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Abstract 
In this thesis, the linear correlation of remotely sensed aerosol optical depth (AOD) and ground-

measured fine particulate matter (PM2.5) is investigated. With instruments that are commonly used 

to derive the concentrations of PM2.5 using remote sensing and AOD correlation, such as MODIS, 

going past its expected operation period, new instruments must be investigated to determine if they 

will be suitable for AOD and PM2.5 studies in the future.  

In this study, Sentinel-3a AOD data, derived from the Swansea University aerosol retrieval algorithm, 

was used to investigate the linear relationship between remotely sensed AOD and ground-measured 

PM2.5 at the city scale. City pixels of AOD were correlated against aggregated PM2.5 stations, and 

compared against the correlations of AERONET, a well-established ground measured AOD dataset, to 

see how they performed. This was conducted at a city-wide scale. 

This study showed a similar performance in the R2 values between Sentinel-3a and AERONET when 

correlating monthly values, but with R2 values remaining low. The main conclusions were that 

Sentinel-3a datasets have the potential to estimate PM2.5, but further research must be conducted in 

order to determine the best approach, as the city-scale may not be appropriate due to the coarse 

resolution.  
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1. Introduction 

1.1. Motivation 
Atmospheric aerosols can be defined as small, suspended particles, both solid and liquid, within the 

atmosphere. The size of aerosols can range from a few nanometers (nm) to hundreds of 

micrometers (μm), as they need to be small enough to be transported by winds and atmospheric 

turbulence (Wallace and Hobbs, 2006). Aerosols can be sourced both naturally and 

anthropogenically. On a global scale, natural sources are responsible for 90% of total aerosol 

concentrations, with sea salt being the largest contributor towards that figure as 71% of the Earth’s 

surface is covered by the ocean (Pueschel, 1995; Visbeck, 2018). Dust particles, volcanic ash, pollen, 

and smoke are additional examples of natural aerosols.  The release of these aerosols is independent 

from human activities, contrary to the anthropogenic sources that make up the remaining 10% of 

aerosol mass. In particular, population growth, industrialisation and economic growth have led to 

increased fossil fuel emissions. This has enhanced the production of fine, suspended particles, which 

have changed the chemical composition of our atmosphere. Accompanying the increase in 

atmospheric aerosols is the rapid decline in air quality associated with the burning of fossil fuels, 

vehicular emissions, and other anthropogenic activities. This is of increasing concern, as air quality 

can have significant effects on the environment, the economy, and public health.  

UNICEF (2016) stressed the profound effects that air quality could have on the public, as 2 billion 

children worldwide live in regions where recognised international limits of air pollution have been 

breached, with 300 million of these existing in places where air pollution exceeds those targets by a 

factor of six. With the increased awareness of environmental changes in both the media and the 

public eye, especially those with anthropogenic origins, initiatives on the local and global scales are 

being pursued. One of the most notable is the United Nations Sustainable Development Goals (SDG), 

which came into effect on the 1st of January 2016, and are comprised of 17 SDGs and 169 targets 

that aim to curb environmental degradation and create a more equal society in all aspects. Air 

pollution and general air quality, whilst not a specific goal, features strongly in three SDGs; health 

(3), cities (11) and sustainable consumption and production (12). Additionally, Longhurst et al. 

(2018), citing both EEA (2017) and UNICEF (2016), noted that air quality impacts upon 12 of the 17 

goals.  

Henceforth, multiple international authorities have now recognised the importance in monitoring air 

quality and implementing measures to control and reduce pollutants, including understanding the 

composition and distribution of aerosol sources (McMurry et al., 2004). However, there are still 

significant gaps in our knowledge of aerosol production, their movement, and their exact 

environmental effects. This makes it difficult to accurately measure atmospheric pollution in its 

entirety. Additionally, there are significant challenges in measuring aerosol concentrations. In-situ 

aerosol measurements tend to have poor spatial coverage and provide little insight to spatial 

variability, but they have a high degree of accuracy. On the other hand, using satellite derived 

aerosol measurements would provide larger datasets that cover a wider spatial area, but the 

accuracy may decrease with lower spatial resolution. Fortunately, there are wildly accepted 

measurements of air quality that can be studied using both in-situ measurements and remote 

sensing instruments, namely particulate matter and aerosol optical depth, that can be used to 

predict aerosol concentrations. 



8 
 

1.2. Aerosol Measurements and Distribution 

1.2.1. Particulate Matter 
Whilst the definition of aerosols refers to both suspended matter and the suspending gas, the 

definition of particulate matter (PM), sometimes called particle pollution, refers to only the 

suspended particles that are considered in those aerosol measurements. PM can consist of both 

solid and liquid particles, as well as a variety of different materials; from metals to dust and sand, to 

chemicals such as nitrates or sulphates, and to carbonaceous materials. PM is usually sub-

categorised into two classifications. All particles with an aerodynamic size of 10µm or lower are 

referred to as PM10. This group contains coarse particles, which are often dust, pollen, ash and other 

naturally occurring substances that are transported atmospherically, as these tend to be between 

2.5µm to 10µm in diameter. The other group is for fine particles only. Also referred to as PM2.5, as 

they have an aerodynamic size less than 2.5µm, these fine particles are often consisting of 

carbonaceous, inorganic materials, as mentioned above, that come from fossil fuel consumption. For 

comparison, a strand of human hair is 50-70 µm in diameter.  

Whilst, on a global scale, natural aerosols make up the majority of aerosol mass concentrations 

(Ramachandran et al., 2012), hotspots of elevated aerosol levels are routinely found in dense, urban 

areas. These hotspots are associated with a noted increase in PM2.5 levels in cities. This implies that 

the main sources of PM2.5 are anthropogenic in origin rather than natural, as discussed previously 

(Ortiz et al., 2017; Filonchyk et al., 2020). This ties in with how PM2.5 concentrations have increased 

in recent years in line with urbanisation and globalisation. Danish et al. (2018) looked at how with 

globalisation the increase in ICT increased air pollution and found that a 1% increase in financial 

development stimulates emissions. However, there are multiple different sources of urban PM2.5.  

One such source is PM2.5 from industrial factories, as PM pollution tends to originate from fossil fuel 

combustion (Phalen and Phalen., 2013). Vehicular emissions are another prominent source of PM2.5. 

Lelieveld et al. (2015) found that land traffic emissions were responsible for approximately 5% of 

PM2.5 related mortality globally, but this increases to 20% in countries such as Germany, the USA and 

the UK. This is because carbonaceous PM2.5, which is emitted through the exhaust pipes of cars, is 

around five times more toxic than other types of PM2.5. Ortiz et al. (2017) found that in Madrid the 

PM2.5 exceedances that were slightly higher than those of PM10 due to the fact that diesel vehicle 

road traffic there is far greater. There are additional anthropogenic sources of PM2.5 outside of cities. 

Lelieveld et al. (2015) found that agriculture is the leading source of PM2.5 in Europe, Russia, Turkey, 

Korea, Japan and Eastern USA. This study found that agricultural PM2.5 contributes ≥40% of the total 

PM2.5 levels in these regions, a figure which Giannakis et al. (2019) agreed with. However, most of 

the PM2.5 consists of inorganic nitrates, as the agricultural PM2.5 is often due to ammonia from 

fertilisers. Bauer, Tsigaridis and Miller (2016) found that significant reductions in PM2.5 can be made 

by reducing either agricultural NH3 or combustion NOx, as agricultural pollution dominates over 

Europe, Central USA and Western China. Biomass burning is also a significant source of PM2.5 in 

some countries. Lalitaporn and Mekaumnuaychai (2020) found that Northern Thailand experiences 

air pollution haze episodes due to biomass burning, which lead to an increased number of 

hospitalisations, and Lelieveld et al. (2015) demonstrated that biomass burning contributes to 70% 

of PM2.5 in Brazil, but only 5% globally. 

It is PM2.5 that is of particular concern to the general public due to the strong association with 

numerous adverse health effects. This is because these fine particles can embed themselves within 

human cells, most concerningly within the respiratory or cardiopulmonary system. Both short-term 

and long-term illnesses can be connected to this phenomenon, with symptoms such as 

inflammation, fever, and cardiac events, to much more permanent diseases such as asthma, 



9 
 

diabetes, and cancer (Loomis et al., 2013; Lelieveld et al., 2015). This leads to a larger mortality rate, 

demonstrated recently by the first death in the UK attributed directly to air quality by a coroner 

(Dyer, 2020). Whilst PM2.5 is considered harmful at low concentrations, with no lower value where 

PM2.5 is no longer a threat to human health, multiple governments and organisations have 

implemented national and regional standards for PM2.5 classification. The World Health Organisation 

(WHO) has an established PM2.5 limit of 25 μg m−3, and countries such as the US have limits of 35 μg 

m−3 for 24-hour maximum concentrations averaged out over three years (EPA, 2013).  Additionally, 

PM2.5 has been found to be responsible for environmental degradation, affecting temperatures, 

radiation, climate, and visibility haze. Henceforth, PM2.5 concentrations will be the focus of this 

thesis.  

1.2.2. Aerosol Optical Depth 
Another commonly accepted measurement for aerosols is Aerosol Optical Depth (AOD). This is a 

dimensionless parameter related to atmospheric radiative transfer and is considered one of the 

most comprehensive variables to study aerosol load in the atmosphere using remote sensing (Wei et 

al., 2020). Solar radiation interacts with atmospheric particles as it travels through the atmosphere, 

leading to radiative scattering and absorption. Scattering refers to when photons are dispersed in 

several directions after coming in contact with an atmospheric particle, such as aerosols or cloud 

particles. There are two main types of scattering; Rayleigh scattering, which is caused by atoms, 

molecules and other small particles, and Mie scattering, which occurs when there are large particles 

in the same size range as the radiation wavelength. Absorption, on the other hand, occurs when 

photons are converted into other energy forms (Mishchenko, Travis and Lacis, 2002). Both processes 

lead to the attenuation of solar radiation, or its reduction. The total amount of attenuation caused 

by these processes is referred to as the extinction. AOD measures the total amount of aerosols 

present in an atmospheric column by calculating the radiation extinction of a specific wavelength. 

The calculation for AOD is shown in Equation 1: 

𝜏𝑎(𝜆) = ∫ 𝜎𝑒𝑥𝑡 ⅆ𝑥
𝑥

0

 

Equation 1: Equation to calculate Aerosol Optical Depth 

Where 𝜏𝑎 is AOD, λ is the wavelength, 𝜎𝑒𝑥𝑡 is the extinction coefficient, also defined as the repletion 

of radiation per unit length, and ⅆ𝑥 represents the unit cross section of a vertical atmospheric 

section.  

Whilst PM2.5 only measures fine particulate of diameter 2.5µm or smaller, AOD is a measurement of 

all aerosols within an atmospheric column. Hence, AOD includes coarser particles that are omitted 

from PM2.5, which often tends to be naturally occurring aerosols. Volcanic ash, smoke and pollen are 

all examples of aerosols that are included within AOD measurements, with coastal areas often 

having high values of AOD due to the presence of sea salt and other coarse particles such as water 

vapour. Filonchyk et al. (2020) found that high coastal AOD can also be the result of strong emissions 

from ships, as well as strong hygroscopic growth and long-range aerosol transport. Dust and sand 

also contribute to AOD totals, with places such as the Tarim Basin and the Gobi Desert in China have 

continually naturally elevated AOD levels, as the prevalence of desert dust is constant regardless of 

meteorological conditions. However, desert areas are often uninhabited, with dust and sand being 

the only sources of aerosols in these regions, so whilst AOD is naturally elevated the overall AOD 

total remains low. AOD is also affected by anthropogenic emissions. Filonchyk et al. (2020) identified 

that a high degree of urbanization, a high population density and high vehicular emissions lead to 

high aerosol loads. Xue et al. (2014) also made an important point that the distribution of the 
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aerosols that contribute to AOD is determined not only by the source but the transport of aerosols, 

with aerosol loading occurring in valleys due to mountains acting as a barrier to transmission.  

