation.

The ALE approach for solid dynamics was primarily developed to address challenges in modelling materials that exhibit substantial
hypoelastic–plastic and hyperelastic–plastic deformations. In hypoelastic–plastic models [18,19], stress responses are quantified as rates,
establishing a relationship between an objective stress rate (such as the Jaumann stress rate [20], which corrects for rigid body rotations) and the
rate of deformation tensor. In contrast, hyperelastic–plastic models [15,21,22] enable stress measures to be directly obtained from the deformation
gradient, utilising a strain energy potential combined with a suitable plastic projection algorithm. No stress rate equation is required. Within
both frameworks, the ALE convective term within the stress update equation accommodates the differential movement between computational
nodes and material particles. A widely accepted approach to handle the convective term is to employ a sequential process by dividing the ALE
solution process into two successive phases: a material phase and a convection phase (known as remap stage [23–25]). Convection is set aside in
the material phase, rendering identical to the standard Lagrangian updating process. Subsequently, stresses (along with plastic internal variables)
are then adjusted to reflect the relative movement between the computational nodes and material particles.

Recently, we introduced a computational framework for solid dynamics based on a novel first-order hyperbolic ALE formulation [26], with
special emphasis on hyperelastic models. Specifically, the conservation equations for mass and linear momentum were re-formulated and solved
with respect to the referential domain. To more accurately capture the deformation behaviours of solids, the physical deformation gradient
tensor (measured from material to spatial domains) was obtained through a multiplicative decomposition into two auxiliary deformation gradient
tensors, both computed using additional geometric conservation laws. For spatial discretisation, an upwinding-based vertex-centred finite volume
method was employed, as detailed in Ref. [26].

In the current work, we extend the ALE formalism described above to include thermal effects by solving an additional total energy
conservation equation expressed in terms of entropy density within the reference domain. A standout feature of our ALE formulation is its
adaptability to simplify into three different mixed-based sets of conservation equations pertinent to solid dynamics: the Total Lagrangian [27–
31], Eulerian [32] and Updated Reference Lagrangian formulations [33]. This adaptability can be seen as a generalisation of the velocity-shifting
and particle-shifting frameworks previously established in the context of fluid dynamics. Additionally, our work also explores hyperelastic and
path-dependent constitutive models [34–37] under both isothermal and thermal conditions, where the latter requires the incorporation of evolution
equations for internal plastic state variables. Drawing inspiration from the pioneering work [22], we introduce a simple ALE motion strategy
by solving a conservation-type momentum equation for the ALE motion. A critical aspect requiring special attention is the stability of the ALE
formulation from both the continuum and numerical perspectives. To ensure continuum stability, we employ an internal energy potential that
satisfies rank-one convexity [26], which guarantees the existence of plane travelling waves within the solid and the accurate propagation of
strong discontinuities at physical shock speeds. More detailed analysis can be found in Ref. [26]. For numerical stability, we adopt a Godunov-
type Smooth Particle Hydrodynamics (SPH) method, enhanced with appropriate numerical stabilisation techniques to ensure local numerical
entropy production. This aspect of stability is evaluated through Lyapunov stability analysis, by monitoring the time variation of the Ballistic
energy within the coupled system discretised using the SPH method. Similar analyses have also been carried out in the context of finite volume
method [38]. Another contribution of the paper is to ensure the global conservation of angular momentum. This is achieved by introducing an
explicit three-stage Runge–Kutta time integrator, combined with a discrete angular momentum projection algorithm.

The paper is organised as follows. Section 2 summarises the fundamental kinematic relationships in an Arbitrary Lagrangian Eulerian
description. Section 3 details the conservation laws within the ALE framework, addressing both smooth and discontinuous solutions. Section 4
explores the potential to degenerate into the Total Lagrangian velocity-shifting formulation, the Updated Lagrangian particle-shifting formulation
and the Eulerian formulation. Section 5 extends the discussion to incorporate models of irrecoverable plasticity. Section 6 presents the weak
form of the equations and reintroduces the second law of thermodynamics in terms of the Ballistic energy within the system. The time variation
of the Ballistic energy serves as a foundation for investigating non-negative entropy-producing numerical dissipation. Section 7 discusses the
ALE motion procedure employed in this work to mitigate excessive particle distortions, especially in areas experiencing large plastic flows.
In Section 8, we present the Godunov-type SPH discretisation procedure, with a focus on deriving entropy-stable, conservative and consistent
2

numerical stabilisations. Furthermore, we discuss the explicit time integrator utilised for advancing the semi-discrete equations in time. Section 9
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Fig. 1. ALE kinematic description.

introduces a space-time discrete angular momentum projection algorithm. Section 10 provides a summary of the algorithmic flowchart for the
ALE SPH framework. Section 11 presents a series of numerical examples to evaluate the capabilities of the numerical method. Section 12
summarises key conclusions and outlines prospective lines of research. Appendix A summarises the transformation rule from Total Lagrangian
description to the ALE counterpart.

2. ALE kinematical description

Consider the motion of a continuum initially defined by a domain Ω𝑿 ⊂ ℝ3 in its material configuration. This configuration is enclosed by
a boundary, denoted as 𝜕Ω𝑿 , with a corresponding unit outward normal vector 𝑵𝑿 =

∑3
𝐼=1𝑁

𝐼
𝑿𝑬𝐼 . As the continuum undergoes motion, it

deforms into a spatial configuration defined by a domain Ω𝒙 ⊂ ℝ3 with a boundary 𝜕Ω𝒙 and a unit outward normal vector 𝒏𝒙 =
∑3
𝑖=1 𝑛

𝑖
𝒙𝒆𝑖.

In an Arbitrary Lagrangian Eulerian (ALE) description, in addition to the usual material and spatial configurations described above, a third
“referential” configuration is introduced. This configuration is occupied by the domain Ω𝝌 ⊂ ℝ3 with a boundary 𝜕Ω𝝌 and an outward unit
normal 𝑵𝝌 =

∑3
𝐼=1𝑁

𝐼
𝝌𝐼 . As a result, two new mappings are introduced, linking the referential coordinate 𝝌 ∈ Ω𝝌 to: (1) the material

coordinate 𝑿 ∈ Ω𝑿 via 𝑿 = 𝚿(𝝌 , 𝑡) and (2) the spatial coordinate 𝒙 ∈ Ω𝒙 via 𝒙 = 𝚽(𝝌 , 𝑡). Fig. 1 illustrates these domains and the one-to-one
transformation relating the three configurations. We refer to 𝚽(𝝌 , 𝑡) as the spatial motion (the mapping from the referential domain to the spatial
domain) and to 𝚿(𝝌 , 𝑡) as the material motion (the mapping from the referential domain to the material domain). With these definitions, the
physical motion 𝝋(𝑿, 𝑡) at a fixed time is parametrised as 𝝋 = 𝚽◦𝚿−1, emphasising that the three mappings {𝝋,𝚿,𝚽} are not independent.
Utilising the relation 𝝋(𝑿, 𝑡) = 𝚽(𝚿−1(𝝌 , 𝑡), 𝑡), the multiplicative decomposition of the physical deformation gradient tensor is expressed as

𝑭 = 𝑭𝚽𝑭 −1
𝚿 , (1)

with the respective deformation gradient tensors defined as

𝑭 (𝑿, 𝑡) =
𝜕𝝋(𝑿, 𝑡)

; 𝑭𝚿(𝝌 , 𝑡) =
𝜕𝚿(𝝌 , 𝑡)

; 𝑭𝚽(𝝌 , 𝑡) =
𝜕𝚽(𝝌 , 𝑡)

. (2)
3

𝜕𝑿 𝜕𝝌 𝜕𝝌
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It is possible to introduce the corresponding cofactors and Jacobians as follows

𝑯 = 1
2
𝑭 𝑭 ; 𝑯𝚿 = 1

2
𝑭𝚿 𝑭𝚿; 𝑯𝚽 = 1

2
𝑭𝚽 𝑭𝚽, (3)

nd

𝐽 = 1
3
𝑯 ∶ 𝑭 ; 𝐽𝚿 = 1

3
𝑯𝚿 ∶ 𝑭𝚿; 𝐽𝚽 = 1

3
𝑯𝚽 ∶ 𝑭𝚽. (4)

ere, denotes the cross product between second order tensor as discussed in Refs. [39,40]. Eqs. (2), (3) and (4) establish line, area and volume
appings between differential elements of the different configurations as follows

𝑑𝑳𝑿 = 𝑭𝚿𝑑𝑳𝝌 ; 𝑑𝒍𝒙 = 𝑭𝚽𝑑𝑳𝝌 ; 𝑑𝒍𝒙 = 𝑭𝑑𝑳𝑿 ; (5a)

𝑑𝑨𝑿 = 𝑯𝚿𝑑𝑨𝝌 ; 𝑑𝒂𝒙 = 𝑯𝚽𝑑𝑨𝝌 ; 𝑑𝒂𝒙 = 𝑯𝑑𝑨𝑿 ; (5b)

𝑑Ω𝑿 = 𝐽𝚿𝑑Ω𝝌 ; 𝑑Ω𝒙 = 𝐽𝚽𝑑Ω𝝌 ; 𝑑Ω𝒙 = 𝐽𝑑Ω𝑿 . (5c)

We now turn our attention to the time evolution of the mappings {𝝋,𝚿,𝚽}, as illustrated in Fig. 1. Specifically, we explore the velocities
ssociated with these mappings: the (physical) velocity 𝒗 of a particle 𝑿, the (spatial) velocity 𝒗̂ linked to the spatial mapping, and the (material)
elocity 𝑾 corresponding to the material mapping. These velocities are mathematically defined as follows

𝒗 =
𝜕𝝋(𝑿, 𝑡)

𝜕𝑡
= 𝜕
𝜕𝑡
|

|

|

|𝑿
𝝋; 𝒗̂ =

𝜕𝚽(𝝌 , 𝑡)
𝜕𝑡

= 𝜕
𝜕𝑡
|

|

|

|𝝌
𝚽; 𝑾 =

𝜕𝚿(𝝌 , 𝑡)
𝜕𝑡

= 𝜕
𝜕𝑡
|

|

|

|𝝌
𝚿, (6)

here the notation
|

|

|

|□
denotes differentiation while holding the coordinate □ fixed. By recalling the deformation gradient 𝑭 previously introduced

n (2), we can elucidate the relationship among 𝒗, 𝒗̂ and 𝑾 as

𝒗̂ =
𝜕𝚽(𝝌 , 𝑡)
𝜕𝑡

=
𝜕𝝋(𝚿(𝝌 , 𝑡), 𝑡)

𝜕𝑡
=
𝜕𝝋(𝑿, 𝑡)

𝜕𝑡
+
𝜕𝝋(𝑿, 𝑡)
𝜕𝑿

𝜕𝚿(𝝌 , 𝑡)
𝜕𝑡

= 𝒗 + 𝑭𝑾 . (7)

The above relation illustrates that the spatial velocity is the sum of the physical velocity and the product of the deformation gradient with the
material velocity. This relationship allows us to express the relative velocity 𝒄, the difference between the physical velocity 𝒗 and the spatial
elocity 𝒗̂, as

𝒄 = 𝒗 − 𝒗̂ = −𝑭𝑾 . (8)

otably, a relative velocity 𝒄 = 𝟎 implies that the referential domain coincides with the material domain, a condition that leads to the Total
agrangian formulation. Conversely, when 𝒄 = 𝒗, indicating that 𝑾 = −𝑭 −1𝒗, this suggests that the referential domain aligns with the
patial domain. Such alignment corresponds to the Eulerian formulation. Understanding this distinction is crucial for choosing the most suitable
ramework to model the behaviour of deformable solids under different conditions.

. ALE first-order conservation laws for solids

.1. First-order conservation laws for thermal processes

In the prior work of the authors [26,38], the motion of a deformable solid during a thermal–mechanical process is described through a system
f first-order conservation laws formulated in an ALE description. The governing equations are formulated as

𝜕
𝜕𝑡
|

|

|

|𝝌

(

𝐽𝚿𝒑𝑿
)

− DIV𝝌
[(

𝑷 + 𝒑𝑿 ⊗𝑾
)

𝑯𝚿
]

= 𝐽𝚿𝒇𝑿 ; (9a)

𝜕
𝜕𝑡
|

|

|

|𝝌
𝑭𝚽 − DIV𝝌 (𝒗̂⊗ 𝑰) = 𝟎; (9b)

𝜕
𝜕𝑡
|

|

|

|𝝌
𝑭𝚿 − DIV𝝌 (𝑾 ⊗ 𝑰) = 𝟎; (9c)

𝜕
𝜕𝑡
|

|

|

|𝝌

(

𝐽𝚿𝜌𝑿
)

− DIV𝝌
(

𝜌𝑿𝑯𝑇
𝚿𝑾

)

= 0; (9d)

𝜕
𝜕𝑡
|

|

|

|𝝌

(

𝐽𝚿𝜂𝑿
)

− DIV𝝌

(

𝜂𝑿𝑯𝑇
𝚿𝑾 −

𝑸𝝌

𝜃

)

=
𝐽𝚿
𝜃

(

𝑠𝑿 + ̇Phy
)

− 1
𝜃2

(

𝛁𝝌𝜃
)

⋅𝑸𝝌 . (9e)

he shorthand notation ̇[∙] denotes the time differentiation holding the material coordinate 𝑿 fixed, that is ̇[∙] = 𝜕
𝜕𝑡

|

|

|

|𝑿
[∙]. This notation will

e used throughout the entire manuscript. Here, 𝜌𝑿 is the material density, 𝒑𝑿 = 𝜌𝑅𝒗 is the linear momentum per unit of material volume,
4

𝒇𝑿 denotes the body force per unit of material volume and 𝜂𝑿 is the entropy density per unit of material volume. Additionally, 𝑷 represents
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the first Piola Kirchhoff stress tensor, 𝜃 denotes the absolute temperature, 𝑸𝝌 represents the heat flux defined in the reference domain and
̇Phy represents the material time rate of physical dissipation introduced by a possible irreversible constitutive model, such as visco-elasticity
or plasticity. It is important to note that this term is zero in the context of a reversible elastic model [26]. The operator DIV𝝌 represents the
divergence operator carried out at the reference configuration and 𝑰 is the second order identity tensor.

Additionally, it is crucial to ensure the satisfaction of two (initial value) differential constraints, also referred to as involutions [41]), as stated
below

CURL𝝌𝑭𝚽 = 𝟎; CURL𝝌𝑭𝚿 = 𝟎. (10)

If these constraints are satisfied initially, expressions (9b) and (9c) indicate these constraints will continue to be satisfied throughout the entire
time integration process. Finally, the coordinates, including {𝝋,𝚽,𝚿}, can be updated over time using expressions (6).

In the system of equations above (9), Eq. (9d) corresponds to the classical mass continuity conservation law, whereas Eq. (9a) refers to the
standard linear momentum conservation law. To address thermal effects and the presence of an irreversible constitutive model, an additional
conservation Eq. (9e), denoted as the first law of thermodynamics, is included. To accurately measure the deformation of the solid from the
reference configuration to both spatial and material configurations, we introduce a supplementary pair of geometric conservation laws, namely
(9b) and (9c). The inclusion of these geometric conservation equations relaxes the evaluation of the fibre mappings {𝑭𝚽,𝑭𝚿} from the exact
gradient evaluation of both material and spatial geometries. This approach has already been shown to be advantageous in the case of Total and
Updated Lagrangian descriptions, particularly in scenarios involving large deformations, as demonstrated in Refs. [33,37,42–44].

