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H I G H L I G H T S  

• Innovative framework integrates FS and ML for accurate energy consumption forecasting. 
• Strategic fusion: 3 FS approaches, 5 interpretable ML models with Shapley Explanations. 
• Meticulous FS: meteorological, socioeconomic, historical features enhance model robustness. 
• Novel ensemble filter synthesizes outcomes, ensuring interpretable forecasting results.  
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A B S T R A C T   

The study presents a novel framework integrating feature selection (FS) and machine learning (ML) techniques to 
forecast inland national energy consumption (EC) in the United Kingdom across all energy sources. This inno-
vative framework strategically combines three FS approaches with five interpretable ML models using Shapley 
Additive Explanations (SHAP), with the dual goal of enhancing accuracy and transparency in EC predictions. By 
meticulously selecting the most pertinent features from diverse features—including meteorological conditions, 
socioeconomic parameters, and historical consumption patterns of different primary fuels—the proposed 
framework enhances the robustness of the forecasting model. This is achieved through benchmarking three FS 
approaches: ensemble filter, wrapper, and a hybrid ensemble filter-wrapper. In addition, we introduce a novel 
ensemble filter FS, synthesizing outcomes from multiple base FS methods to make well-informed decisions about 
feature retention. Experimental results underscore the efficacy of integrating both wrapper and ensemble filter- 
wrapper FS approaches with interpretable ML models, ensuring the forecasting process remains comprehensible 
and interpretable while utilizing a manageable number of features (four to eight). In addition, experimental 
results indicate that different feature subsets are usually selected for each combined FS approach and ML model. 
This study not only demonstrates the framework’s capability to provide accurate forecasts but also establishes it 
as a valuable tool for policymakers and energy analysts.   

1. Introduction 

1.1. Background 

The worldwide community has united to pass an intricate framework 
of rules and policies meant to mitigate the damaging effects of GHGs 

under the overarching umbrella of the United Nations (UN). For a 
multitude of researchers, the phenomenon of global warming finds an 
inextricable link with the climatic expansion of the global economy and 
the accompanying increase in GHG emissions due to increase in energy 
consumption (EC) [1]. 

The energy landscape of the UK has been evolving in profound ways 
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for decades. Although historically reliant on fossil fuels, there has been a 
significant transition in recent years toward cleaner, more sustainable 
energy sources, as depicted in Fig. 1. As per the UK’s National Grid, 2020 
was a record-breaking year for renewable energy generation, with zer-
o‑carbon electricity constantly reaching 50% in numerous months of 
2022. Coal now accounts for only 1.5% of electrical generation, down 
from 43% in 2012. Wind power records were broken, and carbon in-
tensity reached historic lows in February 2022. Zero‑carbon sources 
maintained their lead over conventional fossil fuel generation in 2022, 
contributing 48.5% of the total electricity consumption, while gas and 
coal power stations accounted for 40%. The UK’s commitment to a low- 
carbon future remains unwavering. However, underlying this appar-
ently smooth transmit to more sustainable energy sources is also source 
of a significant concern- the affordability of energy. Energy prices have 
risen in recent decades because of growing technology and environ-
mental concern, resulting in what has been known as “energy poverty”. 
According to UK’s Department of Energy Security and Net Zero, in 2022, 
approximately 13.4% of households in England, totaling 3.26 million, 
were classified as experiencing fuel poverty under the Low Income Low 
Energy Efficiency (LILEE) metric. This marked an increase from 13.1% 
in 2021, affecting 3.16 million households. This problem creates con-
cerns for individuals and families alike about their capacity to effectively 
heat their houses during hard winters, the availability of energy- 
intensive amenities, and the financial burden that energy bills impose 
on household budgets. 

At the same time, it emphasizes the importance for governments, 
utilities, and energy suppliers to find a balance between sustainable 
energy practices and maintaining energy availability for everyone. This 
challenge also introduces an asymmetry in the pattern of energy demand 
in the UK, leading to disruptions in policy planning. To address this 
issue, precise forecast of consumption trends using robust approaches is 
required. Hence, we leverage a range of novel Machine Learning (ML) 
models, including multiple linear regression (MLR) [2], SVM-linear 
[3,4], SVM-RBF [5], Gaussian Process regression [4], and LSBoost [6], 
to enhance the accuracy and robustness of our EC forecasts for each 
sector in the UK. For that reason, the prediction of total EC is not merely 
an academic exercise; it serves as a critical tool for guiding decision- 
makers, optimizing resource allocation, and securing the energy future 
of the country. 

1.2. Novelty and contributions 

Our study marks a multifaceted contribution to the domain of ML 
based EC forecasting including:  

• This study is a novel in advancing the use of monthly EC data at the 
national level, an intricate process given the typically restricted 
accessibility of such data for all energy sources, notably beyond the 
scope of electric EC. In contrast, other studies (e.g., [7,8,3]) excep-
tion of Li et al. [9], have mainly relied on annual national-level EC 
data characterized by a restricted number of observations, which 
potentially raises questions about the reliability of their findings. In 
pursuit of advancing the robustness and precision of our study, we 
leverage the potency of high-frequency monthly data.  

• This approach not only enhances the accuracy of our ML-based 
forecasting but also contributes fresh insights to its features. Our 
research delves into multi-source EC statistics in the UK, spanning 
across all sectors at the national level. What sets this study apart is its 
comprehensive consideration of various features, encompassing en-
ergy sources, economic and demographic factors, climate variables, 
and an array of resource and production factors. This stands in stark 
contrast to prior research, which often relied on a limited set of pre- 
selected features without a robust justification.  

• A novel generalizable ensemble FS approach is introduced, in which 
we iteratively eliminate the least important features in each filter FS 
method and employ a combined scoring and voting scheme for final 
ranking and selection of features. This ensemble FS process carefully 
uncovers and eliminates insignificant and redundant features, 
resulting in a refined and sparse subset that enhances the interpret-
ability of complex ML models.  

• Our study distinguishes itself through a meticulous and comparative 
FS analysis. This innovative framework integrates three distinct FS 
approaches —ensemble filter, wrapper, and ensemble filter- 
wrapper— with five ML models, providing a comprehensive 
comparative analysis.  

• Our research makes a noteworthy contribution by proposing a robust 
and interpretable ML-based forecasting structure, depicted in Fig. 2. 
Notably, our framework strives for two critical objectives: improved 
prediction accuracy and enhanced interpretability of black-box ML 

Fig. 1. Annual national inland final EC for primary fuel input basis in million tonnes of oil equivalent (Mtoe) (Sources: UK’s Department of Energy Security and 
Net Zero). 
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models [10]. The incorporation of Shapley additive explanation 
(SHAP) analysis, following the suggestion by Lundberg and Lee [11], 
significantly elevates the paradigm. While few prior studies pre-
dominantly focused on a single filter/embedded approach individ-
ually, our research takes a pioneering step by combining three FS 
paradigms (ensemble filter, wrapper, and hybrid ensemble filter- 
wrapper) with ML models. This comprehensive framework enables 
a unique comparison of these three FS paradigms, making a novel 
contribution to the field of EC forecasting. 

2. Related literature 

2.1. FS for energy consumption forecasting 

FS approaches, which are commonly divided into three categories – 
filters, embedding, wrappers methods – serve a significant function in 
boosting predictive models [12,13]. Filter approaches deploy metrics 
like mutual information, Euclidean distance, and Pearson correlation to 
estimate feature relevance based on data properties [14]. While filter 
approaches excel in computational efficiency, they may not optimize 
feature sets for specific models [15]. Embedded approaches, meanwhile, 
generate feature significance directly from model-learned pattern, 
which are commonly seen in algorithms such as Gradient Boosting or 
Random Forest [14]. Wrapper approaches, on the other side, integrate 
FS with an optimization problem that is wrapped around an ML algo-
rithm, resulting in superior precision. However, their computing re-
quirements might make them impractical [16]. Simplified models can 
minimize computing load while preserving efficacy in specific circum-
stances. Finally, hybrid approaches integrate many strategies to achieve 
a balance of computational efficiency and feature quality [17].Under-
standing the various features selection approaches is critical for devel-
oping strong and efficient forecasting models. Meanwhile, given the 
intricacies and diversity of EC patterns in multiple sectors, coupled with 
the fact that several ML-based forecasting models likely work best with 
combinations of key chosen factors, FS remains crucial. Therefore, 
several studies have employed FS as an initial stage before employing 
ML techniques to predict their respective focused features in different 
energy fields. For instance, Qiao et al. [18] employed FS approaches in 
their EC and CO2 emissions forecasting. In contrast to previous research, 
which often selected a small number of key features, that study utilized 
24 features, including a wide range of socioeconomic, transportation 
and energy-related features. Similarly, Aras and Hanifi Van [7] inves-
tigated a comprehensive comparison of three distinctive FS methods, 

specifically Lasso, Boruta, and OMP, combined with seven ML tech-
niques in the framework of projecting EC and CO2 emissions. In a 
separate effort, Hoxha et al. [19] focused on forecasting Transportation 
energy demand utilizing ML approaches, and they methodically con-
structed a FS framework to determine the most important inputs. a 
recently published study by Zyl et al. [17] predicted electric energy 
demand in Panama combining Gradient-weighted Class Activation 
Mapping (Grad-CAM) and SHAP as FS methods with convolutional 
neural network (CNN), covering a wide range of meteorological and 
temporal factors. This study prominently emphasized the significance of 
interpretable AI models as an FS approach in EC context. In addition, 
Kamani and Ardehali [8] forecasted electrical EC, with a focus on solar 
and wind energy sources. They employed PSO and E-PSO algorithms for 
optimizing hyperparameters. Moreover, Lv and Wang [20] contributed 
to the field by presenting an efficient model for short-term wind speed 
prediction that takes into consideration a variety of meteorological 
factors. To identify relevant meteorological elements, they developed a 
filter-wrapper technique that used K-medoid clustering. In summary, 
these studies demonstrated that ML models that used FS approaches 
frequently outperformed those that did not. The method of systemati-
cally selecting significant features assisted substantially to the models’ 
generalizability and precision. 

