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In this paper we investigate explicit numerical approximations for stochastic differential delay 
equations (SDDEs) under a local Lipschitz condition by employing the adaptive Euler-Maruyama 
(EM) method. Working in both finite and infinite horizons, we achieve strong convergence results 
of the adaptive EM solution. We also obtain the order of convergence in finite horizon. In addition, 
we show almost sure exponential stability of the adaptive approximate solution for both SDEs and 
SDDEs.

1. Introduction

Consider the following SDDEs

𝑑𝑌𝑡 = (−2𝑌𝑡 − 𝑌 3
𝑡 + 1

2
𝑌𝑡 sin(𝑌𝑡−1))𝑑𝑡+

√
2𝑌𝑡 cos(𝑌𝑡−1)𝑑𝑊𝑡 (1.1)

with initial data 𝜉 ∈ 𝐶([−1, 0]; ℝ), 𝜉(0) = 𝑐 ∈ℝ∕{0}. Using [16, Theorem 1], we can show that the exact solution of the SDDE (1.1)

is almost sure exponentially stable, i.e.

lim sup
𝑡→∞

1
𝑡
log |𝑌𝑡| ≤ −𝜆 a.s., 𝜆 > 0.

However, the discrete (standard) EM approximate solution{
𝑋𝑘 = 𝜉(𝑘Δ) 𝑘 = −𝑚,−𝑚+ 1, ...,0,
𝑋𝑘+1 =𝑋𝑘 −𝑋𝑘[(2 +𝑋2

𝑘
− 1

2𝑋𝑘 sin(𝑋𝑘−1))Δ +
√
2cos(𝑋𝑘−1)Δ𝑊𝑘], 𝑘 = 0,1,…

(1.2)

* Corresponding author.
Available online 27 May 2024
0096-3003/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail address: c.yuan@swansea.ac.uk (C. Yuan).

https://doi.org/10.1016/j.amc.2024.128853

Received 10 December 2023; Received in revised form 10 May 2024; Accepted 14 May 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/amc
mailto:c.yuan@swansea.ac.uk
https://doi.org/10.1016/j.amc.2024.128853
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2024.128853&domain=pdf
https://doi.org/10.1016/j.amc.2024.128853
http://creativecommons.org/licenses/by/4.0/


Applied Mathematics and Computation 478 (2024) 128853U. Botija-Munoz and C. Yuan

where Δ = 1∕𝑚, 𝑚 ∈ ℕ, is not almost sure exponentially stable. This means that it does not exist a constant 𝜂 > 0 and a Δ∗ ∈ (0, 1)
such that for all Δ ∈ (0, Δ∗)

limsup
𝑘→∞

1
𝑘Δ

log |𝑋𝑘| ≤ −𝜂 a.s. .

On the contrary, as we will see in Section 6, the adaptive EM approximate solution to equation (1.1) is almost sure exponentially 
stable.

The classical existence-and-uniqueness theorem for SDDEs requires the drift and diffusion functions to satisfy a local Lipschitz 
condition and a linear growth condition (see [11]). However, in applications there are many SDDEs which do not satisfy the linear 
growth condition. The Khasminskii-type theorem in [12] enables to prove existence-and-uniqueness for a class of SDDEs using a 
weaker condition than the linear growth one. Thus it is desirable, under these weaker conditions, to find numerical approximate 
solutions that converge strongly to the exact solution. In 2003, Mao [14] proved strong convergence using the EM scheme and 
assuming the boundedness of the 𝑝th moments for both the exact and the numerical solution. It is well-known that the linear growth 
condition implies the boundedness of the 𝑝th moments for the EM approximate solution. But when the drift function grows faster 
than linear, the standard EM scheme fails, see the example with polynomial growth in Hunter [7]. Therefore, modifications of the EM 
scheme for SDDEs that provide explicit approximate solutions have appeared in the last few years to account for this issue. Examples 
of these are the tamed [8] and the truncated [3] methods.

In 2020, Wei and Giles [2] obtained strong convergence for the numerical solution of a SDEs in a finite horizon under local 
Lipschitz and one-sided linear growth conditions. They use an adaptive EM scheme in which the time step is not a constant, but a 
function of the solution at that point in time. They also, under more restrictive conditions, showed strong convergence in infinite 
horizon. Here, in the first part of this paper we extend their work to SDDEs in both, finite and infinite horizons. Following [2], we will 
show the boundedness of the 𝑝th moments but in our case, this is not enough to prove strong convergence. The main difficulty is that 
the delay times might not match the times where the numerical solution is computed. We therefore defined an auxiliary piecewise 
constant process on the delay times. This varies from the standard EM method for SDDEs and requires a new proof of convergence.

Additionally, to study the stability of numerical solutions is an important topic. Moment stability for SDDEs has been studied 
extensively, see for example [1,13]. Almost sure (a.s.) exponential stability is usually derived from moment stability by means of the 
Borel-Cantelli lemma and Markov’s inequality (see [6]). In Wu et al. [16], using the EM and the Backward EM (BEM) methods, a.s. 
exponential stability was studied for SDDEs without using moment stability. Their approach was based on the martingale convergence 
theorem. They required the linear growth condition when dealing with the standard EM scheme. When they weaken the linear growth 
condition to the one-sided linear growth condition for the diffusion function, they showed how the standard EM approximate solution 
loses the stability of the exact solution. Then they showed that under the one-sided linear growth condition, the a.s. exponential 
stability can be achieved by using the BEM method. This method is implicit and therefore more computationally expensive than 
explicit methods like the adaptive EM. In Song et al. [15], applying the truncated EM method, a.s. exponential stability was studied 
for SDDEs was also investigated. Since the adaptive EM scheme is one of the important explicit numerical method, here, we show 
that the adaptive EM method can also preserve a.s. exponential stability for SDDEs. We also do it for SDEs, which was not studied in 
[2].

The rest of the paper is structured as follows. Section 2 introduces some preliminary notation and the type of SDDE we will 
work with in the rest of the paper. Section 3 describes the adaptive EM method. Section 4 deals with strong convergence and order 
of convergence in finite horizon. In Section 5 we obtained the boundedness of the 𝑝th moments for the adaptive EM approximate 
solution in infinite horizon. In Section 6 we show that almost surely exponential stability of the adaptive EM solution for SDDEs can 
be recovered and provide illustration for counterexample (1.1). In Section 7, we present some simulations to illustrate the results in 
Section 6.

2. Preliminaries

Throughout this paper, let (Ω,  , ℙ) be a filtered complete probability space where the filtration {𝑡}𝑡≥0 satisfies the usual 
conditions (i.e. it is right continuous and 0 contains all ℙ-null sets). Let 𝜏 > 0 and 𝑇 > 0 be constants and denote 𝐶([−𝜏, 0]; ℝ𝑚)
the space of all continuous functions from [−𝜏, 0] to ℝ𝑚 with the norm ||𝜙|| = sup−𝜏≤𝜃≤0 |𝜙(𝜃)|. Let {𝑊𝑡}0≤𝑡≤𝑇 be a standard 𝑑-

dimensional Brownian motion. For a ℝ𝑚-vector 𝑣, we denote the Euclidean norm by |𝑣| ∶= (|𝑣1|2 + ... + |𝑣𝑚|2) 12 and the inner 
product of two ℝ𝑚-vectors 𝑣 and 𝑤 by ⟨𝑣, 𝑤⟩ ∶= 𝑣1𝑤1 + ... + 𝑣𝑚𝑤𝑚. For a 𝑚 × 𝑑 matrix A, we denote the Frobenius matrix norm by ||𝐴|| ∶=√trace(𝐴𝑇𝐴).

Consider an 𝑚-dimensional SDDE of the form{
𝑑𝑌𝑡 = 𝑓 (𝑌𝑡, 𝑌𝑡−𝜏 )𝑑𝑡+ 𝑔(𝑌𝑡, 𝑌𝑡−𝜏 )𝑑𝑊𝑡, 𝑡 > 0,
𝑌𝑡 = 𝜉(𝑡), 𝑡 ∈ [−𝜏,0],

(2.1)

where 𝑓 ∶ℝ𝑚 ×ℝ𝑚 →ℝ𝑚 and 𝑔 ∶ℝ𝑚 ×ℝ𝑚 →ℝ𝑚×𝑑 are Borel-measurable functions, and 𝜉 is a 0-measurable 𝐶([−𝜏, 0]; ℝ𝑚)-valued 
2

random variable such that 𝐸‖𝜉‖𝑝 <∞.
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3. Adaptive method

The time step is determined by a function ℎ𝛿 ∶ ℝ𝑚 → ℝ+ with 𝛿 ∈ (0, 1). The family of functions {ℎ𝛿}0<𝛿<1 is not specifically 
defined, it just has to satisfy certain conditions that we will describe later in the next assumption. To see concrete examples where 
the function ℎ𝛿 is fully specified, see Section 4 in [2] or equation (6.9) below. We now define the adaptive method for SDDEs. Set

𝑋0 ∶= 𝜉(0), ℎ𝛿0 ∶= ℎ𝛿(𝑋0), 𝑡1 ∶= ℎ𝛿0.

We introduce the continuous-time step (auxiliary) process 𝑋. Define

𝑋𝑡 ∶= 𝜉(𝑡), 𝑡 ∈ [−𝜏,0), 𝑋𝑡 ∶= 𝜉(0), 𝑡 ∈ [0, 𝑡1).

For 𝑡1 we define the discrete-time approximate solution 𝑋 as

𝑋𝑡1
∶=𝑋0 + 𝑓 (𝑋0,𝑋−𝜏 )ℎ𝛿0 + 𝑔(𝑋0,𝑋−𝜏 )Δ𝑊0,

ℎ𝛿1 ∶= ℎ𝛿(𝑋𝑡1
), 𝑡2 = 𝑡1 + ℎ𝛿1,

𝑋𝑡 ∶=𝑋𝑡1
, 𝑡 ∈ [𝑡1, 𝑡2),

where Δ𝑊0 ∶=𝑊𝑡1
−𝑊0. Then for a generic 𝑡𝑛 we define

𝑋𝑡𝑛+1
∶=𝑋𝑡𝑛

+ 𝑓 (𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )ℎ

𝛿
𝑛 + 𝑔(𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛, (3.1)

ℎ𝛿
𝑛+1 ∶= ℎ𝛿(𝑋𝑡𝑛+1

), 𝑡𝑛+2 = 𝑡𝑛+1 + ℎ𝛿
𝑛+1,

𝑋𝑡 ∶=𝑋𝑡𝑛+1
, 𝑡 ∈ [𝑡𝑛+1, 𝑡𝑛+2),

where Δ𝑊𝑛 ∶= 𝑊𝑡𝑛+1
−𝑊𝑡𝑛

. For every path 𝜔 ∈ Ω, we continue the recursion (3.1) until 𝑛 = 𝑁(𝜔) ∶= inf{𝑛 ∈ ℤ+ ∶ 𝑡𝑛(𝜔) ≥ 𝑇 }. 
Note that 𝑡𝑛 and ℎ𝛿𝑛 are random variables. For every 𝜔, let 𝑟 = 𝑟(𝜔) be such 𝑡𝑟 ≤ 𝜏 < 𝑡𝑟+1. Then we define the continuous-time step 
(auxiliary) process 𝑋 as

𝑋𝑡 ∶=𝑋−𝜏 , 𝑡 ∈ [−𝜏, 𝑡1 − 𝜏), 𝑋𝑡 ∶=𝑋𝑡1−𝜏 , 𝑡 ∈ [𝑡1 − 𝜏, 𝑡2 − 𝜏), ...., 𝑋𝑡 ∶=𝑋𝑡𝑟−𝜏 , 𝑡 ∈ [𝑡𝑟 − 𝜏, 𝑡𝑟+1 − 𝜏),

𝑋𝑡 ∶=𝑋𝑡𝑟+1−𝜏 , 𝑡 ∈ [𝑡𝑟+1 − 𝜏, 𝑡𝑟+2 − 𝜏), 𝑋𝑡 ∶=𝑋𝑡𝑟+𝑛−𝜏 , 𝑡 ∈ [𝑡𝑟+𝑛 − 𝜏, 𝑡𝑟+𝑛+1 − 𝜏) (3.2)

for 𝑛 = 1, ..., 𝑁 − 𝑟. We now define the continuous approximate solution

𝑋𝑡 ∶= 𝜉(𝑡), 𝑡 ∈ [−𝜏,0];

𝑋𝑡 ∶=𝑋0 +

𝑡

∫
0

𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )𝑑𝑠+

𝑡

∫
0

𝑔(𝑋𝑠,𝑋𝑠−𝜏 )𝑑𝑊𝑠, 𝑡 > 0. (3.3)

Note that 𝑋𝑡𝑛
=𝑋𝑡𝑛

=𝑋𝑡𝑛
for 𝑛 = 0, 1, ..., 𝑁 .

4. Convergence of the numerical solutions on finite time interval

In this section we will work on a finite time interval [−𝜏, 𝑇 ], 𝑇 > 0, and investigate the convergence of the numerical solutions to 
the exact solution on [0, 𝑇 ].

Assumption 4.1. The functions 𝑓 and 𝑔 satisfy the local Lipschitz condition: for every 𝑅 > 0 there exists a positive constant 𝐶𝑅 such 
that

|𝑓 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)|+ ||𝑔(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)|| ≤ 𝐶𝑅(|𝑥− 𝑥|+ |𝑦− 𝑦|) (4.1)

for all 𝑥, 𝑦, 𝑥, 𝑦 ∈ ℝ𝑚 with |𝑥| ∨ |𝑦| ∨ |𝑥| ∨ |𝑦| ≤ 𝑅. Furthermore, there exist two constants 𝛼, 𝛽 ≥ 0 such that for all 𝑥, 𝑦 ∈ ℝ𝑚, 𝑓
satisfies the one-sided linear growth condition:

⟨𝑥,𝑓 (𝑥, 𝑦)⟩ ≤ 𝛼(|𝑥|2 + |𝑦|2) + 𝛽 (4.2)

and 𝑔 satisfies the linear growth condition:

||𝑔(𝑥, 𝑦)||2 ≤ 𝛼(|𝑥|2 + |𝑦|2) + 𝛽. (4.3)

Assumption 4.2. The time step function ℎ𝛿 ∶ℝ𝑚 →ℝ+, 𝛿 ∈ (0, 1), is continuous, strictly positive and bounded by 𝛿𝑇 , i.e.
3

0 < ℎ𝛿(𝑥) ≤ 𝛿𝑇 for all 𝑥 ∈ℝ𝑚. (4.4)



Applied Mathematics and Computation 478 (2024) 128853U. Botija-Munoz and C. Yuan

Furthermore, there exist constants 𝛼, 𝛽 > 0 such that for all 𝑥, 𝑦 ∈ℝ𝑚.

⟨𝑥,𝑓 (𝑥, 𝑦)⟩+ 1
2
ℎ𝛿(𝑥)|𝑓 (𝑥, 𝑦)|2 ≤ 𝛼(|𝑥|2 + |𝑦|2) + 𝛽. (4.5)

Note that condition (4.5) implies condition (4.2) with the same values of 𝛼 and 𝛽.

4.1. The boundedness of the 𝑝th moments of the exact solution and the numerical solutions

4.1.1. Exact solution

In this subsection we will discuss the 𝑝th moments of the exact solution to SDDE (2.1).

Lemma 4.3. If the SDDE (2.1) satisfies Assumption (4.1), then there exists a positive constant 𝐶 such that for any 𝑝 ≥ 2

𝔼
[
sup

0≤𝑡≤𝑇
|𝑌𝑡|𝑝] ≤ 𝐶. (4.6)

Proof. The proof is given in Lemma 3.2 in [8]. □

4.1.2. Adaptive EM numerical solutions

In this subsection, the 𝑝th moments of numerical solution will be investigated. In the standard Euler-Maruyama method the 
discretisation times {𝑡𝑛} are built using a constant time step Δ and a fixed number of steps 𝑁 ∈ ℕ, i.e. 𝑡𝑁 =𝑁Δ = 𝑇 . However, in 
the adaptive method, {𝑡𝑛} is a sequence of random variables and there is no guarantee that it reaches 𝑇 in a finite number of steps. 
Thus, we have the following definition.

Definition 4.1. We say that the time horizon 𝑇 is attainable if {𝑡𝑛} reaches 𝑇 in a finite number of steps 𝑁 , i.e. for almost all 𝜔 ∈Ω, 
there exists a 𝑁(𝜔) such that 𝑡𝑁(𝜔) =

∑𝑁(𝜔)
𝑛=0 ℎ𝛿(𝑋𝑡𝑛

) ≥ 𝑇 .

Theorem 4.4. If the SDDE (2.1) and the function ℎ𝛿 satisfy Assumption 4.1 and 4.2 respectively, then 𝑇 is attainable and for all 𝑝 > 0 there 
exists a constant 𝐶 > 0 dependent on 𝑇 and 𝑝, but independent of ℎ𝛿𝑛, such that

𝔼
[
sup

0≤𝑡≤𝑇
|𝑋𝑡|𝑝] ≤ 𝐶. (4.7)

The discrete-time approximate solution defined in (3.1) need not be bounded. In order to show that 𝑇 is attainable and prove 
Theorem 4.4, we need to work with a bounded approximate solution. To this end we now introduce the following auxiliary scheme. 
Let 𝐾 > ||𝜉||. Set 𝑋𝐾

0 ∶= 𝜉(0), ℎ𝛿,𝐾0 ∶= ℎ𝛿(𝑋𝐾
0 ), 𝑡1 ∶= ℎ𝛿,𝐾0 and 𝑋

𝐾

𝑡 ∶= 𝜉(𝑡), 𝑡 ∈ [−𝜏, 0), 𝑋
𝐾

𝑡 ∶= 𝜉(0), 𝑡 ∈ [0, 𝑡1). Note that 𝑡𝑛, 𝑛 = 1, 2, ..., 
also depend on 𝐾 , but we have dropped it to ease the notation. Consider the function Φ𝐾 ∶ℝ𝑚 →ℝ𝑚, Φ(𝑥) = min(1, 𝐾∕|𝑥|)𝑥. Then 
for every 𝜔 ∈Ω and for 𝑛 = 0, 1, ...𝑁𝐾 (𝜔) (where 𝑁𝐾 (𝜔) ∶= inf{𝑛 ∈ℤ+ ∶ 𝑡𝑛(𝜔) ≥ 𝑇 }), we define

𝑋𝐾
𝑡𝑛+1

∶= Φ𝐾 (𝑋𝐾
𝑡𝑛
+ 𝑓 (𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)ℎ𝛿,𝐾𝑛 + 𝑔(𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)Δ𝑊𝑛)

ℎ𝛿,𝐾
𝑛+1 ∶= ℎ𝛿(𝑋𝐾

𝑡𝑛+1
), 𝑡𝑛+2 ∶= 𝑡𝑛+1 + ℎ𝛿,𝐾

𝑛+1,

𝑋
𝐾

𝑡 ∶=𝑋𝐾
𝑡𝑛+1

, 𝑡 ∈ [𝑡𝑛+1, 𝑡𝑛+2).