In the presence of shocks or discontinuities, it is important to note that evaluating the divergence operators DIV𝝌 in system (9) becomes
unfeasible. This implies that the applicability of the system (9) in its differential form is no longer valid. To address this, we must resort to the
use of appropriate Rankine–Hugoniot jump conditions across a discontinuous surface. This surface is defined by a reference unit normal vector
𝑵𝝌 and propagates with speed 𝑈𝝌 in the reference space [26]. These conditions can be expressed as

𝑈𝝌 [[𝐽𝚿𝒑𝑿 ]] = −[[
(

𝑷 + 𝒑𝑿 ⊗𝑾
)

𝑯𝚿]]𝑵𝝌 ; (11a)

𝑈𝝌 [[𝑭𝚽]] = −[[𝒗̂]]⊗𝑵𝝌 ; (11b)

𝑈𝝌 [[𝑭𝚿]] = −[[𝑾 ]]⊗𝑵𝝌 ; (11c)

𝑈𝝌 [[𝐽𝚿𝜌𝑿 ]] = −[[𝜌𝑿𝑯𝑇
𝚿𝑾 ]] ⋅𝑵𝝌 ; (11d)

𝑈𝝌 [[𝐽𝚿𝜂𝑿 ]] ≤ −
[[

𝜂𝑿𝑯𝑇
𝚿𝑾 −

𝑸𝝌

𝜃

]]

⋅𝑵𝝌 . (11e)

Here, the symbol [[∙]] represents the difference between the right and left states across a discontinuous surface. Observe that, when both the
heat flux 𝑸𝝌 = 𝟎 and the ALE motion velocity is absent (𝑾 = 𝟎), expression (11e) simplifies to its Total Lagrangian counterpart, namely
[𝜂𝑿 ]] ≤ 0. Intuitively, this implies that the entropy behind the shock must be greater than ahead, indicating that the shock creates entropy as it
ropagates [45].

emark 1. Interestingly, if we consider the material density 𝜌𝑿 to be uniform1, the mass conservation expression (9d) reduces to a geometric
conservation equation for the material volume map 𝐽𝚿. The corresponding local differential equation and its jump condition are thus formulated
as

𝜕
𝜕𝑡
|

|

|

|𝝌
𝐽𝚿 − DIV𝝌

(

𝑯𝑇
𝚿𝑾

)

= 0; 𝑈𝝌 [[𝐽𝚿]] = −[[𝑯𝑇
𝚿𝑾 ]] ⋅𝑵𝝌 . (12)

3.2. Combined system for solid dynamics

Combining the equations presented above results into a system of first-order hyperbolic conservation equations written in an ALE setting
(with respect to the referential domain). This can be expressed as

𝜕
𝜕𝑡
|

|

|

|𝝌
 𝝌 +

3
∑

𝐼=1

𝜕 𝐼
𝝌

𝜕𝜒𝐼
= 𝝌 , (13)

with vector of conserved variables  𝝌 , flux vector  𝐼
𝝌 and source term 𝝌 described by

 𝝌 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒑𝝌
𝑭𝚽
𝑭𝚿
𝐽𝚿
𝜂𝝌

⎤

⎥

⎥

⎥

⎥

⎥

⎦

;  𝐼
𝝌 = −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑷 𝝌𝐼
𝒗̂⊗ 𝐼
𝑾 ⊗ 𝐼

(

𝑯𝑇
𝚿𝑾

)

⋅ 𝐼
(

𝜂𝑿𝑯𝑇
𝚿𝑾 −

𝑸𝝌
𝜃

)

⋅ 𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

; 𝝌 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐽𝚿𝒇𝑿
𝟎
𝟎
0

𝐽𝚿
𝜃

(

𝑠𝑿 + ̇Phy
)

− 1
𝜃2
𝑸𝝌 ⋅

(

𝛁𝝌𝜃
)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (14)

1 This will be the case for the numerical examples presented in this paper.
5
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where, for the sake of compactness, we define

𝒑𝝌 = 𝐽𝚿𝒑𝑿 ; 𝜂𝝌 = 𝐽𝚿𝜂𝑿 ; 𝑷 𝝌 =
(

𝑷 + 𝒑𝑿 ⊗𝑾
)

𝑯𝚿. (15)

In addition to the initial and boundary (essential and natural) conditions necessary to fully define the initial boundary value problem, the
losure of the system (13) requires the introduction of an appropriate constitutive law that must adhere to various physical criteria, such as
hermodynamic consistency (verified through the Coleman–Noll procedure [46,47]) and compliance with the principle of objectivity [4]. In the
ontext of thermo-elasticity, this involves introducing a suitable internal energy potential, denoted as (𝑭 , 𝜂𝑿 ). This potential ensures that stress
, deformation gradient tensor 𝑭 and entropy 𝜂𝑿 are related through the relation 𝑷 = 𝜕(𝑭 ,𝜂𝑿 )

𝜕𝑭 . Ensuring stability requires the internal energy
potential  to demonstrate rank-one convexity (also known as ellipticity) in the sense of the Legendre–Hadamard condition [48,49]. An extension
to consider path-dependent constitutive models will be explored in the next section.

As for the heat flux vector 𝑸𝝌 , we employ the Fourier’s law for an isotropic material written in a reference description as

𝑸𝝌 = −𝑲𝚽𝛁𝝌𝜃; 𝑲𝚽 = ℎ𝐽−1
𝚽 𝑯𝑇

𝚽𝑯𝚽, (16)

where ℎ denotes the non-negative thermal conductivity coefficient calibrated in the spatial configuration.

Remark 2. Utilising established Calorimetry relationships [45,46] that interconnect the internal energy density  , entropy density 𝜂𝑿 and
emperature 𝜃, and taking into account the relation 𝜃 = 𝜕(𝑭 ,𝜂𝑿 )

𝜕𝜂𝑿
, we obtain a simple one-to-one expression relating temperature and entropy [45]

Θ(𝑭 , 𝜂𝑿 ) = 𝜃𝑅 exp
(

𝜂𝑿 − 𝜂̃𝑿 (𝐽 )
𝑐𝑣

)

= 𝜃(𝑿, 𝑡), (17)

where 𝜃𝑅 is a reference temperature, 𝜂̃𝑿 (𝐽 ) is an entropy function dependent upon the Jacobian 𝐽 evaluated at the reference temperature, and
𝑐𝑣 = 𝜌𝑿𝐶𝑉 , where 𝐶𝑉 and 𝑐𝑣 represent the specific heat per unit mass and per unit material volume, respectively, which have been assumed to
be constant. The symbols Θ and 𝜃 are used interchangeably to denote the same temperature with different functional dependencies.

emark 3. The evaluation of the hyperbolic nature of the system (13) is crucial to ensuring the existence of real-valued wave speeds across
ll possible deformation states. As discussed in Refs. [26,50], the condition of a (rank-one) convex internal energy functional is sufficient to
uarantee hyperbolicity for a given material motion. For a more in-depth understanding, we refer the reader to Ref. [26] for a detailed explanation.
he relation between the referential wave speed 𝑈𝝌 and the material wave speed 𝑈𝑿 is succinctly summarised in the equation below

𝑈𝝌 =
Λ𝑯𝚿

𝐽𝚿

(

𝑈𝑿 −𝑾 ⋅𝑵𝑿
)

; Λ𝑯𝚿
𝑵𝑿 = 𝑯𝚿𝑵𝝌 . (18)

4. Alternative versions of the first-order conservation laws in solid dynamics

The application of suitable kinematic considerations can transform the ALE system of conservation laws (13) into alternative continuum
conservation frameworks. In previous work [26], the authors have shown how the ALE system can degenerate into: (1) a Total Lagrangian
framework, (2) an Updated Reference Lagrangian framework, and (3) an Eulerian framework. Through this process, the ALE system (13) was
shown to be an elegant generalisation of its alternative continuum counterparts. This Section explores further this concept in order to explain
and motivate recent velocity-shifting and particle-shifting techniques which have gained important traction within the SPH community. We
will first consider in this section the simplified case of thermo-elasticity by assuming that the dissipation of the selected constitutive model is
zero, that is ̇Phy = 0, before considering a more advanced inelastic model in the following section.

4.1. Total Lagrangian formulation with velocity perturbation

The ALE system of Eqs. (9) can be specialised to the case when considering a mapping 𝚿(𝝌 , 𝑡) from the referential to the material domain
such that its deformation gradient can be considered negligible (i.e. {𝑭𝚿,𝑯𝚿, 𝐽𝚿} ≈ {𝑰 , 𝑰 , 1}) but not necessarily its velocity field 𝑾 ≠ 𝟎.
This leads to the following particularised system of equations

𝜕
𝜕𝑡
|

|

|

|𝝌
𝒑𝑿 − DIV𝝌

(

𝑷 −
(

𝒑𝑿 ⊗ 𝒄
)

𝑭 −𝑇 ) = 𝒇𝑿 ; (19a)

𝜕
𝜕𝑡
|

|

|

|𝝌
𝑭 − DIV𝝌 ((𝒗 − 𝒄)⊗ 𝑰) = 𝟎; (19b)

𝜕
𝜕𝑡
|

|

|

|𝝌
𝜌𝑿 + DIV𝝌

(

𝜌𝑿𝑭 −1𝒄
)

= 0; (19c)

𝜕
𝜕𝑡
|

|

|

|𝝌
𝜂𝑿 + DIV𝝌

(

𝜂𝑿𝑭 −1𝒄 +
𝑸𝑿
𝜃

)

= 1
𝜃
𝑠𝑿 − 1

𝜃2
(

𝛁𝑿𝜃
)

⋅𝑸𝑿 (19d)

𝜕 |

|

|

𝝋 = 𝒗 − 𝒄. (19e)
6

𝜕𝑡
|𝝌
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Notice that in this case, the geometric conservation law (9c) is unnecessary due to its redundancy and does not feature in (19). Moreover, the
deformation from the referential to the spatial domain reduces to 𝑭𝚽 ≈ 𝑭 (refer to Eq. (19b)) with the velocity 𝑾 = −𝑭 −1𝒄. Finally, notice
hat the differential operator DIV𝝌 can be approximated as DIV𝝌 ≈ DIV𝑿 .

This set of equations extends the velocity-shifting continuum formulation [51–53] for free surface fluid flows as originally derived in
he context of SPH. Finally, by setting the perturbation velocity 𝒄 ≈ 𝟎, the corresponding Total Lagrangian system [37,42,43,54–57] can be
ecovered, as 𝝌 ≈ 𝑿 and the material domain is then completely aligned with the referential domain.

.2. Updated reference Lagrangian formulation

In this specific scenario, we explore a situation where a negligible velocity 𝑾 induces non-negligible material deformation 𝑭𝚿 = 𝑭̄𝚿. From
mathematical standpoint, this situation can be defined by the conditions {𝑭𝚿,𝑯𝚿, 𝐽𝚿} = {𝑭̄𝚿, 𝑯̄𝚿, 𝐽𝚿} and 𝑾 ≈ 𝟎, resulting into 𝒗̂ ≈ 𝒗.
hen these conditions are applied, the ALE system (9) degenerates to the following set of equations

𝜕
𝜕𝑡
|

|

|

|𝝌

(

𝐽𝚿𝒑𝑿
)

− DIV𝝌
(

𝑷 𝑯̄𝚿
)

= 𝐽𝚿𝒇𝑿 ; (20a)

𝜕
𝜕𝑡
|

|

|

|𝝌
𝑭𝚽 − DIV𝝌 (𝒗⊗ 𝑰) = 𝟎; (20b)

𝜕
𝜕𝑡
|

|

|

|𝝌

(

𝐽𝚿𝜌𝑿
)

= 0; (20c)

𝜕
𝜕𝑡
|

|

|

|𝝌

(

𝐽𝚿𝜂𝑿
)

+ DIV𝝌

(𝑸𝝌

𝜃

)

=
𝐽𝚿
𝜃
𝑠𝑿 − 1

𝜃2
(

𝛁𝑿𝜃
)

⋅𝑸𝑿 ; (20d)

𝜕
𝜕𝑡
|

|

|

|𝝌
𝚽 = 𝒗. (20e)

Notice that in this case, the geometric conservation law (9b) is unnecessary due to its redundancy, and the deformation gradient tensor from
the referential to the spatial domain can be recovered as 𝑭 ≈ 𝑭𝚽𝑭̄

−1
𝚿 following solution of (20b). Finally, the time derivative term can be

approximated as 𝜕
𝜕𝑡

|

|

|

|𝝌
(⋅) ≈ 𝜕

𝜕𝑡

|

|

|

|𝑿
(⋅).

This set of equations can be re-interpreted as the Updated Reference Lagrangian formulation as proposed by [33,37]. In these works, the
deformation triad {𝑭̄𝚿, 𝑯̄𝚿, 𝐽𝚿} was carefully chosen to continuously track the movement of the deformable solid. Moreover, this approach can
also be viewed as an adaptation of the particle-shifting continuum formulation [58–61], initially developed for fluid dynamics in the context
of SPH.

4.3. Eulerian formulation

The derivation of the corresponding Eulerian system is facilitated by aligning the referential and spatial domains through the enforcement of
specific kinematic conditions. By setting 𝒗̂ = 𝟎 and imposing {𝑭𝚽,𝑯𝚽, 𝐽𝚽} = {𝑰 , 𝑰 , 1}, we ensure the coincidence of the referential and spatial
coordinates 𝝌 = 𝒙, the material velocity 𝑾 = −𝑭 −1𝒗 and the material mappings {𝑭𝚿,𝑯𝚿, 𝐽𝚿} = {𝑭 −1,𝑯−1, 𝐽−1}. This set of conditions
results in the simplification of the ALE formulation to its Eulerian counterpart, as discussed in Refs. [32,45,62]. To facilitate this transition, we
introduce the following fields:

𝜌𝒙 = 𝐽−1𝜌𝑿 ; 𝒑𝒙 = 𝐽−1𝒑𝑿 ; 𝜂𝒙 = 𝐽−1𝜂𝑿 ; 𝒒 = −ℎ𝛁𝒙𝜃; 𝑠𝒙 = 𝐽−1𝑠𝑿 . (21)

The Eulerian system is thus characterised by the following conservation equations

𝜕
𝜕𝑡
|

|

|

|𝒙
𝜌𝒙 + div𝒙

(

𝜌𝒙𝒗
)

= 0; (22a)

𝜕
𝜕𝑡
|

|

|

|𝒙
𝒑𝒙 − div𝒙

[

𝝈 − 𝒑𝒙 ⊗ 𝒗
]

= 𝒇 ; (22b)

𝜕
𝜕𝑡
|

|

|

|𝒙
𝑭 −1 + div𝒙(𝑭 −1𝒗⊗ 𝑰) = 𝟎; (22c)

𝜕
𝜕𝑡
|

|

|

|𝒙
𝜂𝒙 + div𝒙

(𝒒
𝜃
+ 𝜂𝒙𝒗

)

= 1
𝜃
𝑠𝒙 − 1

𝜃2
(

𝛁𝒙𝜃
)

⋅ 𝒒; (22d)

𝜕
𝜕𝑡
|

|

|

|𝒙
𝚿 = −𝑭 −1𝒗. (22e)

This reformulation captures the essence of the Eulerian perspective by focusing on spatial rather than material coordinates, where div𝒙 denotes
the divergence operator in the spatial configuration.

5. Extension to irrecoverable plasticity model

To model the strain-rate and thermally dependent behaviour, we employ a von Mises plasticity model utilising the nonlinear Johnson–Cook
hardening law [37]. This inelastic constitutive model is summarised in this section, with an in-depth description included in Ref. [38]. The
7
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Johnson–Cook nonlinear hardening law is characterised by a yield function 𝑓 , which depends on the deviatoric Kirchhoff stress 𝝉 ′ and a yield
stress 𝜏𝑦. The yield stress is a function of the equivalent plastic strain 𝜀̄𝑝, its plastic strain rate ̇̄𝜀𝑝 (involving the material time derivative) and
the temperature 𝜃. This relationship is expressed as

𝑓
(

𝝉 ′, 𝜀̄𝑝, ̇̄𝜀𝑝, 𝜃
)

= 𝜏 − 𝜏𝑦
(

𝜀̄𝑝, ̇̄𝜀𝑝, 𝜃
)

≤ 0; 𝜏 =
√

3
2
(𝝉 ′ ∶ 𝝉 ′). (23)

Here, 𝜏 represents the generalised scalar von Mises equivalent stress. The nonlinear hardening law is described by

𝜏𝑦
(

𝜀̄𝑝, ̇̄𝜀𝑝, 𝜃
)

=
(

𝜏0𝑦 +𝐻𝜀̄
𝑁
𝑝

)

[

1 + 𝐶 ln

(

̇̄𝜀𝑝
𝜀̇0

)]

[

1 − (𝑔(𝜃))𝑀
]

, (24)

where 𝑔(𝜃) is defined as

𝑔(𝜃) =

⎧

⎪

⎨

⎪

⎩

0 if 𝜃 < 𝜃transition
𝜃−𝜃transition
𝜃melting−𝜃𝑅

if 𝜃transition ≤ 𝜃 ≤ 𝜃melting

1 𝜃 > 𝜃melting.

