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Abstract. We prove that the Weihrauch degree of the problem of find-
ing a bad sequence in a non-well quasi order (BS) is strictly above that
of finding a descending sequence in an ill-founded linear order (DS). This
corrects our mistaken claim in [8], which stated that they are Weihrauch
equivalent. We prove that König’s lemma KL and the problem wList2N,≤ω

of enumerating a given non-empty countable closed subset of 2N are not
Weihrauch reducible to DS either, resolving two main open questions
raised in [8].
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1 Introduction and background

A quasi-order (Q,�) is called well quasi-order (abbreviated wqo) if, for every
infinite sequence (qn)n∈N of elements of Q, there are i, j with i < j such that
qi �Q qj . This can be restated by saying that a quasi-order is a wqo if it contains
no infinite bad sequences, where a sequence (qn)n<α is called bad if qi 6�Q qj for
every i < j < α. Equivalently, wqo’s can be defined as quasi-orders that contain
no infinite descending sequence and no infinite antichain. There is an extensive
literature on the theory of wqo’s. For an overview, we refer the reader to [10].

We study the difficulty of solving the following computational problems:

– given a countable ill-founded linear order, find an infinite Descending Se-
quence in it (DS), and

– given a countable non-well quasi-order, find a Bad Sequence in it (BS).

A suitable framework for this is the Weihrauch lattice (see [2] for a self-contained
introduction). Several results on DS were proved in our previous paper [8]; how-
ever, [8, Prop. 4.5] falsely claims that DS and BS are Weihrauch equivalent. In
Theorem 1 we refute our claim by proving that the first-order part of BS is not
Weihrauch reducible to DS. On the other hand, the deterministic part and the
k-finitary parts of BS are Weihrauch equivalent to the corresponding parts of
DS (Theorem 3, Corollary 5).
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We will also resolve (negatively) two main open questions raised in [8, Ques-
tions 6.1 and 6.2], namely whether KL and wList2N,≤ω are Weihrauch reducible
to DS (Corollaries 2, 3). The core of our proof (Theorem 2) is

lim ≡W max≤W{f | ÂCCN × f ≤W DS}.

That is, even though ÂCCN is fairly weak (in particular it is below lim, KL and
DS), DS cannot even compute ÂCCN × f if f �W lim. The existence of the
maximum above provides an example of a “parallel quotient” [5, Remark 1].

In the rest of this section we briefly introduce relevant notions in Weihrauch
complexity, followed with a note that BS is equivalent to its restriction to partial
orders (Proposition 2).

A represented space X = (X, δX) consists of a set X and a (possibly partial)
surjection δX :⊆ NN → X. Many mathematical objects of interest can be repre-
sented in standard ways which we do not spell out here (see e.g. [2, Def. 2.5]),
such as: NN, N, N<N, initial segments of N, the set of binary relations on N, the
set of Γ -definable subsets of N where Γ is a pointclass in the projective hierar-
chy, countable Cartesian products and countable disjoint unions of represented
spaces.

A problem f is a (possibly partial) multivalued function between represented
spaces X and Y, denoted f :⊆ X ⇒ Y. For each x ∈ X, f(x) denotes the set
of possible outputs (i.e., f -solutions) corresponding to the input x. The domain
dom(f) is the set of all x ∈ X such that f(x) is non-empty. Such x is called an
f -instance. If f(x) is a singleton for all x ∈ dom(f), we say f is single-valued
and write f :⊆ X → Y. In this case, if y is the f -solution to x, we write f(x) = y
instead of (the formally correct) f(x) = {y}. We say a problem is computable
(resp. continuous) if there is some computable (resp. continuous) F :⊆ NN → NN

such that if p is a name for some x ∈ dom(f), then F (p) is a name for an f -
solution to x.

A problem f is Weihrauch reducible to a problem g, written f ≤W g, if
there are computable maps Φ, Ψ :⊆ NN → NN such that if p is a name for some
x ∈ dom(f), then

1. Φ(p) is a name for some y ∈ dom(g), and
2. if q is a name for some g-solution of y, then Ψ(p, q) is a name for some

f -solution of x.

