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Bayesian inference for near-field interferometric tests of collapse models
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We explore the information which proposed matterwave interferometry experiments with large test masses
can provide about parameterizable extensions to quantum mechanics, such as have been proposed to explain the
apparent quantum to classical transition. Specifically, we consider a matterwave near-field Talbot interferometer
and Continuous Spontaneous Localization (CSL). Using Bayesian inference we compute the effect of decoher-
ence mechanisms including pressure and blackbody radiation, find estimates for the number of measurements
required, and provide a procedure for optimal choice of experimental control variables. We show that in a
simulated space-based experiment it is possible to reach masses of ∼109 u, and we quantify the bounds which
can be placed on CSL. These specific results can be used to inform experimental design, and the general approach
can be applied to other parameterizable models.
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I. INTRODUCTION

Quantum mechanics is a remarkably successful physical
theory for predicting microscopic behavior, successfully pre-
dicting and explaining phenomena such as the spectra of
blackbody radiation [1], atom interferometry [2], semiconduc-
tors [3], and the properties of lasers [4] to name only a few.
There remains no experiment that falsifies or limits the regime
of validity of quantum mechanics, and yet, at its core, there is
an apparent problem where unitary evolution described by the
Schrödinger equation gives way to a probabilistic description
through the Born rule. A thorough exploration of these prob-
lems and ideas can be found in Bassi et al. [5].

One intriguing possibility is that the apparent quantum-
to-classical transition is real and there exists objective
spontaneous decoherence of the wave function, with the
mechanism more effective for larger superpositions, with
“large,” in this context, interpreted to mean large in both
mass and spatial separation [6]. Assessing this possibility is
an experimental task.

Experimental evidence which so far constrains these
stochastic theories comprises both interferometric and nonin-
terferometric measurements, the latter recording the (absence
of) a predicted anomalous heating present in optomechanical
systems. Such experiments include clamped cantilever sys-
tems using ferromagnetic spheres up to hundreds of ng [7],
tests for gravitational wave detectors using purely macr-
socopic masses [8], and levitated spheres in linear Paul
traps [9] or magneto-levitation traps [10]. Of interferometric
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experimental tests, the largest superpositions to date come
from Talbot–Lau matterwave interferometry with 25 ku
macromolecules [11]. These molecular beam-line experi-
ments are remarkable, but to extend beyond this mass limit
likely requires an alternative approach.

The near-field Tablot effect applied to matterwave exper-
iments with levitated nanoparticles [12] has emerged as a
promising approach to interferometric experimental tests of
stochastic theories [13]. Creating such superpositions requires
considerable effort to localize and measure position with
sufficient accuracy and to mitigate sources of decoherence, in-
cluding principally interactions with blackbody radiation and
collisions with background gas. This becomes extremely chal-
lenging for superposition which might inform the objective
decoherence models as the timescale for free evolution—set
by the Talbot time tT = md2/h where m is the mass, d is
the grating pitch, and h is Planck’s constant—can exceed
tens of seconds. Given such long free-evolution times, even
with adequate position resolution and mitigation of decoher-
ence, free-fall under gravity would mean that an Earth-bound
experiment would be impractically tall. Hence, space-borne
experiments, where the particle remains nominally at rest
relative to the apparatus, have been proposed and stud-
ied [14–16], including a design study by the European Space
Agency [17].

The extent to which such an experiment would constrain
particular theories is often expressed by excluding regions
in parameter space representing the unknowns of the the-
ory; most often this is Continuous Spontaneous Localization
(CSL), which is parameterized by a rate λc and a length
scale rc [5]. Excluded regions are computed by noting that
observation of an interference pattern with a given visibility
would not be possible if there existed a given magnitude of
objective collapse. Predicted interference patterns may also be
compared with classical predictions, perhaps with the aid of a
figure of merit, to quantify the degree to which the proposed
experiment necessitates a quantum description. This approach
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FIG. 1. Illustration of the scenario considered showing a particle
localized in a harmonic dipole trap, (a) the wave function of which,
when released, expands to cover several fringes of a standing wave
grating (b) formed by retroreflection of a light pulse. The arrival
location of particles is recorded (c) some time after the grating. In
typical scenarios, the number of data points is small, and taking a
histogram of arrival positions (left) may be sufficient to evidence
wave nature of the particle; the Bayesian inference approach (right;
see main text) makes fuller use of the available information and can
hope to constrain free parameters in CSL.

does not assign a confidence interval nor does it compute the
number of measurements necessary to exclude a region of
parameter space.

