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Abstract. Chronic Kidney Disease (CKD) presents a significant global
health challenge, often going unnoticed in patients until reaching ad-
vanced stages. Late-stage CKD profoundly impacts patients’ lifestyles.
It often necessitates weekly dialysis or kidney transplants, which both
require costly medical support. Detecting early-stage CKD, however, fa-
cilitates preventive measures through lifestyle changes and medical inter-
ventions. This highlights the importance of early detection and accurate
staging. Recent advancements in machine learning offer immense promise
for diagnosing and identifying the CKD stages. However, most studies fo-
cus on only binary classification (CKD or not CKD) using cross-sectional
data. Nonetheless, it is often observed that longitudinal analysis is more
suitable for long-term disease prediction, leveraging extensive temporal
data. In this study, we conducted an analysis using a comprehensive
dataset of blood test results obtained from the Welsh Results Reports
Service (WRRS) accessed through the Secure Anonymised Information
Linkage (SAIL) Databank. By utilizing longitudinal dataset and em-
ploying machine learning techniques, namely Long Short-Term Memory
(LSTM) and Bidirectional Long Short-Term Memory (Bi-LSTM) algo-
rithms, we present the first study to classify all five stages (from 1st to
5th) of CKD, including both early and late stages. These techniques en-
abled us to determine the stages of CKD in patients with precision. We
also compare our models against cross-sectional techniques commonly
used in the literature, namely RF, SVM, Decision Tree and Logistic
Regression. Our findings indicate that the longitudinal model yields bet-
ter results. This could potentially be valuable for General Practitioners
(GPs) in identifying CKD early for referral.

Keywords: Chronic Kidney Disease · Machine Learning.

1 Introduction

Chronic Kidney Disease (CKD) stands as one of the most prevalent diseases
today. In 2017, an analysis by the Global Burden of Disease (GBD) showed that
approximately 697.5 million people worldwide were affected by CKD, including
all stages of the disease [29]. In 2019, 1.43 million people died from CKD and be-
tween 1990 and 2019, CKD rose from 19th to 11th among leading causes of death
[29]. Kidney Research UK reports that in 2023, the estimated annual cost to the
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Table 1. Comparison of the existing works. LT: Lab Tests, PD: Previous Diagnoses
of Other Conditions, CS: Cross-Sectional Dataset, L: Longitudinal Dataset, PP: Pro-
gression Prediction, BC: Binary Classification, MC: Multi-class Classification

Papers Dataset Size LT PD CS L PP BC MC
[1, 3, 5, 6, 8, 14–16, 18, 27] UCI 400 - - -
[19] UCI 400 - - -
[12] UCI 400 - -
[31] CMH 40,000 - - - -
[23] TNH 90,000 - - - -
[11] GHG 400 - - - -
[4] SPH 1718 - - -
[33] EHRs 82,000 - - - -
[2] A-CKD 3,729 - - - -
Ours SAIL ≈3000 - - -

National Health Service (NHS) for each patient with kidney disease in the UK
was £34K, with the economic burden of kidney disease in the UK reaching £7.0
billion [30]. CKD is fundamentally categorized into five different stages, ranging
from 1 to 5. Late-stage (stage 4-5) CKD profoundly impacts patients’ lifestyles,
necessitating weekly dialysis or kidney transplant, which requires costly medi-
cal support. Detecting early-stage CKD, however, would well-equip patients and
facilitate preventive measures through lifestyle changes and proactive medical
interventions. The determination of the patient’s stage is critical in deciding
on their treatment. All these underscore the importance of early detection and
accurate staging.