2.2. ML for energy consumption forecasting 

The connections between economic growth and EC has been thor-
oughly studied in the literature, with the premise that energy demand 
rises in tandem with economic expansion [7]. To that aim, predicting EC 
is becoming more imperative in order to formulate inclusive policies and 
therefore, many ML methods for EC forecasting including ANN, MLR, 
SVM, and RF have been developed in various industries during the last 
two decades. ML-based forecasting approaches for forecasting EC have 
demonstrated significant performance, as evidenced in prevailing liter-
ature. For instance, Liu and Li [3] predicted UK EC using BP-NN, MLR, 
and LS-SVM, taking into account factors such as population, GDP, 
temperature, sunlight, rainfall, and frost days. Ağbulut [5] forecasted 
vehicle transportation energy demand and CO2E in Turkey using DL, 
ANN, and SVM algorithms, coupled with GDP and population features. 
Moreover, Li et al. [9] utilized four ML models for quarterly automobile 
gasoline demand forecasting in Australia spanning from 1974Q1 to 
2019Q2 using autoregressive and structural methods. Wang and Cao 
[21] forecast EC in China using two grey multi-variable models, and 
considered EC’s interplay with urbanization, and GDP. Whereas, 

Fig. 2. The proposed framework of the integrated three FS approaches and interpretable ML models for forecasting national inland EC.  
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Kamani and Ardehali [8] employed an ANN model for long-term fore-
casting of electrical EC considering solar and wind energy sources. 

In spite of that, it is determined from the prevailing literature that 
there is a perceptible scarcity of sufficiently interpretable ML forecasting 
models for EC, which is indispensable for facilitating well-informed 
policy decision-making. To date, only very few studies have explicitly 
addressed interpretable ML models for forecasting EC at country level. 
For instance, Qiao et al. [18] studied the forecasting of EC and CO2 
emissions of transportation sector of the UK using interpretable ML 
models. Besides, Aras and Hanifi Van [7] also forecasted EC in Turkey 
utilizing interpretable RF, ANN, KNN, and SHAP models. In summary, 
prior studies has primarily centred on annual national EC forecasts for 
all energy sources (except Li et al. [9] used quarterly automobile fuel 
EC), with relatively limited attention directed toward monthly national 
EC forecasts, most likely due to the lack of monthly EC data. Moreover, 
despite the pivotal role of FS in augmenting prediction models, there 
exists a dearth of studies that systematically compare and evaluate the 
efficiency of diverse FS approaches, including filter, wrapper, and 
hybrid filter-wrapper methods. Table 1 provides an overview of studies 
related to ML-based forecasting models and FS approaches for EC, 
facilitating comparative analysis. In addressing these gaps within the 
prevailing pertinent literature, our study emerges as pioneering and 
well-positioned to advance the field, contributing to more precise, effi-
cient, and interpretable ML models for EC forecasts. 

3. Research methodology 

3.1. Proposed forecasting framework 

Fig. 2 illustrates our proposed conceptual framework for forecasting 
the national aggregate inland EC from all energy sources. The primary 
objective of this integrated FS-ML approach is to harness the advantages 
of different FS approaches in identifying the most influential features, 
ultimately forming a subset that strikes an optimal balance between ML 
model accuracy and interpretability, which is well described in Chen 
et al. [10]. Our proposed method’s architecture comprises several key 
steps:  

1) Pre-processing operations: In the initial step, raw data is collected 
from multiple sources and subjected to preprocessing tasks. These 
include data consistency correction and integration into a coherent 
dataset. Furthermore, we convert annual observations of certain 
features using monotonic functions to monthly data. In this step, pre- 
processing enables us to create temporal features aimed at capturing 
the seasonal fluctuations of EC. 

2) Correlation analysis of variables: This step involves an in-depth ex-
amination of the linear relationships between variables.  

3) Ensemble FS method: An ensemble filter and embedded FS method is 
introduced and employed. 

4) Tuning the ML hyperparameters: the Bayesian optimisation is uti-
lized to nearly optimize the hyperparameters of the ML models.  

5) Integrated wrapper FS and ML Models: This step involves integrating 
wrapper FS technique with multiple ML models.  

6) Comparative analysis of three FS approaches.  
7) Selecting the best integrated FS-ML models: Integrated FS-ML models 

with the highest accuracy rates are chosen for interpretability anal-
ysis using SHAP method. 

8) Performing Shapley analysis: SHAP method is carried out to deter-
mine the contributions of individual features to the best ML model’s 
output. 

Within the framework, we acknowledge that, based on domain 
knowledge, certain features may be deemed crucial and automatically 
incorporated into the feature list. The following explanations provide a 
clearer overview of the proposed method and its multiple steps, with 
improved clarity and organization. 

To enhance comprehension of the implementation of three FS ap-
proaches, Fig. 3 elucidates the progression of the pre-processed dataset, 
denoted as S0, through ensemble filter and/or wrapper FS methods. The 
three distinct feature subsets obtained are as follows: 1) a feature subset 
derived solely from the ensemble filter (S1), 2) a feature subset exclu-
sively from the wrapper (S2), and 3) a feature subset comprising both 
ensemble filter and wrapper selections (hybrid) (S1S2). These subsets 
are subsequently input into the ML models for performance evaluation. 
The selection of these three FS approaches is rooted in insights gleaned 
from an extensive review of relevant literature, particularly FS in 
Biology and Medicine context, which underscores the drawbacks and 
limitations of various FS techniques. Typically, ensemble filter and 
hybrid filter-wrapper FS approaches outperform pure filter and wrapper 
approaches by mitigating some of their limitations [12,13]. 

3.2. FS methods 

In this section, first we focus on discussing four prominent filter/ 
embedded FS methods: Maximum Relevance and Minimum Redundancy 
(mRMR), Random Forest, Relief FS, and F-test FS. Then, the proposed 
ensemble FS is illustrated in Subsection 3.2.5. 

3.2.1. Maximum relevance and minimum redundancy (mRMR) 
The mRMR algorithm is a FS technique that ranks input features 

based on their relevance to the output feature while eliminating 
redundant input features [33]. It utilizes Mutual Information (MI) to 
measure both the relevance and redundancy of features. MI is defined as: 

I(X,Y) =
∫∫

p(x, y)log
p(x, y)

p(x)p(y)
(1) 

In this equation, X and Y represent vectors, p(x, y) is the joint 
probabilistic density, and p(x) and p(y) are the marginal probabilistic 
densities. Assuming a feature set S with m features m (xi, i ∈ (1,m) ), 
Max-Relevance aims to find a feature subset with the highest relevance 
to the output feature y is shown as: 

maxD(S, y),D =
1
|S|

∑

xi∈S
I(xi, y) (2) 

To identify redundant features, Minimum Redundancy is determined 
based on possible redundancy within Max-Relevance, which is shown as 
below: 

minR(S),R =
1
|S|2

∑

xi ,xj∈S
I
(
xi, , xj

)
(3) 

An incremental search method is then employed to find the optimal 
solution that satisfies both constraints. Assuming there is already a 
feature set Sm− 1, the task is to determine the mth feature from the set 
{X − Sm− 1}, which is shown as Eq. (4). 

maxxj∈X− Sm− 1

[

I
(
xj, y

)
−

1
m − 1

∑

xi∈Sm− 1

I
(
xi, xj

)
]

(4)  

3.2.2. Random Forest 
Random Forest (RF) is a robust ensemble learning method employed 

for FS in both classification and regression tasks. It leverages an 
ensemble of numerous Decision Trees (DTs), with each tree contributing 
to the selection of the most relevant features during training. These trees 
operate independently, effectively mitigating the overfitting issues 
commonly encountered in individual Decision Trees [34]. Notably, 
Random Forest excels when applied to datasets with diverse character-
istics. Within the Random Forest algorithm, FS involves injecting data 
subsets into each constituent tree. Similar to Decision Tree methodol-
ogy, Random Forest employs fundamental concepts like entropy Eq. (5) 
and information gain Eq. (6) to assess feature importance and guide the 
selection process. 
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Table 1 
Summary of related studies on the application of FS and ML to energy consumption forecast.  