In this paper we improve upon this method of excluding re-
gions of parameter space by use of Bayesian inference which
assigns to these regions not a binary value of excluded or not,
but a real-valued probability density. We simulate the results
of a hypothetical matter wave interferometry experiment and
apply a Bayesian treatment to these results accounting for
various sources of decoherence, such as blackbody radiation
and collisions with gas molecules, as shown in Fig. 1. This al-
lows us to predict the bounds which such an experiment could
reasonably set on the parameters of CSL. In contrast with
related work which considers tests of quantum mechanics
more broadly, [18], we focus specifically on near-field matter-
wave interferometry, consider the two-dimensional parameter
space of a specific collapse model with straightforward ex-
tensions to higher dimensions, and extend the description
beyond the pointlike particle approximation, as proves neces-
sary for experimentally interesting scenarios. This approach
provides the ability to quantify the information gain which
should be expected under given conditions, compute the num-
ber of points necessary to reach a desired confidence, and
apply the extensive toolset of Bayesian optimal experiment
design. We are able to explore the experimental tradeoffs
and data acquisition requirements that are acutely relevant for
design of future experiments including a space-borne plat-
form, such as a MAQRO-like experiment [19]. We base our

TABLE I. Control parameters used in the MAQRO-like scenario.
The values of the free-fall time t2, and phase parameter φ0 are opti-
mized for each new run based on the method described in Sec. VI.

Symbol Name Value

ρ Si particle density 2329 kg m−3

λG Grating laser wavelength 2d = 354 nm
� Trapping frequency 200k Hz
Tcom Initial center of mass temperature 20 mK
Tint Initial internal temperature 25 K
Tenv Environmental temperature 20 K
t1 Pregrating time 2tT

Pg Residual gas pressure 10−15 hPa
σx Gaussian position width

√
kBTcom/4π 2m�2

σm Measurement position uncertainty σx + (10 nm/100 s)t

simulations on such an experiment, with parameters given in
Table I.

II. TALBOT INTERFEROMETER

We consider a near-field Talbot interferometer consisting
of a spherical nanoparticle of mass m, prepared in an thermal
state of a harmonic trap of frequency �, released and allowed
to evolve freely for time t1 before interaction with a phase
grating with pitch d and phase amplitude φ0, and finally free
evolution for time t2 before arrival position is measured [12].
The initial thermal state has Gaussian position width σx and
momentum width σp.

The probability density for the particle arriving at position
x is given by

m

Z

[
1 + 2

∞∑
n=0

RnBn

(
ndt2
tT D

)
e
−2

(
nπσxt2

Dt1

)2

cos

(
2πnx

D

)]
, (1)

where Z = √
2πσp(t1 + t2), tT = md2/h is the Talbot time,

h is Planck’s constant, and D = d (t1 + t2)/t1 is the geo-
metrically magnified grating period to be expected at the
detector [12,13].

The functions Bn are the generalized Talbot coefficients:
they account for coherent and incoherent interaction of a
spherical particle with a phase grating realized by a standing
light wave from a pulsed laser [20]. The terms Rn describe de-
coherence and reduce the amplitude of each spatial frequency
component: these account for the various sources of envi-
ronmental decoherence, including blackbody radiation and
collisions with gas particles, and the effect of any stochastic
modification to quantum mechanics.

Decoherence mechanisms, which we assume each act at
a constant rate during the experiment [12], Supp. Eq. (26),
are characterized by a rate � and a function f (x) which char-
acterizes the spatial extent of the localizing interaction. The
decoherence coefficients for each mechanism are computed
as

Rn = exp

{
−�

[
1 − f

(
nht2
mD

)]
(t1 + t2)

}
. (2)

A full treatment of the decoherence mechanisms is given in
Appendix B.
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Finite position resolution will impact any experiment and
the measured position x will be distributed about the true
value. We model this as a convolution with a Gaussian kernel
of width σm, which may have a time dependence, and is
described in Appendix B 1 for a MAQRO-like experiment;
via Fourier transforms and the convolution theorem we find
that this can be included as a decoherence term: Rmeas

n =
exp[−(2πnσm/D)2/2].

Any experiment will operate over a finite spatial region S,
and we include this via a multiplicative window,

W (x) =
{

1 if x ∈ S
0 if x /∈ S

. (3)

For brevity, we describe the pitch of the pattern using
k = 2π/D and combine the pure Talbot terms as

An = Bn

(
ndt2
tT D

)
exp

[
−2

(
nπσxt2

Dt1

)2
]
. (4)

III. BAYESIAN MODEL

We consider any collapse model which manifests as a deco-
herence process and is described by a set of free parameters,
which we write as vector θ. The combined effect of several
decoherence mechanisms is found by multiplying separate
coefficients, and so we split the total decoherence into model
and other contributions: Rn = Rmod

n (θ)Roth
n where Rmod

n (θ) and
Roth

n are, respectively, the effects of the decoherence from the
objective collapse model and various environmental sources,
including Rmeas

n described above.
Hence, rewriting Eq. (1), the joint probability density for

measuring position x for specific values θ is

p(x, θ) = W (x)m

Z

[
1 + 2

∞∑
n=0

Rmod
n (θ)Roth

n An cos (nkx)

]
. (5)

Using traditional rules of probability theory, we find the like-
lihood to be

p(x|θ) = p(x, θ)∫
p(x, θ) dx

. (6)

Assuming independent and identically distributed position
measurements, the joint probability of all N measure-
ments x = (x1, x2, . . . , xN ) is p(x|θ) = 	N

i=1 p(xi|θ). Through
Bayes’ theorem [21], this x can be used to find the posterior
probability for the parameters θ:

p(θ|x) ∝ p(x|θ)p(θ), (7)

where the constant of proportionality is 1/p(x), often called
the “evidence,” which we neglect here as it has no dependence
on the parameters θ.