Applications of Machine Learning (ML) algorithms in the field of clinical
medicine today yield promising results. These algorithms assist doctors in mak-
ing clinical decisions regarding the detection, progression, and treatment meth-
ods of diseases. In the area of CKD, existing works can be divided into two cat-
egories: those that make predictions on cross-sectional data [1, 3–6, 8, 11, 12, 14–
16, 18, 19, 23, 27, 31] and those on longitudinal data [2, 28, 33]. In cross-sectional
work, many works focus solely on binary classification (CKD or not CKD) [1, 3, 5,
6, 8, 11, 12, 14–16, 18, 23, 27, 31], very few undertake multi-stage classification of
all stages of CKD [4, 12, 19]. In longitudinal studies, the primary focus has been
on predicting the progression of chronic kidney disease (CKD). Recent research
[33] specifically addresses predicting the transition from stage 2/3 to 4/5 of the
disease. Similarly, [2] predicts the necessity of referring CKD patients from pri-
mary care to secondary care. Earlier studies, discussed in the review [28], include
various aspects such as predicting the onset of CKD and forecasting the decline
in kidney function. The majority of other studies revolve around predicting the
progression to end-stage kidney disease (ESKD). To our understanding, there is
no CKD longitudinal prediction technique that leverages longitudinal data that
classifies all stages of CKD (Table 1). It is however commonly recognized that
longitudinal analysis is better suited for long-term disease prediction and allows
for better predictions, utilizing extensive temporal data [32].

The scarcity of quality longitudinal CKD datasets significantly hampers
progress in this field. Many publicly available datasets are limited to cross-
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sectional data only. Some encompass demographic information, current diag-
noses, and lab tests. Others focus solely on demographic data and blood tests
(Table 1). However, relying solely on cross-sectional data, particularly single-
day blood tests, is insufficient for accurate CKD staging. According to Kidney
Disease: Improving Global Outcomes (KDIGO) guidelines [29], CKD diagnosis
requires persistent kidney abnormalities over at least 90 days. This underscores
the necessity of longitudinal data analysis for reliable predictions. Longitudinal
analysis, based on parameters like estimated glomerular filtration rate (eGFR)
over time, provides a more robust approach to CKD staging compared to cross-
sectional data. Furthermore, the dataset limitation extends to the scarcity of
multi-stage datasets. Few studies undertake multiclass classification, often re-
sorting to converting binary class labels into multiclass categories based on eGFR
values [12, 19]. However, this approach that relies on single observations rather
than multiple observations spanning 90 days may not follow KDIGO guide-
lines [29]. To our knowledge, there is a lack of proper longitudinal CKD dataset
that supports multistage classification of all 5 stages.

In this study, we aimed to bridge this gap by conducting multi-stage clas-
sification predictions on longitudinal data. Firstly, we obtained access to the
SAIL databank (Section 3), which houses anonymized Welsh blood sample data.
Following the guidelines provided by the KDIGO CKD Work Group [29], we
labeled all 5 CKD stages based on patients’ eGFR observations over the last 90
days. Secondly, we developed machine learning techniques, namely LSTM and
Bidirectional LSTM, to effectively handle such multivariate longitudinal dataset.

We summarize our main contributions below:

• We introduce the first study on predicting multi-stage (on all five stages) of
CKD through developing LSTM and Bidirectional-LSTM models trained on
multivariate longitudinal data for accurate CKD stage prediction.

• We curate our dataset carefully in accordance with the guidelines provided by
KDIGO [29], utilizing observations from the last 90 days to ensure reliability.

• We also present models for making cross-sectional predictions, enabling a
fair comparison with our longitudinal models.

• Our results demonstrate that longitudinal techniques, which account for dis-
ease dynamics, yield better performance in predicting stages of CKD.

2 Related Works

Various Machine Learning methods have been employed for classifying Chronic
Kidney Disease stages. The majority of studies focus on binary classification
(CKD vs non-CKD) using cross-sectional data. Only a few attempt multiclass
classification (all 1-5 stages of CKD) predictions on cross-sectional data. How-
ever, to date, no study has performed multiclass classification using longitudinal
patient data. A summary of these studies is provided in Table 1. We discuss
these methods and datasets below.
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2.1 Methods
Binary Classification Methods Salekin et al. [27] developed a Machine
Learning classifier using k-nearest neighbors, random forests, and neural net-
works for the detection of Chronic Kidney Disease (CKD vs. non-CKD). The
random forest algorithm achieved an accuracy of 99.3% in this binary clas-
sification task. In 2018, Aljaaf et al. conducted binary classifications through
various machine-learning algorithms for CKD detection, including classification
and regression tree (RPART), support vector machine (SVM), logistic regres-
sion (LOGR), and multilayer perceptron neural network (MLP) methods [1]. In
2020, Khan et al. classified patients into CKD and non-CKD using seven dif-
ferent models, including Support Vector Machine, NBTree, Logistic Regression,
Naïve Bayes, Multi-layer Perceptron, J48, and Composite Hypercube on Iterated
Random Projection (CHIRP) [15]. The accuracies of these models ranged from
95% to 99.75%, varying among these studies. While these works perform well in
classifying CKD vs non-CKD, they do not consider multi-stage (5) classification.

