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A B S T R A C T

Research evidence shows that physical rehabilitation exercises prescribed by medical experts can assist
in restoring physical function, improving life quality, and promoting independence for physically disabled
individuals. In response to the absence of immediate expert feedback on performed actions, developing a
Human Action Evaluation (HAE) system emerges as a valuable automated solution, addressing the need for
accurate assessment of exercises and guidance during physical rehabilitation. Previous HAE systems developed
for the rehabilitation exercises have focused on developing models that utilize skeleton data as input to
compute a quality score for each action performed by the patient. However, existing studies have focused on
improving scoring performance while often overlooking computational efficiency. In this research, we propose
LightPRA (Light Physical Rehabilitation Assessment) system, an innovative architectural solution based on
a Temporal Convolutional Network (TCN), which harnesses the capabilities of dilated causal Convolutional
Neural Networks (CNNs). This approach efficiently captures complex temporal features and characteristics of
the skeleton data with lower computational complexity, making it suitable for real-time feedback provided on
resource-constrained devices such as Internet of Things (IoT) devices and Edge computing frameworks. Through
empirical analysis performed on the University of Idaho-Physical Rehabilitation Movement Data (UI-PRMD)
and KInematic assessment of MOvement for remote monitoring of physical REhabilitation (KIMORE) datasets,
our proposed LightPRA model demonstrates superior performance over several state-of-the-art approaches
such as Spatial–Temporal Graph Convolutional Network (STGCN) and Long Short-Term Memory (LSTM)-based
models in scoring human activity performance, while exhibiting lower computational cost and complexity.
1. Introduction

Prescribing physical rehabilitation exercises is essential for physi-
cally disabled individuals due to different medical conditions such as
strokes, surgeries, and injuries [1], or deterioration of muscle mass
and bone density as a consequence of aging [2]. The process of mon-
itoring patients’ movement involves tracking the prescribed activities
performed by patients and assessing their recovery level by medical
experts. The new concept of telerehabilitation [3], which involves pro-
viding monitoring services remotely, holds immense promise for both
medical experts and patients. It allows the experts to reach patients fac-
ing barriers, like those living in rural or under-served areas. In addition,
it allows medical experts to efficiently manage their time by conducting
remote sessions and providing service for a larger number of patients.

∗ Corresponding author at: Research Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry, UK.
E-mail address: sardaris@uni.coventry.ac.uk (S. Sardari).

Moreover, in a study conducted on aging people [4], travel time and
cost are reported as the primary barriers to rehabilitation program
participation. The possibility of performing exercises from home can
reduce the cost and time of patient treatment [5]. However, the im-
portance of accurate feedback and guidelines following the monitoring
cannot be overstated since it directly impacts the success and influence
of rehabilitation on individuals [6]. By providing accurate feedback and
regular check-ins, the medical experts can guarantee the continuity of
the rehabilitation procedure for patients, including those receiving care
at home [7,8]. Automation of the monitoring phase plays a significant
role in the effectiveness and efficiency of the rehabilitation procedure
by assisting the expert in enhancing the quality of feedback [6,9,10].
Therefore, the advantages of automated movement evaluation in the
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context of rehabilitation include enhancing objective action analysis
(due to the precise data collection of different sensors rather than
only the human eye), providing frequent and consistent assessment for
the patients, early detection of suboptimal progress or deviation from
correct activity, facilitating telerehabilitation and remote consultation,
and finally promoting adherence to a rehabilitation program.

Automatic movement monitoring often involves computer vision
techniques and AI-based models for tracking and analyzing the cap-
tured data from a patient’s movement. The computer vision techniques
for action monitoring include different modalities such as skeleton data,
InfraRed (IR) sequences, depth data, and RGB images [6]. Skeleton
data, among these vision-based data capturing methods, has gained
significant interest among researchers due to factors such as privacy
preservation and cost effectiveness [6]. The advent of Kinect and Vicon
sensors as methods for capturing skeleton data, along with the utiliza-
tion of diverse Deep Learning (DL)/ Machine Learning (ML) algorithms
as the HAE pipelines, have underscored their potential as adjunct
decision-making tools for medical experts. The HAE for rehabilitation
problem can be addressed in two ways: classification or regression.
In the former approach, each activity performed by the patient is
classified as correct or incorrect, overlooking the degree of deviation
from the reference correct action and possible improvements in per-
forming the activity. The latter approach predicts continuous numerical
scores for each action, providing a finer assessment of the degree
of correctness. Performing traditional ML algorithms for regression,
which utilize hand-crafted feature extraction (such as extracting rela-
tive or projected trajectory) [11–13] encounters some drawbacks. They
might require an expert’s knowledge or problem-specific algorithms,
which hinders generalization and increases preprocessing cost [14,15].
Therefore, DL algorithms that encompass automatic feature learning
align better with the complexity of the HAE problem and are consid-
ered superior solutions. Different DL techniques have been employed
in healthcare-related studies illustrating their effective performance
within this scope [16–19].

Considering the spatial–temporal nature of both orientational and
positional data, different DL models have been proposed, including
CNN-based, Graph Convolutional Network (GCN)-based, and Recurrent
Neural Network (RNN)-based architectures. These models are designed
to capture either spatial or temporal features of the data for activity
assessment. Leveraging computational resources, they process and train
on skeleton data. Nevertheless, a common challenge faced by these
models is finding a balance between scoring performance and computa-
tional cost. For instance, when handling temporal data such as skeleton
sequences, LSTM-based models are a natural consideration. However,
there are several shortcomings in this approach [20,21] such as losing
long-term information, and high memory and time costs for training
the model. Therefore, there is a high chance of inferior scoring perfor-
mance, coupled with a substantial sacrifice of computational resources.
To address the challenge of suboptimal scoring performance, attention-
based models can be employed that focus on the most discriminative
features; however, it is worth noting that this may lead to an increase
in computational resource usage. With the continuous expansion of
resource-constrained technologies such as IoT devices [22] and Edge
Computing [23], and the potential deployment of this HAE application
on such devices, there is a growing need for an HAE system that
effectively manages scoring performance and computational costs. This
means that in the future, healthcare providers and patients as users of
the system will need accurate and real-time feedback for the activities,
they perform from the system employed on their simple device. Given
the newness of the HAE issue in rehabilitation and the swift advance-
ment of resource-constrained technologies such as IoT devices, it seems
that prior research may have overlooked this problem and its associated
remedy.