The prior p(θ) encapsulates our assumptions before con-
sidering any data and must be approached with care.
Specifically, while, e.g., uniform probability across θ may
seem natural, this is not invariant under parametrization, i.e.,
our physical predictions would change if we wrote the model
in a different form.

The canonical choice for an uninformative prior is Jeffrey’s
prior, proportional to the square root of the determinant of
the Fisher information matrix. However, this prior does not

extend well into multidimensional problems [22], Sec. 5.2.9,
giving unphysical posteriors for the collapse model which we
consider here.

We choose the Maximal Data Information Prior (MDIP),
which, while derived from the likelihood of a measurement
and therefore dependent on the choice of parametrization,
minimizes the arbitrary choices and is designed to maximize
the information gain from a single measurement [23]. Further,
it has no difficulty working with problems of arbitrary dimen-
sion [24]. It is given by [25]

p(θ) ∝ exp

[∫
p(x|θ) ln p(x|θ) dx

]
. (8)

Design of this prior ensures that even for a small number
of measurements the posterior quickly becomes dominated by
updates from the data. The prior is approximately flat but does
inherit some shape from the experimental design, reminiscent
of plots from the literature on experiments which seek to
constrain parameters of CSL.

The MDIP makes no reference to other experiments which
provide considerable information on what values of CSL are
plausible. Therefore we also consider a prior, which we term
the “Experimental Prior,” informed by the results of all previ-
ous experiments. We define this Experiential Prior as constant
over all values of θ that have not yet been excluded by exper-
iment and zero for those values which have been excluded by
previous experiments [26].

IV. CONTINUOUS SPONTANEOUS LOCALIZATION

Until now our discussions have been for general collapse
models. From now on we focus on the model of Continuous
Spontaneous Localization (CSL) [5]. CSL can be described
as a decoherence term of the form of Eq. (2) defined by its
rate and length scale parameters which are to be estimated
empirically. The decoherence effects of CSL enter the total de-
coherence of the interferometer as Rmod

n (θ) where θ = [λc, rc]
is a vector containing the CSL parameters. The description
was recently extended to include nonpointlike particles [13].
Using a spherical test particle of radius R, mass m, and con-
stant density ρ in 0 � r � R, we have dimensionless prefactor
A = (36/

√
π )(m/m0)2(rc/R)2 and

�CSL = A λc

∫ ∞

0
e−α2

j1

(
αR

rC

)2

dα, (9)

f (x) = A

�CSL
λc

rc

x

∫ ∞

0
e−α2

j1

(
αR

rC

)2 1

α
Si

(
αx

rC

)
dα, (10)

where j1 is the spherical Bessel function of the first kind,
Si is the sine integral, and m0 is the atomic mass constant.
These arise via the Fourier transform of the uniform den-
sity sphere μ̃(q) = 4π h̄R2ρ j1(qR/h̄)/q; further details are in
Appendix B 2.

V. POSTERIOR PROBABILITIES

Our discussion now focuses on application of Bayesian
inference for Talbot interference experiments in the specific
case of the CSL model. We compute the expectation value of
the posterior distribution under the hypothesis that θ = 0, i.e.,
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FIG. 2. Probability distributions p(θ|x) for the rate (λc) and length scale (rc) parameters of the CSL model with MAQRO-like parameters,
as detailed in the text. These posteriors are generated using the Maximal Data Information Prior, with N points picked from distribution
p(x|θ = 0). (a) N = 0 is the prior; (b)–(d) are for N as indicated. The GRW value [29], Adler values [28], and lower bound, discussed in the
text, are motivated by theoretical considerations and are only shown for comparison. The red dashed upper bound is found such that 95% of
the probability distribution is below this line.

that the CSL effect, if it exists, is vanishingly small on the
scale accessible to the experiment. For a more general discus-
sion on hypothesis falsification in the context of macroscopic
superpositions, see [27].

Figure 2 shows prior and posterior distributions, for simu-
lated measurements of a silicon nanoparticle with a mass of
m = 108 u for parameters typical of a MAQRO-like experi-
ment, as given in Table I. The phase parameter φ0 and second
free-fall time t2 are chosen via the optimization process de-
scribed in Sec. VI A to maximize the change in visibility
brought on by the collapse model. Sources of decoherence
used the simulations are discussed in Appendix B.

The posterior distributions in Fig. 2 are each from a single
realization of N simulated arrival positions. While in principle
we should compute the expectation value over many realiza-
tions, the distributions are indistinguishable for N � 1000.