(25)

In the above expression, 𝜃 denotes the current temperature, 𝜃melting is the melting temperature of the material and 𝜃transition is the temperature
at or below which there is temperature dependence of the yield stress. Furthermore, 𝜏0𝑦 denotes the initial yield stress and 𝜀̇0 is the reference
strain rate calibrated based on the material. The remaining material constants include the material hardening parameter 𝐻 , hardening exponent
𝑁 , strain-rate coefficient 𝐶 and temperature exposure 𝑀 . Notably, when 𝜃 > 𝜃melting, the material is assumed to melt and behave like a fluid,
offering no shear resistance since 𝜏𝑦 = 0. Interestingly, by setting the values 𝑁 = 1, 𝐶 = 0 and 𝜃transition ≈ ∞ (which in turn implies 𝑔(𝜃) = 0),
the rate-independent linear hardening law can be simply recovered, that is

𝜏𝑦
(

𝜀̄𝑝
)

= 𝜏0𝑦 +𝐻𝜀̄
𝑁
𝑝 . (26)

To establish a physically meaningful flow rule, the concept of work conjugacy [4] is applied. In the context of elasto-plasticity, the material
time derivative of plastic dissipation ̇Phy (per unit material volume) is formulated in terms of the Kirchhoff stress 𝝉 and the plastic rate of
deformation 𝒍𝑝 as [4]

̇Phy = 𝝉 ∶ 𝒍𝑝; 𝒍𝑝 = −1
2
𝑭
(

𝜕
𝜕𝑡
|

|

|

|𝑿
𝑪−1
𝑝

)

𝑪𝑝𝑭 −1 = 𝛾̇
𝜕𝑓

(

𝝉 ′, 𝜀̄𝑝, ̇̄𝜀𝑝, 𝜃
)

𝜕𝝉
. (27)

To ensure the principle of maximum plastic dissipation, it is crucial to establish a correlation between the plastic rate of deformation (first
equality of 𝒍𝑝) and the flow rule (second equality of 𝒍𝑝), ensuring the material efficiently dissipates energy due to plastic deformation. Here,
̇ , a proportionality factor, is referred to as the plastic multiplier (or consistency parameter). It is expressed as a rate to maintain dimensional
onsistency with the plastic rate of deformation 𝒍𝑝, and is obtained enforcing the yield constraint. By rearranging the above expression, and
ecalling the ALE transformation rule (A.4), the ALE time evolution expression of the inelastic right Cauchy–Green tensor can be obtained as

𝐽𝚿
𝜕
𝜕𝑡
|

|

|

|𝝌
𝑪−1
𝑝 −

(

𝛁𝝌𝑪−1
𝑝

)

(

𝑯𝑇
𝚿𝑾

)

= −2𝐽𝚿𝛾̇𝑭 −1

(

𝜕𝑓
(

𝝉 ′, 𝜀̄𝑝, ̇̄𝜀𝑝, 𝜃
)

𝜕𝝉
𝒃𝑒

)

𝑭 −𝑇 . (28)

The subsequent step is to establish the relationship between the consistency parameter 𝛾̇ and the evolution of the internal hardening variable
̄𝑝. By recalling the von Mises equivalent stress 𝜏 from (23), the material time rate of 𝜀̄𝑝 is defined to be the work conjugate to 𝜏, described as
elow

𝜏 𝜕
𝜕𝑡
|

|

|

|𝑿
𝜀̄𝑝 = ̇Phy = 𝝉 ∶

(

𝛾̇
𝜕𝑓 (𝝉 ′, 𝜀̄𝑝, ̇̄𝜀𝑝, 𝜃)

𝜕𝝉

)

= 𝝉 ∶ 𝛾̇ 𝝉 ′
√

2
3 (𝝉

′ ∶ 𝝉 ′)
= 𝜏𝛾̇. (29)

Comparing the first term and the last term of the above equation, and again utilising the transformation rule (A.4), the ALE time evolution
equation for the equivalent plastic strain is

𝐽𝚿
𝜕
𝜕𝑡
|

|

|

|𝝌
𝜀̄𝑝 −

(

𝛁𝝌 𝜀̄𝑝
)

⋅
(

𝑯𝑇
𝚿𝑾

)

= 𝐽𝚿𝛾̇ . (30)

6. Weak form and second law of thermodynamics

6.1. The conjugate variables of the underlying system

To convey a meaningful physical interpretation to the conjugate fields of interest in this work, let us consider the Ballistic energy 𝝌 per
nit of referential volume defined by

𝝌 (𝝌 , 𝑡) = ̂𝝌 (𝒑𝝌 ,𝑭𝚽,𝑭𝚿, 𝐽𝚿, 𝜂𝝌 ,𝑪−1
𝑝 ) = 1

2𝜌𝝌
𝒑𝝌 ⋅ 𝒑𝝌 + 𝐽𝚿

(

𝑭
(

𝑭𝚽,𝑭𝚿
)

, 𝐽−1
𝚿 𝜂𝝌 ,𝑪−1

𝑝

)

− 𝜃𝑅𝜂𝝌 , (31)

where 𝜌𝝌 = 𝐽𝚿𝜌𝑿 . Both 𝝌 (𝝌 , 𝑡) and ̂𝝌 (𝒑𝝌 ,𝑭𝚽,𝑭𝚿, 𝐽𝚿, 𝜂𝝌 ,𝑪−1
𝑝 ) represent alternative functional expressions of the same magnitude. In this

equation, the terms on the right-hand side have different physical meanings: the first term denotes kinetic energy, the second term represents
internal energy and the third term represents thermal energy.
8
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With appropriate energy conjugate fields for the two deformation measures {𝑭𝚽,𝑭𝚿} defined as

𝑷𝚽 = 𝐽𝚿
𝜕(𝑭 (𝑭𝚽,𝑭𝚿), 𝐽−1

𝚿 𝜂𝝌 ,𝑪−1
𝑝 )

𝜕𝑭𝚽
; 𝑷𝚿 = 𝐽𝚿

𝜕(𝑭 (𝑭𝚽,𝑭𝚿), 𝐽−1
𝚿 𝜂𝝌 ,𝑪−1

𝑝 )

𝜕𝑭𝚿
, (32)

along with the energy conjugates to the entropy density 𝜂𝝌 and to the inverse of the inelastic right Cauchy–Green strain tensor 𝑪−1
𝑝

𝜃 = 𝐽𝚿
𝜕(𝑭 (𝑭𝚽,𝑭𝚿), 𝐽−1

𝚿 𝜂𝝌 ,𝑪−1
𝑝 )

𝜕𝜂𝝌
; 𝑷 𝑪−1

𝑝
= 𝐽𝚿

𝜕(𝑭 (𝑭𝚽,𝑭𝚿), 𝐽−1
𝚿 𝜂𝝌 ,𝑪−1

𝑝 )

𝜕𝑪−1
𝑝

, (33)

the associated work conjugates 𝝌 become

𝝌 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕̂𝝌
𝜕𝒑𝝌
𝜕̂𝝌
𝜕𝑭𝚽
𝜕̂𝝌
𝜕𝑭𝚿
𝜕̂𝝌
𝜕𝐽𝚿
𝜕̂𝝌
𝜕𝜂𝝌
𝜕̂𝝌
𝜕𝑪−1

𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒗
𝑷𝚽
𝑷𝚿
−
𝜗

𝑷 𝑪−1
𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒗
𝑷𝑯𝚿

−𝑭 𝑇𝑷𝑯𝚿
−
𝜗

1
2𝐽𝚿𝑭

𝑇𝑷𝑪𝑝

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (34)

Note that the expression for 𝑷 𝑪−1
𝑝

is obtained specifically for isotropic materials, where the dependency is expressed through 𝒃𝑒(𝑭 ,𝑪−1
𝑝 ). A

detailed discussion for this expression can be found in Ref. [38]. Here, 𝜗 = 𝜃 − 𝜃𝑅 represents the temperature difference between the current
temperature and the reference temperature, and the (thermal–mechanical based) Lagrangian function2 (𝒗,𝑭 , 𝜂𝑿 ) = (𝒗) −

(

(𝑭 , 𝜂𝑿 ) − 𝜃𝜂𝑿
)

,
defined as a combination of the kinetic energy (𝒗) = 1

2𝜌𝑅 (𝒗 ⋅ 𝒗), the internal energy  and the heat dissipative energy 𝜃𝜂𝑿 .

6.2. Variational statement

In general, a standard weak variational statement for the thermo-mechanical coupled system is established by multiplying the local differential
Eqs. (13) (expressed in terms of the conservation variables  𝝌 ) with their corresponding work conjugate virtual fields 𝛿𝝌 (34). This
multiplication is followed by integration over the reference domain Ω𝝌 of the body, resulting in the formulation

∫Ω𝝌

𝛿𝑇
𝝌

[

𝜕
𝜕𝑡
|

|

|

|𝝌
 𝝌

]

𝑑Ω𝝌 − ∫Ω𝝌

𝛿𝑇
𝝌𝝌 𝑑Ω𝝌 + ∫Ω𝝌

𝛿𝑇
𝝌

𝜕 𝐼
𝝌

𝜕𝜒𝐼
𝑑Ω𝝌 = 0. (35)

It is interesting to notice that, under an isothermal deformation process (𝜃 = 𝜃𝑅 and then 𝜗 = 0), the entropy density evolution Eq. (9e) separates
rom the rest of the system when treated in a weak manner. This implies a degeneration of the fields (34) into the usual work conjugates utilised
or isothermal plasticity, as detailed in Ref. [63].

Performing integration by parts on the last term of the right-hand side in (35), and expanding the resulting equation, yields

∫Ω𝝌

𝛿𝑇
𝝌

[

𝜕
𝜕𝑡
|

|

|

|𝝌
 𝝌

]

𝑑Ω𝝌 = ∫Ω𝝌

𝛿𝑇
𝝌𝝌 𝑑Ω𝝌 + ∫Ω𝝌

[ 𝜕𝛿𝝌

𝜕𝜒𝐼

]𝑇

 𝐼
𝝌 𝑑Ω𝝌 − ∫𝜕Ω𝝌

𝛿𝑇
𝝌𝑵𝝌

𝑑𝐴𝝌 , (36)

here the normal fluxes 𝑵𝝌
=  𝐼

𝝌𝑁
𝐼
𝝌 with 𝑁𝐼

𝝌 representing the outward normal in 𝐼 th referential direction. The representation (36) can be
articularised to specific conservation variables, namely

∫Ω𝝌

𝛿𝒗 ⋅
𝜕
𝜕𝑡
|

|

|

|𝝌
𝒑𝝌 𝑑Ω𝝌 = ∫Ω𝝌

−𝑷 𝝌 ∶ 𝛁𝝌𝛿𝒗 𝑑Ω𝝌 + ∫Ω𝝌

𝛿𝒗 ⋅ 𝒇𝝌 𝑑Ω𝝌 + ∫𝜕Ω𝝌

𝛿𝒗 ⋅ 𝒕𝐵 𝑑𝐴𝝌 ; (37a)

∫Ω𝝌

𝛿𝑷𝚽 ∶ 𝜕
𝜕𝑡
|

|

|

|𝝌
𝑭𝚽 𝑑Ω𝝌 = ∫Ω𝝌

𝛿𝑷𝚽 ∶ 𝛁𝝌 𝒗̂ 𝑑Ω𝝌 ; (37b)

∫Ω𝝌

𝛿𝑷𝚿 ∶ 𝜕
𝜕𝑡
|

|

|

|𝝌
𝑭𝚿 𝑑Ω𝝌 = ∫Ω𝝌

𝛿𝑷𝚿 ∶ 𝛁𝝌𝑾 𝑑Ω𝝌 ; (37c)

∫Ω𝝌

𝛿 𝜕
𝜕𝑡
|

|

|

|𝝌
𝐽𝚿 𝑑Ω𝝌 = ∫Ω𝝌

𝛿𝑯𝚿 ∶ 𝛁𝝌𝑾 𝑑Ω𝝌 ; (37d)

∫Ω𝝌

𝛿𝜗 𝜕
𝜕𝑡
|

|

|

|𝝌
𝜂𝝌 𝑑Ω𝝌 = −∫𝜕Ω𝝌

𝛿𝜗
(

𝑄𝐵
𝜃𝐵

)

𝑑𝐴𝝌 − ∫Ω𝝌

(

𝛁𝝌𝛿𝜗
)

⋅
(

𝜂𝑿𝑯𝑇
𝚿𝑾 −

𝑸𝝌

𝜃

)

𝑑Ω𝝌

+ ∫Ω𝝌

𝛿𝜗
𝐽𝚿
𝜃

(

𝑠𝑿 + ̇Phy
)

𝑑Ω𝝌 − ∫Ω𝝌

𝛿𝜗 1
𝜃2

𝑸𝝌 ⋅ 𝛁𝝌𝜃 𝑑Ω𝝌 . (37e)

2 Employing the Legendre transformation enables the Lagrangian function to be expressed in terms of Helmholtz’s free energy potential 𝜓 , namely ̃(𝒗,𝑭 , 𝜃) = (𝒗)−𝜓(𝑭 , 𝜃).
9
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Furthermore, it is crucial to emphasise that integrating by parts, as shown in (36), facilitates the imposition of physical boundary conditions.
This is particularly useful for the linear momentum Eq. (37a) and the total energy Eq. (37e), as these expressions naturally introduce the
boundary traction 𝒕𝐵 , the boundary temperature 𝜃𝐵 and the heat flux 𝑄𝐵 . In contrast, the integration-by-parts technique is less critical for
the remaining geometric conservation laws. Here, velocity boundary conditions, such as 𝒗𝐵 and 𝑾 𝐵 , are imposed directly through essential
boundary conditions. This direct approach differs from the natural enforcement achieved through surface integrals in the Eqs. (37a) and (37e).

Additionally, it is essential to demonstrate that the weak form ((37a) to (37e)) ensures the satisfaction of fundamental thermodynamic
principles, such as the second law. This is achieved through the addition of expressions (37a)–(37e) together with the conjugate fields specifically
chosen as 𝛿𝝌 = 𝝌 . Subsequent algebraic manipulation leads to the following inequality

𝑑
𝑑𝑡 ∫Ω𝝌

𝝌 𝑑Ω𝝌 − Π̇ext
𝝌 −ext

𝝌 ≤ 0. (38)

Here, Π̇ext
𝝌 denotes the mechanical power associated with external forces as

Π̇ext
𝝌 = ∫Ω𝝌

𝒗 ⋅ 𝒇𝝌 𝑑Ω𝝌 + ∫𝜕Ω𝝌

𝒗𝐵 ⋅ 𝒕𝐵 𝑑𝐴𝝌 ; 𝒕𝐵 =
(

𝑷𝑯𝚿
)

𝑵𝝌 , (39)

and ext
𝝌 accounts for the heat source and heat flux added (removed) to (from) the system as

ext
𝝌 = ∫Ω𝝌

𝜗
𝜃
𝐽𝚿𝑠𝑿 𝑑Ω𝝌 − ∫𝜕Ω𝝌

𝜗
𝜃𝐵
𝑄𝐵 𝑑𝐴𝝌 . (40)

Inequality (38) represents a valid expression for the second law of thermodynamics for the system. A detailed derivation is provided in Ref. [38].
The fulfilment of inequality (38) is a necessary ab initio condition to ensure stability, commonly known as the classical Coleman–Noll procedure.

his concept will be further explored in Section 8.2 when introducing entropy-stable numerical dissipation.

. ALE material motion

In general, the primary objective of the ALE smoothing procedure is to serve as a flexible method for appropriately adjusting the position of
he underlying discretisation (i.e. particles). This adjustment aims to mitigate common issues in large strain SPH simulations, such as particles
lustering too closely or stretching too far apart in the spaces they occupy, especially in regions experiencing significant deformation (i.e. plastic
ow). The ALE approach seeks to improve the robustness of the formulation and the accuracy of the solution fields, whilst also potentially
educing computational costs. As previously explored in Ref. [38], the material (shifting) motion of particles 𝒑𝑾 can be defined by solving a
onservation-type law, along with an appropriate jump condition, described as follows

𝜕
𝜕𝑡
|

|

|

|𝝌
𝒑𝑾 − DIV𝝌𝑷𝑾 = 𝟎; 𝑈𝝌 [[𝒑𝑾 ]] = −[[𝑷𝑾 ]]𝑵𝝌 , (41)

where 𝒑𝑾 = 𝜌𝑿𝑾 denotes the momentum per unit of reference volume. Additionally, 𝑷𝑾 represents the first Piola–Kirchhoff stress associated
with the corresponding material motion. Above conservation equation monitors how the material velocity 𝑾 evolves as particles move from
the referential domain to the material domain.

The remaining unknown in the above expression is the definition of the stress tensor, which measures material force per unit area acting on
a surface in the reference configuration. This can be achieved by introducing the scalar potential function Π through a convex combination of
strain energy potential functions defined in terms of 𝑭𝚿 and 𝑭̄𝚽, where 𝑭̄𝚽 = 𝑭̄ (𝑭 )𝑭𝚿, with function 𝑭̄ (𝑭 ) specifically designed to selectively
incorporate certain aspects of the deformation pertinent to the problem being considered. Additionally, to prevent particles inter-penetration, it
is useful to further incorporate a spring strain type of energy 𝛹 spr as

Π(𝑭𝚿, 𝑭̄𝚽) = (1 − 𝛼)𝛹̂ (𝑭𝚿) + 𝛼𝛹̂ (𝑭̄𝚽) + 𝛾𝛹 spr(𝑭𝚿). (42)

We refer to the numerical examples presented in Section 11 that demonstrate this concept. In the equation above, the first two terms on the
right-hand side depend on the deviatoric component of a constitutive model 𝛹̂ and the last term denotes the spring model, defined as

𝛹 spr(𝑭𝚿) = 𝛹̃ spr(𝜆𝚿(𝑭𝚿)) =
𝑑
4
𝐸(ln 𝜆𝚿)2; 𝜆2𝚿 = 1

𝑑
𝑭𝚿 ∶ 𝑭𝚿, (43)

where 𝐸 denotes a Young’s modulus type of constant, the non-dimensional parameters 𝛼 and 𝛾 range from 0 to 1, and 𝑑 denotes the number
f dimensions of the problem. Differentiating expression (42) in time for a given deformation gradient 𝑭 provides

𝑷𝑾 ∶ 𝜕
𝜕𝑡
|

|

|

|𝝌
𝑭𝚿 = 𝜕

𝜕𝑡
|

|

|

|𝝌
Π

=

[

(1 − 𝛼)
𝜕𝛹̂ (𝑭𝚿)
𝜕𝑭𝚿

+ 𝛾 𝜕𝛹
spr

𝜕𝑭𝚿

]

∶ 𝜕
𝜕𝑡
|

|

|

|𝝌
𝑭𝚿 + 𝛼

𝜕𝛹̂ (𝑭̄𝚽)
𝜕𝑭̄𝚽

∶
(

𝑭̄ 𝜕
𝜕𝑡
|

|

|

|𝝌
𝑭𝚿

)

=

[

(1 − 𝛼)
𝜕𝛹̂ (𝑭𝚿)
𝜕𝑭𝚿

+ 𝛼𝑭̄ 𝑇 𝜕𝛹̂ (𝑭̄𝚽)
𝜕𝑭̄𝚽

+ 𝛾 𝜕𝛹
spr

𝜕𝑭𝚿

]

∶ 𝜕
𝜕𝑡
|

|

|

|𝝌
𝑭𝚿,

(44)

hich eventually gives

𝑷𝑾 = (1 − 𝛼)
𝜕𝛹̂ (𝑭𝚿)
𝜕𝑭𝚿

+ 𝛼𝑭̄ 𝑇 𝜕𝛹̂ (𝑭̄𝚽)
𝜕𝑭̄𝚽

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

+
(

𝛾𝐸
ln 𝜆𝚿
2𝜆𝚿

)(

1
𝜆𝚿

𝑭𝚿

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
spr

. (45)
10
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Remark 4. In this work, we adopt the deviatoric strain energy 𝛹̂ from the neo-Hookean model, defined as follows

𝛹̂ (𝑨) = 1
2
𝜇̂
[

𝐽−2∕3
𝑨 (𝑨 ∶ 𝑨) − 3

]

; 𝐽𝑨 = det𝑨; 𝑨 = {𝑭𝚿, 𝑭̄𝚽}. (46)

Here, 𝜇̂ = 𝜁𝜇 represents a (fictitious) shear modulus defined in terms of the physical shear modulus 𝜇. The dimensionless coefficient 𝜁 , varying
within the range of [0, 1], adjusts 𝜇 to reflect a fraction of the physical shear modulus. This adjustment is particularly relevant in scenarios
dominated by large inertial effects, where a lower 𝜁 value can prevent the fast propagation of waves and potential shock formation during ALE
motion.

