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A B S T R A C T

We present a generalized formulation for reweighted least squares approximations. The goal of
this article is twofold: firstly, to prove that the solution of such problem can be expressed as a
convex combination of certain interpolants when the solution is sought in any finite-dimensional
vector space; secondly, to provide a general strategy to iteratively update the weights according
to the approximation error and apply it to the spline fitting problem. In the experiments, we
provide numerical examples for the case of polynomials and splines spaces. Subsequently, we
evaluate the performance of our fitting scheme for spline curve and surface approximation,
including adaptive spline constructions.

1. Introduction

We consider the problem of constructing a continuous model 𝒗∶𝛺 → R𝐷 on a general domain 𝛺 ⊆ R𝑁 in any dimension 𝑁 ∈ N>0
from pointwise data

{(

𝒙1,𝒇 1
)

,… ,
(

𝒙𝑚,𝒇𝑚
)}

, where 𝒇 𝑖 ∈ R𝐷 for 𝐷 ∈ N>0 are observations at points 𝒙𝑖 ∈ 𝛺, for 𝑖 = 1,… , 𝑚.
Given the ubiquity of this problem across various fields and applications, a number of methods have been developed to address
approximation, data fitting, estimation, and prediction. Examples include classical ones, like interpolation and least squares, while
more recently, approaches such as compressive sensing or neural networks, have also emerged as viable options for tackling these
challenges. In this work, we primarily concentrate on two very well established classical methods: interpolation and weighted least
squares, see, e.g., [13]. Even though interpolation is well established, there is still ongoing research in this field, including the
development of efficient algorithms with irregularly-spaced data, see e.g., [7,8], among others. Weighted least squares methods [49]
can be considered a more general instance of ordinary least squares methods, studied on weakly admissible meshes in [4]. The key
difference between weighted and ordinary least squares is that in the former, fixed weight values are associated with the observations
to incorporate different weightings in the least squares scheme.

Most of the time, interpolation and least squares methods are regarded as complementary techniques; however, despite this
perception they share a strong connection in their polynomial formulation, as noted in [9]. Additionally, as detailed in [16,18]
they can also be used in combination to defeat the Runge phenomenon [48]. In the first part of this paper, we propose a general
formulation of the weighted least squares approximant as a convex combination of suitable interpolants, for any finite-dimensional
function space consisting of real-valued functions defined on a domain 𝛺 ⊆ R𝑁 and address its consequences. As a special case, our
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formulation includes the vector space of polynomials up to a certain degree, for which a relation between weighted polynomial least
squares and interpolation has been discussed in [9]. In the second part of the paper, we focus on the weights of the problem. Our
main aim is to update these weights in the spirit of the Iterative Reweighted Least Squares (IRLS) method [2,46] with convergence
guarantees and efficient algorithms [1,52]. IRLS also offers robust regression [31] and is used to smooth the reconstruction.
However, the main difference between our approach and the IRLS method is that our updates allow us to preserve sharp features of
the final model and are also suitable for adaptive approximations. Our numerical experiments show the performance of the proposed
method within the spline framework, from curve to surface fitting with an appropriate underlying mesh, including adaptive spline
constructions.

The paper is organized as follows. In Section 2, we provide a brief introduction to the concepts of interpolation and weighted least
quares approximation for a given set of observations. In Section 3 we present our theoretical result and address its consequences.
n Section 4, we describe the spline models together with their hierarchical extensions used later on in this paper. Moreover, we
resent a numerical verification of our theoretical result for the space of polynomial splines and comment on its consequences by
xploiting hierarchical box-splines. In Section 5, we describe the reweighted least squares spline fitting scheme and thereafter its
xtension to deal with adaptive spline constructions. Finally, in Section 6, we report three numerical experiments to evaluate the
erformance of the proposed reweighted least squares fitting schemes.

. Interpolation and weighted least squares

Throughout this paper, we assume that R𝑁 , R𝐷, R𝑛 and R𝑚 are column vectors. Let 𝛺 ⊆ R𝑁 and consider a set of given
bservations

{(

𝒙1,𝒇 1
)

,… ,
(

𝒙𝑚,𝒇𝑚
)}

, where 𝒙𝑖 = (𝑥1𝑖 ,… , 𝑥𝑁𝑖 ) ∈ 𝛺 and 𝒇 𝑖 = (𝑓 1
𝑖 ,… , 𝑓𝐷

𝑖 ) ∈ R𝐷. Moreover, let 𝑉 be a vector space of
functions defined on 𝛺 and taking values in R𝐷. We denote its finite dimension by 𝑛 = dim𝑉 and assume that 𝑉 is generated by a
asis 𝛤 = {𝛽1,… , 𝛽𝑛}, with basis functions 𝛽𝑗 ∶ 𝛺 → R𝐷, i.e. 𝑉 = span {𝛤 }.

The interpolation problem aims to find an element 𝒗 ∈ 𝑉 such that 𝒗
(

𝒙𝑖
)

= 𝒇 𝑖 holds for each 𝑖 = 1,… , 𝑚. If a solution 𝒗 exists,
it can be expressed as 𝒗 =

∑𝑛
𝑗=1 𝒄𝑗𝛽𝑗 where the coefficients 𝒄𝑗 = (𝑐1𝑗 ,… , 𝑐𝐷𝑗 ) ∈ R𝐷 can be determined by solving a linear system for

each component 𝑘 = 1,… , 𝐷. Specifically, each linear system takes the form 𝐵𝒄𝑘 = 𝒇𝑘, where

𝐵 =
⎛

⎜

⎜

⎝

𝛽1(𝒙1) … 𝛽𝑛(𝒙1)
⋮ ⋱ ⋮

𝛽1(𝒙𝑚) … 𝛽𝑛(𝒙𝑚)

⎞

⎟

⎟

⎠

∈ R𝑚×𝑛 (1)

is the 𝑚 × 𝑛 collocation matrix, 𝒄𝑘 = (𝑐𝑘1 ,… , 𝑐𝑘𝑛 ) ∈ R𝑛 and 𝒇𝑘 = (𝑓𝑘
1 ,… , 𝑓𝑘

𝑚) ∈ R𝑚. The solution 𝒗 ∈ 𝑉 is unique, if and only if 𝐵
is invertible, hence 𝑛 = 𝑚 is a necessary condition. However, even if the interpolant 𝒗 ∈ 𝑉 exists, it is well known that it can be
affected by poor approximation quality. Several factors can contribute to this, such as the nature of the data (e.g., their quantity or
distribution) and the intrinsic properties of the function space 𝑉 (e.g., the presence of Runge’s phenomenon).

As an alternative to interpolation, a common approach is to define the approximant 𝒗 ∈ 𝑉 as the solution to a weighted least
squares problem when 𝑛 ≤ 𝑚. In this context, we assign a strictly positive weight value 𝜔𝑖 ∈ R>0 to each 𝒙𝑖 ∈ 𝛺 for 𝑖 = 1,… , 𝑚. Let
𝑊 ∈ R𝑚×𝑚 be the associated diagonal matrix with the 𝑖th diagonal entry given by 𝜔𝑖. Then, the weighted least squares problem
involves finding a function 𝒗 ∈ 𝑉 , which solves the minimization problem

min
𝒖∈𝑉

𝑚
∑

𝑖=1
𝜔𝑖

‖

‖

𝒖(𝒙𝑖) − 𝒇 𝑖
‖

‖

2
2 . (2)