If Φ and Ψ satisfy the above, we say that f ≤W g via Φ, Ψ .
Weihrauch reducibility forms a preorder on problems. We say f and g are

Weihrauch equivalent, written f ≡W g, if f ≤W g and g ≤W f . The ≡W-
equivalence classes (Weihrauch degrees) are partially ordered by ≤W. Among
the numerous algebraic operations in the Weihrauch degrees, we consider:

– for problems fi :⊆ Xi ⇒ Yi, the parallel product

f0 × f1 :⊆ X0 ×X1 ⇒ Y0 ×Y1 defined by (x0, x1) 7→ f0(x0)× f1(x1),

i.e., given an f0-instance and an f1-instance, solve both,
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– for a problem f :⊆ X ⇒ Y, the (infinite) parallelization

f̂ :⊆ XN ⇒ YN defined by (xi)i 7→
∏

i
f(xi),

i.e., given a countable sequence of f -instances, solve all of them.

These operations are defined on problems, but they all lift to the Weihrauch
degrees. Parallelization even forms a closure operator, i.e., f ≤W f̂ , f ≤W g

implies f̂ ≤W ĝ, and ̂̂
f ≡W f̂ .

The Weihrauch degrees also support a number of interior operators, which
have been used to separate degrees of interest (see e.g. [13, §3.1]). For any prob-
lem f and any represented space X,

DetX(f) := max≤W
{g ≤W f | g has codomain X and is single-valued}

exists [8, Thm. 3.2]. We call DetNN(f) the deterministic part of f and denote it
by Det(f) for short. Observe that [8, Prop. 3.6] can be generalized slightly:

Proposition 1. Det(f) ≤W D̂et2(f).

Proof. Suppose g is single-valued, has codomain NN, and g ≤W f . Define a
single-valued problem h as follows: Given n,m ∈ N and a g-instance x, produce
1 if g(x)(n) ≥ m, otherwise produce 0. It is easy to see that g ≤W ĥ and h ≤W f .
The latter implies h ≤W Det2(f) and so g ≤W ĥ ≤W D̂et2(f).

For any problem f and X = N or k, it is also known that

max≤W
{g ≤W f | g has codomain X}

exists. For X = N we call it the first-order part of f [6, Thm. 2.2], denoted by
1f , while for X = k we call it the k-finitary part of f [4, Prop. 2.9], denoted by
Fink(f). We have DetN(f) ≤W

1f and Detk(f) ≤W Fink(f) ≤W
1f .

To study the problems DS and BS from the point of view of Weihrauch
reducibility, we need to introduce the represented spaces of linear orders and
quasi-orders. We only work with countable linear orders/quasi-orders with do-
main contained in N. We represent a linear order (L,≤L) with the characteristic
function of the set {〈n,m〉 : n ≤L m}. Likewise, we represent a quasi-order
(Q,�Q) with the characteristic function of the set {〈n,m〉 : n �Q m}.

We conclude this section observing a fact about BS which was implicit in [8].

Proposition 2. BS is Weihrauch equivalent to its restriction to partial orders.

Proof. Given a non-well quasi-order (Q,�Q) where Q ⊆ N, compute the set
S = {a ∈ Q | (∀b <N a)(a 6�Q b or b 6�Q a)}. The restriction (S,�Q) is a non-
well partial order because it is isomorphic to the partial order of �Q-equivalence
classes.

Henceforth we will use Proposition 2 without mention.
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2 Separating BS and DS

We shall separate BS and DS by separating their first-order parts.

Theorem 1. 1BS �W
1DS and so DS <W BS.

Recall from [8, Thm. 4.10] that 1DS ≡W Π1
1−Bound, which is the problem

of producing an upper bound for a finite subset of N (given via a Π1
1 code).

Observe that Π1
1−Bound is upwards closed, i.e., if n ∈ g(x) then m ∈ g(x) for

all m > n.

Lemma 1. Let f be a problem with codomain N. The following are equivalent:

1. there exists an upwards closed problem g with codomain N such that f ≤W g;
2. there is a computable procedure which takes as input any x ∈ dom(f) and

produces a sequence px ∈ NN of guesses for f -solutions to x which is correct
cofinitely often.

Proof. For 1. ⇒ 2., let g be upwards closed and assume f ≤W g via Φ and
Ψ . Given x ∈ dom(f), run the computations (Ψ(x,m))m∈N in parallel. Once
some Ψ(x,m) halts, we output its result and cancel Ψ(x, n) for all n < m. This
produces a sequence of numbers. The fact that g is upwards closed guarantees
that cofinitely many elements of this sequence are elements of f(x).

