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Abstract
This work presents the first method for generating tetrahedral-based volume meshes dedicated to the NURBS-enhanced finite 
element method (NEFEM). Built upon the developed method of generating feature-independent surface meshes tailored 
for NEFEM, the proposed mesh generation scheme is able to grow volume elements that inherit the feature-independence 
by using the surface mesh as the initial boundary discretisation. Therefore, the generated tetrahedral elements may contain 
triangular faces that span across multiple NURBS surfaces whilst maintaining the exact boundary description. The proposed 
strategy completely eliminates the need for de-featuring complex watertight CAD models. At the same time, it eliminates 
the uncertainty originated from the simplification of CAD models adopted in industrial practice and the error introduced 
by traditional isoparametric mesh generators that produce polynomial approximations of the true boundary representation. 
Thanks to the capability of having element faces traversing multiple geometric surfaces, small geometric features in the 
CAD model no longer restrict the minimum element size, and the user-required mesh spacing in the generated mesh is better 
satisfied than in traditional meshes that require local refinement. To demonstrate the ability of the proposed approach, a 
variety of CAD geometries are meshed with the proposed strategy, including examples relevant to the fluid dynamics, wave 
propagation and solid mechanics communities.

Keywords mesh generation · NURBS-enhanced finite element method (NEFEM) · De-featuring · Persistent geometry · 
High-order approximation

1 Introduction

Computer simulation often requires generating a mesh from 
a computer-aided design (CAD) model which is mathemati-
cally described by non-uniform rational B-splines (NURBS) 
[1]. This process typically involves two steps: the prepara-
tion of the geometry and the discretisation. The preparation 
of the geometry requires substantial human intervention, 

and cannot be performed automatically with computer 
software. This is because (1) CAD models throughout the 
digitised industry pipeline are prone to contain geometric 
issues [2, 3] due to the tolerance of floating point arithme-
tic; (2) realistic CAD models normally contain multi-scale 
geometric features [4, 5] that may or may not have an impact 
on a particular simulation. The reliance on human experi-
ence and expertise to make decisions to repair and/or de-
feature a CAD model seriously hampers the current ability 
to perform simulations with high fidelity geometric models. 
Standard mesh generators normally create excessive refined 
elements near regions with small geometric features, ignor-
ing the user-defined mesh size or spacing. The unnecessary 
local refinement, often results in highly distorted or badly 
shaped elements, introducing a negative impact to the effi-
ciency of simulations and the quality of results. For instance, 
unnecessary small elements can pose a severe restriction in a 
explicit time stepping scheme for the simulation of transient 
problems [6]. This is particularly important for exploiting 
the high-order approximation [7–10], where coarse meshes 
are preferred. On the other hand, the existence of small 
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elements, even only one, can drastically drive the simula-
tion away from an affordable cost, and, in a sense, hurdles 
a widespread adoption of high-order methods in industry.

Despite of the existence of fully automatic standard 
mesh generators, including academic packages such as 
[11–13] and numerous commercial packages, the software 
dedicated to geometry preparation, such as [14, 15], is 
only semi-automatic. Large resources have been invested 
to the research and development of automatic de-featuring 
complex CAD models [16–18]. However, fully automatised 
de-featuring has not yet been achieved. Machine learning 
techniques have been used to classify some common 
geometric features [19] in a large assembly, though it 
requires a significant amount of pre-labelled data. In 
addition, it is difficult to predict how the feature will affect 
the simulation, especially when it involves multiphysics 
or depends on geometry-related parameters. A naive 
de-featuring could unintentionally reduce the fidelity of the 
physical problem, and introduce unintended uncertainty. 
For instance, the level of de-featuring required in problems 
on heat transfer, stress analysis, aerodynamics or wave 
propagation is completely different. When different levels 
of de-featuring are performed on the same geometry, it is not 
always possible to cater for all necessary simulations. This 
means either the same geometric model is considered for 
all the physics with a non-optimal de-featuring, or different 
geometries are produced to simulate different physics, 
resulting in misaligned and inconsistent simulation results 
and preventing multi-objective optimisation processes.

In addition to the difficulties in de-featuring CAD models, 
the standard mesh generation also introduces a geometric 
uncertainty that is well-known but often ignored. This is 
because the isoparametric element [20], which is the most 
common approach used in existing solvers, uses the same 
function space, spanned by polynomials, to approximate 
both the geometry and the unknown fields. In particular, 
when isoparametric elements are used to discretise the 
domain a piecewise polynomial approximation of the true 
boundary representation is introduced, and the discrepancy 
between the true and the approximation geometry increases 
when coarse meshes are considered, which is often the 
case in high-order solvers. The accuracy of the geometric 
approximation can be improved by refining the mesh based 
on the boundary curvature, known as the h-refinement, 
or by increasing the number of interpolating nodes and 
adapting them to the curved boundary, regarded as the 
p-refinement. However, insufficient attention is often paid 
to the fact that the resulting mesh provides only a piecewise 
polynomial approximation of the original CAD geometry, 
and the geometric continuity between elements is only C0 . 
This implies that the result could possibly converge to a 

solution defined on a different geometric domain with its 
boundary described by the polynomial functions rather 
than the desired NURBS B-rep of the CAD geometry [21]. 
When high-order isoparametric elements are employed on 
coarse meshes, the piecewise polynomial approximation 
of the geometry with C0 continuity between elements can 
induce nonphysical effects, such as stress singularity in 
solid mechanics, diffraction in wave propagation, as well as 
entropy production and flow separation in fluid dynamics. 
Such effects, as thoroughly discussed in [22–24], can lead 
the p-adaptive analysis to an incorrect solution.

Originally proposed in [25] in a two-dimensional 
framework, the NURBS-enhanced finite element method 
(NEFEM) provides a simple and efficient approach to 
guarantee the true geometry from a CAD model is persistent 
throughout the whole simulation pipeline. This method 
was later extended to three dimensions in [26] and has 
been tested in various problems including fluid dynamics, 
electromagnetic wave propagation, heat transfer and stress 
analysis [27]. In the treatment of NURBS geometry, NEFEM 
is similar to the isogeometric analysis approach [28]. 
Both methods uses the NURBS parametrisation directly 
from the CAD data to describe the shape of discretised 
elements at the boundary. Therefore, the de-featuring of 
the geometry is avoided, and the geometric approximation 
error is completely eliminated. However, the isogeometric 
approach also requires the use of NURBS functions as 
the basis to approximate the unknown solution, which 
demands a fundamental modification on the geometry 
kernel of CAD software, as the three-dimensional NURBS 
parametrisation is not available in industrial CAD platforms 
[29] where a CAD model is constructed following the B-rep 
philosophy. Moreover, isogeometric methods do not prevent 
the existence of small elements caused by small geometric 
features. Unlike the isogeometric approach, NEFEM uses 
standard polynomial functions for the approximation of 
solution, addressing the problem by a complete separation 
of the geometry description and solution approximation. 
This means an enriched element, with NURBS functions 
describing its geometric shape, and polynomial functions 
approximating the solutions within the domain, is no longer 
isoparametric. In this way, the NEFEM element sizes are 
not restricted by the geometric features, and are controlled 
by user-specified spacing. Similar to the virtual topology 
techniques [30] that are able to modify the topological 
structure of the CAD model without changing the geometry, 
a NURBS-enhanced element is allowed to traverse different 
surfaces to achieve the desired element size. In addition, 
the traversing NEFEM elements can span across surfaces 
connected with only C0 continuity.
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Apart from the benefits introduced by NEFEM, its exten-
sive application to industrial problems involving complex 
geometries has been impeded by the lack of a capable mesh 
generator. This has also led to development of strategies 
using the NEFEM rationale but without the need of a mesh, 
namely unfitted [31–33] or meshless methods [34, 35]. A 
two-dimensional NEFEM mesh generator was developed in 
[36], where the use of NEFEM  showed to accelerate the 
simulation of a electromagnetic wave scattering problems by 
a factor of 140. To extend this success to three-dimensional 
problems, a surface mesh generator tailored for NEFEM was 
developed in [37].