(4.8)

Define for 𝑛 = 0, ..., 𝑁 − 𝑟

𝑋𝐾
𝑡 ∶=𝑋

𝐾

𝑡𝑛−𝜏
, 𝑡 ∈ [𝑡𝑛 − 𝜏, 𝑡𝑛+1 − 𝜏), (4.9)

where 𝑟 = 𝑟(𝜔) is such that 𝑡𝑟 ≤ 𝜏 ≤ 𝑡𝑟+1. We now define the continuous approximate solution

𝑋𝐾
𝑡 ∶= 𝜉(𝑡), 𝑡 ∈ [−𝜏,0];

𝑋𝐾
𝑡 ∶= Φ𝐾

(
𝑋𝐾
𝑡 + 𝑓 (𝑋𝐾

𝑡 ,𝑋
𝐾

𝑡−𝜏 )(𝑡− 𝑡) + 𝑔(𝑋𝐾
𝑡 ,𝑋

𝐾

𝑡−𝜏 )(𝑊𝑡 −𝑊𝑡)
)

𝑡 > 0, (4.10)

where 𝑡 ∶= max{𝑡𝑛 ∶ 𝑡𝑛 ≤ 𝑡}. Note that 𝑋𝐾
𝑡𝑛
=𝑋𝐾

𝑡𝑛
=𝑋

𝐾

𝑡𝑛
.

Lemma 4.5. Let 𝑝 ≥ 4, the SDDE (2.1) satisfy Assumption 4.1 and the function ℎ𝛿 satisfy Assumption 4.2. Then, for the auxiliary scheme 
defined by (4.10), 𝑇 is attainable and for all 𝑝 ≥ 4 there exists a constant 𝐶 dependent on 𝑇 and 𝑝, but independent of ℎ𝛿𝑛 and 𝐾 such that[

𝐾 𝑝

]

4

𝔼 sup
0≤𝑡≤𝑇

|𝑋𝑡 | ≤ 𝐶. (4.11)



Applied Mathematics and Computation 478 (2024) 128853U. Botija-Munoz and C. Yuan

Proof. Fix 𝛿 ∈ (0, 1). Since ℎ𝛿 is continuous and strictly positive, inf |𝑥|≤𝐾 ℎ𝛿(𝑥) > 0. This implies that for every 𝜔 ∈Ω

lim inf
𝑛→∞

ℎ𝛿,𝐾𝑛 (𝜔) = lim inf
𝑛→∞

ℎ𝛿(𝑋𝐾
𝑡𝑛
(𝜔)) > 0,

so lim𝑛→∞ 𝑡𝑛(𝜔) =
∑∞

𝑛=0 ℎ
𝛿,𝐾
𝑛 (𝜔) =∞ for all 𝜔 ∈Ω and 𝑇 is attainable in the bounded scheme.

Now we will prove the boundedness of the 𝑝th moments and the upper bound will be independent of ℎ𝛿,𝐾𝑛 and 𝐾 . To ease 
the notation will drop the symbols “𝛿” and “𝐾” in the adaptive time-step “ℎ𝛿,𝐾𝑛 ”. Let 𝑡 ∈ [0, 𝑇 ]. Define 𝑡 ∶= max{𝑡𝑛 ∶ 𝑡𝑛 ≤ 𝑡}, and 
𝑛𝑡 ∶= max{𝑛 ∶ 𝑡𝑛 ≤ 𝑡}. Using (4.8) and since for any 𝑥 ∈ℝ𝑚, |Φ(𝑥)|2 ≤ |𝑥|2, we have that for 𝑛 = 0 to 𝑛 = 𝑛𝑡 − 1,

|𝑋𝐾
𝑡𝑛+1

|2 ≤ |𝑋𝐾
𝑡𝑛
+ 𝑓 (𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)ℎ𝑛 + 𝑔(𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)Δ𝑊𝑛|2

= ⟨𝑋𝐾
𝑡𝑛
,𝑋𝐾

𝑡𝑛
⟩+ 2⟨𝑋𝐾

𝑡𝑛
, 𝑓 (𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)ℎ𝑛⟩+ ⟨𝑓 (𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)ℎ𝑛, 𝑓 (𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)ℎ𝑛⟩

+ 2⟨𝑋𝐾
𝑡𝑛
+ 𝑓 (𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)ℎ𝑛, 𝑔(𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)Δ𝑊𝑛⟩

+ ⟨𝑔(𝑋𝐾
𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)Δ𝑊𝑛,𝑔(𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)Δ𝑊𝑛⟩

= |𝑋𝐾
𝑡𝑛
|2 + 2ℎ𝑛

[⟨𝑋𝐾
𝑡𝑛
, 𝑓 (𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)⟩+ 1

2
ℎ𝑛|𝑓 (𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)|2]

+ 2⟨𝑋𝐾
𝑡𝑛
+ 𝑓 (𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)ℎ𝑛, 𝑔(𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)Δ𝑊𝑛⟩+ |𝑔(𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)Δ𝑊𝑛|2

≤ |𝑋𝐾
𝑡𝑛
|2 + 2ℎ𝑛𝛼(|𝑋𝐾

𝑡𝑛
|2 + |𝑋𝐾

𝑡𝑛−𝜏
|2) + 2ℎ𝑛𝛽

+ 2⟨𝑋𝐾
𝑡𝑛
+ 𝑓 (𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)ℎ𝑛, 𝑔(𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)Δ𝑊𝑛⟩+ |𝑔(𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)Δ𝑊𝑛|2,

where in the last step we have used condition (4.5). Solving the recurrence relation, we get

|𝑋𝐾
𝑡 |2 ≤ |𝑋𝐾

0 |2 + 2𝛼

(
𝑛𝑡−1∑
𝑛=0

|𝑋𝐾
𝑡𝑛
|2ℎ𝑛 + |𝑋𝐾

𝑡𝑛−𝜏
|2ℎ𝑛)+ 2𝛽𝑡

+ 2
𝑛𝑡−1∑
𝑛=0

⟨𝑋𝐾
𝑡𝑛
+ 𝑓 (𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)ℎ𝑛, 𝑔(𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)Δ𝑊𝑛⟩+ 𝑛𝑡−1∑

𝑛=0
|𝑔(𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)Δ𝑊𝑛|2. (4.12)

Similarly, the continuous approximate solution verifies

|𝑋𝐾
𝑡 |2 ≤ |𝑋𝐾

𝑡 |2 + 2(𝑡− 𝑡)𝛼(|𝑋𝐾
𝑡 |2 + |𝑋𝐾

𝑡−𝜏 |2) + 2(𝑡− 𝑡)𝛽

+ 2⟨𝑋𝐾
𝑡 + 𝑓 (𝑋𝐾

𝑡 ,𝑋
𝐾

𝑡−𝜏 )(𝑡− 𝑡), 𝑔(𝑋𝐾
𝑡 ,𝑋

𝐾

𝑡−𝜏 )(𝑊𝑡 −𝑊𝑡)⟩+ |𝑔(𝑋𝐾
𝑡 ,𝑋

𝐾

𝑡−𝜏 )(𝑊𝑡 −𝑊𝑡)|2. (4.13)

Substituting (4.12) into (4.13) yields

|𝑋𝐾
𝑡 |2 ≤ |𝑋𝐾

0 |2 + 2𝛼

(
𝑛𝑡−1∑
𝑛=0

|𝑋𝐾
𝑡𝑛
|2ℎ𝑛 + |𝑋𝐾

𝑡𝑛−𝜏
|2ℎ𝑛 + |𝑋𝐾

𝑡 |2(𝑡− 𝑡) + |𝑋𝐾

𝑡−𝜏 |2(𝑡− 𝑡)

)
+ 2𝛽𝑡

+ 2
𝑛𝑡−1∑
𝑛=0

⟨𝑋𝐾
𝑡𝑛
+ 𝑓 (𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)ℎ𝑛, 𝑔(𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)Δ𝑊𝑛⟩+ 𝑛𝑡−1∑

𝑛=0
|𝑔(𝑋𝐾

𝑡𝑛
,𝑋

𝐾

𝑡𝑛−𝜏
)Δ𝑊𝑛|2

+ 2⟨𝑋𝐾
𝑡 + 𝑓 (𝑋𝐾

𝑡 ,𝑋
𝐾

𝑡−𝜏 )(𝑡− 𝑡), 𝑔(𝑋𝐾
𝑡 ,𝑋

𝐾

𝑡−𝜏 )(𝑊𝑡 −𝑊𝑡)⟩+ |𝑔(𝑋𝐾
𝑡 ,𝑋

𝐾

𝑡−𝜏 )(𝑊𝑡 −𝑊𝑡)|2.
Using the step processes 𝑋

𝐾
and 𝑋𝐾 defined previously, the second summand on the RHS of the equation above, can be expressed 

as a Riemann integral. Similarly the fourth and the sixth terms can be written as an Itô integral, i.e.

|𝑋𝐾
𝑡 |2 ≤ |𝑋𝐾

0 |+ 2𝛼

𝑡

∫
0

(|𝑋𝐾

𝑠 |2 + |𝑋𝐾
𝑠−𝜏 |2)𝑑𝑠+ 2𝛽𝑡

+ 2

𝑡

∫
0

⟨𝑋𝐾

𝑠 + 𝑓 (𝑋
𝐾

𝑠 ,𝑋
𝐾
𝑠−𝜏 )[ℎ(𝑋

𝐾

𝑢 )𝐼[0,𝑡)(𝑢) + (𝑡− 𝑡)𝐼[𝑡,𝑡](𝑢)], 𝑔(𝑋
𝐾

𝑠 ,𝑋
𝐾
𝑠−𝜏 )𝑑𝑊𝑠⟩

+
𝑛𝑡−1∑
𝑛=0

|𝑔(𝑋𝐾

𝑡𝑛
,𝑋𝐾

𝑡𝑛−𝜏
)Δ𝑊𝑛|2 + |𝑔(𝑋𝐾

𝑡 ,𝑋
𝐾
𝑡−𝜏 )(𝑊𝑡 −𝑊𝑡)|2.
5

Hence, we have
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|𝑋𝐾
𝑡 |𝑝 ≤ 6𝑝∕2−1

{|𝑋𝐾
0 |𝑝 + ⎛⎜⎜⎝2𝛼

𝑡

∫
0

(|𝑋𝐾

𝑠 |2 + |𝑋𝐾
𝑠−𝜏 |2)𝑑𝑠⎞⎟⎟⎠

𝑝∕2

+ (2𝛽𝑡)𝑝∕2

+
|||||||2

𝑡

∫
0

⟨𝑋𝐾

𝑠 + 𝑓 (𝑋
𝐾

𝑠 ,𝑋
𝐾
𝑠−𝜏 )[ℎ(𝑋

𝐾

𝑢 )𝐼[0,𝑡)(𝑢) + (𝑡− 𝑡)𝐼[𝑡,𝑡](𝑢)], 𝑔(𝑋
𝐾

𝑠 ,𝑋
𝐾
𝑠−𝜏 )𝑑𝑊𝑠⟩|||||||

𝑝∕2

+

(
𝑛𝑡−1∑
𝑛=0

|𝑔(𝑋𝐾

𝑡𝑛
,𝑋𝐾

𝑡𝑛−𝜏
)Δ𝑊𝑛|2)𝑝∕2

+ |𝑔(𝑋𝐾

𝑡 ,𝑋
𝐾
𝑡−𝜏 )(𝑊𝑡 −𝑊𝑡)|𝑝}.

Taking the expectation of the supremum, one has

𝔼
[
sup
0≤𝑠≤𝑡

|𝑋𝐾
𝑠 |𝑝] ≤ 6𝑝∕2−1(𝐼1 + 𝐼2 + 𝐼3 + 𝐼4),

where

𝐼1 ∶= 𝔼|𝑋𝐾
0 |𝑝 + 𝔼

⎡⎢⎢⎢⎣
⎛⎜⎜⎝2𝛼

𝑡

∫
0

(|𝑋𝐾

𝑠 |2 + |𝑋𝐾
𝑠−𝜏 |2)𝑑𝑠⎞⎟⎟⎠

𝑝∕2⎤⎥⎥⎥⎦+ (2𝛽𝑡)𝑝∕2;

𝐼2 ∶= 𝔼
⎡⎢⎢⎢⎣ sup0≤𝑠≤𝑡

|||||||2
𝑠

∫
0

⟨𝑋𝐾

𝑢 + 𝑓 (𝑋
𝐾

𝑢 ,𝑋
𝐾
𝑢−𝜏 )[ℎ(𝑋

𝐾

𝑢 )𝐼[0,𝑠)(𝑢) + (𝑠− 𝑠)𝐼[𝑠,𝑠](𝑢)], 𝑔(𝑋
𝐾

𝑢 ,𝑋
𝐾
𝑢−𝜏 )𝑑𝑊𝑢⟩|||||||

𝑝∕2⎤⎥⎥⎥⎦ ;
𝐼3 ∶= 𝔼

⎡⎢⎢⎣
(
𝑛𝑡−1∑
𝑛=0

|𝑔(𝑋𝐾

𝑡𝑛
,𝑋𝐾

𝑡𝑛−𝜏
)Δ𝑊𝑛|2)𝑝∕2⎤⎥⎥⎦ ;

𝐼4 ∶= 𝔼
[
sup
0≤𝑠≤𝑡

|𝑔(𝑋𝐾

𝑠 ,𝑋
𝐾
𝑠−𝜏 )(𝑊𝑠 −𝑊𝑠)|𝑝] .

Now we will establish bounds for each of the four terms above. In the remainder of the proof, 𝐶 is positive constants, independent 
of 𝐾 , that may change from line to line.

Using Hölder’s inequality, we have

𝐼1 ≤ 𝔼|𝑋𝐾
0 |𝑝 + (2𝛼)𝑝∕2𝑇 𝑝∕2−12𝑝∕2−1

𝑡

∫
0

𝔼[|𝑋𝐾

𝑠 |𝑝 + |𝑋𝐾
𝑠−𝜏 |𝑝]𝑑𝑠+ (2𝛽𝑇 )𝑝∕2

≤ 𝐶

𝑡

∫
0

𝔼
[
sup
0≤𝑢≤𝑠

|𝑋𝐾
𝑢 |𝑝]𝑑𝑠+𝐶.

By the Burkholder-Davis-Gundy (BDG) inequality (see [9]) we obtain

𝐼2 ≤ 2𝑝∕2𝐶𝔼
⎡⎢⎢⎢⎣
⎛⎜⎜⎝

𝑡

∫
0

|(𝑋𝐾

𝑢 + 𝑓 (𝑋
𝐾

𝑢 ,𝑋
𝐾
𝑢−𝜏 )[ℎ(𝑋

𝐾

𝑢 )𝐼[0,𝑡)(𝑢) + (𝑡− 𝑡)𝐼[𝑡,𝑡](𝑢)])𝑔(𝑋
𝐾

𝑢 ,𝑋
𝐾
𝑢−𝜏 )|2𝑑𝑢⎞⎟⎟⎠

𝑝∕4⎤⎥⎥⎥⎦
An application of the Hölder inequality yields that

𝐼2 ≤ 2
𝑝
2 𝑇

𝑝
4 −1𝐶𝔼

⎡⎢⎢⎣
𝑡

∫
0

||||𝑋𝐾

𝑢 + 𝑓 (𝑋
𝐾

𝑢 ,𝑋
𝐾
𝑢−𝜏 )[ℎ(𝑋

𝐾

𝑢 )𝐼[0,𝑡)(𝑢) + (𝑡− 𝑡)𝐼[𝑡,𝑡](𝑢)]
||||
𝑝
2 ||𝑔(𝑋𝐾

𝑢 ,𝑋
𝐾
𝑢−𝜏 )|| 𝑝2 𝑑𝑢⎤⎥⎥⎦ (4.14)

Now, we bound the integrand of the integral above. Using condition (4.5) we obtain

|𝑋𝐾

𝑢 + 𝑓 (𝑋
𝐾

𝑢 ,𝑋
𝐾
𝑢−𝜏 )[ℎ(𝑋

𝐾

𝑢 )𝐼[0,𝑡)(𝑢) + (𝑡− 𝑡)𝐼[𝑡,𝑡](𝑢)]|2 =
= |𝑋𝐾

𝑢 |2 + 2[ℎ(𝑋
𝐾

𝑢 )𝐼[0,𝑡)(𝑢) + (𝑡− 𝑡)𝐼[𝑡,𝑡](𝑢)]
[⟨𝑋𝐾

𝑢 ,𝑓 (𝑋
𝐾

𝑢 ,𝑋
𝐾
𝑢−𝜏 )⟩

+ 1
2
[ℎ(𝑋

𝐾

𝑢 )𝐼[0,𝑡)(𝑢) + (𝑡− 𝑡)𝐼[𝑡,𝑡](𝑢)]|𝑓 (𝑋𝐾

𝑢 ,𝑋
𝐾
𝑢−𝜏 )|2]

𝐾 𝐾
[ (

𝐾
) ]
6

≤ |𝑋𝑢 |2 + 2[ℎ(𝑋𝑢 )𝐼[0,𝑡)(𝑢) + (𝑡− 𝑡)𝐼[𝑡,𝑡](𝑢)] 𝛼 |𝑋𝑢 |2 + |𝑋𝐾
𝑢−𝜏 |2 + 𝛽
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= (1 + 2𝛼𝑇 )|𝑋𝐾

𝑢 |2 + 2𝛼𝑇 |𝑋𝐾
𝑢−𝜏 |2 + 2𝛽𝑇 .