For the converse direction, for every x ∈ dom(f), let px ∈ NN be as in the
hypothesis. Define Mx := max{m | px(m) /∈ f(x)} and let g(x) := {n | n > Mx}.
Clearly g is upwards closed. The fact that f ≤W g follows from the fact that
x 7→ px is computable.

Given a non-well quasi-order (Q,�Q), we say that a finite sequence σ is ex-
tendible to an infinite �Q-bad sequence (or, more compactly, σ is �Q-extendible)
if there is a �Q-bad sequence (qn)n∈N such that (∀i < |σ|)(σ(i) = qi). We omit
the order whenever there is no ambiguity.

Observe that 1BS can compute the problem “given a non-well partial order
(P,≤P ), produce an element of P that is extendible to an infinite bad sequence”.
In light of Lemma 1, to prove Theorem 1 it suffices to show that one cannot com-
putably “guess” solutions for BS. In other words, given a computable procedure
which tries to guess extendible elements in a non-wqo, we want to construct a
non-wqo P on which the procedure outputs a non-extendible element infinitely
often. This would imply that 1BS 6≤W Π1

1−Bound. The non-wqos P we construct
will be “tree-like” in the following sense:

Definition 1. A tree decomposition of a partial order (P,≤P ) consists of a tree
T ⊆ 2<N and a function ι : T → P such that:

1. If w1, w2 ∈ T and w1 is a proper prefix of w2 (written w1 ⊏ w2), then
ι(w1) <P ι(w2).
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2. P is partitioned into finite P -intervals, where each interval has the form

(wb] = {v ∈ P | ι(w) <P v ≤P ι(wb)}

for some vertex wb ∈ T (with final entry b), or (ε] = {ι(ε)} (where ε denotes
the root of 2<N). For v ∈ P let dve ∈ T be uniquely defined by v ∈ (dve].

3. If w1, w2 ∈ T are incompatible, so are ι(w1) and ι(w2) (i.e. they have no
common upper bound in P ).

The following lemma is straightforward.

Lemma 2. If ι : T → P is a tree decomposition, then P has no infinite descend-
ing sequences. Moreover, T is wqo (i.e. it has finite width) if and only if P is
wqo. In other words, T has an infinite antichain iff so does P .

Proof. The fact that every partial order that admits a tree decomposition does
not have an infinite descending sequence follows from the fact that if (vn)n∈N is
an infinite descending sequence in P , then since every interval (dvne] is finite, up
to removing duplicates, the sequence (dvne)n∈N would be an infinite descending
sequence in T .

If (wn)n∈N is an infinite antichain in T then, by definition of tree decomposi-
tion, (ι(wn))n∈N is an infinite antichain in P . Conversely, if (vn)n∈N is an infinite
antichain in P , then for every n, for all but finitely m, dvne is v-incomparable
with dvme. In particular, we can obtain an infinite antichain in T by choos-
ing a subsequence (vni

)i∈N such that, for every i 6= j, dvni
e and dvnj

e are v-
incomparable.

Lemma 3. There is no computable procedure that, given in input a partial order
which admits a tree decomposition, outputs an infinite sequence of elements of
that partial order such that if the input is not wqo, then cofinitely many elements
in the output are extendible to a bad sequence.

We point out a subtle yet important aspect regarding Lemma 3: The proce-
dure only has access to the partial order, not to a tree decomposition of it.

Proof. Fix a computable “guessing” procedure g that receives as input a partial
order (admitting a tree decomposition) and outputs an infinite sequence of el-
ements in that partial order. We shall build a partial order P together with a
tree decomposition ι : T → P in stages such that, infinitely often, g outputs an
element of P that does not extend to an infinite bad sequence.

Start with T0 = {ε} and P0 having a single element vε, with ι0(ε) = vε. In
stage s, we have built a finite tree decomposition ιs : Ts → Ps and wish to extend
it to some ιs+1 : Ts+1 → Ps+1. The tree Ts+1 will always be obtained by giving
each leaf in Ts a single successor, and then adding two successors to exactly one
of the new leaves. To decide which leaf gets two successors, say a finite extension
Q of Ps is suitable for ιs : Ts → Ps if for every v ∈ Q\Ps, there is exactly one leaf
w ∈ Ts such that ιs(w) <Q v. Pick the left-most leaf σ of Ts with the following
property:
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There is some suitable extension Q of Ps such that, when given Q, the
guessing procedure g would guess an element of Q which is comparable
with ιs(σ).