This paper presents, for the first time, the 3D volume 
mesh generation framework tailored for NEFEM. The 
proposed method is based on the NEFEM surface mesh 
generator [37], with extra modifications to allow further 
validity checks during the volume element creation. The 
generated surface mesh, which already uses the NURBS 
B-rep and enables surface elements to traverse multiple 
curves or surfaces, is used as the discretised boundary for 
volume meshing, thus ensuring the preservation of the 
true geometry from the CAD model. Thus, naturally the 
first layer of NEFEM volume elements grown upon these 
surface elements will inherit the exact geometry. To ensure 
the validity of the NEFEM volume elements, intersection 
checks are performed during the creation process. The 
detailed algorithms are listed in pseudo codes, and explained 
with illustrations. Examples are presented to demonstrate the 
ability of the developed framework. In addition numerical 
validity checks are performed on the generated meshes.

The outline of the paper is as follows. The fundamentals 
of NEFEM is introduced in Sect. 2, where the definition of 
NEFEM entities is extended to account for the possibility 
of triangular elements spanning across multiple surfaces. 
Section 3 briefly recalls the NEFEM surface mesh generation 
and introduces the necessarily additional checks appended 
to this process to enable NEFEM volume mesh generation. 
Section  4 presents the proposed technique to generate 
NEFEM volume meshes. In Sect. 4.4, the generation of high-
order nodal distributions on NEFEM surface elements is 
detailed. Several mesh examples, of increasing complexity, 
are presented in Sect. 5, to illustrate the potential of the 
proposed technique. Finally, Sect. 6 summarises the main 
conclusions.

2  Tetrahedral mesh tailored for NEFEM

This section aims at introducing characteristics of the 
NURBS-enhanced element and of the mesh tailored for 
NURBS-enhanced FEM. Formal definitions of the geometric 
entities, which lay the foundation of the proposed mesh 
generation strategy, are detailed.

2.1  Characteristics of NEFEM elements and mesh

In three dimensions, a standard isoparametric FE mesh is 
typically generated in a hierarchical manner, discretising 
the CAD model from points, curves, surfaces and volumes. 
During this process, the geometric entities are associated 
with the mesh entities. To be specific, points in the CAD 
model define nodes in the FEM mesh; curves are discretised 
into edges; surfaces are approximated with faces or facets 
such as triangles or quadrilaterals; and volumes are divided 
into polyhedral elements such as tetrahedra, prisms, 
pyramids or hexahedra. After the mesh has been created, 
a set of nodes and element connectivities are stored and 
the CAD geometric information is usually discarded in the 
forthcoming simulations.

The foundation of NEFEM [38] is the separation of the 
geometric approximation and functional approximation, 
which are tightly coupled in isoparametric FEs and 
isogeometric methods. To decouple these two concepts, 
NEFEM generalises the definition of an FE: the geometry 
is exactly described by means of the NURBS parametrised 
B-rep that, directly obtained from CAD models, whereas the 
functional approximation is defined using polynomials, as is 
in standard FEM. As a result, NEFEM elements require new 
quadrature rules to ensure that the exact B-rep is accounted 
for by the solver.

When a CAD model contains small geometric features, 
e.g. short curves or sliver surfaces, standard meshing 
algorithms disregard the user-specified mesh spacing, 
generating small elements that are often badly shaped. 
NEFEM has introduced a new class of FE, which is 
dedicated to lifting the restriction of small geometric 
features inducing small elements, so that compliance with 
the user-defined spacing is significantly improved.

As an example, let us consider a CAD model of a hollow 
fairing of a turbine engine, represented in Fig. 1a, where all 
NURBS curves are rendered in blue. A high-order triangu-
lar surface mesh generated by a standard mesh generator is 
shown in Fig. 1b. The virtual topology approach has been 
employed to enable the generation of elements across sur-
faces with a smooth transition of the outward unit normal. 
However, it can be clearly observed that small and badly 
shaped triangles are present in trailing edge regions where 
the desired element size is much larger than the sliver fea-
ture. In contrast, the NEFEM mesh shown in Fig. 1c has 
employed some NURBS-enhanced elements that traversed 
the surfaces, even without a smooth transition of the normal, 
resulting in compliant element sizes.

In two dimensions, a typical NEFEM element is defined 
as a curved triangle where at least one edge is geometri-
cally defined as a combination of trimmed NURBS curves. 
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Similarly, in three dimensions, a typical NEFEM element 
can be defined as a tetrahedron where at least one edge or 
face is geometrically defined as a collection of trimmed 
NURBS curves or surfaces, respectively. The new concept 
of element is illustrated in Fig. 2 and a detailed discussion 
can be found in [38].

Among the illustrative examples of NEFEM elements 
in Fig.  2, it can be observed that the exact B-rep is 
always preserved by the corresponding NEFEM element, 
regardless of the order of approximation used in the 
element. In particular, a NEFEM element with low-order 
interpolation nodes is capable of representing a curved 
boundary. In addition, Fig. 2 also shows that the face of a 
NEFEM element can be made of a collection of NURBS 

surface patches, even with abrupt changes of the normal 
within the face.

It is worth noting that NEFEM elements can be 
restricted to just one layer of elements in contact with the 
boundary of the domain. The large majority of elements 
in a NEFEM mesh do not have any edge or face on the 
boundary, and the standard isoparametric FEM approach 
is used. This implies that NEFEM elements are only 
used near the boundary, and a negligible computational 
overhead will be introduced when compared to the cost 
of standard FEs.

2.2  Definition of NEFEM elements

The boundary of an open bounded domain Ω ∈ ℝ
3 , denoted by 

�Ω , is assumed to be described by a set of ns NURBS surfaces 
S ∶= {Sj}j=1,…,ns

 . The intersections of the surfaces define a 
set of nc NURBS curves C ∶= {Ci}i=1,…,nc

 . Each curve Ci or 
surface Sj is parametrised as

For further details on NURBS curves and surfaces, the 
reader is referred to [1].

In three dimensions, the surface mesh generation strategy 
proposed in [37] introduced the mapping to define the geom-
etry of surface NEFEM elements using the exact B-rep from 
CAD data. In particular, a NEFEM surface element, which 
could traverse several NURBS surfaces {Si(�, �)}i=1,…,����

 , is 
defined as the image of a piecewise mapping from the param-
eter domains Λe,i ⊂ ℝ

2 to the physical domain Si(Λe,i) ⊂ ℝ
3 , 

where ���� denotes the number of subdomains of the piecewise 
mapping. An example is presented in Fig. 3 to illustrate the 
mapping for a NURBS surface element traversing three sur-
faces rendered in different colours.

Ci(𝜆) ∶𝜆 ∈ [0, 1] ⟼ x ∈ 𝜕Ω ⊂ ℝ
3
;

Sj(𝜆, 𝜅) ∶(𝜆, 𝜅) ∈ [0, 1]2 ⟼ x ∈ 𝜕Ω ⊂ ℝ
3
.

Fig. 1  Meshing a hollow fairing model with isoparametric and NURBS-enhanced surface elements

Fig. 2  Illustration of the generalisation introduced by NEFEM
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The piecewise surface mapping is then extended to the 
volume element. Let us consider a finite element Ωe ⊆ Ω ⊂ ℝ

3 
with ���� degrees of freedom. The parametrised geometry 
of the element is defined by a mapping from the parameter 
domain Πe ⊂ ℝ

3 to the physical domain Ωe ⊂ ℝ
3 . The 

parameter domain of a NEFEM element is defined as 
Πe ∶= Λe × [0, 1] , where Λe is the parameter domain of 
the surface element in S(�, �) . The mapping to define the 
geometry of a volumetric NEFEM element is given by

where x4 denotes the node interior to the domain. This 
mapping can be viewed as a particular case of the blending 
function method [39], where the internal edges of the 
tetrahedral element Ωe are assumed to be straight. More 
complex mappings can be designed to consider tetrahedral 
elements involving multiple faces or edges on the boundary. 
Further details have been introduced in [38].