AOD can also be attributed to a significant number of environmental effects, in the exact same 

manner as PM2.5. The most noticeable of these is the effect on the radiation budget, as both the 

scattering and absorption of radiation by aerosols changes the rate at which atmospheric processes 

can occur, as they rely on the presence of light to either decompose or separate molecules from one 

another to cause new chemical reactions (Palancar et al., 2013). This can cause a reduction in 

precipitation and the size of cloud droplets, which are both extremely important properties to 

consider in climate change modelling. These added uncertainties can drastically change the results of 

a climate predictive model and will limit our ability to be accurate with datasets that may influence 

policy decisions and future action.  

1.3. Global Dispersal of Aerosols 

1.3.1. Asia 
Air quality in Asia has been discussed extensively in the literature, as the air pollution in the region is 

notably high. The literature discusses a multitude of reasons for the aerosol concentrations in Asia. 

Firstly, many Asian countries are emerging economies, currently undergoing urbanisation at a fast 

pace. China is the prime example here. Since China’s reform on trade policy in the 1980’s, trade 

volume has increased to 50% from 20% (Munir and Ameer, 2018). This has increased the rate of 

environmental degradation. This rapid financial growth and increasingly high trade rates is why 

studies such as Cohen et al. (2019) and Mi et al. (2015) reported China as being the largest 

greenhouse gas emitter, contributing 23% of global greenhouse gas emissions. 57% of China’s 

emissions in 2007 were from fossil fuels (Feng et al., 2013) with Filonchyk et al. (2020) finding that 

China consumed 641.2 million tonnes of oil, 243.3 million tonnes of oil equivalent of natural gas, and 

1906.7 million tonnes of oil equivalent of coal, which is 13.8%, 7.4% and 50.5% of global 

consumption respectively.  

The emission rates across Asia are not equal, however. Looking at the emission rates in other 

countries, the city of Lhasa in Tibet has experienced rapid urbanization, yet due to its isolated 

location and high renewable energy consumption, has low aerosol concentrations that are improving 

with effective air pollution control measures (Yin et al., 2019). Bauer et al. (2016) reported that 80% 

of all PM2.5 in India is attributed to natural sources like desert dust, with around 20% being attributed 

to agriculture. Even in China, 57% of China’s emissions are related to transporting goods and services 

to provinces outside of where they were created (Feng et al., 2013). Liu et al. (2019) noted that 

Beijing-Tianjin-Hebei (BTH) is densely populated and highly polluted, yet the majority of the 

expected emissions to power such a populated region occur in different areas of China, as the 

affluent BTH region outsources more than 75% of its emissions in order to keep industrial factories 

separate from residential areas (Feng et al., 2013). Sheel, Guleria and Ramachandran (2018) also 

highlighted the issue of aerosol loading at the foothills of the Indian Himalayas, meaning that aerosol 

concentrations in certain regions may be more affected by meteorological variables and 

topographical features than any one pollution source. 

Air quality and emissions policies, particularly global ones enacted by organisations such as the IPCC 

and WHO, focus on Asia as a place that requires a large improvement in air quality, particularly as 

the economies develop and transition from industrial manufacturing to high-end goods and services 

(Cohen et al., 2019). Multiple Asian countries have implemented policies to combat high pollution 

rates. Environmental regulations that have come into place in China since the 2008 Olympic Games, 

such as the commitment to reduce the carbon intensity of the economy by 40-45% at the 2009 

Copenhagen Climate Change Conference, have since caused the AOD values in Beijing to decrease 
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(Xue et al., 2014; Xue et al., 2017; Feng et al., 2013). Additionally, the Chinese government in 

September 2013 published the “Air Pollution Prevention and Control Action Plan”, which is a policy 

the Chinese government are implementing to decrease fine particulate matter concentrations by 15-

25% depending on area (Huang et al., 2018). Since then, total coal consumption has fallen by 300 

million tons (Liu et al., 2019), resulting in an overall decline in PM2.5 by 33.3% (Chen and Bloom, 

2019), with reductions of 39.6% in BTH, 34.3% in the Yangtze River Delta, and 27.7% in Pearl River 

Delta (Liu et al., 2019). 

1.3.1.1. PM2.5 

In Asia, PM2.5 concentrations not only vary significantly between countries, but also between cities. A 

large portion of the literature has concentrated research in the highly polluted BTH region of China, 

which includes the city of Beijing, where PM2.5 are often significantly higher, usually by a factor of 5, 

than recommended levels (Kong et al., 2016; Chen & Bloom, 2019). Table 1 presents a compilation 

of reported values of PM2.5 from studies conducted in Asia.  

Table 1: Summary of PM2.5 studies conducted in Asia, with columns denoting the average/mean PM2.5 value found, the peak 
PM2.5 value found, the time period over which the study was conducted, and a notes column that provides information on 
how the values were calculated. 

Region Study Values Time Period Notes 

Average/Mean Peak 

Beijing, China Huang et al. (2018) 57 μg m−3 N/A 2017 Ground-

measured 

station 

Kong et al. (2016) 62 ± 45 μg m−3  N/A 2009 - 2010 Compared to a 

background 

level of 

36 ± 29 μg m−3 

and a suburban 

level of 79 ± 61 

μg m−3 

Zhou et al. (2015) 85.81 μgm-3 800 μg m−3 2013  Ground-

measured 

station 

Shanghai, China Kan & Chen 

(2004) 

100 μg m-3 N/A 2001 Compared to a 

background 

level of 73.2 

μgm-3 

Northern China Xin et al. (2014) 33 ± 10.2 μg m−3 44.4 μg m−3 2009 - 2011 Ground-

measured 

station 

Tibetan Plateau Xin et al. (2016) 10 - 117 μg m−3 N/A 2011 - 2014 Ground-

measured 

station 

Lhasa, Tibet Yin et al. (2019) 22.74 ± 23.92 μg m−3 N/A 2013 - 2017 Ground-

measured 

station 

Northern 

Thailand 
Lalitaporn & 

Mekaumnuaychai 

(2020) 

N/A 357 μg m−3 2014 - 2017   

Delhi, India Kumar, Chu and 

Foster (2007) 

82.9 ± 7.8 μg m−3 N/A August-

November 

2003 

 

Kolkata Jain and Sharma 

(2020) 

58 μg m−3 N/A March-April 

2019 

Ground-

measured 

station 
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Bangalore Jain and Sharma 

(2020) 

35 μg m−3 N/A March-April 

2019 

Ground-

measured 

station 

Mumbai Jain and Sharma 

(2020) 

37 μg m−3 N/A March-April 

2019 

Ground-

measured 

station 

Seoul, South 

Korea 

Kim et al. (2019) 45.7 μg m−3 N/A 2014  MODIS AOD 

derived 

As shown from the table, studies routinely find that PM2.5 in Asia is above the WHO recommended 

levels of 25 μg m−3. Xin et al. (2014) studied PM2.5 concentrations from 2009 to 2011 in North China 

was 33 ± μg m−3, with a maximum value hit in the summer of 44.4 μg m−3 with a minimum in the 

winter of 25.3 μg m−3. This was at least three times higher than what was being observed in Europe 

and the USA during that time period. Meanwhile Lalitaporn & Mekaumnuaychai (2020) reported 

that average daily PM2.5 levels of 357 μg m−3 in Northern Thailand for the 2014-2017 period, which is 

a factor of 14 times higher than the WHO guidelines of 25 μg m−3, with higher PM2.5 values found in 

the morning than in the afternoon, and also in the pre-monsoon season of March-April. All stations 

in the study Xin et al. (2016) conducted in the Tibetan Plateau exceeded the WHO guidelines as well, 

with the study finding a maximum value of 1415 μg m−3 occurring during a dust storm and a 

minimum value of 0.6 μg m−3 occurring during the clearest day.  

There are significant spatio-temporal variations in PM2.5 concentrations throughout Asia. Xin et al. 

(2016) found significant spatial variation between North and South China as well, at 57.3 μg m−3 and 

46.4 μg m−3 respectively. This is likely due to the abundance of urban agglomerations in North China 

and a high number of industrial aerosols. Kong et al. (2016), looking at a city scale, attributed higher 

PM2.5 values to industrialisation, as the suburban region of Beijing had a higher value of 79 ± 61 

μg m−3 compared to the city centre value of 62 ± 45 μg m−3, likely due to the relocation of 

manufacturing factories. 30% of daily mean values are above 75 μg m−3 in this suburban region. Yin 

et al. (2019) found that in Lhasa, Tibet, there was a December maximum value of 40.88 ± 42.88 

μg m−3 and a July minimum value of 14.58 ± 13.48 μg m−3, with peaks occurring in the morning and 

evening.  

Since air pollution measures have been enacted in the region however, PM2.5 concentrations have 

been 20.6% to 43.1% lower (Wang et al., 2019), with Huang et al. (2018) corroborating that study 

with its study that found PM2.5 concentrations have decreased 33.3%, from 72.2 μg m−3 to 47.0 μg 

m−3 between 2013 and 2017 in 74 cities. P. Wang et al. (2020) found that by modelling a reduced 

emissions pathway, PM2.5 concentrations decreased by up to 20% compared to no change, with an 

absolute decrease of 9.23 μg m−3 in Beijing, and 30.79 μg m−3 in Wuhan.  

1.3.1.2. AOD 

Similar to PM2.5, AOD measurements in particular regions of Asia are also high. Peak AOD values in 

Asia are often associated with urbanization. Filonchyk et al. (2020) found that the three main 

components of the AOD, which account for about 60% of the value, were found to be sulphates, 

black carbon, and organic carbon, with peak values in the BTH region of China being associated with 

coal-fired power stations. Dust is also a large contributor to AOD measurements in Asia, with high 

AOD values of 0.8 in the Gobi Desert due to natural dust emissions (Acharya et al., 2021). Table 2 

presents a selection of studies that have looked at AOD in Asia. 

Table 2:  Summary of AOD studies conducted in Asia, with columns denoting the average/mean AOD value found, the peak 
AOD value found, the time period over which the study was conducted, and a notes column that provides information on 
how the values were calculated. 

Region Study Values Time Period Notes 

Average/Mean Peak 



13 
 

South East Asia 

(Thailand, Laos, 

Vietnam, 

Bangladesh and 

Eastern China) 

Acharya et al. (2021) 0.6 - 0.8 N/A 2017 - 2019 Combination of 

MODIS derived 

AOD and 

AERONET AOD 

Beijing, China Kong et al. (2016) 0.53 ± 0.47 N/A 2009-2010 MODIS derived 

AOD 

Compared to a 

background 

level of 

0.24 ± 0.22 and 

a suburban 

level of 

0.54 ± 0.46 

Northern China Xue et al. (2017) N/A 0.8 1983-2015 AVHRR derived 

AOD, cross-

validated with 

AERONET AOD 

Xin et al. (2014) 0.23 ± 0.10 0.33 2009 - 2011 Combination of 

ground 

measured AOD 

using a portable 

sun 

photometer 

and MODIS 

AOD 

Filonchyk et al. 

(2020) 

N/A 0.8 2019 - 2020 MODIS derived 

AOD 

Western China Acharya et al. (2021) 0.4 – 0.6 N/A January – 

April 2020 

Combination of 

MODIS derived 

AOD and 

AERONET AOD 

Filonchyk et al. 

(2019) 

N/A 0.8 ± 0.1 2000 – 2017 Combination of 

MODIS derived 

AOD and MISR 

derived AOD 

Eastern China Filonchyk et al. 

(2019) 

0.521 – 0.828 N/A   

Tibetan Plateau Filonchyk et al. 