Author Period Frequency Country Prediction 
ML Models 

Input features Target feature Feature selection Feature 
combi- 
nation 

Interpret- 
able ML 

Filter/ 
Emb. 

Wrapper Hyb- 
rid 

Zyl et al. 
[17] 

2015–2019 Hourly 
national 
demand 

Panama CNN Temperature, 
humidity, 
precipitation, wind 
speed, school 
holiday, weekend, 
hour, day, month, 
year 

Electric ED √ X X X √ 

Qiao et al. 
[18] 

1990–2019 Annual UK SVM, GPR, 
LSTM, 
Regression, 
LSBoost, and 
MLP 

24 socioeconomic, 
transport- and 
energy-related 
features 

transport EC and 
CO2 

√ √ X X √ 

Javanmard 
et al. [22] 

1990–2019 Annual Canada ARFIMA, 
MIDAS, 
SARIMA, AR 
ARIMA, and 
SVR 

Oil, gas, electricity, 
and renewable 
consumptions 

ED and CO2 X X X X X 

Nazir et al. 
[23] 

2011–2014 Daily 
customer’s 
data 

London LSTM, GRN, 
and TFT 

Day, month, year 
and EC 

Electric EC X X X X X 

Ahmed 
et al. [24] 

2006–2017 Monthly 6 developed 
& 
developing 
countries 

LSTM, 
BiGRU, 
VMD, 

Electric EC Electric EC X X X X X 

Rao et al. 
[25] 

1982–2017 Annual China SVR-CDSES Economic 
development level, 
population, science 
and technology, 
and energy policies 

ED √ X X X X 

Saglam 
et al. [26] 

1980–2019 Annual Turkey SVM, MNN, 
WAO 

Imports, exports, 
GDP, and 
population 

ED X X X X X 

Hoxha et al. 
[19] 

1975–2019 Annual Turkey eXtreme 
Gradient 
Boosting, 
Extra Tree 
Regressor, 
Random 
Forest,and 
DABoost 

GDP, year, vehicle 
miles traveled, 
population, oil 
price, passenger 
miles traveled, and 
ton-miles traveled 

Transport ED √ X X X X 

Kamani and 
Ardehali 
[8] 

1990–2019 Annual Developed 
& 
Developing 
countries 

ANN and 
PSO 

GDP, Population, 
Import, Export, and 
EC 

EC X X X X X 

Atems et al. 
[27] 

1973 
M1–2018 
M12 

Monthly USA Recursively 
identified 
VAR 

Non-renewable 
energy prices 

Renewable 
electric EC 

X X X X X 

Khan and 
Osińska 
[28] 

1992–2019 Annual India and 
Brazil 

ONGBM, 
ONGBM- 
PSO, and 
ARIMA 

Total EC, Oil, gas, 
coal, 
hydroelectricity, 
nuclear and 
renewable ECs 

EC X X X X X 

Aras and 
Hanifi 
Van [7] 

1970–2021 Annual Turkey RF, ANN, 
KNN, GBDT, 
Adaboost, 
and SHAP 

CO2, GDP, 
Population, oil 
consumption, 
industrial and total 
EC, Vehicle 

EC √ X X X √ 

Li et al. [9] 1974Q1- 
2019Q2 

Quarterly Australia OLS, Lasso, 
SVR-linear, 
and SVR-RBF 

Real gasoline price, 
Australia’s real 
household gross 
disposable income, 
population, 
expenditures on 
hotels, cafes and 
restaurants, final 
consumption 
expenditure, and 
purchase of 
vehicles 

Automobile 
gasoline demand 

X X X √ X 

Aslan and 
Beşkirli 
[29] 

1979–2011 Annual Turkey AOA Population, GDP, 
import and export 

ED X X X X X 

(continued on next page) 
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Entropy(p1, p2,…, pk) = −
∑

p1log2(p1) (5)  

IG = 1 −
∑C

J=1
P2

J (6)  

3.2.3. Relief FS 
Kira and Rendell [35] introduced the Relief algorithm, inspired by 

instance-based learning [36]. Relief is a method for individual feature 
assessment, estimating ‘quality’ in predicting the endpoint value 
through feature weights W[A], informally referred to as ‘scores’ ranging 
from − 1 to + 1. Initially designed for binary classification, the algo-
rithm lacked a mechanism for missing data, which is addressed in sub-
sequent works referenced in the review section. 

The Relief algorithm iteratively processes random training instances 
Ri, with ‘m’ as a user-defined parameter. Within each iteration, a ‘target’ 
instance Ri is selected, and feature scores in vector W are updated based 

on observed differences between the target instance and neighboring 
instances. Distances between the target instance and others are calcu-
lated, identifying the two nearest neighbors: one from the same 
class (nearest hit,H) and the other from the opposite class 
(nearest miss,M). Feature weights are updated based on differences be-
tween the target instance and H or M. The diff function quantifies the 
disparity in feature A between instances I1 and I2, based on whether A is 
discrete or continuous. 

For discrete features, diff is determined by Eq. (7), ensuring that 
weight updates fall within the [0, 1] range. Final weights are normalized 
within [ − 1, 1] by dividing the diff output by m. For continuous features, 
diff is defined by Eq. (8). The diff function is also used in calculating 
distances between instances to identify nearest neighbors. 

diff (A, I1, I2) =

{
0 if value (A, I1) = value (A, I2)

1 otherwise (7)  

Table 1 (continued ) 

Author Period Frequency Country Prediction 
ML Models 

Input features Target feature Feature selection Feature 
combi- 
nation 

Interpret- 
able ML 

Filter/ 
Emb. 

Wrapper Hyb- 
rid 

Maaouane 
et al. [30] 

1990–2020 Annual 28 
European 
countries 

ANN GDP, population, 
Pump Price 
Gasoline, Pump 
Price Diesel, the 
Price Index, 
Purchasing Power 
Parity, Household 
Final Consumption 
Expenditure, and 
Population Density 

EC X X X X X 

Liu and Li 
[3] 

1993–2019 Annual UK BP-NN, MLR, 
and LS-SVM 

Population, GDP, 
mean temperature, 
sunshine, rainfall, 
and frost days 

EC X X X X X 

Ağbulut [5] 1970–2016 Annual Turkey DL, ANN, 
SVM 

GDP, Population, 
Vehicle 

Transport ED 
and CO2 

X X X X X 

Wang and 
Cao [21] 

2000–2019 Annual China Grey models, 
SRMGM(1, 
M) and 
BRMGM(1, 
m) 

Urbanization, GDP EC X X X X X 

Sahraei and 
Çodur 
[31] 

1990–2019 Annual Turkey ANN,ANN- 
GA, ANN-SA, 
ANN-PO 

GDP, Population, 
Ton-Km, Vehicle- 
Km, Passenger-Km, 
Oil Price 

EC X X X √ X 

Zheng et al. 
[32] 

2010–2018 Annual China NGBM and 
PSO 

hydroelectricity 
consumption 

Hydroelectricity 
consumption 

X X X X X 

Note: √ for Yes, and X for No. EC-Energy Consumption, ED-Energy demand, CO2-Carbon dioxide emissions, GDP-Gross Domestic Product, ANN- Artificial neural 
network, LSTM-the Long Short-Term Memory, SVM-Support vector machine, GPR-Gaussian process regression, MLP-Multi-layer perceptron, TFT- Temporal Fusion 
Transformer, ARIMA-Autoregressive Integrated Moving Average, KNN-K Nearest Neighbors, ARFIMA-Autoregressive Fractional Integrated Moving Average, BiGRU- 
Bidirectional gated recurrent unit, VMD-Variational mode decomposition, SVR-Support Vector Regression, LASSO-Least Absolute Shrinkage and Selection Operator, 
RF-Random Forest, MAPE-Mean Absolute Percentage Error, RMSE-Root Mean Squared Error, NRMSE-Normalized Root Mean Square Error, MPE-Mean Percentage 
Error, RNN-Recurrent Neural Network, AOA-Arithmetic optimization algorithm, GARCH- Generalized Autoregressive Conditional Heteroscedasticity, MIDAS-Mixed 
Data Sampling, BP-NN- Back Propagation Neural Network, MLR- Multiple Linear Regression, LS-SVM- Least Square Support Vector Machine, GRNN-General 
Regression Neural Network, EWT-LSTM-Empirical Wavelet Transform, GRN-Gated Residual Network, ONGBM- optimized nonlinear grey Bernoulli model, and 
ONGBM-PSO- nonlinear grey Bernoulli model with particle swarm optimization, ANN-GA-Genetic Algorithm, ANN-Simulated Annealing (ANN-SA), and Particle 
Swarm Optimization (ANN-PSO), MNN-Medium Neural Networks, WAO-Whale Optimization Algorithm. 

Fig. 3. The schematic diagram on how three FS approaches are integrated with ML models.  
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diff (A, I1, I2) =
|value (A, I1) − value (A, I2) |

max(A) − min(A)
(8)  

3.2.4. F-test FS 
The F-test FS is a technique used to rank input features based on their 

significance for a specific ML task. It employs statistical analysis to 
determine the relevance of individual features and their impact on the 
output feature. The F-statistic (F) is utilized to quantify the significance 
of features. The F-value reflects a feature’s significance in explaining the 
variability of the output feature. FS through the F-test entails three steps: 
calculating F-values for each feature, ranking these features in 
descending order based on their F-values, and selecting the top-k fea-
tures with the highest F-values, where k can be a user-defined parameter 
or determined through cross-validation. 