To address the aforementioned shortcomings (lack of balance be-
tween computational complexity and scoring performance) more effi-
2

ciently, we introduce a dilated causal convolutional architecture that
performs automatic feature extraction of the body skeleton using the
TCN pipeline. According to Meng et al. [24], TCNs not only have
longer memory in sequence modeling compared to LSTMs, but they also
perform large-scale parallel processing like CNNs. The parallel nature
of convolutions makes TCNs well-suited for real-time applications with
time and computational power constraints [25]. Moreover, TCNs are
intricately designed to handle sequential data, ensuring commendable
performance despite computational constraints. This illustrates their
potential to be used on any kind of processor like Central Processing
Units (CPU) or even the ones with parallel computational architectures
like Graphics Processing Units (GPU) and Field Programmable Gate Ar-
rays (FPGAs) [26]. In the context of deploying diverse DL frameworks
for IoT applications, which frequently struggle with limited computa-
tional resources and the critical constraints of energy efficiency, TCNs
emerge as a fitting solution. Their compatibility with constrained en-
vironments aligns well with the requirements established earlier. TCNs
on FPGAs use their inherent parallelism to accelerate the computational
time and reduce latency. Running the TCN on energy-efficient FPGAs
can reduce power consumption by optimizing power usage on battery-
powered IoT devices [27]. The fewer trainable parameters and less
Random Access Memory (RAM) usage in TCNs make them well-suited
for resource management in IoT devices. In general, the characteristics
mentioned above add to the computational power of the TCNs in the
training and inference phase, which makes them suitable for real-time
training and providing feedback on resource-constrained devices, Edge
computing, and IoT devices.

As noted by Sardari et al. [6], the domain of physical rehabilitation
movement analysis encounters a scarcity of publicly available datasets.
This scarcity arises from concerns related to patient privacy and eth-
ical considerations. Due to the low participation rate of elderly and
physically disabled people in exercise-related data collection studies,
some studies require healthy participants to perform both healthy and
simulated unhealthy exercises [28–30]. Among the remaining datasets,
there are very few ones targeting a general population of patients
with the target of score prediction and regression. Due to these rea-
sons, KIMORE [31] and UI-PRMD [28] datasets have become more
popular in recent activity evaluation studies. Two important aspects
regarding these datasets are required to be mentioned here. First, the
KIMORE and UI-PRMD datasets are captured through distinct sensing
technologies, namely Kinect and Vicon, respectively. These sensors
yield different levels of accuracy in skeleton data capturing. As detailed
by Sardari et al. [6], earlier versions of Kinect sensors (which are
used in the KIMORE) are noted for their relatively lower accuracy,
producing noisy data compared to Vicon sensors. The analysis provided
in our and prior studies indicates a noticeable reduction in scoring
accuracy for the data captured by the Kinect sensor. The UI-PRMD
dataset [28] includes positions and angles of body joints [14]. The
KIMORE [31] includes both 3D joint position and joint orientation
data. The joint orientation data captured in the KIMORE dataset is
represented as their quaternion rotations with respect to the spine
base. According to previous studies [32] The usage of quaternions
compared to other approaches of 3D rotation representation such as
Cardan and Euler angles is more robust and compact, due to avoid-
ing mathematical singularities and gimbal lock issues. Moreover, the
orientational data has spatial angular and rotational information of
the joint points during activity and can be considered better than
positional data for the following reasons: (1) Joint orientation is robust
to changes in body scale, environment, and shifting camera angles. (2)
Joint orientation provides richer information about the angle of body
joints during dynamic and complex activities [32]. It encapsulates the
spatial inter-dependencies between the body joints, encoding them into
joint angular information. Therefore, each joint orientation represents
a signal inherently embedded with spatial information, leaving the task
of learning its temporal features to the model. Therefore, in this study,
we investigated the joint orientation and positions as the input data for
further comparison and analysis.
The key contributions of this study are summarized as follows:
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• In this study, we proposed a novel fully TCN-based architecture,
namely LightPRA, specifically tailored for processing the tempo-
ral features in sequential joint data. Leveraging the distinctive
characteristics of the causal and dilated convolutions, our model
excels in automatic action scoring. To the best of our knowledge,
this is the first study conducted on applying a fully TCN-based
architecture for HAE in the context of rehabilitation applications.

• We conduct comprehensive experiments on different types of
data (joint orientation and joint position), to compare the scoring
performance of the proposed LightPRA model to state-of-the-art
methods. On average, the derived results demonstrate that our
proposed model is as effective as the strong graph-based models in
the UI-PRMD [28] dataset. Moreover, it surpasses the accuracy of
scoring achieved by previous studies in the KIMORE [31] dataset.

• To evaluate the model’s affordability, the computational time
and complexity are compared to previous approaches. The results
show that the proposed LightPRA architecture significantly re-
duces the training and inference time. This holds significant value
in applications involving adapting and training the model for
new patients and exercises. In addition, the inference time on the
testing experiments demonstrates the superiority of the LightPRA
model over other methods in providing real-time feedback. The
reduced RAM consumption and time complexity in the proposed
TCN-based pipeline highlight its potential in resource-constrained
devices and Edge computing environments.

t is worth mentioning that the implementation of the preprocessing
hase and the proposed method is publicly available at https://github.
om/SaraS92/LightPRA. The remainder of this paper is structured as
ollows. Section 2 presents the related work. Section 3 includes the pro-
osed method in detail. Section 4 presents the results and discussion.
inally, Section 5 concludes the study and suggests potential future
ork.

. Related work

In this section we briefly review approaches related to our, i.e., DL-
ased work for rehabilitation exercise evaluation, and TCN-based mod-
ls previously proposed for different applications. According to the
revious literature [6] in the domain of rehabilitation exercises for
AE, studies exhibit a wide range of objectives, contributing to sig-
ificant diversity that complicates comparison. In addition, Because
f its novelty, the field presents considerable potential for further
nvestigation and the discovery of unexplored areas. Due to this factor,
nly a limited number of studies have explored the UI-PRMD [28] and
IMORE [31] datasets for evaluating their DL-based models.