We indicate on the posteriors values suggested by
Adler [28] based on the rate of latent image formation in pho-
tography or etched track detection, and the value suggested by
Ghirardi, Rimini, and Weber [29] that was chosen to ensure
that quantum systems maintained their coherence for times
comparable to the age of the universe while macroscopic
systems collapse in fractions of a second. The black line in
the plots indicates the lower bound on the CSL parameters; it
is derived not from experiments but from the requirement that
macroscopic superpositions do not maintain their coherence
for long periods of time. The specific values given are chosen
such that a graphene disk with radius 10 µm collapses in
0.01 s. This ensures that the smallest sized objects that can
be detected by the human eye collapses in the time resolution
of the eye [26]. It should be noted that the Experimental Prior
we consider does not consider these lower limits, remaining
nonzero for all values bellow the empirically determined up-
per bounds.

The plot region is finite in extent and contains much of
the probability space of interest. The logarithmic scale means
the integrated region of lower λc and rc is small, and the
distribution decays quickly in the region of larger λc and rc;
the probability value is small for regions of larger λc and rc

which have also been previously excluded by noninterfero-
metric experiments.

The posteriors include an upper bound line for the pos-
sible values of the CSL parameters λc and rc. This curve is
dependent on the value of the decoherence strength � which
governs the rate at which each spatial frequency is reduced
by a given source of decoherence. The relationship between
the CSL parameters and the decoherence strength is given in
Appendix A 4. To define the location of the upper bounds, we
adjust the value of � via iterative bisection until the integral of
the posterior below the line is approximately 95% of the total,
i.e., there is a 95% probability that, based on measurements,
the true value falls below this line.

As we collect data about particle arrival positions a plau-
sible region of θ begins to emerge leaving behind an upper
triangle of classicality. We begin to see the difference between
regions after N ∼ 4 × 103 and the difference between these
regions increases only as N increases. Beyond N ∼ 104 we
reach an asymptotic limit where acquisition of more data
does not appreciably change the distribution. Quantification of
these statements, and comparison across different scenarios, is
the subject of the next sections.

VI. INFORMATION GAIN

Information theory provides us with an objective means to
quantify the information gain from a given experiment. An
objective measure of the information about CSL provided by
a measurement is essential to make informed decisions about
the number of measurements we should plan to take and, more
broadly, the optimal design of an experiment.

The Kullback-Leibler divergence offers a measure of the
information contained within the posterior probability through
comparison of this with the prior [21,30–32]. The information
contained in data x is hence

H(x) =
∫

p(θ|x) log2

[
p(θ|x)

p(θ)

]
dθ. (11)

We can compute the expected information for a given ex-
periment by integrating over all possible outcomes, weighted
by the probability of each outcome occurring:

〈H〉 =
∫

H(x)p(x)dx, (12)
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FIG. 3. Expected information 〈H〉 as a function of the number
of data points N for a MAQRO-like scenario as discussed in the
text with a nanoparticle of mass m = 108 u for setting θ = 0. The
shaded region around each line indicates the standard deviation in
the estimation. The information gain is small beyond N ∼ 104 and
the variance in our estimation of this value changes only very slowly.
These are computationally expensive and for a given N the value of
〈H〉 is found from 200 realizations of H (x).

where p(x) is the “evidence,” seen in Eq. (7), where it was
treated as a proportionality constant. It can be obtained as

p(x) =
∫

p(x|θ)p(θ) dθ. (13)

Expected information Eq. (12) is found by integration over
the space of all possible experimental outcomes x. Due to
the large number of dimensions in x, direct integration is
numerically intractable. As a result we use the Monte Carlo
integration method described in [33]. We rewrite Eq. (12) as

〈H〉 =
∫∫

{ln[p(x|θ)] − ln[p(x)]}p(x|θ)p(θ) dθ dx

≈ 1

M

M∑
i=1

{ln[p(x(i)|θ(i) )] − ln[p(x(i) )]}, (14)

where the values of θ(i) are drawn from the prior p(θ) and the
data x(i) are drawn from the conditional likelihood p(x|θ =
θ(i) ). Although there is no analytical expression for the evi-
dence p(x(i) ) in this calculation, due to the low dimensionality
of θ, we are able to calculate it via numerical integration [34].

We estimate the uncertainty of 〈H〉 using statistical error,
� =

√
(〈H2〉 − 〈H〉2)/M where M is the number of Monte

Carlo iterations performed. These bounds are shown in our
plots as the shaded regions around the mean values.

Figure 3 shows the expected information gain under the
assumption CSL is false, i.e., the measured data are distributed
about p(xi|θ = 0), as a function of the number of data points
N for the MAQRO scenario and using the Maximal Informa-
tion Data Prior and the Experimental Prior. This quantifies
earlier statements about the asymptotic behavior of the dis-
tribution; we see that the information gain per data point falls
to negligible values beyond N ∼ 104. We can also see the dif-
ference in the amount of information gained per data point for
different priors.