Multi-Stage (5 Classes) Classification Methods In 2019, Rady et al. em-
ployed Probabilistic Neural Networks (PNN), Multilayer Perceptron (MLP),
Support Vector Machine (SVM), and Radial Basis Function (RBF) algorithms
to perform multi-stage classifications on cross-sectional data [19]. In 2021, Ilyas
et al. utilized the Random Forest and J48 (C4.5) algorithms to classify patients
into various CKD stages [12]. The above work both used the UCI dataset, with
accuracy ranging from 51.5% to 96%, depending on the models used. In 2022, De-
bal et al. conducted both binary classification and multiclass classifications using
Random Forest, Support Vector Machine, and Decision Tree algorithms [4]. The
highest accuracies for multiclass classification were 79.0% for Random Forest,
63% for Support Vector Machine, and 78% for Decision Tree on SPH dataset.
While these attempts aim to predict multi-stage classification, they are mostly
based on cross-sectional data only. There is no study that considers multi-stage
classification using longitudinal data, which our study aims to address.

Longitudinal Methods Some studies have explored machine learning tech-
niques applied to longitudinal data. Earlier studies, as discussed in the review
[28], employed longitudinal methods to make predictions regarding progression.
These predictions include forecasting whether patients will develop CKD in the
future, estimating the loss of kidney function, and predicting progression to end-
stage disease, rather than classifying CKD stages (1 to 5). In 2020, Au-Yeung
et al. [2] aimed to assist kidney teams in advising primary care GPs to refer pa-
tients to secondary care earlier for specialist assessment and medical intervention.
They employed longitudinal eGFR readings to classify whether patients should
be referred to secondary care, constituting a binary classification task. Another
recent study by Zhu et al. [33] focused on predicting CKD progression from
stages 2/3 to stages 4/5. Patients progressing to stages 4/5 within a specified
window are labeled as 1, while those not progressing are labeled 0, resulting in
binary classification. Both studies primarily address binary classification tasks
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on longitudinal data. Notably, neither study categorizes patients according to
their specific CKD stages (1 to 5). To our knowledge, there is no study examin-
ing the classification of all CKD stages using a multivariate longitudinal dataset.
This study addresses this research gap.

2.2 Existing Datasets

Many existing cross-sectional datasets are designed for binary classification. The
UCI dataset [22], commonly utilized in numerous existing studies, is provided by
the University of California Irvine (UCI). It comprises 400 instances and 25 at-
tributes including age, blood pressure, specific gravity, albumin, sugar, red blood
cells, pus cell, pus cell clumps, bacteria, blood glucose random, blood urea, serum
creatinine, sodium, potassium, hemoglobin, packed cell volume, white blood cell
count, red blood cell count, hypertension, diabetes mellitus, coronary artery dis-
ease, appetite, pedal edema, and anemia. This cross-sectional dataset contains
only two classes: CKD and non-CKD. The SPH dataset utilized in the study
by Debal et al. [4] was collected between 2018 and 2019 at St. Paulo’s Hospital.
It comprises 1718 instances and 19 variables, including age, gender, blood pres-
sure, specific gravity, chloride, sodium, potassium, blood urea nitrogen, serum
creatinine, hemoglobin, red blood cell count, white blood cell count, mean cell
volume, platelet count, hypertension, diabetes mellitus, anemia, and heart dis-
ease. While it is a dataset with multiclass labels, it is not longitudinal. Iliyas et
al. used another cross-sectional GHG dataset in their study [11], created by the
General Hospital in Gashua Local Government Area of Yobe State. This dataset
comprises 400 instances with 11 variables, similar to those in other datasets,
and includes a target variable classified as CKD and non-CKD. Two additional
datasets [23, 31] contain only previous diagnoses of patients rather than blood
tests and utilize binary labels. The primary issues with these cross-sectional
datasets are their unsuitability for longitudinal analysis, reliance on single-day
tests for patient labeling, and the presence of imbalanced data. Earlier stud-
ies using longitudinal datasets [28] have focused on predicting CKD progression
rather than staging the disease (from 1 to 5). These datasets vary in size, from
465 to 14,039 subjects, and may include diverse demographic details, vital signs,
laboratory results, and health behaviors. Data are usually sourced from medical
centers or renal units, requiring approval from respective authorities (e.g., US,
Japan). However, without direct access to the data, it remains uncertain whether
these datasets can be effectively utilized for predicting all five stages.