In NEFEM, the shape functions, {Ni(x)}
����

i=1
 and the 

derivatives are defined and evaluated at the integration 
points of each individual element, directly in the physical 
domain, and the elemental matrices and vectors are com-
puted in an ad hoc manner for each element. Therefore, the 
incorporation of NEFEM elements into an existing solver 
can be easily achieved by creating a new element type that 

(1)
� ∶ Πe ⟶ Ωe;

(�, �, �) ⟼ �(�, �, �) ∶= (1 − �)S(�, �) + �x4,

encloses the CAD data and is accompanied by tailored 
quadrature rules for NEFEM elements.

In the case that the face of Ωe on the B-rep CAD involv-
ing multiple NURBS surfaces {Si(�i, �i)} , the geometric 
mapping �  is accordingly defined in a piecewise man-
ner, i.e. {� i} . The parameter domains are also defined 
in a piecewise manner, and thus the element Ωe consists 
of three sub-tetrahedra which are mapped from the three 
prisms in the corresponding parameter domains. This map-
ping is illustrated in Fig. 4 for a tetrahedral element with 
a bottom face traversing three trimmed NURBS surfaces 
that are rendered in distinguished colours. Note that due to 
the particular design of � in (1), all top faces of the prisms 
are mapped to the same node x4.

2.3  Geometric entities facilitating subdivision 
of NEFEM elements

Standard FEM mesh generation algorithms are designed 
to generate surface elements to approximate the B-rep 
of CAD model, which is then discarded in subsequent 
volume meshing procedures. The NEFEM surface mesh 
generation framework proposed in [37] has introduced 
the necessary geometric entities for constructing 
NEFEM surface elements, which embedded the NURBS 
parametrisation into the definition. In this section, 

Fig. 3  Illustration of the piecewise NEFEM geometric mappings for a triangular NEFEM surface element traversing three NURBS surfaces 
(S1,S2,S3) , where S2 is a trimmed surface
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Fig. 4  Illustration of the piecewise NEFEM geometry mappings for a tetrahedral element with one face defined on three NURBS surfaces 
(S1,S2,S3) , where S2 is a trimmed surface. Note that the tetrahedral element comprises three pieces

Fig. 5  Illustration of the subdivision for the tetrahedral element Ω
e
 in Fig. 4
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definitions of the geometric entities are introduced to to 
facilitate the creation of a NEFEM volume element which 
requires subdivision.

In practice, the piecewise definition of a NEFEM 
element face, as the bottom face shown in Fig.  4, is 
described by a subdivision based on the surfaces. This 
leads to a sub-mesh with each constituent cell sticking 
onto one of the involved surfaces. Note that the sub-mesh 
terminology is limited to the surface mesh. Using the sub-
mesh as the underlying faces, the tetrahedral element can 
be further subdivided. Figure 5 illustrates the subdivision 
of the example tetrahedral element Ωe in Fig. 4 into three 
subdomains Ωe,i , where i = 1, 2, 3 denotes the i-th prism 
in the corresponding parameter domain Πe,i . In general, a 
subdivided element is expressed as

where ���� is the number of physical subdomains according 
to the embedded NURBS geometry. To maintain a consistent 
meshing strategy with simplified data structure storing the 
element information, each subdomain is further subdivided 
into several subcells in tetrahedral shape. For instance, as 
shown in Fig. 5, the subdomain Ωe,2 is further divided into 
subcells Ω1

e,2
 and Ω2

e,2
 . This is facilitated by subdividing the 

corresponding parameter domains, such as splitting Πe,2 into 
Π1

e,2
 and Π2

e,2
 , as well as the parameter domains of the under-

lying NURBS surface, such as dividing Λe,2 into Λ1
e,2

 and 
Λ2

e,2
 . Eventually, the tetrahedral element Ωe is divided into 

six subcells in total and all in tetrahedron shape.
In this work, the geometric entities of NEFEM elements 

are defined at the subcell level. This is consistent with the 
NEFEM surface mesh, so that similar data structure can 
be used. Due to the prismatic structure of the geometric 
mapping (1), all edges of the subcell connecting the top 
node x4 are straight lines.

2.3.1  Geometric definition of subedges

For a non-self-intersecting NURBS surface S , any of its 
boundary or trimming curves C(�) can be projected back 
to its parametric space to obtain the parametric curve or 
p-curve c(�) ∈ ℝ

2 , which is defined as

The p-curve may be further mapped to the physical space by 
the NURBS parametrisation S , therefore the NURBS curve 
C(�) ∈ ℝ

3 is also referred to as the physical p-curve.

(2)Ω
e
=

����
⋃

i=1

Ω
e,i,

(3)c(�) = S−1(C(�)).

The edges of a subcell, firstly defined in the parametric 
space, are also known as the parametric subedges. In par-
ticular, considering the prismatic structure of the param-
eter domain, viz. Πe = Λe × [0, 1] , only three scenarios are 
considered for a parametric subedge: 

1. The subedge is interior to the underlying parametric 
space Λe,i , i.e. with at most one vertex on a p-curve;

2. The subedge is on the boundary or trimming p-curve 
of the parametric space, i.e. with both vertices on a 
p-curve;

3. The subedge is a ridge of the prism.

The first type, parametric subedges with at most one vertex 
on a p-curve are defined, using a cubic description, namely

where �k = (�k, �k) for k = 1,… , 4 are the four points in 
Λe,i that define the edge Γ� , and Nk(�) are the four one-
dimensional cubic Lagrange polynomials defined on the 
reference interval [0, 1].

The second type, a parametric subedge with both vertices 
on a p-curve, is simply defined by trimming the parent 
p-curve as

where C(�) ∶ [0, 1] → Λe,i is the parametrisation of the 
p-curve to which the edge Γ� belongs, and [�1, �2] is the 
trimming interval for the subedge.

The last type, parametric subedges that are ridges of 
the prism, are defined the same way as the first type, but 
with the parametric space Λe,i replaced by the parameter 
domain of the prism Πe,i , and thus the defining points 
�k = (�k, �k, �k) ∈ Πe,i . It is noted the internal points, namely 
�3 and �4 , are restricted to the straight line defined by �1 
and �2.

The parametric subedges are then mapped to the physical 
space by the geometric mapping � , to obtain the physical 
subedges.

2.3.2  Geometric definition of subfaces

Similarly, the faces of a subcell are firstly defined in the 
parametric space as the parametric subfaces, and then 
mapped by � to obtain the physical subfaces. There are two 
types of parametric subfaces of interest: 

(4)

� ∶ [0, 1] ⟶ Γ� ∈ Λe,i;

� ⟼ �(�) ∶=

4
∑

k=1

�kNk(�),

(5)
� ∶ [0, 1] ⟶ Γ𝜆 ⊂ 𝜕Λe,i;

𝜉 ⟼ �(𝜉) ∶= C((1 − 𝜉)𝜆1 + 𝜉𝜆2),
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1. The subface is part of the underlying parametric space 
Λe,i for a boundary surface, namely Λj

e,i
⊂ Λe,i;

2. The subface is an extrusion face of the prismatic 
parameter domain Πe,i , namely 𝜕Πj

e,i
⊂ 𝜕Πe,i.

The first type, a parametric subface Λj

e,i
⊂ Λe,i is defined 

using the mapping

where �1 is the parametrisation of the first subedge, 
connecting nodes 1 and 2 of the subface, �2 is the 
parametrisation of the second subedge, connecting nodes 
2 and 3 of the subface and �3 is the parametrisation of the 
third subedge, connecting nodes 1 and 3 of the subface. This 
mapping can be seen as a particular case of the blending 
function method [39]. The corresponding physical subfaces 
are simply defined as �Ωj

e,i
= S(Λ

j

e,i
).