By expanding the solution 𝒗 ∈ 𝑉 of (2) as 𝒗 =
∑𝑛

𝑗=1 𝒄𝑗𝛽𝑗 , the matrix 𝒄 =
(

𝒄1,… , 𝒄𝑛
)⊤ ∈ R𝑛×𝐷 is the solution to problem (2) in its

equivalent normal form,

min
𝒄∈R𝑛×𝐷

‖𝑊
1
2 𝐵𝒄 −𝑊

1
2 𝒇‖22, (3)

where, 𝒇 =
(

𝒇 1,… ,𝒇𝑚
)⊤ ∈ R𝑚×𝐷,

𝑊 = diag{𝜔1,… , 𝜔𝑚} =

⎛

⎜

⎜

⎜

⎜

⎝

𝜔1 0 … 0
0 𝜔2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜔𝑚

⎞

⎟

⎟

⎟

⎟

⎠

∈ R𝑚×𝑚

nd 𝑊
1
2 denotes the element-wise evaluation of the square root of 𝑊 . The minimization in (3) entails solving a system of linear

quations for each column 𝒄𝑘 = (𝑐𝑘1 ,… , 𝑐𝑘𝑛 ), 𝑘 = 1,… , 𝐷, of 𝒄. More precisely, for each 𝑘 = 1,… , 𝐷, 𝒄𝑘 is the solution of the normal
equation

𝐵⊤𝑊𝐵𝒄𝑘 = 𝐵⊤𝑊 𝒇𝑘. (4)
53
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3. Weighted least squares via interpolation

In this section, to alleviate the notation, we will assume that 𝐷 = 1. Therefore, we avoid the superscript 𝑘 introduced in Section 2
and reduce the bold writing according to the dimension. Nevertheless, all the results apply in the more general case of 𝐷 ≥ 1.

onsider 𝛺 ⊆ R𝑁 ,
{(

𝒙1, 𝑓1
)

,… ,
(

𝒙𝑚, 𝑓𝑚
)}

a set of given observations with 𝒙𝑖 ∈ 𝛺 and 𝑓𝑖 ∈ R and finally 𝑉 = span {𝛤 } a vector
space of dimension 𝑛, with basis 𝛤 = {𝛽1,… , 𝛽𝑛} and functions 𝛽𝑗 ∶ 𝛺 → R, for 𝑗 = 1,… , 𝑛. For any set 𝐾 ⊂ N we denote by #(𝐾)
the cardinality of 𝐾 and we define 𝑛 = {𝐾 ⊆ {1,… , 𝑚}∶ #(𝐾) = 𝑛}, the set of all subsets of {1,… , 𝑚} with cardinality 𝑛. For each
𝐾 ∈ 𝑛, there exist 𝑘𝑖 ∈ {1,… , 𝑚} for 𝑖 = 1,… , 𝑛, such that 𝐾 = {𝑘1,… , 𝑘𝑛}. We denote by 𝑣𝐾 ∈ 𝑉 the interpolant of 𝑓𝑘𝑖 at points
𝒙𝑘𝑖 for 𝑖 = 1,… , 𝑛. For such 𝐾, we define

𝐵𝐾 =
⎛

⎜

⎜

⎝

𝛽1(𝒙𝑘1 ) … 𝛽𝑛(𝒙𝑘1 )
⋮ ⋱ ⋮

𝛽1(𝒙𝑘𝑚 ) … 𝛽𝑛(𝒙𝑘𝑚 )

⎞

⎟

⎟

⎠

∈ R𝑛×𝑛 (5)

which is called the collocation matrix at the points 𝒙𝑘𝑖 with respect to the whole basis 𝛤 of 𝑉 . For 𝐾 ∈ 𝑛 and positive weights
𝜔1,… , 𝜔𝑚 ∈ R, we write

𝜔𝐾 =
∏

𝑖∈𝐾
𝜔𝑖. (6)

Following the notation in [9], we define 𝜆𝐾 = 𝜔𝐾
|

|

𝐵𝐾
|

|

2, where |

|

|

𝐵𝐾
|

|

|

denotes the determinant of 𝐵𝐾 . Finally, we define ⋆
𝑛 ⊂ 𝑛 as

the set of all subsets of {1,… , 𝑚} of cardinality 𝑛 with |𝐵𝐾 | ≠ 0. In other words, ⋆
𝑛 = {𝐾 ⊆ {1,… , 𝑚}∶ #(𝐾) = 𝑛, and |𝐵𝐾 | ≠ 0}.

Theorem 1. The weighted least squares approximant 𝑣 ∈ 𝑉 of the set of points
{

(𝒙𝑖, 𝑓𝑖)
}𝑚
𝑖=1 is the weighted sum of the interpolants 𝑣𝐾 ∈ 𝑉

for 𝐾 ∈ ⋆
𝑛 which interpolate the points (𝒙𝑖, 𝑓𝑖) for 𝑖 ∈ 𝐾, i.e.,

𝑣(𝒙) =

∑

𝐾∈⋆
𝑛
𝜆𝐾𝑣𝐾 (𝒙)

∑

𝐾∈⋆
𝑛
𝜆𝐾

, ∀𝒙 ∈ R𝑁 . (7)

Proof. By hypothesis, 𝑣 ∈ 𝑉 minimizes (2). If 𝛤 =
{

𝛽1,… , 𝛽𝑛
}

is a basis of 𝑉 , then we can write 𝑣(𝒙) =
∑𝑛

𝑗=1 𝑐𝑗𝛽𝑗 (𝒙), for some
oefficients 𝑐𝑗 ∈ R for 𝑗 = 1,… , 𝑛. We set 𝒄 = (𝑐1,… , 𝑐𝑛)⊤ and 𝒇 = (𝑓1,… , 𝑓𝑚)⊤, and write the normal Eq. (4) as 𝐴𝒄 = 𝒃 with

𝐴 = 𝐵⊤𝑊𝐵 =
⎛

⎜

⎜

⎝

𝜔1𝛽1(𝒙1) … 𝜔𝑚𝛽1(𝒙𝑚)
⋮ ⋱ ⋮

𝜔1𝛽𝑛(𝒙1) … 𝜔𝑚𝛽𝑛(𝒙𝑚)

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝛽1(𝒙1) … 𝛽𝑛(𝒙1)
⋮ ⋱ ⋮

𝛽1(𝒙𝑚) … 𝛽𝑛(𝒙𝑚)

⎞

⎟

⎟

⎠

,

𝒃 = 𝐵⊤𝑊 𝒇 =
(
∑𝑚

𝑖=1 𝜔𝑖𝛽1(𝒙𝑖)𝑓𝑖, … ,
∑𝑚

𝑖=1 𝜔𝑖𝛽𝑛(𝒙𝑖)𝑓𝑖
)⊤ .

y the Cauchy–Binet theorem [5, Section 4.6], |𝐴| =
∑

𝐾∈𝑛
𝜔𝐾

|

|

𝐵𝐾
|

|

2 and by Cramer’s rule, we obtain 𝑐𝑗 = |

|

|

𝐴𝑗
|

|

|

/

|𝐴|, for each
= 1,… , 𝑛, where 𝐴𝑗 is obtained from 𝐴 replacing its 𝑗th column with 𝒃 for 𝑗 = 1,… , 𝑛, namely, 𝐴𝑗 = 𝐵⊤𝑊𝐵𝑗 with

𝐵𝑗 =
⎛

⎜

⎜

⎝

𝛽1(𝒙1) … 𝛽𝑗−1(𝒙1) 𝑓1 𝛽𝑗+1(𝒙1) … 𝛽𝑛(𝒙1)
⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

𝛽1(𝒙𝑚) … 𝛽𝑗−1(𝒙𝑚) 𝑓𝑚 𝛽𝑗+1(𝒙𝑚) … 𝛽𝑛(𝒙𝑚)

⎞

⎟

⎟

⎠

∈ R𝑚×𝑛.

gain from the Cauchy–Binet theorem, we obtain |

|

|

𝐴𝑗
|

|

|

=
∑

𝐾∈𝑛
𝜔𝐾

|

|

𝐵𝐾
|

|

|

|

|

𝐵𝑗,𝐾
|

|

|

for 𝑗 = 1,… , 𝑛, where 𝐵𝑗,𝐾 is obtained from 𝐵𝐾
y replacing its 𝑗th column with (𝑓1,… , 𝑓𝑚)⊤ for 𝑗 = 1,… , 𝑛. If 𝐾 ∈ ⋆