3 Dataset

Our data was provided by the Secure Anonymised Information Linkage (SAIL)
Databank [7, 13, 17, 20, 21], a secure research environment in Wales funded by
Health and Care Research Wales, based at Swansea University’s Medical School.
SAIL facilitates remote access, linkage, and analysis of administrative and health
data, fostering collaborations with research groups across Wales and the UK. The
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Table 2. CKD Stages [29].

Stage Description eGFR Range
1 Possible kidney damage with normal kidney function ≥ 90
2 Kidney damage with mild loss of kidney function 60-89
3 Mild to severe loss of kidney function 30-59
4 Severe loss of kidney function 15-29
5 Kidney failure < 15

datasets in SAIL are anonymized and linked using a split file process, ensuring
that identifiable data and clinical information are not accessible simultaneously.

We utilize the Welsh Results Reports Service (WRRS) and Welsh Longitudi-
nal General Practice Dataset (WLGP) - Welsh Primary Care datasets provided
by SAIL. The WRRS dataset encompasses observation requests, results, and re-
ports, representing a population size of over 4 million. Healthcare professionals
(HCPs) throughout Wales have the capability to access, input, and review labo-
ratory results, including blood tests, for pathology requests and related outcomes
across primary and secondary care settings. This accessibility is facilitated by
the Welsh Results Reporting Service (WRRS), providing a dedicated platform
for patients to undergo blood testing at mobile units or local centers, while en-
abling clinicians to promptly access the results remotely. The service is designed
to achieve time savings, reduce test duplication, and enhance patient safety [25].
The WLGP includes 80% of Wales’ GP practices and 83% of the country’s total
population. It is linkable to other datasets, such as custom project-specific co-
horts, using anonymized variables for patients and general practitioners. A clin-
ical information system is used by every GP office to keep an electronic health
record for every patient. This record includes all signs, symptoms, test results,
diagnoses, prescription treatments, referrals for specialized care, and social fac-
tors related to the patient’s home environment representing a population size of
≈3.5 million. During the patient consultation, the clinician enters most of the
data [24]. We link these two datasets using anonymized patient variables. We ob-
tain the blood test from the WRRS and the patient’s demographic information
such as age and gender from the WLGP respectively.

3.1 Data Processing

In our study, we curated both cross-sectional and longitudinal models for com-
parison. As the requirements for each differ, we created two separate datasets.
The first dataset is longitudinal, while the other is cross-sectional. To train both
types of models, we included the following attributes: patients’ age, gender, and
various blood tests containing creatinine, albumin, red blood cell count, white
blood cell count, alkaline phosphatase, alanine transaminase, sodium, potassium,
mean cell haemoglobin, mean cell volume, total protein, and globulin. These at-
tributes and the setup bear similarity to those employed in established studies.
(Section 2.2).
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Longitudinal Dataset To construct our longitudinal dataset, we retrieved all
records containing the specified blood tests for each patient to avoid missing val-
ues, ensuring data completeness. Patients missing any test were excluded from
the dataset. Consequently, we obtained a dataset devoid of missing values, utiliz-
ing only actual records, thereby bolstering dataset reliability. Longitudinal data
were collected from all dates with complete test records, providing longitudi-
nal data for all patients. However, a challenge arises from the varying testing
frequency and duration among patients, which is common due to differences in
healthcare needs and schedules. Statistics showed a mean of 2460 days of records
per patient, prompting us to filter for patients with at least 2460 days of data.