The second type, a parametric subface 𝜕Πj

e,i
⊂ 𝜕Πe,i is 

defined using the mapping

where �(�) ∈ Λe,i is the parametrisation of the underlying 
subedge. Note that this type of parametric subface is in 
quadrilateral shape, but the mapped physical subface is in 
triangular shape.

2.3.3  Geometric supporting points

For NEFEM elements containing an edge or a face traversing 
multiple curves or surfaces, the intersection of the edge and 
a NURBS curve is inevitable. To account for the intersection 
between the edge and a geometric curve, an enhanced edge 
description is proposed in [37] by introducing geometric 
supporting points or GS-points. The set of GS-points 
associated to one element Ωe is given by the intersections 
of �Ωe with the physical p-curves plus the intersections 
between physical p-curves that are inside Ωe . In this paper, 
a convention is introduced that all vertex nodes are rendered 
by black dots, while all GS-points are shown as green dots, 
as illustrated in Fig. 4 and 5.

It is worth emphasising that GS-points are introduced to 
formally define the geometry of a NEFEM element and its 
subcells. They do not induce any new degrees of freedom to 
a solver that adopts the NEFEM meshes. Similarly, subcells 
are only introduced due to the piecewise nature of a NEFEM 

(6)

� :[0, 1]2 ⟶ Λj
e,i(�, �) ⟼ �(�, �)

: = (1 − �)�1(�) + ��2(�)
+ (1 − �)�3(�) − (1 − �)
(1 − �)x1 − �(1 − �)x2,

(7)
� ∶ [0, 1]2 ⟶ �Π

j

e,i

(�, �) ⟼ �(�, �) ∶= (�(�), �),

surface element, but the only element that being used by 
the solver is Ωe . Because of the geometry-defining feature 
of the GS-points, they will be used for devising piecewise 
quadratures for numerical integration over the faces 
traversing multiple surfaces and the associated elements. 
Further usage of the GS-points during the mesh generation 
process will be discussed in Sect. 3 and 4.

3  NEFEM surface mesh generation

In this section, the generation of NEFEM triangular surface 
mesh is briefly recalled. It is worth emphasising that it is 
assumed that the upstream CAD geometry is watertight. 
The NEFEM surface mesh is a prerequisite for generating 
the volume mesh, as it provides the boundary discretisation 
tailored for NEFEM solvers. The surface mesh is desired to 
satisfy the following requirements: 

1. The characteristic element size is dominated by the user-
specified spacing, and it is not restricted by the size of 
geometric features in the CAD model;

2. The surface mesh must not introduce geometric 
discretisation error as it encapsulates the NURBS 
definition of the geometry;

3. The surface elements should pass visibility checks to 
enable the efficient creation of volume elements that 
avoids self-intersections.

The first two requirements have been addressed in previous 
work [37]. Note that the geometry entities introduced in 
Sect. 2.3 are compatible with the second requirement. The 
last requirement is posed here to facilitate the volume mesh 
generation, and it will be further detailed in Sect. 3.2.

The NEFEM surface mesh generation starts from an 
initial surface mesh obtained by a standard mesh generator 
with a user-defined mesh size. Despite that this initial mesh 
is likely to contain numerous elements violating the user-
specified spacing, it is required to be watertight and free 
of self-intersections. A remeshing is then performed on 
the initial surface mesh, with a dedicated process to allow 
creating elements traversing multiple surfaces around 
geometric features, so that the element sizes become 
compliant with the user specification.

During the surface mesh generation, GS-points are 
typically created using operations such as edge collapse, 
edge split or edge flip. Besides, the GS-points can slide 
along the parent intersection curve, so that the element could 
achieve a better quality.

Local mesh refinement can be performed by specifying a 
spacing function, as done with traditional mesh generators. 
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Examples in [37] show the ability to produce locally refined 
NEFEM surface meshes.

3.1  The sub‑mesh

As detailed in Sect. 2.3, a sub-mesh is required for the 
definition of a surface element or a face of a volume element 
that traverses multiple surfaces. The sub-mesh, together with 
the GS-points, is used for quadrature as it is a subdivision 
of the traversing surface element which naturally forms 
the integration cells. The sub-mesh may also be used to 
represent the physical interface, such as the interface of 
different materials, inside a NEFEM element [40]. It is 
worth noting that an integration cell cannot traverse surfaces, 
and an element traversing multiple surfaces must contain at 
least two integration cells.

In addition, the sub-mesh also plays an important role 
during the NEFEM mesh generation. It is well-known that 
operations such as edge split and edge flip are commonly 
involved in a mesh generation process. Dissimilar to the 
operations in standard mesh generators, the sub-mesh is 
required during the NEFEM mesh generation because 
the operations may involve multiple surfaces and their 
intersection curves. For instance, when flipping an edge 
between two NURBS-enhanced triangular elements, the 
subdivision of both elements is necessary for searching the 
new diagonal traversing multiple surfaces. In this procedure, 
the GS-points also play a role as the nodes for the sub-mesh 
of each element. Detailed discussion on this procedure can 
be found in [37].

A typical example for the sub-mesh of a NEFEM sur-
face element is presented in Fig. 6. The triangular surface 

element is defined with three nodes x1 , x2 and x3 . The two 
edges E(x1, x2) and E(x1, x3) are traversing a NURBS curve 
rendered in blue, inducing two GS-points, g1 and g2 , to reg-
ister the edge-curve intersections. The two GS-points and 
three nodes have defined the vertices for three integration 
cells that belong to two different surfaces rendered in dis-
tinguished colours.

3.2  Additional validity check

During the NEFEM surface mesh generation, validity checks 
have been introduced as it is detailed in [37]. To facilitate 
the creation of volume elements in the next stage, additional 
validity checks must be appended to the generation process 
of NEFEM surface elements.

Firstly, an additional check is performed prior to 
collapsing an edge of a NEFEM surface element that 
traverses multiple intersection curves or surfaces. This 
check is crucial to minimise the cost of future visibility 
checks in Sect. 4.3 to avoid possible self-intersection in 
the corresponding NEFEM volume element. Secondly, a 
intersection check between a surface element edge and 
a NURBS curve is performed after having created or 
updated the NEFEM elements. This check is dedicated to 
avoiding the surface element edge penetrating surfaces, 
causing a self-intersecting mesh. In addition to this 
check, it will also try to fix the self-intersection by 
curving the subedges.

The first check is performed when trying to create 
a new NURBS-enhanced edge that comprises several 
subedges. This new edge is traversing multiple surfaces 
that are connected with only C0 continuity. In other words, 
the normals to the surfaces along the edge do not transit 
smoothly, and sharp dihedral angles will occur at a node 
or a GS-point, causing difficulties for future generation of 
a valid volume element. To tackle this, the angles between 
normals to the surfaces at each node and each GS-point 
are computed and checked, as detailed in Algorithm 1. 
As illustrated in Fig. 7, a local feature appearing to be a 
U-shaped channel involves a set of five surfaces S ∶= {Si} 
for i = 1, 2,… , 5 , where all dihedral angles between 
adjacent surfaces are 90◦ . When trying to collapse a short 
edge inside the channel, all related surface normals at the 
involved nodes of the sub-mesh are compared with the 
normal at the target node. The criterion for the validity 
check is chosen as

where ni and nj are the normals to surfaces Si and Sj , 
respectively. All the normals are computed locally at the 
corresponding nodes of the sub-mesh.

(8)
{

ni ⋅ nj ≥ −1∕2, ⇒ pass;

ni ⋅ nj < −1∕2, ⇒ fail,

Fig. 6  Sub-mesh of a typical NEFEM surface element. Integration 
cells belong to different surfaces are filled with distinguishing col-
ours. The intersection curve is coloured in blue
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Algorithm 1  Validity check for collapsing a NEFEM surface element edge.