This implies

|𝑋𝐾

𝑢 + 𝑓 (𝑋
𝐾

𝑢 ,𝑋
𝐾
𝑢−𝜏 )[ℎ(𝑋

𝐾

𝑢 )𝐼[0,𝑡)(𝑢) + (𝑡− 𝑡)𝐼[𝑡,𝑡](𝑢)]|𝑝∕2
≤ 3𝑝∕4−1

[
(1 + 2𝛼𝑇 )𝑝∕4|𝑋𝐾

𝑢 |𝑝∕2 + (2𝛼𝑇 )𝑝∕4|𝑋𝐾
𝑢−𝜏 |𝑝∕2 + (2𝛽𝑇 )𝑝∕4

]
≤ 𝐶

(|𝑋𝐾

𝑢 |𝑝∕2 + |𝑋𝐾
𝑢−𝜏 |𝑝∕2 + 1

)
.

Also by condition (4.3) one can see that

||𝑔(𝑋𝐾

𝑢 ,𝑋
𝐾
𝑢−𝜏 )||𝑝∕2 = (||𝑔(𝑋𝐾

𝑢 ,𝑋
𝐾
𝑢−𝜏 )||2)𝑝∕4 ≤ [𝛼 (|𝑋𝐾

𝑢 |2 + |𝑋𝐾
𝑢−𝜏 |2)+ 𝛽

]𝑝∕4
≤ 𝐶

(|𝑋𝐾

𝑢 |𝑝∕2 + |𝑋𝐾
𝑢−𝜏 |𝑝∕2 + 1

)
.

Substituting the last two inequalities into (4.14), we obtain

𝐼2 ≤ 𝐶𝔼
⎡⎢⎢⎣

𝑡

∫
0

(
1 + |𝑋𝐾

𝑢 |𝑝 + |𝑋𝐾
𝑢−𝜏 |𝑝)𝑑𝑢⎤⎥⎥⎦

≤ 𝐶 +𝐶

⎛⎜⎜⎝
𝑡

∫
0

𝔼
[
sup
0≤𝑢≤𝑠

|𝑋𝐾
𝑢 |𝑝]𝑑𝑠⎞⎟⎟⎠ .

Now we will bound 𝐼3. Note that 𝑡𝑛 is a stopping time of the filtration {𝑊
𝑡 }. Define

𝑡𝑛
∶= {𝐴 ∈  ∶𝐴 ∩ {𝑡𝑛 ≤ 𝑡} ∈ 𝑊

𝑡 }.

We want to show that given 𝑝 there exists a constant 𝐶 dependent on 𝑑 and 𝑝 such that for every 𝑛 we have

𝔼[|Δ𝑊𝑛|𝑝|𝑡𝑛
] ≤ 𝐶ℎ

𝑝∕2
𝑛 .

Note that Δ𝑊𝑛 = 𝑊𝑡𝑛+1
−𝑊𝑡𝑛

has the same distribution as the random variable 
√
ℎ𝑛𝑍 , where 𝑍 is a standard normal random 

𝑑-dimensional vector independent of ℎ𝑛 and 𝑡𝑛
. Thus,

𝔼[|Δ𝑊𝑛|𝑝|𝑡𝑛
] = 𝔼[|√ℎ𝑛𝑍|𝑝|𝑡𝑛

] = |√ℎ𝑛|𝑝𝔼[|𝑍|𝑝] = ℎ
𝑝∕2
𝑛 𝐶, (4.15)

where we have used the facts that ℎ𝑛 is 𝑡𝑛
-measurable, that 𝑍 is independent of 𝑡𝑛

and that 𝔼[|𝑍|𝑝] is a real positive number that 
depends only on 𝑝 and 𝑑.

Combining Jensen’s inequality and equation (4.15), we arrive at

𝐼3 ≤ 𝔼
⎡⎢⎢⎣
(
𝑛𝑡−1∑
𝑛=0

||𝑔(𝑋𝐾

𝑡𝑛
,𝑋𝐾

𝑡𝑛−𝜏
)||2|Δ𝑊𝑛|2)𝑝∕2⎤⎥⎥⎦ = 𝔼

⎡⎢⎢⎣
(
𝑛𝑡−1∑
𝑛=0

ℎ𝑛||𝑔(𝑋𝐾

𝑡𝑛
,𝑋𝐾

𝑡𝑛−𝜏
)||2 |Δ𝑊𝑛|2

ℎ𝑛

)𝑝∕2⎤⎥⎥⎦
≤ 𝑇 𝑝∕2−1𝔼

[
𝑛𝑡−1∑
𝑛=0

ℎ𝑛||𝑔(𝑋𝐾

𝑡𝑛
,𝑋𝐾

𝑡𝑛−𝜏
)||𝑝 𝐸[|Δ𝑊𝑛|𝑝|𝑡𝑛

]

ℎ
𝑝∕2
𝑛

]
≤ 𝐶𝑇 𝑝∕2−1𝔼

[
𝑛𝑡−1∑
𝑛=0

ℎ𝑛||𝑔(𝑋𝐾

𝑡𝑛
,𝑋𝐾

𝑡𝑛−𝜏
)||𝑝]

≤ 𝐶𝑇 𝑝∕2−1𝔼
⎡⎢⎢⎢⎣

𝑡

∫
0

||𝑔(𝑋𝐾

𝑠 ,𝑋
𝐾
𝑠−𝜏 )||𝑝𝑑𝑠

⎤⎥⎥⎥⎦ ≤ 𝐶𝑇 𝑝∕2−1𝔼
⎡⎢⎢⎣

𝑡

∫
0

||𝑔(𝑋𝐾

𝑠 ,𝑋
𝐾
𝑠−𝜏 )||𝑝𝑑𝑠⎤⎥⎥⎦ .

Using condition (4.3) and Hölder’s inequality, we have

𝐼3 ≤ 𝐶𝑇 𝑝∕2−1𝔼
⎡⎢⎢⎣

𝑡

∫
0

(||𝑔(𝑋𝐾

𝑠 ,𝑋
𝐾
𝑠−𝜏 )||2)𝑝∕2 𝑑𝑠⎤⎥⎥⎦ ≤ 𝐶𝑇 𝑝∕2−1𝔼

⎡⎢⎢⎣
𝑡

∫
0

(
𝛼(|𝑋𝐾

𝑠 |2 + |𝑋𝐾
𝑠−𝜏 |2) + 𝛽

)𝑝∕2
𝑑𝑠

⎤⎥⎥⎦
≤ 𝑇 𝑝∕2−12𝑝−2𝐶𝔼

⎡⎢⎢⎣
𝑡

∫
0

(
𝛼𝑝∕2(|𝑋𝐾

𝑠 |𝑝 + |𝑋𝐾

𝑠−𝜏 |𝑝) + 𝛽𝑝∕2
)
𝑑𝑠

⎤⎥⎥⎦
≤ 𝐶 +𝐶

𝑡

∫ 𝔼
[
sup
0≤𝑢≤𝑠

|𝑋𝐾
𝑢 |𝑝]𝑑𝑠.
7

0
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For 𝐼4, using the linear condition (4.3), we obtain

𝐼4 ≤ 𝔼
[
sup
0≤𝑠≤𝑡

|𝑔(𝑋𝐾

𝑠 ,𝑋
𝐾
𝑠−𝜏 )(𝑊𝑠 −𝑊𝑠)|𝑝] ≤ 𝔼

[
sup
0≤𝑠≤𝑡

{
[(𝛼(|𝑋𝐾

𝑠 |𝑝 + |𝑋𝐾
𝑠−𝜏 )|𝑝) + 𝛽] |(𝑊𝑠 −𝑊𝑠)|𝑝}]

≤ 𝔼

[
𝑛𝑡−1∑
𝑛=0

[𝛼(|𝑋𝐾

𝑡𝑛
|𝑝 + |𝑋𝐾

𝑡𝑛−𝜏
|𝑝) + 𝛽]𝔼

[
sup

𝑡𝑛≤𝑠≤𝑡𝑛+1
|(𝑊𝑠 −𝑊𝑡𝑛

)|𝑝∕2|𝑡𝑛

]

+ [𝛼(|𝑋𝐾

𝑡 |𝑝 + |𝑋𝐾
𝑡−𝜏 |𝑝) + 𝛽]𝔼

[
sup
𝑡≤𝑠≤𝑡 |(𝑊𝑠 −𝑊𝑡)|𝑝∕2|𝑡

]]

≤ 𝐶 +𝐶

𝑡

∫
0

𝐸

[
sup
0≤𝑢≤𝑠

|𝑋𝐾
𝑢 |𝑝]𝑑𝑠.

Adding all the bounds for 𝐼1 to 𝐼4, we have that for all 𝑡 ∈ [0, 𝑇 ]

𝔼
[
sup
0≤𝑠≤𝑡

|𝑋𝐾
𝑠 |𝑝] ≤ 𝐶 +𝐶

𝑡

∫
0

𝐸

[
sup
0≤𝑢≤𝑠

|𝑋𝐾
𝑢 |𝑝]

and by the Gronwall inequality we obtain

𝔼
[
sup

0≤𝑡≤𝑇
|𝑋𝐾

𝑡 |𝑝] ≤ 𝐶. □

Remark 4.1. Note that assuming that 𝑇 was attainable, we have proved the boundedness of the 𝑝th moments without using the 
auxiliary scheme. The only reason why we needed to work with a bounded scheme was to show that inf |𝑥|≤𝐾 ℎ𝛿(𝑥) is strictly positive 
and therefore 𝑇 is attainable.

Proof of Theorem 4.4. Since ℎ𝛿 is continuous and strictly positive, inf |𝑥|≤𝐾𝜔
ℎ𝛿(𝑥) > 0. This implies that for almost every 𝜔 ∈Ω

lim inf
𝑛→∞

ℎ𝛿𝑛(𝜔) = lim inf
𝑛→∞

ℎ𝛿(𝑋𝑡𝑛
(𝜔)) ≠ 0,

so lim𝑛→∞ 𝑡𝑛(𝜔) =
∑∞

𝑛=0 ℎ
𝛿
𝑛(𝜔) =∞ a.s. and 𝑇 is attainable. By Lemma 4.5 and the Markov inequality

ℙ( sup
0≤𝑡≤𝑇

|𝑋𝑡| <𝐾) = 1 −ℙ( sup
0≤𝑡≤𝑇

|𝑋𝐾
𝑡 | ≥𝐾) ≥ 1 −

𝔼[sup0≤𝑡≤𝑇 |𝑋𝐾
𝑡 |4

𝐾4 = 1 − 𝐶

𝐾4 .

Thus

lim
𝐾→∞

ℙ( sup
0≤𝑡≤𝑇

|𝑋𝑡| <𝐾) = 1.

This means that sup0≤𝑡≤𝑇 |𝑋𝑡| <∞ a.s., i.e. for almost all 𝜔 ∈Ω there exists a 𝐾𝜔 such that

sup
0≤𝑡≤𝑇

|𝑋𝑡(𝜔)| ≤𝐾𝜔. (4.16)

Also, for all 𝜔 and all 0 <𝐾1 ≤𝐾2, we have

sup
0≤𝑡≤𝑇

|𝑋𝐾1
𝑡 (𝜔)| =min( sup

0≤𝑡≤𝑇
|𝑋𝑡(𝜔)|,𝐾1) ≤min( sup

0≤𝑡≤𝑇
|𝑋𝑡(𝜔)|,𝐾2) = sup

0≤𝑡≤𝑇
|𝑋𝐾2

𝑡 (𝜔).| (4.17)

Equations (4.16) and (4.17) imply that

lim
𝐾→∞

sup
0≤𝑡≤𝑇

|𝑋𝐾
𝑡 | = sup

0≤𝑡≤𝑇
|𝑋𝑡| a.s. (4.18)

This together with Lemma 4.5, yields

𝔼
[
sup

0≤𝑡≤𝑇
|𝑋𝑡|𝑝] = lim

𝐾→∞
𝔼
[
sup

0≤𝑡≤𝑇
|𝑋𝐾

𝑡 |𝑝] ≤ 𝐶.

The proof is complete for 𝑝 ≥ 4. For 0 ≤ 𝑝 < 4, the required assertion follows from the Hölder inequality. □

4.1.3. Strong convergence of the numerical solutions

In order to prove the strong convergence of the approximate solution (3.3) to the exact solution of the SDDE (2.1), we need the 
8

following lemma and corollary.
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Lemma 4.6. Let the SDDE (2.1) and the function ℎ𝛿 satisfy Assumption 4.1 and 4.2 respectively. Assume also that the function 𝑓 satisfies 
the (global) linear growth condition, i.e. there exists a constant 𝐶1 ≥ 0 such that for all 𝑥, 𝑦 ∈ℝ𝑚,

|𝑓 (𝑥, 𝑦)|2 ≤ 𝐶1(|𝑥|2 + |𝑦|2 + 1). (4.19)

Then there exists a positive constant 𝐶 such that for all 𝑡 ∈ [0, 𝑇 ].

𝔼|𝑋𝑡 −𝑋𝑡|2 ≤ 𝐶𝛿𝑇 , (4.20)

𝔼|𝑋𝑡 −𝑋𝑡|2 ≤ 𝐶𝛿𝑇 . (4.21)

Proof. Let 𝑡 ∈ [0, 𝑇 ]. Let 𝑟 be such that 𝑡𝑟 ≤ 𝑡 < 𝑡𝑟+1. Then by definition we have 𝑋𝑡𝑟
=𝑋𝑡𝑟

=𝑋𝑡. Thus

𝑋𝑡 =𝑋𝑡 +

𝑡

∫
𝑡𝑟

𝑓 (𝑋𝑠,𝑋𝑠)𝑑𝑠+

𝑡

∫
𝑡𝑟

𝑔(𝑋𝑠,𝑋𝑠)𝑑𝑊𝑠.

This together with (4.19), (4.3), Assumption 4.2 and Theorem 4.4 imply that

𝔼|𝑋𝑡 −𝑋𝑡|2 ≤ 2𝔼
|||||||

𝑡

∫
𝑡𝑟

𝑓 (𝑋𝑠,𝑋𝑠)𝑑𝑠
|||||||
2

+ 2𝔼
|||||||

𝑡

∫
𝑡𝑟

𝑔(𝑋𝑠,𝑋𝑠)𝑑𝑊𝑠

|||||||
2

≤ 2𝔼[𝐶1(ℎ𝛿𝑟 )
2(1 + 2 sup

𝑡𝑟≤𝑠≤𝑡
|𝑋𝑠|2 + ||𝜉||)] + 2𝔼[𝛼ℎ𝛿𝑟 (2 sup

𝑡𝑟≤𝑠≤𝑡
|𝑋𝑠|2 + ||𝜉||) + 𝛽]

≤ 4(𝛿𝑇 )2(1 + 𝔼[ sup
𝑡𝑟≤𝑠≤𝑡

|𝑋𝑠|2] + 𝔼||𝜉||) + 4𝛼𝛿𝑇 (𝔼[ sup
𝑡𝑟≤𝑠≤𝑡

|𝑋𝑠|2] + 𝔼||𝜉||) + 𝛽]

≤ 𝐶𝛿𝑇 .

To prove assertion (4.21), we first prove that there is a constant 𝐶 such that for all 𝑡 ∈ [0, 𝑇 ]

𝔼|𝑋𝑡 −𝑋𝑡|2 ≤ 𝐶𝛿𝑇 . (4.22)

Let 𝑡 ∈ [0, 𝑇 ]. Let 𝑘 and 𝑛 be such that 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1 and 𝑡𝑛 − 𝜏 ≤ 𝑡 < 𝑡𝑛+1 − 𝜏 respectively. Let 𝑟, 0 ≤ 𝑟 ≤ 𝑘 be such that 𝑡𝑘−𝑟 ≤ 𝑡𝑛 − 𝜏 <

𝑡𝑘−𝑟+1. From (3.1) and the definitions of the step processes 𝑋 and 𝑋, one can see that

𝑋𝑡𝑘
=𝑋𝑡𝑘−𝑟

+
𝑟−1∑
𝑖=0

[𝑓 (𝑋𝑡𝑘−𝑟+𝑖
,𝑋𝑡𝑘−𝑟+𝑖−𝜏 )ℎ𝑘−𝑟+𝑖 + 𝑔(𝑋𝑡𝑘−𝑟+𝑖

,𝑋𝑡𝑘−𝑟+𝑖−𝜏 )Δ𝑊𝑘−𝑟+𝑖]

=𝑋𝑡𝑘−𝑟
+

𝑟−1∑
𝑖=0

𝑡𝑘−𝑟+𝑖+1

∫
𝑡𝑘−𝑟+𝑖

𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )𝑑𝑠+
𝑟−1∑
𝑖=0

𝑡𝑘−𝑟+𝑖+1

∫
𝑡𝑘−𝑟+𝑖

𝑔(𝑋𝑠,𝑋𝑠−𝜏 )𝑑𝑊𝑠

=𝑋𝑡𝑘−𝑟
+

𝑡𝑘

∫
𝑡𝑘−𝑟

𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )𝑑𝑠+

𝑡𝑘

∫
𝑡𝑘−𝑟

𝑔(𝑋𝑠,𝑋𝑠−𝜏 )𝑑𝑊𝑠.