𝑛 , the interpolation conditions satisfy 𝐵𝐾𝒄𝐾 = 𝒇𝐾 , where
𝐾 = (𝑓𝑘1 ,… , 𝑓𝑘𝑛 )

⊤ with 𝐾 = {𝑘1,… , 𝑘𝑛}. Therefore, we write the solution to the linear problem as 𝒄𝐾 = (𝑐1,𝐾 ,… , 𝑐𝑛,𝐾 )⊤ which is
nique for |

|

𝐵𝐾
|

|

≠ 0, and so by Cramer’s rule we obtain 𝑐𝑗,𝐾 = |

|

|

𝐵𝑗,𝐾
|

|

|

/

|

|

𝐵𝐾
|

|

. The associated interpolant 𝑣𝐾 (𝒙) for 𝐾 ∈ ⋆
𝑛 can be

ritten as 𝑣𝐾 (𝒙) =
∑𝑛

𝑗=1 𝑐𝑗,𝐾𝛽𝑗 (𝒙), hence by letting 𝜆𝐾 = 𝜔𝐾
|

|

𝐵𝐾
|

|

2, it holds

𝑣(𝒙) =
𝑛
∑

𝑗=1
𝑐𝑗𝛽𝑗 (𝒙) =

𝑛
∑

𝑗=1

|

|

|

𝐴𝑗
|

|

|

𝛽𝑗 (𝒙)

|𝐴|
=

𝑛
∑

𝑗=1

∑

𝐾∈𝑛
𝜔𝐾

|

|

𝐵𝐾
|

|

|

|

|

𝐵𝑗,𝐾
|

|

|

𝛽𝑗 (𝒙)
∑

𝐾∈𝑛
𝜔𝐾

|

|

𝐵𝐾
|

|

2

=

∑

𝐾∈⋆
𝑛
𝜔𝐾

|

|

𝐵𝐾
|

|

2 ∑𝑛
𝑗=1 𝑐𝑗,𝐾𝛽𝑗 (𝒙)

∑

𝐾∈⋆
𝑛
𝜔𝐾

|

|

𝐵𝐾
|

|

2
=

∑

𝐾∈⋆
𝑛
𝜆𝐾𝑣𝐾 (𝒙)

∑

𝐾∈⋆
𝑛
𝜆𝐾

.

□

Remark 1. Note that Theorem 1 is applicable to any finite-dimensional (multivariate) vector space. This encompasses various
function spaces, such as the space of polynomials up to a specific degree, spline spaces with fixed degree and order, spline spaces
with varying locations of knot lines or any other real function space of finite dimension equipped with a basis. Moreover, note that
Eq. (7) in Theorem 1 is very similar to the formulation of multinode Shepard operators [17] in the case of polynomial spaces 𝑉 .

Remark 2. In general, we have #
(

⋆
𝑛
)

≤ #
(

𝑛
)

=
(𝑚
𝑛

)

, due to the non-nullity condition on the determinants |𝐵𝐾 |, which guarantees
the existence of the interpolants. In particular, in the case of splines, the condition |𝐵𝐾 | ≠ 0 is equivalent to the Schoenberg–Whitney
54

nesting condition [14]. In addition, the value of 𝜆𝐾 depends on the location of the knot lines.
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3.1. Consequences of the interpolatory formulation of weighted least squares approximation

For the univariate polynomial case, results on the upper and lower pointwise error bounds of the approximant derivatives up
o a certain order as well as on the influence of the weights have been presented in [9, Section 3] and [9, Section 4], respectively.

e extend these results to any vector space 𝑉 of finite dimension 𝑛. This generalization extends the derived conclusions of [9] in a
broader setting, beyond the polynomial scenario. More precisely, let 𝑟 ∈ N be given and let 𝛼 =

(

𝛼1,… , 𝛼𝑁
)

be any multi-index with
∑𝑁

𝑗=1 𝛼𝑗 = 𝑟 ≥ 0. If the 𝑟th order derivative of 𝑣 ∈ 𝑉 exists, it can be expressed as the weighted average of the 𝑟th order derivatives
of the interpolants, i.e.,

𝜕𝛼𝑣(𝒙) =

∑

𝐾∈⋆
𝑛
𝜆𝐾𝜕𝛼𝑣𝐾 (𝒙)

∑

𝐾∈⋆
𝑛
𝜆𝐾

. (8)

In addition, pointwise upper and lower bounds for the value of the 𝑟th order derivative of 𝑣(𝒙) can be obtained from (8), i.e.,

min
𝐾∈⋆

𝑛
𝜕𝛼𝑣𝐾 (𝒙) ≤ 𝜕𝛼𝑣(𝒙) ≤ max

𝐾∈⋆
𝑛
𝜕𝛼𝑣𝐾 (𝒙).

Likewise, the pointwise approximation error shares the same weighted average, given by

𝑓 (𝒙) − 𝑣(𝒙) =

∑

𝐾∈⋆
𝑛
𝜆𝐾

(

𝑓 (𝒙) − 𝑣𝐾 (𝒙)
)

∑

𝐾∈⋆
𝑛
𝜆𝐾

.

Furthermore, the following consequences on the influence of the weights 𝜔𝑖 for 𝑖 = 1,… , 𝑚 and derivative estimations can be
inferred.

Corollary 1. Let 𝐼 ⊆ {1,… , 𝑚} be of cardinality #(𝐼) = 𝑟, with 1 ≤ 𝑟 ≤ 𝑛. Define

𝑢𝐼 (𝒙) = lim
𝜔𝑖→+∞
∀𝑖∈𝐼

𝑣(𝒙) and ⋆
𝑛 ⧵ 𝐼 = {𝐾 ⊆ {1,… , 𝑚} ⧵ 𝐼 ∶ #(𝐾) = 𝑛, and |

|

𝐵𝐾
|

|

≠ 0}.

If 𝑟 = 𝑛, then 𝑢𝐼 (𝒙) = 𝑣𝐼 (𝒙), represents the interpolant of the data points indexed by 𝐼 . If 1 ≤ 𝑟 < 𝑛, then

𝑢𝐼 (𝒙) =

∑

𝐾∈⋆
𝑛−𝑟⧵𝐼

𝜆𝐼,𝐾𝑣𝐼∪𝐾 (𝒙)
∑

𝐾∈⋆
𝑛−𝑟⧵𝐼

𝜆𝐼,𝐾
, with 𝜆𝐼,𝐾 = 𝜔𝐾

|

|

𝐵𝐼∪𝐾
|

|

2 .

roof. The proof can be obtained by considering 𝑉 = span{𝛤 }, where 𝛤 = {𝛽1,… , 𝛽𝑛} with 𝛽𝑗 ∶ 𝛺 → R for 𝑗 = 1,… , 𝑛, and
ubstituting the Vandermonde matrices in [9] with the corresponding collocation matrices 𝐵 in (1) and 𝐵𝐾 in (5). □

Another important implication of Theorem 1 is the possibility of rewriting 𝓁𝑝–approximation problems as suitable convex
combination of interpolants as outlined in Remark 3 where we exploit the Iterative Reweighted Least Squares (IRLS) method, see
e.g., [2, Section 4.5].