Figure 7b presents two examples when testing possible 
new NURBS-enhanced edges before the edge collapse. 
The first candidate edge, E(x5, x7) , is obtained from col-
lapsing node x6 to x7 , and the normal n3 at the target node 
x7 is compared with all normals involved in this collapse, 
such as n4 at GS-point g2 and n5 at node g5 . This case 
will pass the validity check. A second option involves the 
candidate NURBS-enhanced edge E(x1, x4) , the normal 
n4 at target node x4 is opposite to n2 at x1 . Therefore, the 

second configuration will fail the validity check and thus 
the collapse of edge E(x2, x4) will be prevented.

In the rare case that a subedge intersects with an inter-
section curve and penetrates a neighbour surface, as 
shown in Fig. 8a, the second validity check will detect 
and fix this by curving the subedge. The intersection 
between edge E(xa, xb) and the intersection curve of sur-
face S1 and S3 can easily be detected by seeding a num-
ber of sampling points along the intersection curve. This 

Fig. 7  Illustration of the validity check at a U-channel feature. a Two edge collapsing scenarios: from x6 to x7 , and from x2 to x4 . b Proposed 
new NURBS-enhanced edges, showing selected normals for validity checks
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type of self-intersection occurs because surface S3 is 
trimmed by a circle. The trimming circle is the image 
of a circle in the parameter space of the NURBS surface 
S3(�, �) , as shown in Fig. 8c. A simple fix to this prob-
lem is performed by replacing the straight edge E(xa, xb) 

in the parametric space by a cubic curve, as shown in 
Fig. 8d. The fixed scenario after the second validity check 
is shown in Fig. 8b. Note that this check and fix is per-
formed at the subedge level.

Fig. 8  Illustration of the self-intersection fix at the bottom of a cylin-
dric feature. a Edge E(x

a
, x

b
) intersecting with an intersection curve 

at the red arrow. b Fixed the intersection by curving E(x
a
, x

b
) within 

surface S3 . c The parameter space of surface S3 featuring intersection 
with the trimming circle. d The cubic curve to fix the intersection
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4  NEFEM volume mesh generation

This section presents the main purpose of this paper on 
the generation of NEFEM volume meshes comprised by 
tetrahedral elements. According to the geometric entity that 
is part of the B-rep, the tetrahedral element that is of interest 
falls into one of the two types:

• An element with at least one face located on the 
boundary.

• An element with at least one edge but with no faces 
located on the boundary.

An element of each type is further classified in terms of 
the number of intersection curves and surfaces of the CAD 
model that it involves. Elements with faces or edges not 
traversing multiple surfaces are grown using the same 
techniques available in standard mesh generators. A flag 
is assigned to each tetrahedral element for the purpose of 
accounting for the NURBS B-rep by the solvers, as special 
care must be taken for elements with the traversing faces 
or edges.

4.1  Volume meshing strategy

The volume mesh generation starts from a valid NEFEM 
surface mesh which already encapsulates the GS-points as 
well as the sub-mesh for traversing surface elements.

It is appreciated that the NEFEM elements, whether or 
not traversing multiple curves or surfaces, are only required 

at the boundary. Therefore, the strategy for the generation of 
a NEFEM volume mesh is to first grow a layer of NURBS-
enhanced volume elements that covers the featured sur-
face. Next, the exterior facets of the layer of grown volume 
elements are extracted to form a new surface mesh. This 
extracted surface mesh will only contain standard triangle 
elements, so that it can be sent to a standard volume mesh 
generator to obtain the volume elements of the remaining 
part of the domain. Finally, the NEFEM volume mesh is 
obtained by stitching the NEFEM element layer and the 
standard interior elements. In this work, the FLITE mesh 
generator [11] is used to create standard meshes. The overall 
procedure is illustrated in Fig. 9.

Remark 1 The stitching of boundary layer mesh and interior 
mesh, as discussed in [41, 42], is an established procedure 
in standard mesh generation. The presented work is dedi-
cated to generating the geometric-persistent mesh layer that 
is valid for NEFEM solvers. As the interior mesh is gen-
erated after the boundary layer mesh, the stitching of the 
two meshes is naturally done with merely renumbering the 
corresponding nodes. Besides, a flag is associated to each 
element to indicate whether it is a NEFEM element or a 
standard element. This flag will be used to distinguish the 
two classes of element by the NEFEM solver.

Remark 2 In the case of a bounding box is required to gen-
erate the volume mesh, the bounding box is not considered 
for generating the NEFEM volume element layer due to its 
simplicity, but will be taken into account for the standard 
volume mesh generation for the interior elements.

4.2  Growing volume elements on the boundary

To guide the growth of volume elements into the three-
dimensional domain, the normal vectors are firstly computed 
based on the NEFEM surface mesh. Unlike standard triangle 
elements, a NEFEM triangle element can have a non-unique 
definition of its normal as it may traverse multiple surfaces. 
Thus, it is not trivial to evaluate the normal to a face or its 
edges.

As required in Sect. 3.1, an integration cell is associated 
to a unique parent surface. Therefore, for each integration 
cell, the normal vector is unique to that parent surface, and 
a smoothed normal can be obtained at each node of the 
sub-mesh that may be a node of the mesh or a GS-point. 
This also implies that a sequence of normal vectors can 
be extracted along an element edge as it traverses multiple 
curves or surfaces. Several smoothing options have been 
tested, such as surface-based averaging, weighted averaging 
and Laplacian. It is found that the surface-based averaging 
provides satisfactory normal vectors in the tested geometries.

Fig. 9  NEFEM volume mesh generation procedure
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Several possible choices of the normal to guide the 
growth of volume element based on a typical NEFEM sur-
face element are illustrated in Fig. 10. The surface element 
with vertices {xa, xb, xc} traverses surfaces {S1, S4, S7} . 
The smoothed normal at GS-points g1 and g2 are shown in 
Fig. 10a, the naive normal evaluated using only the vertices 
is plotted in Fig. 10b at the centroid of a planar triangle 
determined by the three vertices. In contrast, Fig. 10c shows 
the four normal associated to each integration cell depicted 
at the corresponding centroid.

The two major process used to grow volume elements 
based on the surface mesh are edge-based and face-based. 
The first process is to grow a pair of tetrahedra based on an 
edge of the surface mesh. The second process is to grow a 
tetrahedron based on a surface element. For both processes, 
the key is to find a suitable guiding normal.

The first attempt involves a loop through all edges in the 
surface mesh, and the check of dihedral angle � between 
faces connected by the edge. For an edge between two 
surface elements, four vertices are involved in the process, 

including the vertices defining the edge, and other two 
vertices opposing each other. The two triangular faces 
may be collapsed and the two opposing vertices be merged 
when � is small. Otherwise a tetrahedron will be created by 
linking the two opposing vertices, creating a new edge to 
form the tetrahedron. In most cases, it is necessary to find 
a normal on the edge to create a top node above the edge 
and try to link it with all vertices and GS-points of the two 
triangles sharing the edge. During this linking process, the 
validity checks are performed: a self-intersection check 
via evaluating the volume of the newly formed subcell 
tetrahedra, a general edge-face intersection check between 
the new edges and existing faces as well as between the 
new faces and existing edges. The validity checks are 
detailed in Sect. 4.3. If a self-intersection is identified, 
the position of the top vertex is tuned by sliding along 
the normal vector as well as sliding the base point of the 
normal vector along the edge to find another suitable 
location that is free from self-intersection. The procedure 
is detailed in Algorithm 2. After having grown a pair of 

Fig. 10  Choices of normal vectors to grow a tetrahedral element
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tetrahedra, the connectivity of the volume mesh and the 
surface mesh are updated by removing the closed faces and 
edges. The process is repeated until all edges are closed or 
leaving few edges cannot be closed.

Algorithm 2  Growing volume elements based on an edge.