By using the F-test FS, irrelevant or less important features can be 
identified and removed, leading to a more efficient and accurate ML 
model. This technique is particularly useful when dealing with high- 
dimensional datasets where FS can improve model performance and 
reduce overfitting. 

3.2.5. Proposed ensemble FS 
In the domain of FS, a significant challenge lies in the selection of the 

most appropriate filter and embedded FS method(s) for a given dataset 
[37]. This challenge arises from the inherent diversity among FS tech-
niques, each employing its distinctive logic rooted in statistical measures 
for assessing feature importance. Consequently, this diversity can yield 
distinct sets of selected features. To put it simply, a feature considered 
highly significant in one method may not hold the same level of 
importance in another. Nevertheless, it’s crucial to acknowledge that 
both filter and embedded methods come with inherent limitations [12]: 

filter methods may inadvertently overlook interdependencies among 
input features, while embedded methods rely significantly on ML 
models. 

Ensemble FS, a technique in the realm of ML, is employed to enhance 
the accuracy and robustness of the FS process [38]. This approach works 
by amalgamating the outcomes of multiple FS methods to make more 
informed decisions regarding which features to retain and which to 
discard. Ensemble FS offers advantages by leveraging the strengths of 
multiple FS methods and mitigating their individual weaknesses. It aids 
in reducing the risk of overfitting and enhances the likelihood of 
selecting the most relevant features tailored to a specific prediction task 
[38]. The desire for an ensemble FS method stems from its potential to 
enhance both the stability and interpretability of feature selection, 
thereby facilitating the subsequent process of EC prediction [39,40]. 

Let us delve into the procedure of our proposed ensemble FS method 
as depicted in Fig. 4:  

1) Ensemble FS parameter determination: Begin by considering all N 
candidate features and specifying the desired number of features (m) 
from K base FS methods, along with establishing the minimum 
number of votes (v) required from these base FS methods.  

2) Selection of base FS methods: Initiate the process by selecting a 
combination of base FS methods, encompassing both filter and 
embedded FS techniques.  

3) Feature scoring and ranking: Each chosen base FS method calculates 
importance scores for all features. Through an iterative process, the 
feature with the least importance score is eliminated until the desired 
number of features is achieved. The resulting list includes the ‘m’ 
most important features along with their respective importance 
scores. 

Fig. 4. The conceptual framework of the proposed ensemble FS.  
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4) Aggregating feature importance: Combine feature importance 
scores, assigning weights based on each base FS method. Employ a 
weighted averaging approach coupled with a voting mechanism to 
create a unified ranking reflecting the average importance of 
features.  

5) Final FS: Retain the ‘m’ most important features, identified by the 
highest importance scores and voted by at least two base FS methods. 
Exclude the remaining features from consideration. 

In our envisioned ensemble FS approach, we integrate four distinct 
base FS methods: two multivariate filter methods (mRMR and Relief), 
one univariate filter method (F-test), and one embedded method 
(Random Forest). The objective is to identify the most crucial features by 
combining different FS categories. Filter methods, renowned for their 
computational efficiency and independence from ML models, are less 
susceptible to overfitting but do not directly interact with ML models 
[12,37]. Unlike univariate filters, multivariate filters have the advan-
tage of considering feature redundancy among exploratory features. 

The primary reasons for selecting these four FS methods are: 1) They 
offer a reasonable combination of different FS categories, with an 
emphasis on multivariate filters, 2) They are among the most widely 
used FS methods in the literature, and 3) Their implementations are 
available in MATLAB. For a deeper understanding of the strengths, 
weaknesses, and illustrative examples of the main feature selection 
categories, readers are encouraged to consult the works of Pudjihartono 
et al. [12] and Theng and Bhoyar [13]. 

3.3. ML models 

In this academic section, we focus on discussing four prominent ML 
models, which include Support Vector Machine (SVM) with two varia-
tions (the RBF kernel and the Linear kernel), Gaussian Process Regres-
sion (GPR), LASSO, and Gradient Tree Boosting with Least Squares 
(LSBoost). Based on a comprehensive review of the literature, we have 
identified these diverse ML models as effective tools for forecasting 
energy consumption. Nevertheless, neural network-based models were 
omitted due to their computational intensity, rendering them incom-
patible with Wrapper FS, particularly when dealing with ML models 
involving thousands of feature combinations [41]. 

3.3.1. Support vector machine (SVM) 
Support Vector Machines (SVMs) are a versatile ML approach 

capable of handling regression and classification tasks with high preci-
sion, thanks to their robust mathematical underpinnings. SVMs operate 
by systematically positioning data points in an n-dimensional space, 
where n represents the number of attributes in each data sample, 
treating attribute values as coordinates [39,40]. The primary goal of the 
SVM algorithm is to establish a decision boundary that effectively sep-
arates and categorizes these data points. This boundary’s selection is 
pivotal for the SVM’s performance. 

During training, SVM aims to identify a decision boundary that 
maximizes the margin between data points from different classes, 
enhancing predictive capabilities. When y signifies target classes, SVM 
constructs a hyperplane H. Determining this hyperplane involves com-
plex mathematical procedures based on input data x. The weight vector 
a holds feature weightings, b represents a bias term, and ∅(0) signifies a 
fixed feature-space transformation, collectively influencing the decision 
boundary, which is shown as below: 

H : aT ∅(x)+ b = 0 (9) 

Additionally, when applying Support Vector Regression (SVR) to the 
problem of regression, SVMs can be extended with different kernels, 
such as the Radial Basis Function (RBF) kernel and the Linear kernel. 
SVR-RBF leverages the non-linear characteristics of the RBF kernel to 
capture complex relationships between data points, while SVR-Linear 

employs a linear kernel for capturing linear relationships. These ker-
nels play a vital role in tailoring SVMs for regression tasks, making them 
versatile tools for various types of data analysis and prediction. 

3.3.2. Gaussian process regression (GPR) 
One key feature of GPR is its ability to make predictions while 

quantifying the associated uncertainty [9]. The algorithm relies on a 
training set, represented as D = (X, y) =

{(
Xi, yi

)
|i = 1,…,N

}
, where X 

is the input vector, and y is the output or target feature. Given a novel 
input X*, GPR predicts the corresponding output ŷ* using Eq. (10). 

ŷ* = K(X*,X)K(X,X)− 1y (10) 

This equation defines the core predictive capabilities of GPR. The 
derivation process involves Eqs. (11) and (12), with Eq. (11) introducing 
the initial assumption and Eq. (12) derived from the characteristics of 
the conditional distribution of a multidimensional Gaussian distribution 
[42]. 
[

y
y*

]

∼ N

(

0,
[

K(X,X) K(X,X*)

K(X*,X) K(X*,X*)

])

(11)  

y*∣y ∼ N
(
K(X*,X)K(X,X)− 1y ,K(X*,X*) − K(X*,X)K(X,X)− 1K(X,X*)

)

(12) 

To maximize p(ŷ*|y), the prediction ŷ* = K(X*,X)K(X,X)− 1y. 

3.3.3. LASSO 
Linear regression (LR) is a statistical method used to examine the 

relationship between a designated dependent feature and a given set of 
independent features, as outlined by Centofanti et al. [43]. In this 
context, it is pertinent to recognize the existence of m independent 
features. Within the regression equation, β0 represents the constant 
term, and β1 through βm denote the coefficients associated with these 
independent features. Additionally, ε is introduced as the stochastic 
error term. 

It is noteworthy that the mth regression coefficient, βm, signifies the 
anticipated change in the dependent feature Y for each unit alteration in 
the mth independent feature xm. This interpretation assumes that the 
expected value of the error term, E(ε), is zero, and it can be expressed 
mathematically as βm =

∂E(Y)
∂Xm

. Also, Eq. (13) represents the LR model. 

Y = β0 + cX1 + β2X2 +…+ βmXm + ε (13) 

In the context of regression analysis, an alternative method called 
LASSO (Least Absolute Shrinkage and Selection Operator) is utilized. 
LASSO, unlike traditional linear regression, incorporates a penalty term 
that encourages sparsity in the coefficient estimates [44]. This means 
that LASSO not only identifies the relationship between dependent and 
independent features but also performs FS by shrinking some co-
efficients to zero. This can be particularly useful when dealing with high- 
dimensional data, as it helps in identifying the most influential inde-
pendent features while discarding less important ones. Eq. (14) repre-
sents the LASSO model: 

Y = β0 + β1X1 + β2X2 +…+ βmXm + ε (14) 

LASSO is a valuable technique in regression analysis, especially 
when seeking a simpler and more interpretable model with a subset of 
the most relevant features. 

3.3.4. Gradient tree boosting with least squares (LSBoost) 
LSBoost, a meta-learning technique, is a methodology that amal-

gamates a specified count of weak tree-learners to enhance predictive 
performance [45]. This approach unfolds with a sequential training of 
these weak learners in the form of decision trees, followed by the 
refinement of their predictions through fitting the residual errors. The 
criterion for loss in the LSBoost framework centers on the least squares. 

