
Faculty of Science and Engineering

Neural Network-Based Constitutive Modelling of

Inelastic Materials

REEM ALHAYKI

A thesis submitted to Swansea University in fulfilment of the requirements for

the Degree of Doctor of Philosophy.

September 2023

Copyright: The Author, Reem Allhayki, 2024

Ryan Lloyd
Cronfa banner



Declarations

Statement 1

This work has not previously been accepted in substance for any degree and is not being concurrently

submitted in candidature for any degree.

Signed:......Reem Alhayki...........

Date:............26 Sep 2023...............

Statement 2

This thesis is the result of my own investigations, except where otherwise stated. Other sources are

acknowledged by footnotes giving explicit references. A bibliography is appended.

Signed:......Reem Alhayki...........

Date:............26 Sep 2023...............

Statement 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan,

and for the title and summary to be made available to outside organisations.

Signed:......Reem Alhayki...........

Date:............26 Sep 2023...............

Statement 4

The University’s ethical procedures have been followed and, where appropriate, that ethical approval has

been granted.

Signed:......Reem Alhayki...........

Date:............26 Sep 2023...............



Abstract

New materials that are associated with novel micro-structures are becoming available at a rapid speed.

The mechanical characteristics of solid materials are studied using constitutive models. The formulation

of constitutive relations is challenging and may be related with the limiting hypothesis. Machine learning

approaches have been widely used to simulate material behaviour in recent years. This study presents a

neural network-based approach to reproduce the complex constitutive relations of solid materials including

the modelling of rate-independent, elastic or inelastic, isotropic or anisotropic material behaviours. The

approach can follow a history-based or an internal variables-based strategy. The network is developed using

a generic internal variable formalism, with the number of internal variables determined by the nature of the

problem and the degree of accuracy desired. It is demonstrated that the history-based and internal variable-

based techniques accurately describe the von Mises elastoplastic material model in uniaxial stress condition.

However, a thorough examination indicates that the internal variable-based strategy is most suited.

In this work, the network is trained on data sequences of strains and corresponding stresses that can be

generated with physical experiments or numerical simulations based on Representative Volume Element

(RVE). The used training strategy is based on gradient-free optimisation. The model performance is evaluated

on different numerical examples including uniaxial damage mechanics and multiaxial elastoplasticity under

plane strain conditions. The trained model is compared against the corresponding constitutive model to

evaluate the accuracy. An efficient criterion for the verification of thermodynamic consistency is proposed

and applied to the trained stress update models.

The proposed strategy is tested with numerical examples that represent relations of porous solid materials.

The training data are generated with numerical multi-scale homogenisation based on an RVE composed of the

von Mises elastoplastic matrix with an arbitrary void volume fraction. The RVE simulation was performed

by enforcing appropriate RVE boundary conditions, and the stress responses are computed for various macro

strain data sequences to generate different loading paths. The neural network based stress update algorithm

is trained and validated. The obtained results show the ability of the proposed procedure in describing the

material stress/strain relationship with high accuracy. In addition, plots of stress paths in the hydrostatic-

deviatoric space show accurate results when compared against the corresponding Gurson model for porous

elastoplastic material.
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Chapter 1

Introduction

With the advancements in manufacturing and material engineering fields, new types of materials and

micro-structures are becoming available at a fast rate. Constitutive models are used to understand material

characteristics. The formulation of constitutive models is difficult and it is challenging to describe the

complex nonlinear behaviors sufficiently [45, 44].

The recent developments in computer architecture and computational power made it possible to leverage

novel machine learning techniques to model the behavior of materials and understand the associated

physical properties [114, 2, 9]. Within the field of continuum materials mechanics numerous machine

learning approaches are already applied successfully to enable, accelerate and simplify the discovery and

development of novel materials for future deployment. Referring to [9], in the context of materials

mechanics the type of machine learning can be classified as

- Descriptive: patterns within data can be recognised based on correlations, trends or anomalies to

address questions like "What factors contribute to the formation of microstructure Y with properties Z

under the influence of process parameter X, and how do these elements impact material performance

aspects like fatigue and failure?". For example, in [63] a deep network was used for modeling mechanical

material properties on multiple scales, based on homogenisation of two-dimensional RVE.

- Predictive: approximations based on available knowledge to foresee specific results generated by certain

factors for answering questions like "How does changing process parameter X affect the microstructure
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Y and subsequently influence the properties Z?". For example, in [110] the effective stiffness of high

contrast elastic composites is predicted using a deep learning approach.

- Prescriptive: to not only identify and predict but also to implement optimised results with respect

to improved actions answering questions like "How can we change process parameters X to achieve

microstructure Y with desired properties Z?". A framework was proposed by [12] for capturing and

communicating critical information related to the material structure evolution in multi-scale simulations

to reduce the number of required experiments.

In particular, Artificial Neural Networks (ANNs) are able to process large amounts of data and estimate

complex nonlinear relationships. The ANN can be implemented with the help of advanced open-source

libraries such as TensorFlow [1] and PyTorch [79].

In the context of constitutive modeling, ANNs have the capability to learn the stress-strain behavior of

materials with given examples of stress-strain increments [38, 53]. These increments can be obtained by

performing physical experiments or numerical simulations. The data-set used by the model to learn is referred

to as the training data-set, with each individual example being called a training sequence or sample [9]. The

generation of data with random loading paths in the strain space similar to the stochastic process have been

suggested by [70, 40, 109]. As it can be advantageous to include multiple stress-strain histories which help

covering a wider training space. After training, the model should be validated to ensure it generalises well

on unseen data (i.e. assess that the model is not underfitted or overfitted).

Acknowledging this potential, an expanding body of literature demonstrates the successful utilisation of

ANNs in constitutive modeling for nonlinear materials. Examples include: hyper-elasticity [90, 57, 75],

visco-elasticity [15], elastoplasticity [72, 28, 49, 42, 111, 105, 35], visco-plasticity [50, 32], cyclic plasticity

[112, 101, 31], traction-separation [29], continuum damage [61], interface mechanics [107, 29], tensile damage

in flexure [54] and rate-dependent materials [53, 51]. All these examples involve training and tuning a neural

network with experimental or simulated data then using it to predict the desired material behavior.

Although proved useful, standard feed-forward neural networks struggled to model materials that involve

history-dependent state variables. To overcome this challenge, a Recurrent Neural Network (RNN) can be

used which includes memory elements to store previous material state information. However, a common

difficulty associated with training RNNs are the Vanishing and Exploding Gradient Problem (VEGP) when

the network weights become very small or very large respectively during back-propagation [78, 82, 5]. In order

2



to avoid this issue, special networks known as Long/Short Term Memory (LSTMs) [46] and Gated Recurrent

Unit (GRUs) [17] can be used. LSTM-based networks have been used to model the homogenised mechanical

response of polycrystals [30], fiber-reinforced composites [16] and visco-elastic behaviour [15]. On the other

hand, GRU-based networks have demonstrated their ability to capture path-dependent plasticity, including

intricate phenomena like homogeneous anisotropic hardening [40, 72]. Moreover, Mozaffar et al. [72] and

Gorji et al. [40] extended the application of GRUs to plastic composites and metamaterials. Alternatively,

several works in the literature addressed VEGP by using gradient free optimisation techniques [84, 87, 20,

106, 76, 108, 95].

For more complex materials, multiscale homogenisation is used to describe the behavior of the overall

system based on information derived from small scale computational models. In various fields, extensive

research has been devoted to homogenization-based multi-scale analysis and the selection of suitable

Representative Volume Elements (RVEs) [34, 55, 113, 80, 81]. The work in [9, 114] shown that a neural

network model framework have a potential to be used for creating homogenised elastoplastic constitutive

model based on the results from RVE analysis (e.g. polycrystalline microstructures, composites or

mechanical metamaterials).

In this work the RVE is subjected to random loading to generate numerical training data. The objective of

this is to evaluate that the proposed methodology captures the yield criteria for porous materials with the

elastoplastic von Mises matrix. The obtained results by the network are then compared to the corresponding

classical Gurson model, which proposes an analytical yield criteria for porous media [41].

The main objective of this study is to demonstrate the challenges and opportunities in applying ANN models

to the constitutive modeling of composite materials. The proposed strategy for network architecture follows

internal variables formalism. Recent research have used RNN, LSTM, and GRU architectures for constitutive

modelling, and the findings have been accurate (e.g. [11]). Both this study and the work conducted by

Bonatti C and Mohr D [11] acknowledge the importance of using randomly generated datasets to create a

more representative learning space for the network, yet there is a notable difference between the nature of

the data. The datasets generated by [11] are mostly composed of elastic behaviour, which is comparatively

easier for the network to capture. In addition, the used architecture in [10] requires great number of trainable

parameters, ranging from 5684 to 12,000 parameters, in contrast to the method proposed in this work, which

uses much less parameters. Moreover, when testing gated network with long sequences it was observed that

the models suffer from memory loss. The proposed architecture overcomes this issue, enabling accurate
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processing of extended sequences.

Additionally, since the model does not include the basic laws of thermodynamics, the predictions of trained

network should be checked to make sure the solution does not violate these laws. A possible solution is

to encode the laws of thermodynamics in the architecture of the model [66]. In this study while the laws

are not encoded in the network, the proposed strategy is checked to ensure that it is thermodynamically

consistent by evaluating a closed path in the strain space consisting of two finite steps (i.e. advancing step

and backward step). Moreover, to verify the model compliance with physical constraints in multi-axial case

the mean pressure p and the deviatoric equivalent stress q is included during the training process, which gives

an additional measurable accuracy coefficient to check with physical constraints.

The use of suitable strategies based on the capabilities of neural networks can bridge the gap between

experimental data and finite element analysis. Several successfully integrated ANNs as material

characterisation routines within FE codes are found in the literature such as [59, 58, 88]. The integration of

the model in FE code is beyond the scope of this work.

1.1 Problem and Motivation

Advances in added layer manufacturing and materials engineering are enabling creation of new material types

and micro-structures at rapid pace. New classes of materials often require the formulation of new classes of

models, each with a suitable state-space representation. Examples of different engineering materials and the

corresponding conventional physics-based modeling approach are presented in Table 1.1.1.

Table 1.1.1: Examples of classes of engineering materials, each requiring a different model and implementation
when taking the conventional physics-based modeling approach [10].

Material Model
Low-carbon steel Von Mises yields isotropic hardening
Dual-phase steel Quadratic yields kinematic hardening

Metal foam Deshhpande-Fleck yields non-associated hardening
Filled rubber Hyper-elasticity Mullins damage

Glassy polymer Boyce-Parks-Argon model

The motivation of this work is to develop a generalised strategy to model stress updates using neural networks.

The proposed approach can be applied in various situations, including the following two scenarios:
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- Numerical stress update procedure based on physical experiments: Data is generated in a series of

physical experiments in which a sample material is subjected to different load paths. The generated

data is then utilised to train a neural network model based on the stress update procedure. Following

that, the trained model can be integrated into finite element simulations directly. Hence, allowing

efficient and accurate analysis of real-world applications.

- Numerical homogenisation: A suitable numerical strategy, for example RVE [80], is used to represent

the complex micro structure of a material. Then a series of numerical experiments are performed to

compute the stress responses on a macro level for several strain data input sequences, i.e. load paths.

The stress-strain data obtained based on these numerical experiments is utilised to train the proposed

stress update model, which can be applied in finite element analysis to analyse real-world applications.

In both given scenarios, the proposed methodology bridges the gap between experiments and finite element

analysis, eliminating the complicated and tedious formulation of an accurate constitutive model and its

algorithmic implementation.

1.2 Objectives

The main highlights and key aspects of this work can be summarised as

- Developing a novel neural network based algorithmic constitutive model which can be applied to generic

rate-independent inelastic solid material behaviour. Two training approaches have been proposed which

are history based and internal variable strategies.

- The algorithm can be trained on stress and strain data sequences generated from physical experiments

or numerical homogenisation based on RVEs.

- Recovering the piecewise linear constitutive behaviour including uniaxial elastoplasticity accurately by

the strategy.

- Presenting and testing a novel training framework for the recurrent network architecture based on

gradient-free optimisation by employing the multi-objective particle swarm optimisation strategy.

- The training data are generated carefully with random loading paths to cover a wider training space.

- Formulating a numerical testing method based on two finite steps to ensure thermodynamic consistency

of the trained constitutive models.
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- Testing the proposed methodology on numerical examples for uniaxial damage mechanics and multi-

axial elastoplasticity under plane strain conditions.

- Assuming that the material behaviour can be described fully in p-q space, the performance of the

network in terms of hydrostatic pressure and the norm of the deviatoric stress (i.e. p − q diagram) is

evaluated to define the yield surface.

1.3 Methodology

The study explores rate-independent materials, with elastic and elastoplastic properties. The primary

challenge associated with inelastic materials is their path-dependent nature, where stresses depend on both

current and past deformation. To address this, neural network training should be in terms of data

sequences rather than simple input-output pairs. Two potential solutions have been proposed:

- A history-based model: takes stress and strain histories as inputs.
- An internal variable-based model: considers the new material state in terms of the previous state.

In both approaches, the network output at time step n is fed into the input of the subsequent time step n+1.

A case study on the performance of different architectures in modelling elastoplasticity is performed with the

two proposed strategies of neural network [3].

The described internal variable based methodology is applied to several numerical examples including uniaxial

perfect von Mises elastoplasticity, uniaxial elastoplasticity with hardening, uniaxial elastoplastic damage and

plane strain perfect elastoplasticity. The methodology for network training, as shown in Figure 1.3.1, begins

with data collection to represent the problem, either through physical experiments or numerical computation

(i.e. constitutive model or RVE). The data from RVE is generated using an in-house Multi-Physics Analysis

Program (MPAP), developed using C++ and incorporating Finite Element Method (FEM) and optimisation

libraries. Following this, the data is normalised to a range of -1 to 1 within MPAP.

Subsequently, for training purposes, a gradient-free optimisation technique is employed, specifically the Multi-

Objective Particle Swarm Optimisation (MOPSO), integrated into the MPAP optimisation library. The

trained model is then validated using unseen data. If further improvement is required, a fine-tuning procedure

using a gradient-based technique is applied, implemented in Python with the PyTorch library.

Finally, the data is post processed back to its original scale, and thermodynamic consistency is evaluated, to
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ensure that the trained model does not violate thermodynamic laws.

Data

Generation
Pre-processing

Training

MOPSO

Fine Tuning

PyTorch
Post-processing

Thermodynamic

Consistency Check

Figure 1.3.1: Flowchart illustrating the training procedure.

1.4 Thesis Layout

The thesis is organised as follows : Chapters 2, 3, 4 and 5 provide a review of fundamental concepts and

principles essential for the subsequent research conducted in Chapters 6, 7, 8 and 9. In particular:

Chapter 2: Reviews basic principles related to continuum mechanics to describe materials mechanical

behaviour. Additionally, the constitutive relationships that correspond to von Mises elastoplastic material

model and the numerical implementation with elastic predictor-plastic corrector are discussed.

Chapter 3: An introduction to the discrete boundary value problem and FEM application in small strain.

Chapter 4: Computer implementation of the multi-scale constitutive framework for material models is

reviewed. In addition, the analytical solution known as the rule of mixtures method to evaluate the elastic

moduli of matrix-fibres laminate is explained. Moreover, analytical methods for porous elastic materials

have been discussed and compared to the results determined with numerical simulation based on RVE.

Furthermore, an assessment of the Gurson model is undertaken with regard to two different specified

boundary conditions namely linear and periodic boundary conditions.

Chapter 5: A brief introduction to machine learning and neural networks.

Chapter 6: Two proposed strategies for stress update which are history-based and internal variable-based

strategies. The strategies are capable of representing exactly the standard stress update algorithm for

elastoplasticity in the uniaxial case.

Chapter 7: Presenting the generalised architecture of the proposed two network formulation neural

network, the recurrent nature of the algorithm and their implications on the training strategy. Moreover, a

computationally efficient criterion for the verification of thermodynamic consistency is proposed.

Chapter 8: The employed training methodology with MOPSO.

Chapter 9: Several numerical examples are provided to demonstrate that:

- The training process recovers the exact stress data for uniaxial elastoplasticity.
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- The applications of the strategy can be extended to other nonlinear problems namely uniaxial

elastoplastic damage and plane strain elastoplasticity.
- The strategy can be applied to numerical examples of material computational homogenisation based

on plane strain elastoplasticity RVE for porous solid material.

Chapter 10: The achievements of this work are summarised and concluding remarks are presented. In

addition, future work suggestions are provided.
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Chapter 2

Constitutive Modelling

Constitutive modelling has been utilised to describe materials mechanical behaviour and physical

characteristics mathematically. The formulation of these constitutive relationships is important as it is

widely used in industrial applications and practical engineering problems to link the stress state to the

strain state.

This chapter will describe the constitutive theory with internal variables in Section 2.1. The principles of

thermodynamics, including energy conservation and the dissipation inequality, will be covered in Section

2.2. Following that, the types of constitutive material models are explained: linear elasticity in Section

2.3, anisotropic elasticity in Section 2.4 and the constitutive relationships for the von Mises elastoplastic

material model is given in Section 2.5. In addition, the numerical implementation with elastic predictor-

plastic corrector is covered in Section 2.6. All of this information is crucial for understanding the subsequent

chapters, particularly Chapters 6 through 9.