(2019) 

0.025 – 0.223 N/A 2000 – 2017  Combination of 

MODIS derived 

AOD and 

AERONET AOD 

Delhi, India Kumar et al. (2007) 0.65 ± 0.025 N/A October -

November 

2003 

MODIS derived 

AOD 

AOD values in Asia demonstrate that the air quality is often polluted. Xin et al. (2014) found that 

AOD in Asia was 2 times higher than background levels. In the same manner as PM2.5, there are 

spatio-temporal variations in the measurements of AOD in Asia. In terms of seasonal variations, dust 

was a factor that mainly affected spring time AOD, demonstrating that there are strong seasonal 

variations that lead to AOD maxima in the summer and minima in the winter, with an AOD peak of 

1.2 in the summer. Similar values were reported in Xin et al. (2014), which identified the annual 

mean AOD of Northern China between 2009 to 2011 to be 0.23 ± 10, with a summer maximum value 

of 0.33 and a winter minimum of 0.14. Spatially, there are lots of variations. Notably, whilst AOD can 

vary significantly temporally in one region, in other regions there will be a lot less variance. In Asia, 

this tends to be in desert regions such as the Gobi Desert, where AOD measurements are naturally 

elevated but remain low compared to urban agglomerations.  
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1.3.2. Europe 
Compared to Asia, the amount of recent literature on Europe’s air quality is small. This could be 

attributed to Europe’s developed economies and associated air quality problem being well 

established. Coupled with an ageing populations and ever-increasing urbanisation there is still cause 

for concern, even if the situation is not as serious as with Asia. In terms of spatial distribution, 

Northern Italy is one of the most polluted areas, particularly in Lombardia and Emilia Romagna, due 

to high emissions and geographic conditions that caused the stagnation of pollutants (Conticini, 

Frediani and Caro, 2020). Bauer et al. (2016) found that agricultural PM2.5 is responsible for 55% of 

air pollution.  

There has been some improvement in recent years, particularly with the implementation of air 

pollution policies. In the UK, the Clean Air Act was passed in 1956 to address the issue of smoke 

pollution (Huang et al., 2018), and a new Air Quality Directive established in 2008 set an annual 

mean PM2.5 target of 25 μg m−3. Additionally, there was the collective aim to reduce road emissions 

by 83%, machinery emissions by 54% and energy production by 32% (Schneider et al., 2020). 

Giannakis et al. (2019) noted that PM2.5 emissions have fallen by 28% between 2008 to 2015. Other 

studies have noted, however, that the drop in emissions may be due to other factors aside from air 

quality measures. Sanchez de la Campa (2014) found that during the 2008 financial crisis there were 

decreases in PM, with chemical components becoming more pronounced, in the South of Spain. This 

is due to the loss of industrial production associated with factory foreclosures.  

1.3.2.1. PM2.5 

PM2.5 in Europe varies spatially, as some regions have relatively low values whilst others have 

significantly high pollution levels. In terms of PM2.5 values found across the continent, the WHO 

threshold of a 24-hour average of 25 μg m−3 was found to be exceeded at 66% of monitoring stations 

across the 27 member states of the European Union (EU) and the UK (Ortiz et al., 2017). Table 3 

collects PM2.5 values from studies conducted in Europe. 

Table 3: Summary of PM2.5 studies conducted in Europe, with columns denoting the average/mean PM2.5 value found, the 
peak PM2.5 value found, the time period over which the study was conducted, and a notes column that provides information 
on how the values were calculated. 

Region Study Values Time Period Notes 

Average/Mean Peak 

United Kingdom Schneider et al. 

(2020) 

9.41 μg m−3  N/A 2008 Derived from 

MODIS AOD 

using machine 

learning 

10.17 μgm−3  N/A 2013 

8.05 μgm−3  N/A 2018 

Italy  Giannakis et al. 

(2019) 

6 - 8 μg m−3 N/A  Derived from 

an atmospheric 

chemistry 

model 

Buonanno et al. 

(2015) 

40.8 μg m−3 N/A 2017 - 2021  

Balkan Countries 

(Bulgaria, 

Romania, 

Slovenia) 

Giannakis et al. 

(2019) 

9 - 10 μg m−3 N/A  Derived from 

an atmospheric 

chemistry 

model 

Countries such as those located in the Balkan region of Europe are considered polluted, with 

Giannakis et al. (2019) finding that the highest PM2.5 values occurred in these regions, with the 

lowest in Slovakia and Spain. Schneider et al. (2020) found significant spatial variations from the 

period average of 8.84 µg/m3, with PM2.5 hotspots found in dense English cities such as Birmingham, 

Liverpool, London, and Manchester, with lows in the Scottish and Welsh countrysides. Studying the 
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values of PM2.5, alongside PM10, across Spain, Ortiz et al. (2017) also found significant spatial 

variations as well. Relating these values to the WHO threshold, Madrid monitoring stations reported 

exceedances 14.9% of days in the 2000-2009 period, with Gran Canaria and Tenerife exceeding the 

threshold 7.9% and 7.2% of days respectively. Temporal variations were also frequent, with 

meteorological conditions causing patterns such as a north-south split, or with pollution hotspots 

over dense cities, to days where there is general uniformity across the country. De la Campa & de la 

Rosa (2014) found hourly maximums at early morning as well as late night, which was pronounced 

during the summer. This study attributed this temporal variation to ceramic industry activity and 

road traffic. 

1.3.2.2. AOD 

AOD measurements in AOD demonstrate a similar pattern to PM2.5. AOD levels in Europe tend to be 

a lot lower than in Asia, with higher values reserved for heavily industrialised areas (Xue et al., 2017). 

Table 4 shows a selection of AOD studies in Europe.  

Table 4: Summary of AOD studies conducted in Europe, with columns denoting the average/mean AOD value found, the 
peak AOD value found, the time period over which the study was conducted, and a notes column that provides information 
on how the values were calculated. 

Region Study Values Time Period Notes 

Average/Mean Peak 

Europe Xue et al. (2017) >0.5   AVHRR derived 

AOD, cross-

validated with 

AERONET AOD 

Poland Zielinski et al. (2016) 0.114 0.413 1999 - 2003 AERONET AOD 

Sweden Zielinski et al. (2016) 0.089 0.317 1999 - 2003 AERONET AOD 

Belarus Zielinski et al. (2016) 0.224 0.557 1999 - 2003 AERONET AOD 

Switzerland Nyeki et al. (2012) 0.025 – 0.068 0.23 1995 - 2010  

Germany Nyeki et al. (2012) 0.104  1995 - 2010  

AOD levels in Europe remain fairly low. Spatially, Xue et al. (2017) did find variations, with low values 

being reported in the mountainous regions of the Alps, and high values of 0.3 being found in the 

industrialised areas of Hungary, Croatia, and the Po Valley in Italy. Acharya et al. (2021) used both 

MODIS and AERONET to find mean AOD values of 0.2-0.3 in Eastern Europe, and values of <0.2 in the 

West, with Meier et al. (2012) concurring. Temporally however, Xue et al. (2017) did not find 

significant annual changes, with AOD remaining under 0.2 for the majority of the continent. 

However, there were seasonal variations between the spring and summer months and winter. AOD 

levels have also been seen to vary temporally when there is a large environmental event in Europe, 

such as a wildfire. Zielinski et al. (2016) found that AOD levels peaked in Eastern Europe during the 

August 2002 wildfires, with fine particles being dominant and that meteorological variables such as 

slow wind speeds exacerbating these conditions. Meanwhile Nyeki et al. (2012) found a peak value 

of 0.23 after the 1991 Pinatubo eruption. A noteworthy observation was that altitudinal differences 

had an effect on AOD as it changed how the planetary boundary layer and other meteorological 

conditions impact AOD. This observation was found to be statistically significant at the 95% 

confidence level at three different sites, likely due to changes in relative humidity and atmospheric 

circulation (Bian et al., 2009; Chiacchio et al., 2011). Mishchenko and Geogdzhayev (2007) found a 

significant decrease of ~0.024 per decade over most of Europe, which de Meij et al. (2012) agreed 

with.  

1.3.3. North America  
Air pollution levels in North America are comparable to ones found in Europe. Wang et al. (2003) 

noted that unhealthy pollution levels have occurred in the US, as stagnant air resulting from a 
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northern high-pressure system and a southern low-pressure system accumulated in the Ohio and 

Mississippi river valleys provided the best conditions for haze accumulation. Bauer et al. (2016) 

found that anthropogenic sources contribute 60% of PM2.5. This study also found that the Eastern US 

has annual mean concentrations above 14 μgm−3 with agriculture being responsible for about half of 

this value. Food production produces the same amount as all other human activities combined such 

as motor vehicles, and approximately half of PM2.5 in eastern US is inorganic and primarily 

ammonium, nitrate, and sulphate. 

The US has also put in place air pollution control measures. Huang et al. (2018) noted that since the 

Clean Air Act was passed in 1970 and amended in 1977 and 1990, concentrations of PM2.5 have 

reduced by 37% from 1990 compared to 2015. Total emission rates have decreased by 78% since 

1970 (US EPA, 2021). 

1.3.3.1. PM2.5 

Wang et al. (2003) looked at air pollution in the US. This study found that the majority of PM2.5 

values were around 20 μgm−3, with around 20% of the PM2.5 values being greater than 40 μgm−3. This 

study also found diurnal changes in the concentration of PM2.5, with a sharp increase from 6-8 AM 

each day, which then declines until it begins to rise after 2 PM. This appears to be due to traffic flow 

patterns and changes in the boundary layer, as solar heating causes PM2.5 concentrations to rise. Liu 

et al. (2004) found the range of PM2.5 to be from 4.72 to 20.51 μg m−3 with the mean being 10.76 μg 

m−3. That is three times less than North China. 

Van donkelaar (2006) found that there was a seasonal maximum in the northern US. Quintana et al. 

(2015) looked at PM2.5 in California and found that there were higher PM concentrations in the 

winter than in the summer. The topography of the region affected PM2.5 concentration by having a 

low atmospheric mixing height. Meanwhile, south-eastern concentrations are largely driven by fires. 

1.3.3.2. AOD 

There is not as much literature on American AOD when compared to the vast amount of studies on 

AOD in Asia and Europe, which shows a significant gap in AOD knowledge that requires more 

research. Wang et al. (2003), using MODIS AOD, found AOD values of 0.35 in July to September and 

0.1 in the winter months. Achayra et al. (2021) found that AOD in the Eastern US was around 0.1-0.2. 

1.4. Importance of Studying Atmospheric Aerosol Pollution 

1.4.1. Public Health 
PM2.5 is related to both morbidity, which is when a population suffers from a disease but does not 

die from it, and mortality, where a population does die from a disease (Kan and Chen, 2004). PM2.5 

can embed itself both in the respiratory system and pulmonary alveoli and cause inflammation. This 

leads to oxidative stress and, in some cases, causes the release of antigens that are responsible for 

immunodepression (Ortiz et al., 2017; Peters et al., 2001). Hence, there would be a rise in the 

incidence of non-communicable diseases (NCD’s), which are diseases that cannot be spread from 

person to person. Svendsen et al. (2007) demonstrated this in a paediatric study, showing that 

muted responses from immunoinflammatory biomarkers alongside an increase in PM2.5 led to 

reduced pulmonary function, leading to large increases in bronchitis, pneumonia, severe asthma, 

some allergies, and cardiovascular diseases such as chronic obstructive pulmonary disease (COPD) 

(Dutheil et al., 2020; Giannakis et al., 2019; Ortiz et al., 2017). PM2.5 has also been classified as a 

carcinogen, and exposure to high levels can result in multiple forms of cancer (Loomis et al., 2013; 

Burnett et al., 2014). Additionally, PM2.5 has been found to be responsible, in some cases, for kidney 

disease, diabetes, and abnormal neurological development of children (Brook et al., 2008; Freire et 

al., 2010). Exposure to PM2.5 may also exacerbate already existing mortality issues. Contincini et al. 
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(2020) found that lethality from COVID-19 was much higher in the polluted regions of Italy (12%) 

compared to the average (4%). Tarin-carrasco et al. (2019) found that short and long-term exposure 

to PM2.5 can be reversible in as short a period as a year, as the human body can heal partially once 

exposure ends. 