H. Eskandari et al.                                                                                                                                                                                                                              



Applied Energy 366 (2024) 123314

9

Considering a training set 
{(

xi, yi
)}n

i=1 for i = 1 to n, the loss function 

L(y, F) is defined as (y− F)2
2 , and a regression function Fm(x) is introduced 

for each iteration, where m signifies the iteration number. At each 
iteration, the formulation progresses as: 

ỹi = yi − Fm− 1(xi), for i = 1, 2,…,N (15) 

The parameters (ρm, αm) are derived by minimizing the sum of 
squared differences between ỹi_approximated and ρh(xi;α), as expressed 
in Eq. (16). 

Subsequently, the regression function is updated as Fm(x) =

Fm− 1(x)+ ρmh((x;αm), where h(xi; α) represents a parameterized func-
tion characterized by the parameter αm, and ρm signifies the incremental 
step in the LSBoost process. 

(ρm,αm) = argminρ,α

∑N

i=1
[ỹi − ρh(xi;α) ]2 (16)  

3.4. The Bayesian optimization algorithm 

The Bayesian optimization algorithm stands out as a global optimi-
zation method tailored for handling costly objective functions. Unlike 
traditional approaches, it is free from population and genetic operators 
(mutation, crossover, and selection). This algorithm employs a Gaussian 
process to calculate an acquisition function, effectively evaluating the 
objective function [46]. Additionally, Bayesian optimization leverages 
its historical evolution to enhance its performance, utilizing previously 
acquired statistics to guide the search for optimal solutions. Literature 
suggests that Bayesian optimization surpasses the effectiveness of grid 
search and random search, showcasing competitiveness with emerging 
evolutionary optimization algorithms. [46,47]. 

3.5. Wrapper FS 

The Set-based Integer-coded Fuzzy granular Evolutionary (SIFE), an 
evolutionary algorithm widely recognized for its efficiency, is designed 
to handle FS in both high-dimensional and low-dimensional scenarios 
[48]. To improve its search strategy, SIFE uses a unique three-parent 
crossover method rooted in set-theory principles like ‘union’ and 
‘intersection’. It also incorporates fuzzy granulation, which aids in tasks 
like initializing the population and selecting elite individuals. This 
incorporation encourages diversity within the population over succes-
sive generations and reduces the need for additional fitness evaluations. 
The primary goal of this approach is to find a balanced trade-off between 
exploring new solutions and exploiting known ones while keeping 
computational complexity in check. SIFE is chosen for this research due 
to its proven ability to navigate and optimize search spaces of varying 
dimensions effectively. 

SIFE incorporates a systematic approach in each generation, evalu-
ating solution rankings for selection and reproduction. A pivotal 
objective in FS is optimizing a quality measure that balances two pri-
mary goals within machine learning (ML) algorithms. This entails 
minimizing the ML algorithm’s error metric while identifying a compact 
subset of highly relevant, minimally redundant features. To achieve this, 
the SIFE framework introduces an objective function: 

minimize F(si) = w1 ×Er(si)+w2 ×Ps (si)∀si ∈ Ω, (17)  

addressing both objectives concurrently. 
Feature subset and is defined as: 
This function evaluates candidate feature subset si from the set of 

possible features Ω, considering the error metric Er such as RSME or 
MAPE and the percentage of selected features Ps. Here, w1 and w2 define 
the relative significance of these objectives, set to 0.80 and 0.20 
respectively, owing to the study’s limited feature count. 

3.6. ML interpretation by SHAP method 

Critique of black-box ML models due to their limited interpretability 
has led to a demand for quantitative analysis of the relationship between 
input and target features in decision-making. Shapley Additive Expla-
nations (SHAP) provides a robust method for interpreting these models. 
SHAP utilizes the classical Shapley value from game theory to link 
optimal credit allocation and local explanations. This is achieved by 
breaking down the model’s predictions into the sum of individual 
feature impacts, improving our understanding of feature importance and 
aiding informed decision-making. To compute SHAP values, a linear 
explanation model is used as an interpretable approximation of the ML 
model, which is shown as: 

g(z′) = ϕ0 +
∑M

i=1
ϕizi

′ (18) 

Here, z′ ∈ {0,1}Mdenotes whether a feature contributes to estimating 
the output feature, M represents the number of input features, ϕi sig-
nifies the SHAP value of the i − th feature, and ϕ0 represents the mean 
value of the output feature [49]. The SHAP value evaluates feature 
importance by comparing the model’s prediction performance with and 
without each feature in various feature combinations, as shown: 

ϕi =
∑

S⊆z′{i}

|S|!(M − |S| − 1 )
M!

[fx(S ∪ {i} ) − fx(S) ] (19) 

In this equation, S signifies the set of non-zero z′, and fx(S) =

E[|f(x)xS | ]represents the expected model outcome of f(x) influenced by 
S. 

3.7. Model evaluation 

In order to comprehend the performance of the model concerning the 
national EC within the UK, we have included a set of evaluation metrics 
as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − pi)

2

√

(20)  

rRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n

∑n

i=1
(yi − pi)

2

∑n

i=1
(pi)

2

√
√
√
√
√
√
√

(21)  

MAE =
1
n

∑n

i=1
|yi − pi| (22)  

MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
yi − pi

yi

⃒
⃒
⃒
⃒ (23)  

R2 = 1 −

(
∑n

i=1
(yi − pi)

2
)

(
∑n

i=1
(yi − yi)

2
) (24) 

In the given equations, yi represents the actual or observed values of 
the variable being predicted or modeled, pi symbolizes the predicted 
values generated by the model, and yi usually denotes the mean 
(average) of the observed or actual values yi It represents the average 
value of the data points. 

4. Experimental setting 

This research study employs MATLAB R2022b for the implementa-
tion of all experiments including ensemble FS, ML models, wrapper, and 
hybrid FS. MATLAB R2022b is utilized for SHAP analysis generating 
time series plot and heatmap, and Excel for Microsoft 365 is used for 

H. Eskandari et al.                                                                                                                                                                                                                              



Applied Energy 366 (2024) 123314

10

producing spider plots. 

4.1. Data description 

This study centers around national EC within all sectors of the UK, 
covering the time period from 1995 to 2021. Notably, the years 2020 
and 2021, largely affected by the disruptive forces of the Covid-19 
Pandemic, have been included in this analysis. It’s worth highlighting 
that the monthly EC values for these two years exhibit some deviation 
from corresponding values in previous years, which subsequently results 
in higher errors when applied to ML models. An interesting observation 
emerges: when the years 2020 and 2021 are omitted from the experi-
mental dataset, the performance of the ML models presents slight 
improvements. 

The dataset depicting seasonally adjusted total EC and unadjusted 
total EC at an annualized rate in the UK for the period from January 
1995 to March 2023 is visually presented in Fig. 5. The chronological 
trajectory of inland final EC exhibits discernible patterns. Specifically, 
an initial phase of growth is succeeded by a significant and sustained 
decline after 2007–08 global financial crisis, a trend that persists until 
2023. 

After an extensive review of the relevant literature, this study in-
tegrates 18 distinct features (variables) to unravel the intricate interplay 
among energy consumption, economic performance, and environmental 
factors. In Table 2, you will find the comprehensive list of these 18 
features along with their respective abbreviations. 

The target feature of our analysis, ‘total final EC,’ serves as a repre-
sentation of the cumulative energy consumption derived from all energy 
sources across residential, transportation, commercial, and industrial 
sectors. This, in essence, reflects a foundational indicator of national 
energy demand within our study. 

Among the primary explanatory features are the consumptions of 
various primary fuels, including Coal, Petroleum, Natural gas, Bioenergy 
& waste, Electricity-nuclear, Electricity-wind, solar & hydro, and Share 
of renewable energy. These features, as highlighted by Javanmard et al. 
[22] and Khan and Osińska [28], provide invaluable insights into the 
utilization of specific energy sources, each offering unique perspectives 
on consumption patterns. GDP and Population stand out as two key 
explanatory features across numerous studies (as shown in Table 1). 
GDP per capita serves as a crucial indicator of economic well-being, 

while Population represents the overall demographic size, influencing 
energy consumption scaling. 

Temperature, an environmental feature, plays a pivotal role, signif-
icantly impacting national-level energy consumption patterns, as noted 
by Zyl et al. [17] and Liu and Li [3]. Energy intensity serves to quantify 
energy consumption relative to economic output, providing essential 
context for understanding energy usage trends. To our knowledge, no 
study has considered Energy intensity as a explanatory feature. More-
over, real prices of gas, electricity, and motor fuel, along with oil, are 
considered to encompass the pricing dynamics of respective energy 
sources, as discussed by Atems et al. [27] and Maaouane et al. [30]. 
These factors collectively contribute to a comprehensive understanding 
of energy consumption dynamics and their interplay with economic, 
demographic, environmental, and pricing factors. 