2.1 Constitutive Theory with Internal Variables

In any physical system, two types of state variables can be identified which are observable and internal non-

observable. The observable variables are measurable and can be determined directly by physical measurements

such as strains and temperature. Whereas, the internal variables refer to quantities that describe the state of
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a material system, but are not directly observable and requires an integration process that works with other

observable magnitudes and are dependant on the systems specific structure. In an engineering context, these

variables are often used to model the behavior of materials, such as their deformation and damage, at the

micro-scale.

The constitutive theory that incorporates internal variables is formulated based on the idea that the

thermodynamic state at a given point can be fully determined by a finite number of state variables at any

instant. The thermodynamic state is dependent only on the current value of these state variables and not

on their past history. The assumption is that the thermodynamic state at a given point can be determined

at any time t by the following set of state variables [98]

{ε,α}, (2.1.1)

where ε is the strain tensor and α represent the set of internal variables that may include scalar, vectorial

and tensorial variables associated with dissipation mechanism

α = {αk}, (2.1.2)

hence, the specific free energy can be expressed in the following form [98]

ψ = ψ(ε,α). (2.1.3)

The material constitutive behaviour is described by the following equations

σ = ∂ψ

∂ε
,

α̇ = f(ε,α).
(2.1.4)

Effectively, the functions ψ and f are used to define any model of the present type.

2.2 Thermodynamic Principles

The conservation of energy is the first principle of thermodynamics which states that the system total energy

should remains constant which means that it cannot be created or destroyed. Although it may be transferred
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from one form to another, stored or dissipated. The mathematical expression of the conservation of energy

can be expressed as [23]

ρė = σ : ε̇ − ∇ · q + ρh, (2.2.1)

where ρ is the material mass density, e the specific internal energy. The σ represent the Cauchy stress tensor,

ε is the strain tensor, q the rate of heat flux and h the specific energy source.

The second principle of thermodynamics is related to heat and energy interconversions and it is commonly

used in continuum mechanics problems to indicate that the material constitutive relation is

thermodynamically allowable. The mathematical term of the second principle of thermodynamics can be

expressed in terms of the local Clausius–Duhem inequality which also known as dissipation inequality

[23]

ρṡ ≥ ρh

θ
− ∇ · (q · n

θ
), (2.2.2)

where the entropy is s, the rate of the supplied entropy is − h
θ and the rate of entropy flux is q·n

θ . When

eliminating the heat supply h in Equations (2.2.1) and (2.2.2) the following expression is obtained [23]

ρ(θṡ − ė) + σ : ε − q · ▽θ
θ

≥ 0. (2.2.3)

where the rate of mechanical dissipation is D = ρ(θṡ− ė)+σ : ε and the thermal dissipation is Dth = − q·▽θ
θ .

The thermal dissipation is a non-negative value due to heat energy transfer from higher to lower temperatures.

Based on that, the mechanical dissipation rate should be a positive value in order to ensure that the dissipation

is always greater than or equal to zero (i.e. D ≥ 0).

2.3 Linear Elastic Material Model

The linear elastic model is comprehensively described in [19] and it is used to estimate the materials

mechanical characteristics under small strain conditions where stress and strain values are proportional. For

a given value of the strain ε, the strain energy density in an index form is expressed as following

ψ = 1
2Cijklεklεij , (2.3.1)
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where C is the fourth order elasticity tensor. The linear stress-strain relation can be defined as

σij = ∂ψ

∂εij
= Cijklεkl. (2.3.2)

In general, the fourth order elasticity tensor include 81 independent components. However due to the stress

and strain symmetry the number of independent components is reduced to 36. In addition, because of the

symmetry in stress and strain tensors, due to the strain energy relation, the elasticity tensor should therefore

be a symmetric tensor [23]

Cijkl = Cklij . (2.3.3)

The symmetry in equation 2.3.3 reduces the number of independent components of the elasticity tensor to 21.

Its worth mentioning that when the material structure has symmetries the number of material constants is

reduced further. The stress-strain relations with 21 independent components for Cijkl, no symmetry planes

and fully anisotropic, can be written as

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

Sym. C55 C56

C66





ε1

ε2

ε3

ε4

ε5

ε6


(2.3.4)

In the case of symmetry with respect to one plane, the structure of the elasticity tensor Cij of such material

includes 13 independent coefficients expressed as

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 C16

C22 C23 0 0 C26

C33 0 0 C36

C44 C45 0

Sym. C55 0

C66





ε1

ε2

ε3

ε4

ε5

ε6


(2.3.5)
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For orthotropic materials that are characterised by three mutually orthogonal planes of reflection symmetry.

The number of independent coefficients is 9 and the structure of the elasticity tensor Cij is written as



σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

Sym. C55 0

C66





ε1

ε2

ε3

ε4

ε5

ε6


(2.3.6)

For a transversely isotropic material, the material physical properties are characterised to be symmetric about

an axis that is normal to a plane of isotropy (xy-plane). Therefore, the structure of the elasticity tensor Cij

would reduce to five independent components as



σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C21 0 0 0

C22 C23 0 0 0

C22 0 0 0
1
2 (C22 − C23) 0 0

Sym. C66 0

C66





ε1

ε2

ε3

ε4

ε5

ε6


(2.3.7)

For an isotropic material, the structure of the tensor Cij reduce to two independent components as



σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C12 0 0 0

C11 C12 0 0 0

C11 0 0 0
1
2 (C11 − C12) 0 0

Sym. 1
2 (C11 − C12) 0

1
2 (C11 − C12)





ε1

ε2

ε3

ε4

ε5

ε6


(2.3.8)

Corresponding to equation (2.3.8) the constitutive model for an isotropic, linear elastic and homogeneous
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material can be expressed as

σij = λεkkδij + 2µεij (2.3.9)

where δij is the Kronecker-delta, λ and µ are the Lame coefficients. The constitutive law is formulated

with two parameters which means that the three parameters of Young’s modulus E, Possion’s ratio ν and

shear modulus G are not independent of one another. The Lame coefficients can be related to these three

parameters with the following relationship

G = µ, E = µ(3λ+ 2µ)
λ+ µ

, ν = λ

2(λ+ µ) , λ = νE

(1 + ν)(1 − 2ν) . (2.3.10)

where µ is the shear modulus.

For plane stress problems, the stress components out of the plane equal 0 (i.e. σzz = σxz = σyz = 0).

Therefore, the stress and strain relationship is as follows


σxx

σyy

σxy

 = E

(1 − ν2)


1 ν 0

ν 1 0

0 0 (1−ν)
2



εxx

εyy

εxy

 (2.3.11)

For plane strain problems, the strain components out of the plane equal 0 (i.e. εzz = εxz = εyz = 0).

Therefore, the stress and strain relationship is as follows


σxx

σyy

σxy

 = E

(1 + ν)(1 − 2ν)


1 − ν ν 0

ν 1 − ν 0

0 0 (1−2ν)
2



εxx

εyy

εxy

 (2.3.12)

2.4 Anisotropic Plane Elasticity Models

The linear elastic law for isotropic material model is expressed as [23]

σij = Cijklεkl, εij = Sijklεkl (2.4.1)
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where C is stiffness tensor and S is compliance tensor. When considering an orthotropic lamina containing

unidirectional fibres at an orientation angle of θ = 0 or θ = 90, the components of the stiffness and compliance

matrices can be expressed as

C11 = E11

1 − ν12ν21
S11 = 1

E11

C22 = E22

1 − ν12ν21
S22 = 1

E22

C12 = ν12E22

1 − ν12ν21
S12 = −ν12

E11

C21 = ν21E11

1 − ν21ν12
S12 = −ν21

E22

C66 = G12 S66 = 1
G12

(2.4.2)

The form of elasticity matrix C and compliance matrix S for a general orthotropic lamina θ ̸= 0 or θ ̸= 90

could be expressed as

C =


C̄11 C̄12 C̄16

C̄12 C̄22 C̄26

C̄16 C̄26 C̄66

 , S =


S̄11 S̄12 S̄16

S̄12 S̄22 S̄26

S̄16 S̄26 S̄66

 (2.4.3)

The elements in the elasticity matrix could be expressed in the principal material direction by introducing

the transformation matrix T

T =


m2 n2 2mn

n2 m2 −2mn

−mm mn m2 − n2

 (2.4.4)
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where m = cos θ and n = sin θ

C̄11 = m4C11 + 2m2n2(c12 + 2C66) + n4C22,

C̄12 = n2m4(C11 + C22 − 4C66) + (n4 +m4)C12,

C̄16 = nm[m2(C11 − C12 − 2C66) + n2(C12 − C22 + 2C66)],

C̄22 = n4C11 + 2m2n2(C12 + 2C66) +m4C22,

C̄26 = nm[n2(C11 − C12 − 2C66) +m2(C12 − C22 + 2C66)],

C̄66 = n2m2(C11 − 2C12 + C22) + (n2 −m2)2C66.

(2.4.5)

2.5 Elastoplastic Material Model

The elastoplasticity constitutive model is used to describe solid material that exhibit loading and unloading

behaviour, resulting in a plastic or irreversible deformation. The model is restricted to rate-independent

plasticity which means that the material permanent deformations is not influenced by the loading rate.

There are different types of hardening including:

- Perfect plasticity: The material is considered perfectly plastic when no hardening is applied. In this

case, as the material approaches the uniaxial yield stress σy while undergoing continuous monolithic

straining, the yield surface remains unchanged in shape and size throughout the development of plastic

deformations.

- Isotropic hardening: When cyclic loading is applied to the plastically deformed material, unloading

and then reloading beyond the previously reached maximum stress can lead to additional plastic

deformation. This increase in material resistance to plastic flow causes the yield surface to expand

proportionally in all directions around the hydrostatic axis when the yield stress is exceeded.

2.5.1 Uniaxial Elastoplastic Model

The von Mises criteria states that plastic deformation is achieved when the maximum octahedral shear stress

reaches the critical value. The mathematical formulation of solid materials deformations at small strains

elastoplastic are composed of elastic strain εe and plastic strain εp components:

ε = εe + εp. (2.5.1)
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The corresponding stress σ can be expressed as

σ = Eεe = E(ε− εp). (2.5.2)

The standard von Mises yield criterion is given as

f(σ, α) = |σ| − (σy +Hα) ≤ 0, (2.5.3)

where E is the Young’s Modulus, H is the isotropic hardening and α is the internal hardening variable. The

flow rule equation and hardening law can be expressed respectively as

ε̇p = λ̇sign(σ), α̇ = |ε̇p| (2.5.4)

where α is internal variable while sign() denotes the classical sign function. The standard Kuhn-Tucker

loading/unloading conditions can be expressed as

λ̇ ≥ 0, f(σ, α) ≤ 0, λ̇f(σ, α) = 0. (2.5.5)

2.5.2 Multi-dimensional Elastoplastic Model

The 3D tensor representation of the equations mentioned in Section 2.5.1 could be formulated as follows

[23]

ε = εe + εp. (2.5.6)

The elastic part of the constitutive relation is used to define the corresponding stress σ as

σ = C[εe] = C[ε − εp], (2.5.7)

where C is the elastic modulus. The material follow the standard von Mises yield criterion that can expressed

as

f(σ, q) = ∥s∥ −
√

2
3(σy + q) ≤ 0, (2.5.8)
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where ∥·∥ is the norm of the deviatoric stress tensors s, σy is the uniaxial yield stress and q is the hardening

parameter. The evolution of plastic flow is governed by the flow rule given as

ε̇p = λ̇n, q̇ = λ̇

√
2
3H, α̇ = λ̇

√
2
3 . (2.5.9)

where n= s
∥s∥ is the unit normal on the yield surface, λ̇ is the plastic multiplier and H is the hardening

modulus. The standard Kuhn-Tucker loading/unloading conditions are given as follows

λ̇ ≥ 0, f(σ, q) ≤ 0, λ̇f(σ, q) = 0. (2.5.10)

2.5.3 Uniaxial Elastoplastic Damage Model

By assuming the strain equivalence principle introduced by Lemaitre [60], the damage value in a given plane

is obtained by computing the intersection of the effective area with that plane. For a 1D case, material

damage D can be expressed as

D = SD

S
, (2.5.11)

where SD is the damaged section and S is the effective section. The scalar D value vary between D = 0 for

undamaged material and D = 1 for a totally damaged material. The effective stress can be defined as

σ̃ = F

(S − SD) = σ

1 −D
, (2.5.12)

The free energy function follows the form

Ψ(εe, εp, D) = (1 −D) ·
(

1
2Eε

e2
+ 1

2Hε
p2
)
, (2.5.13)

while the total potential energy function can be written as follows

ωt = Ψ0(εe, εp) = 1
2Eε

e2
+ 1

2Hε
p2
. (2.5.14)

The Clausius-Duhem inequality is given by σ · ε̇ − Ψ̇ ≥ 0, whereas the stress and the effective stress can be
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defined as

σ = ∂Ψ
∂εe

= (1 −D) · ∂Ψ0

∂εe
, σ̃ = σ

1 −D
= ∂Ψ0

∂εe
. (2.5.15)

The damage criterion can be expressed as following:

g(ωt, rt) = ωt − rt ≤ 0, (2.5.16)

where rt corresponds to the current damage threshold and r0 refers to the initial damage threshold. The

damage evolution law can be expressed as

Ḋt = µ̇, ṙt = µ̇, (2.5.17)

where µ̇ ≥ 0 is the damage consistency parameter. The classic damage Kuhn-Tucker conditions are

µ̇ ≥ 0, g(ωt, rt) ≤ 0, µ̇ · g(ωt, rt) = 0. (2.5.18)

The value of µ̇ can be obtained using the damage consistency condition and is given as

g(ωt, rt) = ġ(ωt, rt) = 0 ⇒ µ̇ = ω̇t, (2.5.19)

where rt can be expressed as

rt = max{r0; maxs∈[0,t]ωs}. (2.5.20)

2.6 Elastic Predictor - Plastic Corrector

The numerical computation applied in this study uses the standard time integration scheme of elastic

predictor-plastic corrector procedure because it is easy to implement and has good numerical

performance.

The algorithm is initiated with the values of elastic strain εe
n and the internal variables αn at the beginning

of the pesudo-time interval [tn, tn+1] and a prescribed incremental strain ∆ε for this interval. The current

stress update procedure can be described in two steps: First a trial elastic stress predictor is calculated, and

if yielding is detected, a plastic corrector is then introduced. The corrector is calculated by return mapping of
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the trial stress σn+1 to the current yield surface fn+1 = f(σn+1, αn+1) as it is presented graphically in Figure

2.6.1. In other words, this means that f > 0 indicates inelastic behavior and f ≤ 0 indicates elastic behavior.

The incremental change in f caused by the changes in the internal variables, results in more inelastic state.

Finally, an approximated solution can be obtained for the plastic corrector at tn+1

{σn+1, ε
e
n+1, ε

p
n+1,αn+1}. (2.6.1)

Algorithms 1 and 2 represent the 1D and 3D known fully implicit Backward-Euler elastic predictor/ plastic

corrector return mapping respectively. The implementation is comprehensively explained in [98, 100].

The numerical computation of damage in the standard rate independent plasticity Newton-Raphson approach

requires introducing a damage corrector step after the classic elastic predictor-plastic corrector steps. The

detailed procedure is shown in Algorithm 3.

εn εn+1

σn

σy

σn+1

σtrial
n+1

(σn, αn)

(σn+1, αn+1)

(σtrial
n+1 , αn)

∆εn+1

ε

σ

Figure 2.6.1: Ghraphical representation of the elastic predictor - plastic corrector algorithm.