Note that 𝑋𝑡 =𝑋𝑡𝑘
and 𝑋𝑡𝑘−𝑟

=𝑋𝑡𝑘−𝑟
=𝑋𝑡𝑛−𝜏 =𝑋𝑡𝑛−𝜏 =𝑋𝑡, we have that

𝑋𝑡 =𝑋𝑡 +

𝑡𝑘

∫
𝑡𝑘−𝑟

𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )𝑑𝑠+

𝑡𝑘

∫
𝑡𝑘−𝑟

𝑔(𝑋𝑠,𝑋𝑠−𝜏 )𝑑𝑊𝑠.

Also, we have that

𝑡𝑘 − 𝑡𝑘−𝑟 ≤ (𝑡𝑛+1 − 𝜏) − (𝑡𝑛 − 𝜏) + ℎ𝛿
𝑘−𝑟 = ℎ𝛿𝑛 + ℎ𝛿

𝑘−𝑟 ≤ 2𝛿𝑇 .

Therefore, by (4.19), (4.3), Assumption 4.2 and Theorem 4.4 we have that

𝔼|𝑋𝑡 −𝑋𝑡|2 ≤ 2𝔼
|||||||

𝑡𝑘

∫
𝑡𝑘−𝑟

𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )𝑑𝑠
|||||||
2

+ 2𝔼
|||||||

𝑡𝑘

∫
𝑡𝑘−𝑟

𝑔(𝑋𝑠,𝑋𝑠−𝜏 )𝑑𝑊𝑠

|||||||
2

≤ 2𝔼[𝐶1(𝑡𝑘 − 𝑡𝑘−𝑟)2(1 + 2 sup
𝑡𝑘≤𝑠≤𝑡

|𝑋𝑠|2 + ||𝜉||)] + 2𝔼[𝛼(𝑡𝑘 − 𝑡𝑘−𝑟)(2 sup
𝑡𝑘≤𝑠≤𝑡

|𝑋𝑠|2 + ||𝜉||) + 𝛽]

2 2 2
9

≤ 4(𝛿𝑇 ) (1 + 𝔼[ sup
𝑡𝑘≤𝑠≤𝑡

|𝑋𝑠| ] + 𝔼||𝜉||) + 4𝛼𝛿𝑇 (𝔼[ sup
𝑡𝑘≤𝑠≤𝑡

|𝑋𝑠| ] + 𝔼||𝜉||) + 𝛽]



Applied Mathematics and Computation 478 (2024) 128853U. Botija-Munoz and C. Yuan

≤ 𝐶𝛿𝑇 .

This together with (4.20) implies that

𝔼|𝑋𝑡 −𝑋𝑡|2 = 𝔼|𝑋𝑡 −𝑋𝑡|2 + 𝔼|𝑋𝑡 −𝑋𝑡|2 ≤ 𝐶𝛿𝑇 . □

In our attempt to prove the strong convergence using the local Lipschitz condition instead of the global one, we introduce the 
stopping times

𝜏𝑚 ∶= inf{𝑡 ≥ 0 ∶ |𝑌𝑡| ≥𝑚}, 𝜎𝑚 ∶= inf{𝑡 ≥ 0 ∶ |𝑋𝑡| ≥𝑚}

and 𝜐𝑚 ∶= 𝜏𝑚 ∧𝜎𝑚. As usual we set inf ∅ =∞. In the next corollary, we relax the global linear condition imposed to 𝑓 in the previous 
lemma and use instead the local Lipschitz condition.

Corollary 4.7. Let the SDDE (2.1) and the function ℎ𝛿 satisfy Assumption 4.1 and 4.2 respectively. Then there exists a positive constant 𝐶𝑚

such that for all 𝑡 ∈ [0, 𝑇 ].

𝔼|𝑋𝑡∧𝜐𝑚 −𝑋𝑡∧𝜐𝑚 |2 ≤ 𝐶𝑚𝛿𝑇 , (4.23)

𝔼|𝑋𝑡∧𝜐𝑚−𝜏 −𝑋𝑡∧𝜐𝑚−𝜏 |2 ≤ 𝐶𝑚𝛿𝑇 . (4.24)

Proof. The processes 𝑋𝑡∧𝜐𝑚 , 𝑋𝑡∧𝜐𝑚 and 𝑋𝑡∧𝜐𝑚 are bounded by 𝑚. Thus, the local Lipschitz condition (4.1) implies condition (4.19). 
Therefore the corollary follows directly from Lemma 4.6. □

Theorem 4.8. If the SDDE (2.1) and the function ℎ𝛿 satisfy Assumption 4.1 and 4.2 respectively, then for all 𝑝 > 0

lim
𝛿→0

𝔼
[
sup

0≤𝑡≤𝑇
|𝑋𝑡 − 𝑌𝑡|𝑝] = 0.

Proof. One can see that

𝔼[ sup
0≤𝑡≤𝑇

|𝑌𝑡 −𝑋𝑡|2] = 𝔼[ sup
0≤𝑡≤𝑇

|𝑌𝑡 −𝑋𝑡|2𝐼{𝜏𝑚>𝑇 and 𝜎𝑚>𝑇 }] + 𝔼[ sup
0≤𝑡≤𝑇

|𝑌𝑡 −𝑋𝑡|2𝐼{𝜏𝑚≤𝑇 or 𝜎𝑚≤𝑇 }],

=∶𝑅1 +𝑅2, (4.25)

where 𝐼𝐴 es the indicator function of the set 𝐴. In order to bound 𝑅1, we combine the definitions of the continuous-time approxi-

mation (3.3) and the exact solution (2.1) to obtain

|𝑌𝑡∧𝜐𝑚 −𝑋𝑡∧𝜐𝑚 |2
=
|||||||
𝑡∧𝜐𝑚

∫
0

[𝑓 (𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )]𝑑𝑠+

𝑡∧𝜐𝑚

∫
0

[𝑔(𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑔(𝑋𝑠,𝑋𝑠−𝜏 )]𝑑𝑊𝑠

|||||||
2

≤ 2𝑇

𝑡∧𝜐𝑚

∫
0

|𝑓 (𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )|2𝑑𝑠+ 2
|||||||
𝑡∧𝜐𝑚

∫
0

[𝑔(𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑔(𝑋𝑠,𝑋𝑠−𝜏 )]𝑑𝑊𝑠

|||||||
2

Thus, for any 𝑡1 ≤ 𝑇 ,

𝔼[ sup
0≤𝑡≤𝑡1

|𝑌𝑡∧𝜐𝑚 −𝑋𝑡∧𝜐𝑚 |2]
≤ 2𝑇𝔼

⎡⎢⎢⎣
𝑡∧𝜐𝑚

∫
0

|𝑓 (𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )|2𝑑𝑠⎤⎥⎥⎦+ 8𝔼
⎡⎢⎢⎣
𝑡∧𝜐𝑚

∫
0

|𝑔(𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑔(𝑋𝑠,𝑋𝑠−𝜏 )|2𝑑𝑠⎤⎥⎥⎦ ,
where we have used the Doob martingale inequality in the second summand. Using the local Lipschitz condition (4.1) in the RHS of 
the previous equation and then, adding and subtracting 𝑋𝑡 twice yields

𝔼[ sup
0≤𝑡≤𝑡1

|𝑌𝑡∧𝜐𝑚 −𝑋𝑡∧𝜐𝑚 |2]
≤ 𝐶𝑚

⎛⎜ 𝑡1

𝔼|𝑌𝑠∧𝜐 −𝑋𝑠∧𝜐 |2𝑑𝑠+ 𝑡1

𝔼|𝑌𝑠∧𝜐 −𝜏 −𝑋𝑠∧𝜐 −𝜏 |2𝑑𝑠⎞⎟

10

⎜⎝∫0 𝑚 𝑚 ∫
0

𝑚 𝑚 ⎟⎠
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+𝐶𝑚

⎛⎜⎜⎝
𝑡1

∫
0

𝔼|𝑋𝑠∧𝜐𝑚 −𝑋𝑠∧𝜐𝑚 |2𝑑𝑠+
𝑡1

∫
0

𝔼|𝑋𝑠∧𝜐𝑚−𝜏 −𝑋𝑠∧𝜐𝑚−𝜏 |2𝑑𝑠⎞⎟⎟⎠ ,
where 𝐶𝑚 is a positive constant that depends on 𝑇 and 𝑚. By Corollary 4.7, we obtain

𝔼[ sup
0≤𝑡≤𝑡1

|𝑌𝑡∧𝜐𝑚 −𝑋𝑡∧𝜐𝑚 |2]
≤ 𝐶𝑚

⎛⎜⎜⎝
𝑡1

∫
0

𝔼|𝑌𝑠∧𝜐𝑚 −𝑋𝑠∧𝜐𝑚 |2𝑑𝑠+
𝑡1

∫
0

𝔼|𝑌𝑠∧𝜐𝑚−𝜏 −𝑋𝑠∧𝜐𝑚−𝜏 |2𝑑𝑠⎞⎟⎟⎠+𝐶𝑚𝛿.

The Gronwall inequality yields

𝑅1 = 𝔼[ sup
0≤𝑡≤𝑇

|𝑌𝑡∧𝜐𝑚 −𝑋𝑡∧𝜐𝑚 |2] ≤ 𝐶𝑚𝛿.

Proceeding in exactly the same way as in [4], one can see that for all 𝛼, 𝛽, 𝜂, 𝜇 > 0 we have

𝑅2 ≤ 2𝑝+1𝜂𝐶
𝑝

+ 2(𝑝− 2)𝐶
𝑝𝜂2∕(𝑝−2)𝑚𝑝

where 𝐶 is a positive constant. Substituting the estimates of 𝑅1 and 𝑅2 into (4.25), we obtain

𝔼[ sup
0≤𝑡≤𝑇

|𝑌𝑡 −𝑋𝑡|2] ≤ 𝐶𝑚𝛿 +
2𝑝+1𝜂𝐶

𝑝
+ 2(𝑝− 2)𝐶
𝑝𝜂2∕(𝑝−2)𝑚𝑝

.

Now, given any 𝜖 > 0, we can find an 𝜂 sufficiently small so

2𝑝+1𝜂𝐶
𝑝

<
𝜖

3
,

and then 𝑚 large enough so

2(𝑝− 2)𝐶
𝑝𝜂2∕(𝑝−2)𝑚𝑝

<
𝜖

3
,

and finally 𝛿 small enough such that

𝛿𝐶𝑚 <
𝜖

3
.

The proof is complete. □

4.2. Order of convergence

Now we investigate the order of convergence of the adaptive EM numerical solutions.

Assumption 4.9. There exists a constant 𝐿 > 0 such that for all 𝑥, 𝑦, 𝑥, 𝑦 ∈ℝ𝑚, 𝑓 satisfies the one-sided Lipschitz condition

2⟨𝑥− 𝑥,𝑓 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)⟩ ≤𝐿(|𝑥− 𝑥|2 + |𝑦− 𝑦|2) (4.26)

and 𝑔 satisfies the (global) Lipschitz condition

||𝑔(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)||2 ≤𝐿(|𝑥− 𝑥|2 + |𝑦− 𝑦|2). (4.27)

In addition 𝑓 satisfies the polynomial growth Lipschitz condition: there exist constants 𝛾, 𝜆, 𝑞 > 0 such that for all 𝑥, 𝑦, 𝑥, 𝑦 ∈ℝ𝑚

|𝑓 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)| ≤ (𝛾(|𝑥|𝑞 + |𝑦|𝑞 + |𝑥|𝑞 + |𝑦|𝑞) + 𝜆)(|𝑥− 𝑥|+ |𝑦− 𝑦|). (4.28)

Furthermore, for any 𝑠, 𝑡 ∈ [−𝜏, 0] and 𝑞 > 0, there exists a positive constant Λ such that

𝔼|𝜉(𝑡) − 𝜉(𝑠)| ≤Λ|𝑡− 𝑠|𝑞. (4.29)

Theorem 4.10. If the SDDE (2.1) satisfies Assumption 4.9 and the time-step function ℎ satisfies Assumption 4.2, then for all 𝑝 > 0, there 
exists a positive constant 𝐶 independent of 𝛿 such that[

𝑝

]
𝑝∕2
11

𝔼 sup
0≤𝑡≤𝑇

|𝑋𝑡 − 𝑌𝑡| ≤ 𝐶𝛿 .
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Proof. The proof is similar to that of SDEs given in [2]. We only give the proof for 𝑝 ≥ 4; the result for 0 ≤ 𝑝 < 4 follows from 
Hölder’s inequality. Define 𝑒𝑡 ∶= 𝑌𝑡 −𝑋𝑡, 0 ≤ 𝑡 ≤ 𝑇 . Hence

𝑒𝑡 =

𝑡

∫
0

[𝑓 (𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )]𝑑𝑠+

𝑡

∫
0

[𝑔(𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑔(𝑋𝑠,𝑋𝑠−𝜏 )]𝑑𝑊𝑠.

Applying Itô’s formula we obtain

|𝑒𝑡|2 ≤ 2

𝑡

∫
0

⟨𝑒𝑠, 𝑓 (𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )⟩𝑑𝑠+ 𝑡

∫
0

|𝑔(𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑔(𝑋𝑠,𝑋𝑠−𝜏 )|2𝑑𝑠
+ 2

𝑡

∫
0

⟨𝑒𝑠, (𝑔(𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑔(𝑋𝑠,𝑋𝑠−𝜏 ))𝑑𝑊𝑠⟩
≤ 2

𝑡

∫
0

⟨𝑒𝑠, 𝑓 (𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )⟩𝑑𝑠+ 2

𝑡

∫
0

⟨𝑒𝑠, 𝑓 (𝑋𝑠,𝑋𝑠−𝜏 ) − 𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )⟩𝑑𝑠
+

𝑡

∫
0

|𝑔(𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑔(𝑋𝑠,𝑋𝑠−𝜏 )|2𝑑𝑠+ 2

𝑡

∫
0

⟨𝑒𝑠, (𝑔(𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑔(𝑋𝑠,𝑋𝑠−𝜏 ))𝑑𝑊𝑠⟩. (4.30)

Using condition (4.26) we get

2⟨𝑒𝑠, 𝑓 (𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )⟩ ≤𝐿(|𝑌𝑠 −𝑋𝑠|2 + |𝑌𝑠−𝜏 −𝑋𝑠−𝜏 |2) =𝐿(|𝑒𝑠|2 + |𝑒𝑠−𝜏 |2). (4.31)

Condition (4.28) implies that

|⟨𝑒𝑠, 𝑓 (𝑋𝑠,𝑋𝑠−𝜏 ) − 𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )⟩| ≤ |𝑒𝑠| |𝑓 (𝑋𝑠,𝑋𝑠−𝜏 ) − 𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )|
≤ |𝑒𝑠|𝑄(𝑋𝑠,𝑋𝑠−𝜏 ,𝑋𝑠,𝑋𝑠−𝜏 )(|𝑋𝑠 −𝑋𝑠|+ |𝑋𝑠−𝜏 −𝑋𝑠−𝜏 |)
≤ 1

2
|𝑒𝑠|2 + 1

2
𝑄(𝑋𝑠,𝑋𝑠−𝜏 ,𝑋𝑠,𝑋𝑠−𝜏 )2 2(|𝑋𝑠 −𝑋𝑠|2 + |𝑋𝑠−𝜏 −𝑋𝑠−𝜏 |2), (4.32)

where 𝑄(𝑥, 𝑦, 𝑥, 𝑦) ∶= 𝛾(|𝑥|𝑞 + |𝑦|𝑞 + |𝑥|𝑞 + |𝑦|𝑞) + 𝜆. In addition, condition (4.27) implies that

||𝑔(𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑔(𝑋𝑠,𝑋𝑠−𝜏 )||2 ≤𝐿(|𝑌𝑠 −𝑋𝑠|2 + |𝑌𝑠−𝜏 −𝑋𝑠−𝜏 |2)
=𝐿(|𝑌𝑠 −𝑋𝑠 +𝑋𝑠 −𝑋𝑠|2 + |𝑌𝑠−𝜏 −𝑋𝑠−𝜏 +𝑋𝑠−𝜏 −𝑋𝑠−𝜏 |2)
≤ 2𝐿(|𝑒𝑠|2 + |𝑒𝑠−𝜏 |2 + |𝑋𝑠 −𝑋𝑠|2 + |𝑋𝑠−𝜏 −𝑋𝑠−𝜏 |2). (4.33)

Substituting (4.31), (4.32) and (4.33) in (4.30), we have

|𝑒𝑡|2 ≤ 𝑡

∫
0

[
(3𝐿+ 1)|𝑒𝑠|2 + 3𝐿|𝑒𝑠−𝜏 |2]𝑑𝑠

+ 2

𝑡

∫
0

[𝑄(𝑋𝑠,𝑋𝑠−𝜏 ,𝑋𝑠,𝑋𝑠−𝜏 )2 +𝐿](|𝑋𝑠 −𝑋𝑠|2 + |𝑋𝑠−𝜏 −𝑋𝑠−𝜏 |2)𝑑𝑠
+ 2

𝑡

∫
0

⟨𝑒𝑠, (𝑔(𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑔(𝑋𝑠,𝑋𝑠−𝜏 ))𝑑𝑊𝑠⟩.
Using Hölder’s inequality yields

|𝑒𝑡|𝑝 ≤ (6𝑇 )𝑝∕2−1
𝑡

∫
0

((3𝐿+ 1)𝑝∕2|𝑒𝑠|𝑝 + (2𝐿)𝑝∕2|𝑒𝑠−𝜏 |𝑝)𝑑𝑠
+ (3𝑇 )𝑝∕2−12𝑝∕2

𝑡

[𝑄(𝑋𝑠,𝑋𝑠−𝜏 ,𝑋𝑠,𝑋𝑠−𝜏 ) +𝐿]𝑝∕2(|𝑋𝑠 −𝑋𝑠|𝑝 + |𝑋𝑠−𝜏 −𝑋𝑠−𝜏 |𝑝)𝑑𝑠

12

∫
0
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+ 3𝑝∕2−12𝑝∕2
|||||||

𝑡

∫
0

⟨𝑒𝑠, (𝑔(𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑔(𝑋𝑠,𝑋𝑠−𝜏 ))𝑑𝑊𝑠⟩|||||||
𝑝∕2

.