To address variations in the number of tests on different dates for each pa-
tient, we imputed missing test values using linear interpolation for each day.
Then, all longitudinal data are aligned to the last reading, following Au-Yeung
et al.’s method [2]. Subsequently, we retained imputed tests for each patient at
10-day intervals over the last 2460 days, resulting in 247 observations for each
test. Patients were categorized into 5 CKD stages based on their eGFR values
over the last 90 days [29]. The eGFR value ranges for each CKD Stage are pro-
vided in Table 2. Those with eGFR values outside the CKD stage range were
excluded. When all obtained patients were labelled, it was observed that the
CKD stage with the lowest number of patients had ≈600 patients (the exact
numbers of patients are not disclosed here in compliance with SAIL output re-
view policy [26]). Taking into account the data distribution across stages, we
opted to randomly choose ≈600 patients from each stage. This approach was
necessary as other stages had a higher patient count, which could have skewed
the balance of data across stages. Hence, we acquired a total of ≈3000 patients
across all stages of chronic kidney disease (CKD). An illustrative example of
the multivariate longitudinal data structure is shown in Figure 1. In the table,
Pi represents each patient, and Vn,t represents variables within the multivariate
longitudinal dataset, where n refers to each attribute and t denotes observations
in the time domain. This multivariate longitudinal dataset enables us to eval-
uate the effectiveness of our longitudinal techniques and implementations for
predicting multi-stage CKD.

Cross-Sectional Dataset To create the cross-sectional dataset, we included
the most recent cross-sectional (time point) blood tests of each patient from
our longitudinal dataset and the respective CKD stage of each patient. In other
words, we included a total of ≈3000 patients and their blood tests, ≈600 patients
from each stage, in our cross-sectional dataset. Our purpose in doing this is

Fig. 1. Representative Longitudinal Data Structure (unreal values for illustration)
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Fig. 2. Representative Cross-Sectional Data Structure (unreal values for illustration)

to compare our longitudinal models with our cross-sectional models fairly. An
illustrative example of the multivariate cross-sectional data structure we acquired
is depicted in Figure 2. In the table, Pi represents each patient, and Vn represents
each attribute, such as creatinine and albumin.

4 Methods

We implement and compare common machine learning techniques utilized in
CKD literature on our cross-sectional dataset. These include Random Forest
(RF), Support Vector Machine (SVM), Decision Tree (DT) and Logistic Regres-
sion (LR) algorithms. The grid search method is employed for hyperparameter
tuning for the models. Further, we implement two longitudinal models, namely
Long Short-Term Memory (LSTM) and Bi-directional Long Short-Term Memory
(Bi-LSTM) algorithms, and evaluate them on our longitudinal CKD dataset.

4.1 Cross-Sectional Models
Random Forest (RF) is an ensemble learning method. It excels in classifica-
tion tasks and feature selection, exhibiting lower overfitting compared to other
algorithms. By forming a "forest" of decision trees and averaging them, it en-
hances prediction accuracy, especially for complex datasets [10]. It is adept at
handling challenges like multiple class categorization. Its capability to manage
thousands of input variables is invaluable for analyzing cross-sectional data.

Support Vector Machine (SVM) is particularly effective for classification
tasks in high-dimensional spaces, making it well-suited for multivariate cross-
sectional data with numerous variables. Its ability to identify optimal hyper-
planes for class division allows it to handle complex decision boundaries, crucial
for classification. Its robustness and generalization to new data stem from its
focus on maximizing the margin between classes, ensuring reliable performance
on both new and unseen data [10].

Decision Trees (DT) are ideal for multiclass classification on multivariate
cross-sectional data due to their intuitive design, facilitating easy understanding
and visualization of decision-making processes. Their flexibility in handling both
numerical and categorical data makes them suitable for multivariate datasets.
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The hierarchical structure of decision trees effectively captures the complexity
of multiclass problems, offering clear insights into the significance of various
variables for classification. Despite their tendency to overfit, techniques such as
pruning and setting maximum depth can mitigate this issue, making Decision
Trees a robust and interpretable tool for assessing cross-sectional data in a mul-
ticlass environment [10].

Logistic Regression (LR) offers a simple, easily interpretable model, partic-
ularly advantageous in multiclass classification tasks where understanding pre-
dictor effects is crucial. Its coefficients can be directly interpreted as odds ratios,
providing clarity on variable influences [10]. Compared to more complex models,
logistic regression models are less prone to overfitting due to their lower vari-
ance. Regularization techniques like L1, L2, or a combination can be applied to
further prevent overfitting and enhance performance on unseen data, especially
important in multivariate contexts with numerous predictors.