20



Algorithm 1 1D Elastic Predictor - Plastic Corrector.
1: σtrial

n+1 = E(εn+1 − εp
n) ▷ Evaluate elastic predictor

2: f trial
n+1 =

∣∣σtrial
n+1

∣∣− (σy +Hαn) ▷ Check yield condition
3: if f trial

n+1 ≤ 0 then ▷ The load step is elastic
4: σn+1 = σtrial

n+1 , εp
n+1 = εp

n, αn+1 = αn

5: else ▷ The load step is plastic

6: ∆λ =
f trial

n+1
E +H

7: σn+1 =
[
1 − ∆λE

|σtrial
n+1 |

]
σtrial

n+1 , εp
n+1 = εP

n + ∆λsign[σtrial
n+1 ], αn+1 = αn + ∆λ

Algorithm 2 3D Elastic Predictor - Plastic Corrector von Mises elastoplasticity without Hardening.
1: strial

n+1 = 2µ(en+1 − ep
n) ▷ Evaluate elastic predictor

2: f trail
n+1 =

∥∥strial
n+1

∥∥−
√

2
3 (σy) ▷ Check yield condition

3: if f trial
n+1 ≤ 0 then ▷ The load step is elastic

4: σn+1 = strial
n+1 + Ktr[εn+1]I, ep

n+1 = ep
n

5: else ▷ The load step is plastic

6: ∆λ =
f trial

n+1

2µ ▷ Evaluate consistency parameter

7: nn+1 = strial
n+1

∥strial
n+1 ∥ , σn+1 = Ktr[εn+1]I + strial

n+1 − 2µλn+1nn+1, ep
n+1 = ep

n + λn+1nn+1
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Algorithm 3 Elastic Predictor - Plastic Corrector and Damage Corrector
1: Evaluate elastic predictor σ̃trial

n+1 = E(εn+1 − εp
n)

2: Check yield condition f trial
n+1 =

∣∣σ̃trial
n+1

∣∣− (σy +Hαn)

3: if f trial
n+1 ≤ 0 then ▷ The load step is elastic

4: σ̃n+1 = σ̃trial
n+1 , εp

n+1 = εp
n, αn+1 = αn ▷ proceed to step (8)

5: else ▷ The load step is plastic

6: ∆λ =
f trial

n+1
E +H

, σ̃n+1 =
[
1 − ∆λE

|σ̃trial
n+1 |

]
σ̃trial

n+1

7: εp
n+1 = εP

n + ∆λsign[σ̃trial
n+1 ], αn+1 = αn + ∆λ

8: Damage corrector ωn+1 = 1
2Eε

e2

n+1 + 1
2Hε

p2

n+1

9: if ωn+1 − rn ≤ 0 then

10: Dn+1 = Dn

11: else
12: Dn+1 = Dn + (ωn+1 − ωn)

13: rn+1 = max{rn;ωn+1}

14: σn+1 = (1 −Dn+1)σ̃n+1
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Chapter 3

Finite Element Method (FEM)

The Finite Element Method (FEM) is used to solve complex domain geometries due to its efficient performance

on both structured and unstructured meshes. This section discusses the basics of FEM implementation to

the Boundary Value Problem (BVP) for solid mechanics under small strains. A comprehensive explanation

of FEM theory can be found in [23].

3.1 Stress and Equilibrium

The equilibrium equations, which describe the problem strong form, are used to determine the reactions and

can be expressed as

div[σ] + b = 0. (3.1.1)

To begin finite element analysis, the strong form in Equation (3.1.1) must be converted into the integral form

known as weak form or the principle of virtual work (PVW). The virtual work δW is obtained by applying

an arbitrary virtual displacement η in the current configuration to Equation (3.1.1) and given as

δW =
ˆ

Ω
σ : ∇η dv −

ˆ
∂Ω

t · η da = 0. (3.1.2)
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3.2 Incremental Boundary Value Problem

When applying a quasi-static initial boundary value problem under infinitesimal deformation, reference and

deformed configurations coincide and the virtual work equation is given as [23]

ˆ
Ω

[σ(t) : ∇η − b(t) · η] dv −
ˆ

∂Ωt

[t(t) · η] da = 0, ∀ η ∈ V , (3.2.1)

where b and t are the body force per unit deformed volume and boundary traction per unit deformed area,

respectively. η are virtual displacements, and V is the space of virtual displacements expressed as [23]

V = {η : Ω → U | η = 0 on ∂Ωu}, (3.2.2)

In finite element solution, time and domain discretisation are necessary. This process is essential for converting

the continuous problem into a discrete one, involving sets of incremental algebraic finite element equations.

These equations can be solved at each time step within a specified time interval.

In the framework of mechanical theory, the stress tensor σn+1 is approximated through the integration

procedure, which identifies an incremental constitutive function σ̂ for the stress tensor that depends on the

strain εn+1 at time tn+1 and a set of internal variables αn.

σn+1 = σ̂(αn, εn+1), (3.2.3)

where σn+1 is expected to converge towards the exact solution of the actual evolution problem as the strain

increments are reduced. In addition, a similar incremental constitutive function α̂ is also defined through

the integration algorithm for the internal variables of the model.

αn+1 = α̂(αn, εn+1), (3.2.4)

Hence, the incremental form of Equation (3.2.1) is defined as follows [23] given the set αn of internal variables

at tn , find a displacement field un+1 ∈ Kn+1, such that

ˆ
Ω

[σ̂(αn,∇sun+1) : ∇sη − bn+1 · η] dv −
ˆ

∂Ωt

[tn+1 · η] da = 0, (3.2.5)

24



for any η ∈ V , where bn+1 and tn+1 are the body force and surface traction fields prescribed at time station

tn+1. The set Kn+1 is defined as

Kn+1 = {u : Ω → U | u = un+1on ∂Ωu}, (3.2.6)

where un+1 is the prescribed boundary displacement at tn+1. The finite element discretisation of Equation

(3.2.5) is [23]

{ ˆ
hΩ

(Bg)TDBg dv
}
δu · η = −

{ˆ
hΩ

[(Bg)Tσ − (Ng)T b] dv−
ˆ

∂hΩt

(Ng)T t da
}

· η, ∀ η ∈ hV (3.2.7)

where Bg is the global strain-displacement matrix, D is the consistent tangent modulus and Ng is the global

finite element interpolation matrix. Since Equation (3.2.7) is satisfied for all vectors of virtual displacements

η, the expression inside the brackets can be eliminated.

Based on that, the problem is reduced to finding the nodal displacement vector un+1 at time tn+1, such that

the incremental equilibrium equation

r(un+1) ≡ f int(un+1) − fext
n+1 = 0 (3.2.8)

is satisfied, where f int(un+1) and fext
n+1 are assembled from the element vectors [23]

f int
(e) =

ˆ
Ω(e)

BT σ̂
(
αn, ε(un+1)

)
dv (3.2.9)

fext
(e) =

ˆ
Ω(e)

NT bn+1 dv +
ˆ

∂Ωt
(e)

NT tn+1 da (3.2.10)

where B is the elemental strain-displacement matrix and N is the finite element interpolation matrix.

In order to determine the displacement field, an iterative approach is necessary. The Newton-Raphson scheme

is an algorithm known for its efficient quadratic rates of asymptotic convergence, enabling it to reach the

minimum effectively. In each iteration (k) of the Newton-Raphson scheme, the linearised version of the

incremental equilibrium Equation (3.2.8) needs to be solved, involving the solution of a linear system of

equations:

KT δu(k) = −r(k−1) (3.2.11)
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where −r(k−1) represents the residual vector and the global tangent stiffness matrix [23]

KT ≡
ˆ

hΩ
(Bg)TDBg dv = ∂r

∂un+1

∣∣∣∣
u

(k−1)
n+1

(3.2.12)

The solution δu(k) of the linear system is used to apply the Newton-Raphson correction to update the global

displacement vector

u
(k)
n+1 = u

(k−1)
n+1 + δu(k) (3.2.13)

The Newton-Raphson iterations are maintained until the maximum number of iterations is reached or a

convergence condition is met.

In this work, FEM is utilised for homogenisation and data generation purposes within the context of RVE.

The integration of a neural network-based constitutive model into the FEM framework is a potential area

for future research. However, this aspect is beyond the scope of this project.
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Chapter 4

Multi-Scale Homogenisation

Given the diverse and rapid growth of new composite formulations, it becomes crucial to numerically estimate

the mechanical properties of a composite with specifically defined structural elements. The composites

characteristics at different scales is studied to determine the material behavior including the mechanical

properties and stress-strain relations using multi-scale modeling tools. A comprehensive implementation of

transition concept from macro-to-micro is found in [80].

4.1 Homogenisation-Based Multi-Scale Constitutive Theory

Based on the assumption that any material point x of the (macroscopic) continuum corresponds to a local

Representative Volume Element (RVE) with domain Ωµ, boundary ∂Ωµ and a length lµ that is smaller than

the characteristic length l, of the macro-continuum as illustrated in Figure 4.1.1 [80]. This ensures distinction

of scales, which is essential in multi-scale methods. The domain Ωµ of the RVE is assumed to consist of a

solid part Ωs
µ, and a void part Ωv

µ

Ωµ = Ωs
µ ∪ Ωv

µ (4.1.1)
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macroscopic continuum

(macro-scale) representative volume element

(micro-scale)

l

x

Ωv
µ

Ωµ = Ωs
µ ∪ Ωv

µ

lµ << l

y
Ωµ

Figure 4.1.1: Macro-continuum with a locally attached micro-structure.

For simplicity, the study considers only RVEs whose void part does not intersect with the RVE

boundary.

The transition concept form macro-to-micro is based on the assumption of multi-scale theory [80] which

states that at any time instant t, the strain tensor at an arbitrary point x of the macro-continuum can be

represented by averaging the volume of the microscopic strain tensor field εµ , defined over Ωµ

ε(t) = 1
Vµ

ˆ
Ωµ

εµ(y, t) dv, (4.1.2)

εµ = ∇suµ. (4.1.3)

where y is the RVE local coordinate, Vµ is the RVE volume and ∇suµ represent the symmetric gradient of

the microscopic displacement field uµ of the RVE.
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4.1.1 Kinematically Admissible RVE Displacement Fields

By substituting the Equations (4.1.3) into (4.1.2) and using the Green’s theorem, it can be shown that the

averaging relation (4.1.2) is equivalent to constraint on the displacement field of the RVE [24]

ˆ
∂Ωµ

uµ ⊗s n da =
ˆ

∂Ωµ

1
2(uµ ⊗ n + n ⊗ uµ) da = Vµε, (4.1.4)

where n denotes the outward unit normal field on ∂Ωµ. The displacement uµ can be factored into sum of a

homogeneous strain–displacement ε(t)y and a displacement fluctuation field ũµ

uµ(y, t) = ε(t)y + ũµ(y, t), (4.1.5)

The constraint (4.1.4) requires that the space K̃µ of kinematically admissible displacement fluctuations of the

RVE be a subspace of the minimally constrained space of kinematically admissible displacement fluctuations

K̃ ∗
µ

K̃µ ⊂ K̃ ∗
µ ≡

{
v, sufficiently regular |

ˆ
∂Ωµ

v ⊗s n da = 0
}
. (4.1.6)

From Equations (4.1.5) and (4.1.3) the microscopic strain can be expressed as the sum of a homogeneous

strain field (coinciding with the macroscopic average strain) and a field ∇suµ that represents a fluctuation

about the average.

εµ(y, t) = ε(t) + ∇sũµ(y, t) (4.1.7)

4.1.2 Macroscopic Stress, Hill–Mandel Principle and RVE Equilibrium

Similar to the macroscopic strain Equation (4.1.2), the macroscopic stress tensor σ, is taken as the volume

average of the microscopic stress field σµ, over the RVE [80]

σ(t) = 1
Vµ

ˆ
Ωµ

σµ(y, t) dv, (4.1.8)

The Hill–Mandel Principle of macro-homogeneity, requires the macroscopic stress power to be equal the

volume average of the microscopic stress powers for any kinematically admissible motion of the RVE. This
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is expressed by the equation [80]

σ : ε̇ = 1
Vµ

ˆ
Ωµ

σµ : ε̇µ dv, (4.1.9)

which must be satisfied for any kinematically admissible microscopic strain rate field, ε̇µ. The above is

equivalent to the following variational equation in terms of the RVE boundary traction and body force fields,

denoted by t and b, respectively.

ˆ
∂Ωµ

t · η da = 0,
ˆ

Ωµ

b · η dv = 0 ∀ η ∈ K̃µ (4.1.10)

The variational equilibrium statement for the RVE [80] is then given by

ˆ
Ωµ

σµ : ∇sη dv = 0 ∈ K̃µ (4.1.11)

Furthermore, at any time t the stress at each point y of the RVE is determined by a generic constitutive

functional Oy of the strain history εt
µ(y) up to time t

σµ(y, t) = Oy(εt
µ(y)) (4.1.12)

The constitutive assumption and the equilibrium Equation (4.1.11) defines the RVE equilibrium problem

which can be found for a given macroscopic strain ε (a function of time) and displacement fluctuation

function ũµ ∈ K̃µ ˆ
Ωs

µ

Oy

{[
ε(t) + ∇sũµ(y, t)

]t}
: ∇sη dv = 0 ∀ η ∈ K̃µ . (4.1.13)

4.1.3 Characterisation of the Multi-scale Constitutive Model

For a given macroscopic strain history, the general multi-scale constitutive model can be defined by solving the

RVE equilibrium problem given in Equation (4.1.13). Once the solution ũµ is determined, the macroscopic

stress tensor can be obtained using the averaging relation [80]

σ(t) = O(εt) ≡ 1
Vµ

ˆ
Ωµ

Oy

{
[ε + ∇sũµ]t

}
dv, (4.1.14)

where O represent the resulting (homogenised) macroscopic constitutive function.
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4.2 Kinematic Constraints

The selection of an appropriate space of kinematically admissible displacement fluctuations K̃µ ⊂ K̃ ∗
µ is a

crucial aspect in multiscale methods to achieve high accuracy. Two common types of boundary conditions

are linearly prescribed displacement and periodic boundary conditions. The deformed configurations

corresponding to these two boundary conditions are illustrated in Figure 4.2.1.

RVE Linear BC Periodic BC

Figure 4.2.1: Schematic representation of the deformed two-dimensional RVE configuration with (a) linear
and (b) periodic displacement boundary condition.

4.2.1 Linear Boundary Conditions

The linear boundary condition assumes that the degrees of freedom of boundary fluctuations are fully

prescribed as zero, with only the interior nodes having free degrees of freedom. The linear boundary

condition can be expressed as

K̃µ = K̃lin ≡
{
v, sufficiently regular | v(y) = 0 ∀y ∈ ∂Ωµ

}
, (4.2.1)

uµ(y) = εy ∀y ∈ ∂Ωµ. (4.2.2)

4.2.2 Periodic Boundary Conditions

The expression of two-dimensional problems will be considered with the notation adopted by Michel et al.

[69]. Periodic boundary conditions are imposed by dividing the RVE surface boundary into two opposing

parts. Each pair of sides, denoted as i , comprises equally sized subsets.

Γ+
i and Γ−

i , (4.2.3)
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of ∂Ωµ , with respective unit normals

n+
i and n−

i , (4.2.4)

to satisfy

n−
i = −n+

i . (4.2.5)

For each point y+ located on the boundary of Γ+
i , there should correspond an associated point y− on the

boundary of Γ−
i . The primary kinematic constraint of the models is that displacement fluctuation must

exhibit periodicity on the boundary of the RVE. Therefore, for each pair {y+,y−} of boundary material

points the following is satisfied

ũµ(y+, t) = ũµ(y−, t), (4.2.6)

accordingly, the space K̃µ is defined as

K̃µ = K̃per =
{
ũµ, suff.reg. | ũµ(y+, t) = ũµ(y−, t) ∀ pairs {y+,y−}

}
. (4.2.7)

4.3 Evaluation of Elastic Moduli

For orthotropic materials under plane stress state (i.e. laminate materials), the composite behaviour can be

defined using four independent engineering constants: the longitudinal modulus of elasticity Ex, the transverse

modulus of elasticity Ey, Poisson’s ratio νxy, νyx and shear modulus Gxy. These material properties can be

derived using an empirical method known as the rule of mixtures. The rule of mixtures is established based

on the concept that the composite property is defined as the sum of each individual constituent properties

multiplied by its volume fraction. This method is used to describe various micro-mechanical problems.

The four independent material constants for defining the properties of fiber-matrix combinations and their

volume fraction ratios can be estimated as follows

1) Longitudinal modulus of elasticity Ex: The longitudinal tensile strength of composite materials is

primarily determined by the strength and volume content of the fibre reinforcement. When considering a

unidirectional lamina subjected to a uniaxial force along the fiber direction with the assumption that the

fiber and matrix experience identical strain rate (i.e. εx = εf = εm).

Ex = EfVf + EmVm. (4.3.1)
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where Vf and Vm is the volume of the fibers and matrix, respectively. The fibers and matrix acts like two

spring in parallel.

2) Transverse modulus of elasticity Ey: The representative volume element is subjected to a transverse

stress with the assumption that the fiber and matrix experience identical stress state (i.e. σx = σf = σm) in

order to compute the transverse Young’s modulus of a unidirectional lamina.

Ey = EfEm

EmVf + EfVm
. (4.3.2)

3) Poisson’s ratio νxy, νyx: The mathematical expression to determine the effective in-plane Poisson’s ratio

of composite can be define as

νxy = Vfνf + Vmνm. (4.3.3)

4) Shear modulus Gxy: A similar assumption is applied to the determination of the transverse modulus

of elasticity Ey, implying that the shear stress τ of the fibers and matrix are the identical (i.e. τ = Gfνf =

Gmνm). The fibers and matrix contribute in proportions that are proportional to their respective volume

fractions to the shear strain:

γ = Vfνf + Vmνm. (4.3.4)

Accordingly, the shear modulus Gxy can obtained with the serial-spring model as following:

Gxy = τ

γ
= GfGm

GmVf +GfVm
. (4.3.5)
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Figure 4.3.1: The mechanical behaviour of lamina to determine the 4 independent material constants.

Example 1: RVE Layered Composite Model

Two RVE meshes with same total volume of 8464mm3 (i.e. the RVE length is L = 92mm and width is

W = 92mm) were generated. Each mesh has different matrix and fiber element sizes and layer distributions.