In the remainder of the proof, 𝐶 is positive constant, independent of 𝛿, that may change from line to line.

Taking the supremum on each side of the previous inequality and then the expectation yields

𝔼
[
sup
0≤𝑠≤𝑡

|𝑒𝑠|𝑝] ≤ 𝐽1 + 𝐽2 + 𝐽3,

where

𝐽1 ∶= 𝐶

𝑡

∫
0

𝔼
[
sup
0≤𝑢≤𝑠

|𝑒𝑢|𝑝]𝑑𝑠;
𝐽2 ∶= 𝐶

𝑡

∫
0

𝔼
[
[𝑄(𝑋𝑠,𝑋𝑠−𝜏 ,𝑋𝑠,𝑋𝑠−𝜏 ) +𝐿]𝑝∕2(|𝑋𝑠 −𝑋𝑠|𝑝 + |𝑋𝑠−𝜏 −𝑋𝑠−𝜏 |𝑝)]𝑑𝑠;

𝐽3 ∶= 𝐶𝔼
⎡⎢⎢⎢⎣ sup0≤𝑠≤𝑡

|||||||
𝑠

∫
0

⟨𝑒𝑠, (𝑔(𝑌𝑢, 𝑌𝑢−𝜏 ) − 𝑔(𝑋𝑢,𝑋𝑢−𝜏 ))𝑑𝑊𝑢⟩|||||||
𝑝∕2⎤⎥⎥⎥⎦ .

For 𝐽2, by Hölder’s inequality one has

𝐽2 ≤ 𝐶

𝑡

∫
0

(
𝔼
[
[𝑄(𝑋𝑠,𝑋𝑠−𝜏 ,𝑋𝑠,𝑋𝑠−𝜏 ) +𝐿]𝑝

]
𝔼
[
(|𝑋𝑠 −𝑋𝑠|2𝑝 + |𝑋𝑠−𝜏 −𝑋𝑠−𝜏 |2𝑝)])1∕2 𝑑𝑠. (4.34)

By Theorem 4.4 there exists a constant 𝐶 such that

𝔼
[
[𝑄(𝑋𝑠,𝑋𝑠−𝜏 ,𝑋𝑠,𝑋𝑠−𝜏 ) +𝐿]𝑝

] ≤ 𝐶. (4.35)

Let 𝑠 ∶= max{𝑡𝑛 ∶ 𝑡𝑛 ≤ 𝑠}. From (3.3), we can write

𝑋𝑠 −𝑋𝑠 = 𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )(𝑠− 𝑠) + 𝑔(𝑋𝑠,𝑋𝑠−𝜏 )(𝑊𝑠 −𝑊𝑠).

Thus, by Hölder inequality

𝔼|𝑋𝑠 −𝑋𝑠|2𝑝 = 𝔼|𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )(𝑠− 𝑠) + 𝑔(𝑋𝑠,𝑋𝑠−𝜏 )(𝑊𝑠 −𝑊𝑠)|2𝑝
≤ 22𝑝−1𝔼|𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )(𝑠− 𝑠)|2𝑝 + 22𝑝−1𝔼|𝑔(𝑋𝑠,𝑋𝑠−𝜏 )(𝑊𝑠 −𝑊𝑠)|2𝑝
≤ 22𝑝−1(𝔼[𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )]4𝑝𝔼[(𝑠− 𝑠)4𝑝)1∕2 + 22𝑝−1(𝔼[𝑔(𝑋𝑠,𝑋𝑠−𝜏 )]4𝑝𝔼[(𝑊𝑠 −𝑊𝑠)4𝑝])1∕2. (4.36)

By Assumption 4.2 we have

𝐸[(𝑠− 𝑠)4𝑝] ≤ 𝔼[(ℎ𝛿𝑠 )
4𝑝] ≤ (𝛿𝑇 )4𝑝 ≤ 𝛿2𝑝𝑇 4𝑝 (4.37)

and by condition (4.15), we get

𝔼[(𝑊𝑠 −𝑊𝑠)4𝑝] ≤ 𝐶(𝛿𝑇 )2𝑝. (4.38)

Also it follows from the global Lipschitz condition (4.27) that

||𝑔(𝑋𝑠,𝑋𝑠−𝜏 )||4𝑝 ≤ 1
22𝑝

𝐾2𝑝(|𝑋𝑠|2 + |𝑋𝑠−𝜏 |2)2𝑝 +𝐶 (4.39)

≤ 𝐶(|𝑋𝑠|4𝑝 + |𝑋𝑠−𝜏 |4𝑝 + 1)

and from the polynomial growth condition that

|𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )|4𝑝 ≤ [(𝛾(|𝑋𝑠|𝑞 + |𝑋𝑠−𝜏 )|𝑞) + 𝜇)(|𝑋𝑠|+ |𝑋𝑠−𝜏 )|) + 𝑓 (0,0)
]4𝑝

(4.40)

≤ 𝐶(|𝑋𝑠|4𝑝(𝑞+1) + |𝑋𝑠−𝜏 )|4𝑝(𝑞+1) + 1),

so by Theorem 4.4, there exists a constant 𝐶 such that
13

𝔼[|𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )|4𝑝] ≤ 𝐶 and 𝔼[|𝑔(𝑋𝑠,𝑋𝑠−𝜏 )|4𝑝] ≤ 𝐶.
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Substituting these last two expressions together with (4.37) and (4.38) into (4.36), we obtain

𝔼|𝑋𝑠 −𝑋𝑠|2𝑝 ≤ 𝐶𝛿𝑝. (4.41)

Using (4.39) and (4.40), and proceeding in exactly the same way as in Lemma 4.6, yields 𝔼|𝑋𝑠−𝜏 −𝑋𝑠−𝜏 |2𝑝 ≤ 𝐶𝛿𝑝. Using this fact 
together with (4.41) and (4.35) in (4.34), we obtain that 𝐽2 ≤ 𝐶𝛿𝑝∕2.

Now we estimate 𝐽3. By the BDG and Hölder’s inequalities one can see that

𝐽3 ≤ 𝐶𝔼
⎡⎢⎢⎢⎣
⎛⎜⎜⎝

𝑡

∫
0

|𝑒𝑠|2 |(𝑔(𝑌𝑠, 𝑌𝑠−𝜏 ) − 𝑔(𝑋𝑠,𝑋𝑠−𝜏 ))|2𝑑𝑠⎞⎟⎟⎠
𝑝∕4⎤⎥⎥⎥⎦

≤ 𝐶𝔼
⎡⎢⎢⎣

𝑡

∫
0

|𝑒𝑠|𝑝∕2(|𝑋𝑠 − 𝑌𝑠|𝑝∕2 + |𝑋𝑠−𝜏 − 𝑌𝑠−𝜏 |𝑝∕2)𝑑𝑠⎤⎥⎥⎦
≤ 𝐶𝔼

⎡⎢⎢⎣
𝑡

∫
0

1
2
|𝑒𝑠|𝑝 + |𝑋𝑠 − 𝑌𝑠|𝑝 + |𝑋𝑠−𝜏 − 𝑌𝑠−𝜏 |𝑝𝑑𝑠⎤⎥⎥⎦

≤ 𝐶𝔼
⎡⎢⎢⎣

𝑡

∫
0

|𝑒𝑠|𝑝 + (|𝑋𝑠 −𝑋𝑠|𝑝 + |𝑋𝑠 − 𝑌𝑠|𝑝 + |𝑋𝑠−𝜏 −𝑋𝑠−𝜏 |𝑝 + |𝑋𝑠−𝜏 − 𝑌𝑠−𝜏 |𝑝)𝑑𝑠⎤⎥⎥⎦
≤ 𝐶𝔼

⎡⎢⎢⎣
𝑡

∫
0

|𝑒𝑠|𝑝 + |𝑒𝑠−𝜏 |𝑝 + (|𝑋𝑠 −𝑋𝑠|𝑝 + |𝑋𝑠−𝜏 −𝑋𝑠−𝜏 |𝑝)𝑑𝑠⎤⎥⎥⎦ .
By the same argument we used with 𝐽2 we know that

𝔼
[
(|𝑋𝑠 −𝑋𝑠|𝑝 + |𝑋𝑠−𝜏 −𝑋𝑠−𝜏 |𝑝)] ≤ 𝐶𝛿𝑝∕2.

Thus

𝐽3 ≤ 𝐶

𝑡

∫
0

𝔼
[
sup
0≤𝑢≤𝑠

|𝑒𝑢|𝑝]𝑑𝑠+𝐶𝛿𝑝∕2.

Collecting the bounds for 𝐽1, 𝐽2 and 𝐽3, we conclude that there exists a constant 𝐶 such that

𝔼
[
sup

0≤𝑡≤𝑇
|𝑒𝑡|𝑝] ≤ 𝐶

𝑡

∫
0

𝔼
[
sup
0≤𝑢≤𝑠

|𝑒𝑢|𝑝]𝑑𝑠+𝐶𝛿𝑝∕2.

The required assertion follows from the Gronwall inequality. □

5. Convergence of the numerical solutions on infinite time interval

In this section we will study the convergence of the numerical solutions on the time interval [0, ∞). The assumptions will be 
stronger than the ones on the finite time interval.

Assumption 5.1. The functions 𝑓 and 𝑔 satisfy the local Lipschitz condition: for every 𝑅 > 0 there exists a positive constant 𝐶𝑅 such 
that

|𝑓 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)|+ ||𝑔(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)|| ≤ 𝐶𝑅(|𝑥− 𝑥|+ |𝑦− 𝑦|) (5.1)

for all 𝑥, 𝑦, 𝑥, 𝑦 ∈ℝ𝑚 with |𝑥|, |𝑦|, |𝑥|, |𝑦| ≤ 𝑅. Furthermore, there exists constants 𝛼1 > 𝛼2 ≥ 0 and 𝛽 > 0, such that for all 𝑥, 𝑦 ∈ℝ𝑚, 
𝑓 satisfies the dissipative one-sided linear growth condition:

⟨𝑥,𝑓 (𝑥, 𝑦)⟩ ≤ −𝛼1|𝑥|2 + 𝛼2|𝑦|2 + 𝛽, (5.2)

and 𝑔 is globally bounded:

||𝑔(𝑥, 𝑦)||2 ≤ 𝛽. (5.3)

Assumption 5.2. For every 𝛿, the time step function ℎ𝛿 ∶ ℝ𝑚 → ℝ+, is continuous and uniformly bounded by ℎ𝛿𝑚𝑎𝑥, where ℎ𝛿𝑚𝑎𝑥 ∈
14

(0, ∞).
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Furthermore, there exist constants 𝛼1 > 𝛼2 ≥ 0 and 𝛽 > 0, such that for all 𝑥, 𝑦 ∈ℝ𝑚.

⟨𝑥,𝑓 (𝑥, 𝑦)⟩+ 1
2
ℎ𝛿(𝑥)|𝑓 (𝑥, 𝑦)|2 ≤ −𝛼1|𝑥|2 + 𝛼2|𝑦|2 + 𝛽. (5.4)

5.1. The boundedness of the 𝑝th moments of the exact and the numerical solutions

5.1.1. Exact solution

Lemma 5.3. If the SDDE (2.1) satisfies Assumption 5.1, then there exists a positive constant 𝐶 such that for all 𝑡 ≥ 0

𝔼
[|𝑌𝑡|𝑝] ≤ 𝐶. (5.5)

Proof. The proof is standard, we omit it here. □

5.1.2. Adaptive EM numerical solutions

The proof about attainability given for the finite time interval, is valid for the infinite time interval [−𝜏, ∞).

Theorem 5.4. If the SDE (2.1) and the function ℎ𝛿 satisfy Assumption 5.1 and 5.2 respectively, then for all 𝑝 > 0 there exists a constant 𝐶
dependent on ℎ𝑚𝑎𝑥, 𝛽, 𝛼1, 𝛼2 and 𝑝, but independent of 𝛿 and 𝑡, such that for all 𝑡 ≥ 0,

𝔼
[|𝑋𝑡|𝑝] ≤ 𝐶. (5.6)

Proof. The proof is given for 𝑝 ≥ 4. For 0 < 𝑝 < 4, the result holds from Hölder’s inequality. Fix 𝑡 and define 𝑡 ∶= max{𝑡𝑛 ∶ 𝑡𝑛 ≤ 𝑡}, 
𝑡̂ ∶= max{𝑡𝑛 ∶ 𝑡𝑛 ≤ 𝑡 − 𝜏} and 𝑛𝑡 ∶= max{𝑛 ∶ 𝑡𝑛 ≤ 𝑡}. Taking squared norms in (3.1), we have that for 𝑛 = 0 to 𝑛 = 𝑛𝑡,

|𝑋𝑡𝑛+1
|2 = |𝑋𝑡𝑛

|2 + 2ℎ𝑛(⟨𝑋𝑡𝑛
, 𝑓 (𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )⟩+ 1
2
ℎ𝑛|𝑓 (𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )|2)
+ 2⟨𝑋𝑡𝑛

+ 𝑓 (𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛⟩+ |𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛|2.

Note that, since it is irrelevant in this proof, we have dropped the term “𝛿” in the adaptive time-step “ℎ𝛿𝑛” to ease the notation. Using 
conditions (5.4) and (5.3), we obtain

|𝑋𝑡𝑛+1
|2 ≤ |𝑋𝑡𝑛

|2 − 2ℎ𝑛𝛼1|𝑋𝑡𝑛
|2 + 2ℎ𝑛𝛼2|𝑋𝑡𝑛−𝜏 |2 + 2ℎ𝑛𝛽

+ 2⟨𝑋𝑡𝑛
+ 𝑓 (𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛⟩+ 𝛽|Δ𝑊𝑛|2.

Multiplying both sides by 𝑒2𝛼1𝑡𝑛+1 yields

𝑒2𝛼1𝑡𝑛+1 |𝑋𝑡𝑛+1
|2 ≤ 𝑒2𝛼1𝑡𝑛+1 |𝑋𝑡𝑛

|2 − 2ℎ𝑛𝛼1𝑒2𝛼1𝑡𝑛+1 |𝑋𝑡𝑛
|2 + 2ℎ𝑛𝛼2𝑒2𝛼1𝑡𝑛+1 |𝑋𝑡𝑛−𝜏 |2

+ 2ℎ𝑛𝛽𝑒2𝛼1𝑡𝑛+1 + 2𝑒2𝛼1𝑡𝑛+1⟨𝑋𝑡𝑛
+ 𝑓 (𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛⟩+ 𝑒2𝛼1𝑡𝑛+1𝛽|Δ𝑊𝑛|2.

Now, taking into account that 𝑡𝑛+1 = 𝑡𝑛 + ℎ𝑛 and using the fact that for all 𝑥 ∈ℝ, 1 + 𝑥 ≤ 𝑒𝑥 with 𝑥 = −2ℎ𝑛𝛼1, we obtain

𝑒2𝛼1𝑡𝑛+1 |𝑋𝑡𝑛+1
|2 ≤ 𝑒2𝛼1𝑡𝑛 |𝑋𝑡𝑛

|2 + 2ℎ𝑛𝛼2𝑒2𝛼1𝑡𝑛+1 |𝑋𝑡𝑛−𝜏 |2 + 2ℎ𝑛𝛽𝑒2𝛼1𝑡𝑛+1

+ 2𝑒2𝛼1𝑡𝑛+1⟨𝑋𝑡𝑛
+ 𝑓 (𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛⟩+ 𝑒2𝛼1𝑡𝑛+1𝛽|Δ𝑊𝑛|2.

Solving the recurrence, we have

𝑒2𝛼1𝑡|𝑋𝑡|2 ≤ |𝑋0|2 + 2𝛼2
𝑛𝑡−1∑
𝑛=0

𝑒2𝛼1𝑡𝑛+1 |𝑋𝑡𝑛−𝜏 |2ℎ𝑛 + 2𝛽
𝑛𝑡−1∑
𝑛=0

𝑒2𝛼1𝑡𝑛+1ℎ𝑛

+ 2
𝑛𝑡−1∑
𝑛=0

𝑒2𝛼1𝑡𝑛+1⟨𝑋𝑡𝑛
+ 𝑓 (𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛⟩+ 𝛽

𝑛𝑡−1∑
𝑛=0

𝑒2𝛼1𝑡𝑛+1 |Δ𝑊𝑛|2. (5.7)

Similarly for the partial time step from 𝑡 to 𝑡, we get

𝑒2𝛼1𝑡|𝑋𝑡|2 ≤ 𝑒2𝛼1𝑡|𝑋𝑡|2 + 2(𝑡− 𝑡)𝛼2𝑒2𝛼1𝑡|𝑋𝑡−𝜏 |2 + 2(𝑡− 𝑡)𝛽𝑒2𝛼1𝑡

+ 2𝑒2𝛼1𝑡⟨𝑋𝑡 + 𝑓 (𝑋𝑡,𝑋𝑡−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡,𝑋𝑡−𝜏 )(𝑊𝑡 −𝑊𝑡)⟩+ 𝑒2𝛼1𝑡𝛽|(𝑊𝑡 −𝑊𝑡)|2. (5.8)
15

Substituting the penultimate inequality into the last one, we obtain
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𝑒2𝛼1𝑡|𝑋𝑡|2 ≤ |𝑋0|2 + 2𝛼2
𝑛𝑡−1∑
𝑛=0

𝑒2𝛼1𝑡𝑛+1 |𝑋𝑡𝑛−𝜏 |2|ℎ𝑛 + 2𝛼2𝑒2𝛼1𝑡|𝑋𝑡𝑛−𝜏 |2(𝑡− 𝑡)

+ 2𝛽
𝑛𝑡−1∑
𝑛=0

𝑒2𝛼1𝑡𝑛+1ℎ𝑛 + 2𝛽𝑒2𝛼1𝑡(𝑡− 𝑡)

+ 2
𝑛𝑡−1∑
𝑛=0

𝑒2𝛼1𝑡𝑛+1⟨𝑋𝑡𝑛
+ 𝑓 (𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛⟩

+𝛽
𝑛𝑡−1∑
𝑛=0

𝑒2𝛼1𝑡𝑛+1 |Δ𝑊𝑛|2 + 𝑒2𝛼1𝑡𝛽|(𝑊𝑡 −𝑊𝑡)|2
+ 2𝑒2𝛼1𝑡⟨𝑋𝑡 + 𝑓 (𝑋𝑡,𝑋𝑡−𝜏 )(𝑡− 𝑡), 𝑔(𝑋𝑡,𝑋𝑡−𝜏 )(𝑊𝑡 −𝑊𝑡)⟩.