8. Numerical scheme

8.1. Smooth particle hydrodynamics spatial discretisation

Applying the standard gradient correction proposed in [64] to ensure zeroth- and first-order completeness, the SPH discretisation for the
first-order system described in (13), after some algebraic manipulation, takes the following form

Ω𝑎𝝌
𝑑
𝑑𝑡

𝒑𝑎𝝌 = 𝑻 𝑎𝝌 + Ω𝑎𝝌𝒇
𝑎
𝝌 + 𝐴𝑎𝝌 𝒕

𝑎
𝐵 ; (47a)

Ω𝑎𝝌
𝑑
𝑑𝑡

𝑭 𝑎
𝚽 =

∑

𝑏∈Λ𝑏𝑎

1
2
(

𝒗̂𝑏 − 𝒗̂𝑎
)

⊗ 𝐂𝑎𝑏𝝌 ; (47b)

Ω𝑎𝝌
𝑑
𝑑𝑡

𝑭 𝑎
𝚿 =

∑

𝑏∈Λ𝑏𝑎

1
2
(

𝑾 𝑏 −𝑾 𝑎
)

⊗ 𝐂𝑎𝑏𝝌 ; (47c)

Ω𝑎𝝌
𝑑
𝑑𝑡
𝐽 𝑎𝚿 =

∑

𝑏∈Λ𝑏𝑎

1
2

[(

𝑯𝑎,𝑇
𝚿 𝑾 𝑎

)

⋅ 𝐂𝑎𝑏𝝌 −
(

𝑯𝑏,𝑇
𝚿 𝑾 𝑏

)

⋅ 𝐂𝑏𝑎𝝌
]

; (47d)

Ω𝑎𝝌
𝑑
𝑑𝑡
𝜂𝑎𝝌 =

∑

𝑏∈Λ𝑎

1
2

[(

𝜂𝑎𝑿𝑯
𝑎,𝑇
𝚿 𝑾 𝑎

)

⋅ 𝐂𝑎𝑏𝝌 −
(

𝜂𝑏𝑿𝑯
𝑏,𝑇
𝚿 𝑾 𝑏

)

⋅ 𝐂𝑏𝑎𝝌
]

−
∑

𝑏∈Λ𝑎

1
2Θ𝑎

(

𝑸𝑎
𝝌 ⋅ 𝐂𝑎𝑏𝝌 −𝑸𝑏

𝝌 ⋅ 𝐂𝑏𝑎𝝌
)

−
∑

𝛾∈Λ𝐵𝑎

𝑄𝑎𝐵
𝜃𝑎𝐵

‖𝐂𝛾𝝌‖ + Ω𝑎𝝌
𝐽 𝑎𝚿
𝜃𝑎

(

𝑠𝑎𝑿 + ̇𝑎
Phy

)

; (47e)

Ω𝑎𝝌
𝑑
𝑑𝑡

𝒑𝑎𝑾 = 𝑻 𝑎𝑾 . (47f)

The particle-based internal force 𝑻 𝑎𝝌 is defined as

𝑻 𝑎𝝌 =
∑

𝑏∈Λ𝑏𝑎

𝑻 𝑎𝑏𝝌 ; 𝑻 𝑎𝑏𝝌 = 1
2

(

𝑷 𝑎
𝝌𝐂

𝑎𝑏
𝝌 − 𝑷 𝑏

𝝌𝐂
𝑏𝑎
𝝌

)

, (48)

where the pseudo-area vectors [44] are

𝐂𝑎𝑏𝝌 = 2Ω𝑎𝝌Ω
𝑏
𝝌 𝛁̃𝝌W𝑏(𝝌𝑎); 𝐂𝑏𝑎𝝌 = 2Ω𝑎𝝌Ω

𝑏
𝝌 𝛁̃𝝌W𝑎(𝝌𝑏). (49)

Furthermore, the particle-based material force 𝑻 𝑎𝑾 , consisting of two contributions, is given by

𝑻 𝑎𝑾 =
∑

𝑏∈Λ𝑏𝑎

𝑻 𝑎𝑏𝑾 ; 𝑻 𝑎𝑏𝑾 = 1
2

(

𝑷̂ 𝑎
𝑾 𝐂𝑎𝑏𝝌 − 𝑷̂ 𝑏

𝑾 𝐂𝑏𝑎𝝌
)

+ 𝛾𝐸𝐴𝝌
ln 𝜆𝚿
𝜆𝚿

𝑵𝑎𝑏
𝑿 . (50)

It is important to note that we derive the final term of the above equation (that is, the spring-related internal force) through a two-step process.
First, we employ the skew-symmetric standard kernel gradient, which relies on the reference geometry. This means that the gradient of 𝑊𝑏 at the
ocation 𝝌𝑎 is the negative of the gradient of 𝑊𝑎 at 𝝌𝑏, formally expressed as 𝛁𝝌𝑊𝑏(𝝌𝑎) = −𝛁𝝌𝑊𝑎(𝝌𝑏). Second, we assume that among the
tretch values represented by 𝑭𝚿, one is significantly dominant over the others and this predominance is aligned with the direction that connects
wo particles, denoted by 𝑵𝑎𝑏

𝑿 = 𝑿𝑏−𝑿𝑎
‖𝑿𝑏−𝑿𝑎‖

. Physically, the first term on the right-hand side of equation ((50)b) depends on the deviatoric part
f the constitutive model. This is used to describe how particles move and deform, focusing on changes in shape without volume change. The
econd term represents the restoring force preventing particles from clustering too closely together during the smoothing process. This balance
s crucial for simulating realistic particle behaviour, ensuring that particles maintain an appropriate distance from each other, thus avoiding
lumping.

Eqs. (47a), (47d) and (47e) correspond to the conservation of linear momentum, mass and total energy, respectively. Complementing these
hysical principles, Eqs. (47b) and (47c) introduce an additional set of geometric conservation equations. Lastly, Eq. (47f) denotes the ALE
aterial motion, providing a full representation of the physical and geometric aspects within the system.

For the case of thermo-elasticity, the motion of solids is sufficiently described by the expressions from (47a) to (47d), along with the
ondition ̇𝑎

Phy = 0. However, incorporating plasticity within the framework of the first-order system requires additional evolution expressions

or the associated plastic state variables, expressed in (28) and (30). The corresponding semi-discrete equations at particle 𝑎 are

𝐽 𝑎 𝑑 𝑪−1 = 𝛁𝝌𝑪−1 (𝝌𝑎
)

(

𝑯𝑎,𝑇𝑾 𝑎

)

− 2𝐽 𝑎 𝛾̇𝑎𝑭 −1 𝜕𝑓 |

| 𝒃𝑎𝑭 −𝑇 ; (51a)
11

𝚿 𝑑𝑡 𝑝,𝑎 𝑝 𝚿 𝚿 𝑎 𝜕𝝉 |

|𝑎
𝑒 𝑎
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𝐽 𝑎𝚿
𝑑
𝑑𝑡
𝜀̄𝑎𝑝 = 𝛁𝝌 𝜀̄𝑝

(

𝝌𝑎
)

⋅
(

𝑯𝑎,𝑇
𝚿 𝑾 𝑎

)

+ 𝐽 𝑎𝚿𝛾̇𝑎, (51b)

espectively. In the above expressions, the gradient at particle 𝑎 for the inverse of the plastic right Cauchy–Green deformation tensor 𝑪−1
𝑝 and

he equivalent plastic strain 𝜀̄𝑝 can be approximated through the standard corrected kernel gradient evaluation, described as

𝛁𝝌𝑪−1
𝑝

(

𝝌𝑎
)

= 1
Ω𝑎𝝌

∑

𝑏∈Λ𝑎

[ 1
2

(

𝑪−1
𝑝,𝑏 − 𝑪−1

𝑝,𝑎

)

⊗ 𝐂𝑎𝑏𝝌
]

, 𝛁𝝌 𝜀̄𝑝
(

𝝌𝑎
)

= 1
Ω𝑎𝝌

∑

𝑏∈Λ𝑎

[ 1
2
(

𝜀̄𝑝,𝑏 − 𝜀̄𝑝,𝑎
)

𝐂𝑎𝑏𝝌
]

. (52)

In the context of plasticity, the rate of plastic multiplier 𝛾̇ is determined by enforcing the yield constraint, ensuring the material response adheres
to its defined yield surface.

For completeness, it is beneficial to monitor the evolution of the geometry (i.e. spatial distribution of the particles) to examine the effectiveness
of the ALE material motion. In addition, geometry computation is unavoidably necessary if wishing to enforce accurate global conservation of
the angular momentum (see Section 9). With that in mind, the spatial velocity 𝒗̂ is integrated over time, and so are the material velocity 𝑾 and
the physical velocity 𝒗 making use of

𝑑
𝑑𝑡

𝚽𝑎 = 𝒗̂𝑎;
𝑑
𝑑𝑡

𝚿𝑎 = 𝑾 𝑎;
𝑑
𝑑𝑡

𝝋𝑎 = 𝒗𝑎. (53a)

As it is well known, the above mixed-based system (47) is prone to exhibit non-physical numerical instabilities [9,34,35,65–69] when
ttempting to model large strain solid dynamics problems [1,70,71]. To address this issue, a Godunov-type stabilisation term is suitably added
o both the pair-wise internal force 𝑻 𝑎𝑏𝝌 and the pair-wise material force 𝑻 𝑎𝑏𝑾 as

𝑻 𝑎𝑏𝝌 = 1
2

(

𝑷 𝑎
𝝌𝐂

𝑎𝑏
𝝌 − 𝑷 𝑏

𝝌𝐂
𝑏𝑎
𝝌

)

+𝑎𝑏
𝒑𝝌
, (54a)

𝑻 𝑎𝑏𝑾 = 1
2

(

𝑷̂ 𝑎
𝑾 𝐂𝑎𝑏𝝌 − 𝑷̂ 𝑏

𝑾 𝐂𝑏𝑎𝝌
)

+ 𝛾𝐸𝐴𝝌
ln 𝜆𝚿
𝜆𝚿

𝑵𝑎𝑏
𝑿 +𝑎𝑏

𝒑𝑾
. (54b)

The mathematical expressions for the stabilisation terms {𝑎𝑏
𝒑𝝌
,𝑎𝑏

𝒑𝑾
} are then obtained through the semi-discrete version of the classical

oleman–Noll procedure [72], which will be the focus of the following section.

.2. Numerical entropy production

Based on the derivation of the second law of thermodynamics as presented in Section 6.2, we examine the semi-discrete form of inequality
38) under the assumption that 𝒑𝑾 is known or has been prescribed. This stability analysis is demonstrated by multiplying expressions (47a)–(47e)
ith the corresponding conjugate fields (34) and summing them to obtain

∑

𝑎
Ω𝑎𝝌

𝑑
𝑑𝑡

𝑎𝝌 =
∑

𝑎
Ω𝑎𝝌

[

𝒗𝑎 ⋅
𝑑
𝑑𝑡

𝒑𝑎𝝌 + 𝑷 𝑎
𝚽 ∶ 𝑑

𝑑𝑡
𝑭 𝑎

𝚽 + 𝑷 𝑎
𝚿 ∶ 𝑑

𝑑𝑡
𝑭 𝑎

𝚿 − 𝑎
𝑑
𝑑𝑡
𝐽 𝑎𝚿 + 𝜗𝑎

𝑑
𝑑𝑡
𝜂𝑎𝝌 + 𝑷 𝑎

𝑪−1
𝑝

∶ 𝑑
𝑑𝑡

𝑪−1
𝑝,𝑎

]

=
∑

𝑎
Ω𝑎𝝌

[

𝒗𝑎 ⋅
𝑑
𝑑𝑡

𝒑𝑎𝝌 +
(

𝑷 𝑎𝑯𝑎
𝚿
)

∶ 𝑑
𝑑𝑡

𝑭 𝑎
𝚽 −

(

𝑭 𝑇
𝑎 𝑷 𝑎𝑯𝑎

𝚿
)

∶ 𝑑
𝑑𝑡

𝑭 𝑎
𝚿 − 𝑎

𝑑
𝑑𝑡
𝐽 𝑎𝚿 + 𝜗𝑎

𝑑
𝑑𝑡
𝜂𝑎𝝌 − 𝑑

𝑑𝑡
𝝌

Phy,𝑎

]

=
∑

𝑎
Ω𝑎𝝌

[

𝒗𝑎 ⋅
𝑑
𝑑𝑡

𝒑𝑎𝝌 +
(

𝑷 𝑎𝑯𝑎
𝚿
)

∶
( 𝑑
𝑑𝑡

𝑭 𝑎
𝚽 − 𝑭 𝑎

𝑑
𝑑𝑡

𝑭 𝑎
𝚿

)

− 𝑎
𝑑
𝑑𝑡
𝐽 𝑎𝚿 + 𝜗𝑎

𝑑
𝑑𝑡
𝜂𝑎𝝌 − 𝑑

𝑑𝑡
𝝌

Phy,𝑎

]

.

(55)

Note that the last term in the second line of (55), referred to as the rate of the plastic dissipation introduced by the plasticity model, can be
expressed in various alternative ways as

𝑑
𝑑𝑡

𝝌
Phy,𝑎 = −𝑷 𝑎

𝑪−1
𝑝

∶ 𝑑
𝑑𝑡

𝑪−1
𝑝,𝑎 = −

[1
2
𝐽 𝑎𝚿𝑭

𝑇
𝑎 𝑷 𝑎𝑪𝑝,𝑎

]

∶ 𝑑
𝑑𝑡

𝑪−1
𝑝,𝑎. (56)

Next, we substitute the linear momentum Eq. (47a), the geometric conservation equation for both spatial and material deformation gradient
ensors (47b) and (47c), the mass conservation Eq. (47d) into the third line of (55). Through algebraic rearrangements, we arrive at

∑

𝑎
Ω𝑎𝝌

𝑑
𝑑𝑡

𝑎𝝌 =
∑

𝑎

[

𝒗𝑎 ⋅ 𝑻 𝑎𝝌 + Ω𝑎𝝌
(

𝑷 𝑎𝑯𝑎
𝚿
)

∶ 𝛁𝝌𝒗(𝝌𝑎)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
−Ω𝑎𝝌𝛁𝝌(𝝌𝑎)⋅𝑯

𝑎,𝑇
𝚿 𝑾 𝑎+

∑

𝑏∈Λ𝑎

(

𝒗𝑎⋅𝑎𝑏
𝒑𝝌

)

+
∑

𝑎
Ω𝑎𝝌

(

𝑷 𝑎𝑯𝑎
𝚿
)

∶
[

𝛁𝝌
(

𝑭 𝑎𝑾 𝑎 − 𝑭 𝑎𝛁𝝌𝑾
)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Ω𝑎𝝌

(

𝑷 𝑎∶𝛁𝝌𝑭 (𝝌𝑎)
)

⋅𝑯𝑎,𝑇
𝚿 𝑾 𝑎

−
∑

𝑎

∑

𝑏∈Λ𝑏𝑎

1
2
𝑎

[(

𝑯𝑎,𝑇
𝚿 𝑾 𝑎

)

⋅ 𝐂𝑎𝑏𝝌 −
(

𝑯𝑏,𝑇
𝚿 𝑾 𝑏

)

⋅ 𝐂𝑏𝑎𝝌
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
−Ω𝑎𝝌𝛁𝝌(𝝌𝑎)⋅𝑯

𝑎,𝑇
𝚿 𝑾 𝑎

+
∑

𝑎
Ω𝑎𝝌

[

𝜗𝑎
𝑑
𝑑𝑡
𝜂𝑎𝝌 − 𝑑

𝑑𝑡
𝝌

Phy,𝑎

]

+
∑

𝑎
Ω𝑎𝝌𝒗𝑎 ⋅ 𝒇

𝑎
𝝌 +

∑

𝑎

∑

𝛾∈Λ𝐵𝑎

𝒗𝐵𝑎 ⋅ 𝒕𝐵𝑎 ‖𝐂
𝛾
𝝌‖

=
∑

𝑎
Ω𝑎𝝌

(

[

𝛁𝝌(𝝌𝑎) − 𝛁𝝌(𝝌𝑎) + 𝑷 𝑎 ∶ 𝛁𝝌𝑭 (𝝌𝑎)
]

⋅
(

𝑯𝑎,𝑇
𝚿 𝑾 𝑎

)

+ 𝜗𝑎
𝑑
𝑑𝑡
𝜂𝑎𝝌 − 𝑑

𝑑𝑡
𝝌

Phy,𝑎

)

+
∑

Ω𝑎𝝌𝒗𝑎 ⋅ 𝒇
𝑎
𝝌 +

∑ ∑

𝒗𝐵𝑎 ⋅ 𝒕𝐵𝑎 ‖𝐂
𝛾
𝝌‖ −

∑ ∑

(

−𝒗𝑎 ⋅𝑎𝑏
𝒑𝝌

)

.