The first mesh consists of concentrated layers, while the second mesh contains distributed layers, as shown

in Figure 4.3.2. A linear boundary conditions were applied to the RVE models. The elastic properties used
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for the matrix and fibers are as follows

Matrix: Em = 20GPa, νm = 0.35, Gm = 7.407GPa and the volume is Vm = 0.674mm3.

Fiber: Ef = 200GPa, νf = 0.45, Gf = 68.966GPa and the volume is Vf = 0.326mm3.

(a) Concentrated layers (b) Distributed layers

Figure 4.3.2: RVE meshes.

The main objective of this example is to illustrate the effect of RVE distribution and density on determining

the associated stresses in a plane strain case. The calculated stresses follow the concept of elastic moduli

approximation described in Section 4.3. The analytically approximated values for RVE Ex,Ey,νxy,νyx and

Gxy were found to be 78.696GPa, 28.3077GPa, 0.383, 0.1378 and 10.449, respectively. Table 4.3.1 indicates

that increasing the RVE distribution and density results in better approximation. The computed error for

the concentrated layers is 10.9%, whereas, for the distributed layers is 4.5%.

Table 4.3.1: RVE subjected to prescribed macro-strain of εxx = 0.1, εyy = 0.3 and εxy = 0.4.

f σxx σyy σxy

Calculated 11.7368 10.1076 4.1794
Concentrated layers 12.357 11.599 4.708
Distributed layers 12.099 11.037 4.2279

4.4 A Specific RVE Results in a Specific Yield Criterion

Understanding the yield surface under various loading conditions is crucial for modeling the plastic behavior

of materials, as it defines the limit of material elasticity. Typically the material yield surface is presented in

terms of p̄− q̄ diagram where p̄ is the hydrostatic pressure and q̄ is the norm of the deviatoric stress. For solid
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block RVE composed of von Mises type elasto perfectly plastic material, the associated plastic deformation

within the RVE occurs when no changes in macroscopic (homogenised) stress are observed while the load

factor increases [97].

(a)
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Figure 4.4.1: (a) Solid block RVE, (b) the associated yield surface, (c) RVE with a centre circular hole and
(d) the associated yield surface.

However, the case differs in porous materials as the present space is responsible for a compression cap of

plasticity which results in lowering the yield stress value. Different void ratios leads to different yield surfaces.

Figure 4.4.1 compares the different yield surfaces of a solid block RVE and a RVE with circular void in the

center. Any point on the yield surface exhibits plastic deformation and any point below that exhibits elastic

behaviour.
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4.4.1 RVE Void Volume Fraction

In porous materials, the void volume fraction f can be calculated as

f =
n∑

i=1

Ωi

V
, (4.4.1)

where n is the number of voids in the RVE with a volume of Ωi and V is the RVE total volume. When f =

0 the material is fully dense and f = 1 describes a fully voided material.

To study the influence of RVE linear and periodic boundary conditions on the homogenised yield surfaces,

different void volume fractions f = 2%, 5%, 10% and 20% are used as shown in Figure 4.4.2.

(a) f = 2% (b) f = 5% (c) f = 10% (d) f = 20%

Figure 4.4.2: RVE geometries and finite element meshes.

4.4.2 Porous Elastic Materials

Analytical methods for porous elastic materials can be used to validate the computational multi-scale model.

These methods are restricted to elastic homogeneous solids which contain a dilute distribution of cavities

that are located adequately far apart to neglect the void interaction. A linear boundary conditions is used

during the simulation.

Under the prescribed macro-stress assumption and plane stress conditions, the effective Young modulus Ē

and Poisson ratio ν̄ [74] can be described as

Ē

E
=
(

1 + 3f
)−1

, (4.4.2)
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ν̄

ν
=
(

1 + f
1
ν

)(
1 + 3f

)−1
. (4.4.3)

And, under the prescribed macro-strain assumption and plane stress conditions, the effective Young modulus

Ē and Poisson ratio ν̄ [74] can be described as

Ē

E
=
(

1 − f
4

1 + ν

)(
1 − f

2
1 − ν

)(
1 − f

3 − 2ν + 3ν2

1 + ν2

)−1
, (4.4.4)

ν̄

ν
=
(

1 + f
1 − 6ν + ν2

ν(1 − ν2)

)(
1 − f

3 − 2ν + 3ν2

1 + ν2

)−1
. (4.4.5)

The determined results are presented in Tables 4.4.1 for plane strain and 4.4.2 for plane stress, a good level

of agreement is found between the RVE and analytical solution.

Table 4.4.1: Macro-strain prescribed. (Plane strain) - For a material whose matrix properties are E = 70GPa
and ν = 0.2 imposed with εxx = 0.3, εyy = 0.5 and εxy = 0.4.

Analytical RVE

f σxx σyy σxy σxx σyy σxy

2% 31.9077 42.7966 10.8889 30.4756 41.125 10.6164

5% 30.2753 39.9976 9.7222 27.0406 36.5704 9.3652

10% 27.9630 35.7407 7.7778 22.205 30.3701 7.7743

15% 26.8981 32.7315 5.8333 18.3726 25.509 6.5463

Table 4.4.2: Macro-strain prescribed. (Plane stress) - For a material whose matrix properties are E = 70GPa
and ν = 0.2 imposed with εxx = 0.3, εyy = 0.5 and εxy = 0.4.

Analytical RVE

f σxx σyy σxy σxx σyy σxy

2% 27.8056 38.6944 10.8889 27.1137 37.71449 10.5648

5% 25.7639 35.4861 9.7222 24.3034 33.7379 9.2597

10% 22.3611 30.1389 7.7778 20.2482 28.2482 7.61521

15% 18.9583 24.7917 5.8333 16.8900 23.8735 6.36976
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4.4.3 Gurson Model

In 1977, Gurson [41] proposed a macroscopic yield surface for porous metals. The model was based on the

approximate limit-analysis of a hollow sphere made of a rigid-ideal plastic material that complied with the

von Mises criterion and was subjected to the homogeneous boundary strain rate conditions [65, 43]. Many

applications of the Gurson model can be seen in literature, such as [71, 13]. The mathematical expression

proposed by Gurson [41] for defining the yield surface is as follows

Φ = q −
{ 1
Ceq

[
1 + f2 − 2f cosh

(√
3p
σy

)]} 1
2
σy, (4.4.6)

where

Ceq = (1 + 3f + 24f6)2. (4.4.7)

where q is the hydrostatic component of the stress tensor, f denotes the RVE void volume fraction, p

represents the von Mises equivalent stress and σy is the microscopic equivalent tensile yield stress of the

matrix material.

A modification of the Gurson yield function has been later proposed by Tvergaard [102] (Gurson-Tvergaard

equation). The modification included additional parameters, which take into consideration the influence of

triaxiality and Lode parameter. This is to enhance the original Gurson function approximation of the yield

surface when compared with numerical computation resulting in:

Φ =
(σe

σy

)2
+ 2q1f cosh

(
− 3q2

2σy
σkk

)
− (1 + q3f

2) = 0. (4.4.8)

where the new introduced three parameters are q1 , q2 , and q3.

A comparison between the original Gurson model and the modified Gurson model yield surfaces is shown

in Figure 4.4.3 in normalised p̄-q̄ space. This comparison includes different void ratios: f = 2%, f = 5%,

f = 10% and f = 20%. In addition, when setting f = 0, both models coincide with the standard J2 theory,

which follows the von Mises yield criterion. The modified Gurson model employs three parameters: q1 = 1.8,

q2 = 1.0, and q3 = 3.24. As the void volume fraction f increases, the material tends to yield at lower values

of both von Mises stress and hydrostatic stress.
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Figure 4.4.3: The yield surface of the (a) Gurson model and (b) modified Gurson model.

4.4.4 Yield Surface Approximation

The material properties of the ideally plastic RVE matrix are set as yield stress σy = 240, Young’s modulus

E = 200GPa and Possion’s ratio ν = 0.3. The monotonic loading methodology consist of imposing the RVE

with a prescribed macroscopic strain path expressed as

ε(γ) = γε̄, (4.4.9)

The loading is parameterised by a time factor γ, and a unit strain tensor that satisfies |ε̄| = 1 by

ε̄ = α

 1√
2 0

0 1√
2

+
√

1 − α2

 0 1√
2

1√
2 0

 (4.4.10)

where the prescribed α factor defines the direction of ε in the strain space and it varies between −1 and 1

(i.e. −1 < α < 1). This allows covering the loading spectrum in a spherical direction when α = ±1, pure

shear strain direction when α = 0 and a combination of both when α falls within that range.

Multi-scale RVEs with different void volume ratio f as presented in Figure 4.4.2 are utilised. For each

f value, a finite element simulation is performed using 21 different values of α for all configurations to

accurately construct the yield surface. The prescribed strain loading for the positive spectrum is shown in

Table 4.4.3.
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Table 4.4.3: Load factor α from 1 to 0.

α 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
εxx 0.7071 0.6364 0.5657 0.4940 0.4243 0.3536 0.2828 0.2121 0.1414 0.0707 0
εyy 0.7071 0.6364 0.5657 0.4940 0.4243 0.3536 0.2828 0.2121 0.1414 0.0707 0
εxy 0 0.3082 0.4243 0.5050 0.5657 0.6124 0.6481 0.6745 0.6928 0.7036 0.7071

The associated macroscopic stress tensor is obtained by averaging the finite element microscopic stress field

over the deformed state of the RVE. The material yield surface can be recovered by determining the

hydrostatic and von Mises components of the macroscopic deformed stress.

The Gurson yield surface in Equation (4.4.6) is compared to the estimated yield surface generated with four

different RVE geometries (i.e. f = 0.6%, f = 3%, f = 10% and f = 15%) under two different boundary

conditions (i.e. linear and periodic boundary conditions). In Figure 4.4.4, the black solid line represents

the Gurson model and the red dotted line is the response of loading the RVE with a prescribed macroscopic

strain path. When assuming the upper bound is the linear boundary condition and the lower bound is the

periodic boundary condition in porous materials, it can be observed that:

- As the void ratios increase, the gap between the estimated yield surfaces for the RVE under the two

different linear and periodic boundary conditions also increases.

- The Gurson surface lies between the upper and lower bounds for higher void ratios. Pure hydrostatic

stress cases are closer to the upper bound (linear boundary condition), while pure shear states are found

to be closer to the lower bound (periodic boundary condition).

- With lower void ratios, for certain range of hydrostatic and von Mises equivalent stress, the Gurson

surface exceed the yield limit of the upper bound. This indicates that under such circumstances, the

Gurson criterion overestimates the yield strength of the porous metal.

The model approximated yield surface is compared to the results in [39] and good agreements is observed for

both linear and periodic boundary conditions.
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Figure 4.4.4: Gurson yield surface compared to different RVE geometries and boundary conditions.
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Chapter 5

Machine Learning

Machine learning is a branch of computer science and Artificial Intelligence (AI) that enables computer

algorithms to automatically learn, detect patterns and improve with more data. Machine Learning models can

be used to solve for classification (unsupervised) or regression (supervised) problems. In recent years, neural

networks have proven their ability to model complex relationships, in this case material behaviors.

This chapter is divided into three subsection which are neural networks in Section 5.1, time dependent

problems in Section 5.2 and training with evolutionary optimisation in Section 5.3. The neural network

subsection provides a brief introduction to the artificial neural network structure, neuron elements as well

as the training and validation techniques for adequate model performance. The time dependent problems

subsection addresses the challenges associated with training for time-dependent problems and present

approaches to solve these challenges. The third subsection presents an alternative training method that

involves using evolutionary optimization techniques.

5.1 Neural Networks

Neural networks are composed of connected neuron layers that mimic the internals of the human brain. The

presence of components like activation functions allows it to model non-linear relationships. The basic ANN

known as FeedForward Neural Network (FFNN) is used for static problems where the information flows
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sequentially through neurons. The generic internal process of a neuron is described by

ai = f(si) with si =
R∑
j

wij pj + bi (5.1.1)

where ai is the output of the neuron i, f(•) is the activation function, R is the number of inputs, wij are the

weights connected to the inputs pj and bi is the bias term.

ANNs that consist of more than one hidden layer is known as Deep Neural Network (DNN) [36]. DNN have

shown promising capabilities in solving number of large-scale complex real-world problems including language

processing [22] and image recognition [21]. However, the multi-layer nonlinear structure of DNN makes it

difficult to understand how the model arrived at a particular decision [86].

P2 w2 Σ f

Activate

function
a

Output

P1 w1

PR wR

Weights

Bias

b

InputsP1

P2

P3

O1

I1

I2

(a) (b)

Figure 5.1.1: (a) ANN structure with 2 inputs, 1 hidden layer with 3 nodes and 1 output. (b) Artificial
neuron elements.

In order to enhance the network learning, improve prediction performance and reduce computational time

it is critical to clean and standardise the input data prior to a training procedure [96]. The model training

process can be summarised in the following steps:

1) Input layer: The standardised input data is processed with a given combination of weights and biases.

2) Hidden layer: The weighted combinations are then routed through an activation function, a

mathematical equation that determines the output of a layer. Depending on the problem, there are

multiple types of activation functions that can be utilized. The three most commonly used activation

functions are shown in Figure 5.1.2 and can be expressed as
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- The Rectified Linear Unit (ReLU)

f(x) = max(0, x). (5.1.2)

- The logistic (Sigmoid)

f(x) = 1
1 + ex

. (5.1.3)

- The hyperbolic tangent (Tanh)

f(x) = tanh x. (5.1.4)

3) Output layer: Return the computed model output.
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−1
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c) Tanh

Figure 5.1.2: The most used activation functions.

5.1.1 Training and Validation:

The classic technique for training a neural network is the use of gradient-based algorithms such as back-

propagation, which was established by Rumelhart et al. [85]. The back-propagation approach minimises

the error function, the difference between predicted and actual values, by updating the weights based on

the steepest descent direction. The network performance depends on the selected network architecture and

hyper-parameters such as learning rate.

For optimal model performance, it is essential to well train the model to capture crucial relationships and

perform well on both familiar (training) and unfamiliar (validation) data. Underfitting in a neural network

occurs when the model is too basic to effectively understand the data, resulting in unsatisfactory

performance on both training data and validation data. While, further training enhances the model

performance for both training and validation data. Overfitting occurs when the model is excessively

trained, fitting the training data too closely and struggling to generalise effectively to new, validation data
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as shown in Figure 5.1.3. The concept of model fit is graphically illustrated in Figure 5.1.4.

Training

Validation

time

loss
Underfitting OverfittingOptimum

Figure 5.1.3: The learning curve.

a) Underfitting b) Fitting c) Overfitting

Figure 5.1.4: The underfitting and overfitting problems caused while training.

To avoid underfitting and overfitting, a stopping criteria can be use. Examples of such criteria include: Setting

a maximum number of epochs or a computational time limit. Another technique to address overfitting and

improve generalisation is using the dropout method where random neurons in the network are switched off

at different epochs. The drawback of the dropout method is that an increased number of epochs would be

needed for the model to converge.

The performance of the neural network model can evaluated with appropriate error metrics such as Mean

Squared Error (MSE), which calculates the average of the square of the difference between the target values

and the predicted values.
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5.2 Time Dependent Problems

Time dependent behavior is found in constitutive modelling of engineering materials that exhibit irreversible

deformation. Examples of this include, the constitutive law of plastic hardening [92], visco-elasticity [48] and

visco-plasticity [93].

The classical approach to numerically understand these materials mechanical properties is by introducing

internal state variables, which estimate deformation history [47]. Recently, machine learning techniques like

neural networks have been used to understand material behaviors. While, the standard neural network

performance in solving time dependent problems is less effective [119, 118], recurrent neural network

architectures [42, 40, 72] include memory elements which can help store material state.

5.2.1 Recurrent Neural Network (RNN)

RNNs are mainly used to process sequences of data. Where the output from the first sequence is stored

and then fed back along with inputs for the following sequence. The model can maintain a hidden state

h over time that gets updated with every sequence. The limitation of RNN are the computation time is

considerably slow due to the recurrent procedure, training is complicated and the vanishing and exploding

gradients problem that occurs in long-term dependency problems (details in Section 5.2.2).

5.2.2 Vanishing/Exploding Gradients Problem (VEGP)

The learning process of RNN utilise the gradients, which represents the derivative of the loss function with

respect to the weights. The weight values are then updated during back propagation to minimise the loss

function. The vanishing gradient problem occurs when the norm of the gradient value is very small making

it challenging to learn long-term dependencies and increasing the computational time [78]. In contrast, the

exploding gradient problem occurs when the gradient value is very large making it difficult to find the global

minima solution.

Several gradient based methods to address the VEGP have been tested, including gradient clipping, long

short-term memory in Section 5.2.3 and gated recurrent unit in Section 5.2.4. Alternatively, gradient free

optimisation strategies such as particle swarm optimisation can be used.
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5.2.3 Long Short-Term Memory (LSTM)

The LSTM unit includes a state cell ct, which is a way to store, process and pass information about previous

time-steps to the end of the network. The information flow is maintained with three multiplicative gate

units, specifically forget gate, input/update gate and output gate that are used to observe the information

and control the error of the unit cell.

