
 

3DFin: a software for automated 3D Forest Inventories from 1 

terrestrial point clouds 2 

 3 

Diego Laino1,2, Carlos Cabo *3,1, Covadonga Prendes4, Romain Janvier5, Celestino 4 

Ordonez3, Tadas Nikonovas1, Stefan Doerr1, Cristina Santin2,1 5 

1 Centre for Wildfire Research, Swansea University, Singleton Campus, Swansea SA2 8PP, United Kingdom; 6 
2 Biodiversity Research Institute, CSIC-University of Oviedo-Principality of Asturias, 33600 Mieres, Asturias, Spain; 7 
3 Department of Mining Exploitation and Prospecting, University of Oviedo, 33600 Mieres, Asturias, Spain; 8 
4 Forest and Wood Technology Research Centre Foundation (CETEMAS), Pumarabule, Spain; 9 
5 Independent researcher, Nancy, France 10 
 11 
Correspondence: carloscabo@uniovi.es 12 

Keywords 13 

Forestry; Remote sensing; LiDAR; Terrestrial Laser Scanner (TLS); Diameter at Breast Heigh (DBH); 14 
photogrammetry; Mobile Laser Scanning (MLS); Opensource Software; Point clouds; Forest inventory 15 

 16 

Abstract 17 

 18 
Accurate and efficient forest inventories are essential for effective forest management and conservation. The 19 
advent of ground-based remote sensing has revolutionized the data acquisition process, enabling detailed and 20 
precise 3D measurements of forested areas. Several algorithms and methods have been developed in the last 21 
years to automatically derive tree metrics from such terrestrial/ground-based point clouds. However, few 22 
attempts have been made to make these automatic tree metrics algorithms accessible to wider audiences by 23 
producing software solutions that implement these methods. To fill this major gap, we have developed 3DFin, 24 
a novel free software program designed for user-friendly, automatic forest inventories using ground-based point 25 
clouds. 3DFin empowers users to automatically compute key forest inventory parameters, including tree Total 26 
Height (TH), Diameter at Breast Height (DBH), and tree location. To enhance its user-friendliness, the program 27 
is open-access, cross-platform, and available as a plugin in CloudCompare and QGIS as well as a standalone in 28 
Windows. 3DFin capabilities have been tested with Terrestrial Laser Scanning (TLS), Mobile Laser Scanning 29 
(MLS) and terrestrial photogrammetric point clouds from public repositories across different forest conditions, 30 
achieving nearly full completeness and correctness in tree mapping and highly accurate DBH estimations 31 
(RMSE < 2 cm, bias < 1 cm) in most scenarios.  In these tests, 3DFin demonstrated remarkable efficiency, with 32 
processing times ranging from two to seven minutes per plot. The software is freely available at: 33 
https://github.com/3DFin/3DFin. 34 
 35 
 36 

1. Introduction 37 

 38 

Forest inventories (the systematic process of collecting, analysing, and reporting data about the characteristics 39 
of forest resources, such as their location, composition, and distribution; Wulder, 2004) play a crucial role in 40 
the sustainable management and conservation of forest ecosystems (Ridder, 2010). Traditional forest inventory 41 
methods often rely on time-consuming and labour-intensive field surveys, which are limited in their ability to 42 
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capture detailed spatial information (Van Laar, 2007). In recent years, the utilization of ground-based remote 43 
sensing technologies has emerged as a transformative approach for forest inventory tasks. These technologies 44 
comprise Light Detection and Ranging (LiDAR), which includes Terrestrial Laser Scanning (TLS) and Mobile 45 
Laser Scanning (MLS); as well as the use of terrestrial Photogrammetry (Newnham et al., 2015; Liang et al., 46 
2016). Ground-based technologies generate dense three-dimensional representations of objects on the Earth’s 47 
surface that can be referred to as “terrestrial point clouds”. This term can be deceiving, though, as “terrestrial 48 
point clouds” is commonly used exclusively for static laser scanning (i.e., TLS), but should also include other 49 
systems, as stated above. For this reason, the term “ground-based point clouds”, which has gained popularity 50 
over the very last years, will be used in this article to refer to this subset of close-range remote sensing (Liang 51 
et al., 2022), as it conveys clearly that there is a diversity of technologies that use a perspective from the ground 52 
and that produce point clouds. These ground-based point clouds are typically composed of millions of individual 53 
data points, which collectively form a detailed and accurate digital representation of the scanned area or object, 54 
capturing detailed geometric information, including the shape, position, and orientation of objects within the 55 
scanned area. 56 
 57 
TLS and MLS involve using a laser scanner that emits light pulses which measure the distance from the sensor 58 
to reflecting surfaces (Dassot et al., 2011; Calders et al., 2020). This process generates a dense set of 3D 59 
coordinates, forming the point cloud. Photogrammetry, on the other hand, utilizes a series of photographs taken 60 
from different angles to reconstruct the 3D structure of the scene (Iglhaut et al., 2019). By identifying common 61 
features in multiple images and applying mathematical algorithms, photogrammetry software can calculate the 62 
3D coordinates of points and generate a point cloud. Due to their ability to represent geometric information, 63 
ground-based point clouds have emerged as a valuable tool for storing detailed three-dimensional information 64 
about forest plots, enabling comprehensive analysis and assessment of tree structures (Newnham et al., 2015). 65 
 66 
One of the primary goals in forest inventories is the computation of tree metrics, such as total Tree Height (TH), 67 
Diameter at Breast Height (DBH) or tree location, which provide crucial insights into forest structure, dynamics, 68 
and ecosystem services (Van Laar, 2007; Pascu, 2019). Accurate and efficient computation of these metrics 69 
from ground-based point clouds is becoming a key step to automatically retrieve inventory information to 70 
support for effective forest management, biodiversity monitoring, carbon estimation, and ecological research 71 
(Liang et al., 2016). 72 
 73 
In recent years, numerous tree metrics algorithms have been developed utilising ground-based point clouds 74 
(Liang et al., 2018; Ravaglia et al., 2019; Wang et al., 2021; Sadeghian et al., 2022). These algorithms leverage 75 
advanced data processing techniques, statistical analysis, and geometric calculations to extract meaningful 76 
information about individual trees within the point cloud data. Each algorithm adopts a unique approach and 77 
methodology, offering distinct advantages and limitations in terms of accuracy, efficiency, and adaptability to 78 
different forest types and plot characteristics. However, as some authors have pointed out (Liang et al., 2018; 79 
Krisanski et al., 2021; Montoya et al., 2021) the lack of practical, publicly available software that implements 80 
these algorithms is currently a bottleneck that limits their use by the user community.  81 
 82 
Current non-commercial software implementations specifically designed to compute tree metrics at plot level 83 
from ground-based point clouds include: CompuTree (Piboule et al., 2013), 3DForest (Trochta et al., 2017), 84 
TreeLS (de Conto et al., 2017), DendroCloud (Mokros & Koreň, 2019) TreeTool (Montoya et al., 2021), FSCT 85 
(Krisanski et al., 2021) and FORTLS (Molina-Valero et al., 2022). In addition, some proprietary commercial 86 
options are also available, like LiDAR360 (GreenValley International, 2013), AID-FOREST (López Serrano et 87 
al., 2022), or OPALS (Pfeifer et al., 2014), that was not initially designed for ground-based point clouds, but 88 
nowadays offers enough capabilities to do so. Although able to provide tree metrics in a fairly automatic manner, 89 
TreeTool and FSCT are available solely as Python (Van Rossum & Drake, 1995) libraries, which reduces the 90 
potential number of users from the general public that may employ them. Similarly, TreeLS and FORTLS, are 91 
only available as R packages (R Core Team, 2023). Conversely, DendroCloud, 3DForest, CompuTree, 92 
LiDAR360, AID-FOREST and OPALS are available as standalone programs, which eliminates the burden 93 
associated with programmatic access (installing requirements, versioning, scripting, etc.). These offer a step-94 
by-step approach to perform the analysis of the point cloud, which has the benefit of a more controlled run. This 95 
allows the users to check if things are not going as expected at earlier stages. However, it leads to a situation 96 
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where a new learning curve on how to use the software tools appears, which may translate into an obstacle for 97 
non-expert users and deter them from using ground-based point clouds. 98 
 99 
Here we introduce a new software, 3DFin: 3D Forest Inventory, that has been developed to advance the 100 
automatization of forest inventories. Thanks to its simplified interface, it allows users, by simply selecting a 101 
point cloud and pressing a button, to directly obtain tree metrics (diameter at different heights including DBH, 102 
TH and tree location) and several complementary computations (normalized height of the points, distance from 103 
any point in the cloud to closest tree axis, quality-of-measure indicators) of the forest plot. Moreover, 3DFin 104 
has been integrated into the larger and widely used computer programs CloudCompare and QGIS, to simplify 105 
its integration into the users’ workflow. We first describe the developed algorithm and its implementation into 106 
3DFin software, then we evaluate its performance by processing public data with 3DFin and we end by 107 
discussing its strengths and limitations compared with other available software. 108 