The Global Burden of Disease study estimates that there were 3.2 million premature deaths in 2010 

that could be attributed to PM2.5, or 5% of all global premature deaths (Lee et al., 2015; Lelieveld et 

al., 2015; Giannakis et al., 2019). In contrast, Dutheil, Baker and Navel (2020) estimated that 4.6 

million people die each year from air quality related diseases, which is lower than the value the 

World Health Organisation gave in 2014 that 7 million people died prematurely in 2012. Chen and 

Bloom (2019) found that air pollution was linked to 18.1% of deaths related to NCD’s in 1990 and 

13.1% in 2015. China has the highest rate of PM2.5 related deaths per year at 1.36 million, or 4000 

deaths per day, which is an order of magnitude higher than the deaths from HIV/AIDS or road traffic 

accidents (Lelieveld et al., 2015; WHO, 2014). In the US there are around 160,000 PM2.5 related 

premature deaths, whilst in Europe studies estimates there are around 400,000 premature deaths 

per year (Im et al., 2018; Tarín-Carrasco et al., 2019; Giannakis et al., 2019; Lelieveld et al., 2015). 

Hence, exposure to ambient particulate matter pollution has been named one of the top 10 leading 

global risk factors for disease. Current research suggests that reducing PM2.5 emissions will have a 

significant impact on mortality (Lee et al., 2015; Tarin-carrasco et al., 2019), with Im et al. (2018) 

finding that 54,000 and 27,500 premature deaths in Europe and the USA respectively could be 

avoided if global anthropogenic emissions decreased by 20%.  

The literature differs on the number of deaths that can be attributed to air pollution as well as 

general mortality rates. Tarin-Carrasco et al. (2019) identified that this may be due to issues 

quantifying the number as spatio-temporal variations, differences in lifestyle habits, and the 

composition and relative toxicity of pollutants all differ throughout the models used in studies. 

Additionally, multiple studies consider the WHO threshold of 25 μgm−3 for their morbidity and 

mortality rates, where the PM2.5 values below this threshold are assumed ‘safe’ and are often 

discarded. Ortiz et al. (2017) stated that this may be a fallacy, where there is no safety threshold as 

PM2.5 exposure has a linear effect on mortality and up to 90% of mortality occurs below this 

concentration. Additionally, Giannakis et al. (2019) made clear that determining a mortality rate 

estimate needs to consider factors outside of just a general population, including population density 

and the non-linearity of exposure functions that occur when regions have low reference pollution 

rates compared to regions with elevated background levels, for example Scandinavian countries 

have a larger increase in mortality from a small rise in pollution levels, especially when compared to 

an area like Greece. Im et al. (2018) noted that studies that look at public health have not studied 

individual particle species such as purely carbonaceous PM, differences such as age, gender, 

ethnicity, and behaviour were not considered, and that exposure response functions often only 

consider urban background levels. There is also a lack of studies in certain regions, with Lim et al. 

(2022) finding that of 140 health related PM2.5 exposure studies, 49 were conducted in Asia, 45 in 

North America and 29 in Europe, with a noticeable research gap in North Africa, West Asia and 

Oceania. 

1.4.2. Economy 
Coupled with the effects on public health, poor air quality can have a devastating impact on the 

economy. Chen and Bloom (2019) detailed this process: an unhealthy population equals low 

productivity, particularly affecting school attendance and labour supply. This is referred to as the 

morbidity effect, where people suffer from a disease which does not kill them and their contribution 

to economic output decreases, such as decreasing the amount of time they can work in a day, being 

less educated due to not being able to attend school regularly and having to retire at an earlier age 
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due to poor health (Liu et al., 2019). In addition, there is also the mortality effect, when working age 

individuals die from a disease and there is economic loss from the loss of human capital, and the 

treatment cost effect, when households need to use a significant portion of their savings to cover 

out-of-pocket treatment costs. Accompanied by governments needing to increase investments into 

NCD treatments to deal with a rising chronically ill population, poor air quality can lead to massive 

economic fallout. 

There are multiple methods to calculate the economic losses associated with air pollution, but one 

of the most common is to attribute a financial value for a single person. This figure, known as the 

value of a statistical life (VOSL), is based on the amount of money a society is willing to pay (WTP) in 

order to prevent a premature death (Carvour et al., 2018). The VOSL is often estimated by observing 

the risks people are willing to undertake and how much they should be paid for performing them, 

considering factors such as wages, the dangers present in a job, future earnings, life expectancy etc. 

Carvour et al. (2018), for example, assigned a value of approximately $8 million to each air pollution 

attributable death in Texas, USA. VOSL is study region specific, as it is dependent on an individual’s 

wage and is affected by income inequalities, and often appears as a probability where a maximum 

value of 1 represents certain death of an individual (Kim et al., 2019).  

In China, the total economic losses due to NCD’s is estimated to be $1137 billion from 1990-2030, 

with air pollution accounting for 0.72-10% of regional GDP loss depending on the study site, with 

cities such as Shanghai seeing a loss of 1.03% of GDP, or US$624.4 million (Chen and Bloom, 2019; 

Kan and Chen, 2004). The economic impacts of air quality were EUR300 billion and EUR145 billion 

per annum in Europe and the USA respectively and is expected to increase by 17% by 2100 (Im et al., 

2018; Tarin-Carrasco et al., 2019). Im et al. (2018) additionally quoted the OECD (2014) study that 

found that air pollution costed the member states a total of $1.57 trillion in 2010, and that 89% of 

air pollution costs are attributed to PM2.5. There are also specific regional studies. Tian and Chen 

(2007) found that Ontario was burdened by CAN$9.6 billion in health damages per year. Kim et al. 

(2019) found that South Korea was predicted, out of all the OECD members, to suffer the worst 

economic damage. For these values, Kan and Chen (2004) found that premature deaths accounted 

for 82.9% of the total costs, with the cost of chronic respiratory diseases being the second biggest 

contributor.  

1.4.3. Radiation and Climate  
Aside from the impacts that aerosols can have on society, there are significant environmental effects 

as well. As mentioned previously, aerosols play a significant role in the Earth’s energy budget and 

can scatter and absorb shortwave and longwave radiation from the sun, and a change in aerosol 

concentration can cause both direct and indirect radiative forcing. This can offset warming in some 

cases (Xue et al., 2017) or exacerbate it in others (Zielinkski et al., 2016). For example, by reflecting 

solar radiation, aerosols cause less solar radiation to hit the surface, which would cool the surface. 

Conversely, if the radiation is absorbed, then a warming effect on the surface will be observed. 

Radiative forcing can also reduce solar irradiance, prevent aerosols from being removed from the 

atmosphere or disperse pollutants further, and cause changes to meteorological effects such as 

temperature or rainfall patterns (Sahu et al., 2020; Rosenfeld et al., 2002).  

Zhang, Wen and Jang (2010) found that there was a reduction of solar radiation by -9.1%, or 

11.3Wm-2, in January 2001 purely due to the aerosol-radiation interactions. These numbers increase 

to -16.1% and 39.5Wm-2 for July 2001. Associated with these reductions is the decrease of near-

surface temperatures, ranging from 0.16 C̊ to 0.40 C̊, and the reduction of the planetary boundary 

height layer by up to 24%, or 40-200m (Yang et al., 2020a). The IPCC (2013) report found that there 

was a negative effect on direct radiative forcing between -0.9 and 0.1Wm-2, with an indirect cloud 
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albedo forcing between -1.8 and -0.5Wm-2. Aerosols also have a direct impact on UV radiation 

(Torres et al., 2007; Graber and Rudich, 2006)  

Our knowledge of radiative forcing due to aerosols is limited, however. It is difficult to quantify the 

mixing of aerosols in the planetary boundary layer, as well as the impact meteorological conditions 

have. These factors are equally as difficult to model (Petelski et al., 2014), and this uncertainty is a 

large part of why global climate change estimates continue to have large variations (Dubovik et al., 

2019).  

1.5. Purpose of Study 
The previous sections have established the importance of measuring the concentrations of aerosols, 

namely PM2.5, and how they vary spatially and temporally. This is in order to study the societal and 

environmental impacts of aerosols. Additionally, examples of aerosol studies were presented to 

show current ranges of PM and AOD in certain regions. The tables presented in these sections note 

the method that was used in order to measure the aerosol concentrations in each study, which will 

be explored further in future chapters. There are a multitude of different methods that can be used 

to derive aerosol concentrations, each with their benefits and limitations. PM2.5 can be measured in-

situ in ground measuring stations, whilst AOD is usually algorithmically derived from remote sensing 

instruments, such as ones found on satellites. Due to this, a lot of PM2.5 datasets have limited spatial 

resolution due to the instruments on the ground only being able to measure the ambient aerosol 

concentration in the immediate proximity of the ground station.  

To improve the spatial resolution of PM2.5 datasets, multiple studies have identified the correlation 

between PM2.5 and AOD (Wang & Christopher, 2003; Strandgren et al., 2014; Shi et al., 2018; Ma et 

al., 2014). The temporal continuity and spatial coverage of remotely sensed AOD datasets makes its 

retrieval particularly valuable for PM2.5 estimation, as strong correlations have been identified. AOD 

is an effective proxy for PM2.5 when the particles are distributed evenly in the lower atmosphere 

(van Donkelaar, Martin and Park, 2006). One of the big limitations is that a lot of the current 

research tends to use the same instruments, especially AOD studies. This can be seen clearly in the 

tables presented earlier in the chapter, where a large majority of AOD studies have derived 

measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS), which is 

onboard NASA’s polar-orbiting satellite TERRA. MODIS datasets have frequently been applied to 

improve estimates of PM2.5, especially when PM2.5 ground monitors are not available. MODIS has 

had a mixed degree of success in estimating PM2.5, with 10km, 3km and 1km spatial resolution 

products available. However, MODIS has a limited lifespan and has outgrown its expected operation 

period (Yao et al., 2018, Schneider et al., 2019). Henceforth, we will need to consider using new 

instruments in order to continue vital air quality research. This thesis will look into the possibility of 

the SLSTR instrument onboard Sentinel-3 as an alternative to MODIS. 

1.5.1. Why Sentinel? 
The aim of this thesis is to continue research into the linear relationship between ground measured 

PM2.5 datasets and satellite derived AOD. Whilst well researched there is still a lot of uncertainty in 

modelling PM2.5 from AOD, namely from how aerosols are retrieved from remotely sensed datasets 

and how AOD is calculated algorithmically. Additionally, there may be constraints with the orbit, 

design, and geometry calculations of the instrument. Henceforth, the suitability of a particular 

instrument for AOD and PM2.5 studies must be carefully observed. 

The European Commission’s Copernicus Programme, which is an Earth Observation scheme, has 

launched the Sentinel-3 mission. This mission has been designed for the long-term collection of high-

quality ocean, land and atmospheric measurements. One of the main objectives of the mission is to 
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measure atmospheric conditions over the sea and land with a high degree of accuracy and reliability 

(Berger et al., 2012), in order to continue the datasets of the Environmental Satellites (ENVISAT) 

Advanced Along-Track Scanning Radiometers (AATSR) which have been discontinued. Sentinel-3 

comprises of two satellites. Sentinel-3A was launched on the 16th of February 2016 and Sentinel-3B 

was launched on the 25th of April 2018. The two satellites operate simultaneously in orbit, but with 

180 ̊dephasing. The instrument that captures AOD is the Sea and Land Temperature Radiometer 

(SLSTR).  

Even though it has been running since 2017, there is little to no literature using Sentinel 3a AOD. 

Henceforth, this thesis will be examining whether the SLSTR instrument onboard Sentinel-3a is 

suitable for linear regression studies, or even as a replacement for MODIS. In order to do so, we will 

be comparing linear regression graphs against an instrument that has been well established in air 

quality research, AERONET, which is a ground monitored AOD dataset.  

1.5.2. Aims and Objectives 
The aim of this thesis is to determine if Sentinel-3a AOD could be used to estimate PM2.5.  

The objectives are to: 

1. Create monthly aggregated PM2.5 datasets, Sentinel-3a AOD datasets and AERONET AOD 

datasets. 