LSTMs improve the model performance by enhancing the network learning capability. While, increasing the

model complexity compared to standard RNN [46], due to the two additional input and output gates that

are needed for each memory cell.

5.2.4 Gated Recurrent Unit (GRU)

Unlike LSTMs, GRUs include two gates, reset gate rt and the update gate zt only. With the use of the update

and reset gates GRUs internal memory is capable of storing and filtering important related information that

improves the network performance. The weights are updated using back propagation through time (BTT)

with stochastic gradient descent to minimize the loss function [37, 46].

Similar to LSTM, the GRU is suited for sequential data [17], which include natural language processing [4],

short-text conversation [89], and time series [14].

5.3 Evolutionary Optimisation

To enhance the neural networks ability to find the optimum solution quickly, researchers have proposed

training strategies coupled with nature inspired evolutionary optimisations methods, such particle swarm

optimisation, cuckoo search, and ant colony optimisation. These hybrid method have been applied to different

classification and prediction problems (more details are shown in Table 5.3.1). In addition, they could be an

alternative approach to avoid the vanishing/exploding gradient problems.

In general, the meta-heuristic algorithms that depend on the search process can be divided into a single

solution based, and population based algorithms. The followed search process in the former is initiated

with an individual potential solution (i.e. search agent or object) and the solution improves over a specific

number of iterations. Whereas, the latter search process is initiated with a defined value of members and

each member is considered to be a search agent in the solution space. The group of potential solutions get
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improved over defined number of iterations and the one with optimal solution is selected based on good

fitness performance.

The two principal components in the search methodology are exploration and exploitation. The exploration

component measure the algorithm ability in search the entire space for a better potential solution and

mainly utilised at the initial stages of the search [77]. While, the exploitation component measure the

algorithm ability to search a promising region for a better solution within the neighborhood in the search

space which is performed with iterations to achieve the optimal solution. A well suited balance between the

two search behaviors is required as the success of these algorithms highly depends on them.

Table 5.3.1: Training ANN with meta-heuristic algorithm.

Training ANN with Advantages Problems References

Particle Swarm optimisation Enhance classification accuracy Fruit classification [64, 116, 115]

(PSO) Reduce training time Iris classification

Medical field

Genetic Algorithm Prevent premature convergence ECG beat classification [26, 62]

(GA) Determine weight values and number of nodes Land cover classification

Artificial Bee Colony Dimensionality reduction DNA microarray classification [33, 117, 56]

(ABC) optimise FNN parameters MR brain image classification

Medical field

Improved Cuckoo Search Improve the accuracy and convergence rate Breast cancer classification [103]

(ICS) Iris classification

Ant Colony optimisation optimisation of weight Pattern classification [8, 67]

(ACO) Good initial weights Medical field
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Chapter 6

Exact Representation of Uniaxial

Elastoplasticity

The study is restricted to rate-independent models which can have a purely elastic or a combination of elastic

and plastic (elastoplastic) behaviors. The fundamental challenge associated with inelastic materials is the

path-dependent material characteristics which means that the stresses depend on current deformation and

on deformation history. Hence, neural network training should be in terms of data sequences rather than

individual input-output data pairs. To achieve this, two potential solutions have been proposed which are:

History based and Internal variable based models. The input to the history based model are the stress

and strain histories. While, the input to the internal variable based model is the new material state which

depends on previous state. Both proposed solutions feed the output of the network as the next stage input.

The flowchart in Figure 6.0.1 illustrates the process described above.
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Stresses depend on current deformation and on deformation history

Training of neural network on data sequences rather than basic input-output data sets

Internal variable based modelHistory based model

Input stress and strain histories New material state depends on previous state

Network output becomes input

Recurrent neural network

Non-standard training methods required

Figure 6.0.1: Proposed neural network training process for inelastic material.

6.1 History-Based Strategy

The behavior of rate-independent inelastic solid materials depend on the historical values of stresses and

strains. These historical values can be represented in an RNN architectures to estimate the material

mechanical behaviour. However, the process of training RNNs using gradient-based methods can be

affected by the vanishing and exploding gradient problem [82], leading to unstable training. In order to

avoid the occurrence of this problem, a simplified architecture is adopted which is similar to the Nonlinear

Autoregressive Network with Exogenous Inputs (NARX). The network can be trained as a simple static

feed-forward network. Moreover, the model includes feedback connections that relate multiple network

layers. And to generate the input series, two different architecture modes which are the Series-Parallel (SP)

mode and Parallel (P) mode [68] are employed.

The NARX (SP) mode, also known as the open-loop form, is utilised for training neural networks as it enables

estimating the time-series for the next time-step. This mode is only employed during the first iteration of

the training process. The sequence of past input u(t) and output y(t) values can be expressed as

ŷ(t+ 1) = f(x(t)), (6.1.1)
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where ŷ(t+ 1) is the predicted output for the next time step t+ 1, the employed activation function is f(.)

and x(t) is the regressor vector that consist of a finite number of previous inputs and outputs:

x(t) = [y(t), y(t− 1), ..., y(t− ny), u(t+ 1), u(t), u(t− 1)..., u(t− nu)]T . (6.1.2)

Once the (SP) mode training process is completed, the NARX-based neural model adopts the (P) mode

which is also known as the close-loop form. The close loop form predicts the next values of the target series

by redirecting the output back (y(t), y(t − 1), ..., y(t − ny)) to the input layer. In addition, the given values

of an independent input u(t) are also introduced into the network as a history input vector that corresponds

with each output y(t). The lengths ny and nu need to be defined in line with the data and the problem

restrictions. There is a trade off between network complexity (size) and its prediction accuracy. To minimize

the network size and improve computational efficiency, one can use less historical values which results in less

accurate predictions. On the other hand, in order to achieve higher accuracy additional historical values

could be considered. The sequence of the history inputs in this case can be expressed as

ŷ(t+ 1) = f(ŷ(t), ŷ(t− 1), ..., ŷ(t− ny), u(t+ 1), u(t), u(t− 1)..., u(t− nu)). (6.1.3)

A schematic representation of the history-based neural network in terms of stresses and strains is shown in

Figure 6.1.1. The predicted next step stress σn+1 is fed back to the input of the feed-forward neural network.

Hence, training with the simplified feed-forward network architecture.
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Figure 6.1.1: History-based strategy in terms of stresses and strains.

The adopted neural network architecture significantly influence the model performance in training and

validation. Hence, a case study on neural architectures was carried out to obtain the optimal network

architecture in terms of modeling accuracy, while requiring minimum number of hidden layers and nodes

per layer. Furthermore, this study illustrates how the complicated elastic-plastic behaviour can be

represented using linear algebra operations and neural network model assessment.

1D ideal elastoplasticity without hardening: The proposed neural network indicates that for the history-

based strategy with no hardening, a history of 1 is required to reconstruct the elastoplastic constitutive model

behaviour. Figure 6.1.2 demonstrates the ideal minimum network architecture with defined weights displayed

on the arrows, and biases shown inside the circles which represent the hidden neurons. The network generates

identical constitutive model predictions and is characterised with the following:
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- The 3 inputs εn+1, εn and σn are inserted into the input layer.
- The node connectivity is then modified by employing the right combination of weight Wij and bias

bi parameters. The weighted sum is subsequently sent to the next layer, the first hidden layer, which

consists of 4 neurons.
- The Rectified Linear Unit is chosen as the hidden layer activation function.
- A linear activation function is employed for the output layer, and the given weights for the output layer

are used to adjust and calculate the following step σn+1.
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Output
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−1
+1

−1
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Figure 6.1.2: 1D ideal linear elastoplasticity model in a network form.

The material properties of steel A36 were used in all the examples presented in this chapter. The Young’s

modulus is set as E= 200 GPa, when isotropic hardening modulus is introduced to the problem it is given a

value of H= 10 GPa and yield stress σy= 250MPa.
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(a) Cyclic strain
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(b) Random strain path
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Figure 6.1.3: The performance of proposed history based strategy without hardening presenting stress over
time on the left and the stress and strain relationship on the right.

The prediction of the defined network in Figure 6.1.2 for history-based strategy compared to the exact

analytical solution computed with the standard return mapping algorithm is shown in Figure 6.1.3. Where,

the red dashed line represent the proposed network output and the solid blue is the exact data generated by

the constitutive model. An exact representation can be observed for both cyclic strain and random strain

path cases in Figure 6.1.3.

1D elastoplasticity with hardening: When isotropic hardening is introduced, the level of complexity

increases. This is due to the internal hardening variable α, which should be described in terms of historical

strains and associated stresses. The study demonstrated that to obtain adequate estimation of the

elastoplastic behavior while considering hardening a history value of 2 is needed. The derivation process for

determining the equivalent term of α is briefly described:
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- First, the total stresses during plasticity can be calculated by

σn+1 = σtrial
n+1 − E

E +H
sign(σtrial

n+1 )
(∣∣σtrial

n+1
∣∣− (σy +Hαn)

)
,

σn = σtrial
n − E

E +H
sign(σtrial

n )
(∣∣σtrial

n

∣∣− (σy +Hαn−1)
)
.

(6.1.4)

- Then, solving for αn yields

αn =
∣∣σtrial

n

∣∣− σy + sign(σtrial
n )(σn − σtrial

n )
H

, (6.1.5)

- Finally, σn+1 can be expressed in terms of historical strains and it corresponding stresses as

σn+1 = σtrial
n+1 − E

E +H
sign(σtrial

n+1 )
(∣∣σtrial

n+1
∣∣−
(
σy +H

(∣∣σtrial
n

∣∣− σy + sign(σtrial
n )(σn − σtrial

n )
H

)))
.

(6.1.6)

The proposed neural network for 1D elastoplasticity when hardening introduced in Figure 6.1.4 could be

summarised as

1) The input layer holds 5 inputs, including two historical stress and strain values:

xxx =
[
εn+1 εn εn−1 σn σn−1

]T

. (6.1.7)

2) As previously stated, the complexity level increases when isotropic hardening is introduced due to the

associated non-linearity of the hardening parameter α. In this case, the defined total combination of

weights is 40, whereas the total number of assigned biases is 8, as shown in Equation (6.1.8). The proposed

neural network performance is not exact but with relatively acceptable level of accuracy compared to the

1D elastoplasticity material behavior described by the constitutive model. Furthermore, the selected

activation function for the hidden layer is the ReLU.
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H = ReLU
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(6.1.8)

3) Finally, the output of the neural network is calculated with the with given combination of weights W (O)
ij

and linear activation function in the output layer

W
(O)
ij =

[
1 −1 1 −1 −1 1 1 −1

]T

(6.1.9)

Input layer

Hidden layer

Output layer

σn−1σnεn−1εnεn+1

00−Eσy

E + H
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00
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Figure 6.1.4: The proposed network form for 1D elastoplasticity with hardening model.
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(a) Cyclic strain
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(b) Random strain path
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Figure 6.1.5: The response of the suggested architecture for history based strategy with hardening presented
in stress over time (left) and stress and strain relationship (right).

As it can be observed from Figure 6.1.5 the behavior of the material during elastic and plastic phases can

be reproduced with adequate accuracy. However, the predicted behavior for the transition from elastic to

plastic phase is relatively poor. In order to improve the performance of the network response, it is necessary

to include additional historical stresses and strains. The increase in the historical values may results in

expensive computational cost.

6.2 Internal Variable-Based Strategy

Since internal variables are not directly observable, the classic approach to define material properties is

by applying the plasticity theory, which consist of a conventional system of equations including the yield

criterion and its associated flow rule. The proposed internal variable-based strategy takes only observable

data as input to train the network. And the changes in internal variable values can be extracted as a result of

the training procedure. The illustrative examples presented in this section assumes that the internal variables
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are equivalent to the material plastic strain.

The widely used return mapping algorithm for von Mises elastoplasticity with linear isotropic hardening is

described in [91, 23]. For the uniaxial case, the following expressions for the update of the stress and the

internal variables are used

σtrial = E
(
εn+1 − ε(p)

n

)
, (6.2.1)

Φtrial = |σtrial| − (σy +H αn), (6.2.2)

∆γ =
〈

Φtrial

E +H

〉
, (6.2.3)

∆ε(p) = ∆γ sign(σtrial), (6.2.4)

∆α = ∆γ, (6.2.5)

ε
(p)
n+1 = ε(p)

n + ∆ε(p), (6.2.6)

αn+1 = αn + ∆α, (6.2.7)

σn+1 = E
(
εn+1 − ε

(p)
n+1

)
. (6.2.8)

where E, σy and H are, Young’s modulus, yield stress and hardening modulus, respectively. The plastic

strain is represented by ε(p), while the plastic increment is denoted by ∆γ and α denotes the accumulated

plastic strain. The ramp function is defined as ⟨•⟩ = max(0, •).

1D ideal elastoplasticity without hardening: The return mapping algorithm is used to develop the

proposed neural network constitutive model. For perfect elastoplasticity with H = 0 the accumulated plastic

strain α can be eliminated. Hence:

∆ε(p) = sign
(
εn+1 − ε(p)

n

) 〈∣∣∣εn+1 − ε(p)
n

∣∣∣− σy

E

〉
, (6.2.9)

which is equivalent to

∆ε(p) = +
〈
εn+1 − ε(p)

n − σy

E

〉
−
〈
ε(p)

n − εn+1 − σy

E

〉
. (6.2.10)

The study concluded that only one internal variable ξ is needed to reproduce 1D elastoplasticity without

hardening. The following is an explanation of the steps used by the proposed two network formulation

model presented in Figure 6.2.1:
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1) First the state network G computes the plastic corrector in the return mapping procedure. The network

consists of an input layer with 2 neurons then 1 hidden layer with 2 neurons and finally an output layer

with 1 neuron. The neurons in the hidden layers have ReLU activation functions while the neuron in the

output layer has a linear activation function. The total strain εn+1 and internal variable which is equivalent

to plastic strain i. e. ξ = εp
n are fed into the input layer and the network computes an incremental plastic

strain ∆εp. It is essential to mention that in this case the historical strain εn is not used as an input to the

state network G .

2) Then the next step plastic strain εp
n+1 is updated by adding the internal variable, representing the

plastic strain, εp
n and the output of incremental plastic strain ∆εp from state network G .

3) Following that, the updated internal variable of εp
n+1 is given to the second neural network, which is the

response network F that performs the elastic predictor step in the return mapping algorithm. The

response network F consist of two inputs of εn+1 and εp
n+1 connected with a linear activation function to

an output layer holding the desired updated stress σn+1.

State network G

εpn
σy

E

εn+1 −σy

E

∆εp

+1

+1

−1

−1

−1

+1

Internal variable
update

εpn+1 = εpn + ∆εp

Response network F

εpn+1

εn+1

σn+1
−E

+E

Figure 6.2.1: Two neural network formulation of 1D ideal linear elastoplasticity model.

In order to evaluate the proposed strategy, Figure 6.2.2 is used to illustrate a standard example of the well

known cyclic strain and random strain path behaviours for 1D linear elastoplasticity. In which, the neural

network prediction defines exactly the stress evolution in both cases.
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(a) Cyclic strain
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Figure 6.2.2: The two network formulation performance for 1D linear elastoplasticity presented in stress over
time on the left and stress and strain relationship on the right.

1D elastoplasticity with isotropic hardening: When introducing isotropic hardening i. e. H > 0 to the

problem, the network would need two internal variables ξ to reproduce the constitutive relationship. Similar

procedure is followed to formulate the proposed neural network in Figure 6.2.3 and could be summarised as

1) The state network G takes three inputs namely the total strain εn+1 and the two internal variables that

are equivalent to the plastic strain ξ1 = εp
n and hardening parameter ξ2 = αn. The input layer is linked to

one hidden layer that includes two neurons with a ReLU activation function. In addition, the state network

G in Figure 6.2.3 is characteristics with 12 weights shown on the arrows and 2 given biases displayed inside

the hidden neuron circles. The computed results are then passed to the output layer which includes two

output neurons of ∆εp and ∆αn.

2) Following that, the two internal variables of plastic strain εp
n and αn are updated by adding them to the

incremental output computed in the first network as following:
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εP
n+1 = εP

n + ∆εp. (6.2.11)

αn+1 = αn + ∆αn. (6.2.12)

3) Next, the updated internal variables are transferred to the response network F which performs a linear

operation to represent the elastic predictor in the return mapping algorithm. The network consists of 3 inputs

of εn+1, εp
n+1 and αn+1 that are connected linearly with the updated stress σn+1 in the output layer.

State network G Internal variable
update

Response network F
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−σy

E +H
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∆εp

E
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εpn+1
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+E

−E

0

εpn+1 = εpn + ∆εp

αn+1 = αn + ∆αn

Figure 6.2.3: 1D elastoplasticity with hardening model in a network form.

With the given architecture and defined combination of weights and biases in Figure 6.2.3 an identical

stress response could be achieved for the symmetric strain cycling and random strain path as illustrated

in Figure 6.2.4. The behaviour is displayed in terms of stress over time and stress/strain relationship with

the constitutive model data displayed in solid blue and the proposed network output represented in dashed

red.
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(a) Cyclic strain
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(b) Random strain path
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Figure 6.2.4: The proposed network response with internal variables strategy for 1D elastoplasticity with
hardening shown in terms of stress over time (left) and stress and strain relationship (right).