Figure 11 illustrates a typical scenario for volume element 
growth. Three surface elements are traversing surfaces S1 
and S2 that are rendered in red and yellow. Note that the con-
nection between S1 and S2 is of C0 continuity, and exhibiting 
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a sharp dihedral angle. During an edge-based loop, a suitable 
normal vector ng7 is found at GS-point g7 of edge E(x2, x4) , 
as depicted by Fig. 11a. Two tetrahedral elements, coloured 
in blue and green, are grown with the guidance of ng7 , shar-
ing the same new vertex x6 , as shown in Fig. 11b. Other 
tetrahedra are grown during this edge-based loop, includ-
ing the one with a new vertex x7 . A second edge loop will 
be performed to close the edges between two grown tet-
rahedra where the dihedral angles between element faces 
are checked. In the scenario presented in Fig. 11c, a new 
tetrahedron will be created by simply linking the existing 
vertices x6 and x7.

A second attempt is another loop through the unclosed 
surface elements to grow a tetrahedron based on a surface 
element. The normal vector is evaluated at the centroid 
of the surface element, and the new vertex is proposed 
above the surface element. The new vertex might be 
substituted by an existing node nearby when the distance 
is sufficiently small. The normal vector is then used to 
link the new vertex with all vertices and GS-points of the 
surface element. The validity checks are performed in the 
same way as the edge-based process. The procedure is 
detailed in Algorithm 3.

Algorithm 3  Growing volume elements based on a face.

As a tetrahedral element is grown based on a surface ele-
ment, such as shown in Fig. 5, it inherits the subdivision of 
the surface element in the way that three sub-tetrahedra are 
grown to form the integration cells for computing quadra-
ture over the NURBS-enhanced tetrahedron. This can also 
be considered as a straightforward subdivision of the tet-
rahedron element with the guidance of the sub-mesh on a 
traversing face, as illustrated in Fig. 12.

It is worth noting that the tetrahedron grown from a 
surface element is not necessarily a NEFEM element. This 
is because the surface element may not traverse multiple 
surfaces, and the boundary surface is planar, thus the 
tetrahedron is not required to be a NEFEM element. In this 
case, the tetrahedron is grown as a standard tetrahedron with 
the subcell being itself, and is still included in the NEFEM 
volume layer. The validity checks are performed in the same 
way as the introduced process.

4.3  Validity checks for volume elements

Two major validity checks are performed during the 
growth of volume elements. The first check, also known as 
the visibility check [36], is to ensure that the new volume 



 Engineering with Computers

element is free from self-intersection. The second check is to 
ensure that the new volume element is free from intersection 
with the existing mesh entities. This section will focus on the 
first check only, as the second check is similar to the validity 
checks in established standard mesh generation process.

Taking the creation process of triangle to tetrahedron 
for example, the objective is to ensure the top vertex of the 
tetrahedron is visible to any point in the base sub-mesh. 
When the visibility requirement is met, all ridges of the 
tetrahedron, excluding the ones corresponding to edges 
of the base triangle, will be straight, and this enables an 
efficient subdivision of the volume element into volumetric 
integration cells.

It is worth noting that the visibility requirement is not 
mandatory for a valid NEFEM element, a self-intersecting 
element can be fixed by curving the interior edges to 
maintain the validity. In this case, the interior physical 
subedges can be curved cubically using the isoparametric 
mapping of (4) in Sect.  2.3.1. However, the strategy 
presented here tries to maintain the maximum number of 
interior edges as straight with the objective to accelerate 
the solver.

At some convex geometric features, special care has to 
be taken to ensure the visibility from the top node to the 
bottom sub-nodes. The feature of a sharp step in Fig. 13 
presents a scenario in which a violation occurs, resulting in 
a self-intersecting NEFEM volume element.

The volume element shown in Fig.  13a is based on 
the surface element in Fig. 13c, which traverses surfaces 
{S1, S2, S3} as well as intersection curves {C1,C2} , and 
four GS-points have been included. It can be seen that the 
dihedral angles on the intersection curves are considerably 
sharp and include both convex and concave instances. 
Besides, surface S2 appears to be a narrow strip folding 
between surfaces S1 and S3 . A surface integration cell with 
nodes {g1, x2, g2} , as shown in Fig. 13d, forms the bottom 
face of the volume integration cell illustrated in Fig. 13b. 
As partially highlighted by red dashed lines, the edges 
E(x4, g1) and E(x4, g2) penetrate both S1 and S2 . In other 
words, the top node x4 lacks visibility to the bottom nodes 
of the sub-mesh g1 and g2 , and results in a self-intersecting 
subdivision for the volume element. This self-intersecting 
volume element can be fixed by curving the edges E(x4, g1) 
and E(x4, g2) , and potentially E(x4, x2) and E(x4, x3).

4.4  Extension to high‑order

For high-order approximations, more nodes are required 
to be added to the edges, faces and interior of NEFEM 
volume elements. It is worth emphasising first that, due 
to the non-isoparametric nature of NEFEM elements, the 
location of the high-order nodes are not linked to any 
geometric mapping and will only be used to define high-
order polynomial basis within the element. Therefore, the 
high-order nodes can be added to the NEFEM elements 
without any modification to the NEFEM mesh. The only 
requirement is that the high-order nodes must be located 
on the edges or faces or inside of the NEFEM element to 
achieve optimal convergence [25]. It is also appreciated 
the high-order nodes are not created during the volume 

Fig. 11  Typical scenario to grow tetrahedral elements
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mesh generation, but are appended to the NEFEM mesh 
after the meshing process.

The high-order nodes on the boundary surfaces are ini-
tially created during the surface meshing, as it is detailed 
in [37]. For volume elements, a similar strategy is used to 
add high-order nodes to the edges and faces. However, the 
interior nodes for elements with interpolation polynomial 
order p > 3 must satisfy the requirement that they cannot 
be located outside the volume, thus a different placement 
strategy is used. This strategy is based on a elasticity 
analogy, in which the interior nodes are initially mapped 
from the distribution in a standard reference tetrahedral 
element, and then the boundary face are deformed to 
adapt the NURBS B-rep. During the deformation, the 
vertex nodes are fixed and Dirichlet boundary conditions 
are applied to the face nodes on the B-rep surfaces, so 
the interior nodes are moved accordingly by solving a 
linear elasticity problem. The details of this strategy have 
been presented in [43], and similar works such as [44, 
45]. To improve the efficiency, in this work, the elas-
tic deformations are limited to a number of user-defined 
layers of volume elements surrounding the boundary. In 
Fig. 14, an example is presented to demonstrate the elas-
tic deformation of the NEFEM volume elements. It can 
be seen in Fig. 14b a few traversing NEFEM elements 
have deformed when the elevation of polynomial order 

to p = 6 , and the interior volume element above has also 
deformed accordingly.

5  Examples

This section presents some examples to demonstrate the 
NEFEM volume mesh generation strategy detailed in the 
previous section. The examples are selected to cover a 
wide range of geometric features, including sharp dihedral 
angles, sliver surfaces, steps, etc. In particular, validation 
of the generated NEFEM meshes for the first example, as 
analytical surface area and volume are available, is also 
presented.

5.1  Flat plate with two cylinders

In the initial illustration, we examine a flat plate featuring 
two cylinders, one flat with a substantial radius and the other 
slender with a small radius, as depicted in Fig. 15.

Detailed geometric specifications are outlined in Table 1.
Figure 16 showcases the original FEM mesh, which devi-

ates from the user-defined spacing.
Subsequently, employing the methodology proposed in 

[37], the NEFEM surface mesh is generated, maintaining a 

Fig. 12  Integration cells of a 
typical NEFEM volume element 
grown from the sub-mesh of the 
surface element in Fig. 6
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consistent mesh size irrespective of plate thickness, cylinder 
heights, or diameters, as demonstrated in Fig. 17a.