To see that such σ must exist, consider extending Ps by adding an “infinite comb”
(i.e. a copy of {0n1i | n ∈ N, i ∈ {0, 1}}) above the ιs-image of a single leaf in Ts.
The resulting partial order Q is non-wqo, admits a tree decomposition (obtained
by extending Ts and ιs in the obvious way), and its finite approximations (ex-
tending Ps) are suitable for ιs. Hence, by hypothesis, g eventually guesses some
element, which must be comparable with ιs(σ), for some leaf σ ∈ Ts (because
all elements of Q are).

Having identified σ, we fix any corresponding suitable extension Q of Ps. In
order to extend ιs, we further extend Q to Q′ by adding a new maximal element
vw to Q for each leaf w ∈ Ts as follows: vw lies above all v ∈ Q \ Ps such that
ιs(w) <P v, and is incomparable with all other elements (including the other new
maximal elements vw′). To extend Ts, we add a new leaf τ⌢0 to Ts for each leaf
τ , obtaining a tree T ′. We extend ιs to yield a tree decomposition ι′ : T ′ → Q′

in the obvious way.
Finally, we add two successors to σ⌢0 in T ′, i.e., define Ts+1 = T ′∪{σ⌢00, σ⌢01}.

We also add two successors v1, v2 to ι′(σ⌢0) in Q′ to obtain Ps+1, and extend
ι′ to ιs+1 by setting ιs+1(σ

⌢0i) = vi. This concludes stage s.
It is clear from the construction that ι : T → P is a tree decomposition. Let

us discuss the shape of the tree T . In stage s, we introduced a bifurcation above
a leaf σs of Ts. These are the only bifurcations in T . Observe that, whenever
s′ < s, σs is either above or to the right of σs′ , because every suitable extension
of Ps is also a suitable extension of Ps′ and, at stage s′, the chosen leaf was the
left-most. Therefore T has a unique non-isolated infinite path p = lims σs, and
a vertex w in T is extendible to an infinite antichain in T if and only if it does
not belong to p.

We may now apply Lemma 2 to analyze P . First, since T is not wqo, neither
is P . Second, we claim that if v <P ι(σ) for some vertex σ on p, then v is not
extendible to an infinite bad sequence. To prove this, suppose v is extendible.
Then so is ι(σ). The proof of Lemma 2 implies that dι(σ)e = σ is extendible to
an infinite antichain in T . So σ cannot lie on p, proving our claim.

To complete the proof, observe that our construction of ι ensures that for
each s, g(P ) eventually outputs a guess which is below ι(σs

⌢0). Whenever σs
⌢0

lies along p (which holds for infinitely many s), this guess is wrong by the above
claim.

We may now complete the proof of Theorem 1.

Proof (Theorem 1). Suppose towards a contradiction that 1BS ≤W Π1
1−Bound.

Since the problem of finding an element in a non-wqo which extends to an infinite
bad sequence is first-order, it is Weihrauch reducible to Π1

1−Bound as well. Now
Π1

1−Bound is upwards closed, so there is a computable guessing procedure for
this problem (Lemma 1). However such a procedure cannot exist, even for partial
orders which admit a tree decomposition (Lemma 3).
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3 Separating KL and DS

Recall the following problems [2, §6, Def. 7.4(7), Thm. 8.10]:

ACCN: Given an enumeration of a set A ⊆ N of size at most 1, find a number
not in A.
lim: Given a convergent sequence in NN, find its limit.
KL: Given an infinite finitely branching subtree of N<N, find an infinite path
through it.

It is known that ÂCCN <W lim <W KL (see [2]). For our separation of KL 6≤W

DS in Corollary 2, all we need to know about KL are the facts stated before the
corollary. The core of our proof is the following.

Theorem 2. Let f be a problem. The following are equivalent:

1. ÂCCN × f ≤W DS
2. f ≤W lim.

Proof. The implication from 2. to 1. follows from lim ≤W DS (as shown in [8,
Thm. 4.16]), as lim is closed under parallel product. For the other direction,
we consider a name x for an input to f together with witnesses Φ, Ψ for the
reduction. We show that, from them, we can uniformly compute an input q to
ÂCCN together with an enumeration of a set W such that W is the well-founded
part of the (ill-founded) linear order L built by Φ on (q, x). We can then use lim
to obtain the characteristic function of W . Having access to this lets us find an
infinite descending sequence in L greedily by avoiding ever choosing an element
of W . From such a descending sequence Ψ then computes a solution to f for x.