In 2020, Liao et al. [33] proposed a DL framework for HAE validated
n the UI-PRMD dataset [28]. The framework includes an autoen-
oder for dimensionality reduction, a Gaussian mixture model (GMM)
or automatic label generating, and, most importantly, a hierarchical
NN–LSTM-based model for extracting spatial–temporal features and
ovement quality assessment. First, LSTM models are prone to losing

ong-term information in long temporal sequences, though they were
reviously introduced to remove the vanishing gradient problem of
NNs. In addition, LSTMs have shown longer training time, resulting

n high computation costs due to the sequential nature of the model.
n addition, LSTMs are prone to consume a significant amount of
emory to keep the partial outputs for their multiple-cell gates. In

nother study conducted by Deb et al. [14], the authors proposed
n STGCN architecture augmented with a self-attention mechanism
o provide better scoring performance. However, incorporating LSTM
nd self-attention layers within this pipeline presents a significant
hallenge, primarily due to the increased associated computational
osts. According to Dao et al. [34], the self-attention module exhibits
ime and memory complexity that grows quadratically with the length
f the sequence. Finally, to solve the problem of time and memory
3

complexity, the self-attention modules need parallel processing, which
can typically be handled by GPUs. Training these architectures often
experience substantial improvements in performance through GPU ac-
celeration, due to the GPUs’ inherent parallel processing capabilities.
Their adeptness at managing extensive matrix computations inherent
in self-attention mechanisms leads to heightened efficiency, ultimately
resulting in accelerated training and inference duration. However, to
date, the literature has not yet explored solutions with high scoring
performance, tailored for resource-constrained devices lacking high
memory and GPU access.

As emphasized in the previous section, considering the efficient
resource utilization of TCN and its proven success in the analysis of tem-
poral data, TCN presents itself as a promising alternative. Li et al. [35]
utilized a combination model of a TCN and Gated Recurrent Unit for
accurate fall detection. They highlighted the resulting architecture as
an enriching classifier capable of delivering strong performance even
with limited motion information. Several other studies have explored
various versions of these networks for tasks such as human action
segmentation and detection [36,37]. In the study conducted by Lea
et al. [38], the authors utilized a TCN-based Encoder–Decoder for
capturing the long-range temporal patterns Following dilated TCNs for
action segmentation and detection. They have illustrated that TCNs can
capture long-range dependencies, and they are faster than LSTM models
in the training phase. In a 2023 study [39] that explored the combi-
nation of TCN models and Transformers for temporally aware surgical
workflow recognition, the significance of the TCN model in capturing
temporal information was emphasized as crucial for the model’s supe-
rior performance. Sabater et al. [40] introduced a TCN-based model
for one-shot activity recognition in the context of therapy for autistic
patients, achieving high performance with the lightweight model. Due
to the remarkable performance demonstrated by TCNs, we proposed
the TCN-based framework for HAE in rehabilitation applications.

3. Proposed method

This section presents the proposed LightPRA pipeline as a hu-
man activity evaluation technique for rehabilitation exercises. First, it
includes an analysis of the two public rehabilitation datasets of UI-
PRMD [28] and KIMORE [31] utilized in the evaluation of different
methods in Section 3.1. We discuss the description and preprocessing
stages and mention the observed challenges regarding each dataset.
Then, in Section 3.2 we offer a detailed description of the LightPRA, our
proposed TCN-based model, highlighting the characteristics that make
it well-suited for temporal data analysis, particularly tailored for the
HAE task.

3.1. Dataset description and preprocessing

UI-PRMD dataset: One of the public datasets utilized in this study
is The UI-PRMD dataset [28] published in 2018, which is publicly
available at the website provided by the University of Idaho (www.
webpages.uidaho.edu/ui-prmd). The dataset includes 10 general re-
habilitation exercises with 10 repetitions performed by 10 healthy
individuals in both correct and incorrect manner (mimicking patients).
The exercises consist of deep squats (E1), hurdle step (E2), inline lunge
(E3), side lunge (E4), sit-to-stand (E5), standing active straight leg raise
(E6), standing shoulder abduction (E7), standing shoulder extension
(E8), standing shoulder internal–external rotation (E9), and standing
shoulder scaption (E10). Vicon motion-capturing cameras as accurate
sensors for capturing exact joint positions and orientations [6,41] were
utilized to capture skeletal data (including joint coordinates and an-
gles). The information captured by Vicon in this dataset illustrates 117
joint displacements of the body skeleton in different time steps. After
acquiring the skeleton data, it is essential to perform the preprocessing.
In this stage, firstly the spatial and temporal alignment and centering
of the skeleton data are performed. After preprocessing the data and

https://github.com/SaraS92/LightPRA
https://github.com/SaraS92/LightPRA
https://github.com/SaraS92/LightPRA
http://www.webpages.uidaho.edu/ui-prmd
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excluding some noisy data, our dataset includes the following: 180
samples for each exercise (90 correct movements and 90 incorrect
movements), 240 time-steps (number of frames), and 117 joint dis-
placements, which are reduced to 90 displacements after excluding
head joint displacements. The multi-channel signal of human body
movement for the first training sample of deep squat action of this
dataset is shown in Fig. 1. It illustrates the orientations of the joints
in the trunk, left arm, right arm, left leg, and right leg through 240
frames. It can be seen that the left leg and right leg had more changes
over time for this activity.

To automatically generate scores (labels) for each movement per-
formed by the participants, the GMM as a statistical model is trained
on the correct movements of the specific exercise [33]. Then the
negative log-likelihood of the trained model is utilized to measure the
performance quality of each movement. Finally, a scoring function is
defined, which maps the performance metric values into a series of
scores ranging between 0 and 1. This method of scoring is already
compared with other methods of scoring like Euclidean distance and
Dynamic Time Warping (DTW) [42] distance in the study conducted
by Liao et al. [33] and the authors concluded that this scoring method
results in better action assessment. All of these preprocessing stages
have been considered the same as the previous studies. To enhance
comprehension of data, we performed an analysis for the scores dis-
tribution of some exercises as depicted in Fig. 2. The plots illustrate
that the concentration of scores is primarily in the range of 0.7 to
0.95 despite the expected range of 0 to 1. This observation notes
that even for mimicked unhealthy movements, the majority of score
distribution is in the higher range. In addition, the score distribution
depicts the outliers, which deviate significantly from the rest of the
data (see Fig. 2 parts A, B, and C, where samples from the lowest
ranges are in the lowest frequency). The problem of outliers can be
addressed by considering better evaluation metrics for the models that
are less sensitive to outliers. The non-uniform scoring and outliers in
some exercises can introduce some inconsistency to the HAE models in
scoring accuracy.