 109 

2. Algorithm 110 

 111 

3DFin’s underlying algorithm leverages state-of-the-art point cloud processing techniques to accurately detect 112 
and locate the trees in ground-based point clouds from forest plots, and also calculate essential parameters, such 113 
as diameters along the stem -including specifically the DBH-, and TH. Its application to the point clouds is 114 
highly parametrizable using 3DFin’s graphical user interface (GUI). The algorithm behind the software is an 115 
updated version of that presented in Cabo et al. (2018) and includes some of the extensions developed in Prendes 116 
et al. (2021). The algorithm is mainly based on rules, although it uses clustering in some stages. The algorithm 117 
can be divided in four main steps: 118 

1. Height-normalization of the point cloud. 119 
2. Identification of stems within user-provided horizontal stripe. 120 
3. Tree individualization based on point-to-stems distances. 121 
4. Computation of stem diameters at different section heights. 122 

 123 

2.1  Height-normalization of the point cloud 124 

The first step of the algorithm is to normalize the heights of the input point cloud. This is depicted in Figure 1. 125 
The height-normalization is achieved by generating a Digital Terrain Model (DTM). From there, the normalized 126 
heights for each point in the cloud are obtained as the difference between their (𝑧) value and the elevation of 127 
the DTM in their vertical projection. 128 
 129 

 130 
Figure 1: Figure caption 131 
 132 
To generate the DTM, a Cloth-Simulation Filter (CSF) as described in Zhang et al. (2016) is applied to the point 133 
cloud. The DTM is stored as a collection of 3D points (the nodes of the ‘cloth mesh’), and the vertical projections 134 
are performed using kd-tree k-neighbour queries (Bentley, 1975) and weighted averages of the (𝑧) values of the 135 
DTM points. For each point (𝑝𝑖) in the original cloud, the three nearest DTM points are queried. Then, a 136 
weighted average of their (𝑧) value based on the distance to 𝑝𝑖 is computed, and the normalized height value 137 
(𝑧0) of 𝑝𝑖 is computed as the difference between its original (𝑧) value and the weighted average (𝑧) value of 138 
the three DTM points. Optionally, a denoising step may be added prior to the height-normalization when running 139 
3DFin to prevent the influence of noise and artifacts below the ground. This is achieved by voxelating (Cabo et 140 
al., 2014) the point cloud using a relatively large voxel size (i.e., 0.15 m), then clustering by Euclidean distance 141 
the resulting voxels using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 142 
algorithm (Ester et al., 1996) and finally filtering clusters smaller than a certain cluster size. This process is 143 
illustrated in Figure 2. 144 
 145 
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Figure 2: Figure caption. 146 

 147 

2.2  Identification of stems within a horizontal stripe  148 
 149 
In the second step, a horizontal stripe, defined as a subset of the normalized point cloud delimited by a lower 150 
height 𝑍ℎ(𝑙𝑜𝑤) and an upper height 𝑍ℎ(ℎ𝑖𝑔ℎ), is defined. This horizontal stripe represents a region in the 3D-151 

space where it is expected to mostly encounter stems (Cabo et al., 2018). The points within the stripe are 152 
voxelated (using now a smaller voxel size of 0.02-0.06 m) and their verticality (Hackel et al., 2016) is computed, 153 
based on fixed-radius neighbourhoods. Then, the voxels are filtered based on their verticality value: it is 154 
reasonable to assume that the structure of points that is associated to a scanned stem would score a high 155 
verticality value, and that any other structure has a lower value. Finally, the remaining points (the ones with 156 
high values) are clustered by Euclidean distance using the DBSCAN algorithm, in a similar fashion as the 157 
clustering process detailed in Section 3. These two filters -eliminating points with low verticality values and 158 
removing clusters smaller than a certain cluster size- can be conceptualized as akin to ‘limbing the trunks’ and 159 
they are repeated iteratively, to ensure that the stems are isolated appropriately within the horizontal stripe. This 160 
step is illustrated in Figure 3. 161 

 162 
Figure 3: Figure caption. 163 

 164 

2.3  Stem extraction and tree height measurement 165 
 166 
Once the bases of the stems have been identified in the horizontal stripe, they are isolated and enumerated, and 167 
then, ‘initial’ stem axes are computed. These initial axes are straight, but not necessarily vertical representations 168 
of the main direction of the points of each stem within the stripe. The axes are assimilated as the direction of 169 
the first principal component of the (x, y, z) coordinates of each stem, as in Figure 4, and are henceforth 170 
considered as stem axes. This allows to label points along the complete point cloud based on their distance to 171 
those axes, thus assigning each point to a tree. 172 
 173 
Figure 4: Figure caption. 174 
 175 
During this third step of the algorithm, the TH is computed as well. For this, and for each tree, points are 176 
voxelated and clustered with the DBSCAN algorithm as in Cabo et al. (2018). Any small cluster is then 177 
discarded, and from the remaining voxels that belong to the main cluster (the one that encloses the tree), a radius 178 
of voxels around the tree axis is subset and the highest voxel among these is selected. The (𝑧) value of this 179 
voxel will be then considered as the tree height. This process inherently excludes from the estimation of the TH 180 
the points that are far from the tree, which could belong to other trees, and any noise above the tree. This is 181 
illustrated in Figure 5. 182 

 183 
Figure 5: Figure caption. 184 
 185 
It is important to highlight here that the “tree individualization” performed during this step does not aim to 186 
correctly separate tree crowns, which is another task that researchers have shown interest in (Windrim & Bryson, 187 
2020; Chen et al., 2021; Carpenter et al., 2022; Wang & Bryson, 2023). The purpose of this intermediary step 188 
is to enable the efficient extraction of the stems. Thus, for each stem that is processed, only the points that are 189 
close enough to it are saved into memory, avoiding unnecessary overhead computations. 190 
 191 
 192 

2.4  Computation of stem diameter at different section heights 193 
 194 
In this fourth and final step, the stem diameter is measured at different heights around the tree axes. A general 195 
overview of this process is depicted in Figure 6. 196 
 197 