It remains to construct q = 〈q0, q1, . . .〉 and W to achieve the above. At the
beginning, W is empty, and we extend each qi in a way that removes no solution
from its ACCN-instance. As we do so, for each i /∈ W (in parallel), we monitor
whether the following condition has occurred:

L (as computed by the finite prefix of (q, x) built/observed thus far)
contains i and some (finite) descending sequence ℓ such that
1. ℓ is L-above i (i.e. i <L minL ℓ);
2. the functional Ψ , upon reading the current prefix of (q, x) and ℓ,

produces some output m for the i-th ACCN-instance.

Once the above occurs for i (if ever), we remove m as a valid solution to qi. This
means that ℓ cannot be extendible to an infinite descending sequence in L, so
i must be in the well-founded part of L. Hence we shall enumerate i into W .
This completes our action for i, after which we return to monitoring the above
condition for numbers not in W . This completes the construction.

It is clear that each qi is an ACCN-instance (with solution set N if the condition
is never triggered, otherwise with solution set N \ {m}). Hence L = Φ(q, x) is
an ill-founded linear order. As argued above, W is contained in the well-founded
part of L. Conversely, suppose i lies in the well-founded part of L. Fix an infinite
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descending sequence r which lies above i. Then Ψ has to produce all ACCN
answers upon receiving (q, x) and r, including an answer to qi. This answer is
determined by finite prefixes only, and after having constructed a sufficiently
long prefix of q, some finite prefix ℓ of r will trigger the condition for i (unless
something else triggered it previously), which ensures that i gets placed into W .
This shows that W is exactly the well-founded part of L, thereby concluding the
proof.

Corollary 1. If f is a parallelizable problem (i.e., f ≡W f̂) with ACCN ≤W

f ≤W DS, then f ≤W lim.

Proof. Since ACCN ≤W f ≤W DS and f is parallelizable, we have ÂCCN × f ≤W

f ≤W DS. By the previous theorem, f ≤W lim.

Since KL is parallelizable, ACCN ≤W KL, yet KL �W lim, we obtain a negative
answer to [8, Question 6.1]:

Corollary 2. KL �W DS.

Similarly, consider the problem wList2N,≤ω of enumerating all elements (pos-
sibly with repetition) of a given non-empty countable closed subset of 2N. Since
wList2N,≤ω is parallelizable, ACCN ≤W lim ≤W wList2N,≤ω, yet wList2N,≤ω 6≤W lim
[9, Prop. 6.12, 6.13, Cor. 6.16], we obtain a negative answer to [8, Question 6.2]:

Corollary 3. wList2N,≤ω �W DS.

Note that KL is a parallelization of a first-order problem (such as RT1
2). Using

a recent result of Pauly and Soldà [12], we can characterize (up to continuous
Weihrauch reducibility ≤∗

W) the parallelizations of first-order problems which
are reducible to DS.

Corollary 4. If f̂ ≤∗
W DS, then 1f ≤∗

W CN. Therefore, for any first-order f ,

f̂ ≤∗
W DS if and only if f ≤∗

W CN.

Proof. If 1f is continuous, the conclusion of the first statement is satisfied. Oth-
erwise, ACCN ≤∗

W f by [12, Thm. 1]. The relativization of Theorem 2 then
implies f̂ ≤∗

W lim. We conclude 1f ≤∗
W

1lim ≡W CN. The second statement then
follows from ĈN ≡W lim ≤W DS.

4 The finitary part and deterministic part of BS

In this section, we show that BS and DS cannot be separated by looking at
their respective finitary or deterministic parts. Recall from [8, Thms. 4.16, 4.31]
that Det(DS) ≡W lim and Fink(DS) ≡W RT1

k. Since both the deterministic
and the finitary parts are monotone, this implies that lim ≤W Det(BS) and
RT1

k ≤W Fink(BS), so we only need to show that the converse reductions hold.
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To this end, we first introduce a technical lemma. For a fixed partial order
(P,≤P ), we can define the following quasi-order on the (finite or infinite) ≤P -bad
sequences:

α ⊴P β :⇐⇒ α = β or (∃i < |α|)(∀j < |β|)(α(i) ≤P β(j)).

We just write ⊴ when the partial order is clear from the context.