2. Create linear regressions graphs of Sentinel-3a vs. PM2.5 and AERONET AOD vs. PM2.5. Linear 

regressions will be created for the 550nm, as this is the standard wavelength that the 

majority of AOD studies use, 870nm, to see how the correlation differs between the two 

wavelengths, and fine mode AOD wavelengths, so that it can be observed if there is a 

significant difference between the correlations when only finer particles are included in the 

AOD.  

3. Compare the R2, slopes and intercepts to determine the relative performance of AERONET 

and Sentinel-3a.  

1.6. Outline of the Thesis 
In chapter 1 the topic of this thesis has been introduced. The concepts of PM2.5 and AOD were 

defined, as well as showing where current research interests lie. The purpose and goal of this study, 

particularly why Sentinel-3a datasets should be studied, were explained alongside the aims and 

objectives. 

In chapter 2 an in-depth literature review is presented to provide context to this study, particularly 

looking at current spatial PM2.5 and AOD characteristics, and more comprehensive information about 

the effects poor air quality can have. 

Chapter 3 will describe both the methodology and the datasets used in this thesis. Information will 

be given about the data processing, where the data was collected from, which regions were 

investigated and what time periods will be studied.  

Chapter 4 and 5 will present the results of this study and discuss the findings, and chapter 6 will sum 

up and talk about future studies. 
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2. Literature Review 

2.1. Aerosol Measurements 

2.1.1. Particulate Matter 
Whilst PM2.5 is considered harmful at low concentrations, with no lower value where PM2.5 is no 

longer a threat to human health, multiple governments and organisations have implemented 

national and regional standards for PM2.5 classification. The World Health Organisation (WHO) has an 

established PM2.5 limit of 25 μgm−3, and countries such as the US have limits of 35 μgm−3 for 24-hour 

maximum concentrations averaged out over three years (EPA, 2013). Table 5 shows the defined air 

quality levels for the US and the UK, as two examples of how different countries monitor and 

communicate air quality (EPA, 2012).  

Table 5: Left table demonstrates the Air Quality Level classifications for the US, and the right table presents the air quality 
index classifications for the UK. 

 

Conventionally, ground monitoring networks are used to sample and measure the amount of PM2.5 

present in the atmosphere. This often limits the measurements that can be taken, as not only does 

the number and density of stations vary from city to city, and then country to country, but PM2.5 

values can vary massively even between nearby stations. Additionally, there has been an historical 

lack of spatio-temporal coverage of PM2.5 worldwide. Schneider et al. (2020) noted that ground-

monitored network stations in the UK are only concentrated in dense, urban areas, and it was only 

from 2010 onwards that wider measurements became available. Worldwide monitoring using these 

ground-based stations are difficult considering these factors, as one station may not be indicative of 

the average in the area.  

2.1.2. Aerosol Optical Depth 
A high AOD value means there are high aerosol concentrations. Table 6, with credit from Levy et al. 

(2013) demonstrates the relative expected conditions for a range of AOD values.  

Table 6: AOD classification for Air Quality 

AOD Air Quality Condition 

0 Clear  

0.02 Very clean 

0.2 Fairly clean 

0.6 Polluted 

1.5 Heavy smoke/dust 

Daily Mean 

Concentration 

(μgm−3) 

Air Quality Level 

(US) 

 0.0 – 12.0 Good 

12.1 – 35.4 Moderate 

35.5 – 55.4 Unhealthy for 

Sensitive Groups 

55.5 – 150.4 Unhealthy  

150.5 – 250.4 Very Unhealthy 

250.5 - 500 Hazardous 

Daily Mean Concentration (μgm−3) Air Quality Index (UK) 

0 – 11 1 (Low) 

12 – 23 2 (Low) 

24 – 35 3 (Low) 

36 – 41 4 (Moderate) 

42 – 47 5 (Moderate) 

48 – 53 6 (Moderate) 

54 – 58 7 (High) 

59 – 64 8 (High) 

65 – 70 9 (High)  

71 + 10 (Very High) 
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>3 Obscured solar disc 

 

AOD can be measured robustly by both in-situ ground monitors, such as the Aerosol Robotic 

Network (AERONET), or by remote-sensing tools such as satellites or aircrafts. Whilst AERONET can 

give comprehensive hourly datasets, satellite imagery is commonly used due to the large spatial 

coverage it provides. Satellite derived AOD is measured by recording electromagnetic radiation, with 

the observed distortion of radiation observed on a radiative transfer model being converted to AOD 

(Kumar et al., 2007). Examples of instruments that measure AOD remotely include the Moderate 

Resolution Imaging Spectroradiometer (MODIS) onboard NASA’s polar-orbiting satellite TERRA, the 

Medium Resolution Imaging Spectrometer (MERIS) aboard ENVISAT and, most importantly for this 

paper, the Sea and Land Surface Temperature Radiometer (SLSTR) on board ESA’s Sentinel 3-A.  

Satellite sensors looking down at the Earth’s surface will measure backscattered radiation from 

aerosols, clouds, and other atmospheric molecules. Figure 1 shows a simple illustration of a remote 

sensing setup, where 𝜃0 is the solar zenith angle, 𝜃𝑠 is the satellite view zenith angle, and 𝜑 is the 

relative azimuth angle.  

 

Figure 1: A simple illustration of a remote sensing setup (Kokhanovsky & de Leeuw, 2009). 

The observed reflectance consists of backscattered solar radiation, direct and diffuse radiation that 

the satellite sensor directly receives, and direct and diffuse radiation that the satellite sensor 

diffusely receives after passing through atmospheric molecules. Depending on how atmospheric 

aerosols are backscattered, the aerosol retrieval and spectral signals will be different. Different 

wavelengths of radiation and view angles need to be utilised in order to estimate the aerosols. Most 

aerosol retrieval schemes return spatially varying estimates of AOD at the main parameter, with the 

main challenge of satellite aerosol retrieval after cloud filtering is the separation of aerosol scattering 

and land surface reflectance, especially over bright surfaces.  

The majority of available aerosol retrieval datasets are from instruments that have single-view 

sampling. These views rely on a priori knowledge, or theoretical deductions, of the spectral 

properties of the surface in order for an algorithm to separate the aerosols and the surface 

contributions. The retrieval algorithms, and the choice there of, are the main sources of uncertainty 

in AOD measurements. Multiple methods have been utilised in the past, including dark target 

retrieval; where patches of dark vegetation are identified, as there are known spectral properties, 
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that can then be used to derive aerosols over these targets. Meanwhile, other instruments employ 

spectral mixing algorithms, where a surface spectrum is derived from a linear combination of in-situ 

measurements. Spectra of vegetation and bare soil are taken, and then an algorithm sorts through 

light and dark pixels in order to determine vegetation cover and assumes atmospheric information 

to be constant. Whilst this process will produce good results in areas where the assumptions are 

correct, there may be a large number of uncertainties on a global scale. MODIS is an example of a 

single-view instrument that uses an operational algorithm with dark target retrieval. Whilst MODIS 

has a higher global daily coverage, due to its larger swath width, there are disadvantages. There is a 

low number of MODIS observations over bright surfaces, such as cities or agricultural areas, such as 

the city of Hamburg in northern Germany.  

These uncertainties can, however, be reduced by using an instrument that has multiple views. Dual-

view methods show robust retrievals for both bright and light surfaces, a notable advantage over 

instruments such as MODIS. In the along-track direction, the shift in the observation scene as the 

satellite orbits causes the two viewing observations to have juxtaposed scenes at ground level, 

referred to as the parallax effect. This parallax effect is used to find aerosol layer height. Multiple-

view angle approaches do not require any a priori information of the spectral surface or surface 

albedo, and the observation capability enable the properties of the Earth’s surface to be better 

characterised. This allows top of the atmosphere (TOA) radiance to be separated into surface aerosol 

and aerosol scattering. SLSTR, which is onboard Sentinel-3, is one such example of a dual-view 

instrument and differs in terms of aerosol retrieval algorithm in comparison with MODIS.  

2.1.2.1. SLSTR onboard Sentinel-3A AOD 

The Sentinel-3 satellites have a near-polar, sun-synchronous orbit, crossing the equator at 10:00 

mean local solar time. On board both Sentinel-3a and Sentinel-3b are the SLSTR instruments, which 

are dual-view conical imaging radiometers that are, as previously mentioned, evolved from the 

AATSR sensors. Being an along-track scanning dual-view instrument means that the same scene is 

measured twice. Compared to the AATSR sensors, SLSTR has an extended swath width of 1420km in 

nadir view, and a 750km swath in the off-nadir or oblique view, with a 55 ̊zenith angle. Figure 2 

shows a simple illustration of SLSTR’s dual-view configuration. The SLSTR instruments have a mean 

altitude of 815km.  The combination of the two satellites allows for global revisit times of 0.9 days at 

the equator, or 1.9 days with only one, with a 27-day repeat orbit and a 4-day sub-cycle. There are 

385 orbits per cycle. The retrieval of aerosols is exclusively achieved in the daytime, with only solar 

zenith angles lower than 80 ̊considered. SLSTR collects reflectance data in nine spectral bands in the 

0.5–12 μm spectral range, detailed in table 7.  
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Figure 2: Schematic view of SLSTR dual-view configuration (Donlon et al., 2012) 

Table 7: Wavelengths for the SLSTR instrument 

Channel Wavelength (nm) Bandwidth (nm) 

1 554 20 

2 659 20 

3 868 20 

4 1375 20 

5 1613 60 

6 2255 50 

7 3742 398 

8 10854 776 

9 12022 905 

SLSTR aerosol retrieval is derived from multi-angular observations, using a linear weighted 

combination of a geometry method, which combines the dual-views, and a spectral method that 

derives the spectral reflectance of each view. As discussed previously, instruments with multiple 

view-angles allow for a more robust retrieval of aerosols, even over bright surfaces. The best AOD 

performance, using the 550 nm wavelength band, is obtained mostly on the half Eastern side of both 

the nadir and oblique swaths for all latitudes in the winter months, and the southern latitudes for 

the summer oblique swaths. 

SLSTR aerosol retrieval is of variable quality, with preliminary regional validation with AERONET 

showing high correlations over polluted areas, with a multitude of factors that can cause 

uncertainties when deriving AOD. Aerosol scattering variability represents the greatest uncertainty 

in the derivation of surface reflectance in remotely sensed datasets, the magnitude of which 

increases with view angle. One of the most significant challenges of dual-view sensors is that due to 

the limit of two views there will only be a certain range of scattering angles no matter what 

orientation the satellite is in. This means that some areas of the Earth will always be measured with 

backscattering, whilst other areas will have both backscattering and forward scattering samples. Out 

of the two views there are higher uncertainties in the oblique backscattering direction, so 

corrections need to be applied when using the off-nadir view of SLSTR datasets. Additionally, 

corrections need to consider both geometry and spectral constraints to ensure overall quality. SLSTR 

datasets have higher uncertainty over urban soils and unfavourable geometry due to inaccurate 
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spectral coefficients. Unfavourable geometry tends to occur in the north during the summer and the 

western side of the nadir and oblique swaths in the winter.  

The datasets used in this study may also have significant limitations. There may be artificially low 

AOD measurements due to incorrectly screened night-time granules. Unfiltered cloud residuals, on 

the other hand, may lead to high AOD outliers. The SLSTR datasets used in this study may not have 

been comprehensively validated by EUMETSAT before they were released on open access, as the 

data was processed before the EUMETSAT validation report was published. SLSTR AOD is limited in 

terms of spatial resolution because of the smaller scan width (Handschuh et al., 2022). 

Over land, the algorithm employs a parameterised model of the surface angular anisotropy and uses 

the dual-view capacity to allow surface spectral reflectance without assumptions. The key features 

of the algorithm are summarised in chapter 3 and are expanded upon in detail in the Algorithm 

Theoretical Basis Document (North and Heckel, 2019).  