6.3 Interpretation

Two neural network-based strategies, history-based and internal variable, have been utilised to mimic the

complicated non-linear constitutive relations of solid materials with adequate computing efficiency. The data

used to assess the network performance were generated using the von Mises model and implemented using

the return mapping technique for elastic and plastic deformation.

The networks were designed to reproduce the behavior of the established constitutive model exactly. For

history-based with isotropic hardening an acceptable level of accuracy is obtained but inaccuracies are

observed when the direction of the strain loading is changed. Therefore, the performance of the internal

variable-based strategy is more suited to capturing the behaviour of elastoplastic type materials. The

results were achieved using theoretically determined weights and biases in the proposed optimal minimum

designs for both strategies, rather than neural network training. Moreover, because to differences in scaling,

equivalent network performance might be obtained with different combinations of weights and biases.
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Chapter 7

Generalised Neural Network Based

Constitutive Model

The remainder of this work follows the proposed neural network based algorithmic constitutive model with

internal variables. When using the methodology, no prior knowledge of the material is needed. The values

and evolution of the internal variables are obtained by the training procedure and therefore have no physical

interpretation for them.

7.1 Neural Network Based Stress Update

The stress tensor σ depends on the strain tensor ε and the scalar internal variables ξ = {ξ(1), ξ(2), ..., ξ(M)}

can be defined as

σ = F (ε, ξ) , (7.1.1)

where F denotes a suitable feedforward artificial neural network. For rate-independent materials the update

of the internal variables from time instant tn to time instant tn+1 can be expressed as

∆ξ = G (εn+1, εn, ξn) , (7.1.2)
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and

ξn+1 = ξn + ∆ξ , (7.1.3)

where G represents a second suitable feedforward artificial neural network. Given the new strains εn+1 and

the historic quantities εn and ξn, the complete stress update procedure consists of evaluating Equations

(7.1.2) and (7.1.3) followed by applying Equation (7.1.1) to the quantities at tn+1, i.e.

σn+1 = F (εn+1, ξn+1) . (7.1.4)

In the following, the Networks G and F are referred to as the state and the response networks,

respectively.

7.2 Neural Network Architecture

The proposed artificial state and response neural networks F and G consist of an input layer, a small number

of fully connected hidden layers and an output layer. This study focuses on small strain regime, hence, the

response network F may not possess any hidden layers and correspond to a basic linear operator. The

generic internal process of a neuron is described by

ai = f(si) with si =
R∑
j

wij pj + bi (7.2.1)

where ai is the output of the neuron i, f(•) is the activation function, R is the number of inputs, wij are the

weights connected to the inputs pj and bi is the bias term. In this work the piecewise linear function known

as the Rectified Linear Unit (ReLU) is used.

f(s) = max(0, s) . (7.2.2)

The output neurons are linear operators, i.e. they are similar to neurons in the hidden layers but do not

change the weighted sum of the inputs.
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Figure 7.2.1: Stress update procedure based on the state and response neural networks G and F .

The stress update procedure defined by Equations (7.1.2) to (7.1.4) is shown in Figure 7.2.1 for the uniaxial

load case where stresses and strains are each represented by a single coefficient. In addition, the state network

G possesses one hidden layer of neurons, while the response network F consists only of the input and output

neurons. For the three dimensional case, the stresses and strains are represented by six coefficients each and

the number of input and output neurons must be increased accordingly. For the plane strain case, three

strain coefficients induce four stress coefficients and, again, the number of network inputs and outputs must

be adjusted accordingly.

Remark on physical constraints: The networks F and G are subject to the following physically motivated

constraints:

1. If all the given inputs are zero, all the generated outputs of the state network G must equal to zero.

This causes the biases of the output neurons to be dependent on the biases of the hidden layers.

2. If all the given inputs are zero, all the generated outputs of the response network F must equal to zero.

This results in a dependency of the biases of the output neurons on the biases in the hidden layers. In

the absence of any hidden layers, the biases in the output neurons must equal to zero.

3. If the given new strain εn+1 is identical to the previous strain εn (in all its components), then all

outputs of the state network G must be equal to zero.
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7.3 Recurrent Structure and Training

In order to determine an accurate representation of the material characteristics, the system must be trained.

In addition, the training data used must accurately and comprehensively represent the material behaviour.

The appropriate values for the weights and biases of the state and response networks F and G are obtained

during the training process. Prior to designing an appropriate training technique the system overall nature

must be considered carefully.

Training on data sequences: Although the neural networks F and G are introduced as feedforward networks,

the recurrent nature of the overall strategy is apparent: The updated internal variables which result from

network output of the previous load step are used as network input in the next load step. Moreover, the

internal variables act as hidden states similar to those found in Long-Short Term Memory (LSTM) networks

or Gated Recurrent Units (GRU). The overall strategy must be trained on several sequences of stress-strain

data. These data sequences must represent strain paths and the corresponding stress responses as obtained

numerically or by performing physical experiments. Due to the lack of suitable information, the internal

variables are always initialised with the value of zero. Hence, the utilized training data sequences must be

generated with experiments that begin from undeformed material.

Avoiding exploding/vanishing gradients by evolutionary optimisation: Training recurrent networks with

standard gradient-based methods such as backpropagation, encounters issues with exploding or vanishing

gradients. The occurrence of this problem is due to the frequently repeated application of the chain rule

needed to back-track the gradients through the entire training data series. In this work, the problem is

avoided by formulating the training procedure on a gradient-free evolutionary optimisation method. Details

of this strategy is presented in Chapter 8.

Remarks on alternative strategies: A methodology for stress updating can be formulated based on LSTM or

GRUs networks [46, 18]. The interconnection of these strategies are well established and include hidden states

that serve the same purpose as the internal variables ξi in Equation (7.1.1) to reflect the material memory.

Because of the integrated-in mechanisms of forgetting these approaches do not suffer from exploding/vanishing

gradients. The gradient-free optimisation step is followed by a gradient-based training procedure to further

improve results.

Despite their abilities, LSTMs and GRUs are not suitable in this framework for the following reasons:
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• Networks based on LSTM or GRU add a significant amount of complexity. The numerical

experimentation described in Section 9.2.2 demonstrates that this additional complexity is not

needed. As the obtained results from the proposed strategy are more accurate based on less hidden

states and network parameters.

• It is argued in Chapter 6 that the basic network designs employed in this study have qualities that are

particularly advantageous for constitutive modelling.

• There are no memory loss mechanisms in the proposed strategy, which are essential in LSTM or GRU

based architectures. This is advantageous in the context of constitutive modelling, where memory loss

would be physically inaccurate.

• The proposed strategy is intended for use in the FEM for solid mechanics, where it substitutes the

standard constitutive model-based stress update procedure at the Gauß point level and is normally

repeated several thousand times in each load step. Therefore, the compact and basic architecture of

the proposed stress update model enables efficient computation. In addition, existing implementations

of LSTM or GRU networks, offered by deep learning platforms such as PyTorch or TensorFlow, are

most efficiently utilised when implemented in the scripting language Python. Their efficient integration

in programming language based finite element code is challenging.

• The only arguable disadvantage of the proposed strategy in comparison with LSTM or GRU based

networks is the difficulty of gradient-free training. However, gradient-free network training based on

evolutionary optimisation approaches has been applied in a number of publications, for instance in

[7, 52, 25, 27, 6, 99]. The used strategy in this work is explained in Section 8.

7.4 Thermodynamic Consistency

The mathematical term of the second principle of thermodynamics expressed in terms of the local

Clausius–Duhem inequality which also known as dissipation inequality is given in Section 2.2. The

thermodynamic consistency of an internal variable based constitutive model is satisfied if the mechanical

dissipation D is non-negative and can be mathematically expressed as

D = σ : ε̇(i) + q ξ̇ ≥ 0, (7.4.1)
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with

ε = ε(e) + ε(i), (7.4.2)

where ε(e) and ε(i) represent the elastic and inelastic components of the strain tensor ε, respectively. While

q is the internal force associated with the internal variable ξ.

The inelastic strains ε(i) and the force q are not derived in the constitutive model proposed in Equations (7.1.2)

- (7.1.4). Hence, thermodynamic consistency of the proposed model is tested by making sure the dissipation

inequality in Equation (7.4.1) is satisfied if the work done through any closed path in the deformation or

strain space is non-negative, i.e.

D◦ =
˛

σ : dε ≥ 0 . (7.4.3)

There is no mathematical derivation from the Clausius-Duhem form in Equation (7.4.1) to the proposed

dissipation inequality in Equation (7.4.3). Due to the lack of physical interpretation of the network internal

variables, the Clausius-Duhem inequality can not be evaluated. The algorithmic implementation of the

proposed model as given by Equations (7.1.2) - (7.1.4) is based on considering an incremental total strain

step from εn to εn+1. Hence, a closed path in the strain space is constructed as following:

1 Advancing step from εn to εn+1.
2 Backward step to εn.

The two-step path is schematically presented in Figure 7.4.1. The work done though this path is approximated

with a second order expression as

D◦ = 1
2(σn + σn+1) : (εn+1 − εn) + 1

2(σn+1 + σ∗
n) : (εn − εn+1) , (7.4.4)

where σ∗
n is the stress response of the model after returning to the origin of the closed path at εn. Equations

(7.4.3) and (7.4.4) reduce to:

D◦ = 1
2(σn − σ∗

n) : (εn+1 − εn) ≥ 0 . (7.4.5)

The proposed inequality is weaker than the expression given in Equation 7.4.1 since it is based on two steps.

Yet, it can be easily implemented and requires only the evaluation of the model response to an additional

fictitious step in the strain space. The relation between the expressions D and D◦ based on the example of

uniaxial elastoplasticity is demonstrated in Figure 7.4.2.
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In the remainder of this work, Equation (7.4.5) is used to test the thermodynamic consistency of the trained

constitutive models. Moreover, the integration of the criterion into the training process may help to discard

inconsistent network parameters at an early stage and thereby accelerate the training process. This is beyond

the scope of this work and will be the subject of future investigation.

εn

εn+1

1

2

Figure 7.4.1: A two steps closed path in the strain space.
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D◦ < 0
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εn+1εn
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Figure 7.4.2: Illustration of a fully plastic step in perfect uniaxial elastoplasticity with
ε

(i)
n+1 − ε

(i)
n = εn+1 − εn : (a) dissipation D = σy (ε(i)

n+1 − ε
(i)
n ) from Equation (7.4.1), (b) dissipation

D◦ = E
2 (ε(i)

n+1 − ε
(i)
n )2 from Equation (7.4.5), and (c) dissipation D◦ violating Equation (7.4.5).
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Chapter 8

Network Training

The network weights and biases are obtained during the training phase to accurately fit the training data

sequences. The chosen training method is a gradient-free training strategy based on evolutionary

optimisation. This work employs a Multi-Objective Particle Swarm optimisation (MOPSO) approach that

is integrated within a wrapper function to manage and control multiple parallel and sequential executions

of the MOPSO algorithm. The used cost functions in this study are J (k)
s (x), where x = {wij , bi} denotes

the weights and biases of the state and response networks, respectively. The cost function can be expressed

as

J (k)
s (x) =

√√√√ Ns∑
n=1

(
σ

(k)
n (x) − σ̂

(k)
n

)2
. (8.0.1)

where the subscript s represent the training data series, while the superscript k identifies the stress coefficient.

In addition, Ns denotes the number of load steps in the data series, while the terms σ(k)
n (x) and σ̂(k)

n represent

the network based stress response to the strain data sequence and the given stress data that must be fitted,

respectively.
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8.1 Supervised Parallel and Sequential Evolutionary

Optimisation

The optimisation challenges caused by the proposed training methodology include:

- The large number of design variables, as there are numerous weights and biases that must be obtained.
- The large number of objectives, as multiple stress-strain data series and spatial coefficients must be

approximated.
- The problem is highly nonlinear, making it prone to the presence of multiple local minima, which can

result in premature convergence of numerical optimisation techniques and complicate the detection of

the global minimum.

The performance of the proposed strategy demonstrated that as the evolutionary optimisation explore the

search space randomly, it faced the presence of large numbers of local minina as indicated from the

approximation error, i.e. cost function given in Equation (8.0.1). Therefore, the particle swarm strategies

or genetic algorithms employed converge to several different configurations associated with significantly

different levels of approximation errors.

In order to efficiently execute a large number of optimisation procedures and detect early-stage premature

convergence, the following strategy for supervised parallel and sequential evolutionary optimisation have been

developed and implemented:

- A parallel computing platform is used with the total number of CPUs denoted as NCPU. Among these

processors, one processor is assigned to be the supervisor, while the remaining CPUs are divided into

Nteam teams.

- Each team follows a collaborative learning process to accomplish the particle swarm optimisation

procedure as described in Section 8.2. A schematic representation of CPUs different roles is displayed

in Figure 8.1.1.

- The supervisor is responsible for communicating with the team leaders and thereby frequently initiates,

monitors and terminates the optimisation procedures.

- Each new instance of the particle swarm method is initialised with the best solutions obtained at that

point in the optimisation process.
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Figure 8.1.1: The different roles of the CPUs in the proposed supervised optimisation strategy: supervisor
(S), team leaders (TL) and workers (W). The example shows NCPU = 10 CPUs and Nteam = 3 teams.

The mechanism of supervisor judgment to terminate a specific instance of the particle swarm method is a

critical component of this strategy:

The team leaders report the cost and position of their best particle to the supervisor regularly (every 100

generations). If the cost received from a specific team does not show enough progress in the last Nstall

messages, then the supervisor regards the optimisation process as stalled, i.e.

ϵm
ϵm−Nstall

> 1 − tolerance ⇒ Optimisation has stalled. (8.1.1)

In Equation (8.1.1), ϵm represents the average of the cost values J (k)
s from Equation (8.0.1) received by the

supervisor in the m-th message from the corresponding optimisation team. Importantly, Nstall is related to

the current error level ϵm, i.e.

Nstall = N̄stall

(
ϵ̄

ϵm

)p

(8.1.2)

where N̄stall = 5 and ϵ̄ are reference values. Common values for the exponent p > 0 are 1, 2 or 3. It

is advantageous to set ϵ̄ to the value of the error associated with the first occurrence of stall based on

Nstall = N̄stall. Once a certain optimisation process has stalled, the supervisor assess the error by comparing

the value of ϵm to the recent error values reported by the other optimisation processes. If the stalled

optimisation process is one of the Nkeep < Nteam better performing processes it is permitted to continue

running. However, if it is not among those better performing processes, the supervisor will request that it be

terminated, and a new optimisation process will be initiated. This process will continue until Nrun procedures

have been completed.
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The approach described here has been fundamental to the success of the proposed stress update strategy.

Alternative strategies for integrating several instances of optimisation procedures are detailed in [84, 87, 20,

106, 76, 108, 95].

8.2 Multi-Objective Particle Swarm Optimisation

The principal features of the multi-objective particle swarm optimisation strategy employed in this work

are explained below. Extensive numerical testing with various particle swarm approaches resulted in the

strategy. Although the optimisation process is not the primary subject of this study, it is discussed briefly

in the following section for completeness. Furthermore, different methodologies may be equally or more

appropriate for training the suggested stress update procedure. An overview of particle swarm based multi-

objective optimisation techniques is provided in [83]. The key features can be summarised as following:

1) Continuous weight aggregation: If S denotes the number of data series, i.e. experiments, available for

training and K is the number of stress coefficients (K = 1, 4 or 6 for uniaxial, plane strain or three dimensional

case, respectively), then the number of objective functions represented by Equation (8.0.1) is Nobj = S ×K.

A randomised, continuous and smooth weight aggregation is used repeatedly in varying order to shift the

focus of the optimisation on single objectives and different weighted averages. While the objective of the

training process is to minimise the average approximation error, testing shows that continuously changing

the attention to different sections of the pareto front accelerates the overall convergence considerably.

2) Selection of best particles and parallelisation: As illustrated in Figure 8.1.1, the swarm is divided

evenly across the CPUs that form the team. The team leader collects the best particles from all workers before

each velocity and position update, finds the global best, and sends it back to each worker. The best particles

are chosen in each generation based on the current weights. A smooth and steady alteration of the weights

is maintained by continually setting random target weights and utilising approximately 100 generations to

gradually move from one set of target weights to the next. The team leader monitors the target weights and

communicates them to the workers. In addition, the team leader maintains a repository of best particles, i.e.

the most advanced pareto front. The global best is continuously identified in the repository, which keeps the

swarm focused and prevents deviation from good solutions.

3) Scaling of training data: The stress data is scaled to the interval [−1,+1] before each training procedure

to center the values around 0. This can be accomplished in three ways:
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- Each stress coefficient series is scaled individually. This results in Nobj = S ×K scaling factors.
- Each stress coefficient is scaled uniformly across all experiments. This results in K scaling factors.
- All stress coefficients are scaled with a single scaling factor.

The third approach is utilised to scale the training data of the numerical examples presented in this work,

because the maximum and minimum values of all stress coefficients are of the same order of magnitude.