 198 
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Figure 6: Figure caption. 199 
 200 
Once every tree is ‘individualized’, i.e., every point in the cloud is linked to one of the axes, the algorithm 201 
extracts their whole stems. To do so, points far from any axis (i.e., 1.5 m) are discarded temporarily, thus keeping 202 
only the points close to the axis. These are candidates to belong to the tree stem, and the iterative limbing process 203 
described in 4 is applied again, but this time to the whole stems. This ensures that branches are removed before 204 
measuring them. This is depicted in Figure 7.  205 
 206 
Figure 7: Figure caption. 207 
 208 
Once the whole stems are identified and “limbed”, circles are fitted to them at several section heights. Those 209 
heights are evenly separated along the stems and the distances between section heights can be defined by the 210 
user. The circle fittings are computed for every tree and section by least-squares minimizations. This is 211 
performed using the (x, y) locations of the points in horizontal slices at the specified heights, as initially 212 
described in Cabo et al. (2018) and improved in Prendes et al. (2021). By refining the initial selection of stem 213 
points through prefiltering, 3DFin effectively addresses some of the common sources of error encountered in 214 
previous circle fitting methods (Koren et al. 2017), such as the presence of understory and branches. 215 
Additionally, the robustness of the circle fittings and diameter calculations is checked in four steps. To 216 
accomplish this, the number of points inside the fitted circle, the percentage of occupied sectors within the 217 
circle, the radius of the circle and the vertical deviation from the tree axis and other sections are analysed. 218 
 219 
First, a complementary inner circle is placed inside the fitted circle, the latter referred henceforth to as ‘outer 220 
circle’ for clarity. The centre of the inner circle has the same (x, y) coordinates than the centre of the outer circle, 221 
but its radius is a proportion of the latter. The inner circle is used to explore how points are distributed in the 222 
section, based on the idea that the points are expected to be outside the inner circle, as the point cloud should 223 
only represent the surface of the stems. Depending on the technology used to obtain the point cloud, some noise 224 
might be expected, so a small number of points inside the inner circle might not necessarily mean that the outer 225 
circle is wrongly fitted. However, if there are too many points inside the inner circle (i.e. more than what could 226 
be expected due to noise), then, it probably has been fitted wrongly. Second, the section is divided into several 227 
sectors to check if there are points within them (so that they are occupied). If there are not enough occupied 228 
sectors, the section fails the test, as the points within itself may potentially have an abnormal, non-desirable 229 
structure, or the diameter of the fitted circle may not be reliable. Third, it is checked whether the diameter of 230 
the fitted circle lies within a specific range to discard anomalies. I.e., if there is a priori information about the 231 
distribution of the diameters within the plot, it could be reasonable to discard computed diameters outside the 232 
range of that distribution. These first three checks are illustrated in Figure 8. 233 
 234 
Figure 8: Figure caption. 235 

Finally, the circles fitted along the stems are expected to follow an approximately linear sequence which, 236 
however, does not necessarily have to be completely straight, nor vertical. To assess that, an indicator value 237 
based on assumed locally coherent inclinations is generated. To derive the indicator value, the tilt angle of each 238 
section, compared with all other sections, is computed, looking for local outlier inclinations. An important 239 
property of this approach as compared to a simpler approach (i.e., just checking for deviations from a straight 240 
standing cylinder) is that it also suitable for leaning stems, a common feature in forests. Figure 9 illustrates this 241 
last step. 242 
 243 
Figure 9: Figure caption. 244 

An important feature of these checks is that, regardless of the result, the computed diameters are output by 245 
3DFin. This allows the users to decide, based on further visual inspection, if the diameters adjust well to the 246 
stem. 247 
 248 
 249 
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3. Software Architecture and Implementation 250 

 251 

3DFin implements the custom algorithm described in Section 2. The program has been written using several 252 
popular Python libraries to efficiently process the point clouds and compute the tree parameters, including 253 
numpy (Harris et al., 2020), scipy (Virtanen et al., 2020) and scikit-learn (Pedregosa et al., 2011). The repository 254 
and source code of 3DFin can be found in https://github.com/3DFin/3DFin. The repository also contains an 255 
online copy of the documentation of the software, as well as a link to a tutorial on how to use 3DFin. 256 

3DFin has been bundled into a user-friendly, free and open-access program equipped with a GUI. This facilitates 257 
intuitive interaction with the software and makes 3DFin more accessible to a wide range of users, including 258 
those without a strong technical background. The GUI is divided in three main tabs: Basic, Advanced and 259 
Expert. The tabs offer the users options to modify how the data is processed. These options include how the 260 
data is input and output, and how the algorithm is applied to the data through several parameters. 3DFin comes 261 
with a set of predefined values, which aims to reduce the expertise required to run the program successfully. 262 
These predefined values have been chosen by the developers based on trial and error. The appearance of 3DFin’s 263 
GUI is depicted in Figure 10. 264 

Figure 10: Figure caption. 265 

3DFin is available on Windows and Linux machines as a plugin in CloudCompare via the CloudCompare 266 
PythonRuntime (Montaigu, 2024). The latest alpha-version of CloudCompare (version 2.13.1, March 2024) 267 
including the 3DFin plugin can be downloaded from the official site https://www.danielgm.net/cc/release/. 268 
3DFin is also downloadable on Windows as a standalone program from 269 
https://github.com/3DFin/3DFin/releases. Additionally, 3DFin and its dependencies may be installed and 270 
launched on any OS (Windows, Linux and macOS) as a Python package, available in PyPI. A script entry point 271 
is also installed by pip in Python installation's bin | script directory. This enables launching 3DFin’s GUI from 272 
the command line, which avoids the need to write Python code to execute 3DFin if it is installed via this method. 273 
Finally, a plugin in QGIS is also available at https://github.com/3DFin/3DFin-QGIS. 274 

A console is used by 3DFin to prompt details about the run when a point cloud is being processed. This can be 275 
the built-in console of CloudCompare, the default system console in the standalone and Python versions, or the 276 
built-in console of QGIS. 277 

 278 

3.1 Inputs and Outputs 279 

3DFin’s main input is a ground-based point cloud from a forest plot. It can come from terrestrial 280 
photogrammetry, TLS, MLS, a combination of those, and/or a combination of those with data gathered from 281 
aerial platforms (unmanned aerial vehicles -UAV- and/or airborne photogrammetry or laser scanning -ALS-).  282 
In the standalone and Python versions of 3DFin as well as in the QGIS plugin, the input point cloud must be a 283 
LAS / LAZ file. LAS is a standardized file format used for storing and exchanging point cloud data, while LAZ 284 
is a compressed version of the former. LAS versions 1.2, 1.3 and 1.4 are accepted by the software. The input file 285 
may contain extra fields (LAS standard or not). On the other hand, the CloudCompare plugin can process any 286 
point cloud format compatible with CloudCompare. 287 

The main outputs of the program are point clouds and tabular data. Several LAS files are output by the standalone 288 
and the Python package versions of the program to store the point clouds. In the CloudCompare plugin and in 289 
the QGIS plugin, several in-memory entities are produced in the current running instance. The tabular data, 290 
which contain the numeric results of the computations, are output as a single XLSX file or as several TXT files. 291 