2.2. Current Research 

2.2.1. Correlation 
PM2.5 and AOD correlations can have massive variations, particularly spatially, and the values found 

are sometimes not statistically significant. This is because the accuracy of the correlation depends on 

the aerosol source region, and chemical characteristics (Kumar, Saxena and Yadav, 2011). The 

studies performed are representative of this, as linear regression functions and their associated 

correlation coefficients displayed significant variations depending on the study region. This is due to 

the differences between PM2.5 and AOD in terms of what aerosols are included in their datasets. 

PM2.5 represents the aerosol mass at the ground, and additionally often only measures the dry mass 

concentration of fine particulate matter, excluding the presence of water vapour and coarser 

particles such as pollen (Yang et al., 2019). AOD, on the other hand, represents the whole 

atmospheric column and contains all types of aerosols, as it looks at the total atmospheric column’s 

radiation extinction ability and water vapour increases the value of AOD. Hence, additional factors 

such as relative humidity, aerosol source, planetary boundary height and vertical distributions may 

need to be considered (Zheng et al., 2017; Zhang and Li, 2015). 

Satellite-derived correlations of PM2.5 and AOD have the potential to measure PM variability with a 

much higher spatio-temporal resolution and coverage than ground stations (Schneider et al., 2020). 

A significant amount of the literature shows strong correlations between PM2.5 and AOD (Wang and 

Christopher, 2003). From these studies, linear regression is the primary method used, and has been 

found to be more accurate than using daily mean values as a comparator (Kong et al., 2016).  

Yang et al. (2019) found a high correlation in the densely populated BTH and Chengyu regions of 

China, which have high concentrations of fine particles due to predominantly urban industry 

emissions. Schneider et al. (2020) found that their overall cross-validated R2 values ranged from 

0.704 to 0.821, with an average of 0.767. There was an average prediction error of 4.042 μgm−3. 

These values line up well with other studies, with Shi et al. (2018) using land use regression 

modelling to find an uncalibrated correlation of R2 = 0.07 and a calibrated correlation of R2 = 0.72, 

Yang et al. (2019) finding a R2 values of 0.89 in 2014 and 0.73 in 2017, and Wang et al. (2019) using 

the linear mixed effect model and MODIS AOD discovering a strong correlation of R2 = 0.78 over BTH. 

Kong et al. (2016) used linear regression to compare MODIS AOD and PM2.5 in Beijing, China and 

found that the linear regressions varied from R2=0.58 to R2=0.55 to R2=0.64 in the city, suburban 

region, and background respectively. All correlations were positive, with slopes ranging from 20 to 

120 in the regression functions and the RMSE varying from 8% to 33% in urban regions and the 

background respectively and the study found that the PM2.5 values that could be retrieved by these 
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correlations were more rational when taken from polluted areas. Other studies looked at the 

correlation in terms of changes, with Kumar et al. (2007) finding that a 1% change in AOD explained 

0.52±0.202% and 0.39±0.15% of PM2.5 changes monitored within ±45 and 150 min intervals of AOD 

data, which is a significant positive association. Kaskaoutis et al. (2010) used linear regression with 

MERIS AOD and discovered that the 560nm band was found to be the best correlated wavelength, 

with the highest slope and the lowest intercept. This study posits that the strong positive correlation 

between satellite derived AOD and ground based PM2.5 means that the majority of aerosols were 

found within the planetary boundary layer and was statistically significant at 95% confidence level. 

Conversely, Standgren et al. (2014) found negative correlations when investigating the correlation 

between AOD and PM2.5 in the United States, particularly in Salt Lake City. This study observed the 

wildly differing correlations even within the United States and found that it was heavily dependent 

on both surface and atmospheric conditions. Atmospherically elevated haze from fires and dust 

were attributed to being one potential cause for the negative correlation, as satellite derived AOD 

only describes the total measurement within an atmospheric column, with no vertical variation. Fine 

mode fraction is another potential cause, where the low fine mode fraction value found in Salt Lake 

City may indicate coarse particles found in the AOD dataset that is not in the PM2.5 data. Yang et al. 

(2019) also found low concentrations in coastal areas due to this reason, because the AOD types in 

these regions are mainly sea salt, dust, and water vapour, when the main sources of PM2.5 come 

from fossil fuel emissions.  

This latter point demonstrates that the correlation between PM2.5 and AOD is affected by many 

different factors, as previously discussed. PM2.5 and AOD sometimes have weak correlations when 

the meteorological conditions are different. Yang et al. (2019) found that high humidity increased 

the water content of the aerosols, which only increased AOD values, and Kim et al. (2019) found that 

as relative humidity decreased so did the correlation. Shi et al. (2018) noted that meteorological 

variables need to be considered, both building upon the previously discussed points, and additional 

ones such as seasonal changes and microclimates. Standgren et al. (2014) found poor correlations 

except for July, which was most likely due to better atmospheric conditions such as a lower relative 

humidity and a higher boundary layer height combined with pollutant events such as wildfires and 

smoke.  

These factors lead to significant spatial variations. Van Donkelaar (2006) found a wide range of 

correlation coefficients between different cities, with stronger values of 0.67 and 0.35 in Toronto, to 

a weak correlation in Washington of 0.09 and -0.11 in MODIS and MISR respectively. Tian and Chen 

(2007) however found massively different correlation coefficients between stations within the same 

city, with correlations of -0.119, 0.235, 0.748 and 0.637 at Toronto East, West, North and South 

respectively. It should be noted that the major industrial pollution sources are found in the East and 

West. Lalitaporn and Mekaumnuaychai (2020) also found that the regression analysis performed 

better over oceans than land, with correlation coefficients of 0.72-0.83 and 0.57-0.79 respectively. 

Standgren et al. (2014) discovered negative correlations at Salt Lake City and Phoenix, which were 

likely due to atmospherically elevated haze. The negative correlations may also be attributed to the 

fine mode fraction, with Salt Lake City having coarser particles, such as salt particles from the nearby 

salt flats, than Atlanta, one of the other study sites that had a positive correlation. This notion that 

correlations can be weaker in coastal areas is backed by multiple studies (Yang et al., 2019; Xin et al., 

2016). Standgren et al. (2014) also notes that the correlations increase with increased AOD spatial 

resolution yet decrease with an increasing scale of the study region, and a low variability of AOD can 

lead to reduced correlation especially at a higher spatial resolution where uncertainty is increased. 

Shi et al. (2018) validated this notion, showing that distinct variations between districts in ground 

measured datasets can heavily affect the correlation. With an increased study area, the variations in 
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the PM2.5 datasets would average out, and this would decrease the correlation, but with a more 

specific study with high resolution data, the correlation would be stronger.  

Additionally, temporal variations occur in the correlations. Tian and Chen (2007) found their study’s 

correlation is far stronger in summer than winter, with a summer correlation of 0.575 and a winter 

correlation of 0.103. Yang et al. (2019) and Paciorek et al. (2008) backed up this claim. Kong et al. 

(2016) however found the opposite of this phenomenon, with the summer minimum value being 

half of the winter maximum value, which Xu et al. (2021) and Kim et al. (2019) agreed with. There 

are also variations within the day. Xu et al. (2021), who studied the correlation in 345 cities and 14 

urban agglomerations, found the correlation had the strongest relationship at noon and in the 

afternoons, and was markedly stronger in the day than at night.  Standgren et al. (2014), using 

MODIS AOD, also found seasonal variability, with the lowest correlation coefficient of 0.143 

occurring in the winter and the highest of 0.587 occurring in the summer. 

There have been many studies that have looked at improving the correlations and reducing the 

errors found. Xu et al. (2021) found that the correlation is stronger between PM2.5 and fine mode 

AOD and is even stronger when daily measurements are used. Xin et al. (2014) agreed with this, as 

through their study comparing the correlations of both ground and MODIS AOD to PM2.5, which 

found the same correlation coefficient of 0.75, they discovered the main cause of error was monthly 

aggregation and seasonal variations.  

Whilst there is a knowledge gap present in correlations between satellite derived AOD data, such as 

from Sentinel-3A, and ground measured PM2.5, due to a current lack of studies in this area, there has 

been research made into correlations between other satellite-derived AOD and PM2.5. There has 

been a wide variety of correlations found between studies.  

2.2.2. Current Limitations 
Recent research has highlighted the need for an improved understanding of atmospheric processes. 

Wang et al. (2020) noted that the role of chemistry and meteorology was not understood in looking 

at the spread of emissions and aerosols, with Zielinski et al. (2016) noting that the lack of direct 

quantification of global distribution and turbulent mixing causes a lot of uncertainty, and with 

Conticini et al. (2020) looking at how this would affect the stagnation of pollutants. Wang et al. 

(2003) inferred that during cloud-free conditions, which are often needed in satellite observations, 

the boundary layer is well-mixed, which may result in stronger correlations.  

There are also not many research groups that run complex atmospheric chemical models, hence 

small-scale variability is still difficult to model (Zielinski et al., 2016., Sheel et al., 2019). Wang et al. 

(2019) also found that there has hardly been any research into combining ground measurements, 

atmospheric chemical models, and satellite observations. The correlation between these has not yet 

been fully explored, with studies such as Schneider et al. (2020) finding limitations in the sense that 

satellite-derived AOD does not represent the surface values that ground-measurements would give, 

but the total atmospheric column concentrations. The scarcity of PM2.5 monitoring has also 

contributed to lower correlations. Models are often generalised spatially, and the selected location 

of ground-based stations may not be fully representative of the full study location. Standgren et al. 

(2014) noted that the relationship between AOD and PM2.5 is still poorly misunderstood when 

considering spatial resolution. Whilst a higher spatial resolution allows for a much larger 

investigation, errors such as cloud contamination can have a much larger effect on the AOD quality.  

2.3. Conclusions 
This review of recent and important literature demonstrated the importance of studying air quality. 

This is to protect public health, the economy, and prevent environmental changes. Regional and 
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seasonal variations were also repeatedly found, depending on where the study took place, the 

spatial resolution of their datasets, whether meteorological parameters such as relative humidity 

and temperature were factored in, and what timescale was considered. Something that is also of 

note is that most of the literature sampled used MODIS, with only a few using other datasets such as 

AERONET. No literature using Sentinel-3a AOD was found. This reinforces the motivation for this 

study, to investigate whether Sentinel-3a is comparable to AERONET correlations at all. 
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3. Methodology 
To achieve the goal of this thesis, which is to compare the correlations of PM2.5 and AOD using two 

different AOD retrieval methods, several different datasets have been collected and used. This 

research paper uses secondary data collected from January 2017 to December 2020 for the monthly 

averages. The rationale for collecting data for the 2017 to 2020 period was to have at least three 

stable years of air quality data. Due to the COVID-19 pandemic, there were fluctuations in air quality 

during 2020, particularly in the first few months of the year. 2020 was henceforth included within 

the study period in order to determine how sensitive both Sentinel-3a AOD datasets and the 

subsequent PM2.5 correlations are to air quality changes. 

3.1. Study Regions 
This study looked at the correlations between PM2.5 and AOD at the city-scale, meaning that ground 

measured PM2.5 datasets from within certain cities were collated, and correlated against matching 

gridded Sentinel-3a AOD or AERONET stations. The cities needed to have data available for the 

above time periods for PM2.5, Sentinel-3a AOD and AERONET AOD.  

In total, six cities were studied. These are Beijing, Houston, Los Angeles, New York, Mexico City and 

Torino. Four of the cities that were investigated are in North and Central America, one is in Asia, and 

one is in Europe.  