For materials or applications where the extreme values of axial stresses are significantly higher than shear

stresses, the second scaling technique can be more suitable.

4) Communication with supervisor: The team leaders communicate the current global best particle

cost and position to the supervisor at regular intervals and receive an instruction to continue or restart the

optimisation process in response.
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Chapter 9

Numerical Examples

In this section, several numerical examples are considered based on the proposed strategy in Section 7. The

objective of these examples is to demonstrate that the proposed methodology is generic, trustworthy and

compliant with physical constraints. The methodology is applied to a number of rate-independent inelastic

solid materials. Furthermore, the method is applied to multi-scale homogenisation problem in small strain

for porous elastoplastic material.

9.1 Validation

The presented numerical examples in this section for linear elasticity, uniaxial perfect elastoplasticity and

uniaxial elastoplasticity with hardening demonstrates that any piecewise linear behaviour can be recovered

exactly by the model.

9.1.1 Example 1: Linear Elasticity

The described methodology is applied to a simple linear elasticity example. Given sets of strain and stress

data, the training procedure is expected to accurately recover the compliance matrix values. As the problem

is elastic, the state network is omitted, and only the response network is considered. The employed network

architecture consist of three input neurons representing the strains, which are linearly connected to three

output neurons representing the stresses (3→3). Hence, the total number of network weights is 9.
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Training Data

The training data is generated with RVE that is subjected to 50 different prescribed macro-strain under

plane strain conditions. The model is trained with input/output data sets (i.e. inputs: εxx, εyy and εxy) and

the associated macro-stress (i.e. output: σxx, σyy and σxy). The RVE mesh utilised consists of distributed

layers of matrix and fiber materials, with a rotation angle of α = 30o, as shown in Figure 9.1.1. The material

properties are assigned to each layer as follows

Matrix: Em = 20MPa and νm = 0.35.

Fiber: Ef = 200MPa and νf = 0.45.

Furthermore, the same 50 prescribed strains values, matrix and fiber parameters are used to approximate the

corresponding stresses under plane strain with the compliance matrix values obtained by rule of mixtures in

Section 4.3 and using the transformation matrix given in Equation (2.4.2).

Figure 9.1.1: The used 30o rotated RVE mesh.

Results

The model is trained twice with stresses approximated by: (a) rule of mixtures (RoM) and (b) the RVE. The

compliance matrix values obtained by rule of mixtures (i.e. the target values presented in Table 4.3.2) are

compared to the weights determined when training linear network with data generated by RoM and RVE.
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Table 9.1.1: The compliance matrix values obtained by rule of mixtures are compared to the weights determined
by the trained model.

w cxx cyy czz cxy cyz czx cyx czy cxz

Target 60.7182 34.1238 19.5032 20.4874 6.2880 16.7434 20.4874 6.2880 16.7434

Training RoM 60.7182 34.1238 19.5032 20.4874 6.2880 16.7434 20.4874 6.2880 16.7434

Training RVE 61.1123 35.4844 19.8130 21.1272 5.8924 16.3513 21.2152 5.7264 16.2984

It can be observed from Table 4.3.2 that the target weights are identical to the trained network with the rule

of mixture data and matrix symmetry is successfully achieved. While, the weights of model trained with the

RVE data were slightly different but still demonstrated good accuracy. Increasing the number of matrix and

fiber layers is recommended to further enhance accuracy.
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9.1.2 Example 2: Uniaxial Perfect Elastoplasticity

The described methodology is applied to uniaxial perfect von Mises elastoplasticity. It is shown in Section

6.2 that the the standard return mapping scheme can be exactly represented by the proposed neural network

based stress update strategy. Hence, it is expected that the training procedure renders a stress update model

which recovers exactly the training and validation data. The state network employed has three input neurons,

one hidden layer with two neurons and one output neuron (3→2→1). The response network possesses two

input and one output neurons only (2→1). Hence, the networks have the same architecture as shown in

Figure 6.2.1 except for the additional input of εn to the state network. The variables to be determined by

training therefore comprise two biases and ten weights.

Training and Validation Data

The standard return mapping algorithm shown in Equations (6.2.1) to (6.2.8) is used to generate the training

and validation data. The parameters used are E = 200 GPa, H = 0 and σy = 250 MPa, which, except for the

hardening modulus, correspond to the properties of Steel A36. Figures 9.1.2 (a) and (b) show, respectively,

16 cyclic strain data series and the corresponding stress-strain diagrams as obtained from the standard return

mapping algorithm. Each data series consists of 200 data points. Twelve data series are used for training

and four for validation.
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Figure 9.1.2: Different strain sequences (a) and associated stress-strain diagrams (b) for uniaxial perfect
elastoplasticity.

79



Convergence

The determined average error convergence during training is presented in Figure 9.1.3. The estimated error

decreases to the level of machine accuracy. It is worth mentioning that for demonstrational purposes, the

convergence of training shown in 9.1.3 was exaggerated, hence, the training was terminated once the machine

accuracy was achieved. In addition, the adopted strategy is able to achieve high accuracy predictions during

seconds or a few minutes on a standard laptop.

Figure 9.1.3: Training convergence for uniaxial perfect elastoplasticity.

Results

The achieved stress response results when training the network based on the stress update procedure and

the standard return mapping algorithm are identical. In Figures 9.1.4, 9.1.5, 9.1.6 and 9.1.7 the obtained

training results are presented in blue while the validation predictions are presented in green and the network

response is presented in red. However, the associated internal state variable of the network based model is

unlikely to be exactly identical to the internal plastic strain ε(p) because the set of weights and biases that

generate the correct stress is not unique.
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Figure 9.1.4: Stress sequences over time for the training set.
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Figure 9.1.5: Stress-strain relationship for the training set.
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Figure 9.1.6: Stress sequences over time for the validation set.
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Figure 9.1.7: Stress-strain relationship for the validation set.

Thermodynamic Consistency

Thermodynamics consistency is verified after the training stage using the proposed dissipation inequality

described in Section 7.4 and implemented as a bidirectional network. This means that, when a prediction at

time instant (n+1) is completed, a backward (unloading) prediction is also performed. The results in Figure

9.1.8 show the same sequences presented in Section 9.1.2, but now displaying the intensity and time instant

when the proposed dissipation inequality is violated. As can be observed, the time points where the inequality

is not fulfilled are mostly located when change of the load direction takes place. Moreover, the color map of

each time step shows how large is the violation of the inequality. It should be noted that the maximum value

of the dissipation violation is of the order of machine precision suggesting that it is related to the numerical

approximation of the unloaded stresses by the network rather than the dissipation violation.
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Figure 9.1.8: Stress-strain diagrams with dissipation criterion for uniaxial perfect elastoplasticity.
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9.1.3 Example 3: Uniaxial Elastoplasticity with Hardening

The described methodology is applied to uniaxial von Mises elastoplasticity with isotropic linear hardening.

It is shown in Section 6.2 that the standard return mapping scheme can be exactly represented by the

proposed neural network based stress update strategy. Hence, it is expected that the training procedure

renders a stress update model which recovers exactly the training and validation data. The state network

employed has four input neurons, one hidden layer with two neurons and two output neurons (4→2→2). The

response network possesses three input and one output neurons only (3→1). Hence, the networks have the

same architecture as shown in Figure 6.2.3 except for the additional input of εn to the state network. The

variables to be determined by training therefore comprise two biases and 15 weights.

Training and Validation Data

The standard return mapping algorithm shown in Equations (6.2.1) to (6.2.8) is used to generate the training

and validation data. The parameters used are identical to those described in Section 9.1.2 except for H = 10

GPa. Figures 9.1.9 (a) and (b) show, respectively, 16 cyclic strain data series and the corresponding stress-

strain diagrams as obtained from the standard return mapping algorithm. Each data series consists of 200

data points. Twelve data series are used for training and four for validation.
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Figure 9.1.9: Different strain sequences (a) and associated stress-strain diagrams (b) for uniaxial hardening
elastoplasticity.
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Convergence

The convergence of the average error during training is visualised in Figure 9.1.10. Clearly the approximation

error reduces to the level of machine accuracy. Similarly to Section 9.1.2 the training effort was exaggerated

for demonstrational purposes.

Figure 9.1.10: Training convergence for uniaxial hardening elastoplasticity.

Results

As expected the training process renders a network based stress update procedure which generates exactly

the same stress responses as the standard return mapping algorithm. Figures 9.1.11 to 9.1.14 show the

agreement of the model response with the training and validation data.
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Figure 9.1.11: Stress sequences for training of uniaxial hardening elastoplasticity.
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Figure 9.1.12: Stress-strain diagrams for training of uniaxial hardening elastoplasticity.
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Figure 9.1.13: Stress sequences for validation of uniaxial hardening elastoplasticity.
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Figure 9.1.14: Stress-strain diagrams for validation of uniaxial hardening elastoplasticity.

Thermodynamic Consistency

Based on the trained model the dissipation D◦ as defined in Equation (7.4.5) can be evaluated at each step

of any load path. Figure 9.1.15 visualises the resulting values of D◦ along four different strain data series.

It is observed that, as expected, the largest positive values coincide with the load steps that induce purely

plastic deformation, while the largest negative values occur when the direction of the loading changes, i.e.

during the first elastic load step following a series of plastic steps. However, since the maximum violation of

the dissipation criterion from Equation (7.4.5) lies well within machine accuracy, the tests do not show any

instances of thermodynamic inconsistency within the trained model.
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Figure 9.1.15: Stress-strain diagrams with dissipation criterion for uniaxial hardening elastoplasticity.
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9.2 Manufactured Data

In this section, manufactured data is employed, generated using the associated von Mises constitutive model

for uniaxial damage and plane strain elastoplasticity, to train the neural network.

9.2.1 Example 4: Uniaxial Elastoplastic Damage

The constitutive model for elastoplastic damage described in [104] is inherently nonlinear and cannot be

represented exactly by the proposed network based stress update strategy. The algorithmic return mapping

scheme presented in [104] is adapted to the special case of uniaxial stress and used to generate the training

and validation data. The number of internal state variables used is chosen identical to the number of internal

variables required by the constitutive model, i.e. three internal states are used. The state network employed

therefore has five input neurons, one hidden layer with nine neurons and three output neurons (5→9→3),

while the response network requires four input neurons and one output neuron (4→1). The variables to be

determined by training comprise nine biases and 76 weights.

Training and Validation Data

The parameters are set to the same values as in [104], i.e. Young’s modulus E = 21, 000 kN/cm2, isotropic

hardening modulus H = 1, 500 kN/cm2, yield stress σy = 70 kN/cm2 and the initial damage threshold

r0 = 0.117 kN cm. Twelve cyclic strain data series are generated and the associated stresses are computed

from the algorithmic stress update presented in [104] and given in Algorithm 3. Each data series consists of

200 data points. Eight data series are used for training, the resulting four are used for validation. Figures

9.2.3 and 9.2.5 show the training and validation data in terms of stress-strain diagrams.

Convergence

The convergence of the average error during training is visualised in Figure 9.2.1. The training was performed

on NCPU = 131 CPUs of a high performance cluster with Nteam = 13 and a team size of 10 CPUs and achieved

the error level shown in the Figure 9.2.1.
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Figure 9.2.1: Training convergence for uniaxial elastoplastic damage.

Results

Figures 9.2.2 to 9.2.5 show the responses of the trained methodology together with the training and validation

data. Noticable yet relatively small differences are restricted to the data series with the largest strain

values. In general the agreement is observed to be accurate. Note that the Figure 9.2.1 suggests that the

training has not yet fully converged and a higher degree of accuracy may be achieved by the selected network

architecture.
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Figure 9.2.2: Stress sequences for training of uniaxial elastoplastic damage.
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Figure 9.2.3: Stress-strain diagrams for training of uniaxial elastoplastic damage.
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Figure 9.2.4: Stress sequences for validation of uniaxial elastoplastic damage.

94



0.0 0.2
0

20

40

60

0.0 0.5 1.0

−50

0

50

0 1

−50

0

50

0 1

−50

0

50

Val Target Data Network Response

σ
(k

N
/
c
m

2
)

ε(%)

Figure 9.2.5: Stress-strain diagrams for validation of uniaxial elastoplastic damage.

Thermodynamic Consistency

The dissipation criterion proposed in Equation (7.4.5) is evaluated for four data series and visualised in Figure

9.2.6. It can be observed that violation of the criterion is restricted to the load steps immediately following

changes of loading direction. The largest negative value does not exceed 9.48% of the largest value of the

dissipation D◦ computed for any of the dissipative load steps.

95



0.0 0.2
0

20

40

60

0.0 0.5 1.0

−50

0

50

0.0 0.5 1.0

−50

0

50

0 1

−50

0

50

Train Target Data
Max Positive Dissipation: 5.060e-03
Max Dissipation Violation: -4.801e-04

σ
(k

N
/
c
m

2
)

ε(%)

Figure 9.2.6: Stress-strain diagrams with dissipation criterion for uniaxial elastoplastic damage.
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9.2.2 Example 5: Plane Strain Perfect Elastoplasticity

The return mapping algorithm for von Mises elastoplasticity is presented, for instance, in [94, 23]. For the

multi-dimensional case it is inherently nonlinear due to the tensor norm operator that acts on the trial stress.

In the following, the case of plane strain perfect elastoplasticity is considered, i.e. H = 0. In the plane

strain state, εyz = εzx = εzz = 0 and σyz = σzx = 0. Hence, three strain coefficients {εxx, εyy, εxy} induce a

response consisting of four stress coefficients {σxx, σyy, σxy, σzz}. It is chosen to provide the network based

stress update model with four internal state variables, thus allowing for the representation of some form of

internal plastic strains. The state network therefore requires ten input neurons and four output neurons. The

hidden layer is provided with 15 neurons (10→15→4). The response network requires seven input neurons

and four output neurons (7→4). Similarly to the problems presented in Sections 9.1.2 to 9.2.1 a hidden

layer is not deemed necessary for the response network. It follows that 15 biases and 238 weights must be

determined by the training process.

Training and Validation Data

The material parameters used for generating the training and validation data are shown in Table 9.2.1

Table 9.2.1: Material properties of steel A36.

Young’s modulus E Isotropic hardening H Poisson’s ratio ν Yield stress σy
GPa GPa - MPa

200 10 0.26 250

Similarly to Sections 9.1.2 to 9.2.1 the training and validation data consists of suitable strain data series and

the associated stresses. The latter are computed from the strains with the return mapping scheme presented

in [94, 23]. The former need to be generated with care. If the trained model is to be robust and widely

applicable, they must be representative of the entire physically feasible deformation space. In this work, each

strain data series is based on the linear interpolation between positions in the strain space that do not exceed

0.1% of volumetric strain εV = εxx + εyy and do not exceed the value of 1% in any of the strain components,

but are otherwise arbitrary. Suitable interpolation ensures that the load step sizes are moderate and the

strain data represents a clear deformation path. Each data series consists of 750 data points. Ten data series

are used for training and five four validation. The training and validation data is visualised in Figure 9.2.7

and also represented in the results in Section 9.2.2.
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Figure 9.2.7: Different strain sequences (a) and associated stress-strain diagrams (b) for plane strain perfect
elastoplasticity.

In the problem under consideration, it is known that the data represents elastoplastic material behaviour. In

such cases it is generally of particular interest to capture the yield surface accurately. Hence, it is chosen to

include two additional quantities in the training, namely the hydrostatic pressure

p = σxx + σyy + σzz

3 , (9.2.1)

and the norm of the deviatoric stress

q =
√

1
2

(
(σxx − σyy)2 + (σyy − σzz)2 + (σxx − σzz)2 + 6

(
σ2

xy + σ2
yz + σ2

zx

) )
. (9.2.2)

For each data series p and q are computed and corresponding approximation errors are formulated analogously

to Equation (8.0.1). Hence, ten training data series, four stress coefficients together with p and q result in

60 objectives to be minimised by the multi-objective particle swarm optimisation described in Section 8.2.

Recalling the supervised optimisation framework described in Section 8.1, note that it was chosen to base

the messages passed from the team leaders to the supervisor on a weighted average, i.e. the approximation

errors of p and q are weighted five times more heavily than each of the stress coefficients.
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Convergence

The system is trained on NCPU = 101 CPUs of a high performance computer cluster and left to run for

72 hours. The resulting convergence is shown in Figure 9.2.8 (a). In Figure 9.2.8 (b) all stress responses

are displayed against their data counterparts. For the data used in training the accuracy is high and the

correlation coefficient exceeds the value of 99.6%. For the validation data the correlation coefficient exceeds

98.5%, but a small number of data points show large errors.

Therefore, a second training stage, i.e. fine tuning, based on back-propagation Through Time BPTT is

performed, using the Python library PyTorch. The Adam optimiser is employed in combination with a

small learning rate of 0.0001. The optimisation is initialised with the network configuration obtained from

the PSO based, first stage of training. The additional objectives relating to p and q are ignored and the

average approximation error of the stress coefficients is used as the single objective. The PyTorch fine tuning

is carried out on a Nvidia V100 GPU for 48 hours with the intention to perform a slow training to avoid

exploding gradient problems. Figure 9.2.9 (a) shows the convergence of the fine tuning process. Note that

the loss measure is different from the one in Figure 9.2.8 (a) due to including or ignoring p and q. It is easily

observed in Figure 9.2.9 (b) that the fine tuning effectively removed all of the poor quality responses to the

validation data. For validation as well as for training data the correlation coefficients based on all stress

coefficients have improved.