Remark 3. Let us consider the problem

min
𝑢∈𝑉

𝑚
∑

𝑖=1

‖

‖

𝑢(𝒙𝑖) − 𝑓𝑖‖‖
𝑝
𝑝 (9)

with 1 < 𝑝 < 2, where 𝑉 = span {𝛤 } is a vector space of dimension 𝑛, and 𝛤 =
{

𝛽1,… , 𝛽𝑛
}

its basis. The IRLS method approximates
the exact solution of problem (9) through the iterative computation of weighted least squares problems. In particular, the weights
are recursively updated for a maximum number of iterations 𝐾max by

𝜔𝑘+1
𝑖 = |

|

|

𝑢𝑘(𝒙𝑖) − 𝑓𝑖
|

|

|

(𝑝−2)∕2
,

with weights 𝜔𝑘
𝑖 and solution 𝑢𝑘 of problem (2), for iterations 𝑘 = 1,… , 𝐾max. By direct application of (7) in Theorem 1, the outcome

of each iteration can be rewritten as a convex combination of interpolants. Note that the interpolants and the determinant of the
matrices 𝐵𝐾 do not need to be recomputed. In other words, it is enough to update the weights 𝑤𝐾 according to (6), to compute the
solution of problem (9).

4. Hierarchical spline models

The specification of the basis used to design the continuous model 𝒗∶𝛺 → R𝐷 approximating the observations {
(

𝒙𝑖,𝒇 𝑖
)

}𝑚𝑖=1,
with 𝒙𝑖 ∈ 𝛺 ⊂ R𝑁 and 𝒇 𝑖 ∈ R𝐷 for 𝑖 = 1,… , 𝑚, plays a fundamental role both for the geometrical and numerical properties of
the approximant 𝒗. Beyond polynomial constructions, splines have been largely adopted both for geometric modelling [22] and
isogeometric analysis [33] because of their properties as well as the simplicity of their constructions. In particular, for 𝑁 = 1,
let 𝛺 = [𝑎, 𝑏] ⊂ R, and

{

𝑎 ≡ 𝜏0 < 𝜏1 < ⋯ < 𝜏𝐿−2 < 𝜏𝐿−1 ≡ 𝑏
}

a partition of 𝛺, which defines 𝛾𝑗 = [𝜏𝑗 , 𝜏𝑗+1) for 𝑗 = 0,… , 𝐿 − 3
and 𝛾𝐿−2 = [𝜏𝐿−2, 𝜏𝐿−1]. Moreover, set a certain polynomial degree 𝑑 and corresponding order 𝑘 = 𝑑 + 1 and the multiplicities
{ }
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𝜇0,… , 𝜇𝐿−1 associated to each 𝜏𝑗 , with 1 ≤ 𝜇𝑗 ≤ 𝑘, for 𝑗 = 0,… , 𝐿 − 1. These elements lead to the definition of the so called
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knot vector 𝒕 = [𝜏0, 𝜏1,… , 𝜏𝐿−1], whose items 𝜏𝑗 appears according to their multiplicity 𝜇𝑗 , for 𝑗 = 0,… , 𝐿 − 1, and finally to the
polynomial spline space on 𝛺, i.e.

{

𝑢 ∶ 𝛺 → R | 𝑢
|𝛾𝑗 ∈ 𝛱𝑘, 𝑢

(𝑟)(𝜏−𝑗 ) = 𝑢(𝑟)(𝜏+𝑗 ) for 𝑟 = 1,… , 𝑘 − 𝜇𝑗 and 𝑗 = 0,… , 𝐿 − 2
}

,

where 𝛱𝑘 indicates the space of polynomials of maximum order 𝑘 and 𝑢(𝑟) indicates the 𝑟th order derivative of 𝑢. Moreover, univariate
splines are non-negative, have local support and form a partition of unity.

When moving to multivariate settings, for 𝑁 > 1, hierarchical splines provide a natural strategy to preserve locality and
therefore develop adaptive spline constructions with local refinement capabilities. In the context of data fitting, this allows to
suitably design adaptive spline approximation schemes. For 𝑁 > 1, we introduce the polynomial multi-order 𝒌 and consider a
equence of nested linear vector spline spaces defined by 𝑉 0 ⊂ … ⊂ 𝑉 𝓁 ⊂ 𝑉 𝓁+1 ⊂ … ⊂ 𝑉 𝐿−1, where the index 𝓁 of 𝑉 𝓁 is called its
evel. We assume that 𝑉 𝓁 = span

{

𝛤 𝓁
𝒌
}

have finite dimension 𝑛𝓁 = dim𝑉 𝓁 where the polynomial spline basis 𝛤 𝓁
𝒌 =

{

𝛽𝓁1 ,… , 𝛽𝓁𝑛𝓁

}

s defined by the polynomial multi-order 𝒌 and spline basis functions 𝛽𝓁𝑗 ∶ 𝛺 → R. In addition, for each level 𝓁, we assume
hat the boundaries of the supports of all basis functions 𝛽𝓁𝑗 , for 𝑗 = 1,… , 𝑛𝓁 , partition the domain 𝛺 into a certain number of
onnected cells of level 𝓁. The collection of all cells among all the levels defines a tessellation 𝑇 (𝛺) of the domain 𝛺. In addition,
et 𝛺 ≡ 𝛺0 ⊃ … ⊃ 𝛺𝓁 ⊃ 𝛺𝓁+1 ⊃ 𝛺𝐿 ≡ ∅ be a sequence of nested open subdomains, where each 𝛺𝓁 represents a local region of 𝛺
here additional degrees of freedom are required. In particular, we assume that the closure of each subdomain 𝛺𝓁 coincides with

he closure of a collection of cells of level 𝓁. The hierarchical spline construction consists of replacing any spline basis function of
evel 𝓁 whose support is completely contained in 𝛺𝓁+1 by splines at successively hierarchical levels. More precisely, the hierarchical
pline basis is defined as

𝒌 ∶=
{

𝛽𝓁𝑗 ∣ 𝑗 ∈ 𝐴𝓁
𝒌 , 𝓁 = 0,… , 𝐿 − 1

}

(10)

ith the indices

𝐴𝓁
𝒌 ∶=

{

𝑗 ∈ 𝛤 𝓁
𝒌 ∣ supp

(

𝛽𝓁𝑗
)

⊆ 𝛺𝓁 ∧ supp
(

𝛽𝓁𝑗
)

⊈ 𝛺𝓁+1
}

here supp
(

𝛽𝓁𝑗
)

denotes the intersection of the support of 𝛽𝓁𝑗 with 𝛺0. The corresponding hierarchical space is defined as span
{

𝒌
}

.
Several families of spline basis functions and their corresponding function spaces admit a hierarchical extension. That is the case

f B-splines [14], NURBS [47], as well as box splines [15], among others. Examples of their hierarchical formulations can be found
n [24,35,37]. In the following, we provide examples for Theorem 1 and Corollary 1 in the special case of B-spline and hierarchical
ox-spline models, respectively.

.1. Verification of Theorem 1 for spline models

In this section, we present the numerical verification of Theorem 1 for two different vector spaces 𝑉 : the space of polynomials
and the space of univariate splines with a specific degree and regularity. We consider a set of 𝑚 = 7 observations in the form (𝑥𝑖, 𝑓𝑖),
or 𝑖 = 1,… , 𝑚, given by {(−4.5,−2), (−3.5, 0), (−2.2,−1), (−1.2, 2.8), (0.8, 2.9), (2.2, 0.5), (4.0,−2)}. Furthermore, we assign weights 𝜔𝑖

for 𝑖 = 1,… , 𝑚 uniformly distributed on (0, 1). In the polynomial case, we choose the polynomial degree 𝑑 = 2, which implies
#
(

𝑑+1
)

=
( 𝑚
𝑑+1

)

=
(7
3

)

= 35. Thus, we have a total of 35 interpolation problems to be solved. Moving on to polynomial spline
spaces, in addition to the degree, we consider the spline order 𝑘 = 𝑑 +1 = 3 and set the knot vector 𝒕 = [−5,−5,−5,−5∕3, 5∕3, 5, 5, 5]
of length 8, implying that the spline space has dimension 𝑛 = 8 − 3 = 5 ≤ 𝑚. Since 𝑛 ≤ 𝑚, there are at most #