FIG. 4. Maximum expected information for different priors as
a function of particle mass. The orange lines show the information
gained from the MDIP, which is mass dependent, and the blue lines
show the information gained from using a prior motivated by pre-
vious experimental results. (a) Expected information found through
Markov chain Monte Carlo integration distributing our measure-
ments by p(x) as described in Eq. (14); (b) expected information
under the assumption that there is no CSL effect, i.e., θ = 0.

The expected information gain after 104 measurements for
two different priors is shown in Fig. 4. Figure 4(a) shows the
expected information gain using the Markov chain method
described in Eq. (14), while Fig. 4(b) shows the information
we would gain if there is no CSL effect. We see that the
choice in prior has a large impact on the information gain we
compute. This is because the information of Eq. (11) gives the
amount of information contained in the posterior relative to
the prior, and the MDIP is designed to be least informative. We
see in the simulations using the MDIP that the MAQRO-like
scenario (given in Table I) achieves a maximum informa-
tion near M ∼ 109 u. At this point the radius of the silicon
nanoparticle used is comparable to the grating width and thus
to achieve an appreciable phase-shift requires a large fluence
for the pulsed laser enacting the grating, leading inevitably to
large decoherence from this interaction.

We note that by using a noninvariant prior we become
bound by the choice of parametrization, which is, in this case
linear, i.e., p(x|θ) = [λc, rc].

Previous works have characterized the capabilities of mat-
terwave experiments by a single decoherence parameter λc

when setting rc = 10−7m [12,35], which allows for simple
comparison with the GRW and Adler suggested values for the
CSL parameters. Hence, we compute the value of λc at this
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FIG. 5. The lowest upper bound that can be put on the value of λc

at rc = 10−7 m as a function of particle mass. The value of the upper
bounds is found from the posterior after 104 measurements starting
from either the MDIP (orange line) or an experimentally motivated
posterior (blue line). We note the difference in the parameter λc for
large masses (109 u) occurring from the fact that regions of the ex-
perimental prior are set to identically 0, such that the 95% confidence
line is found to be lower than for posteriors generated by the MDIP.

choice of rc to facilitate comparison with our measure 〈H〉.
Figure 5 shows that the expected value of λc given θ = 0 de-
creases as the particle mass is increased. This continues until
the particle reaches a mass of 109 u where the information
falls to 0. At this point the value of λc rises significantly.
This value at high masses is an artifact of the finite integra-
tion region of the parameter space we are considering. The
information gain provides a more general metric as it makes
use of the full parameter space.

Optimal experimental design

Our experiment is parameterized by a set of control pa-
rameters C. This is a vector containing all the parameters that
we can, in principle, choose in advance of performing the
experiment, consisting of the particle mass m, the free fall
times t1 and t2, the phase parameter φ0. We seek values for
the parameters C which maximize the amount of information
gain expected in each measurement. In principle we would
choose C so as to maximize the value of 〈H〉. However, this is
computationally expensive, so as a proxy, we find C such that
the introduction of CSL has a maximal effect on the expected
fringe visibility.

We define visibility as the first-order term from Eq. (1),

νsin(C) = 2β

∣∣∣∣B1

(
dt2
tT D

,C
)∣∣∣∣ exp

[
−2

(
πσxt2
Dt1

)2
]
, (15)

which captures the maximum amplitude of the interference
pattern without any decoherence effects. We also define the
visibility after the CSL effect as

νred(C) = νsin(C)Rmod
1 (θ,C). (16)

FIG. 6. The expected information under the assumption that
there is no measurable CSL effect for various environmental pres-
sures as a function of particle mass for a range of scenarios in a
MAQRO-like experiment.

We then find C such that we maximize the difference
νsin(C) − νred(C). The optimum values of the parameters φ0

and t2 are shown for various particle masses in Appendix A 3.
For the purpose of this study we consider the mass m to be

given parameter and not subject to experimental control. This
is a simplification because, in a real experiment, we anticipate
that m will be measured in situ for each particle. Further, we
assume that time before the grating, t1, is also given, as this
depends on mass and the grating pitch, and does not crucially
affect the interference pattern provided it is sufficiently long
for spatial coherence to emerge. Hence, we focus our study of
control parameters on C = [t2, φ0].

Using the method of parameter optimization described
above, we plot the maximum expected information 〈H〉∞
in the limit of a large number of measurements N , for
an experiment using a particle of a given mass as shown
in Fig. 4. As shown in Fig. 3, after N ≈ 104 the in-
formation gained per new data point becomes small, so
we choose the limit of large N to be N = 104. Armed
with these tools, we proceed to compare the ultimate lim-
its of expected information under different experimental
conditions.

VII. SCENARIO COMPARISON

The notion of expected information facilitates comparison
across difference scenarios. The MDIP described earlier in-
herits structure from the experimental design. However, due
to the mostly flat nature of the prior we can use it to compare
the information gain between experiments.