KIMORE dataset: The KIMORE dataset introduced by Capecci
t al. [31] (available in
ttps://vrai.dii.univpm.it/content/kimore-dataset) is one of the recent
tudies providing a higher number of participants. The participants
nclude 44 healthy and 34 unhealthy individuals performing 5 repe-
itions of 5 exercises specific for back pain rehabilitation. The physical
xercises include lifting the arms up (EX1), Lateral tilt of the trunk with
he arms in extension (EX2), Trunk rotation (EX3), Pelvis rotations on
he transverse plane (EX4), Squatting (EX5). Kinect V2 was utilized to
apture joint positions and orientations data and we utilized both of
hem for comparison. The orientation data includes quaternions (X, Y,
, W) of rotation as a representation of body movement, where (X, Y,
) represents the vector part of the quaternion (the axis of rotation)
nd W represents the scalar part (the amount of rotation). For prepro-
essing the orientation data, the continuous actions (including several
epetitions of one action) were segmented into distinct repetitions.
or each action and participant, some of the orientation files were
ot captured, and they were not considered. Finally, three repetitions
rom the remaining participants are considered as the samples. This
esulted in 213, 183, 189, 210, and 207 samples for the exercises
X1, EX2, EX3, EX4, and EX5, respectively. The 3D position data has
reviously been segmented and captured in studies such as [14], which
e leverage in our research. For both position data and orientational
ata we performed zero-mean preprocessing and a Gaussian filter to
eed proper data to the models. The actual activity scores are from 0 to
0, which need rescaling to either [0,1] or [−1,1]. We considered both

in the results and discussion section.
To better compare sensor accuracy, we provided the preprocessed

signals of the squat action performed in the KIMORE dataset for the
trunk, left arm, right arm, left leg, and right leg through 104 frames
4

as illustrated in Fig. 1. Comparing each row in the columns (a) and
(b) in Fig. 1 demonstrates the use of noisy sensors such as Kinect V2
(in KIMORE dataset) instead of Vicon (in UI-PRMD [28]) dataset can
introduce noise to the data, impacting the performance of the model.
Due to the nature of the activity, squats should include more orientation
in the leg joints and trunk and less movement around the arm joints.
Although this fact is shown perfectly in the samples from the UI-PRMD
dataset, the noisy samples in KIMORE can hinder the model from
learning discriminative features. In addition, the scoring distribution
in the KIMORE dataset may introduce confusion to the model during
training. The scores for all of the repetitions of the same activity for
the same individual are equal. However, joint movements can involve
varying degrees of freedom in the same action performed by the same
person due to different reasons, including changes in the environment,
or fatigue. This critical factor is illustrated in Fig. 3 (panel B), where
the left hip joint movement is shown for all of the repetitions of squats
one participant performs. This issue can add challenges to the HAE
model in providing generalized scores for similar activities, resulting
in inconsistent results for different exercises.

3.2. LightPRA model for action evaluation

In this subsection, we propose a novel deep regression model based
on TCNs for automated action evaluation. The model effectively learns
the complex relationship between activity data, including body move-
ments and their corresponding scores generated for each movement.
TCNs are well-suited for this task as they can learn long-range depen-
dencies in the data. A graphical representation of the proposed model
is shown in Fig. 4. In this study, we leveraged the joint orientation and
position data, rich with inherently embedded spatial angular and rota-
tional features varying over time. Therefore, it can be processed with a
temporal model that intricately considers its temporal characteristics.

Traditional CNN architectures are widely used in different areas,
including image processing, where they can effectively extract local
features and spatial hierarchies [43]. However, they are not typi-
cally considered suitable for temporal data processing due to the size
constraint of the convolutional kernel and the disregard of temporal
features of adjacent time-steps [44]. To address this problem, a deep
TCN architecture is introduced by adapting simple convolutional layers
to sequential data in a way that leverages the strengths of both CNN
and ResNET (Residual Networks) architectures, which perform special
kernels across the time axis. TCN accomplishes this task through the
following three distinguishing features: (1) Causal convolutions: This
ensures that the output at time 𝑡 only depends on the inputs at time 𝑡 − 1
and earlier. This is introduced to prevent the leakage of information
from the future into the past. The nature of human action involves a
temporal sequence of events where the past influences the present and
the future. Causal convolutions enforce a temporal causality constraint,
ensuring that each output in the sequence depends on only the present
and past and not the future. This is important in HAE where the
chronological order of actions is essential for accurate analysis; (2)
Dilated convolutions: In traditional CNNs, a kernel with fixed size
and stride slides over the input tensor, operating the kernel function
on only the adjacent elements. On the other hand, TCNs leverage
the dilated convolutions that introduce gaps (strides) between the
kernel elements. The dilation factor defines how many elements of the
input signal are skipped between two filters. By increasing the dilation
factor, TCNs can capture information from a larger receptive field,
incorporating a broader temporal context. This enables the network
to model long-range dependencies and capture patterns over larger
time intervals. In addition, this characteristic can contemplate non-
linearity by allowing the network to capture and process information
at different temporal scales. When a TCN applies dilated convolutions
with increasing dilation factors, the receptive field of each layer ex-
pands exponentially. This expansion enables the network to capture a
broader range of temporal information, including short-term and long-

term dependencies. The causal and dilation characteristics of the TCN

https://vrai.dii.univpm.it/content/kimore-dataset
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Fig. 1. Training samples of human body movement during deep squat action (a) (E1, UI-PRMD [28] dataset) showing joint orientations of the trunk, left arm, right arm, left leg,
and right leg through 240 frames; (b) (EX5, KIMORE dataset [31]) showing joint orientations of the trunk, left arm, right arm, left leg, and right leg through 104 frames.
pipeline are depicted in Fig. 5; (3) Residual connections: The TCN
architecture further incorporates ResNet using residual connections in
its pipeline. It consists of several stacked residual blocks, as illustrated
in Fig. 6. The residual connections (jumping or skip connections) bypass
one or more temporal convolutional layers within the residual block.
The output of the temporal convolutional layers is added element-wise
to the original input, which is then fed as input to subsequent layers
or residual blocks. The residual connection allows the model to learn
the residual or the difference between the input and the transformed
output, similar to the concept in ResNet. This helps to stabilize the
training of the model and prevent it from vanishing gradients [45].
By introducing residual connections, TCNs with residual blocks can
effectively propagate gradients during training, even through deep
architectures. This can help overcome the vanishing gradient problem,
improve optimization, and enable the training of deeper TCN models.