(

𝑛
)

=
(𝑚
𝑛

)

=
(7
5

)

= 21
interpolation problems required to fully reconstruct the spline least squares approximant. In the case of spline spaces, there is no
guarantee that each point subsequence satisfies the Schoenberg–Whitney nesting conditions. To illustrate this, consider the data set
identified by 𝐾 = {1, 2, 3, 4, 5} ⊂ {1,… , 𝑚}, which does not satisfy these conditions. This is due to the absence of data points within
the support of the last basis function, specifically 𝑥𝑖 ∉ [5∕3, 5] for 𝑖 = 1,… , 5. Consequently, the interpolant 𝑣𝐾 does not exist, and no
interpolation problem needs to be solved for this particular subset. To fully reconstruct the final global least squares approximation
in this example, we need to compute 20 interpolation problems instead of the original 21. Fig. 1 illustrates the interpolants and
the global least squares approximation involved in (7) for the polynomial and spline spaces introduced for this numerical example.
Note that we choose to show an example related to the univariate polynomial and spline space, but our results hold in general for
any (multivariate) vector space of finite dimension.

4.2. Weighted least squares with hierarchical box splines

In this section, we perform a numerical investigation of the role of the weights addressed in Corollary 1 in Section 3.1 for
a weighted least squares problem with hierarchical box splines in the bivariate case. We consider a point cloud of 64 × 64,
i.e. 𝑚 = 4096, uniformly gridded data, obtained by sampling the function

𝑓 (𝒙) = 𝑓 (𝑥, 𝑦) =
2

3 exp
(
√

(10𝑥 − 3)2 + (10𝑦 − 3)2
) + 2

3 exp
(
√

(10𝑥 + 3)2 + (10𝑦 + 3)2
) + 2

3 exp
(
√

(10𝑥)2 + (10𝑦)2
) (11)
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Fig. 1. Numerical verification of (7), Theorem 1: 𝑣𝐾 (𝒙) interpolants for polynomials (left) and splines (centre) and the final weighted least squares approximations
as sum of interpolants (right) for polynomials (red) and splines (blue). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 2. Hierarchical box spline mesh (left); weighted least squares surfaces for 𝜔𝛾 = 6 (centre) and 100 (right).

for 𝒙 = (𝑥1, 𝑥2) ∈ [−1, 1]2 and we associate to each item of the point cloud a weight 𝜔𝑖 > 0 for 𝑖 = 1,… , 𝑚. For different weight
values, we compute the weighted least squares approximation 𝑣 (𝒙) of the input data in terms of 521 𝐶2 quartic box splines, in their
hierarchical extension, see again [35]. In order to investigate the role of the weights in the approximation process, we execute the
following two steps.

(a) Firstly, we perform a standard least squares approximation and individuate the data sites whose approximation error is above
a certain threshold 𝜖, thus define 𝐾 ∶= {𝑖 ∈ {1,… , 𝑚} ∶ |

|

𝑣(𝒙𝑖) − 𝑓 (𝒙𝑖)|| > 𝜖}.
(b) Subsequently, for 𝑖 ∈ {1,… , 𝑚} ⧵𝐾, we set the corresponding weights values 𝜔𝑖 = 𝜔0 and similarly for 𝑖 ∈ 𝐾 we set 𝜔𝑖 = 𝜔𝛾 .

Therefore, we analyse the accuracy behaviour of the resulting approximant 𝑣(𝒙) for different choices of (𝜔0, 𝜔𝛾 ) in terms of maximum
approximation error (MAX). Setting 𝜖 = 5e−4, then #(𝐾) = 124 and for 𝜔0 = 𝜔𝛾 = 1, the resulting ordinary least squares
approximation is characterized by a MAX error of 2.15⋅10−3. We then keep 𝜔0 = 1 and vary 𝜔𝛾 = 2, 3, 4,… , 10, 50, 100. We note that
increasing the value of the weights 𝜔𝛾 may help the final accuracy of the approximant. In particular, we obtain MAX = 2.15⋅10−3,
2.06⋅10−3, 2.00⋅10−3 for 𝜔𝛾 = 2, 3, 4 and MAX decreases further when increasing 𝜔𝛾 until achieving its minimum, with MAX =
1.89⋅10−3, for 𝜔𝛾 = 6. However, if the weight values 𝜔𝛾 are too large, the final approximant deteriorates. For instance, for 𝜔𝛾 = 7,
MAX = 1.91⋅10−3, for 𝜔𝛾 = 10, MAX = 2.63⋅10−3 and for 𝜔𝛾 = 100, MAX = 1.36⋅10−2. These results can also be observed in Fig. 2,
which depicts the hierarchical box spline mesh (left) together with two weighted least squares approximation resulting from two
different choices of weights, namely 𝜔𝛾 = 6 (centre) and 𝜔𝛾 = 100 (right). The pointwise error colour map, ranging from the minimum
to the maximum approximation error, is plotted for each surface separately. The corresponding colour bars are also reported.

As shown in this example, the choice of weights can lead to either better or worse spline fitting results in terms of the MAX error
compared to ordinary least squares, where all the weights are set to ones. To the best of our knowledge, only a few deterministic
methods address the use of weights associated with data points in the spline fitting literature. However, the topic is widely discussed
in the statistics community, going back to locally weighted scatterplot smoothing (LOWESS) [11] for smoothing scatterplots by robust
locally weighted regression [10] and multivariate adaptive regression splines (MARS) [25], with a more recent method proposed
in [6] and the references therein, for example. In this work, we propose a deterministic strategy to suitably take advantage of using
weights associated with data points within the spline fitting process which also includes adaptive spline fitting constructions.

5. Reweighted least squares spline fitting

In this section, we propose a strategy to take effective advantage of the weights associated with each input data in the context of
fitting problems. This approach is inspired by the notion of landmarks used in shape analysis [3], but we introduce a more general
57



Mathematics and Computers in Simulation 225 (2024) 52–65C. Giannelli et al.
Fig. 3. Point cloud (blue dots) and set of type I markers (black dots). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

concept of markers and use them within the framework of curve and surface fitting. More precisely, landmarks can be understood
as a set of labelled points which represent some physically identifiable parts of an object, as well as important features of the input
data, which need to be encoded and reproduced in the final continuous approximation model. Fig. 3 shows four point clouds (in
blue) and the chosen landmarks (in black), which represent the features desirable to be preserved by the fitted curve. However,
depending on the acquisition process, data can be affected by noise and outliers whilst the final approximation models should
avoid the reproduction of corrupted data. For the given set of observations {𝒙𝑖,𝒇 𝑖}𝑚𝑖=1, we generalize the concept of landmarks to
markers of two types. More precisely, we define the index set 𝐾𝐼 ⊆ {1,… , 𝑚} as markers of type I if the associated points {𝒙𝑖,𝒇 𝑖}
for 𝑖 ∈ 𝐾𝐼 represent data features to be preserved, while we define the index set 𝐾𝐼𝐼 ⊆ {1,… , 𝑚} as markers of type II if the index
indicates noisy data or outliers which should not be reproduced. In particular, we have 𝐾𝐼 ∩ 𝐾𝐼𝐼 = ∅ and 𝐾𝐼 ∪ 𝐾𝐼𝐼 ⊆ {1,… , 𝑚}.
Note that the choice of type I and type II markers and their identification depends considerably on the problem at hand and it is
still an open research topic, see e.g., for automatic features selection [30,55] or for outliers recognition [20,21,44]. The markers
identification is out of the scope of the present article and we assume the markers (of both types) to be known a priori. Nevertheless,
for synthetic data, we devise an error-driven detection of markers second to point cloud pre-processing. Finally, we provide fitting
schemes which can address simultaneously both types of markers, by leveraging the weight values associated with them depending
on the approximation error, also within an adaptive approximation framework.