The output point clouds include a point cloud with the detected stems in the horizontal stripe, a point cloud 292 
containing the computed tree axes, a point cloud containing the THs, a point cloud where all the original points 293 
are kept, but that is enriched with additional scalar fields (distance to closest tree axis, normalized height, tree 294 
ID), a point cloud containing the computed diameters, a point cloud containing tree locators, and a DTM. The 295 
output point clouds produced by 3DFin are illustrated in Figure 11. 296 
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The numeric outputs include a T × 4 table where T is the number of trees, that contains the computed DBH (in 297 
m), the computed TH (in m) and (x, y) coordinates of each tree; a 1 × S table, where S is the number of section 298 
heights, that contains the heights at which stem diameters have been computed; and several tables displaying 299 
information about these diameters. These latter tables are of T × S dimensions, and they contain the computed 300 
diameters, their location, and the quality indicators described in Section 2.4. Figure 12 shows a schematic view 301 
of the numeric outputs of 3DFin. 302 

Figure 11: Figure caption. 303 

Figure 12: Figure caption. 304 

 305 

4. Performance 306 

 307 

To evaluate the efficacy and robustness of 3DFin for deriving essential tree metrics from ground-based point 308 
cloud data, a comprehensive testing suite across diverse data has been employed. Here we evaluate the 309 
program’s performance, assessing its accuracy, adaptability, and potential limitations. By subjecting the 310 
algorithm to a range of scenarios involving distinct environmental settings and tree species compositions, we 311 
aim to provide a comprehensive understanding of its capabilities and ascertain 3DFin’s utility as a user-friendly 312 
yet versatile tool for accurate tree attribute estimation. 313 

This testing has been carried out on an OMEN by HP Laptop 17-ck1xxx with the following specifications: 12th 314 
Gen Intel®Core™ i9-12900H, 2500 Mhz, 14 Cores x64-based processor with a NVIDIA GeForce RTX 3080 315 
Ti Laptop GPU, with 32 GB of RAM and 8 x 2 GHz processing units, Windows®11 Home operating system 316 
version 10.0.22621 64-bit. CloudCompare has been used for the visualization of the point clouds, the processing 317 
of the data and the extraction of the tree metrics has been done in 3DFin v0.3.2, and the analysis of the results 318 
has been carried out in the statistical computing software R. 319 

 320 

4.1 Dataset 321 

For testing 3DFin, ground-based point clouds from forest plots measured during the SilviLaser conference in 322 
Vienna 2021 (Hollaus & Chen; 2023) were used. During the Silvilaser 2021 conference, over 100 point clouds 323 
were acquired in the Vienna Woods (Vienna, Austria) and made public (Hollaus & Chen; 2023). From these, 324 
ten point clouds from four 25 m radius circular plots (A1, A2, C1 and D1; Table 1) were selected. These forest 325 
plots were scanned using three different ground-based technologies: TLS, MLS and photogrammetry. The TLS 326 
points clouds used were acquired with a Riegl VZ-400i device, and the MLS point clouds were captured with a 327 
GeoSlam ZEB Horizon RT handheld device. The Riegl VZ-400i has a range of up to 800 m, a field of view 328 
(FOV) of 100º x 360 º and captures up to 500,000 points per second with a relative accuracy of up to 3 mm. The 329 
MLS device has a range of 100 m, a field of view (FOV) of 360º x 270 º and it can capture 300,000 points per 330 
second with a relative accuracy of up to 6 mm. Additionally, for plots A1 and A2, photogrammetric point clouds 331 
captured from a multi-camera setup were used as well to test the capability of 3DFin to process this particular 332 
type of data. Photos of the forest sites where the four plots were set are shown in Figure 13. 333 

Figure 13: Figure caption. 334 

The selected plots encompass a wide range of forest conditions, such as different tree species, forest structures 335 
or age classes. More specifically, A1 is a dense, mixed forest plot with abundant deadwood, where Norway 336 
spruce (Picea abies) is the predominant species (97 trees), although there are some red beech (Fagus sylvatica) 337 
(7), fir (Abies alba) (4), pine (Pinus spp.) (2), and European larch (Larix decidua) (1) trees. The DBH of the 338 
trees ranges from ~10 cm to ~40 cm. A2 is a dense, coniferous forest plot with lower species diversity, with the 339 
vast majority of individuals being spruce and larch trees (102), in addition to 1 pine tree. The DBH of the trees 340 
ranges from ~14 to ~42 cm. C1 is a natural regeneration, mixed forest plot that features trees from five different 341 
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species, both broadleaf and coniferous. It includes red beech (26), spruce (23), black alder (Alnus glutinosa) 342 
(10), fir (6), and ash (Fraxinus excelsior) (1) trees, and the DBH of the trees varies from ~10 cm to ~77 cm. 343 
Lastly, D1 is a multi-layer, mixed forest plot consisting of mostly fir (11) and spruce (7) trees, and 4 broadleaf 344 
trees (2 oaks, 2 red beech trees). The DBH ranges from ~20 to ~74 cm in plot D1. Table 1 presents a summary 345 
of the characteristics of each plot. 346 

Table 1: Table caption.  347 

 348 

Finally, one important consideration about these data is that they are already public, and they had been acquired 349 
transparently. This allows easier replicability of the results presented here from any interested user. The dataset 350 
is freely available at https://researchdata.tuwien.ac.at/records/kndye-egv02 (Hollaus & Chen; 2023). It consists 351 
of one metadata file, the ground-based point clouds, ALS data, and corresponding DTMs derived from the ALS 352 
data. The point clouds are in LAZ 1.4 format and the files containing the TLS point clouds are 353 
SL21BM_TER_046, SL21BM_TER_047, SL21BM_TER_050 and SL21BM_TER_052. The MLS point 354 
clouds are stored in files SL21BM_TER_001, SL21BM_TER_002, SL21BM_TER_005 and 355 
SL21BM_TER_007 and the photogrammetric point clouds are SL21BM_TER_102 and SL21BM_TER_103. 356 
The field-based reference measures of the trees have been kindly made available by the authors of the dataset 357 
and include the position of the trees using (x, y) coordinates, the DBH, the tree species and a dead-alive 358 
indicator. 359 

 360 

4.2 Performance Metrics 361 

To comprehensively assess the performance of 3DFin, a set of standard metrics and benchmarks were employed. 362 
Specifically, to validate the tree mapping, completeness and correctness were calculated. Completeness of the 363 
tree mapping is a measure of how many of the reference trees were detected by the algorithm, and correctness 364 
measures how many of the trees detected by the algorithm were actual reference trees. To match the trees, the 365 
(x, y) coordinates of the reference trees provided by the authors of the dataset were compared to those detected 366 
by 3DFin. The latter are available in the XLSX file output by the program. The chosen metrics are simple, yet 367 
powerful measurements commonly employed within the forestry community: examples of their use can be 368 
found, among others, in Cabo et al. (2018), Liang et al. (2018), Prendes et al. (2021), Krisanski et al. (2021) and 369 
Montoya et al. (2021). Completeness and correctness were computed using the following formulas: 370 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =  
𝑛𝑚𝑎𝑡

𝑛𝑟𝑒𝑓
∗ 100, 371 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =  
𝑛𝑚𝑎𝑡

𝑛𝑑𝑒𝑡
∗ 100, 372 

where 𝑛𝑟𝑒𝑓 is the number of reference trees, 𝑛𝑑𝑒𝑡 is the number of trees detected by the algorithm and 𝑛𝑚𝑎𝑡 is 373 

the number of matched trees; that is, reference trees that were detected by the algorithm. It might happen that 374 
the algorithm misses some tree(s) or that it mistakes some other objects as a tree. In these two situations, both 375 
completeness and correctness would be lower than 100 %. 376 