(57)
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Additionally, by considering the referential gradient of the Lagrangian function expressed as 𝛁𝝌 = 𝛁𝝌−𝛁𝝌

(


(

𝑭 , 𝜂𝑿 ,𝑪−1
𝑝

)

− 𝜃𝜂𝑿
)

, and
pplying the relationship

𝛁𝝌

(


(

𝑭 , 𝜂𝑿 ,𝑪−1
𝑝

)

− 𝜃𝜂𝑿
)

= 𝛁𝝌
(

𝑭 , 𝜂𝑿 ,𝑪−1
𝑝

)

− 𝛁𝝌
(

𝜃𝜂𝑿
)

= 𝑷 ∶ 𝛁𝝌𝑭 + 𝜃𝛁𝝌𝜂𝑿 + 𝑷 𝑪−1
𝑝

∶ 𝛁𝝌𝑪−1
𝑝 −

(

𝜂𝑿𝛁𝝌𝜃 + 𝜃𝛁𝝌𝜂𝑿
)

= 𝑷 ∶ 𝛁𝝌𝑭 + 𝑷 𝑪−1
𝑝

∶ 𝛁𝝌𝑪−1
𝑝 − 𝜂𝑿𝛁𝝌𝜃,

(58)

nables further manipulation of the first term within the square brackets on the fourth line of (57). This leads to

𝛁𝝌(𝝌𝑎) − 𝛁𝝌(𝝌𝑎) + 𝑷 𝑎 ∶ 𝛁𝝌𝑭 (𝝌𝑎) = −𝛁𝝌

(


(

𝑭 𝑎, 𝜂
𝑎
𝑿 ,𝑪

−1
𝑝,𝑎

)

− 𝜃𝑎𝜂𝑎𝑿
)

+ 𝑷 𝑎 ∶ 𝛁𝝌𝑭 (𝝌𝑎)

= −𝑷 𝑎
𝑪−1
𝑝

∶ 𝛁𝝌𝑪−1
𝑝 (𝝌𝑎) + 𝜂𝑎𝑿𝛁𝝌𝜃(𝝌𝑎).

(59)

ubsequently, expression (57) becomes
∑

𝑎
Ω𝑎𝝌

𝑑
𝑑𝑡

𝑎𝝌 =
∑

𝑎
Ω𝑎𝝌

[(

𝜂𝑎𝑿𝛁𝝌𝜃(𝝌𝑎) − 𝑷 𝑎
𝑪−1
𝑝

∶ 𝛁𝝌𝑪−1
𝑝 (𝝌𝑎)

)

⋅
(

𝑯𝑎,𝑇
𝚿 𝑾 𝑎

)

+ 𝜗𝑎
𝑑
𝑑𝑡
𝜂𝑎𝝌 − 𝑑

𝑑𝑡
𝝌

Phy,𝑎

]

+
∑

𝑎
Ω𝑎𝝌𝒗𝑎 ⋅ 𝒇

𝑎
𝝌 +

∑

𝑎

∑

𝛾∈Λ𝐵𝑎

𝒗𝐵𝑎 ⋅ 𝒕𝐵𝑎 ‖𝐂
𝛾
𝝌‖ −

∑

𝑎

∑

𝑏∈Λ𝑎

(

−𝒗𝑎 ⋅𝑎𝑏
𝒑𝝌

)

.
(60)

otice that the first term on the right-hand side corresponds to the ALE convective term of the entropy density conservation Eq. (47e) and the
econd term corresponds to the ALE convective term of the evolution equation for the inverse of the inelastic right Cauchy–Green tensor (51a).

hen these expressions combine with the respective evolution Eqs. (47e) and (51a), the convective terms cancel out. After careful algebraic
anipulation, expression (60) reduces to

∑

𝑎
Ω𝑎𝝌

𝑑
𝑑𝑡

𝑎𝝌 − Π̇ext −ext = −
∑

𝑎

∑

𝑏∈Λ𝑎

𝜗𝑎
2Θ𝑎

(

𝑸𝑎
𝝌 ⋅ 𝐂𝑎𝑏𝝌 −𝑸𝑏

𝝌 ⋅ 𝐂𝑏𝑎𝝌
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∑

𝑎
∑

𝑏∈Λ𝑎 Ω
𝑎
𝝌

𝜃𝑅
Θ𝑎Θ𝑏

𝑸𝑎𝝌 ⋅𝛁𝝌 𝜃(𝝌𝑎 ,𝑡)≤0

−
∑

𝑎
𝐽 𝑎𝚿Ω

𝑎
𝝌
𝜃𝑅
Θ𝑎

̇Phy,𝑎

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
≥0

−
∑

𝑎

∑

𝑏∈Λ𝑎

(

−𝒗𝑎 ⋅𝑎𝑏
𝒑𝝌

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
total

,

(61)

ith the physical dissipation term ̇Phy,𝑎 featuring in the second term on the right-hand side of the above equation. Here, Π̇ext and ext are the
semi-discrete versions of power contribution and total heat contribution, expressed as

Π̇ext =
∑

𝑎
Ω𝑎𝝌𝒗𝑎 ⋅ 𝒇

𝑎
𝝌 +

∑

𝑎

∑

𝛾∈Λ𝐵𝑎

𝒗𝐵𝑎 ⋅ 𝒕𝐵𝑎 ‖𝐂
𝛾
𝝌‖; ext =

∑

𝑎
Ω𝑎𝝌

𝜗𝑎
Θ𝑎
𝐽 𝑎𝚿𝑠

𝑎
𝑿 −

∑

𝑎

∑

𝛾∈Λ𝐵𝑎

𝜗𝐵𝑎
Θ𝐵𝑎

𝑄𝐵𝑎 ‖𝐂
𝛾
𝝌‖. (62)

To adhere to the second law of thermodynamics (38) at the semi-discrete level, it is crucial to demonstrate all three terms on the right-hand side
of (61) are non-negative. Regarding the heat conduction term (the first term on the right-hand side of (61)), the inequality is naturally satisfied
due to the inherent properties of the conductive heat flux. Detailed derivation can be found in Ref. [37]. As for the physical model dissipation
term (the second term on the right-hand side of (61)), its non-positivity arises from the definition of the rate of physical plastic dissipation.

Our next objective is to demonstrate the non-negativity of the numerical dissipation term, denoted as total ≥ 0. This can be achieved by
equivalently swapping indices 𝑎 and 𝑏 to give

total = −
∑

𝑎

∑

𝑏∈Λ𝑎

(

𝒗𝑎 ⋅𝑎𝑏
𝒑𝝌

)

= −
∑

𝑎

∑

𝑏∈Λ𝑎

(

𝒗𝑏 ⋅𝑏𝑎
𝒑𝝌

)

. (63)

By simply averaging the first term and the second term of the expression above, and noting the anti-symmetric nature of the stabilisation term
as 𝑏𝑎

𝒑𝝌
= −𝑎𝑏

𝒑𝝌
, an alternative expression for total is shown below

total =
1
2
∑

𝑎

∑

𝑏∈Λ𝑏𝑎

𝑎𝑏
total; 𝑎𝑏

total =
(

𝒗𝑏 − 𝒗𝑎
)

⋅𝑎𝑏
𝒑𝝌
. (64)

Sufficient conditions for total ≥ 0 are given by

𝑎𝑏
𝒑𝝌

= 𝑺𝑎𝑏𝒑𝝌
(

𝒗𝑏 − 𝒗𝑎
)

, (65)

where 𝑺𝑎𝑏𝒑𝝌 is a positive semi-definite stabilisation matrix. Following previous work of the authors [26], the dissipation term is chosen as

𝑺𝑎𝑏𝒑𝝌 = 1
2
𝜌Ave
𝝌 ‖𝑪𝑎𝑏

𝝌 ‖

[

𝑐𝝌 ,Ave
𝑝 𝒏𝑎𝑏 ⊗ 𝒏𝑎𝑏 + 𝑐𝝌 ,Ave

𝑠
(

𝑰 − 𝒏𝑎𝑏 ⊗ 𝒏𝑎𝑏
)

]

, (66)

where [∙]Ave = 1
2

(

[∙]𝑎 + [∙]𝑏
)

. Furthermore, the dissipation term is related to the jump in velocity between interacting nodes, a characteristic
feature of Godunov-type upwinding terms [63,73–75].

Remark 5. Given that, in general, the ALE mesh motion is not known a priori but it will be defined via the first-order conservative-type
Eq. (47f), the introduction of an appropriate stabilisation term is necessary to stabilise the convective nature inherent to the equation. In this
context, and for simplicity, we propose a stabilisation term 𝑎𝑏

𝒑𝑾
with a mathematical structure similar to that of expression (65) as

𝑎𝑏 𝑎𝑏 ( )
13

𝒑𝑾
= 𝑺𝒑𝑾

𝑾 𝑏 −𝑾 𝑎 . (67)
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In this context, the positive-definite stabilisation tensor is in the form of

𝑺𝑎𝑏𝒑𝑾 = 1
2
𝜌Ave
𝑾 ‖𝑪𝑎𝑏

𝝌 ‖

[

𝑐𝑿,Ave
𝑝 𝑵𝑎𝑏

𝑿 ⊗𝑵𝑎𝑏
𝑿 + 𝑐𝑿,Ave

𝑠
(

𝑰 −𝑵𝑎𝑏
𝑿 ⊗𝑵𝑎𝑏

𝑿
)

]

. (68)

8.3. Time integration

Given the size of the semi-discrete equations, we choose a three stage Runge–Kutta explicit time integrator [33] in this work. The time
integration from time step 𝑡𝑛 to 𝑡𝑛+1 is governed by the following equations

 ⋆
𝝌 ,𝑎 =  𝑛

𝝌 ,𝑎 + Δ𝑡 ̇ 𝑛
𝝌 ,𝑎

(

 𝑛
𝝌 ,𝑎

)

,

 ⋆⋆
𝝌 ,𝑎 =

3
4
 𝑛

𝝌 ,𝑎 +
1
4

(

 ⋆
𝝌 ,𝑎 + Δ𝑡 ̇ ⋆

𝝌 ,𝑎

(

 ⋆
𝝌 ,𝑎

))

,

 𝑛+1
𝝌 ,𝑎 = 1

3
 𝑛

𝝌 ,𝑎 +
2
3

(

 ⋆⋆
𝝌 ,𝑎 + Δ𝑡 ̇ ⋆⋆

𝝌 ,𝑎

(

 ⋆⋆
𝝌 ,𝑎

))

.

(69)

Moreover, all the three geometries are also integrated using the same time integrator, resulting in a monolithic time update procedure. The
unknowns  𝝌 =

(

𝒑𝝌 ,𝑭𝚽,𝑭𝚿, 𝐽𝚿, 𝜂𝝌
)𝑇 evolve alongside the geometries (such as 𝚿, 𝚽 and 𝝋) through Eq. (69).

Additionally, the determination of the maximum time step, denoted as Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛, adheres to the standard Courant–Friedrichs–Lewy
(CFL) [76] criterion. This criterion is defined by the following relation

Δ𝑡 = 𝛼𝐶𝐹𝐿min

(

ℎmin

𝑐𝝌𝑝

)

. (70)

Here, 𝛼𝐶𝐹𝐿 represents the CFL stability number and 𝑐𝝌𝑝 denotes the pressure wave speed measured in referential domain and ℎmin stands for
the minimum (or characteristic) length within the computational domain. The relationship between the referential pressure wave speed 𝑐𝝌𝑝 and
the material pressure wave speed 𝑐𝑿𝑝 is presented in expression (18). Unless specified otherwise, a value of 𝛼𝐶𝐹𝐿 = 0.9 has been chosen in the
ubsequent examples to ensure a balance between accuracy and stability.

.3.1. Plasticity
In addressing the irrecoverable elasto-plastic model presented in this paper, we utilise the implicit backward Euler time integrator as our

hosen method for advancing the semi-discrete equations governing the plastic state variables, specifically 𝑪−1
𝑝 and 𝜀̄𝑝, as presented in (51)).

his choice of time integration method is consistent with the traditional return mapping algorithm employed in plasticity models [4,77], thus
nsuring numerical stability. The equations resulting from the time integration processes are presented below

𝑪−1,𝑛+1
𝑝,𝑎 = 𝑪−1,𝑛

𝑝,𝑎 + Δ𝑡
[

𝛁𝝌𝑪−1
𝑝

]𝑛

𝑎

[

1
𝐽 𝑎,𝑛+1𝚿

(

𝑯𝑎,𝑛+1
𝚿

)𝑇
𝑾 𝑛+1

𝑎

]

− 2Δ𝛾𝑎𝑭 −1,𝑛+1
𝑎

𝜕𝑓
𝜕𝝉

|

|

|

|

𝑛+1

𝑎
𝒃𝑎,𝑛+1𝑒 𝑭 −𝑇 ,𝑛+1

𝑎 ; (71a)

𝜀̄𝑛+1𝑝,𝑎 = 𝜀̄𝑛𝑝,𝑎 + Δ𝑡
[

𝛁𝝌 𝜀̄𝑝
]𝑛
𝑎 ⋅

[

1
𝐽 𝑎,𝑛+1𝚿

(

𝑯𝑎,𝑛+1
𝚿

)𝑇
𝑾 𝑛+1

𝑎

]

+ Δ𝛾𝑎. (71b)

s previously discussed, the above gradient computations are approximated using the corrected kernel gradient. These approximations are
xpressed as

[

𝛁𝝌𝑪−1
𝑝

]𝑛

𝑎
= 1

Ω𝑎𝝌

∑

𝑏∈Λ𝑎

[ 1
2

(

𝑪−1,𝑛
𝑝,𝑏 − 𝑪−1,𝑛

𝑝,𝑎

)

⊗ 𝐂𝑎𝑏𝝌
]

,
[

𝛁𝝌 𝜀̄𝑝
]𝑛
𝑎 =

1
Ω𝑎𝝌

∑

𝑏∈Λ𝑎

[ 1
2

(

𝜀̄𝑛𝑝,𝑏 − 𝜀̄
𝑛
𝑝,𝑎

)

𝐂𝑎𝑏𝝌
]

. (72)

For the Johnson–Cook hardening model, determining the incremental plastic multiplier Δ𝛾𝑎 requires the enforcement of the yield condition as
described in (23). This enforcement typically involves the solution of nonlinear equations which would then require an iterative Newton–Raphson
procedure. A more detailed discussion can be found in Ref. [37].