Utilising this boundary discretisation and the specified 
element size, the first layer of NEFEM volume elements 
is crafted following the approach delineated in Sect. 4, as 
shown in Fig. 17b. Notably, volume elements spanning 
surfaces are highlighted in green. The interior volume 
elements are crafted based on the extracted exterior 
faces of the NEFEM volume layer and the surface mesh, 
creating a standard triangulation through the Delaunay 
method for tetrahedral mesh. This model yields 121 
tetrahedra in the NEFEM volume layer and 50 815 interior 
volume elements. Figure  17c, visually underscores 
the significantly reduced number of NEFEM volume 
elements compared to standard elements, minimising the 
computational impact on the solver. This enhancement 
is particularly crucial for transient simulations utilising 
explicit time marching. Table 2illustrates, the minimum 
element edge length normalised with the user-specified 
spacing for the NEFEM mesh has increased by over 
tenfold.

In the context of this specific example, where analyti-
cal determination of the exact surface area and volume 
is feasible, the NEFEM elements, embedded with exact 
NURBS geometry information, allow for validation. This 
validation involves computing the relative error of surface 
area and volume, utilising the evaluated exact area and 
volume as reference. Employing Gauss-Legendre quad-
rature rules with varying numbers of quadrature points, 
Fig. 18 portrays a diminishing trend in relative errors to 
machine precision with increasing quadrature points ( ��� ) 
in each dimension. This dual-validation approach not only 
confirms the integrity of the mesh but also underscores 
the advantages introduced by NEFEM in mitigating geo-
metric representation errors. Notably, the quadratures are 
executed on each subcell for NEFEM elements, ensuring 
results are independent of the interpolation polynomial 
order.

Fig. 13  Illustration of visibility issue for a NEFEM volume element and its base surface element at a step feature
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5.2  Hollow fairing for a turbine engine

The second illustrative case, as introduced in Section 2, 
focuses on generating the NEFEM volume mesh for a tur-
bine engine fairing utilising a uniform spacing function. 
The CAD model, shown in Fig. 1a, incorporates four sur-
faces representing the outer and inner shells, along with 
six slender surfaces denoting the leading and trailing edges 

that interconnect these two shells. The model’s character-
istic dimensions are detailed in Table 3, underscoring sub-
stantial variations in the lengths of curves within the CAD 
model. Notably, the longest curve is approximately 54 times 
larger than the shortest one, introducing a significant range 
in dimensions.

Crucially, the user-specified spacing in this scenario, 
denoted as h(x) = 100 , necessitates elements with a 

Fig. 14  Deforming the NEFEM 
elements (rendered in green) to 
ensure the validity after adding 
high-order nodes
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representative length over six times larger than the short-
est curve in the CAD model. Consequently, the initial 
FEM mesh exhibits several undersized elements that 
deviate markedly from the desired spacing, as portrayed 
in Fig. 1b. The NEFEM mesh effectively addresses this 
issue by eliminating small elements on both leading and 
trailing edges. It achieves an impressive 9.64-fold increase 
in the minimum edge length, as outlined in Table 4. This 
enhancement translates to a comparable acceleration fac-
tor for explicit time integration, achievable by utilising a 
considerably larger time step.

Fig. 15  NURBS surfaces in the CAD model of a flat plate with two 
cylinders

Table 1  Geometric data of the flat plate with cylinders model

Number of NURBS Surfaces 12
Number of NURBS Curves 24
Minimum curve length 0.019
Maximum curve length 2.000

Fig. 16  FEM surface mesh of the flat plate intersected by two cylin-
ders, showing elements not complying with the user-defined spacing

Fig. 17  NEFEM meshing process for the flat plate intersected by two 
cylinders

Table 2  Normalised edge 
lengths for the flat plate 
intersected by two cylinders

Minimum edge length in 
FEM mesh

0.045

Minimum edge length in 
NEFEM mesh

0.458

Increase factor 10.18
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The traversing volume elements are visually presented 
in Fig. 19, highlighted in green with subtle transparency to 
facilitate observation of the curved boundary. For clarity, 
a specific NEFEM tetrahedron is isolated and presented 
with zoom-in views in Fig. 19c and 19d. From Fig. 19c, 
a distinct sharp ridge within a face is evident, originating 
from the sharp dihedral between the two surfaces the ele-
ment traverses. It is crucial to emphasise that this ridge is 
embedded within the element and does not constitute an 
edge of the element, and no nodes are associated with it.

5.3  Wing with a blunt trailing edge

This illustration showcases the creation of NEFEM meshes 
for a wing featuring a blunt trailing edge, emphasising the 
capability to accommodate user-specified non-uniform mesh 
spacing. The NURBS surfaces defining the wing are visually 
represented in Fig. 20 and comprehensive geometric data is 
concisely summarised in Table 5. To encompass the entire 
wing within a CFD-oriented meshing strategy, a substan-
tial bounding box is appended to the CAD model, ensuring 
ample coverage.

Notably, a non-uniform mesh spacing is implemented 
using two line sources at both the leading and trailing edges, 
employing a stretching ratio of 5. Despite the refinement 
introduced by these line sources, the prescribed mesh size 
remains larger than the length of the shortest curve. The 
ensuing FEM mesh, shown in Fig. 21, reveals an abundance 

of small elements at the blunt trailing edge and wing tip due 
to the constraints of the thin thickness.

Subsequently, Fig. 22a illustrates how the NEFEM sur-
face mesh effectively eliminates these small elements. Based 
on this surface mesh, Fig. 22b shows the creation of tra-
versing NEFEM volume elements at the blunt trailing edge, 
complemented by the interior volume mesh presented in 22c. 
Evidently, the number of traversing elements, totalling 179, 
is notably fewer compared to the staggering 1 458 208 inte-
rior volume elements. This signifies that minimal additional 
computational costs will be incurred during integration over 
the NEFEM elements. Table 6 provides further insight, 
indicating that the normalised minimum edge length in the 
NEFEM mesh exceeds 7 times that of the FEM mesh. This 
reaffirms that the NEFEM element constitutes only a negli-
gible portion of the overall mesh but significantly enhances 
the minimum element size, facilitating large time-stepping 
in explicit solvers.

5.4  Falcon aircraft

In this example, we consider a comprehensive aircraft 
model to underscore the adept handling of intricate 
geometries. The CAD geometry exhibits an array of 
complex features, including notably short curves and petite 
surfaces, particularly evident at the wing tips. The wing’s 
characteristic thickness, approximately 0.2, poses a specific 
challenge during surface mesh generation, given its brevity 
compared to the minimum curve length.

Fig. 18  Validation of the meshes for the model of a flat plate with two cylinders. The relative errors decrease to machine precision with increas-
ing quadrature points
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Figure 23 elucidates the NURBS surfaces of the CAD 
model, while Table 7 succinctly summarises the geomet-
ric data, revealing a substantial ratio between maximum 

Fig. 19  NEFEM meshing process for the hollow fairing of a turbine engine

Table 3  Geometric data of the hollow fairing model

Number of NURBS Surfaces 10
Number of NURBS Curves 22
Minimum curve length 15.62
Maximum curve length 850.74

Table 4  Normalised edge 
lengths for the hollow fairing 
model

Minimum edge length in 
FEM mesh

0.076

Minimum edge length in 
NEFEM mesh

0.734

Increase factor 9.64

Fig. 20  NURBS surfaces in the CAD model of a wing with blunt 
trailing edge
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and minimum curve lengths, approximately 28.68. Conse-
quently, the FEM mesh, depicted in Fig. 24, anticipates the 
emergence of small elements violating the user-defined spac-
ing. Despite all surface elements being NURBS-enhanced, 
originating from the discretisation of the intricate B-rep, 
only a sparse number of traversing elements are necessary 
to enhance the minimal element size.