In this study, we utilized 5 TCN sub-networks for gathering char-
acteristics of human movements from 5 different parts of the body
(right arm, left arm, trunk, left leg, and right Leg) by analyzing joint
displacements of these body parts. It should be noted that the signals of
each body part movement are subsampled over time to smaller lengths
of signals based on the baseline study [33] to have multi-scale data
representation [46–48]. Therefore, the original input signal and the
signals subsampled with the factor of 1/2, 1/4, and 1/8 of temporal
length are given to TCN pipelines in TCN sub-networks. These TCN
layers have dilation with weights of 1, 2, 4, 8, 16, 32, kernel size of
3, and dropout rate of 0.007. After concatenating the information of
different body parts, 3 more TCN layers have been applied to learn the
5

temporal correlations from the learned representation. The first TCN
has dilation with weights of 1, 2, 4, and 8; the second one has dilation
with weights of 1, 2, and 4; and the third TCN consists of dilation
of 1 and 2. Finally, a linear regression layer predicts the movement
quality score. This pipeline is designed in a way that it can comprehend
the shared temporal patterns for each body part individually, and
combine this information in the global representation as suggested by
Shahroudy et al. [49]. We would like to highlight the advantages and
motivations behind the sub-networks in the following: (1) The sub-
networks allow the TCNs to capture information at different temporal
scales effectively. This can enhance the discriminative power of the
model by processing the data in different scales and capturing intricate
details that might be missed in single-scale representation. (2) The
different sub-networks are designed to adapt to diverse patterns within
the input structures. This adaptability is crucial when dealing with
temporal data that exhibits variations across multiple scales. (3) Each
sub-network specializes in extracting features from different body parts,
contributing to a more comprehensive representation of the whole body
after combining the feature vectors. This usage of the sub-networks to
process each body part individually with multiple scales is motivated
based on the experimental results of prior works [33,50].

4. Results and discussion

This section encompasses the results and discussion. In Section 4.1
we describe the tools and configurations utilized for developing the
LightPRA model and experimental results. Section 4.2 presents the
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Fig. 2. Score distribution for some of the exercises in the UI-PRMD [28] dataset illustrating outliers in the samples. EX1, EX2, EX4, and EX10, illustrate deep squats, hurdle steps,
side lunges, and standing shoulder scaption, respectively.
Fig. 3. The raw signal of the left hip joint in EX5 (Squat) of the KIMORE dataset [31]: (A) Illustrates the normalized and segmented signal of the first squat of one participant.
(B) Depicts the whole action performed by a participant, which illustrates deviations in each repetition leading to the possible inappropriate scoring method.
overall results for the scoring performance of various methods on the
two UI-PRMD and KIMORE datasets. In addition, the ablation analysis
is provided in this section. Finally, in Section 4.3, the computational
time and resources are presented, and a comprehensive discussion is
provided.

4.1. General setup and configuration

The pipeline of the proposed model, including preprocessing, model
training, and testing, is performed using Python 3.8, Tensorflow 2.X.
We reported the average evaluation metric for 10 runs for a fair
comparison between the LightPRA and the existing methods, similar to
the results reported in the study conducted by Deb et al. [14]. For an
objective comparison, we followed the same strategy as Deb et al. [14]
on splitting the datasets into training, testing, and validation sets.
6

It is worth mentioning that the processing times and computational
costs are determined by computer configurations of Core i5 CPU and
8 GB RAM. In addition, different hyperparameter tunings, such as the
activation function, dilation rate, dropout rate, batch size, and epoch,
are selected by optimizing the error rate. This sub-optimal configura-
tion of hyperparameter settings is performed through a trial-and-error
procedure recommended in many other studies [15,51].

4.2. Scoring performance comparison

To assess the scoring performance of the proposed methodology,
a comprehensive comparison is conducted using KIMORE [31] and
UI-PRMD [28] datasets. The datasets include two distinct sensing tech-
nologies namely Kinect and Vicon. This compares two different sensing
technologies, namely Vicon and Kinnect. In the following subsection,



Computers in Biology and Medicine 173 (2024) 108382S. Sardari et al.
Fig. 4. Proposed LightPRA pipeline for physical rehabilitation exercise evaluation using an end-to-end TCN model. Every body movement comprises a multi-channel signal, where
each joint orientation over time represents one channel in the signal. The signal is segmented into five different body parts and then fed into TCN sub-networks. Then in the TCN
sub-networks, each original signal (𝑋1) and subsampled signals with the rate of 1/2 (𝑋2), 1/4 (𝑋3), and 1/8 (𝑋4) are given to TCN models as inputs. Next, the concatenated
information of different body parts is processed using 3 TCN modules. Finally, a linear regression layer predicts the movement quality score.
Fig. 5. Illustration of how causal dilated convolutions with dilation factors (shown as 𝐷 in the figure) of 1, 2, 4, and a kernel (shown as 𝐾 in the figure) of 3 are functioning.
Temporal input (𝑋𝑡) captures joint orientation at time t, with applied padding for processing early time steps. The output vector (𝑌 ) is fed to the next block for further feature
extraction or processing. Dilated convolutions introduce the capacity to capture larger receptive fields and skip strides in the kernel. The causal feature prevents information leakage
from the future into the past, making the convolutions different from a normal CNN.
we first discuss the specific sub-optimal hyperparameter tuning per-
formed with trial-and-error and comparison with other state-of-the-art
models on the UI-PRMD dataset. Then, the same procedure and dis-
cussion are performed for the KIMORE dataset to evaluate the model’s
generalization. As widely adopted for performance comparison in the
previous studies, Mean Absolute Deviation (MAD), serves as one of our
chosen metrics. The MAD is an average of the absolute deviation be-
tween true values and predicted values. In the context of HAE, a lower
MAD indicates superior system performance. This metric evaluates the
disparity between true and predicted scores in the dataset. MAD is
preferred for its robustness to outliers, as observed in the UI-PRMD
dataset, making it a more intuitive and interpretable measure compared
to alternative metrics [52].