4.2 Longitudinal Models
Long Short-Term Memory (LSTM) excels in multiclass classification tasks
on multivariate longitudinal data due to their specialized architecture tailored
for handling sequential data across time. They effectively capture temporal re-
lationships and patterns, crucial for understanding the evolution of multiclass
states over numerous time points. LSTMs integrate prior data points into current
predictions, leveraging their long-term memory and information processing ca-
pabilities. Their sophisticated understanding of sequential data enables them to
account for changes and trends within variables over time, making them effective
in utilizing rich time-series data in longitudinal datasets [9]. CKD progression
typically occurs gradually, emphasizing the importance of long-term health data
analysis for early disease detection. By effectively capturing critical signals and
temporal variations, LSTM models can offer accurate predictions even during
the early stages of CKD. We hypothesize that LSTM will outperform simpler
cross-sectional techniques in predicting early CKD stages.

A multivariate time series classification LSTM model was built using Keras. It
includes two LSTM layers with 16 and 8 hidden units respectively, each followed
by a 20% Dropout layer. The output layer consists of 5 neurons with softmax
activation for predicted class probabilities. In our implementation, the model
was trained for up to 50 epochs, and batches of 8 samples were used in each
training cycle.

Bi-directional Long Short-Term Memory (Bi-LSTM) significantly en-
hances multiclass classification performance on multivariate longitudinal data by
leveraging both forward and backward sequential contexts. They capture emerg-
ing patterns and relationships over time from past and future contexts, providing
a comprehensive understanding of temporal dynamics. Integrating data across
the full sequence length, Bi-LSTMs excel in complex classification scenarios, con-
sidering the complete sequence for each prediction. They offer a useful framework
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for modeling temporal interactions and dependencies between variables in both
directions, enabling deeper understanding and precise predictions in multiclass
classification tasks [9].

We utilized Bi-LSTM due to its capability to analyze sequential data in both
forward and backward directions. This approach is crucial for minimizing mis-
classifications between adjacent disease stages. By capturing intricate patterns
in CKD progression across various stages, Bi-LSTM enables a more detailed
understanding of disease dynamics. Our hypothesis is that Bi-LSTM’s bidirec-
tional configuration will reduce misclassifications between adjacent CKD stages
compared to unidirectional LSTM. This improvement may enhance disease man-
agement by facilitating more accurate diagnosis and intervention.

A classification model for multivariate longitudinal data was constructed us-
ing Bi-LSTM networks in Keras. It features two bidirectional LSTM layers with
16 and 8 hidden units respectively, along with Dropout (20%) to mitigate overfit-
ting. The model includes a Dense output layer with softmax activation. Compiled
with Adam optimizer, it was trained for 50 epochs with a batch size of 8 samples.

5 Experiments and Results
5.1 Experiment Setup
To ensure accurate model evaluation, we employed k-fold cross-validation. This
technique assesses how well the model fits the data and detects issues like over-
fitting. In k-fold cross-validation, the dataset is divided into subsets (folds), with
each subset used alternately as the test set while the remaining parts serve as
the training set. This process is repeated for k folds, aiming to provide reliable
generalization performance estimates across different data subsets. In our study,
we utilized (k=5) 5-fold cross-validation, a widely preferred balance between
computational cost and reliability. In each fold, the data is split into 80% train-
ing and 20% testing sets to ensure ample training data for model learning while
maintaining an objective evaluation of its performance on independent data.

5.2 Evaluation Metrics
We employed the following various evaluation metrics, where TP : Correctly pre-
dicted positive, TN : Correctly predicted negative, FP : Incorrectly predicted
positive, FN : Incorrectly predicted negative.
Accuracy = TP+TN

TP+FP+TN+FN indicates the proportion of all correct predictions
made by the model.
Precision = TP

TP+FP measures the proportion of positive cases predicted cor-
rectly among all cases predicted as positive.
Recall (aka. Sensitivity) = TP

TP+FN represents the proportion of true positive
cases predicted correctly among all actual positive cases.
F-Measure (aka. F1-score) = 2 ∗ Precision∗Recall

Precision+Recall is the harmonic mean of
precision and recall. It provides a balanced measure of both metrics.
Specificity = TN

TN+FP measures the proportion of true negative cases predicted
correctly among all actual negative cases.
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Table 3. Multi-stage Classification Results