Additionally, the accuracy of the extracted DBHs was evaluated by comparing them to the field-based reference 377 
measures. The Root Mean Squared Error (RMSE) and the bias were calculated to quantify the algorithm's 378 
accuracy. The RMSE gives an idea of how much error has been incorporated, in average, into the estimates. It 379 
is computed using the following formula: 380 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1
 381 

https://researchdata.tuwien.ac.at/records/kndye-egv02
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where 𝑛  is the number of observations or data points, 𝑦𝑖  represents the observed or actual value for the i-th 382 
data point (the true DBH of the reference tree) and 𝑦̂𝑖 represents the predicted or estimated value for the i-th 383 
data point (the computed DBH value for the detected tree). 384 

Bias, on the other hand, refers to the systematic error or deviation of the estimator (in this case, 3DFin's 385 
algorithm) from the true value of a population parameter (in this case, the true DBH). A remark of the bias is 386 
that it is signed, where positive values indicate that there has been an overestimation of the population parameter, 387 
and negative values indicate that there has been an underestimation. It can be computed using the following 388 
formula: 389 

𝐵𝑖𝑎𝑠 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

𝑛

𝑖=1
 390 

To put the computed RMSE and bias into perspective, two complementary metrics were computed. To express 391 
the RMSE as a percentage of the reference DBH, the following formula was used: 392 

𝑅𝑀𝑆𝐸 (%) =
𝑅𝑀𝑆𝐸

𝑦̅
∗ 100, 393 

where 𝑦̅ is the mean of the reference DBH. A similar analysis has been performed with the bias, using: 394 

𝐵𝑖𝑎𝑠 (%) =
𝐵𝑖𝑎𝑠

𝑦̅
∗ 100. 395 

Finally, the time taken by the algorithm to process the point clouds and generate tree metrics was recorded. This 396 
parameter is crucial for real-world applications where efficiency is a concern. To provide an estimation of the 397 
time needed to obtain the tree metrics using 3DFin, every point cloud was processed three times using the 398 
software, and the mean time computed and rounded to the nearest integer. The processing time is automatically 399 
estimated by 3DFin and reported (written) in the console when a point cloud is processed. 400 

 401 

4.3 3DFin Settings 402 

After visual inspection of the point clouds, it was clear that some trees were not referenced by the field operators 403 
that originally measured the trees. These include some partially captured, large trees situated at the border of 404 
plots A1, C1 and D1, and many thin, inconspicuous trees that are disseminated throughout the plots. Figure 14 405 
and Figure 15 show examples of these. 406 

Figure 14: Figure caption. 407 

Figure 15: Figure caption. 408 

To mimic the criterion followed by the field operators (not including such trees), all partially captured, large 409 
trees were identified and removed during the analysis, and the thin trees were identified thanks to the setting of 410 
3DFin parameters. Plot A1 was processed using default parameters except for “Expert > Computing Sections > 411 
Minimum expected diameter”, which was set to 0.1 m. Plot A2 was processed using default parameters. Plot 412 
C1 was processed using default parameters except for “Expert > Computing Sections > Minimum expected 413 
diameter”, which was set to 0.09 m. Lastly, Plot D1 was processed with default parameters except for “Basic > 414 
Stripe upper limit”, which was set to 7.2 m, “Basic > Stripe lower limit”, that was set to 4.2 m and “Expert > 415 
Computing Sections > Minimum expected diameter”, which was set to 0.2 m. The unreferenced trees were 416 
discarded before computing the metrics. Four (4) trees, clearly visible in the point clouds, but unreferenced in 417 
the field data, were manually removed from plot A1, zero (0) were manually removed from plot A2, two (2) 418 
trees were manually removed in plot C1, and five (5) trees were manually removed in plot D1. However, the 419 
correctness obtained before removing those trees was computed too. The accuracy of the DBH retrieved by 420 
3DFin was calculated employing the DBH output in the XLSX file and the in-situ measures. All ten validation 421 
point clouds were processed using the standalone version of 3DFin. 422 

 423 

4.4 Results 424 
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Table 2 displays the assessment results for the TLS data, Table 3 shows the results for MLS data and Table 4 425 
displays the results from the assessment of the photogrammetric data. In terms of tree mapping, 3DFin achieved 426 
a completeness near or equal to 100% across all plots and technologies, and the correctness after removal of 427 
unreferenced trees was near 100 % across the three technologies as well. Moreover, in terms of DBH metrics, 428 
3DFin yielded an average RMSE of under 2 cm in the TLS (Table 2) and MLS data, performing the best with 429 
MLS (averaging a RMSE of 1.66 cm, Table 3). Conversely, a higher average DBH RMSE of 0.0396 meters 430 
was reported in the photogrammetric data (Table 4). Regarding bias on the estimation of DBH, 3DFin achieved 431 
values under 1 cm across all technologies. A positive average bias of 0.97 centimetres was reported in the TLS 432 
data (Table 2), and a negative average bias of -0.83 cm was yielded in the MLS data. (Table 3) A minimal 433 
average bias of 0.41 centimetres was extracted from the processing of the photogrammetric data (Table 4). 434 

Table 2: Table caption. 435 

Table 3: Table caption. 436 

Table 4: Table caption. 437 

The processing times for TLS data are presented in Table 5, the processing times for MLS data are shown in 438 
Table 6, and Table 7 displays the times required to process the photogrammetric data. Additional characteristics 439 
of the point clouds relevant to this measurement (number of points per plot, number of reference trees in the 440 
plot and plot area) are also given. The processing time is notably variable across the plots and technologies. In 441 
the case of TLS data, 3DFin required the highest time (approximately 5 minutes) to process Plot A1, which had 442 
the largest number of trees (112), and the fastest processing time (over 2 minutes) was obtained in Plot D1, 443 
which had the lowest number of trees (22) (Table 5). For the MLS data, where all plots had similar number of 444 
points (around 33-38 million), the plot that took the highest time to process (slightly less than 7 minutes) was 445 
Plot A2, whereas the lowest time (over 4 minutes) was obtained in Plot D1 (Table 6). Lastly, the processing 446 
time ranged from slightly less than 3 minutes to over 3 minutes in the photogrammetric data (Table 7). 447 

Table 5: Table caption. 448 

Table 6: Table caption. 449 

Table 7: Table caption.  450 
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5. Discussion  451 

 452 

5.1 User-friendliness 453 

First and foremost, 3DFin can be seamlessly integrated as a plugin within the popular point cloud processing 454 
software, CloudCompare, which is downloaded 200,000 - 300,000 times annually according to its official site. 455 
This integration simplifies the user experience by embedding the tool directly within an environment that users 456 
are already familiar with, reducing the learning curve associated with adopting a new software. In addition, 457 
3DFin can be used as a standalone program, offering independence from specific point cloud processing 458 
platforms and providing users with the flexibility to execute tree metric computations in isolation. Furthermore, 459 
for those users who prefer to work within the Python ecosystem, 3DFin is available as a Python package, 460 
allowing for seamless integration with Python-based data analysis pipelines and facilitating automation and 461 
scripting of tree metric calculations. Lastly, recognizing the significance of Geographic Information Systems 462 
(GIS) in forestry and environmental research, 3DFin has also been implemented as a plugin within QGIS, 463 
offering geospatial professionals the ability to incorporate tree metrics directly into their GIS workflows. This 464 
multifaceted approach to implementation ensures that 3DFin is accessible and adaptable to the preferences and 465 
requirements of a broad user base, promoting its widespread utility in the analysis of ground-based point cloud 466 
data for tree-related research and applications. 467 