The fitting problem with markers consist of finding an element 𝒗 ∈ 𝑉 which approximate the points {𝒙𝑖,𝒇 𝑖}𝑚𝑖=1, i.e. 𝒗(𝒙𝑖) ≈ 𝒇 𝑖,
with ‖𝒗(𝒙𝑖) −𝒇 𝑖‖2 < tol𝐼 for 𝑖 ∈ 𝐾𝐼 and ‖𝒗(𝒙𝑖) −𝒇 𝑖‖2 < tol𝐼𝐼 for 𝑖 ∉ 𝐾𝐼𝐼 . Note that the usual formulation of a fitting problem can be
interpreted as a special instance of the present one. In particular, it is equivalent to setting 𝐾𝐼 = {1,… , 𝑚}, 𝐾𝐼𝐼 = ∅ and choosing
tol𝐼 = tol𝐼𝐼 = 𝜖. Specifically, the reweighted least squares algorithm with markers is described in Algorithm 1 and it consists of the
following steps. For an initial choice of the weight values,

1. Solve the weighted least squares approximation problem (2).
2. Update the point-wise error 𝑒𝑖 = ‖𝒗(𝒙𝑖) − 𝒇 𝑖‖2 for each 𝑖 = 1,… , 𝑚.
3. Check whether the current fitting 𝒗 ∈ 𝑉 meets the requirements prescribed by the markers 𝐾𝐼 and 𝐾𝐼𝐼 and the respective

error tolerances. In particular, the fitting process is completed if 𝑒𝑖 < tol𝐼 for 𝑖 ∈ 𝐾𝐼 and 𝑒𝑖 < tol𝐼𝐼 for 𝑖 ∉ 𝐾𝐼𝐼 .
4. If the accuracy requirements are satisfied, return the approximation computed in Step 1, otherwise update the weight values

corresponding to the markers. In particular, 𝜔𝑖 = 𝜔𝑖 ⋅ 𝛼 with 𝛼 > 1 for each 𝑖 ∈ 𝐾𝐼 and 𝛼 < 1 for each 𝑖 ∈ 𝐾𝐼𝐼 .
5. Start again from Step 1 with the new weight values.

Note that the update choice of the weights in Step 4 increases the values of the weights related to markers of type I, whereas it
decreases them for markers of type II. In particular, we suggest an error-driven update of the weights with 𝛼 = (1 + 𝑒𝑖) for 𝑖 ∈ 𝐾𝐼
and 𝛼 = 1∕(1 + 𝑒𝑖) for 𝑖 ∈ 𝐾𝐼𝐼 . Finally, it is worth highlighting that the IRLS procedure [2,46] falls within this general fitting scheme
for the special choice of 𝛼 = 1∕max{𝛿, 𝑒𝑖} for each 𝑖 ∈ 𝐾𝐼𝐼 , with 𝛿 > 0 necessary for the stability of the IRLS method.

The reweighted fitting scheme from Algorithm 1 is presented in its more general formulation, namely, the approximant is sought
in any fixed finite-dimensional vector space 𝑉 . However, in the incoming numerical experiments, we apply it to spline models as
the ones defined in Section 4.

As far as spline constructions are concerned, the definition of a fixed spline space 𝑉 = span
{

𝛽1,… , 𝛽𝑛
}

relies on the choice of the
polynomial degree and order as well as a suitable tessellation 𝑇 (𝛺) of the domain 𝛺. For spline fitting problems, in addition to the
definition of the spline space 𝑉 also the parameterization of the data needs to be addressed, namely to associate at each 𝒇 𝑖 ∈ R𝐷 a
suitable parametric value 𝒙𝑖 ∈ 𝛺. Both knot placement to define 𝑇 (𝛺) and parameterization to define the sites 𝒙𝑖 ∈ 𝛺 for 𝑖 = 1,… , 𝑚,
play fundamental roles in the accuracy of the final spline fitting model, they are crucial open research topic and several methods
have been provided to properly address them, see e.g. [19,23,32,39,51,53,54] and the references therein. Their resolution is out of
the scope of the present paper, thus we assume both the parameterization and the spline space to be constructed with established
techniques. Nevertheless, special attention needs to be dedicated to adaptive spline construction, where the space 𝑉 is not fixed but
enlarged and updated iteratively.
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Algorithm 1: General formulation of the reweighted least squares fitting.
Data: Point cloud {𝒙𝑖,𝒇 𝑖}𝑚𝑖=1, the set of markers 𝐾𝐼 , 𝐾𝐼𝐼 ⊆ {1,… , 𝑚}, the tolerances tol𝐼 , tol𝐼𝐼 , a fixed vector space

𝑉 = span{𝛽1,… , 𝛽𝑛} and a maximum number of iterations Mmax;
Result: 𝒗 ∈ 𝑉 the reweighted least squares approximant.

1 Initialize the weights 𝜔𝑖 = 1 and the point-wise errors 𝑒𝑖 = 1 for each 𝑖 = 1,… , 𝑚 and loop = 0
2 while max𝑖∈𝐾𝐼

𝑒𝑖 > tol𝐼 and max𝑖∈𝐼⧵𝐾𝐼𝐼
𝑒𝑖 > tol𝐼𝐼 and loop < Mmax do

3 Solve the weighted least squares problem (2);
4 compute the errors 𝑒𝑖 = ‖𝒗(𝒙𝑖) − 𝒇 𝑖‖2;
5 update the weights associated to the landmarks 𝐾𝐼 and 𝐾𝐼𝐼 , as 𝑤𝑖 = 𝑤𝑖 ⋅ 𝛼(𝑒𝑖);
6 set loop = loop+1;
7 end
8 return 𝒗 ∈ 𝑉 which solves the weighted least squares problem.

5.1. Reweighted least squares adaptive spline fitting

In this section, we show how to suitably combine the update of the weights with adaptive spline approximation schemes. We
evisit the adaptive least squares fitting scheme proposed in [26] by suitably assigning weight values to the data observation within
he adaptive routine. The main idea which drives an adaptive fitting algorithm consists of adding iteratively degrees of freedom in
egions of the domain 𝛺 where the approximation error is too high. Similarly to Algorithm 1, if the points with a too high error
elong to 𝐾𝐼 , then their weights will be augmented, otherwise if they belong to 𝐾𝐼𝐼 their weights will be diminished. In addition,
t each iteration of the adaptive loop, not only the updates of the weight values take place, but also of the sets 𝐾𝐼 and 𝐾𝐼𝐼 . This
trategy is effective since, thanks to the adaptive refinement, in some regions of the domain the accuracy requirements tol𝐼 , tol𝐼𝐼 are
lready locally achieved and it is useless or even harmful to keep on modifying the weight values. More precisely, once an initial
arameterization and tessellation 𝛺 are chosen, i.e. for a fixed hierarchical spline space 𝑉 , and for an initial choice of the weights
e perform the following steps.

1. Compute the (penalized) weighted least squares problem

𝒗(𝑥) = argmin
𝒖∈𝑉

1
2

𝑚
∑

𝑖=1
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‖

‖

‖
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‖

‖

‖

2

2
+ 𝜆𝐽 (𝒖) , (12)

where the penalization term 𝐽 is the thin-plate energy functional, whose influence is controlled by 𝜆 ≥ 0, i.e. for 𝒙 = (𝑠, 𝑡) ∈ 𝛺,
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d𝑠d𝑡. (13)

2. Evaluate the error indicator as the point-wise error distance ‖

‖

𝒗(𝒙𝑖) − 𝒇 𝑖
‖

‖2 for each 𝑖 = 1,… , 𝑚. By individuating the sites
𝒙𝑖 ∈ 𝛺 where ‖

‖

𝒗(𝒙𝑖) − 𝒇 𝑖
‖

‖2 ≥ 𝜖, the error indicator identifies the region of the domain 𝛺 where potentially additional
degrees of freedom are needed to meet the prescribed accuracy 𝜖.