Figure 6 shows the expected information gain given θ = 0
for various environmental pressures. It shows that in order
to maximize the mass of the test particle, we must decrease
the pressure, because for higher pressures the decoherence
is dominated by collisions with residual gas particles. While
this general point is well known, we are now able to quantify
this pressure. We observe that pressures below 10−14 hPa are
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FIG. 7. The expected information under the assumption that
there is no measurable CSL effect for various drift uncertainty pa-
rameters as a function of particle mass for a range of scenarios in a
MAQRO-like experiment. Each new plot is found by changing the
width per 100 s of increase in the position uncertainty.

sufficient to maximize the particle mass and information we
can gain (See Appendix B 3).

A further consideration is the maximum allowable mea-
surement uncertainty and in many scenarios this increases
linearly with free flight time. Figure 7 shows the expected
information gain given θ = 0 for various drift uncertainty
parameters σm given in Table I. Minimizing the increase in
position uncertainty allows us to gain information from higher
masses. However, for drifts better than 10 nm in 100 s, as was
suggested by the ESA design study [17], there is negligible
effect on expected information for MAQRO-like experiments.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a procedure and computed the proba-
bility density which a MAQRO-like experiment is likely to
assign to parameters of CSL as a popular example of a param-
eterizable macrorealistic extension to quantum mechanics.
This work provides a toolbox for exploring specific scenarios
as part of a design study. We show that in a MAQRO-like
experiment, around 104 measured arrival locations are needed
to saturate the information gain. We also find that environmen-
tal pressures below 10−14 hPa are sufficient to maximize the
particle mass with which we can achieve superpositions. This
is in contrast to previous proposals that suggest tolerances to
much higher pressures, and we provide for the consequences
if this stringent pressure requirement cannot be met. Finally
we show that increases in the uncertainty due to spacecraft
drift up to 10 nm in every 100 s maximize the range of particle
masses that can achieve superpositions.

Future work will include optimal experimental design
where we provide a strategy such that the optimal parameters
can be chosen based on all previous data x.

The current description and approach of MAQRO is to
minimize known sources of decoherence so that the effect of
CSL can be observed. Any claim of observing nonzero CSL
parameters will then be dependent on confident knowledge

of these decoherence sources. An improved approach would
be to distinguish the effect of CSL from other sources by its
dependence on parameters such as mass and free-flight time.
Future work will apply the Bayesian description herein to
define a strategy which can infer parameters of CSL in the
presence of imperfectly known sources of decoherence.
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APPENDIX A: NUMERICAL IMPLEMENTATION

The numerical implementation leverages the capabilities of
Python and the NumPy [36] and SciPy [37] libraries. Details
of the implementation of several key equations is given in the
following sections.

1. Window and sampling

As discussed in the main text, it is necessary to include a
finite window W (x) so that the distribution is normalizable.
This window must cover a large number of oscillations, and
the sampling must be sufficiently fine that oscillations are
well resolved. The grating pitch is 100 nm, which is scaled
geometrically by (t1 + t2)/t2 to, typically, 180 nm. We include
terms up to sixth order, and so, by Nyquist, must sample once
every 10 nm. We chose a 10 µm square-edged window which
covers ∼50 complete oscillations, which we sample with
1000 points.

2. Grating phase

Grating phase depends on the grating laser focus area aG,
the pulse energy EG, and the properties of the nanoparticle.
For a given mass, we chose pulse area such that it covers the
thermal distribution after expansion for time t1, and we then
chose the pulse energy such that φ0 = 4F0

h̄ck3
EG
aG

[20] matches the
optimum value according to the visibility argument described
in the main text.

3. Optimum parameters

The specific experiment is defined by the set of control
parameters C as discussed in the main text. For many of the
parameters, we can use physical arguments to set their values.
For example the residual gas pressure Pg should be as low
as possible to minimize decoherence due to gas collisions.
However, the parameters φ0 and t2 do not have such obvious
values, so we follow the method given in the main text to
chose the optimum values for these parameters. The optimum
values for these parameters are given for various particle
masses in Fig. 8.

4. Determining maximum exclusion line

We use the decoherence strength � to describe how much
of the parameter space has been excluded by a specific
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FIG. 8. Optimum values of φ0 and t2 for various masses of
nanosphere. The bounds on t2 are chosen to ensure that t2 ≈ tT to
avoid excessive flight times increasing decoherence while allowing
enough time for the interference effect to take place.

experiment. We describe the reduction effects on the fringe
visibility as

Rn = exp

[
−�(t1 + t2)(nκd )2

3

]
, (A1)

where κ = t1t2
(t1+t2 )tT

and � is the parameter governing the
strength of the decoherence [14]. By setting n = 1 to only
consider the visibility we can compare this with the CSL
reduction term to find � as a function of λc and rc,

� = −3�[ f (x) − 1]

(κd )2
, (A2)

where f (x) is the resolution factor of the collapse mechanism.
It is given by Eq. (B2) for CSL. This parameter can be used
to define the upper exclusion line for the CSL parameters. We
simply rearrange Eq. (A2) to be of the form λc(�, rc). Using
the equations from [13] to be

λc = −�(κd )2

C
∫

e−α2 j1
(

αR
rc

)2
dα[ f (x) − 1]

, (A3)

where C = 36
√

2/π (M/m0)2(rc/R)2.
CSL tracking a constant � defines a line in θ = [rc, λc]

space. We find � such that the integral
∫

p(θ|x) dθ below this
line is 95%. This is therefore a one-parameter problem, which
we solve by first scaling � to find upper and lower bounds and
then using iterative bisection to find the value of � that gives
us our exclusion line.