To solve Eqs. (71a) and (71b), we implement a predictor–corrector algorithm. In the predictor step (Lagrangian phase), the algorithm
advances explicitly excluding the ALE convective effect, yielding intermediate variables {𝑪−1,int

𝑝 , 𝜀̄int
𝑝 }. In the corrector step (remapping phase),

the intermediate variables are then projected to their new positions after applying the ALE smoothing procedure. The mathematical formulation
for each step is detailed below, starting with the predictor step for a time increment Δ𝑡 as

𝑪−1,int
𝑝,𝑎 = 𝑪−1,𝑛

𝑝,𝑎 − 2Δ𝛾𝑎𝑭 −1,𝑛+1
𝑎

𝜕𝑓
𝜕𝝉

|

|

|

|

𝑛+1

𝑎
𝒃𝑎,𝑛+1𝑒 𝑭 −𝑇 ,𝑛+1

𝑎 ; (73a)

𝜀̄int
𝑝,𝑎 = 𝜀̄𝑛𝑝,𝑎 + Δ𝛾𝑎. (73b)

ollowing this, the corrector step becomes

𝑪−1,𝑛+1
𝑝,𝑎 = 𝑪−1,int

𝑝,𝑎 + Δ𝑡
[

𝛁𝝌𝑪−1
𝑝

]𝑛

𝑎

[

1
𝐽 𝑎,𝑛+1𝚿

(

𝑯𝑎,𝑛+1
𝚿

)𝑇
𝑾 𝑛+1

𝑎

]

; (74a)

𝜀̄𝑛+1𝑝,𝑎 = 𝜀̄int
𝑝,𝑎 + Δ𝑡

[

𝛁𝝌 𝜀̄𝑝
]𝑛
𝑎 ⋅

[

1
𝐽 𝑎,𝑛+1𝚿

(

𝑯𝑎,𝑛+1
𝚿

)𝑇
𝑾 𝑛+1

𝑎

]

. (74b)

Within the Total Lagrangian framework (i.e. characterised by setting 𝑾 = 𝟎), the update of the plasticity model relies solely on the predictor step
(Lagrangian phase). This time update for plastic variables follows the implicit Backward Euler method, a strategy well-established in previous
research works [4,27,78,79].
14
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9. Discrete angular momentum preserving algorithm

The ALE algorithm presented above does not inherently ensure exactly the conservation of angular momentum, as the strain measures
{𝑭𝚿,𝑭𝚽} (or 𝑭 ) are no longer exclusively computed from the referential gradient of both material and spatial geometries (or current geometry).
Although the deviation from strict conservation is minimal, we introduce a monolithic discrete angular momentum projection algorithm for
completeness. In our numerical experiments, we have observed that activation of this algorithm is not strictly necessary unless seeking “machine-
accurate” strict conservation of angular momentum. Specifically, the local internal nodal force 𝑻 𝑎𝝌 is suitably modified in a least-square sense
to preserve global angular momentum, whilst still ensuring the global conservation of linear momentum.

Building on the procedure introduced by [33], we explicitly enforce sufficient conditions for the global preservation of discrete linear and
angular momentum within a time step at each of the three stages, as described below

∑

𝑎
Ω𝑎𝝌𝑻

𝑎,𝛼
𝝌 = 𝟎;

∑

𝑎
Ω𝑎𝝌XXX 𝛼

𝑎 × 𝑻 𝑎,𝛼𝝌 = 𝟎; XXX 𝛼
𝑎 =

⎧

⎪

⎨

⎪

⎩

𝝋𝑛𝑎 − Δ𝑡𝒗𝑛𝑎; 𝛼 = 𝑛

𝝋𝑛𝑎 +
Δ𝑡
6

(

𝒗⋆𝑎 − 𝒗𝑛𝑎
)

; 𝛼 =∗

𝝋𝑛𝑎 +
Δ𝑡
6

(

𝒗𝑛𝑎 + 𝒗⋆𝑎 + 4𝒗⋆⋆𝑎
)

; 𝛼 =∗∗

. (75)

A least-square minimisation procedure is applied to obtain a modified set of internal nodal forces, denoted as 𝑻̂ 𝑎𝝌 , satisfying the specified
conditions. This involves minimising the following functional (ignoring time arguments for brevity)

Π(𝑻̂ 𝑎𝝌 ,𝝀ang,𝝀lin) =
1
2
∑

𝑎
Ω𝑎𝝌 (𝑻̂

𝑎
𝝌 − 𝑻 𝑎𝝌 ) ⋅ (𝑻̂

𝑎
𝝌 − 𝑻 𝑎𝝌 ) − 𝝀ang ⋅

(

∑

𝑎
Ω𝑎𝝌XXX 𝑎 × 𝑻̂ 𝑎𝝌

)

− 𝝀lin ⋅

(

∑

𝑎
Ω𝑎𝝌 𝑻̂

𝑎
𝝌

)

. (76)

e consider the stationary condition of the functional Π with respect to {𝝀ang,𝝀lin} and 𝑻̂ 𝑎𝝌 separately. The derivative of Π with respect to
𝝀ang,𝝀lin} leads to the constraints shown in (75). Additionally, the derivative of the functional in (76) with respect to 𝑻̂ 𝑎𝝌 yields a modified set
f internal nodal forces 𝑻̂ 𝑎𝝌 , expressed as

𝑻̂ 𝑎𝝌 = 𝑻 𝑎𝝌 + 𝝀ang ×XXX 𝑎 + 𝝀lin. (77)

tilising expressions (75) (with 𝑻 𝑎𝝌 replaced with 𝑻̂ 𝑎𝝌 ) in conjunction with (77), allows the determination of the Lagrange multipliers {𝝀ang,𝝀lin}
s

[
∑

𝑎 Ω𝑎𝝌
[

(XXX 𝑎 ⋅XXX 𝑎)𝑰 −XXX 𝑎 ⊗XXX 𝑎
]

∑

𝑎 Ω𝑎𝝌X̂XX 𝑎
∑

𝑎 Ω𝑎𝝌X̂XX 𝑎 −
∑

𝑎 Ω𝑎𝝌

][

𝝀ang

𝝀lin

]

=

[

−
∑

𝑎 Ω𝑎𝝌XXX 𝑎 × 𝑻 𝑎𝝌
∑

𝑎 Ω𝑎𝝌𝑻
𝑎
𝝌

]

, (78)

where the indicial notation
[

X̂XX 𝑎

]

𝑖𝑘
= 𝑖𝑗𝑘

[

XXX 𝑎
]

𝑗 .

10. Algorithmic description

Algorithm 1 provides a summary of the ALE SPH algorithm for nonlinear solid dynamics in irreversible processes. A key advantage of
the ALE approach is its capability to prevent irregular distribution of particles by dynamically adjusting their positions, especially in areas
experiencing significant plastic deformation. This benefit is exploited in the example section, demonstrating its superior efficiency in comparison
to traditional Lagrangian approaches.

11. Numerical examples

In this section, several benchmark problems are examined in order to evaluate the performance and applicability of the proposed ALE
algorithm. The purpose of these examples is to demonstrate the efficiency of the ALE algorithm across various scenarios. Specifically, the ALE
algorithm

• ensures compliance with the Geometric Conservation Law (GCL) condition [9,19,80–82], even under the scenario of fictitiously moving
SPH particles,

• obtains consistent second-order convergence for velocities/displacements, stresses/strains and temperature/entropy,
• ensures the global conservation of angular momentum [83,84] through the incorporation of a discrete angular momentum projection

algorithm,
• maintains a non-negative rate of production of both numerical (i.e. Godunov-type stabilisation) and physical (e.g. plastic dissipation and

irreversible heat conduction process) entropy within an insulated system, and
• offers advantages in handling large plastic deformations when compared to conventional Lagrangian approaches, especially in high-speed

impact and fast stretching scenarios.

In subsequent plasticity examples, we explore the ALE smoothing process by solving the conservation-type equation, as indicated in (41).
However, in the context of isothermal- and thermo-elastic problems, this technique tends to results in minimal particle movement. To facilitate
15

more significant particle movement in these instances, we instead prescribe a sinusoidal-type motion for the material particles, specifically
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Algorithm 1: Total ALE SPH algorithm for solids

Input : initial geometry 𝝌𝑎 and initial states of 𝒑𝑎𝝌 , 𝑭 𝑎
𝚽, 𝑭 𝑎

𝚿, 𝐽 𝑎𝚿, 𝜂𝑎𝝌 , 𝒑𝑎𝑾 , 𝜃𝑎 and 𝑾 𝑎 for all particles

utput: current material geometry 𝚿𝑎, current spatial geometry 𝚽𝑎 (with respect to referential domain), current spatial geometry 𝝋𝑎 (with
respect to material domain), physical velocity 𝒗𝑎, material velocity 𝑾 𝑎, and current states of 𝑭 𝑎, 𝑷 𝑎, 𝑪−1,𝑎

𝑝 , 𝜀̄𝑎𝑝 and 𝜂𝑎𝑿

1) INITIALISE 𝑭 𝑎
𝚿 = 𝑪−1,𝑎

𝑝 = 𝑰 , 𝐽 𝑎𝚿 = 1, 𝑾 𝑎 = 𝟎 and 𝜀̄𝑎𝑝 = 0

or Time 𝑡0 to Time 𝑡 do

(2) EVALUATE pressure and shear wave speeds: 𝑐𝝌𝑝 , 𝑐𝝌𝑠

(3) COMPUTE time increment: Δ𝑡

for TVD-RK time integrator = 1 to 3 do

(4) COMPUTE slope of linear reconstruction procedure

(5) EVALUATE the right-hand-side of 𝑑
𝑑𝑡

𝑎
𝝌 , 𝑑

𝑑𝑡𝒑
𝑎
𝑾 , 𝑑

𝑑𝑡𝚿𝑎, 𝑑
𝑑𝑡𝚽𝑎 and 𝑑

𝑑𝑡𝝋𝑎

(6) APPLY angular momentum preserving algorithm

(7) UPDATE 𝒑𝑎𝝌 , 𝑭 𝑎
𝚽, 𝑭 𝑎

𝚿, 𝐽 𝑎𝚿, 𝜂𝑎𝝌 , 𝒑𝑎𝑾 , 𝚿𝑎, 𝚽𝑎 and 𝝋𝑎 via TVD-RK

(8) COMPUTE intermediate variables: 𝑭 𝑎 = 𝑭 𝑎
𝚽𝑭

−1,𝑎
𝚿 , 𝒗𝑎 =

𝒑𝑎𝝌
𝐽𝑎𝚿𝜌𝑿

, 𝒗̂𝑎 = 𝒗𝑎 + 𝑭 𝑎𝑾 𝑎, 𝜂𝑎𝑿 =
𝜂𝑎𝝌
𝐽𝑎𝚿

and 𝜃𝑎 = Θ(𝑭 𝑎, 𝜂𝑎𝑿 )

(9) ENFORCE strong boundary conditions on velocities {𝒗𝑎, 𝒗̂𝑎} and entropy 𝜂𝑎𝑿

(10) EVALUATE first Piola 𝑷 𝑎 (and 𝑪−1,𝑎
𝑝 and 𝜀̄𝑎𝑝 if plasticity model is used)

end

(11) INCORPORATE entropy source related to plastic dissipation ̇Phy

(12) UPDATE internal plastic state variables 𝑪−1,𝑎
𝑝 and 𝜀̄𝑎𝑝 (if plasticity model is used)

(13) EXPORT results for this time step

(14) ADVANCE in time

nd

designed for rectangular domains as shown below

𝚿(𝝌 , 𝑡) = 𝝌 +

⎡

⎢

⎢

⎢

⎢

⎣

𝛽 sin2
(

𝜋𝑡
𝑇

)

sin
(

2𝜋𝜒1
𝐿

) [

cos
(

2𝜋𝜒2
𝐻

)

+ sin
(

2𝜋𝜒2
𝐻

)]

𝛽 𝐻𝐿 sin2
(

2𝜋𝑡
𝑇

)

sin
(

2𝜋𝜒2
𝐻

) [

cos
(

2𝜋𝜒1
𝐿

)

+ sin
(

2𝜋𝜒1
𝐿

)]

0

⎤

⎥

⎥

⎥

⎥

⎦

, (79)

where 𝜒1 = 𝜒1 + 𝜒𝐶1 and 𝜒2 = 𝜒2 + 𝜒𝐶2 denote coordinates shifted relative to the centroid of the domain 𝝌𝐶 . The parameter 𝛽 dictates the
magnitude of particle movement, and 𝑇 represents the period of the sinusoidal functions. By adopting this sinusoidal motion strategy, we achieve
more pronounced and controlled particle movement. This is indeed useful for examining the robustness of the ALE algorithm in both isothermal-
and thermo-elastic scenarios, as it allows for an assessment of the performance of the algorithm through varying degrees of particle movement.
Differentiating expression (79) with respect to time yields the material particle velocity 𝑾 , expressed as

𝑾 (𝝌 , 𝑡) =

⎡

⎢

⎢

⎢

⎢

⎣

2𝛽 𝜋𝑇 sin
(

𝜋𝑡
𝑇

)

cos
(

𝜋𝑡
𝑇

)

sin
(

2𝜋𝜒1
𝐿

) [

cos
(

2𝜋𝜒2
𝐻

)

+ sin
(

2𝜋𝜒2
𝐻

)]

𝛽 𝐻𝐿
𝜋
𝑇 sin

(

2𝜋𝑡
𝑇

)

cos
(

2𝜋𝑡
𝑇

)

sin
(

2𝜋𝜒2
𝐻

) [

cos
(

2𝜋𝜒1
𝐿

)

+ sin
(

2𝜋𝜒1
𝐿

)]

0

⎤

⎥

⎥

⎥

⎥

⎦

. (80)

Both material particle motion (79) and velocity (80) are carefully designed to ensure movement is constrained tangentially along the material
boundary to prevent volume change.

To account for large thermo-elastic deformations, we utilise a Mie-Grüneisen thermo-elastic model. The corresponding internal energy density
 , as a function of deformation gradient 𝑭 and entropy density 𝜂𝑿 (per unit of material volume), is given by

(𝑭 , 𝜂𝑿 ) = ̃𝑿 (𝑭 ) + 𝑐𝑣𝜃𝑅

(

𝑒
𝜂𝑿−𝜂̃𝑿 (𝐽 )

𝑐𝑣 − 1
)

. (81)
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Fig. 2. Problem setup for the (a) translation test case, (b) rotating test case and (c) twisting column.

Table 1
Translation with heat: material properties and parameters of the prescribed ALE particle motion.

Young’s modulus [MPa] 𝐸 17
Material density [kg/m3] 𝜌𝑿 1100
Poisson’s ratio 𝜈 0.3
Thermal conductivity [W m−1 K−1] ℎ 10
Specific heat capacity [J kg−1 K−1 ] 𝐶𝑣 1
Thermal expansion coefficient [K−1] 𝛼 2.223 × 10−4

Reference temperature [K] 𝜃𝑅 293.15
Period of particle motion [s] 𝑇 0.5
Magnitude of particle motion [m] 𝛽 0.02

Here, the internal energy density at reference temperature is formulated as

̃𝑿 (𝑭 ) = ̃ ′
𝑿 (𝐽

−1∕3𝑭 ) + 𝑈 (𝐽 ). (82)

The deviatoric ̃ ′
𝑿 (𝐽

−1∕3𝑭 ) and the volumetric 𝑈 (𝐽 ) contributions are

̃ ′
𝑿 (𝐽

−1∕3𝑭 ) = 1
2
𝜇
[

𝐽−2∕3 (𝑭 ∶ 𝑭 ) − 3
]

; 𝑈 (𝐽 ) = 1
2
𝜅(𝐽 − 1)2 + 𝑐𝑣Γ0𝜃𝑅(𝐽 − 1), (83)

here 𝜇 and 𝜅 denote the shear modulus and bulk modulus of the material, and Γ0 is a positive material constant. In addition, we also incorporate
simple volumetric-based Mie–Grüneisen model [45,50,85] described in [45] by

𝜂̃𝑿 (𝐽 ) = 𝑐𝑣Γ0

(

𝐽 𝑞 − 1
𝑞

)

, (84)

where 𝑞 is a dimensionless parameter varying from zero (i.e. a perfect gas) to one (i.e. solid materials). Previous work [50] has demonstrated
the polyconvexity (and thus, rank-one convexity) of this coupled model.

Finally, for comparison purposes, we benchmark the ALE results against our alternative in-house, mixed-based Total Lagrangian SPH
ramework (TLF) [37,44], which incorporates Godunov-type entropy-stable numerical stabilisation. This Godunov-type TLF has proven to be
ery effective in simulating large strain solid dynamics. For completeness, we also compare some of the results with the classical displacement-
ased Total Lagrangian SPH Framework (CTLF) [86]. It is important to note that the primary unknown variable in CTLF is displacement, and
his framework does not include any numerical dissipation.

emark 6. It is important to note that the coupled energy functional described in Eq. (81) can be reduced to the classical isothermal neo-Hookean
odel by setting the coupling constant Γ0 = 0 and maintaining the temperature 𝜃(𝑿, 𝑡) = 𝜃𝑅. This implies that 𝜂𝑿 (𝑿, 𝑡) = 0, due to the direct

elationship between temperature and entropy as described in (17). For further clarity, the strain energy for the neo-Hookean model can be
xpressed as follows

NH(𝑭 ) = 1
2
𝜇
[

𝐽−2∕3 (𝑭 ∶ 𝑭 ) − 3
]

+ 1
2
𝜅(𝐽 − 1)2. (85)

11.1. Satisfaction of geometric conservation laws: Patch test

This example involves a patch test that demonstrates the efficacy of the proposed ALE algorithm in accurately capturing rigid body translation,
similar to the scenario detailed in [26]. Consider a column with a square cross section of 1 m2 and a length of 𝐻 = 6 m, initially prescribed by a
17
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Fig. 3. Translation with heat. Time evolution of the 𝐿2 global errors in the velocity magnitude ‖𝑣̄ − 𝑣̄0‖𝐿2 and in temperature ‖𝜃 − 𝜃𝑅‖𝐿2 when using (red) the complete
ALE system, (blue) a reduced system without solving variable 𝑱𝚿 and (black) further reduced system without solving {𝑭𝚿 , 𝐽𝚿}. A discretisation of 625 number of particles.
A Mie-Grüneisen model is used with parameters listed in Table 1.