3. If ‖
‖

𝒗(𝒙𝑖) − 𝒇 𝑖
‖

‖2 < 𝜖 for each 𝑖 = 1,… , 𝑚 return the approximation computed in Step 1, otherwise update the weights valued
and the markers 𝐾𝐼 and 𝐾𝐼𝐼 . In particular, for each 𝑖 ∈ 𝐾𝐼 if 𝑒𝑖 < tol𝐼 , then the 𝑖th data satisfies the accuracy requirements
and it should not belong to the markers of type I any more, namely 𝐾𝐼 = 𝐾𝐼 ⧵ {𝑖}. On the contrary, if 𝑒𝑖 > tol𝐼 , then its
corresponding weight needs to be enlarged, i.e. 𝜔𝑖 = 𝛼 ⋅𝜔𝑖, with 𝛼 > 1. Similar considerations hold for 𝑖 ∈ 𝐾𝐼𝐼 , with inverted
inequalities and 𝛼 < 1.

4. Mark the cells of the current hierarchical spline space which contain the parameters 𝒙𝑖 identified by the error indicator.
5. Refine the marked cells by suitably splitting them to effectively enlarge the hierarchical spline space.
6. Update the data parameterization by suitably moving the data sited 𝒙𝑖 for each 𝑖 = 1,… , 𝑚.
7. Start again from Step 1 with the new weight values.

Note that in Step 1 we introduced the penalization term (13), usually addressed as thin-plate energy, whose influence is ruled
by a weight 𝜆 ≥ 0. The introduction of such a functional is a common practice in spline geometric modelling, in particular when
reconstructing a spline geometry from a set of unorganized data. More precisely, a regularization term is commonly introduced to
smoothen the solution and therefore avoid the presence of spurious oscillations and artefacts, which may affect the final geometric
model. According to [36], we set 𝜆 ≥ 0 to be a constant small (∼ 10−6) value and we keep it fixed during the entire fitting process.
Non-constant regularization weight functions for data fitting via least-squares tensor-product splines have been recently proposed
in [40,43], see also the references therein, e.g., [12,28,50].

For more details on Steps 4 to 6, about marking refinement and parameterization routines, we refer the reader to [26]. Finally,
59
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Algorithm 2: Reweighted adaptive least squares spline fitting.
Data: Point cloud {𝒙𝑖,𝒇 𝑖}𝑚𝑖=1, the set of markers 𝐾𝐼 , 𝐾𝐼𝐼 ⊆ {1,… , 𝑚}, the tolerances tol𝐼 , tol𝐼𝐼 and 𝜖 > 0, the penalization

weight 𝜆 ≥ 0, a tensor product spline space 𝑉 = span{𝛽1,… , 𝛽𝑛} and a maximum number hierarchical level L;
Result: 𝒗 ∈  the reweighted adaptive least squares approximant.

1 Initialize the weights 𝜔𝑖 = 1 and the point-wise errors 𝑒𝑖 = 1 for each 𝑖 = 1,… , 𝑚 and loop = 0
2 while max𝑖 𝑒𝑖 > 𝜖 and loop < L do
3 Solve the penalized weighted least squares problem (12)
4 compute the pointwise errors 𝑒𝑖 = ‖𝒗(𝒙𝑖) − 𝒇 𝑖‖2;
5 for each 𝑖 ∈ 𝐾𝐼 , if 𝑒𝑖 > tol𝐼 , update 𝜔𝑖 = 𝜔𝑖 ⋅ 𝛼(𝑒𝑖), else 𝐾𝐼 = 𝐾𝐼 ⧵ {𝑖};
6 for each 𝑖 ∈ 𝐾𝐼𝐼 , if 𝑒𝑖 < tol𝐼𝐼 , update 𝜔𝑖 = 𝜔𝑖 ⋅ 𝛼(𝑒𝑖), else 𝐾𝐼𝐼 = 𝐾𝐼𝐼 ⧵ {𝑖};
7 mark the domain elements where 𝑒𝑖 > 𝜖;
8 refine by dyadic split of the marked cells;
9 update the data parameterization;
10 set loop = loop+1
11 end
12 return 𝒗 ∈  which solves the weighted adaptive spline least squares problem.

6. Numerical experiments

In this section we present a selection of numerical experiments to show the performance of the proposed fitting schemes. More
recisely, in Section 6.1, we show the effectiveness of the proposed reweighted least squares spline fitting method to recover the
harp features of the four different point sequences with type I markers, depicted in Fig. 3, and confront it with ordinary least
quares spline fitting. Moreover, in Section 6.2, for the task of curve fitting, we compare the proposed method also with smoothing
plines approximations. In Section 6.3, we then extend the proposed method to adaptive spline spaces for surface reconstruction
nd suggests an automatic recognition of sharp features and type I markers. Finally, in Section 6.4, we show the performance of
he adaptive algorithm when only type II markers are considered.

The univariate examples have been implemented in an 8-core laptop (Apple M2) with 8 GB RAM using MATLAB R2023b,
pecifically by employing the Curve Fitting Toolbox [34]. The adaptive surface approximations have been implemented within
he open source C++ Geometry + Simulation (G+Smo) library [42], by suitably extending the gsHFitting class. Both libraries
rovide an efficient and robust implementation of least squares problems by exploiting suitable solvers for the linear systems at
and, which avoid the direct solution of a linear system of normal equations.

.1. Reweighted spline curve fitting with type I markers and comparison with ordinary least squares

To show the performance of Algorithm 1, we consider the points clouds and markers of type I depicted in Fig. 3. The point
louds are similar to the ones presented in the following works: for Fig. 3(a) [45], (b) [38], (c) and (d) [41]. Our main goal is
o improve the reconstruction while keeping the spline space intact. Therefore, each considered point sequence is parameterized
ccordingly to the uniform parameterization and we compute the approximations of each dataset for the same spline space, i.e. with
he same polynomial degree the same amount of interior nodes of the uniform knot vector. We set the tolerance of the proposed
ethod as tol𝐼 = 10−3 and compare the solution of the reweighted least squares problem (rWLS) with the solution of the ordinary

east squares problem (LS) i.e., all the weights are equal to one. The solutions are depicted in Fig. 4(a), (b), (c), and (d), for the
nput data of Fig. 3(a), (b), (c), and (d) respectively. In particular, we can clearly see that the approximation using the reweighted
east squares method (depicted in purple in Fig. 4) shows a better approximation power with respect to the solution of the ordinary
east squares problem (shown in red). In particular, one can see when zooming in that the sharp features (illustrated in black) are
reserved during the curve fitting. Regarding the approximation error for each experiment, we report that, if considering all the
bservation data, the rooted mean squares error (RMSE) and maximum error (MAX) are comparable with the ordinary least squares.
owever, if we compare only how well we can preserve the sharp features, the rWLS method considerably outperforms the ordinary
S. More precisely, in Table 1, we report the RMSE and MAX errors measured only for the set of type I marks, respectively for rWLS
nd LS.

.2. Reweighted spline curve fitting with type I markers and comparison with smoothing splines

In addition to ordinary least squares, another widely used method for curve fitting is smoothing splines [28,29]. This method
s derived as the solution to the penalized least squares problem (12), in terms of cubic splines with knots corresponding to the
-coordinates of the observations.