Neural network training, based on evolutionary optimisation followed by fine tuning with a gradient based

strategy, has also been employed in, for instance [25, 99]
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Figure 9.2.9: Training convergence for plane strain perfect elastoplasticity: Fine tuning with PyTorch (a)
and stress responses versus stress data after fine tuning (b).
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Results

The network stress response and the stress data for one sequence of training data is shown in Figure 9.2.10.

Figures 9.2.11 and 9.2.12 present the stress-strain diagrams for all ten training data series. The associated

p-q diagrams are presented in Figure 9.2.13. Figures 9.2.14 to 9.2.17 show the corresponding diagrams for

the validation data.

The responses obtained from the proposed neural network based stress update procedure are generally

observed to agree accurately with the training and validation data. The most notable deviation is noticed

in the norm of the deviatoric stresses, q, in Figures 9.2.13 and 9.2.17. This is due to the nonlinear

dependency of q on the stress coefficients: Minimising the average of the approximation errors of the stress

coefficients is unlikely to simultaneously minimise the approximation error in q. It is also suspected that the

particular choices of data preprocessing and scaling prior to training has significant effects as described in

Section 8.2.
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Figure 9.2.10: Stress sequences for training of plane strain perfect elastoplasticity, Data Series 4.
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Figure 9.2.11: Stress-strain diagrams for training of plane strain perfect elastoplasticity, Data Series 1 to 5.
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Figure 9.2.12: Stress-strain diagrams for training of plane strain perfect elastoplasticity, Data Series 6 to 10.
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Figure 9.2.13: p-q diagrams for training of plane strain perfect elastoplasticity.
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Figure 9.2.14: Stress sequences for validation of plane strain perfect elastoplasticity, Data Series 2.
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Figure 9.2.15: Stress sequences for validation of plane strain perfect elastoplasticity, Data Series 5.
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Figure 9.2.16: Stress-strain diagrams for validation of plane strain perfect elastoplasticity.

106



−50 0 50
0

100

200

−50 0 50
0

100

200

−50 0 50
0

100

200

−50 0 50
0

100

200

−50 0 50
0

100

200

Yield Stress σy Val Target Data Network Response

Data 1 Data 2

Data 3 Data 4

Data 5

q
(M

P
a
)

p (MPa)

Figure 9.2.17: p-q diagrams for validation of plane strain perfect elastoplasticity.

Thermodynamic Consistency

The dissipation criterion proposed in Equation (7.4.5) is evaluated and visualised for two data series in

Figures 9.2.18 and 9.2.19. It can be observed that violation of the criterion is restricted to the load steps

immediately following changes of loading direction. The largest negative value does not exceed 6% of the

largest value of the dissipation D◦ computed for any of the dissipative load steps.
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Figure 9.2.18: Stress-strain diagrams with dissipation criterion for plane strain perfect elastoplasticity, Data
Series 1.
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Figure 9.2.19: Stress-strain diagrams with dissipation criterion for plane strain perfect elastoplasticity, Data
Series 10.
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Comparison to Alternative Network Architectures

In this section the performance of the presented strategy is compared to other generic recurrent neural

network architectures. The considered methodologies are Basic Recurrent Neural Network (RNN), Basic

Recurrent Neural Network with Gradient Clippling (RNN+clip), Gated Recurrent Units (GRU) and Long-

Short Term Memory (LSTM). All architectures are tested in a Python environment based on the library

PyTorch and trained with back-propagation on the same data presented in Section 9.2.2. For each strategy,

network architectures of a range of sizes are considered, resulting in different numbers of state variables and

network parameters.

Figure 9.2.20 shows the approximation errors achieved by the training processes, displayed over the number of

state variables or network parameters. Notably the proposed methodology renders the smallest approximation

error for the smallest number of internal state variables. Moreover, all other methods considered require

significantly more network parameters to achieve the same level of accuracy. In Figures 9.2.21 and 9.2.22

the correlation coefficient R2 is displayed over the number of state variables and the number of network

parameters for, respectively, the training and the validation data sets. In all diagrams it is observed that

the level of accuracy of the present results is not achieved by any of the other methods unless the size of the

network is significantly increased.
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Figure 9.2.20: Loss obtained with different network architectures for plane strain perfect elastoplasticity.
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Figure 9.2.21: Training accuracy obtained with different network architectures for plane strain perfect
elastoplasticity. The correlation coefficient R2 is similar to the coefficient shown in Figures 9.2.8 (b) and
9.2.9 (b).
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Figure 9.2.22: Validation accuracy obtained with different network architectures for plane strain perfect
elastoplasticity. The correlation coefficient R2 is similar to the coefficient shown in Figures 9.2.8 (b) and
9.2.9 (b).
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9.3 Numerical Homogenisation

The training data utilised in this section is generated using numerical homogenisation RVE, which involves

employing computational methods to simulate the behavior of a RVE. This simulation facilitates the analysis

of the macroscopic properties of solid porous materials (i.e. plane strain case).

9.3.1 Example 6: Material Homogenisation - Plane Strain RVE

The performed material homogenisation in small strain analysis is comprehensively explained in [80]. The

objective of this example is to employ the proposed methodology to represent the complex micro structure of

a material, where the stress responses on macro level are computed for several macro strain data sequences.

In the following, the case of plane strain perfect elastoplasticity is considered, (i.e. H = 0). Similar to Section

9.2.2, in the plane strain state, εyz = εzx = εzz = 0 and σyz = σzx = 0. Hence, three strain coefficients

{εxx, εyy, εxy} induce a response consisting of four stress coefficients {σxx, σyy, σxy, σzz}.

It had been selected to input five internal state variables to the network-based stress update model, allowing

for a representation of some form of internal plastic strains and to capture the pressure sensitivity behaviour

of the material. As a result, the state network requires eleven input neurons and five output neurons. The

hidden layer has 20 neurons (11 → 20 → 5). Eight input neurons and four output neurons (8 → 4) are

required for the response network. A hidden layer is not required for the response network, as it is not

required for the problems discussed in Sections 9.1.2 to 9.2.2. As a consequence, the training procedure must

establish 20 biases and 320 weights.

Training and Validation Data

The material parameters employed for the generation of the training and validation data are E = 200GPa,

ν = 0.26, σy = 240MPa and H = 0 under plane strain condition with elastoplastic von Mises material

characteristics. The linear boundary displacement is selected as the RVE boundary conditions. In addition,

2D second order quadratic meshes with 8 node elements are utilised. The number of gauss points ngp = 8

and the maximum number of iteration is imax = 10.

A random loading path is used to generate the data sequences with RVE that include a hole of f = 10%

shown in Figure 4.4.2. The starting point in the random path is undeformed material state. In addition,

the random loading paths are controlled by a defined value that represents a linear interpolation between

112



positions in the strain space which is set to be less than 0.3% of imposed volumetric strain i.e. εV = εxx +εyy

and do not exceed 3% in any strain component. Beyond these constraints, the choice of strain positions is

arbitrary based on suitable interpolation to maintain moderate load step sizes and ensure that the strain

data defines a clear deformation path.

Each individual sequence data consist of incremental strains εij(t) and stresses σij(t) for 350 loading time

steps. A total of 32 data sequences are generated where 22 sequences are used for training and 10 sequences

are used for validation. Figure 9.3.1 show the generated data sequences to train and validate the network.

(a) (b)

Figure 9.3.1: Different strain sequences (a) and associated stress-strain diagrams (b) for plane strain perfect
elastoplasticity.
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;

Figure 9.3.2: The training and validation data sequences in p̄-q̄ space.

The yield surface defines the boundary of the elastic domain in elastic-plastic materials (i.e. elastic

deformations occur only inside the yield surface). In Figure 9.3.2, all the training and validation data is

presented in terms of the normalised hydrostatic pressure p/σy and the norm of the normalised deviatoric

stress q/σy. The black solid line corresponding to the Gurson analytical yield surface from Equation (4.4.8)

using q1 = 1.5 , q2 = 1 , and q3 = q2
1 .

Convergence

The results achieved in a total time duration of 3 days training on the cluster with CPU=101. Figure 9.3.3

(a) reports the workers training loss against the number of generations with the minimum loss achieved is

0.0234. In Figure 9.3.3 (b) all stress responses are displayed against their data counterparts. For the data

used in training the accuracy is high and the correlation coefficient exceeds the value of 99.1%. For the

validation data the correlation coefficient exceeds 98%.
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Figure 9.3.3: Training convergence for RVE plane strain perfect elastoplasticity: Supervised optimisation
based on multiple instances of MOPSO (a) and stress responses versus stress data (b).

Results

The network stress response and the stress data for one sequence of training data is shown in Figure 9.3.4.

Figures 9.3.5 and 9.3.6 present the stress-strain diagrams for all ten training data series. The associated p̄-q̄

diagrams are presented in Figures 9.3.7 and 9.3.8. The validation network stress response and the stress data

for two sequences is shown in Figure 9.3.9. Figure 9.3.10 show the stress and strain validation diagrams. The

corresponding validation p̄-q̄ diagrams are shown in Figure 9.3.11.

The responses obtained from the proposed neural network based stress update procedure are generally

observed to agree accurately with the training data and represent the desired material behavior accurately

in Figures 9.3.5 and 9.3.6. With regard to validation in Figure 9.3.10, the model performed poorer than the

training results but the obtained accuracy is relatively good. The most notable deviation is noticed in the
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norm of the deviatoric stresses, q, in Figures 9.3.7 and 9.3.11. This is due to the nonlinear dependency of q

on the stress coefficients: Minimising the average of the approximation errors of the stress coefficients is

unlikely to simultaneously minimise the approximation error in q. In addition to the added complexity due

to the pressure sensitive behaviour in p. It is also suspected that the particular choices of data

preprocessing and scaling prior to training has significant effects as described in Section 8.2.

Train Target Data Network Response
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Figure 9.3.4: Stress sequences for training of RVE plane strain perfect elastoplasticity, Data Series 2.
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Figure 9.3.5: Stress-strain diagrams for training of plane strain perfect elastoplasticity, Data Series 1 to 5.
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Figure 9.3.6: Stress-strain diagrams for training of plane strain perfect elastoplasticity, Data Series 1 to 5.
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Figure 9.3.7: p̄-q̄ diagrams for training of plane strain perfect elastoplasticity, Data Sequences 1-5.
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Figure 9.3.8: p̄-q̄ diagrams for training of plane strain perfect elastoplasticity, Data Sequences 5-10.
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Figure 9.3.9: Stress sequences for training of plane strain perfect elastoplasticity, Data Series 1 and 2.
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Figure 9.3.10: Stress-strain diagrams for validation of plane strain perfect elastoplasticity.
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Figure 9.3.11: p̄-q̄ diagrams for validating of plane strain perfect elastoplasticity.
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Thermodynamic Consistency

The dissipation criterion proposed in Equation (7.4.5) is evaluated and visualised for two data series in

Figures 9.3.12 and 9.3.13. It can be observed that violation of the criterion is restricted to the load steps

immediately following changes of loading direction. The largest negative value does not exceed 13.5% of the

largest value of the dissipation D◦ computed for any of the dissipative load steps.
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Figure 9.3.12: Stress-strain diagrams with dissipation criterion for Data 2.
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Figure 9.3.13: Stress-strain diagrams with dissipation criterion for Data 10.
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Chapter 10

Conclusions

In conclusion, the work proposed a novel neural network based algorithmic constitutive model (state F and

response G neural networks) with the capability of simulating the complex nonlinear relations of generic

rate-independent inelastic solid material characteristics.

10.1 Achievements

Two neural network-based strategies have been proposed and compared to reproduce the constitutive relations

of solid materials with high computational efficiency which are history based and internal variable strategies.

The employed strategies can be trained on data sequences of stress and strain, generated by performing

physical experiments or by material homogenisation. The data used for evaluating the proposed network

performance were generated using the von Mises model, and implemented by the return mapping algorithm for

elastic behavior and plastic deformation. The networks are formulated to identically represent the piecewise

linear constitutive behaviour. Hence, the standard analytical expression used to describe the stress update

for uniaxial elastoplasticity is recovered exactly by the models. For history-based with isotropic hardening

an acceptable level of accuracy is obtained but inaccuracies are observed when the direction of the strain

loading is changed. This indicates that the performance of internal variable-based strategy is better suited

to capture the elastoplastic type material behavior.
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Numerical examples related to material computational homogenisation have been considered. Two RVE

meshes with same total volume but each mesh has different matrix and fiber element sizes and layer

distributions. The first mesh consists of concentrated layers, while the second mesh contains distributed

layers. The main objective of this example is to illustrate the effect of RVE distribution and density on

determining the associated stresses in a plane strain case. The results indicates that increasing the RVE

distribution and density results in better approximation. The computed error for the concentrated layers is

10.9%, whereas, for the distributed layers is 4.5%.

The manufactured training data are generated with random loading paths that are controlled with defined

change of direction probability value and the minimum and maximum incremental size. The employed training

methodology for the recurrent neural network architecture, which is based on gradient-free optimisation of the

network associated weights and biases is explained and evaluated on number of numerical examples. These

numerical examples including training the strategy to represent data of uniaxial elastoplasticity, uniaxial

elastoplastic damage and plane strain elastoplasticity.

The proposed strategy was also tested on modelling the behaviour of porous solid materials. The data used

for training were generated through numerical material homogenisation based on an RVE consisting of a

von Mises elastoplastic matrix with a variable void volume fraction. The RVE numerical simulation was

performed by enforcing the RVE boundary conditions and the stress responses on macro scale are computed

for various macro strain data sequences to generate different loading paths.

In addition, a computationally efficient criterion based on two finite steps for testing thermodynamic

consistency for trained stress update models is introduced and applied.

10.2 Results

The training and validation results determined by the proposed methodology have been compared against

the associate von Mises constitutive model and have shown high accuracy predictions. The 2D plane strain

elastoplasticity training proposed methodology is followed by a second training stage for fine tuning based

on BPTT to improve the model validation predictions. Furthermore, the results are presented in terms of

stress/strain relationship and p − q diagram to ensure that the yield surface is accurately captured by the

network.
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Furthermore, the trained network based on the proposed strategy is compared to other generic recurrent

neural network architecture (i.e. RNN, RNN+clip, GRU and LSTM). The obtained results deduced that

the proposed methodology requires less complex and smaller network architectures, therefore it is more

computational efficient. Moreover, all other methods considered require significantly more network

parameters to achieve the same level of accuracy.

The stress update algorithm based on neural networks was then trained and validated, demonstrating high

accuracy in describing the material stress/strain relationship. Additionally, the hydrostatic pressure p and

deviatoric stress norm q showed good agreement with the corresponding Gurson model for porous elastoplastic

material. Therefore, the neural network model developed through this training can be employed in finite

element analysis to study real-world applications.

Based on the considered examples it is observed that, the largest positive values coincide with the load

steps that induce large plastic deformation, while the largest negative values occur when the direction of the

loading changes. The maximum violation of the dissipation criterion in the validation examples of uniaxial

perfect elastoplasticity and uniaxial elastoplasticity with hardening lies within machine accuracy. Whereas,

for the examples of uniaxial elastoplastic damage and for the 2D plane strain case, the largest negative value

does not exceed 9.5% and 6%, respectively, of the largest value of the dissipation Do computed for any of

the dissipative load steps.

The given numerical examples proved that the proposed methodology is generic, trustworthy and comply

with physical constraints.

10.3 Future Work

- Investigate the proposed strategy to model the complex nonlinear behaviour of solids and porous solid

material in three dimensional space with numerical examples. In this case, the proposed network

architecture can be modified and expand for general 3D considerations. Yet, the problem would get

more complex in terms of training the algorithm, due to increasing:

Inputs: 6 strain coefficients which are ε = {εxx, εyy, εzz, εxy, εyz, εzx}.

Outputs: 6 associated stress coefficients which are σ = {σxx, σyy, σzz, σxy, σyz, σzx}.

Hence, more training data must be generated to cover the 3D space may cause computational cost to

be expensive.
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- Study the influence of different imposed boundary condition on the RVE such as periodic and traction

boundary conditions on training the model. Moreover, generation and training with more complex

RVE structure including multiple voids or higher void volume fractions.

- Integration of the proposed thermodynamic criterion into the training process may improve the model

performance by discarding inconsistent network parameters at an early stage which would accelerate

the training process.

- Integrate the trained model in finite element simulations on a Gauss point level to replace the standard

algorithmic constitutive models library [73]. Hence, can be used to study real-world applications.

- Enhancing the training quality by improving the gradient-free optimisation methodology for

computational efficiency. This will enable obtaining improved generic trained model that can be

validated on unseen data.

- Evaluate the proposed strategy on training data generated with performing physical experiments and

investigated the presence of noise in data and deal with cases of insufficient data.
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