Lemma 4. Let (P,≤P ) be a non-well partial order and let α, β be finite ≤P -bad
sequences. If α ⊴ β and α is extendible to an infinite ≤P -bad sequence, then so
is β. If α is not extendible then there is an infinite ≤P -bad sequence B ∈ NN

such that α ⊴ B. (Hence α ⊴ β for every initial segment β of B.)

Proof. To prove the first part of the theorem, fix α ⊴ β and let A ∈ NN be an
infinite ≤P -bad sequence extending α. Let also i < |α| be a witness for α ⊴ β.
For every j > i and every k < |β|, β(k) 6≤P A(j) (otherwise A(i) = α(i) ≤P

β(k) ≤P A(j) would contradict the fact that A is a ≤P -bad sequence), which
implies that β is extendible.

Assume now that α is non-extendible and let F ∈ NN be a ≤P -bad sequence.
We show that there is i < |α| and infinitely many k such that α(i) <P F (k).
This is enough to conclude the proof, as we could take B as any subsequence of
F with α(i) <P B(k) for every k (i.e. α ⊴ B).

Assume that, for every i < |α| there is ki such that for every k ≥ ki, α(i) 6≤P

F (k) (since P is a partial order, there can be at most one k such that α(i) =
F (k)). Since α is finite, we can take k := maxi<|α| ki and consider the sequence
α⌢(F (k + 1), F (k + 2), . . .). We have now reached a contradiction as this is an
infinite ≤P -bad sequence extending α.

Let (P,≤P ) be a partial order. We call a A ⊆ P dense if for every w ∈ P
there is some u ≥P w with u ∈ A. We call it upwards-closed, if w ∈ A and
w ≤P u implies u ∈ A. By Σ1

1−DUCC we denote the following problem: Given a
partial order P and a dense upwards-closed subset A ⊆ P (given via a Σ1

1 code),
find some element of A. We can think of a Σ1

1 code for (P,≤P ) as a sequence
(Tn)n∈N of subtrees of N<N such that, for every n,m ∈ N, n ≤P m iff T⟨n,m⟩ is
ill-founded (and n ∈ P iff n ≤P n). We refer to [8] for a more detailed discussion
on various presentations of orders.

Proposition 3. 1BS ≤W Σ1
1−DUCC.

Proof. Let f be a problem with codomain N and assume f ≤W BS via Φ, Ψ .
Fix x ∈ dom(f). Let (P,≤P ) denote the non-well partial order defined by Φ(x).
We say that a finite ≤P -bad sequence β is sufficiently long if Ψ(x, β) returns a
natural number in at most |β| steps.

To show that f ≤W Σ1
1−DUCC, it is enough to notice that Lemma 4 implies

that the set of sufficiently long finite extendible bad sequences is Σ1,x
1 , non-

empty, dense, and upwards-closed with respect to ⊴P .

Lemma 5. Σ1
1−DUCC ≡W Σ1

1−DUCC(2<N, ·), where the latter denotes the
restriction of the former to 2<N with the prefix ordering v.
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Proof. Clearly, we only need to show that Σ1
1−DUCC ≤W Σ1

1−DUCC(2<N, ·).
Let the input be ((P,≤P ), A) where A is a Σ1

1, non-empty, dense, and upwards-
closed subset of the partial order (P,≤P ). We uniformly define a computable
labelling λ : 2<N → P such that λ−1(A) is non-empty, dense, and upwards-
closed. This suffices to prove the claimed reduction, as the preimage of A via λ
is (uniformly) Σ1

1 and, given σ ∈ λ−1(A), we can simply compute λ(σ) ∈ A.
Let (xn)n∈N be an enumeration of P . We define an auxiliary computable

function λ : P × 2<N → 2<N as follows: for every i, λ(x, 0i) := λ(x, 0i1) := x. To
define λ(x, 0i1b⌢σ) we distinguish two cases:

λ(x, 0i1b⌢σ) :=

{
λ(x, σ) if b = 0 or x 6≤P xi

λ(xi, σ) if b = 1 and x ≤P xi.

We then define λ(σ) := λ(x0, σ). It is clear that λ is computable and total. Let
us show that λ−1(A) is a valid input for Σ1

1−DUCC(2<N, ·). Observe first that,
for every σ v τ , λ(σ) ≤P λ(τ), which implies that λ−1(A) is upwards-closed.