Since 𝑡𝑛+1 ≤ 𝑡𝑛 + ℎ𝑚𝑎𝑥 and 𝑡 ≤ 𝑡 + ℎ𝑚𝑎𝑥, we can take the common factor 𝑒2𝛼1ℎ𝑚𝑎𝑥 out in the equation above. The processes 𝑋 and 
𝑋, defined in (3.1) and (3.2) respectively, are a simple processes, so we express the second and the third terms in the RHS of the 
previous equation as a Riemann integral. The same for the fourth and fifth terms. Similarly, the sixth and ninth terms can be written 
together as a (pathwise) Itô integral,

𝑒2𝛼1𝑡|𝑋𝑡|2 ≤ |𝑋0|2 + 𝑒2𝛼1ℎ𝑚𝑎𝑥

{ 𝑡

∫
0

𝑒2𝛼1𝑠|𝑋𝑠−𝜏 |2𝑑𝑠+ 2𝛽

𝑡

∫
0

𝑒2𝛼1𝑠𝑑𝑠

+ 2

𝑡

∫
0

𝑒2𝛼1𝑠⟨𝑋𝑠 + 𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )[ℎ(𝑋𝑠)𝐼[0,𝑡)(𝑠) + (𝑡− 𝑡)𝐼[𝑡,𝑡](𝑠)], 𝑔(𝑋𝑠,𝑋𝑠−𝜏 )𝑑𝑊𝑠⟩
+ 𝛽

𝑛𝑡−1∑
𝑛=0

𝑒2𝛼1𝑡𝑛 |Δ𝑊𝑛|2 + 𝑒2𝛼1𝑡𝛽|(𝑊𝑡 −𝑊𝑡)|2}.

Now, raising to the power 𝑝∕2, using Hölder’s inequality and taking the expectation of the supremum, we obtain

𝑒𝑝𝛼1𝑡𝔼
[
sup
0≤𝑠≤𝑡

|𝑋𝑡|𝑝] ≤ 6𝑝∕2−1𝑒𝑝𝛼1ℎ𝑚𝑎𝑥 (𝐻1 +𝐻2 +𝐻3 +𝐻4), (5.9)

where

𝐻1 ∶= 𝔼|𝑋0|𝑝 + 𝔼
⎡⎢⎢⎢⎣
⎛⎜⎜⎝2𝛼2

𝑡

∫
0

𝑒2𝛼1𝑠|𝑋𝑠−𝜏 |2𝑑𝑠⎞⎟⎟⎠
𝑝∕2⎤⎥⎥⎥⎦+

⎛⎜⎜⎝2𝛽
𝑡

∫
0

𝑒2𝛼1𝑠𝑑𝑠
⎞⎟⎟⎠
𝑝∕2

;

𝐻2 ∶= 𝔼

[
sup
0≤𝑠≤𝑡

|||||2
𝑠

∫
0

𝑒2𝛼1𝑢⟨𝑋𝑢 + 𝑓 (𝑋𝑢,𝑋𝑢−𝜏 )[ℎ(𝑋𝑢)𝐼[0,𝑠)(𝑢)

+ (𝑠− 𝑠)𝐼[𝑠,𝑠](𝑢)], 𝑔(𝑋𝑠,𝑋𝑢−𝜏 )𝑑𝑊𝑢⟩|||||
𝑝∕2]

;

𝐻3 ∶= 𝔼
⎡⎢⎢⎣
(
𝛽

𝑛𝑡−1∑
𝑛=0

𝑒2𝛼1𝑡𝑛 |Δ𝑊𝑛|2)𝑝∕2⎤⎥⎥⎦ ;
𝐻4 ∶= 𝛽𝑝∕2𝑒𝑝𝛼1𝑡𝔼[ sup

0≤𝑠≤𝑡
|(𝑊𝑠 −𝑊𝑠)|𝑝].

Now we will establish bounds for each of the four terms above. In the remainder of the proof, 𝐶 is a positive constant that may 
depend on 𝛽, 𝛼1, 𝛼2, ℎ𝑚𝑎𝑥 and 𝑝, but independent of 𝑡, that may change from line to line. We start by bounding 𝐻1.

𝐻1 ≤ 𝔼|𝑋0|𝑝 + 𝔼
⎡⎢⎢⎢⎣
⎛⎜⎜⎝2𝛼2 sup

−𝜏≤𝑠≤𝑡 |𝑋𝑠|2 𝑡

∫
0

𝑒2𝛼1𝑠𝑑𝑠
⎞⎟⎟⎠
𝑝∕2⎤⎥⎥⎥⎦+

⎛⎜⎜⎝2𝛽
𝑡

∫
0

𝑒2𝛼1𝑠𝑑𝑠
⎞⎟⎟⎠
𝑝∕2

𝑝

(
𝛼2
)𝑝∕2 [

𝑝

]
𝛼 𝑝𝑡

(
2𝛽

)𝑝∕2
𝛼 𝑝𝑡
16

≤ 𝔼|𝑋0| +
𝛼1

𝔼 sup
−𝜏≤𝑠≤𝑡 |𝑋𝑠| 𝑒 1 +

2𝛼1
𝑒 1
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≤ 𝑒𝛼1𝑝𝑡

(
𝐶 +

(
𝛼2
𝛼1

)𝑝∕2
𝔼
[
sup
0≤𝑠≤𝑡

|𝑋𝑠|𝑝]) .

For 𝐻2, the BDG inequality and condition (5.3) yields

𝐻2 ≤ 2𝑝∕2𝛽𝑝∕4𝐶𝔼
⎡⎢⎢⎢⎣
⎛⎜⎜⎝

𝑡

∫
0

𝑒4(𝛼1−𝛼2)𝑠|(𝑋𝑠 + 𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )[ℎ(𝑋𝑠)𝐼[0,𝑡)(𝑠) + (𝑡− 𝑡)𝐼[𝑡,𝑡](𝑠)])|2𝑑𝑠⎞⎟⎟⎠
𝑝∕4⎤⎥⎥⎥⎦ .

Since 𝑒4(𝛼1−𝛼2)𝑠 = 𝑒
2(𝛼1−𝛼2)

𝑝−4
𝑝
𝑠
𝑒
2(𝛼1−𝛼2)(1+

4
𝑝
)𝑠

, by Hölder’s inequality, we get( 𝑡

∫
0

𝑒4(𝛼1−𝛼2)𝑠|(𝑋𝑠 + 𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )[ℎ(𝑋𝑠)𝐼[0,𝑡)(𝑠) + (𝑡− 𝑡)𝐼[𝑡,𝑡](𝑠)])|2𝑑𝑠)𝑝∕4

≤
⎛⎜⎜⎝

𝑡

∫
0

𝑒2(𝛼1−𝛼2)𝑠𝑑𝑠
⎞⎟⎟⎠
𝑝−4
4

×

𝑡

∫
0

𝑒(𝛼1−𝛼2)
𝑝+4
2 𝑠|(𝑋𝑠 + 𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )[ℎ(𝑋𝑠)𝐼[0,𝑡)(𝑠) + (𝑡− 𝑡)𝐼[𝑡,𝑡](𝑠)])|𝑝∕2𝑑𝑠.

Using Assumption (5.2), we obtain

|𝑋𝑠 + 𝑓 (𝑋𝑠,𝑋𝑠−𝜏 )[ℎ(𝑋𝑠)𝐼[0,𝑡)(𝑠) + (𝑡− 𝑡)𝐼[𝑡,𝑡](𝑠)]|2
≤ |𝑋𝑠|2 + 2[ℎ(𝑋𝑠)𝐼[0,𝑡)(𝑠) + (𝑡− 𝑡)𝐼[𝑡,𝑡](𝑠)]

(
−𝛼1|𝑋𝑠|2 + 𝛼2|𝑋𝑠−𝜏 |2 + 𝛽

)
≤ |𝑋𝑠|2 + 2ℎ𝑚𝑎𝑥

(
𝛼2|𝑋𝑠−𝜏 |2 + 𝛽

)
.

Therefore,

𝐻2 ≤ 𝔼

[
𝐶

⎛⎜⎜⎝
𝑡

∫
0

𝑒2𝛼1𝑠𝑑𝑠
⎞⎟⎟⎠
𝑝−4
4

×

𝑡

∫
0

𝑒𝛼1
𝑝+4
2 𝑠

{|𝑋𝑠|𝑝∕2 + (2ℎ𝑚𝑎𝑥𝛼2)𝑝∕4|𝑋𝑠−𝜏 |𝑝∕2 + (2𝛽ℎ𝑚𝑎𝑥)𝑝∕4
}
𝑑𝑠

]
.

We can write the previous inequality as 𝐻2 ≤𝐻21 +𝐻22 +𝐻23, where

𝐻21 ∶= 𝐶𝔼[ sup
0≤𝑠≤𝑡

|𝑋𝑠|𝑝∕2] ⎛⎜⎜⎝
𝑡

∫
0

𝑒2𝛼1𝑠𝑑𝑠
⎞⎟⎟⎠
𝑝−4
4 𝑡

∫
0

𝑒𝛼1
𝑝+4
2 𝑠𝑑𝑠;

𝐻22 ∶= 𝐶(2ℎ𝑚𝑎𝑥𝛼2)𝑝∕4𝔼[ sup
−𝜏≤𝑠≤𝑡 |𝑋𝑠|𝑝∕2] ⎛⎜⎜⎝

𝑡

∫
0

𝑒2𝛼1𝑠𝑑𝑠
⎞⎟⎟⎠
𝑝−4
4 ⎛⎜⎜⎝

𝑡

∫
0

𝑒𝛼1
𝑝+4
2 𝑠𝑑𝑠

⎞⎟⎟⎠ ;
𝐻23 ∶= 𝐶(2ℎ𝑚𝑎𝑥𝛼2)𝑝∕4

⎛⎜⎜⎝
𝑡

∫
0

𝑒2𝛼1𝑠𝑑𝑠
⎞⎟⎟⎠
𝑝−4
4 ⎛⎜⎜⎝

𝑡

∫
0

𝑒𝛼1
𝑝+4
2 𝑠𝑑𝑠

⎞⎟⎟⎠ .
Since,

⎛⎜⎜⎝
𝑡

∫
0

𝑒2𝛼1𝑠𝑑𝑠
⎞⎟⎟⎠
𝑝−4
4 𝑡

∫
0

𝑒𝛼1
𝑝+4
2 𝑠 = 𝑒𝛼1(𝑝−4)𝑡 − 1

(2𝛼1)
𝑝−4
4

⋅
𝑒𝛼1

𝑝+4
2 𝑡− 1

𝛼1
𝑝+4
2

≤ 𝑒𝛼1𝑝𝑡

𝛼1
𝑝+4
2 (2𝛼1)

𝑝−4
4

≤ 𝐶𝑒𝛼1𝑝𝑡,
17

we arrive at
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𝐻2 ≤ 𝐶𝔼[ sup
0≤𝑠≤𝑡

|𝑋𝑠|𝑝∕2]𝑒𝛼1𝑝𝑡 +𝐶𝔼[ sup
−𝜏≤𝑠≤𝑡 |𝑋𝑠|𝑝∕2]𝑒𝛼1𝑝𝑡 +𝐶𝑒𝛼1𝑝𝑡

= 𝑒𝛼1𝑝𝑡(𝐶𝔼[ sup
0≤𝑠≤𝑡

|𝑋𝑠|𝑝∕2] +𝐶).

Using the elementary inequality 𝑎𝑏 ≤ 1
2𝛾 𝑎

2 + 𝛾

2 𝑏
2 for all 𝛾 ∈ ℝ+ and all 𝑎, 𝑏 ∈ ℝ with 𝑎 = 𝐶 and 𝑏 = 𝔼[sup0≤𝑠≤𝑡 |𝑋𝑠|𝑝∕2, and later 

Jensen’s inequality, we get

𝐶𝔼[ sup
0≤𝑠≤𝑡

|𝑋𝑠|𝑝∕2] ≤ 1
2𝛾

𝐶2 + 𝛾

2
(𝔼[ sup

0≤𝑠≤𝑡
|𝑋𝑠|𝑝∕2])2 ≤ 1

2𝛾
𝐶2 + 𝛾

2
𝔼[ sup

0≤𝑠≤𝑡
|𝑋𝑠|𝑝].

Therefore,

𝐻2 ≤ 𝑒𝛼1𝑝𝑡( 𝛾
2
𝔼[ sup

0≤𝑠≤𝑡
|𝑋𝑠|𝑝] +𝐶𝛾 ), (5.10)

where the “𝛾” in 𝐶𝛾 is to emphasise that this constant depends also on 𝛾 and is not fixed yet.

Now we will estimate 𝐻3. By the discrete Hölder’s inequality we obtain||||||
𝑛𝑡−1∑
𝑛=0

𝑒2𝛼1𝑡𝑛 |Δ𝑊𝑛|2|||||| =
||||||
𝑛𝑡−1∑
𝑛=0

(
ℎ

𝑝−2
𝑝

𝑛 𝑒
2𝛼1𝑡𝑛

𝑝−2
𝑝

)(
ℎ

2
𝑝
𝑛 𝑒

4𝛼1𝑡𝑛
𝑝
|Δ𝑊𝑛|2
ℎ𝑛

)||||||
≤
(
𝑛𝑡−1∑
𝑛=0

ℎ𝑛𝑒
2𝛼1𝑡𝑛

) 𝑝−2
𝑝
(
𝑛𝑡−1∑
𝑛=0

ℎ𝑛𝑒
2𝛼1𝑡𝑛
𝑝
|Δ𝑊𝑛|𝑝
ℎ
𝑝∕2
𝑛

) 2
𝑝

.

By (4.15) we can derive that

𝐻3 ≤ 𝔼
⎡⎢⎢⎢⎣𝛽

𝑝∕2

(
𝑛𝑡−1∑
𝑛=0

ℎ𝑛𝑒
2𝛼1𝑡𝑛

) 𝑝−2
2 𝑛𝑡−1∑

𝑛=0
ℎ𝑛𝑒

2𝛼1𝑡𝑛
|Δ𝑊𝑛|𝑝
ℎ
𝑝∕2
𝑛

⎤⎥⎥⎥⎦
≤ 𝛽𝑝∕2

⎛⎜⎜⎜⎝
𝑡

∫
0

𝑒2𝛼1𝑠𝑑𝑠

⎞⎟⎟⎟⎠
𝑝−2
2

𝐶

𝑡

∫
0

𝑒2𝛼1𝑠𝑑𝑠 ≤ 𝐶𝑒2𝛼1𝑡.

Using (4.15) again, we have that

𝐻4 ≤ 𝛽𝑝∕2𝑒𝛼1𝑝𝑡𝐶ℎ
𝑝∕2
𝑚𝑎𝑥 ≤ 𝐶𝑒𝛼1𝑝𝑡.

Collecting together the bounds for 𝐻1, 𝐻2 𝐻3 and 𝐻4, we obtain

𝑒𝑝𝛼1𝑡𝔼[ sup
0≤𝑠≤𝑡

|𝑋𝑠|𝑝] ≤ 𝑒𝑝𝛼1𝑡(𝐶𝛾 +
𝛾

2
𝔼[ sup

0≤𝑠≤𝑡
|𝑋𝑠|𝑝]) +(𝛼2

𝛼1

)𝑝∕2
𝔼[ sup

0≤𝑠≤𝑡
|𝑋𝑠|𝑝]).

Noting that the constant 𝐶 is independent of 𝑡, 0 ≤ (𝛼2∕𝛼1)𝑝∕2 < 1 and taking 𝛾 small enough such that 𝛾2 < 1 − (𝛼2∕𝛼1)𝑝∕2, the 
required assertion follows. □

6. Almost sure exponential stability for SDDEs

It was shown in [16] that among other conditions, when the drift function satisfies the linear growth condition, the Euler-

Maruyama approximate solution is a.s. exponentially stable. However, when the drift function satisfies the less restrictive one-sided 
linear growth condition, the EM solution needs not longer to be stable. It was proved in the same paper that the BEM solution 
maintains the stability. But it’s well known that the BEM method is much more computationally expensive than explicit methods 
such as the adaptive EM method. Therefore, it is desirable to find explicit methods that provide numerical solutions that maintain 
the stability of the exact solution. Our goal in this section is to show that the adaptive solution can be a.s. exponentially stable for 
some SDDEs where the EM breaks down.

Assumption 6.1. The functions 𝑓 and 𝑔 satisfy the local Lipschitz condition: for every 𝑅 > 0 there exists a positive constant 𝐶𝑅 such 
that

|𝑓 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦)|+ ||𝑔(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)|| ≤ 𝐶𝑅(|𝑥− 𝑥|+ |𝑦− 𝑦|) (6.1)

for all 𝑥, 𝑦, 𝑥, 𝑦 ∈ℝ𝑚 with |𝑥|, |𝑦|, |𝑥|, |𝑦| ≤𝑅. Furthermore, there exist constants 𝛼1, 𝛼2 and 𝛽 satisfying
18

𝛼1 > 2𝛼2 ≥ 0 and 𝛽 > 0, (6.2)
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such that for all 𝑥, 𝑦 ∈ℝ𝑚, 𝑓 satisfies

⟨𝑥,𝑓 (𝑥, 𝑦)⟩+ 1
2
||𝑔(𝑥, 𝑦)||2 ≤ −𝛼1|𝑥|2 + 𝛼2|𝑦|2. (6.3)

Under this assumption, the SDDE (2.1) has a unique solution.