APPENDIX B: DECOHERENCE

1. Position resolution

Readout uncertainty is modelled as a constant offset,
equal to the position uncertainty with which the initial state
can be prepared, plus a constant rate of increase informed
by [17]: σm(t ) = σx + (10 nm/100 s) t . By adjusting the rate
at which the uncertainty increases, we can observe the ef-
fect this has on the information we expect to gain under

the assumption that there is no CSL effect as shown in
Fig. 7.

2. CSL for an extended particle

From Ref. [13], Eq. (6), we obtain rate �CSL and resolution
function fCSL for an extended particle [38],

�CSL = 4√
π

λcr3
c

h̄3m2
0

∫
dq q2 exp

(−r2
c q2/h̄2

)
μ̃(q)2, (B1)

fCSL(x) = 1

�CSL

4√
π

λcr3
c

h̄3m2
0

∫
dq q2

× exp
(−r2

c q2/h̄2
)
μ̃(q)2 h̄

xq
Si

(qx

h̄

)
, (B2)

where

μ̃(q) =
∫

dx exp(−q · x/h̄)μ(x) (B3)

is the Fourier transform of the mass density function μ(x).
For the uniform density sphere, μ(x) = ρ for ‖x‖ � R, we
use spherical symmetry to write μ̃(q) = μ̃(‖q‖). We find

μ̃(q) = 4π h̄

q
ρR2 j1(qR/h̄). (B4)

Hence, using α = qrc/h̄ and M = (4/3)πR3ρ, we find

�CSL = A λc

∫ ∞

0
e−α2

j1

(
αR

rC

)
2dα, (B5)

f (x) = A

�CSL
λc

rc

x

∫ ∞

0
e−α2

j1

(
αR

rC

)2 1

α
Si

(
αx

rC

)
dα (B6)

with A = (36/
√

π )(M/m0)2(rc/R)2, as in the main text.
For a pointlike particle R → 0, these general results

should reduce to pointlike CSL: � = (M/m0)2λc and
fCSL(x) = √

π (rc/x)erf (x/2rc). Each expression contains a
term j1(ab)/b which becomes b/3 in the limit a → 0. Then,
using the integral results∫ ∞

0
dα2 e−αα2 = √

π/4, (B7)

∫ ∞

0
dα e−ααSi(αβ ) = (π/4)erf (β/2), (B8)

we find that the pointlike CSL expressions are indeed recov-
ered in this limit.

3. Blackbody and collisional decoherence

This section summarizes the implementation used in this
work, following Ref. [12].

Blackbody radiation leads to decoherence through absorp-
tion, emission, and Rayleigh scattering. Rates per unit wave
number k at temperature T are computed as

γ (k, T ) =
∫ ∞

0

(k/π )2σ (k)

exp (h̄ck/kBT ) − 1
, (B9)

where σabs(k) = kIm[χ (k)] for absorption and emission and
σsca(k) = k4|χ (k)|2/6π for Rayleigh scattering. The suscep-
tibility χ is found from material permittivity ε and the
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FIG. 9. Reduction to the interference pattern visibility as a result
of the various sources of environmental decoherence we consider
using the MAQRO-like environmental parameters.

Clausius-Mossotti relation: χ (k) = 3V [ε(k) − 1]/[ε(k) + 1]
where V is the particle volume; the particle is assumed sub-
wavelength for all relevant blackbody wavelengths.

For simplicity, and confident that it gives an upper estimate
for decoherence and the difference is small, we assume the
particle does not cool during free flight. Hence, equations for
decoherence for emission and absorption of blackbody radia-
tion are the same, with the only difference being temperature.

To compute the corresponding Rn decoherence Talbot co-
efficient requires total rate � and function f . These are
� = ∫ ∞

0 γ (k, T ) dk for each of the mechanisms,

fabs(x) = c
∫ ∞

0

γabs

�abs

Si(kx)

kx
dk (B10)

FIG. 10. Total effect of environmental decoherence on the fringe
visibilities, Roth

1 , for various experimental scenarios with varying
residual gas pressure.

for absorption (similarly for emission), and

fsca(x) = c
∫ ∞

0

γsca(k, T )

�sca

[
Si(2kx)

kx
− sinc2(kx)

]
dk (B11)

for Rayleigh scattering.
We treat collisional events with background gas as resolv-

ing position far better than the grating wavelength, and hence
we require only the rate �col; this is computed as in Ref. [12].
Figure 9 shows the total effect of each source of decoehrence
we have considered in our simulations for various particle
masses. We also show in Fig. 10 the total effect of decoher-
ence at different pressures in Fig. 10.