The first layer of NEFEM volume elements, strategically 
concentrating on the building of traversing volume ele-
ments, comprises a modest number of tetrahedral elements, 
as showcased in Fig. 25b, c. The total count of tetrahedral 
elements in the volume mesh stands at 229 693 , with 28 
NEFEM tetrahedra involving multiple definitions during 
integration. Table 8 presents a noteworthy enhancement, 
with the normalised minimum edge length in the NEFEM 
mesh surpassing that of the FEM mesh by 4.5 times.

It is imperative to highlight the significance of this 
improvement, as even a small subset of elements exhibiting 
spacing well below the user-defined threshold can render the 
solution of a transient problem with explicit time marching 
unfeasible. Consequently, the capability to overcome this 
restriction bears substantial implications for the solver.

5.5  Mechanical component

This specific case is designed to showcase the adeptness 
of the proposed methodology in generating a volume mesh 
within a singular enclosed domain. The focal point is a 
knurled knob, depicted in Fig. 26, where surfaces are delin-
eated in distinct colours and delicately transparent to afford 

visibility into the internal structure. The model encompasses 
several intricate features, including small curved surfaces, 
diminutive steps or fillets, and curved holes. Notably, the 
length of the longest curve exceeds that of the shortest one 

Table 5  Geometric data of the wing model

Number of NURBS Surfaces 5
Number of NURBS Curves 9
Minimum curve length 7.27
Maximum curve length 1 381.12

Fig. 21  FEM surface mesh of the wing, showing elements not com-
plying with the user-defined spacing

Fig. 22  NEFEM mesh process for the wing with a blunt trailing edge

Table 6  Normalised edge 
lengths for the wing Minimum edge length in 

FEM mesh
0.06

Minimum edge length in 
NEFEM mesh

0.46

Increase factor 7.67
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by a factor of approximately 40.84, as succinctly detailed 
in Table 9.

Figure 27, the initial FEM surface mesh is presented, 
revealing numerous small elements constrained by the intri-
cate features.

In stark contrast, the NEFEM meshes, shown in Fig. 28, 
effectively eliminate these diminutive elements, resulting in 
a notable 5.82-fold increase in the minimum edge length, 
meticulously documented in Table 10. Traversing volume 
elements, depicted in green, are discernible in Fig. 28b offer-
ing a clear view through the slight transparency applied to 
the NEFEM surface mesh. The clipped NEFEM volume 
mesh, inclusive of interior volume elements, is illustrated 
in Fig. 28c. For a more detailed examination, an alternative 

Fig. 23  NURBS surfaces in the CAD model of the Falcon aircraft

Table 7  Geometric data of the Falcon model

Number of NURBS Surfaces 48
Number of NURBS Curves 100
Minimum curve length 0.37
Maximum curve length 10.61

Fig. 24  FEM surface mesh of the Falcon, showing elements not com-
plying with the user-defined spacing

Fig. 25  NEFEM mesh process for the Falcon aircraft

Table 8  Normalised edge 
lengths for the Falcon model Minimum edge length in 

FEM mesh
0.06

Minimum edge length in 
NEFEM mesh

0.27

Increase factor 4.50
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perspective of Fig. 28b is selected and presented with zoom-
in views Fig. 29.

Once again, this example underscores the consistent 
traits of the NEFEM volume mesh, including geometric 
preservation and the limited number of traversing elements.

5.6  Electromagnetic simulation using NEFEM 
meshes

In this example, a numerical example is presented to show 
the validity of NEFEM volume meshes for performing simu-
lations. A NEFEM volume mesh around a plate with a short 
thick cylinder on the top surface is generated using the strat-
egy proposed in this paper. The mesh is shown in Fig. 30.

A simulation of the scattering of a plane electromagnetic 
wave is considered using a high-order discontinuous 
Galerkin method [46] equipped with the NEFEM 
formulation. The simulation is performed in the time 
domain and the quantity of interest is the so-called radar 
cross section (RCS) [47].

Figure 31 shows the computed RCS results for vertical 
and horizontal polarisations and for an increasing degree

of the approximation used for the solution.
The results show the validity of the NEFEM meshes 

and it shows that the results with quadratic and cubic 
approximation of the solution are almost identical. In fact, 
even when using a linear approximation of the solution, 
it can be observed that the exact boundary representation 
enables to compute an accurate RCS.

6  Concluding remarks

In this work, a mesh generation framework dedicated to 
creating volume meshes tailored for NEFEM has been 
presented for the first time. The technique is capable 
of generating volume meshes which preserves the 
exact boundary representation provided by the NURBS 
parametrisation from the CAD model. In the NEFEM 
mesh, the geometric definition at the featured boundary 
is encapsulated in NEFEM elements that may traverse 
multiple curves or surfaces. As a result, the small 
geometric features present in the CAD model no longer 
restrict the element size in a NEFEM mesh. This has 
completely removed the need for the time-consuming 
de-featuring process on complex CAD models and, at the 
same time, has eliminated the geometric representation 
error introduced by the de-featuring process or by 
traditional mesh generators.

Table 9  Geometric data of the mechanical component model

Number of NURBS Surfaces 103
Number of NURBS Curves 240
Minimum curve length 1.23
Maximum curve length 50.23

Fig. 26  NURBS surfaces in the CAD model of the knurled knob

Fig. 27  FEM surface mesh of the knurled knob, showing elements 
not complying with the user-defined spacing
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Fig. 28  NEFEM mesh process for the knurled knob
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Given a CAD geometry in the form of B-rep, the pro-
posed strategy begins with generating an initial FEM sur-
face mesh using a standard mesh generator. Then, during the 
NEFEM surface mesh generation guided by the user-defined 
spacing, elements near the undersized geometric features 
are remeshed, and the new elements are allowed to traverse 
multiple surfaces, provided they pass the dedicated validity 
check. This process results in a NEFEM surface mesh cus-
tomised for the next volume mesh generation stage. Various 
normal vectors are defined and computed on the NEFEM 
surface elements to guide the growth of volume elements. 
During the growth of each volume element, self-intersection 
checks are performed to ensure the element validity. The vol-
ume elements grown from traversing surface elements form 
the first layer of NEFEM volume elements, including a few 
traversing elements, whose exterior faces are extracted and 
merged with the NEFEM surface mesh, so that a standard 
volume mesh generator can be used to obtain the remaining 
of the interior volume mesh. The final NEFEM volume mesh 

is obtained by combining the NEFEM volume layer and the 
interior volume mesh.

Examples have been presented to demonstrate the 
applicability and potential of the proposed meshing 
framework. For completeness, the CAD model, the initial 
FEM surface mesh, the NEFEM surface and volume 
meshes are shown. The examples involve geometries 
where the CAD model contains very small edges, such as 
the blunt trailing edges of the hollow fairing and the wing. 
The resulting NEFEM meshes demonstrate a spacing 
closely matching the user-specification, even when 
the CAD model contains small features. The extension 
to high-order interpolations can be easily achieved by 
adding high-order nodes to the NEFEM elements and 
deforming the elements via an elasticity analogy, which 
is independent on the definition of geometric mapping for 
the NURBS-enhanced elements.

In the examples shown, all elements with at least one face 
or edge on the boundary are treated as NEFEM elements. 
However, for problems with quantities of interest in specific 
parts of the domain, it is possible for the user to specify 
the surfaces of the CAD model that will be discretised with 
NEFEM elements and keep a traditional isoparametric 
description near boundaries away from the region of interest.

Future work will involve devising a new definition of the 
element quality and its improvement strategies. Ultimately, it 

Fig. 29  Zoomed view of the clipped NEFEM surface mesh with tra-
versing volume elements

Table 10  Normalised edge 
lengths for the mechanical 
component model

Minimum edge length in 
FEM mesh

0.17

Minimum edge length in 
NEFEM mesh

0.99

Increase factor 5.82

Fig. 30  NEFEM volume mesh for the electromagnetic simulation
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is expected to integrate the generated mesh to existing FEM 
solvers with an API for further applications.
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