 468 

5.2 Accuracy 469 

As shown in Tables 2, 3 and 4, 3DFin has been able to reach completeness and correctness of nearly 100 % 470 
across the four plots, which include mixed and coniferous forest that feature a variety of structural characteristics 471 
(Table 1, Figure 7), and three kinds of point clouds (TLS, MLS and photogrammetric). An exception is plot D1, 472 
where completeness remained under 96 % in the TLS point cloud. Plot D1 features only 22 trees, and one was 473 
missed by the program. This tree was detected in the MLS point cloud, though, where the completeness reached 474 
100 % (Table 3). Regarding the DBH values extracted by 3DFin, these can be considered very accurate, as the 475 
RMSE and the bias remained low in all plots and across all data collection technologies (Tables 2-4). It should 476 
be noted that RMSE is lower for MLS than for TLS despite the GeoSlam scanner having a lower relative 477 
accuracy than the TLS Riegl scanner. A possible explanation for this result may lie in the fact that MLS produces 478 
point clouds where stems are scanned all around, which allows the algorithm to determine more clearly which 479 
points belong to the stems. Another possible cause is that the co-registration of the TLS scans into a single point 480 
cloud can induce small deformations. These deformations might slightly affect the precision of the DBH 481 
measurements by altering the spatial relationships between points that represent the tree stems. It was expected, 482 
however, that the DBH RMSE would be highest for the photogrammetric point clouds, as they are visibly the 483 
noisiest among the three technologies. The bias on the DBH estimation remained low across all point clouds 484 
(less than 1 cm, which accounts for less than 3 %). In addition to the results presented here, the capabilities of 485 
the initial versions of the algorithm have been assessed before. Cabo et al. (2018) showed that the initial version 486 
of the algorithm was able to achieve nearly 100 % tree mapping completeness and correctness in the plots that 487 
they tested. As to DBH and TH, the RMSE of the algorithm estimations ranged from 0.8 cm to 1.3 cm and from 488 
0.3 m to 0.7 m, respectively. Similarly, Prendes et al. (2021) obtained comparable results presenting 97 % tree 489 
mapping completeness and 100 % correctness, as well as 1.14 cm RMSE in DBH estimation and 1.52 m RMSE 490 
in TH estimation. In both studies, the point clouds were acquired via TLS devices. Although those results are 491 
not directly applicable to the current version of the algorithm described here, which has undergone 492 
improvements in the robustness and speed of the computations since they were initially published (Cabo et al., 493 
2018; Prendes et al., 2021), they might be seen as a reinforcement of the positive results of 3DFin. 494 

Other authors have also reported completeness, correctness and DBH RMSE values of algorithms that compute 495 
tree metrics in ground-based point clouds. Liang et al. (2018) compared the performance of 18 algorithms that 496 
compute tree metrics in multiple-scan TLS point clouds. These point clouds were divided in easy, medium, and 497 
hard difficulty by the authors. Across the algorithms that reported completeness and completeness, the best 498 
performant produced 90.4 % completeness with 93.6 % correctness across the easy plots, 88.0 % completeness 499 
paired with 89.2 % correctness in medium plots and 66.2 % completeness coupled to 92.8 % correctness in the 500 
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hard plots. Among the 14 algorithms that produced DBH measurements, the best performing algorithms 501 
reported DBH RMSE of 2 cm in the easy plots, which equated to a 5-15 % of the mean DBH value. Nevertheless, 502 
the averaged DBH RMSE obtained by the 14 algorithms in the easy plots was, approximately, 5.3 cm (24.97 503 
%). This value increased to 6.77 cm (34.98 %) average RMSE in the medium plots and up to 10.17 cm (53.70 504 
%) in the hard plots. Montoya et al. (2021) employed these same plots in their study and reported 2.83-3.25 cm 505 
mean DBH RMSE across all plots, paired with 82.0 % completeness and 84.0 % correctness in the easy plots, 506 
66.0 % completeness and 86.0 % correctness in the medium plots and 52.5 % completeness and 91.0 % 507 
correctness in the hard plots. Krisanski et al. (2021) reported 7.2 cm DBH RMSE and 90.98% completeness 508 
across 49 point clouds of 12 trees each, acquired with multiple scan TLS. Table 8 shows those results and the 509 
results obtained with 3DFin for easier comparison. 510 

Table 8: Table caption. 511 

While the plots, trees, and point clouds employed in these previous studies may not offer direct comparability 512 
to one another, nor to the test data utilized in this investigation, the numerical outcomes regarding completeness, 513 
correctness and DBH, calculations achieved by 3DFin are, at a minimum, on par with the top-performing results 514 
obtained in the evaluation of previous algorithms. 515 

 516 

5.3 Processing time 517 

For our tested dataset, the maximum processing time was under 7 min, with the lowest processing time being 518 
over 2 min. It is difficult to compare these results to the processing times achieved by other software / 519 
algorithms, as the total processing time is rarely reported. Only one of the software programs that produce tree 520 
metrics from ground-based point clouds described in Section 1 reported processing times. Krisanski et al. (2021) 521 
reported a processing time using FSCT of up to 60 min in TLS and MLS point clouds from forest plots of 12 522 
trees. This was achieved using a high-end pc with Intel i9-10900K (overclocked to 4.99GHz in all cores) CPU, 523 
NVIDIA Titan RTX (24 GB RAM) GPU and 128 GB DDR4 at 3200 MHz RAM. Trochta et al. (2017) did not 524 
report computing times of the whole process of extracting tree metrics with 3DForest; however, in a later study, 525 
Klemt et al. (2021) used 3DForest and reported that processing a point cloud with this software and producing 526 
a table with the tree metrics took 3-4 h for unexperienced users of 3DForest, and 1 h for experienced users. The 527 
point cloud used in this study was acquired from a 50 × 50 m forest plot using a Leica BLK 360 terrestrial laser 528 
scanner in multiple scan positions and was downsampled to keep 1 of every 5 points. The specifications of the 529 
computer used to process the point cloud were not described. Although these times are not fully comparable to 530 
the processing times obtained with 3DFin, as the datasets are different in terms of number of trees and the 531 
processing power of the computers used in each study are different, 3DFin provides the fastest computing times 532 
among the three tools by a large margin. 533 

 534 

5.4 Known limitations 535 

It is worth noting that 3DFin, while providing powerful tree metric computation capabilities, may have certain 536 
limitations inherent to the problem that it aims to solve. The accuracy of the computed tree metrics relies on the 537 
quality and completeness of the input point cloud data. As a result, noisy or incomplete data may affect the 538 
accuracy of the results (Liu et al., 2017). This effect is noticeable in the results obtained from the 539 
photogrammetric data, were the RMSE of the computed DBH was much higher than from the LiDAR data. 540 
Moreover, processing large-scale point cloud data may require significant computational resources, including 541 
memory and processing power. It is recommended to use a system with at least 16 GB of RAM to run 3DFin 542 
on average-sized point clouds (50 million points or lower) and at least 32 GB of RAM to process larger clouds. 543 
A final limitation is that 3DFin is specifically designed for processing ground-based point clouds obtained 544 
through techniques such as TLS, MLS or photogrammetry, as it relies heavily on a good representation of the 545 
ground and lower parts of the stems. Thus, it is not suitable for aerial or satellite-based point cloud data alone, 546 
where the ground and stems are often underrepresented in comparison to the tree canopy. 547 

 548 
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5.5 Future Development 549 