APPENDIX C: TALBOT COEFFICIENTS
FOR A MIE PARTICLE

We derive the scattering decoherence on a particle in the
standing wave grating using the method described in [39]. In
contrast with previous work [20], we find that scattering into
θ and φ polarizations must be treated as separate processes.

The electromagnetic field that forms the bath is given by

ÊB(r̂) = i
∫

k

∑
ν

h̄ωk

2Vqε0

√
h̄ωk

2ε0
(εk,ν âk,νeik·r̂ − ε∗

k,ν â†
k,ν

e−ik·r̂),

(C1)
where âkν (â†

k,ν
) is the annihilation (creation) operator, εk,ν

is the polarization vector, k is the wave vector, ν denotes the
two independent polarization directions θ and φ, wk = ck, and
k = |k|. We also define Vq as the quantization volume defined
by the boundaries of the experiment given by Vq = L3 where
L is the length of a box.

We are then able to perform the calculations given in [39]
while maintaining the explicit dependence on the phase to
obtain the transition matrix,

Tkν,c(r̂) =
∑

ν

∫
dk〈c|k′, ν ′〉T ∗

k′ν ′,kν
(r̂), (C2)

and the scattering superoperator,

L(ρ) = |α|2
∑

ν

∫
dk′δ(ωk − ω0)(2Tkν,c(r̂)ρT ∗

c,kν (r̂)

− {|Tkν,c(r̂)|2, ρ}). (C3)

For a standing wave with linear polarization, the mode
function c〉 can be described by

〈k, ν|c〉 = 1

V0

∫
dxe−ik·xεk,ν · εd f (y, z) cos(k0x)

≈ ω0εk,ν · εkz,ν ′√
V0

f̃ (ky, kz )δ(ky)δ(kz )δ
(
kx − ω2

0

)
,

(C4)

where we have made the assumption that the laser field has a
very large spot area. From this we can obtain

Tkν,c(r̂) ≈ 1

4πωk
√

V0
[e−ik0·r̂ f ∗

ν0,ν
(k0, k)+ eik0·r̂ f ∗

ν0,ν
(−k0, k)].

(C5)
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If we assume that the wave is polarized in the x direction, we recover the vector scattering amplitude,∑
ν

êν f ∗
ν (k0, k) = [S2(θ ) cos φêθ − S1(θ ) sin φêφ]. (C6)

Note that êθ and êφ are orthogonal components of the scattered field polarization such that êθ · êφ = 0. This allows us to
rewrite the scattering superoperator as

L(ρ) = |α|2
∫

dk′δ(ωk − ω0)(2Tkφ,c(r̂)ρT ∗
c,kφ (r̂) − {|Tkφ,c(r̂)|2, ρ})

+ |α|2
∫

dk′δ(ωk − ω0)(2Tkθ,c(r̂)ρT ∗
c,kθ (r̂) − {|Tkθ,c(r̂)|2, ρ}). (C7)

Through lengthy algebra we can obtain the scattering mask,

Rsca = exp

{∑
ν

[Fν (s) + aν (s) cos(2kx) + ibν (s) sin(2kx)]

}
, (C8)

where

aν = 8π

h̄ck

EG

aG

∫
d�Re( f ∗

ν (k, k′) fν (k, k′)[cos(knxs) − cos(ks)],

bν = 8π

h̄ck

EG

aG

∫
d�Im( f ∗

ν (k, k′) fν (k, k′) sin(knxs),

Fν = 8π

h̄ck

EG

aG

∫
d�| fν (k, k′)|2[cos(k(1 − nx )s) − 1]. (C9)

We can then combine this with the absorption mask, Rabs(x, x′) = exp[−2n0 sin2(k0
x+x′

2 ) sin2(k0
x−x′

2 )] where n0 = I0
cF0

σabsφ0 is
the mean number of absorbed photons and we have used the absorption cross section σabs given by Mie theory.

We take the Fourier coefficients of this total decoherence mask and, with use of Graf’s addition theorem, convolve it with the
coherent grating effects as described in [20] to obtain the final Talbot coefficients as

B̃n

( s

d

)
= eFφ (s)+Fθ (s)−ζabs

∞∑
k=−∞

[
ζcoh + aφ (s) + aθ (s) + ζabs

ζcoh − aφ (s) − aθ (s) − ζabs

] n+k
2

Jk[bφ (s) + bθ (s)]Jn+k
[
sgn(ζcoh − aφ (s) − aθ (s) − ζabs)

×
√

ζ 2
coh − (aφ (s) + aθ (s) + ζabs)2

]
, (C10)

where we have made the substitutions

ζabs = n0

2

[
1 − cos

(πs

d

)]
, (C11)

ζcoh = φ0 sin
(πs

d

)
. (C12)
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