6.1. Counterexample (SDDE)

We now return to the counterexample (1.1).

Let 𝑋𝑘 be defined by (1.2) The following lemma proves a much stronger result that 𝑋𝑘 is not almost sure exponential stable. It 
shows that the set in which the EM solution grows at a geometric rate has positive probability.

Lemma 6.2. Consider the EM approximate solution (1.2) to the SDE (1.1). Then

ℙ

(|𝑋𝑘| ≥ 2𝑘+3√
Δ
, ∀𝑘 ≥ 1

)
> 0. (6.4)

The following proof is based on the counterexample’s proof given in [5].

Proof. First we show that if |𝑋1| ≥ 24∕
√
Δ, then

ℙ

(|𝑋𝑘| ≥ 2𝑘+3√
Δ
, ∀𝑘 ≥ 1

)
≥ exp

(
−4𝑒−2∕

√
Δ
)
. (6.5)

We start by proving the following fact:

|𝑋𝑘| ≥ 2𝑘+3√
Δ

and |Δ𝑊𝑘| ≤ 2𝑘 imply |𝑋𝑘+1| ≥ 2𝑘+4√
Δ
. (6.6)

To prove (6.6), assume that |𝑋𝑘| ≥ 2𝑘+3√
Δ

. Then

|𝑋𝑘+1| ≥ |𝑋𝑘| ||||𝑋𝑘|2Δ − |1 + 2Δ+ 1∕2 sin(𝑋𝑘−1)Δ +
√
2cos(𝑋𝑘−1)Δ𝑊𝑘||||

≥ |𝑋𝑘| ||||𝑋𝑘|2Δ − (|1|+ |2Δ|+ |1∕2Δ|+ |√2Δ𝑊𝑘|)|||
≥ 2𝑘+3√

Δ
(22𝑘+6 − 6 −

√
22𝑘) ≥ 2𝑘+4√

Δ
(22𝑘+5 − 3 −

√
22𝑘−1)

≥ 2𝑘+4√
Δ
.

Now, from (6.6), given that |𝑋1| ≥ 24∕
√
Δ, for any integer 𝐾 ≥ 0, the event that {|𝑋𝑘| ≥ 2𝑘+3∕

√
Δ, ∀1 ≤ 𝑘 ≤𝐾} contains the event 

that {|𝑊𝑘| ≤ 2𝑘, ∀1 ≤ 𝑘 ≤𝐾}. Since {Δ𝑊𝑘} are independent, we have

ℙ

(|𝑋𝑘| ≥ 2𝑘+3√
Δ
, ∀1 ≤ 𝑘 ≤𝐾

)
≥

𝐾∏
𝑘=1

ℙ(|Δ𝑊𝑘| ≤ 2𝑘).

In order to prove (6.5), the rest of the proof is identical to the one in Lemma 3.1 in [5]. To obtain the final result, Equation (6.5), we 
need to prove that ℙ(|𝑋1| ≥ 24∕

√
Δ) > 0. But this is true since 𝑋1 is a normal random variable and for a normal random variable 𝑋

with density function 𝑓 , we have that for all 𝑎 ∈ℝ, ℙ(𝑋 ≥ 𝑎) = ∫ ∞
𝑎

𝑓 (𝑥)𝑑𝑥 > 0. □

In contrast to the standard EM solution, now we will see that the adaptive EM solution, maintains the stability of the exact 
solution of SDDE (1.1). But previous to that, we need to impose more assumptions.

Assumption 6.3. For every 𝛿, the time step function ℎ𝛿 ∶ ℝ → ℝ+, is continuous and there exist constants 𝛼1 > 𝛼2 ≥ 0 and 𝛽 > 0, 
such that for all 𝑥, 𝑦 ∈ℝ𝑚,

⟨𝑥,𝑓 (𝑥, 𝑦)⟩+ 1
2
ℎ𝛿(𝑥)|𝑓 (𝑥, 𝑦)|2 + 𝑑

2
||𝑔(𝑥, 𝑦)||2 ≤ −𝛼1|𝑥|2 + 𝛼2

min(ℎ𝛿(𝑦), ℎ𝛿(𝑥))
ℎ𝛿(𝑥)

|𝑦|2, (6.7)

where 𝑑 is the dimension of the Brownian motion in the SDDE (2.1). Furthermore, the function ℎ𝛿 is uniformly bounded by the real 
19

numbers 0 < ℎ𝛿min < ℎ𝛿max < 1, where ℎ𝛿max is small enough such that
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2𝛼2𝑒2𝛼1ℎmax < 𝛼1. (6.8)

Note that condition (6.7) implies condition (6.3) with the same values of 𝛼1 and 𝛼2. An example of function ℎ𝛿 that satisfies 
condition (6.7) for the SDDE (1.1) is

ℎ𝛿(𝑥) ∶=
(

1
25

𝐼{|𝑥|<1} + 0.25𝐼{|𝑥|≥1} |𝑥|2
max(1, |𝑓 (𝑥, 𝑦)|2)

)
𝛿. (6.9)

The following is the main result of this section.

Theorem 6.4. Consider the SDDE (2.1) with a 𝑑-dimensional Brownian motion. If 𝑓 and 𝑔 satisfy Assumption 6.1 and ℎ𝛿 satisfies Assump-

tion 6.3, then the adaptive approximate solution (3.1) is almost sure exponentially stable, i.e. there exists a 𝜆 > 0 such that

lim sup
𝑛→∞

log |𝑋𝑡𝑛
|

𝑡𝑛
≤ −𝜆 a.s.

Before proving Theorem 6.4, we show that the SDDE (1.1) satisfies Assumption 6.1

⟨𝑥,𝑓 (𝑥, 𝑦)⟩+ 1
2
|𝑔(𝑥, 𝑦)|2 = −2𝑥2 − 𝑥4 + 1

2
sin(𝑦)𝑥2 + 𝑥2 cos2(𝑦) ≤ −1

2
𝑥2.

In order to show that ℎ𝛿 satisfies (6.7) for the SDDE (1.1), we substitute (6.9) into (6.7) and differentiate between the cases |𝑥| < 1
and |𝑥| ≥ 1. For |𝑥| < 1 we have

⟨𝑥,𝑓 (𝑥, 𝑦)⟩+ 1
2
ℎ𝛿(𝑥)|𝑓 (𝑥, 𝑦)|2 + 𝑑

2
||𝑔(𝑥, 𝑦)||2 = −2𝑥2 − 𝑥4 + 1

2
𝑥2 sin(𝑦)

+ 1
2

1
25

𝛿(4𝑥2 + 4𝑥4 − 2𝑥2 sin(𝑦) + 𝑥6 − 𝑥4 sin(𝑦) + 1
4
𝑥2 sin(𝑦)) + 1

2
2𝑥2 cos2(𝑦)

≤ −3𝑥2
10

and for |𝑥| ≥ 1 we have

⟨𝑥,𝑓 (𝑥, 𝑦)⟩+ 1
2
ℎ𝛿(𝑥)|𝑓 (𝑥, 𝑦)|2 + 𝑑

2
||𝑔(𝑥, 𝑦)||2

= −2𝑥2 − 𝑥4 + 1
2
𝑥2 sin(𝑦) + 1

2
1
4
𝛿|𝑥|2 + 1

2
2𝑥2 cos2(𝑦) ≤ −3𝑥2

8
.

Thus the adaptive approximate solution of the SDDE (1.1) implemented with ℎ𝛿 defined as (6.9) is almost sure exponentially stable.

We will prove the theorem, but first we need the following lemma.

Lemma 6.5. Consider the SDDE (2.1) with a 𝑑-dimensional Brownian motion. Suppose 𝑓 and 𝑔 satisfy Assumption 6.1 and ℎ𝛿 satisfies 
Assumption 6.3. Let 𝑙 be a positive integer. Then there exists 𝜆 ∈ (0, 𝛼1) such that

𝑙∑
𝑛=1

𝑒𝜆𝑡𝑛 |𝑋𝑡𝑛
|2ℎ𝑛 ≤ 𝐶 +𝐶

𝑙∑
𝑛=1

𝑒𝜆𝑡𝑛 |𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )|2(|Δ𝑊𝑛|2 − ℎ𝑛𝑑)

+𝐶

𝑙∑
𝑛=1

𝑒𝜆𝑡𝑛⟨𝑋𝑡𝑛
+ 𝑓 (𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛⟩ a.s., (6.10)

where 𝐶 is a positive constant dependent on 𝜔 ∈Ω, the constants 𝛼1, 𝛼2, ℎ𝑚𝑎𝑥 and 𝜆, but independent of 𝑙 or 𝑡𝑛.

Proof. From (3.1) and (6.7), we have

|𝑋𝑡𝑛+1
|2 = |𝑋𝑡𝑛

|2 + 2ℎ𝑛(⟨𝑋𝑡𝑛
, 𝑓 (𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )⟩+ 1
2
ℎ𝑛|𝑓 (𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )|2)
+ 2⟨𝑋𝑡𝑛

+ 𝑓 (𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛⟩+ |𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛|2

≤ |𝑋𝑡𝑛
|2 + 2ℎ𝑛(⟨𝑋𝑡𝑛

, 𝑓 (𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )⟩+ 1

2
ℎ𝑛|𝑓 (𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )|2 + 𝑑

2
|𝑔(𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )|2)
+ 2⟨𝑋𝑡𝑛

+ 𝑓 (𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛⟩+ |𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )|2(|Δ𝑊𝑛|2 − ℎ𝑛𝑑)

≤ |𝑋𝑡𝑛
|2 − 2𝛼1ℎ𝑛|𝑋𝑡𝑛

|2 + 2𝛼2ℎ𝛿(𝑋𝑡𝑛−𝜏 )|𝑋𝑡𝑛−𝜏 |2
+ 2⟨𝑋𝑡𝑛

+ 𝑓 (𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛⟩+ |𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )|2(|Δ𝑊𝑛|2 − ℎ𝑛𝑑).
20

Multiplying by 𝑒𝛼1𝑡𝑛+1 and using the fact that 1 + 𝑥 ≤ 𝑒𝑥 with 𝑥 = −ℎ𝑛𝛼1, yields
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𝑒𝛼1𝑡𝑛+1 |𝑋𝑡𝑛+1
|2 ≤ 𝑒𝛼1𝑡𝑛 |𝑋𝑡𝑛

|2 + 2𝛼2ℎ𝛿(𝑋𝑡𝑛−𝜏 )𝑒
𝛼1𝑡𝑛+1 |𝑋𝑡𝑛−𝜏 |2

+ 𝑒𝛼1𝑡𝑛+1 |𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )|2(|Δ𝑊𝑛|2 − ℎ𝑛𝑑)

+ 2𝑒𝛼1𝑡𝑛+1⟨𝑋𝑡𝑛
+ 𝑓 (𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛⟩.

Solving the recurrence and using the bound ℎmax, one can see that

𝑒𝛼1𝑡𝑛 |𝑋𝑡𝑛
|2 ≤ |𝑋0|2 + 𝑒𝛼1ℎmax

{
𝑛−1∑
𝑘=0

𝑒𝛼1𝑡𝑘 |𝑔(𝑋𝑡𝑘
,𝑋𝑡𝑘−𝜏 )|2(|Δ𝑊𝑘|2 − ℎ𝑘𝑑)

+ 2𝛼2
𝑛−1∑
𝑘=0

𝑒𝛼1𝑡𝑘 |𝑋𝑡𝑘−𝜏 |2ℎ𝛿(𝑋𝑡𝑘−𝜏 ) + 2
𝑛−1∑
𝑘=0

𝑒𝛼1𝑡𝑘⟨𝑋𝑡𝑘
+ 𝑓 (𝑋𝑡𝑘

,𝑋𝑡𝑘−𝜏 )ℎ𝑘, 𝑔(𝑋𝑡𝑘
,𝑋𝑡𝑘−𝜏 )Δ𝑊𝑘⟩}.

Thus,

|𝑋𝑡𝑛
|2 ≤ 𝑒−𝛼1𝑡𝑛 |𝑋0|2 + 𝑒𝛼1ℎmax

{
𝑒−𝛼1𝑡𝑛

𝑛−1∑
𝑘=0

𝑒𝛼1𝑡𝑘 |𝑔(𝑋𝑡𝑘
,𝑋𝑡𝑘−𝜏 )|2(|Δ𝑊𝑘|2 − ℎ𝑘𝑑)

+2𝛼2𝑒−𝛼1𝑡𝑛
𝑛−1∑
𝑘=0

𝑒𝛼1𝑡𝑘 |𝑋𝑡𝑘−𝜏 |2ℎ𝛿(𝑋𝑡𝑘−𝜏 )

+ 2𝑒−𝛼1𝑡𝑛
𝑛−1∑
𝑘=0

𝑒𝛼1𝑡𝑘⟨𝑋𝑡𝑘
+ 𝑓 (𝑋𝑡𝑘

,𝑋𝑡𝑘−𝜏 )ℎ𝑘, 𝑔(𝑋𝑡𝑘
,𝑋𝑡𝑘−𝜏 )Δ𝑊𝑘⟩}.

So, for any 𝜆 ∈ (0, 𝛼1) we have

𝑙∑
𝑛=1

𝑒𝜆𝑡𝑛 |𝑋𝑡𝑛
|2ℎ𝑛 ≤ 𝑒−(𝛼1−𝜆)𝑡𝑛 |𝑋0|2ℎ𝑛 + 𝑒𝛼1ℎmax

{
𝑙∑

𝑛=0
𝑒−(𝛼1−𝜆)𝑡𝑛ℎ𝑛

𝑛−1∑
𝑘=0

𝑒𝛼1𝑡𝑘 |𝑔(𝑋𝑡𝑘
,𝑋𝑡𝑘−𝜏 )|2

(|Δ𝑊𝑘|2 − ℎ𝑘𝑑) + 2𝛼2
𝑙∑

𝑛=0
𝑒−(𝛼1−𝜆)𝑡𝑛ℎ𝑛

𝑛−1∑
𝑘=0

𝑒𝛼1𝑡𝑘 |𝑋𝑡𝑘−𝜏 |2ℎ𝛿(𝑋𝑡𝑘−𝜏 )

+ 2
𝑙∑

𝑛=0
𝑒−(𝛼1−𝜆)𝑡𝑛ℎ𝑛

𝑛−1∑
𝑘=0

𝑒𝛼1𝑡𝑘⟨𝑋𝑡𝑘
+ 𝑓 (𝑋𝑡𝑘

,𝑋𝑡𝑘−𝜏 )ℎ𝑘, 𝑔(𝑋𝑡𝑘
,𝑋𝑡𝑘−𝜏 )Δ𝑊𝑘⟩}. (6.11)

Moreover, we can see that

2𝛼2𝑒𝛼1ℎmax

𝑙∑
𝑛=1

𝑒−(𝛼1−𝜆)𝑡𝑛ℎ𝑛

𝑛−1∑
𝑘=0

𝑒𝛼1𝑡𝑘 |𝑋𝑡𝑘−𝜏 |2ℎ𝛿(𝑋𝑡𝑘−𝜏 )

= 2𝛼2𝑒𝛼1ℎmax

𝑙∑
𝑛=1

𝑒𝛼1𝑡𝑛 |𝑋𝑡𝑛−𝜏 |2ℎ𝛿(𝑋𝑡𝑛−𝜏 )
𝑙∑

𝑘=𝑛
𝑒−(𝛼1−𝜆)𝑡𝑘ℎ𝑘.

Now since the function 𝑒−(𝛼1−𝜆)𝑠 is decreasing on 𝑠, we see that

𝑙∑
𝑘=𝑛

𝑒−(𝛼1−𝜆)𝑡𝑘ℎ𝑘 =
𝑙∑

𝑘=𝑛
𝑒(𝛼1−𝜆)ℎ𝑘𝑒−(𝛼1−𝜆)𝑡𝑘+1ℎ𝑘 ≤ 𝑒(𝛼1−𝜆)ℎmax

𝑡𝑙

∫
𝑡𝑛

𝑒−(𝛼1−𝜆)𝑠𝑑𝑠 ≤ 𝑒𝛼1ℎmax

𝛼1 − 𝜆
𝑒−(𝛼1−𝜆)𝑡𝑛 .