The LightPRA model for the UI-PRMD [28] dataset is trained with
an ADAM optimizer and a batch size of 7, for a maximum of 400
7

epochs with a learning rate of 1𝑒 − 3. However, to mitigate overfitting
and reduce the number of epochs, we implemented the early stopping
callback mechanism. This approach allows training to cease when the
loss function for the validation set ceases to improve while retaining the
trained parameters associated with the lowest validation error. In our
study, we employed early stopping with a minimum change threshold
of different values for each exercise in the validation loss, accompanied
by a patience value of 75, ensuring optimal training convergence.
Fig. 7 illustrates the validation and training loss through the epochs
of training the model for EX8 in the UI-PRMD dataset, which depicts
no evidence of overfitting.

Previously, Liao et al. [33] proposed a Temporal Pyramid (for
dividing and scaling the body movement signals) which includes a
CNN–LSTM architecture. Song et al. proposed a multi-stream GCN
backbone in which discriminative features are explored that ignore
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Fig. 6. Stacked residual blocks of TCN in which the output of one residual block is transferred to the input of the next block. The residual block consists of a pair of dilated causal
convolutions followed by REctified Linear Units (RELU) as non-linearities. Convolutional filters within the block are subjected to weight normalization, and to prevent overfitting,
dropout is employed after each dilated convolution.
redundant information using the activation degree of skeletons. Li
et al. [53] introduced an end-to-end convolutional co-occurrence fea-
ture learning framework in which the semantic information of both
temporal and spatial features are explored. Zhang et al. [54] introduced
a semantic-guided network in which joint type and frame index as
high-level semantics are fed into the framework with two frame-level
and joint-level modules to find frame and joint correlations. However,
according to Deb et al. [14], this model fails to extract rich sequential
dependencies between different frames. Deb et al. [14] introduced a
graph-based model in which an attentional STGCN model is followed
by an LSTM for capturing skeleton and sequential data. Table 1 depicts
the average results for MAD of scores predicted by different models for
10 exercises in the UI-PRMD [28] dataset. For a better comparison of
results, we also developed a dilated 1D CNN-TCN model in which 1D
dilated CNN layers are followed by three TCN layers for temporal fea-
ture capturing. The comparisons illustrate that LightPRA outperforms
all of the previous models in scoring most of the exercises, and for a
few of them, the results were close to the best result. The comparison
of the TCN and LSTM-based models (such as models introduced by
Liao et al. [33] and Deb et al. [14]) proves the superiority of using a
TCN architecture in capturing long-term information in a long sequence
of data. In the last row of Table 1, we provided the average scoring
performance through all exercises for all of the methods. This illustrates
that our proposed model on average is outperforming other methods,
and performs as effectively as the strong graph-based method like
STGCN [14].

To evaluate the generalization of the method on another dataset and
another type of sensor, the noisy skeleton information in KIMORE [31]
is fed into different models for 5 exercises. Our proposed model is
trained with a batch size of 7, and a maximum of 400 epochs with
an early stopping of 70 patience degrees. The learning rate is set
to 1𝑒 − 3. The MAD metric results are depicted in Table 2, for the
previously mentioned methods. In the table the columns depicting the
performance for orientation (quaternions) data and position data are
demonstrated with O and P in parentheses, respectively. The reason
behind the big difference in MAD values for KIMORE compared to UI-
PRMD [28] can be based on the noisy data and action evaluation metric
8

as discussed before. The LightPRA proposed method illustrates a high
difference in performance compared to the CNN–LSTM model [33],
demonstrating TCN architecture’s comparative advantage. The model
performs well for a fairly complex activity like deep squat (EX5), which
includes several orientations of several joints and limbs. In addition to
MAD, the widely used metric of Root Mean Squared Error (RMSE) for
scoring performance is considered. This metric calculates the square
root of the average of the squared differences between each predicted
score and its corresponding true score. The results are illustrated in
Table 3, which shows that for this metric the model also provides
good performance. In addition, comparison of the results between the
joint orientation and positional data in Tables 2 and 3 shows that the
orientation provides more discriminative information for the model.
On average, the model performs very well compared to the previous
studies, suggesting this model can be used in HAE applications.

In our ablation and sensitivity analysis, we investigated several
factors regarding LightPRA’s scoring performance. Firstly, we evaluated
the scoring sensitivity of LightPRA for the Deep Squat action (EX5) in
the KIMORE dataset, considering both MAD and RMSE, for different
sets of inputs. We considered the deletion of some body parts as input
and fed the rest of the body data to evaluate the changes in the
model’s performance. Our findings (illustrated in Table 4) showed that
excluding data from both legs as input for the deep squat action results
in worse performance. This is understandable since the leg movement
in this action is significant, and eliminating such data may lead to the
loss of vital information for the model.

Additionally, we explored various configurations of the trained
LightPRA model on exercise 5 of the KIMORE dataset. Given the
considerable number of hyperparameters in our model, we deliberated
on including or replacing a few important architecture and parameter
aspects that have shown an important role in the initial try and error
(as illustrated in Table 5). For instance, we considered the exclusion
of two final TCN layers from the architecture, along with testing two
different activation functions in the last regression layer. Our analyses
illustrate that the model achieved better performance when utilizing
three TCNs at the final stage with a linear activation function.
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Fig. 7. Training and validation loss over epochs for UI-PRMD [28] dataset for EX8 using the proposed model, indicating absence of overfitting.
Table 1
Performance comparison of different methods for HAE on UI-PRMD [28] dataset based on MAD(↓).