Among the 18 features, 3 features have been designated as temporal 
features. Month number (Mon#), Sine month (SinM), and Cosine month 
(CosM) are pivotal for capturing temporal and cyclical fluctuations 
within the dataset [50,51]. The month number serves as a fundamental 
metric for encapsulating inherent seasonality. While the month number 
feature enriches the analytical depth of the study by facilitating the 
identification of patterns and temporal shifts, its standalone usage may 
pose constraints, particularly in time series analysis [50,51]. Hence, 
complementary features like Sine month and Cosine month are inte-
grated to augment the temporal analysis, offering a more comprehensive 

Fig. 5. Aggregate inland final EC at an annualized rate in the UK for the period from Jan 1995 to Mar 2023.  

Table 2 
Eighteen features and their corresponding abbreviation.  

Feature Abbreviation Feature Abbreviation 

Total monthly final EC EC Temperature Temp 
Coal Coal Population Pop 
Petroleum Pet Energy intensity per 

unit of GDP 
EI 

Natural gas Gas Real price - Gas P-Gas 
Bioenergy & waste B&W Real price- Electricity P-El 
Electricity - nuclear El-Nu Real price - Motor fuel 

& oil 
P-Fuel 

Electricity – wind, 
solar & hydro 

El-WSH Sine month SinM 

Share of renewable 
energy 

SRnw Cosine month CosM 

GDP per capita GDP Month number Mon#  
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perspective on the dataset’s dynamics. The descriptive statistics of the 
18 features considered for UK’s national EC is presented in Appendix 
Table A1. 

The data was collected from the multiple sources: UK Department for 
Energy Security and Net Zero, UK Office for National Statistics, and 
International Energy Agency (World Energy Balances Highlights). 

Through a combination of exploratory data analysis and domain 
knowledge, it becomes evident that certain features, such as the real 
price of solid fuels, liquid fuels, and domestic fuels, as well as meteo-
rological variables like average wind speed, humidity, rainfall, and 
sunshine, along with socioeconomic factors like the unemployment rate, 
need not be included in the list of candidate primary features. The 
strategic exclusion of these features from consideration helps maintain a 
manageable size for the list of candidate features. This deliberate 
pruning is instrumental in addressing challenges associated with mul-
ticollinearity, and it concurrently aids in reducing the feature space for 
the wrapper FS process. 

4.2. Data preprocessing 

For preprocessing, the study utilized cyclical feature encoding and 
ordinal encoding, specifically focusing on time representation, notably 
the month. While ordinal encoding lacks accounting for cyclic categor-
ical features like time data, cyclical feature encoding resolved this 
through sine and cosine transformations of the cyclic feature x (month). 

Data normalization, a critical step to map data onto a unit sphere, 
addressed variations in feature dimension scales. The normalization 
process, as represented by xnorm = x− xmin

xmax − xmin
, normalizes data points x 

between minimum (xmin) and maximum (xmax) values to enhance ML 
algorithm performance reliant on Euclidean distance metrics. 

Furthermore, it is noteworthy that only 2 out of the 18 features, 
specifically Population and Energy intensity, exhibit monotonic func-
tions, as depicted in Fig. 6, and are available on an annual basis. To 
obtain monthly observations for these variables, we utilize Chow-Lin 
Regression-based interpolation, a method employed for converting 
low-frequency data to high-frequency data, implemented in EViews 
software [52]. However, it is crucial to emphasize that converting var-
iables with annual observations, such as Temperature and Gas, which 
experience seasonal fluctuations, or those with uncertain changes, such 
as primary fuels’ price and GDP, to low frequency is not appropriate. 
Such conversions can lead to misleading interpretations and inaccurate 
analyses. 

4.3. Hyperparameter setting of MLs 

Hyperparameter optimization constitutes a critical facet in the realm 
of ML, as it holds the key to unlocking the full potential of predictive 
models and engendering optimal performance. The endeavor to sys-
tematically and judiciously search for the most suitable hyperparameter 
settings is a paramount undertaking in ML research. In this study, we 
partitioned 80% of the data for training and hyperparameter tuning, 
reserving the remaining 20% as the test set. To tune hyperparameters, 
Bayesian Optimization was employed using MATLAB R2023b’s Statis-
tics and Machine Learning toolbox. It’s noteworthy that our experiments 
revealed limited effectiveness of hyperparameter tuning, with only 
slight performance improvements observed in a few out of 15 configu-
rations. The results of the hyperparameter optimization process using 
Bayesian optimization are presented in Table 3. 

Table 4 displays the general parameter settings for SIFE, with a 
population size of 120 and a maximum iteration of 60. 

Fig. 6. Visualizing the time series plot of 15 numerical features of the dataset.  
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5. Results and analysis 

5.1. Primary visual analysis 

In this section, we conducted a thorough analysis of each primary 
feature. Fig. 6 presents a visual representation of the time series patterns 
characterizing these features. Moreover, taking a broad view of GDP per 
capita reveals a notable and steady increase, indicating strong economic 
growth. Simultaneously, there is an upward trend in the use of Bio-
energy & waste, the Share of renewable energy, Petroleum, and Elec-
tricity from wind, solar, and hydro sources. In contrast, there is a 
noticeable decrease in the use of Coal, Energy intensity, and Nuclear- 
electricity. Considering the observed fluctuations and shifts within 
these features, it is essential to conduct a comprehensive analysis to 
understand their underlying causes. The rise in energy prices, as 
mentioned earlier, is a significant factor contributing to these changes. 
Higher energy prices play a crucial role in influencing consumer choices, 
encouraging a shift toward more cost-efficient and sustainable energy 
sources. This transition aligns with environmental and economic con-
siderations, supporting the increased use of Bioenergy & waste, the 
Share of renewable energy, and Electricity from wind, solar, and hydro 
sources. 

Furthermore, the decline in the use of Coal and Nuclear-electricity is 
likely driven by environmental concerns and the increasing competi-
tiveness of renewable energy sources. Notably, the observed price 
fluctuations, especially in Real price - Gas, Real price - Electricity, and 
Real price - Motor fuel & oil, are closely tied to global market dynamics, 
supply and demand dynamics, and geopolitical influences. The rising 
GDP per capita may lead to increased energy consumption, especially in 
sectors closely linked to economic growth. It is evident that the fluctu-
ations in Coal, Gas, Petroleum, Electricity (nuclear and WSH) and share 
of renewable are due to the seasonal temperature changes. 

5.2. Pearson correlation analysis 

The fluctuations and transitions witnessed within the features under 
investigation are the result of intricate interactions among a medley of 
economic, environmental, and market-driven factors. These discernible 
alterations underscore the intricate interplay that characterizes the 

interrelationships between energy consumption and other pertinent 
features. As such, it is incumbent upon us to embark on a comprehensive 
analysis that embraces this multifaceted landscape of influences. In this 
section of our study, we endeavor to unravel the complexities and dy-
namics inherent to these features by employing heatmap of Pearson 
correlation analysis, which is visually represented in Fig. 7. 

Given that all 15 input primary variables are continuous numerical 
data, we conducted a comprehensive analysis using Pearson correlation 
coefficients with a two-tailed test. The results reveal several noteworthy 
findings. Firstly, certain correlation values emerged as statistically sig-
nificant at a confidence level of α = 0.01. Notably, some correlations 
exhibited absolute values surpassing a threshold of 0.90. One striking 
observation is the nearly perfect negative correlation between popula-
tion and energy intensity, denoted by r(322) = − 0.99. Additionally, the 
variables Electricity-WSH, Renewable-share, and Population exhibit an 
exceptionally strong positive correlation with Bioenergy & Waste, re-
flected in their correlation coefficient of r(28) = 0.96. 

Moreover, in the correlation analysis of the target variable, it is 
observed that Natural gas and Coal demonstrate remarkably positive 
correlations with Total EC(t), with coefficients of r(322) = 0.94 and 
0.76, respectively. Interestingly, Temperature exhibits a robust negative 
correlation of − 0.82 with Total EC(t). Upon closer examination of Fig. 6, 
we posit that the (very) strong correlation between Natural gas, Tem-
perature, and Coal with Total EC(t) can be attributed to corresponding 
fluctuations during different seasons. Specifically, the consumptions of 
Natural gas, coal, and Total EC peak during colder months and decline 
during warmer months, resulting in these pronounced correlations. 

Of particular note is the moderately negative correlation of - 0.49 
between Population and Total EC(t), implying that, despite a consistent 
increase in population, Total EC in the UK is on a declining trend. This 
intriguing finding prompts further exploration into the dynamics influ-
encing EC patterns in the context of population growth. 

5.3. FS results 

In this section, we scrutinize the outcomes of the FS algorithms, 
focusing on the identification of the ten most important features for 
inclusion in our input feature subset. The comprehensive results of the 
FS algorithms are presented in Table 5. Table 5 encompasses a compi-
lation of all the primary features and temporal features employed 
throughout the study. It further includes a column titled “Total count,” 
which signifies the number of features designated as significant by these 
algorithms. Specifically, dedicated rows are allocated to the mRMR, RF, 
F-test, and Relief algorithms, elucidating the relative importance of 
features achieved by each FS method. 