3.2. Satellite Datasets 

3.2.1. Sentinel-3A AOD 
In this study, satellite derived AOD was taken using the SLSTR instrument on board Sentinel-3a. 

Specific details of the SLSTR instrument, including the orbit and spectral bands, are included in 

Chapter 2 of this thesis. Only Sentinel-3a data was used as Sentinel-3b data was launched halfway 

through the study period. Sentinel-3a AOD data was downloaded from the Copernicus Climate Data 

Store (https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-aerosol-

properties?tab=overview). Whilst SLSTR data can have a spatial resolution of 500m, the available 

data from the Climate Data Store is presented on a 1° x 1° lat-long grid, so with a much larger spatial 

resolution than the base imagery SLSTR can provide. This is a known limitation of this study, as a 

larger spatial resolution would be able to show much more variation on a city-scale. However, this 

limitation may be offset by the reduced risk of introducing errors such as cloud screening. A coarser 

resolution may overcome the theoretical advantage if the introduced error in a high-resolution 

dataset is too high. In the dataset used, one pixel would correspond to a city. In order to do a 

correlation with ground-measured PM2.5, as ground-measured PM2.5 only measures the aerosol 

concentration in the immediate vicinity of the station, PM2.5 datasets need to be aggregated across 

the AOD pixel.  

The best performance of SLSTR AOD, using the 550nm band as a reference, is in the southern 

latitudes with oblique swaths. There appears to be a good correlation of SLSTR AOD with MODIS and 

AERONET, with higher correlations seen in more polluted areas such as Asia, Australia, and South 

America, with Europe seeing lower correlations. Whilst the advantages of satellite based AOD 

observations very importantly include global coverage, there are drawbacks. Known limitations of 

SLSTR AOD retrieval include the underestimation of AOD values in areas of low aerosol pollution or 

complex topography, and the overestimation over bright surfaces such as deserts. Cloud coverage 

remains a significant limitation as unfiltered residuals can lead to high AOD outliers, and in some 

cases is the cause of missing data. Unfavourable geometry can also cause high uncertainties and 

positive biases for low AOD values. Dual-view sensors have the additional restriction of having a 

limited scattering angle range, requiring extra calculations so that AOD retrieval remains consistent.  
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3.2.1.1. Algorithm Outline 

The data used was SLSTR-3A for the period 01-07-2017 to 31-12-2020. The data were processed at 

the UK’s Jasmin environmental science data processing facility, with data made available from the 

European Space Agency. The algorithm that was used to retrieve and compile the AOD datasets was 

developed by Peter North and his team from Swansea University (North and Heckel, 2019). The aim 

of the algorithm is to make use of both the angular and spectral sampling available from SLSTR. For 5 

solar retrievals reflective SLSTR bands, using both nadir and oblique views and geometry, location 

and pixel identification information, aerosol optical depth of a reference wavelength will be 

outputted. Additionally, estimates of aerosol fine mode fraction, absorption and spectral 

dependence can also be calculated. 

The algorithm requires screening of input pixels to remove unsuitable pixels. This includes clouds, 

sun glint, snow, and ice pixels. Each pixel that is flagged as being unsuitable is removed, as well as all 

8 of the direct pixel neighbours as they are considered contaminated. Pixels are screened for both 

nadir and oblique views. Then the pixels are aggregated into super-pixels, or a 9x9 grid of pixels at 

500m spatial resolution, with the centre pixel being responsible for parameters such as geo-location 

and geometry. Super pixel resolution is 4.5km x 4.5km. If more than 50% of the pixels within the 

super pixel are considered valid, then the super-pixel will also be valid for AOD retrieval. Then, 

surface reflectance is derived from an atmospheric radiative transfer model in order to gain 

knowledge of surface conditions. Look up tables (LUT’s) are pre-compiled for candidate aerosol 

models, in order to represent a variety of aerosol types. This allows for TOA reflectance to be 

calculated. TOA reflectance is the input to the algorithm, with the resolution of the super pixels 

being appropriate to minimise errors. Surface reflectance is calculated for a given atmospheric 

aerosol model, with AOD being parameterised by value. The data is subject to constraints such as 

geometry and bright surfaces.  

3.2.1.2. Data  

Sentinel-3a datasets were downloaded in netCDF format, and were viewed in Panoply, which is a 

freely-available geo-referenced data plotting tool from NASA Goddard Space Flight Center that 

creates images such as figure 3. Figure 3 shows a monthly average of Sentinel-3a data. 

 

Figure 3: Example image of what Panoply looks like for a monthly average of Sentinel-3a AOD 
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In order to derive AOD from Panoply, we would need to go into the gridded dataset. The Sentinel-3a 

dataset used was a 1° x 1° lat-long grid, meaning that there would be a grid of data to correlate to 

the city being studied. Figure 4 shows what this looked like. 

 

Figure 4: Example image of Panoply 

For each city being studied, a pixel from the lat-long grid was used. The AOD value found in this pixel 

corresponds to the aggregate, average AOD value for this location. Table 8 shows which pixels were 

used to obtain Sentinel-3a AOD datasets, with the latitude and longitude referring to the centre co-

ordinates of the lat-long grid. 

Table 8: Table showing which grids were used to obtain Sentinel-3a AOD data. 

 

3.3. Ground Datasets 

3.3.1. PM2.5 Datasets 
This research paper utilised daily PM2.5 data obtained from a variety of different sources. All of these 

sources appear to be comparable in terms of the instruments used, though may vary slightly in 

accuracy due to the change in location. All of the PM2.5 data, no matter what source, were 

downloaded in an hourly format. The datasets would vary in frequency however, as some 

instruments would not record data for periods of time. Table 4 shows which sources were used to 

gather PM2.5 data. 

Latitude Longitude

Beijing 39.5 115.5

Houston 29.5 -95.5

New York 40.5 -74.5

Los Angeles 33.5 -117.5

Torino 44.5 7.5

Mexico City 18.5 -98.5
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Table 9: Table showcasing the PM2.5 sources 

 

One of the main sources used was openaq.org, which is a non-profit organisation that collates PM2.5 

from multiple governmental sources. Each file is readily downloadable in an excel compatible 

document. For each city, the data from a variety of PM2.5 stations were downloaded and aggregated 

into firstly a city-wide average, and then averaging out the hourly data into monthly data.  

Table 10: PM2.5 stations that were aggregated for this study, and their respective latitude and longitudes. 

Country City 
Location 
ID Location Name Latitude Longitude 

Italy Torino 

IT0470A IT0470A 45.10407 7.69534 

IT2168A IT2168A     

IT1877A IT1877A     

USA 

Houston 

162 
Houston Deer Park 
C3 29.67003 -95.12851 

191 Seabrook Friendship 29.5831 -95.0156 

1220 Galveston Airport C1 29.2631 -94.8564 

186 Houston Aldine C8 29.9011 -95.3261 

New York 

626 Bronx - IS52 40.8161 -73.9022 

928 Jersey City FH 40.72545 -74.05229 

665 Bronx - IS74 40.8147 -73.8867 

662 Division Street 40.7142 -73.995 

857 Fort Lee Near Road 40.85355 -73.9661 

628 Maspeth 40.7269 -73.8933 

Los 
Angeles 847 South Long Beach 33.79222 -118.1753 

Mexico 
Mexico 

City 

2006 FES Aragon 19.4525 -99.086 

1791 Merced 19.4246 -99.1195 

2020 San AgustÃn 19.5329 -99.0303 

1659 Tlalnepantla 19.529 -99.2045 

2054 NezahualcÃ³yotl 19.3919 -99.0281 

1986 
Santiago 
Acahualtepe 19.3502 -99.1571 

China Beijing 

21 Beijing US Embassy 39.95 116.47 

10134 10134 39.8863 116.4072 

9820 9820 39.9289 116.4174 

9087 9087 39.9934 116.315 

Country City 2017 2018 2019 2020 Source Download Source

Australia Sydney JULY-DEC ALL ALL ALL

NSW Department of 

Planning, Industry and 

Environment https://openaq.org/#/countries/AU

China Beijing JULY-DEC ALL ALL ALL

China National Environment 

Monitoring Centre https://openaq.org/#/countries/CN

Italy Torino JULY-DEC ALL ALL ALL

European Environment 

Agency

https://discomap.eea.europa.eu/ma

p/fme/AirQualityExport.htm

Mexico Mexico City JULY-DEC ALL APR-OCT APR-OCT https://www.airnow.gov/

https://openaq.org/#/countries/MX?

page=1

USA Houston JULY-DEC ALL ALL ALL https://www.airnow.gov/ https://openaq.org/#/countries/US

USA Los Angeles JULY-DEC ALL ALL ALL https://www.airnow.gov/ https://openaq.org/#/countries/US

USA New York JULY-DEC ALL ALL ALL https://www.airnow.gov/ https://openaq.org/#/countries/US
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10041 10041 39.9136 116.184 

7589 7589 39.9821 116.3966 

10167 10167 39.9295 116.3392 

9792 9792 39.8784 116.3621 

 

3.3.2. AERONET AOD 
The AErosol RObotic NETwork, or AERONET, is a ground-based network that monitors local aerosol 

properties. Active since 1993, the NASA Goddard Space Flight Centre has a historical record publicly 

available for over 800 sites. AERONET uses sun photometers, which takes measurements every 15 

minutes. AERONET is a robust, long-term, and openly accessible database, which is accessible from 

https://aeronet.gsfc.nasa.gov/cgi-bin/webtool_aod_v3. All the cities used in this study had at least 

one AERONET station present, with Beijing having 5 that were usable, and hence they were averaged 

out. To compare the AERONET AOD values to Sentinel-3a, 870nm and fine mode AOD were 

extracted from the download, and the AOD at 550nm was calculated using the Ångström parameter 

(how AOD changes with wavelength, and is related to particle size).  

3.4. Methods 
After original raw data was downloaded from the respective sites, data was collated into Microsoft 

Excel. Sentinel-3a was manually inputted into an excel document after visualising the netCDF file in 

Panoply, and the PM2.5 datasets and the AERONET datasets were present in a csv file format. Once 

all of the datasets were in an excel file, they were aggregated into monthly values. These were then 

plotted against one another in order to determine the linear regression. Both of the AOD datasets 

are the primary independent variable of this study. 
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4. Results 
In this chapter the results of the thesis will be presented. This chapter is split into two major 

sections. The first section will deal with the aggregated monthly PM2.5 data and the correlations with 

both Sentinel-3a AOD and AERONET AOD for the 2017-2020 period. This section will also look at the 

differences in correlations between the 550nm AOD, 870nm AOD, and fine mode AOD with PM2.5. 

The results will be shown using both tables and scatter plots. The tables contain statistical 

information about the linear regression, such as the R2 value, the slope and the intercept. 

4.1. Monthly Correlations 

4.1.1. Correlation between PM2.5 and Sentinel-3a with comparisons to AERONET AOD 
This subsection will focus on both investigating the performance estimating PM2.5 datasets using 

Sentinel-3a AOD datasets for each of the six cities investigated. Additionally, there will be a global 

scatter plot presented, which is all of the points from the six cities presented onto one graph. This 

subsection will be split by the three AOD wavelengths that were looked at for the monthly 

correlations, showing the linear regression graphs of Sentinel-3a correlations, followed by the 

AERONET correlations. This subsection will end with a comparison table, where the performances of 

each wavelength and instrument will be discussed.  

4.1.1.1. 550nm 

Figure 5 shows the aggregated Sentinel-3a AOD and corresponding PM2.5 concentrations for the 

period July 2017 to December 2020, presented using scatter plots. Examining the global average 

first, there is no correlation between the two measurements, with an R2 value of 0.0036. The linear 

regression model has a slope of -10.483 and an intercept of 21.649, so a slight negative correlation. 