Fig. 4. Translation with heat. A sequence of deformed states at time 𝑡 = {0, 0.5, 1, 1.5} s (from left to right for each row) when using (a) the complete ALE, comparing
against the reduced system without considering (b) 𝐽𝚿 and (c) 𝑭𝚿 and 𝐽𝚿 . Colour contour indicates the absolute temperature error, denoted as abs(𝜃 − 𝜃𝑅). A discretisation
of 625 number of particles. A Mie-Grüneisen model is used with parameters listed in Table 1. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

uniform velocity field 𝒗0 = [3, 4, 0]𝑇 ms−1 throughout the entire domain. The boundaries of this structure are left unconstrained. Fig. 2(a) depicts
the setup for this problem. The main aim of this example is to evaluate the ability of the algorithm to accurately simulate the behaviour of rigid
body translation through arbitrary particle movement, while strictly adhering to the discrete Geometric Conservation Law (GCL) conditions.
In addition, a Mie-Grüneisen model is incorporated to account for the effects of thermal variations. The material properties and the particle
movement parameters for this setup are detailed in Table 1. The ALE movement over time is governed by the expression in (80).
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Table 2
Manufactured problem: material properties and parameters of ALE motion.

Young’s modulus [MPa] 𝐸 17
Material density [kg/m3] 𝜌𝑿 1100
Poisson’s ratio 𝜈 0.3
Thermal conductivity [W m−1 K−1] ℎ 10
Specific heat capacity [J kg−1 K−1] 𝐶𝑣 1
Thermal expansion coefficient [K−1] 𝛼 2.223 × 10−4

Reference temperature [K] 𝜃𝑅 293.15
Period of particle motion [s] 𝑇 1 × 10−3

Magnitude of particle motion [m] 𝛽 1 × 10−4

Fig. 5. Manufactured problem: 𝐿2 global convergence analysis at time 𝑡 = 1× 10−3 s for (a) the components of velocity, (b) the components of the first Piola–Kirchhoff stress
tensor, and (c) the temperature. A Mie-Grüneisen model is used with parameters listed in Table 2.

Since the column is subject to rigid body translation, it is anticipated to traverse through space in the direction of the initial velocity,
maintaining a constant speed and a uniform temperature distribution. For a qualitative analysis, Fig. 3 presents the temporal progression of
global errors. These errors include the deviation of the current temperature 𝜃 from the reference temperature 𝜃𝑅, and the differences between the
current and initial velocity components. As expected, when employing the complete ALE algorithm as presented in (47), these errors fluctuate
around machine precision levels. In contrast, a simplified model that omits the solution for 𝐽𝚿 results in significantly larger errors, failing to
meet the discrete GCL conditions associated with the volumetric strain. This discrepancy is visually evident in Fig. 4. For instance, the reduced
model yields non-uniform contour profile, unlike the smooth contours achieved with the complete ALE system. Moreover, a further simplified
model that neglects both 𝑭𝚿 and 𝐽𝚿 solutions inaccurately tracks the deformation path, leading to the eventual breakdown of the numerical
algorithm.

11.2. Proof of order of convergence: manufactured problem with smooth exact solutions

As detailed in Refs. [37,50], we utilise a cubic domain with unit-length sides to assess the order of convergence of the proposed ALE
framework. This example employs a specific physical mapping defined below

𝜑ex(𝑿, 𝑡) = 𝑿 + 𝑈0 cos

(
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𝜃𝑅Γ20𝑐𝑣
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, (86)

with parameters 𝐴 = 𝐵 = 𝐶 = 1 and 𝑈0 = 5×10−4 m. These settings enable the exact computation of the velocity field 𝒗, deformation gradient
tensor 𝑭 , and temperature field 𝜃, as described below

𝒗ex(𝑿, 𝑡) = 𝜕𝜑ex(𝑿, 𝑡)
𝜕𝑡

; 𝑭 ex(𝑿, 𝑡) = 𝑰 +
𝜕𝜑ex(𝑿, 𝑡)

𝜕𝑿
(87)

and

𝜃ex = 𝜃𝑅

(

1 − 3𝜋
2
𝑈0 cos(𝑐𝑑𝜋𝑡) cos
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𝜋𝑋1
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)

cos
(

𝜋𝑋2
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𝜋𝑋3
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. (88)

Dirichlet boundary conditions are applied at the boundaries of the domain, with symmetry on the faces 𝑋1 = 0, 𝑋2 = 0 and 𝑋3 = 0 and
skew-symmetric on the faces 𝑋 = 1, 𝑋 = 1 and 𝑋 = 1. The simulation parameters are summarised in Table 2.
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Table 3
Rotating column: material properties and parameters of the prescribed ALE particle
motion.

Young’s modulus [MPa] 𝐸 17
Material density [kg/m3] 𝜌𝑿 1100
Poisson’s ratio 𝜈 0.45
Period of particle motion [s] 𝑇 0.5
Magnitude of particle motion [m] 𝛽 0.02

Table 4
Twisting column: material properties and parameters of the prescribed ALE particle
motion.

Young’s modulus [MPa] 𝐸 17
Material density [kg/m3] 𝜌𝑿 1100
Poisson’s ratio 𝜈 0.45
Period of particle motion [s] 𝑇 0.1
Magnitude of particle motion [m] 𝛽 0.02

Fig. 5 displays the 𝐿2 norm convergence analysis at time 𝑡 = 1 × 10−3 s for the velocity components 𝒗, the components of the first Piola
Kirchhoff stress tensor 𝑷 , and the temperature 𝜃. The results demonstrate second-order convergence in space and time for all these variables, a
further enhancement over traditional ALE methods [22], which typically exhibit a reduced order of convergence for the derived variables such
as stresses and strains.

11.3. Satisfaction of conservation of linear and angular momenta

A column with a square cross-section and a length 𝐿 of 6 m is left rotating in space with an initial velocity field described as

𝒗0 = 𝝎0 ×𝑿 [m/s], (89)

where 𝝎0 = Ω0[0, 0, 1] rad/s represents the angular velocity vector with Ω0 = 105 rad/s. This problem setup is depicted in Fig. 2(b). The objective
of this example is to illustrate the conservation capabilities of the proposed ALE algorithm. The column is made of a nearly incompressible
rubber material, with its material properties and parameters for particle motion summarised in Table 3. In this case, three different levels of
particle refinement are analysed: {M1, M2, M3} comprising {625, 1715, 3969} particles, respectively.

First, a particle refinement study simulated using the proposed ALE-SPH algorithm is investigated, as depicted in the first three rows (from
top to bottom) of Fig. 6. Both the deformation pattern and pressure distribution progressively converge with increased particle refinement. For
benchmarking, the performance of the proposed algorithm is also compared with that of an alternative in-house, mixed-based Godunov-type Total
Lagrangian SPH framework (TLF) [44] using M3 discretisation, as shown in the last row of Fig. 6. The comparison, yielding nearly identical
results, is illustrated in Fig. 6. Second, Figs. 7(a) and 7(b) highlight the ability of the proposed algorithm in preserving global linear and angular
momenta. The global linear momentum,  = ∫Ω𝝌

𝒑𝝌𝑑Ω𝝌 , fluctuates close to zero value (within machine error) at all times. The global angular
momentum, denoted as  = ∫Ω𝝌

𝒙 × 𝒑𝝌𝑑Ω𝝌 , maintains its initial value throughout the simulation. Minor reduction in angular momentum is
observed when the discrete angular momentum projection algorithm is omitted. Additionally, the evolution of kinetic energy , elastic energy
 and the total energy 𝐸, defined as the sum of  +  , are illustrated. Third, and for a qualitative assessment, Fig. 7(d) monitors the time
evolution of the horizontal displacement component at the position 𝑿 = [0.5, 3, 0.5]𝑇 , demonstrating convergence with increased refinement.
Finally, Fig. 8 showcases a series of deformed states, with the pressure distribution indicated by the colour contour plot. We observe stable
solutions even after a long-term response.

11.4. Robustness of the proposed formulation in highly nonlinear scenario

This section revisits a well-documented example [1,45,86], focussing on a column subjected to an initial sinusoidal velocity field about the
origin, given by

𝒗0 =
⎡
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⎢

⎣

0
Ω0 sin
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2𝐿

)

0

⎤

⎥
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⎦

[m∕s], (90)

where Ω0 = 105 rad s−1 indicates the initial angular velocity magnitude (see Fig. 2(c)). A neo-Hookean material model is used. The relevant
material properties and parameters related to the prescribed ALE particle motion are summarised in Table 4. Initially, the efficacy of the ALE-
SPH algorithm is assessed through a particle refinement study. See the first three columns from the left in Fig. 9. The results demonstrate that
structural deformations predicted using a very coarse discretisation with (M1) 625 particles are in remarkable agreement with the results from
more refined discretisations, such as M2 with 1715 particles and M3 with 3969 particles. For comparison purposes, the performance of the
20
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Fig. 6. Rotating column. Comparison of the deformed shapes at time (left) 𝑡 = 0.05 s and (right) 𝑡 = 0.1 s. The first three rows (top to bottom) show the model refinement
of a structure simulated using the proposed ALE algorithm, whereas the last row shows a deformed structure via an alternative mixed-based Godunov-type Total Lagrangian
SPH algorithm [44]. Colour indicates the pressure profile. A neo-Hookean model is used. The relevant simulation parameters are summarised in Table 3. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Rotating column: Time evolution of (a) global angular momentum , (b) global linear momentum , (c) different energy measures (e.g. kinetic energy , internal
energy  and the sum of kinetic and internal energies, known as the total energy 𝐸), and (d) the horizontal displacement at the position 𝑿 = [0.5, 3, 0.5]𝑇 . A neo-Hookean
model is used. The corresponding simulation parameters are tabulated in Table 3.

algorithm is also evaluated against two benchmarks: a mixed-based Total Lagrangian Godunov-type SPH algorithm [44] and the recently proposed
ALE vertex-centred finite volume algorithm [26]. The deformed states from these algorithms are depicted in the fourth and fifth columns from the
left of Fig. 9, with results that are almost identical to those obtained with the ALE-SPH algorithm. Furthermore, the robustness of the algorithm
is tested across four varying magnitudes of the ALE motion, specifically 𝛽 = {0, 1, 1.5, 2}×10−2 m. The simulations, presented in Fig. 10, show
consistent results across all magnitudes. No instabilities are observed in any of the simulations, emphasising the importance of the tailor-made
numerical stabilisation term. A qualitative assessment, shown in Fig. 11, monitors the evolution of the twist angle at two different positions,
namely 𝑿 = [0.5, 6, 0.5]𝑇 and 𝑿 = [−0.5, 6,−0.5]. No discrepancies are noted when comparing the outcomes of the proposed algorithm to those
of the established Total Lagrangian Godunov-type SPH algorithm [44]. As depicted in Fig. 12, the ALE-SPH algorithm introduces numerical
dissipation over the duration of the simulation, ensuring the discrete satisfaction of the second law of thermodynamics.

11.5. Assessment on the reliability of the algorithm under impact event

In this example, we examine a benchmark scenario involving a copper bar, initially with a length of 𝐿 = 0.0324 m and a radius of 𝑟 = 0.0032
m, colliding against a rigid wall at a speed of 𝑉0 = 227 m∕s. The setup for this problem is illustrated in Fig. 13(a). Utilising a Hencky-based
von Mises material model along with a rate-independent linear hardening law (26), the specific parameters for this simulation are included in
Table 5. To enhance computational efficiency, the simulation simplifies the scenario to consider only a quarter of the entire domain, implementing
22
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Fig. 8. Rotating column. A series of snapshots at times 𝑡 = {0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165} ms (from left to right and top to bottom). Colour indicates the
pressure distribution. Results obtained using a neo-Hookean model with M3 model. The relevant simulation parameters are summarised in Table 3. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 5
Simulation parameters for isothermal Taylor bar impact.

Young’s modulus [GPa] 𝐸 117
Material density [kg/m3] 𝜌𝑿 8930
Poisson’s ratio 𝜈 0.35
Initial yield stress [GPa] 𝜏0𝑦 0.4
Hardening modulus [GPa] 𝐻 0.1
Hardening exponent 𝑁 1
ALE motion parameters {𝛼, 𝛾, 𝜁} {1, 0, 0.02}

symmetry boundary conditions such as (frictionless) roller support to accomplish this. The primary objective is to demonstrate the superiority of
the proposed ALE algorithm over Classical (displacement-based) Total Lagrangian SPH Framework (CTLF), particularly in situations involving
substantial plastic flow in the vicinity of the contact area. CTLF approaches often suffer from significant irregular particle distributions, such
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Fig. 9. Twisting column. Comparison of the deformed shapes at time 𝑡 = 100 ms. The first three columns (from left to right) show the model refinement of a structure
simulated using the proposed ALE algorithm. In contrast, the fourth and fifth columns illustrate the deformation achieved using an alternative in-house Godunov-type Total
Lagrangian SPH algorithm [44] and an ALE vertex-centred finite volume algorithm [26]. Colour indicates the pressure profile. A neo-Hookean model is used. The simulation
parameters are summarised in Table 4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Twisting column. Comparison of the deformed structures at 𝑡 = 125 ms predicted using the proposed ALE algorithm with 𝛽 = {0.01, 0.015, 0.02} (the first three
columns from left to right) against an alternative in-house Godunov-type Total Lagrangian SPH algorithm (at the rightmost position). Colour indicates the pressure distribution.
A neo-Hookean model is used. The relevant simulation parameters are summarised in Table 4. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 11. Twisting column. Time history of the accumulated twist angle for model M3 via different values of 𝛽 = {0, 0.01, 0.015, 0.02} m at two locations, namely (a)
𝑿 = [0.5, 6, 0.5]𝑇 and (b) 𝑿 = [−0.5, 6,−0.5]. A neo-Hookean model is used. The relevant simulation parameters are tabulated in Table 4.

Fig. 12. Twisting column. Time evolution of (a) different energy measures (e.g. kinetic energy , internal energy  and the sum of kinetic and internal energies, known
as the total energy 𝐸), (b) total numerical dissipation (%) introduced by the proposed ALE method via M3 for 𝛽 = {0, 0.01, 0.015, 0.02}. (c) and (d) show the time history
of the numerical dissipation and its percentage for three levels of refinement, compared to the mixed-based Godunov-type Total Lagrangian SPH algorithm [44] (TLF). A
neo-Hookean model is used. Parameters related to the material properties and the mesh motion are tabulated in Table 4.

as particles clumping. To prevent the excessive compression of particles near the contact zone, incorporating ALE particle motion proves
advantageous. Through ALE smoothing, the particles in these critical areas can be stretched vertically upwards, thus maintaining a high quality
of the spatial particles distribution. This is facilitated by solving a conservation-type law, as described in (41), with the function 𝑭̄ specifically
chosen as

𝑭̄ =
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 𝐹33

⎤

⎥

⎥

⎦

. (91)

A series of images in Fig. 14 demonstrate the evolving state of ALE particle movement throughout the impact process.
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Fig. 13. Problem setup for the (a) Taylor bar impact test case, (b) rapid stretching of a bar and (c) coining test case.

Fig. 14. Taylor bar impact. Two-dimensional view of a series of material mesh deformation at time 𝑡 = {20, 40, 60, 80} 𝜇s (from left to right).

To evaluate the reliability of our ALE algorithm, a quarter section of the bar is discretised using three levels of particle refinement, namely
(M1) 1560, (M2) 3744 and (M3) 7280 particles. As illustrated in Fig. 15, the deformation and plastic strain distribution patterns at time
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Table 6
Simulation parameters for rapid stretching of a bar.