To prove the density, fix σ ∈ 2<N and assume λ(σ) /∈ A. Since A is dense,
there is i such that λ(σ) ≤P xi ∈ A. Let τ w σ be such that, for every ρ,
λ(τ⌢ρ) = λ(ρ). Notice that such τ always exists: indeed, if σ is the longest tail
of σ of the form 0j or 0j1 for some j, then τ := σ⌢d0, where d = 1 if σ = 0j and
d = ε otherwise, satisfies the above requirement. In particular, λ(τ⌢0i11) = xi.
This proves that λ−1(A) is dense and therefore concludes the proof.

Theorem 3. Fink(BS) ≡W Fink
(
Σ1

1−DUCC
)
≡W Fink(DS) ≡W RT1

k.

Proof. We have RT1
k ≡W Fink(DS) ≤W Fink(BS) ≤W Fink

(
Σ1

1−DUCC
)

by [8,
Thm. 4.31] and Proposition 3. It remains to show that Fink

(
Σ1

1−DUCC
)
≤W

RT1
k. By Lemma 5, it is enough to show that Fink

(
Σ1

1−DUCC(2<N, ·)
)
≤W RT1

k.
Let f be a problem with codomain k and assume f ≤W Σ1

1−DUCC(2<N, ·)
via Φ, Ψ . Observe that every x ∈ dom(f) induces a coloring c : 2<N → k as
follows: run Ψ(x, σ) in parallel on every σ ∈ 2<N. Whenever we see that Ψ(x, σ)
returns a number less than k, we define c(τ) := Ψ(x, σ) for every τ v σ such
that c(τ) is not defined yet. By density of Φ(x), c is total.

By the Chubb-Hirst-McNicholl tree theorem [3], there is some σ ∈ 2<N and
some color i < k such that i appears densely above σ. We claim that if i appears
densely above σ then i ∈ f(x). To prove this, recall Φ(x) codes a set which is
dense and upwards-closed. By density of both this set and the color i, we may
fix some τ w σ which lies in the set coded by Φ(x) and has color i. Then fix
ρ w τ such that c(τ) was defined to be Ψ(x, ρ). Now ρ lies in the set coded by
Φ(x) as well, so i = c(τ) = Ψ(x, ρ) lies in f(x).

Since a k-coloring of 2<N can be naturally turned into a k-coloring of Q (using
a canonical computable order isomorphism between them), the problem “given
a k-coloring of 2<N, find σ and i such that i appears densely above σ” can be
solved by RT1

k, as shown in [11, Cor. 42].
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It is immediate from the previous theorem that the finitary parts of BS and
DS in the sense of Cipriani and Pauly [4, Definition 2.10] agree as well. Finally,
we shall prove that the deterministic parts of BS and DS agree.

Lemma 6. If Fin2(f) ≤W RT1
2, then Det(f) ≤W lim.

Proof. By algebraic properties of Det and Fink, we have

Det(f) ≤W D̂et2(f) ≤W F̂in2(f) ≤W R̂T1
2 ≡W KL.

So Det(f) ≤W Det(KL) ≡W lim: Use the fact KL ≡W WKL ∗ lim and the choice
elimination principle [2, 11.7.25] (see also [8, Thm. 3.9]).

Since Det(BS) ≥W Det(DS) ≡W lim [8, Thm. 4.16], we conclude that:

Corollary 5. Det(BS) ≡W Det(DS) ≡W lim.

Corollary 6. DetN(BS) ≡W CN.

Proof. Since N computably embeds in NN, for every problem f we have DetN(f) ≤W

Det(f). In particular, by Corollary 5, DetN(BS) ≤W Det(BS) ≡W lim. Since
1lim ≡W CN ([1, Prop. 13.10], see also [13, Thm. 7.2]), this implies DetN(BS) ≤W

CN. The converse reduction follows from the fact that CN ≡W DetN(DS) [8, Prop.
4.14].

We remark that for establishing Fink
(
Σ1

1−DUCC
)
≤W RT1

k in Theorem 3
it was immaterial that the set of correct solutions was provided as a Σ1

1 -set.
If we consider any other represented point class Γ which is effectively closed
under taking preimages under computable functions, and define Γ−DUCC in
the obvious way, we can obtain:

Corollary 7. Fink(Γ−DUCC) ≤W RT1
k.

This observation could be useful e.g. for exploring the Weihrauch degree of
finding bad arrays in non-better-quasi-orders (cf. [7]).

Acknowledgments. We are grateful to Takayuki Kihara for pointing out the
mistake in our previous article. We thank also Cécilia Pradic for comments which
greatly improved the presentation of the argument in Section 2.
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