The majority of points are distributed in the bottom-left corner of the graph, with low PM2.5 values 

on the Y-axis that gradually increase with increasing AOD. However, there are numerous outliers, 

particularly in the top-left quadrant, with what would be considered dangerously high PM2.5 

concentrations coinciding with relatively low AOD. There are also a considerable number of points in 

the bottom-right quadrant, with high AOD values measured against lower numbers of PM2.5. What 

this global graph doesn’t show is just how much the correlation varies between cities. The R2 values 

vary from a maximum of 0.2848 in Torino, to a minimum of 0.0273 in Beijing. Interestingly, the 

slopes varied from -94.714 in Torino, to 23.886 in Los Angeles, meaning that the correlation between 

AOD and PM2.5 can be negative. There is no consistent pattern with the slopes and intercept, 

showing that the correlation very much is location specific.  
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In comparison, Figure 6 shows the monthly aggregated AERONET AOD and the correlation against 

PM2.5. The global correlation shows a significantly stronger correlation AERONET AOD and PM2.5 

when compared to the Sentinel-3a correlations, with a positive trend and an R² value of 0.492. The 

linear regression model has a slope of 69.865 and an intercept of 5.79, so a much steeper trendline. 

There is a much higher concentration of points in the very bottom left of the global graph, as it looks 

like AERONET detected lower concentrations of AOD. The best performing correlation was in 

Figure 5: Linear relationship between Sentinel-3a AOD, using the 550nm wavelength band, and PM2.5 for a variety of 
cities. In order, Beijing is upper left, Houston is upper right, Los Angeles is middle left, Mexico City is middle right, New 
York is lower left, Torino is lower right, and a global dataset of all the points of each of the six cities put on a single 
graph is at the bottom. 
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Houston, with an R² value of 0.5115, and the lowest value was found in New York with 0.0177. The 

cities also varied massively in slopes and intercept.

 

Figure 6: Linear relationship between AERONET AOD, using the 550nm wavelength band, and PM2.5 for a variety of cities. In 
order, Beijing is upper left, Houston is upper right, Los Angeles is middle left, Mexico City is middle right, New York is lower 
left, Torino is lower right, and a global dataset of all the points of each of the six cities put on a single graph is at the 
bottom. 

4.1.1.2. 870nm 

Figure 7 shows the correlation between PM2.5 and Sentinel-3A AOD using the 870nm. In these sets of 

graphs, the highest R² out of the six cities is Torino, with a value of 0.3734. Mexico City has the 
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lowest R² value, with 0.004. In terms of the collated global graph, there is a R² value of 0.1495. This 

set of graphs also have a wide variety of intercepts and slopes, with the slopes ranging from Torino’s 

-197.54 to Los Angeles’ 44.261, with Mexico City and New York having almost flat trendlines with 

slopes of 9.6846 and 6.193 respectively.  

 

Figure 7: Linear relationship between Sentinel-3a AOD, using the 870nm wavelength band, and PM2.5 for a variety of cities. 
In order, Beijing is upper left, Houston is upper right, Los Angeles is middle left, Mexico City is middle right, New York is 
lower left, Torino is lower right, and a global dataset of all the points of each of the six cities put on a single graph is at the 
bottom. 
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In comparison, the 870nm AERONET AOD correlations against monthly aggregated PM2.5 show 

similar values. These can be seen in figure 8. The global graph has an R² value of 0.4842, and a strong 

positive correlation. Houston and Torino have the strongest R² values out of the cities present, with 

0.581 and 0.2093 respectively. Houston has a positive correlation and Torino has a negative 

correlation.  

 

 

Figure 8: Linear relationship between Sentinel-3a AOD, using the 870nm wavelength band, and PM2.5 for a variety of cities. 
In order, Beijing is upper left, Houston is upper right, Los Angeles is middle left, Mexico City is middle right, New York is 
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lower left, Torino is lower right, and a global dataset of all the points of each of the six cities put on a single graph is at the 
bottom. 

4.1.1.3. Fine Mode 

Figure 9 presents the aggregated Sentinel-3a AOD and corresponding PM2.5 concentrations for the 

fine mode AOD wavelength band. The global graph, just like the previous global graphs, has the 

majority of points distributed in the lower left corner. There is an R2 value of 0.1499, a slope of 

52.358 and an intercept of 9.1559. The R2 continues to vary massively between the different cities. 

Los Angeles has the highest correlation coefficient here, with an R2 value of 0.3712, a slope of 45.424 

and an intercept of 6.2636. On the other hand, Beijing has the lowest R2 value of 0.004, a slope of -

1.8154 and an intercept of 46.055.  

 

Figure 9: Linear relationship between Sentinel-3a AOD, using the Fine Mode wavelength band, and PM2.5 for a variety of 
cities. In order, Beijing is upper left, Houston is upper right, Los Angeles is middle left, Mexico City is middle right, New York 
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is lower left, Torino is lower right, and a global dataset of all the points of each of the six cities put on a single graph is at 
the bottom. 

Finally, figure 10 presents the correlations between AERONET AOD and PM2.5 for fine mode AOD. 

The global graph has an R2 value of 0.4113, which is stronger than all of the cities presented. The 

second strongest correlation is found in Houston, with an R2 value of 0.2483.  

 

Figure 10: Linear relationship between Sentinel-3a AOD, using the Fine Mode wavelength band, and PM2.5 for a variety of 
cities. In order, Beijing is upper left, Houston is upper right, Los Angeles is middle left, Mexico City is middle right, New York 
is lower left, Torino is lower right, and a global dataset of all the points of each of the six cities put on a single graph is at 
the bottom. 
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4.1.1.4 Comparison 

Table 5 sums up the results of these graphs.  

Table 11: Statistical Table showing the R2 values, the slopes, and the intercepts for the six cities investigated. These are split 
between Sentinel-3a and AERONET 

 

In terms of performance, Sentinel-3a seems to perform at a similar level to AERONET. AERONET, on 

average, outperforms Sentinel-3a in Houston, with R2 values of 0.5115, 0.581 and 0.2483 for 550nm, 

City Instrument R² Slope Intercept

550nm 0.0273 -29.374 50.482

870nm 0.0308 -31.141 50.927

Fine Mode 0.0004 -1.8154 46.055

550nm 0.0233 14.347 40.86

870nm 0.0293 26.56 40.333

Fine Mode 0.0057 6.1729 45.303

550nm 0.2726 13.039 4.9757

870nm 0.3025 25.926 5.1216

Fine Mode 0.2234 14.021 5.1562

550nm 0.5115 27.36 4.5042

870nm 0.581 43.427 4.6462

Fine Mode 0.2483 24.555 5.7509

550nm 0.1519 23.886 8.457

870nm 0.2312 77.261 6.3461

Fine Mode 0.3712 45.424 6.2636

550nm 0.0859 19.477 9.7485

870nm 0.0464 23.925 10.284

Fine Mode 0.1539 29.968 9.4592

550nm 0.2779 20.7 16.247

870nm 0.004 9.6846 20.032

Fine Mode 0.2834 19.632 16.983

550nm 0.0457 18.836 17.809

870nm 0.0025 12.068 20.641

Fine Mode 0.0386 18.035 16.875

550nm 0.0284 6.2208 7.519

870nm 0.0047 6.193 8.1545

Fine Mode 0.0409 7.4518 7.3619

550nm 0.0177 4.6011 8.0147

870nm 0.0084 6.3681 8.1851

Fine Mode 0.0281 5.3767 8.0059

550nm 0.2848 -94.714 43.981

870nm 0.3734 -197.54 45.025

Fine Mode 0.1682 -85.668 39.156

550nm 0.2356 -96.026 41.06

870nm 0.2093 -179.18 39.623

Fine Mode 0.0621 -63.051 33.25

Sentinel-3a

AERONET

Sentinel-3a

AERONET

Sentinel-3a

AERONET

New York

Torino

Sentinel-3a

AERONET

Los Angeles

Mexico City

Sentinel-3a

AERONET

Beijing

Houston

Sentinel-3a

AERONET
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870nm and fine mode AOD respectively, compared to Sentinel-3a’s R2 values of 0.2726, 0.3025, and 

0.2234. However, Sentinel-3a outperforms AERONET in Los Angeles, with R2 values of 0.1519, 

0.2312, and 0.3712, compared to AERONET’s 0.0859, 0.0464 and 0.1539, for 550nm, 870nm and fine 

mode AOD respectively. For each city, the performance of the correlation varied massively. This 

suggests that there is likely a lot more factors in play here that should have been corrected for. One 

such variable could be meteorological factors such as relative humidity or boundary layer height.  

In order to test out if daily aggregation would have a significant impact on the correlation, instead of 

the monthly aggregation, a daily aggregation was made for Beijing and a linear regression graph was 

created for both Sentinel-3a and AERONET AOD. The R2 values, slope and intercepts for both the 

daily and monthly correlations of Beijing are presented in table 6. 

Table 12: Daily vs Monthly aggregation and statistics 

 

What is noticeable is the immediate increase in R2 for both Sentinel-3a and AERONET, with the R2 

going up from 0.0273 to 0.0859 with Sentinel-3a and from 0.0233 to 0.3681 with AERONET. An 

interesting factor here is that the AERONET correlation increased a lot more than the Sentinel-3a 

dataset. This is likely since AERONET is ground based. As AERONET is gathering AOD data closer to 

the ground, where PM2.5 datasets are measured, not only are meteorological conditions likely very 

similar, but there is no estimation of the AOD present in the atmospheric column, and rather the 

surface AOD. It is likely that Sentinel-3a AOD will need corrections. 

  

City Instrument Timeseries R² Slope Intercept

Daily 0.0859 40.783 37.315

Monthly 0.0273 -29.374 50.482

Daily 0.3681 44.986 29.132

Monthly 0.0233 14.347 40.86Beijing

Sentinel-3a

AERONET
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5. Discussion 
Overall, the results presented show that it is indeed possible to correlate Sentinel-3a AOD with 

ground-measured PM2.5. However, the correlations presented in this study are too low to be suitable 

for deriving PM2.5 concentrations. This is most likely due to the coarse resolution of the AOD 

datasets, as it does not allow for the city-wide variability of data between each station to be shown. 

Additionally, aggregating the data monthly and not daily means that temporal variability is retracted 

from the dataset. Higher PM2.5 values between the stations because of the presence of industrial 

factories, or naturally elevated AOD datasets due to the background dust levels, will all be 

aggregated out to their averages with how it was conducted in this study. In future, a higher spatial 

resolution dataset with daily data should be considered.  
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6. Conclusions 
Looking at the R2 values of both the Sentinel-3a AOD and AERONET AOD, there is a similar 

performance in how the correlation works. For the 2017-2020 period, there are decent correlations 

between Sentinel-3a and PM2.5, which is promising. The best R2 created from Sentinel-3a is the 

870nm Torino study at 0.3734, with the fine mode AOD for Los Angeles not far behind at 0.3712. 

However, when the Beijing daily aggregate correlation was presented, AERONET correlations 

outperformed Sentinel-3a. Henceforth, it could be said that Sentinel-3a AOD has the potential to 

estimate PM2.5, but further research needs to be done to determine the best approach. 

Future studies in this area could do multiple things. Firstly, daily aggregating the data would be 

massively beneficial, as demonstrated by the Beijing table. With how the daily gridded Sentinel-3a 

AOD data was presented, and how Sentinel-3a surveys the planet, there is not daily coverage 

provided, and there appear to be points that are surveyed more than others. A future study could 

look to see if the daily aggregation has a big effect on correlation when a large timeseries is covered. 

Another factor that future studies could consider is whether a city-scale project is the best approach 

for Sentinel-3a. Considering it was presented as a 1° x 1° lat-long grid, that might not be suitable for 

a high-resolution study such as a city-scale. It became apparent during this thesis as one grid on 

Sentinel-3a would correspond to tens of PM2.5 stations, making it difficult to aggregate as to get a 

truer reflection of the atmospheric column, the PM2.5 across the city needed to be averaged. Future 

studies could look at how Sentinel-3a performs at a country-scale PM2.5 correlation, to see if that 

would be more suitable.  

Finally, other meteorological parameters should have been accounted for in the study, to correct for 

relative humidity etc.  

This study, whilst using smaller datasets due to the amount of aggregation, shows some promising 

results. Whilst the correlation between Sentinel-3a AOD and PM2.5 could be improved, especially 

when compared against the robust AERONET AOD dataset, it does show that there is indeed a 

relationship between Sentinel-3a AOD and PM2.5, which future studies can use.  
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