The development of 3DFin highlights an important evolution in utilizing terrestrial point clouds for forest 550 
inventories, aiming for increased automation and precision. Looking into the future, research and development 551 
efforts will focus on both enhancing the existing capabilities of 3DFin and exploring new avenues to broaden 552 
its application in forest management and ecological studies. Progressing with these developments, a central 553 
tenet of the 3DFin project remains to enhance the usability and accessibility of our software. Our aim is to 554 
ensure that 3DFin is approachable and user-friendly, even for those who may not have specialized expertise in 555 
geomatics or computer science. This commitment to inclusivity is reflected in our ongoing efforts to improve 556 
3DFin's integration with open-source platforms, such as CloudCompare and QGIS, thereby making advanced 557 
geospatial analysis and data processing capabilities more accessible to a wider range of users. 558 

One of the primary objectives in the next phase of the development of 3DFin is to include tree volume estimation 559 
functionalities. Current capabilities such as the computation of DBH, TH, and diameters at various section 560 
heights, lay a solid foundation for estimating tree volume. In this sense, an important aspect of ongoing research 561 
will be to rigorously test and validate the capabilities of 3DFin in estimating tree height and diameters at various 562 
heights along the stem, beyond the standard Diameter at Breast Height (DBH) measurements. Recognizing the 563 
critical role these metrics play in forest inventory and ecological research, we aim to conduct extensive field 564 
tests to compare 3DFin's outputs with ground-truth data across diverse forest types and conditions. This will 565 
help to refine the software’s algorithms and ensure its accuracy and reliability in capturing a full range of 566 
scenarios.  567 

Alongside, we acknowledge the necessity of conducting a comprehensive sensitivity analysis of 3DFin's 568 
parameters. Given the software’s complex architecture, a step-by-step sensitivity analysis is imperative to 569 
understand the influence of each parameter on the software’s performance. This analysis will be instrumental 570 
in optimizing 3DFin’s settings for different forest environments and operational conditions, thus enhancing the 571 
robustness and adaptability of the software. Although this analysis has not yet been conducted due to the sheer 572 
number of modifiable parameters, future research will prioritize this task. By systematically evaluating the 573 
impact of each parameter, we aim to provide users with clear guidelines and optimized presets that facilitate the 574 
effective application of 3DFin in various forest inventory scenarios.  575 

Another direction for the research linked to 3DFin is the development of a complementary software tool focused 576 
on the semantic segmentation of point clouds into different vegetation structures. This tool will build upon the 577 
capabilities of 3DFin, employing advanced deep learning techniques to distinguish between various types of 578 
vegetation elements within a forested scene. The segmentation results can greatly enhance the accuracy of forest 579 
inventories, ecological studies, and habitat assessment, providing valuable insights into forest structure. This 580 
advancement, together with the volume computations, will enable more comprehensive biomass assessments 581 
and contribute to carbon stock estimation, enhancing the utility of the software in sustainable forest management 582 
and climate change research. 583 

584 
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Conclusions  585 

Here we present 3DFin, a user-friendly, free, and open-source software designed for automatic 3D forest 586 
inventory using ground-based point clouds. The aim of this program is to offer a flexible and accessible set of 587 
tools for computing tree metrics, ensuring compatibility with various platforms and software ecosystems. 3DFin 588 
is designed to accommodate diverse user preferences and workflows, catering to the needs of researchers and 589 
practitioners in forestry and environmental sciences. The current implementation of 3DFin provides reliable 590 
and efficient results with minimal user input and parametrization. 591 

3DFin marks a notable progression in the automation and accessibility of forest inventories through ground-592 
based point clouds. This software simplifies the inventory process, maintaining a “two-click software” 593 
approach, while ensuring precision and reliability in the results. The streamlined approach offered by 3DFin 594 
holds potential for enhancing forest management efficiency and facilitating informed decision-making. 595 
Additionally, its integration with widely used software for processing ground-based remote sensing data opens 596 
up new possibilities for forest resource assessment and monitoring. 597 
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Table and Figure captions 717 

Figure 1: The first step of the algorithm is to normalize the input point cloud. A) Original point cloud. B) Height-718 

normalized point cloud. Line 130 719 

Figure 2: Effect of denoising the point cloud before computing the DTM through Cloth-Simulation Filter. This 720 

allows to generate a more accurate DTM, which in turn improves the computation of the tree metrics by 721 

3DFin. A) The original noisy point cloud. B) the denoised point cloud. Note how noise above the canopy 722 

is also removed. C) A faulty DTM, product of applying the CSF to the noisy point cloud. D) A correctly 723 

generated DTM produced by applying the CSF filter to the denoised point cloud.  Line 146 724 

Figure 3: Identification of stems within the horizontal stripe from the normalized point cloud, which is the 725 

second main step of the algorithm. A) Horizontal stripe is defined by two Z0 values. B) Verticality is 726 

computed for each point in the stripe, using fixed-radius neighbourhoods of points. C) Points with low 727 

verticality values are discarded. D) The remaining points are clustered using DBSCAN algorithm. E) Small 728 

clusters of points are discarded. B, C, D and E are repeated iteratively. F) The points that have not been 729 

discarded (those with high verticality and that remained in large clusters simultaneously) are regarded as 730 

the bases of the stems. Line 163 731 

Figure 4: The third step of the algorithm, where stem axes are computed and every point in the point cloud is 732 

mapped to one of these axes. This serves as a proxy to “individualize” the trees and compute tree metrics 733 

on each of them. THs are computed at this stage. A) Computed axes for each stem. B) Mapping of points 734 

to closest axis. Line 174 735 

Figure 5: TH measurement. A) Set of points that have been mapped to the same tree axis. B) Voxelization of 736 

the points. C) Clustering and filtering of the voxels, discarding small clusters. D) Voxels further than a 737 

certain threshold from the tree axis are discarded. The normalized (z) value of the highest remaining voxel 738 

is used as TH. Line 183 739 

Figure 6: General overview of the fourth and last step of the algorithm, where the stems are identified and their 740 

diameter computed. To identify the stems, the limbing algorithm detailed in Section 2.2 is applied to every 741 
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tree to remove branches. To compute the sections, circles are fitted to the stems through least-squares 742 

minimization. A) Point cloud after the tree individualization described in Section 2.3. B) Computed 743 

sections for each tree. C) Detail of the computed sections. These are represented as points that form circles. 744 

Line 198 745 

Figure 7: Identification of whole stems along tree axes. The limbing algorithm detailed in 2.2 is applied to every 746 

tree to remove branches. A) Points that share a common tree axis, which are used as a proxy to the whole 747 

tree. B) A verticality value is assigned to each point based on the geometrical structure of its point 748 

neighbourhood. C) Points with low verticality and small clusters of points are disregarded. B and C may 749 

be repeated iteratively. D)  Points belonging to the stem. Line 206 750 

Figure 8: Quality checks described above. Two sections (A and B) are used to illustrate the quality checks. 751 

Section A (top) passes all checks: there are not points inside the inner circle (top-left), a large proportion 752 

of sectors are occupied by points (13/16 in this example) (top-centre) and the diameter of the fitted circle 753 

lies within the expected boundaries (in this example 6 cm and 50 cm are used as lower and upper 754 

boundaries, respectively). Section B (bottom) does not pass any of the checks. There are several points 755 

inside the inner circle (bottom-left), only a small proportion of the sectors are occupied (2 / 16) (bottom-756 

centre) and the diameter of the fitted circle is larger than the upper boundary (bottom-right). Line 234 757 