Exercise Methods

LightPRA Dilated CNN+TCN Liao et al. [33] Deb et al. [14] Song et al. [55] Zhang et al. [54] Li et al. [53]

EX1 0.014 0.015 0.011 0.009 0.011 0.022 0.011
EX2 0.007 0.008 0.028 0.006 0.006 0.008 0.029
EX3 0.011 0.013 0.039 0.013 0.010 0.016 0.056
EX4 0.006 0.006 0.012 0.006 0.014 0.016 0.014
EX5 0.008 0.008 0.019 0.008 0.013 0.008 0.017
EX6 0.006 0.007 0.018 0.006 0.009 0.008 0.019
EX7 0.010 0.011 0.038 0.011 0.017 0.021 0.027
EX8 0.011 0.011 0.023 0.016 0.017 0.025 0.025
EX9 0.008 0.009 0.023 0.008 0.008 0.027 0.027
EX10 0.038 0.041 0.042 0.031 0.038 0.066 0.047

Avg 0.0119 0.0129 0.0253 0.0114 0.0143 0.0217 0.0272
Table 2
Performance comparison of different methods for HAE on KIMORE dataset [31] based on MAD(↓). The (O), and (P) designations for each method mean that the model is trained
on orientation and positional data, respectively.

Exercise Methods

LightPRA(O)a LightPRA(O)b LightPRA (P)a Liao et al. (O)a [33] Liao et al. (P) [33] Deb et al. (P) [14]

EX1 0.20 0.40 0.25 0.24 1.14 0.80
EX2 0.27 0.57 0.28 0.31 1.53 0.77
EX3 0.21 0.39 0.25 0.23 0.85 0.37
EX4 0.28 0.48 0.30 0.28 0.47 0.35
EX5 0.25 0.47 0.28 0.29 0.85 0.62

Avg 0.24 0.46 0.27 0.27 0.97 0.58

a Scoring label is normalized in the range of 0 to 1.
b Scoring label is normalized in the range of −1 to 1.
4.3. Computational time and resource management

In this subsection, we provide the comparative analysis of the com-
putational time and computational resource utilized in the proposed
LightPRA model, LSTM-based architecture [33], and especially the
STGC-LSTM model [14] which demonstrated high scoring performance
in the previous subsection. We considered several factors for analyzing
the computational efficiency of these methods, aiming to determine
whether it is more important to build a model with high-scoring per-
formance that requires considerable computational time or to construct
and apply models that provide a balance between scoring perfor-
mance and computational efficiency for telerehabilitation applications.
9

It should be noted that in this study, we selected previous studies with
available source code for fair and objective comparisons under equal
computational conditions while maintaining computational resources
on CPUs. Some Transformer-based approaches explored in previous
studies, lack source code and rely on GPU resources, potentially im-
pacting computational fairness. First, we analyzed training time (in
seconds) for the UI-PRMD [28] dataset, illustrated in Table 6. The num-
ber of trainable parameters for the LightPRA model, Dilated CNN+TCN,
and CNN+LSTM are 122 557, 2 105 341, and 5 688 081, respectively.
The values for time in Table 6 illustrate an average of time for finding
the sub-optimal solution based on the validation set and early stopping.
These values depict the low computational time for training the model
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Table 3
Performance comparison of different methods for HAE on KIMORE dataset [31] based on RMSE(↓). The (O), and (P) designations for each
method mean that the model is trained on orientation and positional data, respectively.

Exercise Methods

LightPRA(O)a LightPRA(O)b Liao et al. (O) [33] Liao et al. (P) [33] Deb et al. (P) [14]

EX1 0.25 0.46 0.26 2.53 2.02
EX2 0.32 0.57 0.33 3.74 2.12
EX3 0.19 0.43 0.21 1.56 0.55
EX4 0.30 0.51 0.27 0.79 0.64
EX5 0.27 0.52 0.27 1.91 1.18

Avg 0.27 0.50 0.27 2.11 1.3

a Scoring label is normalized in the range of 0 to 1.
b Scoring label is normalized in the range of −1 to 1.
.

t
a
m
c
o
e
T
r
t
H
r
t
w
w
r
g
d
o
p
s
a
p

5

p
t

Table 4
Sensitivity analysis of LightPRA on exercise 5 of KIMORE dataset
[31] based on MAD, and RMSE(↓) for exclusions of body part as
input.

Deleted body part MAD RMSE

Trunk 0.28 0.29
Left arm 0.3 0.27
Right arm 0.26 0.27
Left leg 0.27 0.28
Right leg 0.26 0.3
Both legs 0.38 0.47
Both arms 0.29 0.26

Table 5
Ablation study of LightPRA on exercise 5 of KIMORE dataset [31] based on
MAD, and RMSE(↓) based on exclusion of final TCNs and change of activation function

Has final 3 TCNs Activation function MAD RMSE

No Sigmoid 0.29 0.34
Yes Sigmoid 0.26 0.31
No Linear 0.27 0.30
Yes Linear 0.25 0.27

in pure TCN-based architecture. This can be due to the characteristics
of TCN and LSTM and the lower number of trainable parameters for
the TCN backbone.

For a better analysis of computational power, we performed the
same analysis on the KIMORE dataset [31], adding the model proposed
by Deb et al. [14] for comparison. The number of trainable parame-
ters for the proposed model, CNN+LSTM [33], and STGCN [14] are
121 261, 5 613 841, and 712 209, respectively. The computational time
for training the models is depicted in Table 7. It should be noted that
these values are provided for the number of epochs found by early
stopping for the LightPRA and CNN+LSTM [53] models and 30 epochs
for the STGCN model [14]. This is because it is clearly mentioned in
the study conducted by Deb et al. [14] that the model needs to be
trained for 1500 epochs, and based on other studies, this can take up
to 72 h of training [56] for this architecture on GPUs. Comparing the
results in Table 7 proves that not only the LightPRA model performs
better than LSTM-based models, but it also performs better than graph-
based attentional models. Even though the number of parameters for
the STGCN [14] is fairly normal, the attentional architecture in the
pipeline in the model adds to the time complexity and makes it not
suitable for real-time applications.