Young’s modulus [GPa] 𝐸 124
Material density [kg/m3] 𝜌𝑿 8960
Poisson’s ratio 𝜈 0.34
Initial yield stress [MPa] 𝜏0𝑦 90
Hardening modulus [MPa] 𝐻 292
Hardening exponent 𝑁 0.31
Melting temperature [K] 𝜃melting 1356
Transition temperature [K] 𝜃transition 298.15
Strain rate coefficient 𝐶 0.025
Initial strain rate [s−1] 𝜀̇0 1
Temperature exponent 𝑚 1.09
Reference temperature [K] 𝜃𝑅 298.15
Thermal conductivity [W m−1 K−1] ℎ 386
Specific heat capacity [J kg−1 K−1] 𝐶𝑣 383
Thermal expansion rate [K−1] 𝛼 5 × 10−5

ALE motion parameters {𝛼, 𝛾, 𝜁} {1, 0.005, 0.02}

Fig. 15. Taylor bar impact. Comparison of the deformed shapes at time 𝑡 = 80 𝜇s. The first three columns (left to right) show the model refinement of a structure simulated
using the proposed ALE algorithm, whereas the last column (at the rightmost position) shows a deformed structure via an alternative Godunov-type Total Lagrangian SPH
algorithm [44]. Colour indicates both von Mises (left portion of the subfigure) and equivalent plastic strain (right portion of the subfigure) profiles. A Hencky-based von Mises
plasticity model using isotropic linear hardening rule is used (26). The corresponding simulation parameters are summarised in Table 5. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

𝑡 = 80 𝜇s show remarkable consistency across all levels of particle refinement. The simulations in the left three columns are based on the
ALE-SPH algorithm with increasing levels of refinement, whilst the rightmost column presents results obtained through the mixed-based Total
Lagrangian Godunov-type SPH Framework (TLF) [43] Moreover, Fig. 16 presents a comparison between the outcomes achieved with the ALE
algorithm (based on M3) and those obtained using the mixed-based Total Lagrangian SPH counterpart [44]. The top row of this figure features
snapshots that reveal the distribution of equivalent plastic strain, while the bottom row focusses on the pressure profile. Each comparison is
divided into two parts: the left side represents the ALE results, and the right side displays the findings from the mixed-based Total Lagrangian
approach. Despite yielding comparable results, the ALE method excels in maintaining a more regular distribution of particles around the impact
zone. This advantage is evident in the detailed views provided within Figs. 17, highlighting the superiority of ALE algorithm at handling
particles clumping during high-impact events. This is visible in the front view of the figure, where denser particle clustering can be observed in
the right portion of the bar (representing the mixed-based Total Lagrangian approach) near the contact region, compared to the left portion of the
bar (ALE-SPH algorithm). For completeness, we have also simulated the same scenario using classical displacement-based SPH approach. The
comparison, illustrated in Fig. 18 at time 𝑡 = 23 𝜇s, shows that the accumulation of particle clumping leads to the breakdown of the numerical
scheme. Consequently, the classical displacement-based Total Lagrangian approach was unable to complete the simulation.

Fig. 19(a) displays the dynamic energy transfer during the impact process, showing the conversion of a significant portion of kinetic energy
into plastic dissipation and a smaller fraction into elastic strain energy. This indicates the dynamic exchange of energy that takes place during
the collision. Moreover, Fig. 19(b) shows that the numerical dissipation of the system gradually decreases with particle refinement. This aligns
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Fig. 16. Taylor bar impact. A series of snapshots at times 𝑡 = {20, 40, 60, 80} 𝜇s (from left to right). Colour indicates (first row) the equivalent plastic strain and (second row) the
pressure distribution. Each subfigure is split into two parts: the left side represents the results of ALE, and the right side illustrates those of the Total Lagrangian approach [44].
Results obtained using a Hencky-based von Mises plasticity model combined with a linear hardening rule. The corresponding simulation parameters are summarised in Table 5.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 17. Taylor bar impact. Comparison of the deformed shapes at time 𝑡 = 80 𝜇s via M3 model. In each subfigure, left portion of the bar represents the results obtained
through the proposed ALE algorithm and the right portion of bar using in-house Total Lagrangian Godunov-type SPH algorithm [44] (TLF). Colour indicates pressure profile.
A Hencky-based von Mises plasticity model using linear hardening rule is used (26). The corresponding simulation parameters are summarised in Table 5. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

with the second law of thermodynamics, thus affirming the physical validity of the simulation. The evolution of the radius at the position
𝑿 = [0.0032, 0, 0.0324]𝑇 is monitored and depicted in Fig. 19(c). Our results show excellent consistency with results from the Total Lagrangian
approach described in [44]. A key benefit of the ALE method is its capability to prevent particles from clumping, a critical consideration in
simulations of high-speed impacts. This capability allows for the use of larger time increments in the ALE method compared to those in the Total
Lagrangian method, enhancing both computational efficiency and the robustness of the algorithm under challenging scenarios. In this specific
case, the ALE time steps are larger than those of the Total Lagrangian by approximately 2–2.5 times. This is shown in Fig. 19(d) where the
time increment ratio is defined as the ratio between ALE and Total Lagrangian time increments.

11.6. Accuracy in the necking plastic region

Revising the initial conditions introduced in the Taylor bar problem, we now consider an altered condition where the initial velocity field of
the bar is inverted, causing it to stretch on both sides. As shown in Fig. 13(b), this adjustment primarily aims to assess the effectiveness of the
proposed ALE methodology in capturing large plastic flow in the vicinity of the necking region. Classical displacement-based Lagrangian
approaches often prove inadequate in accurately resolving plastic deformations because particles in the necking area become excessively
separated [37]. A viable strategy to address this challenge involves implementing non-uniform refinement by increasing the number of particles
within the necking region to better capture its deformation behaviour.

For this simulation, we employ a Hencky-based von-Mises plasticity model along with a nonlinear Johnson-Cook hardening law. The specific
material properties and simulation parameters are detailed in Table 6. Considering thermal effects, we set the initial temperature profile of the bar
to 𝜃(𝝌 , 𝑡 = 0) = 573.15 K. The ALE motion in this context is governed by the previously utilised function 𝑭̄ through solving expression (41).
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Fig. 18. Taylor bar impact. Comparison of the deformed shapes at time 𝑡 = 23 𝜇s via M2 model. In each subfigure, left portion of the bar represents the results obtained
through the proposed ALE algorithm and the right portion of bar using the Classical Total Lagrangian SPH Framework (CTLF) [86]. Colour indicates pressure profile. Dense
particle clustering is observed when using CTLF. A Hencky-based von Mises plasticity model using linear hardening rule is used (26). The corresponding simulation parameters
are summarised in Table 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

A series of snapshots illustrating ALE particle motions, particularly emphasising the necking area, is presented in Fig. 20. Due to significant
stretching, the ALE motion tends to compress, thereby ensuring that the spatial distribution of particles remain regular and of high quality - a
key factor for accurately capturing the behaviour of the material under extreme conditions.

To begin with, we perform a particle refinement study utilising the proposed ALE formulation. This investigation involved three levels
of particle refinement, specifically (M1) 1560, (M2) 3744 and (M3) 7280 particles. The results for both von Mises stress and temperature
demonstrate convergence with increased particle refinement, as depicted in the first three columns from the left in Fig. 21. Compared to the
mixed-based Total Lagrangian method, as shown in the rightmost column of Fig. 21, the ALE approach offers a notable improvement in
temperature resolution. This improvement is attributed to a higher concentration of particles in the necking region. In contrast, particles in this
area tend to become highly irregular under the Total Lagrangian approach, which adversely affects the accuracy of the simulation.

Fig. 22 compares the deformation of the bar at time 𝑡 = 30 ms. As expected, the ALE method (left portion of the figure) provides superior
resolution over the Total Lagrangian method (right portion of the figure) in capturing temperature near the necking areas. Furthermore, the
evolution of various energy components, including Ballistic energy, aligns well between both formulations. As demonstrated in Fig. 23(a), the
reduction in Ballistic energy throughout the simulation process adheres to the principles of the second law of thermodynamics, thereby affirming
the long-term stability of the simulation outcomes. Further exploration, as seen in Fig. 23(b), monitors the development of the necking radius.
The proposed ALE approach predicts a larger radius due to temperature softening, indicating a more precise representation of temperature effects.

11.7. Simulation of challenging coining process

The study of a coining test, depicted in Fig. 13(c), focusses on a rectangular workpiece subjected to compression by a rigid tool. Due the
symmetrical nature of the problem, only a quarter of the domain, measuring 0.03 m × 0.01 m × 0.000625 m, is modelled for computational
efficiency. The workpiece undergoes compression to 60% of its original height, driven by a boundary velocity of 𝒗 = 𝑉 0,−1, 0 𝑇 m∕s applied
30
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Fig. 19. Taylor bar impact. Time evolution of (a) different energy measures (e.g. kinetic energy , internal energy  and the sum of kinetic and internal energies, known as
the total energy 𝐸), (b) the accumulated numerical dissipation measured in percentage, (c) radius at the position 𝑿 = [0.0032, 0, 0.0324]𝑇 and (d) a ratio between the ALE and
Total Lagrangian time increments. Results obtained using a Hencky-based von Mises plasticity model with isotropic linear hardening rule (26). The corresponding simulation
parameters are tabulated in Table 5.

Table 7
Simulation parameters for coining problem.

Young’s modulus [MPa] 𝐸 1
Material density [kg/m3] 𝜌𝑿 8930
Poisson’s ratio 𝜈 0.3
Initial yield stress [Pa] 𝜏0𝑦 250
Hardening modulus [Pa] 𝐻 1000
Hardening exponent 𝑁 1
ALE motion parameters {𝛼, 𝛾, 𝜁} {1, 1, 1}

to a third of the top side with 𝑉0 = 10 m∕s, denoted as 𝑿0

𝑿0 =
⎡

⎢

⎢

⎣

0.01 ≥ 𝑋 ≥ 0
0.01

0.000625 ≥ 𝑍 ≥ 0

⎤

⎥

⎥

⎦

m. (92)

The setup reveals a critical limitation of the Total Lagrangian finite element based algorithm in capturing the dynamic evolution of the free
surface of workpiece due to severe element distortion. This study aims to highlight the enhanced performance and reliability of the proposed ALE
algorithm. A hyperelastic–plastic materials combined with a linear hardening rule is utilised. The detailed material properties and simulation
parameters relevant to this analysis are provided in Table 7. No thermal effects are considered.

A key challenge in the coining process is the ability of the algorithm to handle outward flow of material from the punch region [10,87]. This
phenomenon complicates the accurate representation of the evolving free surface, especially when a limited number of particles are available
for this purpose. The proposed ALE algorithm aims to overcome this limitation by facilitating dynamic particle flow towards the punch region.
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Fig. 20. Rapid stretching of a bar. Two-dimensional view of a series of material mesh deformation at times 𝑡 = {8, 16, 24, 30} 𝜇s (from left to right). Break lines are used to
indicate that a part has been shortened for representation on the figure.

This ALE approach results in a higher concentration of particles in areas of critical importance, thus improving the distribution of plastic strain,
as demonstrated in Fig. 24. Compared to the Total Lagrangian approach, the ALE algorithm demonstrates superior potential in simulating
the coining process with greater fidelity. This can be observed in Fig. 25. For a quantitative comparison, we monitor the time history plot of
horizontal and vertical displacements of a particle at position 𝑿 = [0.0125, 0.01, 0.0003125]𝑇 m, as shown in Fig. 26. When the punch occurs,
the particle initially bulges upward, exhibits outward flow, and then moves towards the punch region. The proposed ALE algorithm appears
to successfully capture this behaviour. Unfortunately, the Godunov-type Total Lagrangian SPH algorithm cannot effectively model the actual
physical behaviour of material flowing inward towards the punch region. This test case paves the way for future research into its application
across complex manufacturing processes, such as cold-forming.

12. Conclusions

In this paper, a novel Arbitrary Lagrangian Eulerian (ALE) Smooth Particle Hydrodynamics (SPH) framework re-formulated through a
system of first-order conservation laws was introduced. Physical conservation principles, including mass, linear momentum and entropy density,
were supplemented with two auxiliary geometric conservation laws to facilitate the resolution of the physical deformation gradient tensor 𝑭 . By
exploiting the multiplicative decomposition of 𝑭 into the pair {𝑭𝚿,𝑭𝚽} and solving them through conservation laws, our methodology permitted
accurate evaluation of strains and stresses. The hyperbolic nature of the system and the physical propagation of shocks were ensured through
the rank-one convexity of the internal energy potential, which establishes the one-to-one relationship between real wave speeds in material and
referential domains. Interestingly, our ALE framework can be degenerated into three simplified continuum mechanics representations for solids:
Total Lagrangian, Eulerian and Updated Reference Lagrangian formulations. Both the Total and Updated Reference Lagrangian formulations
can be viewed as extensions of the velocity-shifting and particle-shifting approaches, which are traditionally employed in fluid dynamics, to the
context of solid dynamics. To handle irregular particle distribution, a dynamic ALE motion strategy has been employed by solving a conservation-
based (material) linear momentum equation. Furthermore, for materials with history-dependent characteristic, our framework integrated additional
evolution equations for internal state variables within the ALE setting.

From spatial discretisation standpoint, a Godunov-type SPH algorithm was used. Appropriate numerical stabilisation was carefully derived
to fulfil the Coleman–Noll procedure at the semi-discrete level via the Ballistic energy, ensuring a consistent non-negative numerical entropy
production. From temporal integration standpoint, a three-stage Runge–Kutta explicit time integrator complemented by an angular momentum
projection algorithm was implemented to preserve angular momentum. The determination of wave speed limits helped in computing the time
step size necessary for the stability of the time integrator.

Through extensive numerical examples, we thoroughly assessed the conservation properties, stability, and robustness of the proposed
algorithm. The ALE SPH framework demonstrated significant potential in enhancing the resolution of pressure and stress fields within critical
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Fig. 21. Rapid stretching of a bar. Comparison of the deformed shapes at time 𝑡 = 30 𝜇s. The first three columns (left to right) show the refinement of a structure simulated
using the proposed ALE algorithm, whereas the last column (at the rightmost position) shows a deformed structure via an alternative Godunov-type Total Lagrangian SPH
algorithm [44]. Colour indicates both von Mises (left portion of the subfigure) and temperature (right portion of the subfigure) profiles. A Hencky-based von Mises plasticity
model combined with a nonlinear Johnson–Cook hardening rule is used. The parameters related to material properties and ALE motion are detailed in Table 6. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 22. Rapid stretching of a bar. Comparison of the deformed shapes at time 𝑡 = 30 𝜇s via M3 model: (Left portion of the bar) the proposed ALE algorithm and (Right
portion of the subfigure) Godunov-type Total Lagrangian SPH Framework (TLF) [44]. Colour indicates the temperature profile. A Hencky-based von Mises plasticity model
combined with a nonlinear Johnson–Cook hardening rule is used. The parameters related to material properties and ALE motion are detailed in Table 6. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
34



Computer Methods in Applied Mechanics and Engineering 427 (2024) 117055C.H. Lee et al.
Fig. 23. Rapid stretching of a bar. Time evolution of (a) different energy measures (e.g. kinetic energy , internal energy  and Ballistic energy ) and (b) radius reduction as
function of elongation of the bar. Results obtained using a Hencky-based von-Mises plasticity model combined with a nonlinear Johnson–Cook hardening rule. The corresponding
simulation parameters are tabulated in Table 6.

potential for increased simulation time steps when addressing impact scenario, achieved by effectively smoothing particles clumping within the
contact region through ALE motion.
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Appendix A. The ALE transformation

To derive the ALE conservation form from the Total Lagrangian conservation laws, we first relate the Total Lagrangian laws, typically
defined in the material domain, to their ALE counterparts in the fixed referential domain. This involves transforming the global Total Lagrangian
conservation law by applying the Jacobian transformation (on the volume integral), Nanson’s rule (on the surface integral), and the Reynolds
transport theorem to the material time derivative, which eventually results in [26]

𝑑
𝑑𝑡 ∫Ω𝝌

 𝝌 𝑑Ω𝝌 + ∫𝜕Ω𝝌

𝝌 𝑑𝑨𝝌 = ∫Ω𝝌

𝝌 𝑑Ω𝝌 . (A.1)

Equivalently, the associated ALE local differential equation and its jump condition are

𝜕
𝜕𝑡
|

|

|

|𝝌
 𝝌 + DIV𝝌𝝌 = 𝝌 , 𝑈𝝌 [[ 𝝌 ]] = [[𝝌 ]]𝑵𝝌 . (A.2)

The transformed conservation variables, fluxes and source terms are given by

 = 𝐽  ;  = 𝐽  ;  =
(

 − ⊗𝑾
)

𝑯 , (A.3)
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Fig. 24. Coining problem. A sequence of snapshots of the proposed ALE algorithm for (left column) ALE particle motion and (right column) the deformed structures. Colour
contour indicates plastic strain. Results obtained using a Hencky-based von Mises plasticity model combined with a linear hardening rule. No thermal effects are considered.
The corresponding simulation parameters are summarised in Table 7. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 25. Coining problem. Comparison of the deformed shapes at times 𝑡 = {300, 600} 𝜇s (from top to bottom) (Left portion of the block) the proposed ALE algorithm and
(Right portion of the block) Godunov-type Total Lagrangian SPH Framework (TLF) [44]. Colour indicates both von Mises profile. A Hencky-based von Mises plasticity model
combined with a linear hardening rule is used. The corresponding simulation parameters are summarised in Table 7. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 26. Coining problem. Time evolution of (a) the horizontal displacement and (b) the vertical displacement of a particle at position 𝑿 = [0.0125, 0.01, 0.0003125]𝑇 m. A
Hencky-based von Mises plasticity model combined with a linear hardening rule is used. The corresponding simulation parameters are summarised in Table 7.

where { 𝑿 ,𝑿 ,𝑿} are defined as the conservation variables, fluxes and source term in the material domain, respectively.
Moreover, noticing 𝜕

𝜕𝑡

|

|

|

|𝝌
𝐽𝚿 = DIV𝝌

(

𝑯𝑇
𝚿𝑾

)

(9d), a non-conservative local conservation equation emerges as

𝐽𝚿
𝜕
𝜕𝑡
|

|

|

|𝝌
 𝑿 −

(

𝛁𝝌 𝑿
) (

𝑯𝑇
𝚿𝑾

)

+ DIV𝝌
(

𝑿𝑯𝚿
)

= 𝐽𝚿𝑺𝑿 . (A.4)
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