Figure 9: Detection of outliers. Two cases are illustrated: Tree A shows stem sections (1, 2, 3… 7) of a tree with 758 

no outliers, whilst the Tree B shows the sections of a tree where there is an outlier section (section 5). The 759 

sections are represented by blue ellipses. The tilt angles (symbolized by the black arrows and red arcs) of 760 

the visualized stem sections of Tree A are all very comparable and hence the indicator would not identify 761 

an outlier here. For Tree B, the outlier section produces abnormally large / small angles. These will 762 

increase the outlier probability described above. Line 243 763 

Figure 10: 3DFin’s GUI, which consists of three tabs: Top left image: Basic tab. Top right image: Advanced 764 

tab. Bottom image: Expert tab. Line 265 765 

Figure 11: 3DFin inputs and main point cloud outputs, illustrated with a point cloud of a single tree that has 766 

been processed with the software. A) Input, raw point cloud, B) Stems identified in the horizontal stripe.   767 



21 
 

C) Tree axis. D) Enriched point cloud and tree height. The enriched point cloud includes computed scalar fields 768 

(normalized height, distance to closest tree axis, tree ID). E) Computed diameters, including DBH. 769 

Sections coloured in blue pass the quality checks detailed in Section 2.4, while sections in red do not. 770 

Output point cloud containing the DTM is not illustrated here. Line 303 771 

Figure 12: Schematic view of the numeric outputs produced by 3DFin. Line 304 772 

Figure 13: Photos of the forest sites in Vienna Woods (Vienna, Austria) where the point clouds were captured 773 

from. Plots A1 and A2 are part of Site A (Top-left figure). Plot C1 is part of Site C (top-right figure). Plot 774 

D1 is part of Site D (bottom figure). Source: https://silvilaser2021.at/benchmark/. Line 334 775 

Figure 14: Unreferenced trees in plot A1. Marked in blue, two large, partially captured trees that are not included 776 

in the reference data but are present in the point clouds. Colours have been assigned according to distance 777 

to closest tree axis, which is computed by 3DFin. Line 407 778 

Figure 15: Unrefenced trees in plot C1. Marked in blue, thin, young trees that had not been included in the field-779 

based reference dataset. Colours according to distance to closest tree axis, which is computed by 3DFin. 780 

Line 408 781 

Table 2: A summary of the four 25 m radius plots employed to assess 3DFin’ performance. Line 347 782 

Table 2: Results of the assessment of 3DFin on the point clouds acquired with TLS (Riegl VZ-400i). 783 

Correctness* is the correctness before removing the unreferenced trees. Line 435 784 

Table 3: Results of the assessment of 3DFin on the point clouds acquired with MLS (GeoSlam ZEB Horizon 785 

RT). Correctness* is the correctness before removing the unreferenced trees. Line 436 786 

Table 4: Results of the assessment of 3DFin on the point clouds acquired with the multi-camera setup 787 

(photogrammetry). Correctness* is the correctness before removing the unreferenced trees. Line 437 788 

Table 5: Time required to process the point clouds acquired with TLS (Riegl VZ-400i) (bold), processing times, 789 

the number of points in the cloud, the number of trees present, and the area of the plot. Line 448 790 
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Table 6:  Time required to process the point clouds acquired with MLS (GeoSlam ZEB Horizon RT) (bold), 791 

processing times, the number of points in the cloud, the number of trees present, and the area of the plot. 792 

Line 449 793 

Table 7:  Time required to process the point clouds acquired with the multi-camera setup (photogrammetry) 794 

(bold), processing times, the number of points in the cloud, the number of trees present and the area of the 795 

plot. Line 450 796 

Table 8:  Comparison of our results (3DFin, TLS; 3DFin, MLS and 3DFin, Photogrammetry) versus the results 797 

presented in Liang et al. (2018), Montoya et al. (2021) and Krisanski et al. (2021). Line 511 798 

Tables 799 

Table 1 800 

Plot Characteristics Plot A1 Plot A2 Plot C1 Plot D1 

Nº of trees 112 103 67 22 

Nº of species 6 3 5 4 

Approx. age (years) 50 50 120 120 

Forest type Mixed Coniferous Mixed Mixed 

Other Deadwood Deadwood 
Natural 

regeneration 
Multi-layer 

Standing Dead trees Yes No No Yes 

Mean DBH (m) 0.2437 0.2702 0.3624 0.5505 

Min DBH (m) 0.1085 0.1455 0.1030 0.2050 

Max DBH (m) 0.4075 0.4235 0.7680 0.7400 

 801 

Table 2 802 

Riegl VZ-400i Plot A1 Plot A2 Plot C1 Plot D1 Average 

Completeness (%) 100 100 100 95.45 98.86 

Correctness (%) 100 99.04 100 100 99.76 

Correctness* (%) 96.55 99.04 97.10 80.77 93.37* 

DBH RMSE (m) 0.013 0.015 0.019 0.022 0.0175 

DBH RMSE (%) 5.39 5.58 5.42 4.07 5.12 

DBH Bias (m) 0.007 0.008 0.012 0.013 0.0097 

DBH Bias (%) 2.64 3.01 3.27 2.33 2.81 

 803 

Table 3 804 
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GeoSlam ZEB Horizon RT Plot A1 Plot A2 Plot C1 Plot D1 Average 

Completeness (%) 100 100 100 100 100 

Correctness (%) 100 99.04 98.5 100 99.39 

Correctness* (%) 96.55 99.04 95.65 84.61 93.96* 

DBH RMSE (m) 0.016 0.012 0.021 0.018 0.0166 

DBH RMSE (%) 6.37 4.49 5.89 3.21 4.99 

DBH Bias (m) -0.012 -0.007 -0.007 -0.007 -0.0083 

DBH Bias (%) -4.73 -2.72 -1.95 -1.30 -2.68 

 805 

Table 4 806 

Multi-camera Plot A1 Plot A2 Average 

Completeness (%) 99.11 100 99.56 

Correctness (%) 98.23 99.04 98.64 

Correctness* (%) 95.69 99.04 97.37* 

DBH RMSE (m) 0.034 0.045 0.0396 

DBH RMSE (%) 13.93 16.67 15.3 

DBH Bias (m) 0.010 -0.001 0.0041 

DBH Bias (%) 3.96 -0.50 1.73 

 807 

Table 5 808 

Riegl VZ-400i Plot A1 Plot A2 Plot C1 Plot D1 

Nº of points (mil.) 59.27 48.40 72.58 42.48 

Nº of trees 112 103 67 22 

Area (m2) 1409 1401 1464 1425 

Processing time (s) 292 257 267 140 

 809 

Table 6 810 

GeoSlam ZEB Horizon RT Plot A1 Plot A2 Plot C1 Plot D1 

Nº of points (mil.) 35.74 37.53 33.22 35.89 

Nº of trees 112 103 67 22 

Area (m2) 1426 1403 1464 1426 

Processing time (s) 390 412 266 253 

 811 

Table 7 812 
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Multi-camera Plot A1 Plot A2 

Nº of points (mil.) 67.70 71.04 

Nº of trees 112 103 

Area (m2) 1404 1397 

Processing time (s) 176 218 

 813 

Table 8 814 

Study and dataset Completeness (%) Correctness (%) DBH RMSE (cm) 

Liang et al. (2018), Easy plots 90.4 93.6 5.3 

Liang et al. (2018), Medium plots 88 89.2 6.77 

Liang et al. (2018), Hard plots 66.2 92.8 10.17 

Montoya et al. (2021), Easy plots 82 84 2.83-3.25 

Montoya et al. (2021), Medium plots 66 86 2.83-3.25 

Montoya et al. (2021), Hard plots 52.5 91 2.83-3.25 

Krisanski et al. (2021) 90.98 Not reported 7.2 

3DFin, TLS 98.86 99.76 1.75 

3DFin, MLS 100 99.39 1.66 

3DFin, Photogrammetry 99.56 98.64 3.96 
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