For instance, within the mRMR algorithm, the feature EC(t) attains a 
relative importance of 1, signifying its preeminent significance within 
this particular algorithm. Following EC(t), the features P-Gas and CosM 
occupy the second and third positions in terms of importance, boasting 
respective importance values of 0.804 and 0.774 in the mRMR algo-
rithm. Additionally, this algorithm identifies features such as El-Nuc, 
GDP, EI, P-El, P-Fuel, SinM, and Mn# as less significant features, 
underscoring their reduced impact. 

The “Vote” row assigned to each feature serves to accentuate their 
significance by revealing their collective importance across four filter FS 
methods, specifically, mRMR, RF, F-test, and Relief. Furthermore, the 
“Average importance” row computes the average importance score of 
features across the various methods. For instance, the EC(t) feature 
registers a value of 1 in both the mRMR and F-test algorithms, while in 
the RF and Relief methods, it garners values of 0.740 and 0.412, 
respectively. The resultant average importance score is 0.788. This 
amalgamation of importance scores forms the basis for the final feature 
ranking, encapsulated in the “Final rank” row. 

In accordance with our refined methodology, the culminating 
assessment of feature importance based on average scores now yields a 
ranking of features. Notably, CosM, EC(t), and Gas emerge as the top 

Table 3 
The summary of hyperparameters for five ML models.  

ML Model Hyperparameter Value/Type 

LASSO Learner 
Regularization 
lambda 

Least Square 
Lasso 
1.16e-04 

SVR-Linear Box constraint 
Epsilon 

10 
0.005 

SVR-RBF Box constraint I 
Gamma (γ) 
Epsilon 

10.5 
35 
0.003 

LSBoost Maximum number splits 
Pruning 
Number of learning cycles 
Learning rate 

12 
Off 
8 
0.28 

GPR Sigma 
Prediction method 
Basis Function 

0.046 
Subset of regressors approximation 
Peru Quadratic  

Table 4 
SIFE’s parameters.  

Parameter Value 

Population Size 120 
Maximum iteration 60 
Crossover probability 0.6 
Mutation probability 0.5  
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three features in terms of significance, securing the first, second, and 
third positions, respectively, across all four mRMR, RF, F-test, and Relief 
algorithms. Energy intensity (EI) emerges as the third most significant 
feature according to the Random Forest (RF) method. However, it 
doesn’t even make the cut as one of the top ten most important features 
when assessed by other FS methods. On the other hand, EC(t) takes the 
spotlight as the most crucial feature within the mRMR and F-test algo-
rithms. Interestingly, it secures the second and third most vital positions 
within the RF and Relief algorithms, respectively. 

This discrepancy in feature importance highlights the critical role of 
ensemble FS techniques that leverage various filter and embedded FS 
methods. By embracing this diversity, we aim to harness the strengths of 
different approaches while mitigating the risk of selecting an unstable 
feature subset. 

As a refinement to our research design, we exclusively incorporate 
the ten most crucial features identified through the ensemble FS process 
into the input feature subset for the ensemble filter-wrapper FS method. 
This adjustment aligns our methodology with established best practices 
in FS context. 

The FS results for the ML models, which have been developed for the 
prediction of EC(t + 1) within the scope of this study, are presented in 
Table 6. In this table, the symbol “●” designates the inclusion of a 
specific feature, while “○” signifies the exclusion of the relevant feature. 

After the identification of the ten most critical features (n) through 
the ensemble of mRMR, RF, F-test, and Relief FS methods, as depicted in 
Table 5 a final consensus is reached among them. The performance of 
each of the five ML models are evaluated using ten selected important 
features using the outcome feature subset (S1) obtained from ensemble 
filter method. The feature subset S1 includes EC(t), Coal, Gas, RnwS, 
Temp, Pop, P-Gas, SinM, CosM, and Mn#. Conversely, in the Wrapper 
method (S2), although a fewer number of features from all 18 features 
are typically selected on average, a diverse array of features is observed 
across different ML algorithms. It is noteworthy that, with the exception 

of P-Fuel, Coal, and Petr features, all other features find recommenda-
tion in at least one ML method. Interestingly, Mn#, CosM, P-El, and GDP 
features have been chosen by a minimum of four of the proposed ML 
algorithms, signifying their prominent importance and relevance. 

In the hybrid filter-wrapper method (S1S2), a noticeable reduction is 
discerned in the number of selected features. On average, each of the 
proposed ML algorithms supports merely four features, except LSBoost 
which only three features are selected. Notably, Gas and CosM are two 
features that attain unanimous selection by all ML algorithms. Subse-
quently, SRnw and Mn# are the features that exhibit the most recurrent 
inclusion across the spectrum of ML algorithms. 

The results depicted in Table 6 evoke a noteworthy trend, wherein 
the combination of both the filter and wrapper methods (S1S2) results in 
a more constrained selection of features. This suggests a higher level of 
consensus among the ML algorithms regarding the most relevant fea-
tures, illustrated by the consistent selection of CosM and Gas. Further-
more, the recurrent inclusion of SRnw and Mn# underscores their 
enduring importance in the context of this predictive modeling exercise. 

5.4. Final results 

The results obtained from the application of the filter (S1), wrapper 
(S2), and filter-wrapper (S1S2) subsets for predicting EC(t + 1) are 
presented in Table 7, mirroring the information in Fig. 8a to 8c. To 
evaluate the ML algorithms more precisely, various assessment metrics, 
including RMSE, rRMSE, MAPE, MAE, and the coefficient of determi-
nation R2, have been utilized. 

As shown in Table 6, the filter (S1) subset has identified 10 features 
as important, while the wrapper (S2) and filter-wrapper (S1S2) subsets 
have identified 7 and 4 features, respectively. Importantly, the results 
highlight the superior predictive accuracy of the wrapper (S2) subset for 
EC(t + 1). Among the ML algorithms within the wrapper subset (S2), the 
Support Vector Regression with Radial Basis Function (SVR-RBF) 

Fig. 7. The heatmap of Pearson correlation coefficient for EC(t).  
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algorithm has proven to be the most proficient, demonstrating superior 
accuracy compared to other algorithms. It has achieved notable per-
formance metrics with values of 0.9051, 6.0024, 4.7836, 0.6740, and 
0.8870 in RMSE, rRMSE, MAPE, MAE, and R2, respectively. 

Figs. 9 and 10 present a detailed representation of the training and 
testing processes of the SVR-RBF model used for predicting EC(t + 1). 
These processes occur in the context of feature subsets referred to as 
S1S2 and S2. 

The SVR-RBF model, coupled with both the wrapper and ensemble 
filter-wrapper feature selection (FS) approaches, consistently exhibits 
superior predictive performance. This is evident in the attainment of low 
error metrics and a substantial degree of explained variance. Collec-
tively, these metrics underscore the model’s ability to deliver highly 
accurate forecasts of EC(t + 1). 

A noteworthy observation from these findings pertains to the mini-
mal decline in performance when utilizing a smaller feature subset. 

Table 7 
Performance metrics of ML models for forecasting EC(t + 1) with ensemble filter (S1), wrapper (S2) and ensemble filter-wrapper (S1S2) FS approaches.  

Feature subset ML models Metrics Nubmer of features 

RMSE rRMSE MAPE MAE R2 

Ensemble filter (S1) 

LASSO 1.5774 10.4614 8.2645 1.2061 0.8136 10 
SVR-Linear 1.6398 10.8755 8.5298 1.2599 0.8219 10 
SVR-RBF 1.6048 10.6434 8.188 1.1031 0.7204 10 
GPR 1.5540 10.3060 7.9540 1.0683 0.7201 10 
LSBoost 1.6237 10.7683 8.4587 1.1403 0.7511 10 

Average  1.4896 9.8788 7.7809 1.0775 0.7725 10 

Wrapper (S2) 

LASSO 1.0439 6.9234 5.878 0.827 0.8436 8 
SVR-Linear 1.0328 6.8493 5.7961 0.8099 0.8481 6 
SVR-RBF 0.9051* 6.0024* 4.7836* 0.6740* 0.8870* 7 
GPR 1.0075 6.6820 5.5061 0.7686 0.8620 8 
LSBoost 1.2810 8.4956 6.8566 0.9182 0.8354 6 

Average  1.0534 6.9860 5.7336 0.7939 0.8554 7 

Ensemble filter-Wrapper (S1S2) 

LASSO 1.1079 7.348 6.2008 0.8896 0.8864 4 
SVR-Linear 1.0014 6.6411 5.3864 0.7878 0.8810 4 
SVR-RBF 0.9706 6.4370 5.0280 0.7376 0.8664 4 
GPR 0.9312 6.1755 5.3049 0.7579 0.8776 4 
LSBoost 1.3038 8.6468 6.9009 0.9402 0.8130 3* 

Average  1.0630 7.0497 5.7642 0.8226 0.8649 3.8  

Fig. 8. Performance metrics of the ML models for S2 and S1S2 feature subset for forecasting EC(t + 1) a) rRMSE and MAPE, b) MAE, and c) R2.  
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Specifically, S2 encompasses three additional features compared to S1S2 
in predicting EC(t + 1). This outcome emphasizes the effectiveness of the 
hybrid ensemble filter-wrapper FS approach proposed in this study, 
successfully reducing dimensionality while preserving essential evalu-
ation metrics within the forecasting process. 