Therefore, we considered three additional point clouds sampled from the following functions:

𝑓1(𝑥) =
|

|

|

9 sin(3𝜋𝑥) |

|

|

, 𝑓2(𝑥) =
1
√

exp
{

−
(𝑥 − 0.5)2}

, 𝑓3(𝑥) = tanh
(

cos(2𝜋𝑥)
)

60

|
tanh(−1.5𝑥 + 1) + 1

| 0.02 𝜋 0.02 0.05



Mathematics and Computers in Simulation 225 (2024) 52–65C. Giannelli et al.
Fig. 4. Curve fitting experiment described in Section 6.1 using ordinary LS (red) and rWLS (purple) for data with markers of type I. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

and create 3 point clouds with 62, 88, 71 points, respectively. Specifically, we consider an irregular distribution of the abscissas to
obtain more observations around the functions’ sharp features.

We compute the smoothing spline fitting using the fit function in MATLAB and use the default ‘‘interesting range’’ value of
the smoothing weight 𝜆, which depends on the abscissa distribution of each experiment. Moreover, we set the weights of (12) to
1. To ensure a fair comparison, for the rWLS algorithm, we fixed the spline degree to 3 and selected the knot vectors following
the ‘‘averaging’’ technique described in [47, Eq. (9.8)], known in the literature also as NKTP, with 37, 47, and 47 interior knots,
respectively. This technique has been chosen since it also considers the values of the abscissas as in the case of smoothing splines.

The solutions obtained using rWLS from Algorithm 1 are depicted in Fig. 5. Additionally, we report the rooted mean squared
error (RMSE) and maximum error (MAX) measured only for the set of type I marks for both rWLS and smoothing splines in Table 2.
To summarize, in the presence of sharp features, better results can be obtained using the proposed rWLS from Algorithm 1 with
fewer degrees of freedom compared to the smoothing spline technique.
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Table 1
RMSE and MAX errors for type I markers of LS and rWLS solutions of the experiment described in Section 6.1. For rWLS also
the number of iterations (Iterations) is reported.

Method Iterations Time RMSE MAX

(a) LS – – 6.27 × 10−3 1.30 × 10−2

rWLS 1442 1.347 s 8.31 × 10−4 8.95 × 10−4

(b) LS – – 2.25 × 10−3 3.94 × 10−3

rWLS 1250 1.786 s 6.63 × 10−4 1.78 × 10−3

(c) LS – – 4.63 × 10−3 1.22 × 10−2

rWLS 30 0.034 s 1.47 × 10−3 3.54 × 10−3

(d) LS – – 5.94 × 10−3 1.25 × 10−2

rWLS 81 0.137 s 3.77 × 10−4 8.81 × 10−4

Table 2
RMSE and MAX errors for type I markers of smoothing spline and rWLS solutions of the experiment described in Section 6.2.
For rWLS also the number of iterations (Iterations) is reported.

Method Iterations Time RMSE MAX

(1) Smoothing spline – 0.202 s 1.02 × 10−1 2.21 × 10−1

rWLS 10 0.086 s 9.13 × 10−6 1.86 × 10−5

(2) Smoothing spline – 0.188 s 1.36 × 10−1 3.04 × 10−1

rWLS 7 0.027 s 1.43 × 10−5 3.18 × 10−5

(3) Smoothing spline – 0.143 s 2.96 × 10−3 3.86 × 10−3

rWLS 4 0.011 s 1.30 × 10−5 2.58 × 10−5

Fig. 5. Curve fitting experiment described in Section 6.2 using smoothing spline (red) and rWLS (purple) for data with markers of type I (black dots). (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

.3. Reweighted adaptive spline fitting for type I markers

In this numerical experiment we apply Algorithm 2, combined with truncated hierarchical B-splines (THB-splines) as in [26], to
point cloud obtained by sampling 100 × 100 gridded data from function (11) used in Section 4.2. This function is characterized

by sharp features which we want the final model to capture, i.e. we would deal with type I markers only, hence 𝐾𝐼𝐼 = ∅. In
particular to initialize the set 𝐾𝐼 we perform an ordinary least squares fitting with tensor-product B-splines, of bi-degree 3 and
a 15 × 15 mesh, and individuate the data sites whose approximation error is above a certain threshold 𝜖, namely 𝐾𝐼 ∶= {𝑖 ∈
{1,… , 𝑚} ∶ ‖

‖

𝑣(𝒙𝑖) − 𝑓 (𝒙𝑖)‖‖2 > 𝜖}. Given the data points, the markers 𝐾𝐼 , the tolerances and the initial tensor-product B-spline
space, we perform Algorithm 2 with tol𝐼 = 10𝜖 augmenting the weights value by 25% at each iteration of the adaptive loop. We
then compare the output of the reweighted adaptive least squares fitting method (rWLS) with the result of the ordinary adaptive
least squares fitting (LS), namely by keeping all the weights equal to one all along the iterative procedure. More precisely, we
compare the maximum error (MAX) of the final approximations with respect to the number of degrees of freedom (DOFs), choosing
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Fig. 6. MAX error w.r.t. DOFs for the ordinary LS and rWLS fitting scheme THB-splines (left). Hierarchical mesh (centre) and geometry (right) are obtained in
output from the rWLS method.

𝜖 to achieve a comparable number of DOFs. The comparison is reported in Fig. 6 (left), together with the final hierarchical mesh
(centre) and THB-spline approximation (right) obtained with the rWLS method. More precisely, LS and rWLS methods have the
same starting point and as long as the adaptive refinement proceeds, we can notice that rWLS can register a smaller MAX error with
fewer DOFs in comparison to LS.

6.4. Reweighted adaptive spline fitting for type II markers

In this final numerical experiment, we perform the reweighted adaptive spline least squares fitting scheme to approximate
a scattered point cloud of 9000 points representing a Nefertiti bust, illustrated in Fig. 7 (top-left). In particular, these data
require a parameterization and some of them result in being corrupted. To address the first problem, we employ the data-driven
parameterization method developed in [27]. To tackle the presence of corrupted data, we exploit the use of the weights associated
with the data. More precisely, together with the points, we are given a set of markers of the second type 𝐾𝐼𝐼 , highlighted in black in
Fig. 7 (bottom-left) which we use to perform the reweighted adaptive scheme. Moreover, due to the complexity of the problem, we
decided not to update the markers 𝐾𝐼𝐼 but to keep them fixed along the iterative scheme, by setting tol𝐼𝐼 sufficiently small. We then
compare the results obtained by the proposed reweighted adaptive least squares scheme (rWLS) with the ordinary adaptive least
squares scheme (LS), namely keeping all the weights set to one. Such a comparison is illustrated in Fig. 7, where we show on the top
the hierarchical approximation obtained by LS and on the bottom the one obtained by rWLS. In particular, the region corresponding
to the corrupted data is better approximated by the rWLS method, which results free of self-intersections and it is smoother than
the one obtained with LS. Finally, the MAX error registered by LS is 3.28⋅10−2, whereas the MAX of rWLS is 1.57⋅10−2.

7. Conclusions

We provided new insights into the reweighted least squares method for the approximation of a given set of observations. In
particular, our theoretical study revealed that any reweighted least squares model can be interpreted as a convex combination
of suitable interpolation models. Furthermore, we exploited the weights for spline fitting problems, such as adaptive spline
constructions. Thereby, we provided a strategy to automatically update the weights within the fitting scheme, either to emphasize
data marked as sharp features or to smoothen data marked as corrupted. In the present work, we assumed that the given data have
been previously processed, hence their features or the presence of noise have already been identified. This information was exploited
in the fitting schemes via an iterative update of the weights. In future research, it is of interest to automatically classify the data
marker used in the spline approximation scheme in order to drive the model design process. Another interesting future research
direction is the application of the proposed method to a non-geometric modelling framework, e.g., the approximation of time-series
data. In addition, in this context, it would also be interesting to investigate how the choice of the smoothing parameter affects the
goodness of the fit from a statistical point of view.
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Fig. 7. Adaptive surface fitting experiment described in Section 6.4 using adaptive LS (top) and rWLS (bottom) for data with markers of type II. The data point
clouds and the marked points are also shown.
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