Cross-Sectional Accuracy Precision Recall F-Measure Specificity
RF 92.74 92.72 92.74 92.73 98.18

SVM 94.93 94.94 94.94 94.94 98.73
DT 95.95 95.97 95.95 95.96 98.99
LR 96.28 96.31 96.29 96.30 99.07

Longitudinal Accuracy Precision Recall F-Measure Specificity
LSTM 96.62 96.67 96.63 96.65 99.16

Bi-LSTM 97.30 97.31 97.30 97.30 99.32

5.3 Results

Overall Performance The overall results are presented in Table 3. Higher
values of these metrics indicate better performance of the techniques. Generally,
longitudinal techniques outperform cross-sectional techniques. Specifically, Bi-
directional LSTM demonstrates better performance compared to LSTM.

Confusion matrix We generate a 5-by-5 confusion matrix for each technique,
with each row and column representing the classification performance for the
respective stages (1-5). However, adhering to SAIL Output Review Policy [26],
we are unable to present the confusion matrices due to the risk of disclosing
sensitive patient information, as some cells contain values equal to or less than
5. Nevertheless, to ensure a thorough analysis, we provide a summary of our
observations below.

When comparing models trained on cross-sectional data (DT, LR, SVM, RF),
we observe consistent performance across most stages. Generally, they predict
Stage 1 and Stage 5 with higher accuracy, indicating potentially distinct charac-
teristics in these stages. In the confusion matrix of RF, incorrect predictions are
confined to the subdiagonal and superdiagonal elements. RF often makes more
errors in Stage 2 and Stage 3 classifications by incorrectly categorizing instances
as the nearest neighbor classes. For example, Stage 2 instances may be mistak-
enly labeled as either Stage 1 or Stage 3 by the model. In contrast, DT and LR
demonstrate balanced errors and stable performance across stages, leading to
higher overall accuracy in Table 3.

When comparing LSTM and Bi-LSTM models trained on longitudinal data,
Bi-LSTM generally outperforms LSTM across all phases except for Stage 1. This
highlights Bi-LSTM’s superior ability to capture changes in disease stages over
time, owing to its bidirectional processing capability. However, it is worth noting
that LSTM performs better than Bi-LSTM in Stage 1. This may indicate that
certain relevant information for predicting outcomes in Stage 1 primarily resides
in the past context of the sequence, making the unidirectional LSTM archi-
tecture more effective in this particular scenario. It also suggests that different
model structures may be more effective in specific stages. Similarly, incorrect
predictions for LSTM and Bi-LSTM models are confined to the subdiagonal and
superdiagonal elements of the confusion matrices. These misclassifications are
however fewer compared to cross-sectional techniques.
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Comparing cross-sectional and longitudinal models, we observe that longi-
tudinal models outperform in Stages 1,3,4,5, likely due to their superior repre-
sentation of temporal changes in the disease process. Among these, Bi-LSTM
exhibits the highest accuracy, emphasizing the significance of time series data in
CKD staging, and reducing misclassification between adjacent stages. For Stage
2, DT and LR are slightly better over the longitudinal models, albeit by a very
narrow margin.

In conclusion, Bi-LSTM shows superior performance and consistency in CKD
stage estimation, although other models also yield competitive results on specific
stages. Different models perform variably based on data characteristics at various
disease stages, highlighting the need for careful model selection depending on the
application context and goals.

6 Conslusion
In this paper, we introduce the first study focusing on predicting all five stages
of CKD by leveraging LSTM and Bidirectional-LSTM models trained on multi-
variate longitudinal data. Our dataset curation adheres closely to KDIGO guide-
lines [29], utilizing observations from the last 90 days for reliability. Further-
more, we offer models for cross-sectional predictions to ensure a fair comparison
with our longitudinal counterparts. Our findings confirm our hypothesis: mod-
els trained on longitudinal data exhibit superior accuracy compared to those on
cross-sectional data. This underscores the significance of capturing CKD progres-
sion over time, aligning with our initial expectations. Longitudinal techniques
LSTM and Bi-LSTM prove particularly adept at capturing disease dynamics.
In future work, we aim to conduct an in-depth examination and comparison of
our findings on a larger dataset, employing dedicated imputation and stratifica-
tion techniques. We will also explore the integration of more sophisticated deep
learning models to further enhance prediction and forecasting accuracy.
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