Additionally, a careful assessment of SVR’s performance on the test 
set reveals a slight decrease in its performance compared to the training 
set. This observation suggests a minor tendency toward overfitting, 
indicating that the model may have a slight inclination to fit the training 
data too closely. It’s important to emphasize, however, that the extent of 
this overfitting is limited, emphasizing the model’s strength and its 
ability to generalize effectively. 

5.5. SHAP analysis 

Figs. 11 to 13 detail SHAP values for feature subsets from top ML 
models (SVR-RBF and GPR) forecasting EC(t + 1). In this study, all 
features are continuous and vertically sorted by average impact on EC(t 
+ 1) predictions. Month Cos holds the highest impact with varying in-
fluence in both ML models across all three FS approaches, except GPR 
with wrapper (S2). The primary reason for such a significant impact 
could be the corresponding fluctuations of the Cosine function of Month 
with the target feature EC(t + 1). This suggests that the most effective 
explanatory feature for forecasting EC(t + 1) is simply the Month, which 

is effectively represented by the Cosine of the Month. 
The remaining nine features for SVR-RBF and GPR with ensemble 

filter (S1) exhibit notable consistency, with one exception: Natural gas 
holds the second most impactful position for SVR-RBF but is ranked 
tenth for GPR. 

In Fig. 12(a), SVR-RBF with wrapper, the top-performing model 
among all 15 configurations, highlights RP-Electricity, Temperature, 
and Bioenergy & waste as the second, third, and fourth most influential 
features, respectively. In Fig. 12(b), GPR with wrapper showcases 
Month#, RP-Gas, Month Sin, and Population as the first, second, third, 
and fourth most influential features, respectively. 

Ranked as the 2nd and 3rd best-performing models, GPR and SVR- 
RBF with ensemble filter-wrapper strike a balance by offering optimal 
compromise metrics across various evaluation criteria and a minimal 
number of features. Fig. 13 reveals both commonalities and distinctions 
between these models. Each employs only four features to generate 
forecasts. For SVR-RBF, the second and third most impactful features are 
Share of renewable and Natural gas, while for GPR, it is Population and 
Natural gas, respectively. 

The majority of feature contributions align with intuitive expecta-
tions and UK government policies, as illustrated in Fig. 6. In other words, 
high values of Share of renewable, Bioenergy & waste, Temperature RP- 
Electricity, RP-Gas have negative impact on EC(t + 1) forecasts, while 
high values of Natural gas, Month Cos and Month# have positive impact 

Fig. 9. Performance of SVR-RBF in forecasting EC(t + 1) based on wrapper FS (S2) (a) regression model, b) time series plot.  

Fig. 10. Performance of SVR-RBF in forecasting EC(t + 1) based on filter-wrapper FS (S1S2).  
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on EC(t + 1) forecasts. However, three features—RP-Gas, Temperature, 
and Share of renewable—play a distinct role in influencing the forecasts 
of these ML models during global interpretation. This unique impact 
may stem from multicollinearity and the substantial influence of other 

features on EC(t + 1), a common occurrence in various ML applications. 

Fig. 11. The Shapley analysis including Shapely summary plot and the average contributions of the ensemble filter feature subset (S1) for forecasting EC(t + 1): (a) 
SVR-RBF, (b) GPR. 
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6. Conclusions and future research 

This research introduces a pioneering framework that seamlessly 
integrates feature selection (FS) and machine learning (ML) techniques, 

representing a significant advancement in the realm of predicting inland 
national energy consumption (EC) in the United Kingdom. The frame-
work strategically combines three distinctive FS approaches—ensemble 
filter, wrapper, and ensemble filter-wrapper—with five interpretable ML 

Fig. 12. The Shapley analysis including Shapely summary plot and the average contributions of the wrapper feature subset (S2) for forecasting EC(t + 1): (a) SVR- 
RBF, (b) GPR. 
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models—LASSO, SVR-Linear, SVR-RBF, GPR, and LSBoost. This inte-
gration not only allows us to identify the ML models with the highest 
forecast accuracy but also guarantees transparency in the forecasting 
process. The framework’s strength lies in its ability to calculate the 
relative importance of contributing features and their impact on the 

target EC(t + 1). This dual focus on model accuracy and interpretability 
is a distinctive feature that enhances the reliability and utility of the 
forecasting process. 

This study marks a multifaceted contribution to ML-based EC fore-
casting. Notably, it advances the use of high-frequency monthly EC data 

Fig. 13. The Shapley analysis including Shapely summary plot and the average contributions of the ensemble filter-wrapper feature subset (S1S2) for forecasting EC 
(t + 1): (a) SVR-RBF, (b) GPR. 
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at the national level, providing fresh insights into multi-source EC sta-
tistics in the UK. This departure from the reliance on annual data, as 
observed in other studies, strengthens the reliability and robustness of 
our findings. The comprehensive consideration of various features, 
including energy sources, economic and demographic factors, climate 
variables, and resource and production factors, sets this study apart from 
prior research. The introduction of a novel generalizable ensemble FS 
approach, the meticulous and comparative FS analysis, and the incor-
poration of Shapley additive explanation (SHAP) analysis contribute to 
the uniqueness and significance of this research. The proposed frame-
work not only improves prediction accuracy but also enhances the 
interpretability of black-box ML models, making it a valuable tool for 
policymakers and energy analysts. The framework’s interpretability is 
underscored by its ability to elucidate the relative importance of fea-
tures, facilitating a more nuanced understanding of their contributions 
to EC forecasting. 

The experimental findings reveal that, among the 15 configurations 
tested, the combined SVR-RBF model with the wrapper FS approach 
consistently exhibits the most robust predictive performance across all 
five evaluation metrics. Notably, in the context of both ensemble filter 
and ensemble filter-wrapper FS approaches, GPR consistently out-
performs SVR-RBF for the majority of metrics. An intriguing observation 
emerges regarding the minimal decline in the performance of ML models 
when utilizing a smaller feature subset. Specifically, the feature subset 
derived from the wrapper approach (S2) includes, on average, three 
additional features compared to the feature subset from the ensemble 
filter-wrapper approach (S1S2) in predicting EC(t + 1). This outcome 
underscores the efficacy of the hybrid ensemble filter-wrapper FS 
approach proposed in this study by successfully reducing dimensionality 
while preserving essential performance in the forecasting process. 

In essence, this study’s innovative framework stands as a noteworthy 
contribution to the field of EC forecasting. By seamlessly integrating 
three FS approaches and interpretable ML techniques, it addresses both 
accuracy and interpretability concerns, making it a valuable tool for 

advancing the understanding and prediction of inland national energy 
consumption in the United Kingdom. 

Looking forward, additional research is imperative to enhance and 
address limitations in the proposed framework. A critical aspect 
requiring attention is the development of a more effective FS approach 
to discern and select the most influential features. Furthermore, there is 
a need to explore alternative interpretable ML methods, such as 
Gradient-weighted Class Activation Mapping (Grad-CAM), within the 
context of time series forecasting. Subsequent investigations could 
extend the current work by comparing the outcomes with diverse FS 
approaches and interpretable ML models, thereby evaluating the per-
formance achieved in this study. This comparative analysis would offer a 
comprehensive understanding of the effectiveness of various FS ap-
proaches and contribute nuanced insights into the role and potential of 
interpretable ML methods within the time series forecasting domain. 
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Appendix A. Appendix  

Table A1 
Descriptive statistics for the fifteen main features.  

Feature Unit Mean Std Min Max Source 

Total monthly final EC Mtoe 17.76 3.27 9.86 25.02 UK-ESNZ 
Coal Mtoe 2.64 1.27 0.34 6.19 UK-ESNZ 
Petroleum Mtoe 5.91 0.65 2.57 7.63 UK-ESNZ 
Natural gas Mtoe 6.91 2.24 3.11 11.83 UK-ESNZ 
Bioenergy & waste Mtoe 0.63 0.46 0.14 1.69 UK-ESNZ 
Electricity - nuclear Mtoe 1.40 0.36 0.70 2.46 UK-ESNZ 
Electricity – wind, solar & hydro Mtoe 0.20 0.22 0.01 0.94 UK-ESNZ 
Share of renewable energy % 0.05 0.05 0.01 0.19 MaCal 
GDP per capita USD/person 38,186.13 7852.35 21,975.20 50,918.10 UK-ONS 
Population Million 62.30 3.09 58.02 67.08 UK-ONS 
Average Temperature Celsius 10.35 4.46 − 0.27 19.26 UK-ESNZ 
Energy intensity per unit of GDP 

(SDG 7.3) 
TES/GDP 3.74 0.90 2.25 5.12 IEA 

Real price - Gas USD 85.48 27.46 50.80 131.70 UK-ESNZ 
Real price- Electricity USD 97.15 23.70 65.00 148.30 UK-ESNZ 
Real price - Motor fuel & oil USD 86.89 13.28 61.00 117.60 UK-ESNZ 

Note: UK-ESNZ: UK Department for Energy Security and Net Zero, UK-ONS: UK Office for National Statistics, and IEA: International Energy Agency, MaCal = Manually 
calculated from fuels consumption data (first seven features) provided by UK-ESNZ. 
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