For a fair comparison, we included step-wise training time in Fig. 8.
In the context of training a model,‘‘step’’ refers to one iteration for one
gradient update. This includes processing a batch of data, computing
the gradients of the model’s parameters concerning the loss condition,
and updating the model’s weights using the optimizer. Evaluating the
results illustrates that the LightPRA model significantly reduces the
step-wise training time across all of the exercises in the KIMORE
dataset [31]. This notable decrease in the step-wise training time for
the LightPRA model can be attributed to the fewer trainable parameters
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in the model while being able to swiftly learn distinctive features in a m
parallel way. The training time plays an important role in real-world
applications where the model needs to be trained on a new patient’s ac-
tivity and requires fine-tuning for new exercises. In Fig. 8, the LightPRA
model illustrates remarkably fewer inference times on the testing set
for which it illustrated similar scoring performance to STGCN [14] in
the preceding subsection. Inference time holds significant relevance to
real-world healthcare applications where the LightPRA model excels by
prioritizing real-time feedback without compromising scoring accuracy.
This characteristic is crucial in applications such as HAE requiring
immediate feedback without sacrificing the scoring accuracy.

In Fig. 9, the plot illustrates the RAM usage in MegaBytes (MB)
for training the models across all of the exercises in the KIMORE
dataset [31]. The impact of a diminished number of training param-
eters and epochs for training is clearly reflected in the computational
resource usage. These findings emphasize that in more extensive data
and complex problems, these values can drastically escalate to the
scales of GigaBytes (GB) or TeraByte (TB), highlighting the promising
potential of TCN models for real-world problems. In general, the results
underscore the LightPRA model’s ability to maintain a balance between
achieving high scoring performance and relatively low computational
time and complexity.

In summary, the comparative analysis of different architectures
sheds light on different factors affecting their scoring and computa-
tional performance. (1) Parallel computation: Using Causal convolu-
ions in the TCN allows the model to consider a long-term sequence
s a whole in both the training and inference stages. This assists the
odel to compute multiple temporal dependencies simultaneously. In

ontrast, the LSTM-based models relying on several input, forget, and
utput gates, process data in a sequential way, with computations in
ach time step dependent on prior outputs. (2) Shorter Memory path:
he dilated convolutions in the TCN assist the model to have more
eceptive fields without significantly increasing the number of parame-
ers, making them more efficient in capturing long-term dependencies.
owever, the complex structure of the LSTM (having many gates and

ecurrent connections adds to the number of trainable parameters in
hese models making them computationally complex. The straightfor-
ard structure of TCN compared to the attentional graph-based model
hich often includes intricate computation and recurrent iterations

esults in faster computation in TCN. (3) Data representation: the
raph-based attentional structure includes graph representation of the
ata for which the computationally expensive attention calculations
ver the nodes and edges escalate the time complexity and scoring
erformance of the model. However, the straightforward data repre-
entation in TCN and the performing convolutions across the sequences
dd to the flexibility and simplicity of TCN-based models, making the
roper learning of discriminative features efficient.

. Conclusion

This paper introduces the novel LightPRA model for automatic
hysical rehabilitation exercise assessment which focuses on learning
emporal features from joint orientation data with rich spatial infor-
ation. To evaluate the computational and scoring performance of the
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Table 6
Model training time comparison in seconds(↓) for different HAE methods on UI-PRMD
[28] dataset.

Exercise Methods

LightPRA Dilated CNN+TCN CNN+LSTM [33]

EX1 480 503 1560
EX2 462 920 1257
EX3 784 820 2057
EX4 480 637 2281
EX5 452 558 2367
EX6 432 569 3084
EX7 484 743 2001
EX8 487 523 1338
EX9 448 687 3624
EX10 485 768 5469

Table 7
Model training time comparison in seconds(↓) for different HAE methods on KIMORE
[31] dataset.

Exercise Methods

LightPRA CNN+LSTM [33] STGCN+LSTM+ATT [14]

EX1 722 866 6295
EX2 1500 1535 6223
EX3 1200 1832 6452
EX4 432 492 5942
EX5 420 546 5401

Fig. 8. The inference time (left side vertical axis, illustrated with lines) and training
time per step (right side vertical axis, illustrated with bars) in seconds(↓) for different
HAE-models of proposed LightPRA (TCN) model, STGCN [14] and CNN–LSTM [33] for
KIMORE [31] dataset.

proposed method, two public datasets are utilized, namely UI-PRMD
and KIMORE. The comparisons of the proposed method and the pre-
viously proposed LSTM-based algorithms and graph-based techniques
suggest that on average the proposed LightPRA methodology outper-
forms them in scoring performance in the KIMORE dataset (especially
for a complex action like deep squat). Additionally, on average it per-
forms as effectively as the strong attentional graph-based model in the
UI-PRMD dataset. In addition, this method depicts significantly reduced
training and inference computational time and memory resources com-
pared to the state-of-the-art approaches, marking it as a promising
approach suitable for devices commonly found in households, as well
as resource-limited devices, Edge computing setups, and IoT devices. In
the future, our focus will involve exploring the implementation of the
proposed method on resource-constrained devices. In addition, further
exploration of statistical action scoring (labeling) is needed to address
the challenges associated with the scoring method of the UI-PRMD and
KIMORE datasets.
11
Fig. 9. The RAM usage in MegaBytes(↓) for building and training of different HAE
methods including proposed LightPRA (TCN) model, STGCN [14] and CNN–LSTM [33]
for KIMORE [31] dataset.

It is worthwhile noting that while our LightPRA architecture excels
in skeleton-based human action evaluation, its use in broader motion
analysis tasks like action recognition or prediction may lead to informa-
tion loss. The architecture, relying solely on skeleton data and convolu-
tional operations, may not effectively capture crucial contextual details
such as location, occasion, motivation, and facial expressions, vital for
tasks like action prediction in surveillance scenarios. In addition, TCNs
primarily operate on raw temporal sequences and may not explicitly
incorporate information such as interactions, purpose, and emotion of
the actions. The inclusion of this information especially in complex
series of actions can enhance the interpretability and performance of
the HAE system. In this study, determining metrics like floating-point
operations (FLOPs) poses a challenge due to the complicated nature
of the multi-input complex architecture employed. To enhance the
comparability and evaluation of the models considered in this study, we
recommend further research to explore the development of specialized
functions tailored to address the complexities of such architectures.
This will help us compare models more accurately and meaningfully
in future studies.
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