Thus

2𝛼2𝑒𝛼1ℎmax

𝑙∑
𝑛=1

𝑒−(𝛼1−𝜆)𝑡𝑛ℎ𝑛

𝑛−1∑
𝑘=0

𝑒𝛼1𝑡𝑘 |𝑋𝑡𝑘−𝜏 |2ℎ𝛿(𝑋𝑡𝑘−𝜏 )

≤ 2𝛼2𝑒2𝛼1ℎ𝑚𝑎𝑥
𝛼1 − 𝜆

(
𝑙∑

𝑛=1
𝑒𝜆𝑡𝑛 |𝑋𝑡𝑛−𝜏 |2ℎ𝛿(𝑋𝑡𝑛−𝜏 )

)
. (6.12)

Let 𝑀 =𝑀(𝜔) be such that 𝑡𝑀 ≤ 𝜏 < 𝑡𝑀+1. Then we can write

𝑙∑
𝑛=1

𝑒𝜆𝑡𝑛 |𝑋𝑡𝑛−𝜏 |2ℎ𝛿(𝑋𝑡𝑛−𝜏 ) =
𝑀∑
𝑛=1

𝑒𝜆𝑡𝑛 |𝑋𝑡𝑛−𝜏 |2ℎ𝛿(𝑋𝑡𝑛−𝜏 ) +
𝑙∑

𝑛=𝑀+1
𝑒𝜆𝑡𝑛 |𝑋𝑡𝑛−𝜏 |2ℎ𝛿(𝑋𝑡𝑛−𝜏 )

≤ 𝐶 + 𝑒𝜆ℎmax𝑀
𝑙∑
𝑒𝜆𝑡𝑛 |𝑋𝑡𝑛

|2ℎ𝑛. (6.13)
21

𝑛=1
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Substituting Equation (6.13) into (6.12), we obtain

2𝛼2𝑒𝛼1ℎmax

𝑙∑
𝑛=1

𝑒−(𝛼1−𝜆)𝑡𝑛ℎ𝑛

𝑛−1∑
𝑘=0

𝑒𝛼1𝑡𝑘 |𝑋𝑡𝑘−𝜏 |2ℎ𝑘
≤ 𝐶 +

2𝛼2𝑒2𝛼1ℎ𝑚𝑎𝑥 𝑒𝜆ℎ𝑚𝑎𝑥𝑀

𝛼1 − 𝜆

𝑙∑
𝑛=1

𝑒𝜆𝑡𝑛 |𝑋𝑡𝑛
|2ℎ𝑛. (6.14)

Similarly we obtain

𝑒𝛼1ℎmax

𝑙∑
𝑛=0

𝑒−(𝛼1−𝜆)𝑡𝑛ℎ𝑛

𝑛−1∑
𝑘=0

𝑒𝛼1𝑡𝑘 |𝑔(𝑋𝑡𝑘
,𝑋𝑡𝑘−𝜏 )|2(|Δ𝑊𝑘|2 − ℎ𝑘𝑑)

≤ 2𝑒𝛼1ℎmax

𝛼1 − 𝜆

𝑙∑
𝑛=1

𝑒𝜆𝑡𝑛 |𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )|2(|Δ𝑊𝑛|2 − ℎ𝑛𝑑), (6.15)

and

𝑒𝛼1ℎmax2
𝑙∑

𝑛=0
𝑒−(𝛼1−𝜆)𝑡𝑛ℎ𝑛

𝑛−1∑
𝑘=0

𝑒𝛼1𝑡𝑘⟨𝑋𝑡𝑘
+ 𝑓 (𝑋𝑡𝑘

,𝑋𝑡𝑘−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑘
,𝑋𝑡𝑘−𝜏 )Δ𝑊𝑘⟩

≤ 2𝑒2𝛼1ℎmax

𝛼1 − 𝜆

𝑙∑
𝑛=1

𝑒𝜆𝑡𝑛⟨𝑋𝑡𝑛
+ 𝑓 (𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛⟩. (6.16)

We observe that by condition (6.8), ℎ𝑚𝑎𝑥 is such that 0 < 2𝛼2𝑒2𝛼1ℎ𝑚𝑎𝑥 < 𝛼1. Then by choosing 𝜆 small enough so 0 <
2𝛼2𝑒2𝛼1ℎ𝑚𝑎𝑥 𝑒𝜆ℎ𝑚𝑎𝑥𝑀

𝛼1−𝜆
< 1 and by substituting Equations (6.14), (6.15) and (6.16) into (6.11), we obtain the final result. □

We are now in the position to give

Proof of Theorem 6.4. From (3.1) and (6.7), we have

|𝑋𝑡𝑛+1
|2 = |𝑋𝑡𝑛

|2 + 2ℎ𝑛(⟨𝑋𝑡𝑛
, 𝑓 (𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )⟩+ 1
2
ℎ𝑛|𝑓 (𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )|2)
+ 2⟨𝑋𝑡𝑛

+ 𝑓 (𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛⟩+ |𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛|2

≤ |𝑋𝑡𝑛
|2 + 2ℎ𝑛(⟨𝑋𝑡𝑛

, 𝑓 (𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )⟩+ 1

2
ℎ𝑛|𝑓 (𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )|2 + 𝑑

2
|𝑔(𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )|2)
+ 2⟨𝑋𝑡𝑛

+ 𝑓 (𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛⟩+ |𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )|2(|Δ𝑊𝑛|2 − ℎ𝑛𝑑)

≤ |𝑋𝑡𝑛
|2 − 2𝛼1ℎ𝑛|𝑋𝑡𝑛

|2 + 2𝛼2ℎ𝛿(𝑋𝑡𝑛−𝜏 )|𝑋𝑡𝑛−𝜏 |2
+ 2⟨𝑋𝑡𝑛

+ 𝑓 (𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛⟩+ |𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )|2(|Δ𝑊𝑛|2 − ℎ𝑛𝑑).

Now we multiply by 𝑒𝜆𝑡𝑛+1 , where 𝜆 ∈ (0, 𝛼1) is the one from Lemma 6.5, which makes equation (6.10) to hold true. Then using the 
fact that 1 + 𝑥 ≤ 𝑒𝑥 with 𝑥 = −2ℎ𝑛𝛼1, yields

𝑒𝜆𝑡𝑛+1 |𝑋𝑡𝑛+1
|2 ≤ 𝑒𝜆𝑡𝑛 |𝑋𝑡𝑛

|2 + 2𝛼2𝑒𝜆𝑡𝑛+1 |𝑋𝑡𝑛−𝜏 |2ℎ𝑛 + 𝑒𝜆𝑡𝑛+1 |𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )|2(|Δ𝑊𝑛|2 − ℎ𝑛𝑑)

+ 2𝑒𝜆𝑡𝑛+1⟨𝑋𝑡𝑛
+ 𝑓 (𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛⟩.

Note that in the equation above we have used the fact that 𝑒−ℎ𝑛𝛼1 ≤ 𝑒−ℎ𝑛𝜆. Solving the recurrence and using the bound ℎmax we have

𝑒𝜆𝑡𝑛 |𝑋𝑡𝑛
|2 ≤ |𝑋0|2 + 𝑒𝜆ℎmax

{
𝑛−1∑
𝑘=0

𝑒𝜆𝑡𝑘 |𝑔(𝑋𝑡𝑘
,𝑋𝑡𝑘−𝜏 )|2(|Δ𝑊𝑘|2 − ℎ𝑘𝑑)

+ 2𝛼2
𝑛−1∑
𝑘=0

𝑒𝜆𝑡𝑘 |𝑋𝑡𝑘−𝜏 |2ℎ𝛿(𝑋𝑡𝑘−𝜏 ) + 2
𝑛−1∑
𝑘=0

𝑒𝜆𝑡𝑘⟨𝑋𝑡𝑘
+ 𝑓 (𝑋𝑡𝑘

,𝑋𝑡𝑘−𝜏 )ℎ𝑘, 𝑔(𝑋𝑡𝑘
,𝑋𝑡𝑘−𝜏 )Δ𝑊𝑘⟩}.

Using (6.13), we obtain

𝑒𝜆𝑡𝑛 |𝑋𝑡𝑛
|2 ≤ |𝑋0|2 + 𝑒𝜆ℎmax

{
𝑛−1∑
𝑘=0

𝑒𝜆𝑡𝑘 |𝑔(𝑋𝑡𝑘
,𝑋𝑡𝑘−𝜏 )|2(|Δ𝑊𝑘|2 − ℎ𝑘𝑑) +𝐶

+ 𝑒𝜆ℎ𝑚𝑎𝑥𝑀
𝑛−1∑

𝑒𝜆𝑡𝑘 |𝑋𝑡𝑘
|2ℎ𝑘 + 2

𝑛−1∑
𝑒𝜆𝑡𝑘⟨𝑋𝑡𝑘

+ 𝑓 (𝑋𝑡𝑘
,𝑋𝑡𝑘−𝜏 )ℎ𝑘, 𝑔(𝑋𝑡𝑘

,𝑋𝑡𝑘−𝜏 )Δ𝑊𝑘⟩}. (6.17)
22
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Substituting Equation (6.10) (from Lemma 6.5) into (6.17) yields

𝑒𝜆𝑡𝑛 |𝑋𝑡𝑛
|2 ≤ |𝑋0|2 +𝐶 +𝐶

𝑛−1∑
𝑘=0

𝑒𝜆𝑡𝑘 |𝑔(𝑋𝑡𝑘
,𝑋𝑡𝑘−𝜏 )|2(|Δ𝑊𝑘|2 − ℎ𝑘𝑑)

+𝐶

𝑛−1∑
𝑘=0

𝑒𝜆𝑡𝑘⟨𝑋𝑡𝑘
+ 𝑓 (𝑋𝑡𝑘

,𝑋𝑡𝑘−𝜏 )ℎ𝑘, 𝑔(𝑋𝑡𝑘
,𝑋𝑡𝑘−𝜏 )Δ𝑊𝑘⟩}

≤ 𝐶 +𝐶{𝑀𝑛 +𝑁𝑛},

where:

• 𝑀𝑛 ∶=
∑𝑛−1

𝑘=0 𝑒
𝜆𝑡𝑘 |𝑔(𝑋𝑡𝑘

, 𝑋𝑡𝑘−𝜏 )|2(|Δ𝑊𝑘|2 − ℎ𝑘𝑑);
• 𝑁𝑛 ∶=

∑𝑛−1
𝑘=0 𝑒

𝜆𝑡𝑘⟨𝑋𝑡𝑘
+ 𝑓 (𝑋𝑡𝑘

, 𝑋𝑡𝑘−𝜏 )ℎ𝑘, 𝑔(𝑋𝑡𝑘
, 𝑋𝑡𝑘−𝜏 )Δ𝑊𝑘⟩;

• 𝐶 is a positive constant (that changed from the second to the last line) dependent on 𝜔 ∈ Ω and on the constants 𝛼1, 𝛼2, ℎ𝑚𝑎𝑥
and 𝜆, but not on 𝑡𝑛.

Taking logarithms and dividing by 𝑡𝑛, it follows that

1
𝑡𝑛

log(𝑒𝜆𝑡𝑛 |𝑋𝑡𝑛
|2) ≤ 1

𝑡𝑛
log

(
𝐶 +𝐶{𝑀𝑛 +𝑁𝑛}

)
.

We observe that

𝔼[𝑀𝑛+1|𝑡𝑛
] = 𝔼[𝑒𝜆𝑡𝑛 |𝑔(𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )|2(|Δ𝑊𝑛|2 − ℎ𝑛𝑑) +𝑀𝑛|𝑡𝑛
]

= 𝑒𝜆𝑡𝑛 |𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )|2(𝔼[|Δ𝑊𝑛|2] − ℎ𝑛𝑑) +𝑀𝑛 =𝑀𝑛

and

𝔼[𝑁𝑛+1|𝑡𝑛
] = 𝔼[2𝑒𝜆𝑡𝑛⟨𝑋𝑡𝑛

+ 𝑓 (𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )Δ𝑊𝑛⟩+𝑁𝑛|𝑡𝑛
]

= 2𝑒𝜆𝑡𝑛⟨𝑋𝑡𝑛
+ 𝑓 (𝑋𝑡𝑛

,𝑋𝑡𝑛−𝜏 )ℎ𝑛, 𝑔(𝑋𝑡𝑛
,𝑋𝑡𝑛−𝜏 )𝔼[Δ𝑊𝑛]⟩+𝑁𝑛 =𝑁𝑛.

Hence 𝑀 +𝑁 is a local martingale with respect to {𝑡𝑛
}. Thus by the discrete semimartingale convergence theorem (see lemma 2 

in [16]), one can see that

lim
𝑛→∞

(𝑀𝑛 +𝑁𝑛) <∞ a.s.

Therefore,

lim sup
𝑛→∞

1
𝑡𝑛

log(𝑒𝜆𝑡𝑛 |𝑋𝑡𝑛
|2) ≤ 0 a.s.

This is

lim sup
𝑛→∞

log |𝑋𝑡𝑛
|

𝑡𝑛
≤ −𝜆

2
a.s.

The proof is therefore complete. □

Remark 6.1. In the Wei and Giles [2], the almost sure exponential stability of the approximate adaptive EM solution has not been 
investigated. Here we would like to point out that the adaptive EM solutions of SDEs also reproduce the almost sure exponential 
stability as SDDEs. A similar result is achieved in [6] by using the more computationally expensive BEM method. Let {𝑊𝑡}𝑡≥0 be a 
𝑑-dimensional Brownian motion. Consider the 𝑚-dimensional SDE

𝑑𝑌𝑡 = 𝑓 (𝑌𝑡)𝑑𝑡+ 𝑔(𝑌𝑡)𝑑𝑊𝑡 (6.18)

for 𝑡 ≥ 0 where 𝑓 ∶ ℝ𝑚 → ℝ𝑚 and 𝑔 ∶ ℝ𝑚 → ℝ𝑚×𝑑 are Borel-measurable functions, and initial data 𝑌0 = 𝜉 ∈ 𝐿20
(Ω; ℝ𝑚), i.e. 𝜉 is a 

0-measurable ℝ𝑚-valued random variable with 𝐸|𝜉|2 <∞. In this case Assumption 6.1 can be written as

Assumption 6.6. The functions 𝑓 and 𝑔 satisfy the local Lipschitz condition: for every 𝑅 > 0 there exists a positive constant 𝐶𝑅 such 
that

|𝑓 (𝑥) − 𝑓 (𝑦)|+ ||𝑔(𝑥) − 𝑔(𝑦)|| ≤ 𝐶𝑅(|𝑥− 𝑦| (6.19)
23

for all 𝑥, 𝑦 ∈ℝ𝑚 with |𝑥|, |𝑦| ≤𝑅. Furthermore, there exists a constant 𝛼 ≥ 0 such that for all 𝑥 ∈ℝ𝑚, 𝑓 and 𝑔 satisfy
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Table 1

Six simulations of the EM solution for Δ = 2e–3.

Time 0 2e–3 4e–3 6e–3 8e–3 10e–3 12e–3 14e–3 16e–3 18e–3 20e–3

Sim 1 100 101.1 107.4 -141.1 418.1 -1.4e4 5.7e8 -3.7e22 1.1e64 -2.3e188 Inf

Sim 2 100 -98 88.97 -50.99 -24.51 -21.33 -19.37 -17.29 -16.15 -15.13 -14.87

Sim 3 100 -101.3 109.6 -150.1 525.68 -2.8e4 4.6e9 -2e25 1.6e72 -8.3e212 Inf

Sim 4 100 -101.9 108.5 -143.9 452.6 -1.8e4 1.2e9 -3.3e23 7.3e66 -7.9e196 Inf

Sim 5 100 -101.9 108.5 -143.9 452.6 -1.8e4 1.2e9 -3.3e23 7.3e66 -7.9e196 Inf

Sim 6 100 -99 91.8 -63.44 -11.65 -11.03 -10.87 -10.27 -10.17 -9.91 -10

⟨𝑥,𝑓 (𝑥)⟩+ 1
2
|𝑔(𝑥)|2 ≤ −𝛼|𝑥|2, 𝛼 > 0. (6.20)

Under the conditions (6.19) and (6.20), the SDE (6.18) has a unique solution (Theorem 2.3.6 in [10]).

In contrast to the EM solution, now we will see that the adaptive approximate solution of the SDE preserves the stability of the 
exact solution. We define the discrete-time adaptive approximate solution to the SDE (6.18) as

𝑋0 ∶= 𝑌0, ℎ𝛿𝑛 ∶= ℎ𝛿(𝑋𝑡𝑛
), 𝑡𝑛+1 ∶= 𝑡𝑛 + ℎ𝑛, (6.21)

and

𝑋𝑡𝑛+1
∶=𝑋𝑡𝑛

+ 𝑓 (𝑋𝑡𝑛
)ℎ𝛿𝑛 + 𝑔(𝑋𝑡𝑛

)Δ𝑊𝑛, (6.22)

where Δ𝑊𝑛 ∶=𝑊𝑡𝑛+1
−𝑊𝑡𝑛

. Now, Assumption 6.3 takes the form

Assumption 6.7. The time-step function ℎ𝛿 satisfies

⟨𝑥,𝑓 (𝑥)⟩+ 𝑑

2
|𝑔(𝑥)|2 + 1

2
ℎ𝛿(𝑥)|𝑓 (𝑥)|2 ≤ −𝛼|𝑥|2, 𝛼 > 0 (6.23)

for all 𝑥 ∈ℝ. Furthermore, ℎ𝛿 is uniformly bounded by the real number ℎ𝛿max ∈ (0, ∞).

Theorem 6.8. Consider the SDE (6.18). If 𝑓 and 𝑔 satisfy Assumption 6.6 and ℎ𝛿 satisfies Assumption 6.7, then the adaptive approximate 
solution (6.22) is almost sure exponentially stable, i.e. there exists 𝜆 > 0 such that

lim sup
𝑛→∞

log |𝑋𝑡𝑛
|

𝑡𝑛
≤ −𝜆 a.s.

7. Simulations

In this section we present simulations which illustrate the results discussed in Section 6. Consider the SDDE (1.1) with 𝜏 = 1 and 
initial condition 𝑌 (𝑡) = 100, −1 ≤ 𝑡 ≤ 0. We simulated in Matlab paths of the EM solution of the SDDE (1.1) using different step sizes, 
Δ. As we have seen in section 6 there is a positive probability that the EM solution explodes. In Table 1 we present six different 
simulations of the EM solution for Δ = 2𝑒− 3. We observe in simulations 1,3,4 and 5 the EM solution explodes.

In Fig. 1, we graphed the logarithm of EM solution presented in Table 1.

Note: From Lemma 6.2 we know that as Δ decreases, the probability of explosion decreases. Thus, for “very small” Δ (say less 
than 10−4) we couldn’t find one explosion in 100,000 simulations.

In addition, we simulated the adaptive-EM solution of the SDDE (1.1) using the function ℎ𝛿 defined in (6.9). As we proved in 
Section 6, the solution is a.s. exponentially stable. Fig. 2 shows 10,000 paths of the adaptive-EM solution.

Fig. 3 shows the first 10 values of ℎ𝛿(𝑋𝑡𝑛
) for two different simulations. At the start, 𝑋0 = 100, so the term −𝑋3

𝑡𝑛
dominates 

the equation, making the diffusion term very “big” (in absolute value) in comparison with 𝑋𝑡𝑛
. Therefore, the adaptive step is very 

“small” at the beginning and increases progressively as the ratio 𝑓 (𝑋𝑡𝑛
, 𝑋𝑡̂𝑛

)∕𝑋𝑡𝑛
decreases. This ensures all the simulated paths to 

decay exponentially in a “small” number of steps.

Data availability

Data will be made available on request.
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