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Abstract
Arithmetical texts involving division are governed by conventions that avoid the risk of
problems to dowith division by zero (DbZ). Amodel for elementary arithmetic texts is
given, and with the help of many examples and counter examples a partial description
of what may be called traditional conventions on DbZ is explored. We introduce
the informal notions of legal and illegal texts to analyse these conventions. First, we
show that the legality of a text is algorithmically undecidable. As a consequence,
we know that there is no simple sound and complete set of guidelines to determine
unambiguously how DbZ is to be avoided. We argue that these observations call for
further explorations of mathematical conventions. We propose a method using logics
to progress the analysis of legality versus illegality: arithmetical texts in a model
can be transformed into logical formulae over special total algebras that are able to
approximate partiality but in a total world. The algebras we use are called common
meadows. Our dive into informal mathematical practice using formal methods opens
up questions about DbZ which we address in conclusion.

Keywords Division by zero · Arithmetic · Traditional conventions for writing
mathematics · Legal texts · Illegal texts · Undecidability · Common meadows

1 Introduction

A partial function is a function f : X → Y that does not have values for all of its
arguments: for at least one argument x ∈ X there is no result f (x). Division x/y in the
arithmetic of numbers is a partial function. On the natural numbers N and the integers
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Z, there are infinitely many arguments y for which x/y has no value; on the rational
numbers Q and real numbers R there is just one: y = 0.

In writing about division, conventions guard against partiality by writing texts such
as:

f (x) = 1/x for x �= 0 or f (x) = 1/(x − 5) for x �= 5.

Indeed, said differently, writing simply

f (x) = 1/x or f (x) = 1/(x − 5)

invites a teacher to reach for the red pencil to point out the omissions and deductmarks!
The above texts can be said to be proper or improper, well-formed or ill-formed, or
even correct or wrong; we will prefer the terms legal and illegal.

In practice, writing legal texts means adhering to ‘traditional conventions’ that try
to avoid DbZ. Why do we make this strict distinction for DbZ? At work seems to be
this convention about partiality:

Avoidance Principle Do not write down mathematical expressions unless you know
they denote something.

In this paper we investigate the ways 1/0 casts its shadow on the basic act of writ-
ing legal arithmetical texts, where legal takes its meaning from traditional conventions
motivated by the Avoidance Principle. We wish to cast light on some current mathe-
matical practices and conventions regarding partiality. For this purpose, writing down
1/0 is sufficiently provocative to demonstrate that such traditional conventions are
deeply established.1

But what are these traditional conventions? Our somewhat ambitious aims are: (i) to
establish a problemworthy of research—the elucidation and specification of traditional
conventions on partiality; and (ii) to propose a methodology and some mathematical
tools to begin to undertake this investigation.

In writing mathematical texts, especially elementary texts, we make declarations,
definitions, assumptions, assertions, deductions, exercises, etc. These are common
elements of mathematical texts. To model arithmetical texts, we propose a simple
language VEAT for very elementary arithmetical texts containing division. To explore
formally the consequences of the traditional conventions as they apply to division by
zero, we seek to isolate the rules that separate the legal texts from the illegal texts in
the language VEAT .

By arithmetic, we have in mind the elementary arithmetic of numbers as found
in school books around the world. By texts, we have in mind syntax: lists contain-
ing formalisations of variable declarations, assumptions, assertions, implications, and
constructed using the operations of arithmetic in expressions—specifically, sums, dif-
ferences, products, divisions. Texts need not be true, but they ought to be legal. In the
course of our analysis, we prove this fact:

Theorem For the mathematical text language VEAT, the legality/illegality of texts is
algorithmically undecidable.

1 There are other partial functions in arithmetic to play with, such as subtraction on the naturals, but they
cannot attract the same level of attention; indeed, the partiality of subtraction motivates the invention of the
integers to dispense with the issue.
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Thus, there does not exist a finite system of rules that can establish precisely which
texts are legal and which are illegal. This theorem sets the scene for the techniques that
make up the main body of the paper: we do not see this negative result as the end but
as the beginning of a more complex forensic investigation of traditional conventions
about DbZ. This leads to a number of new notions—e.g., logical poles—and four
viable definitions of legality for the texts of VEAT .

We propose to turn to logical methods to try to formalise semantic conventions for
legality in VEAT . Now logics are well understood and far easier to work with when
applied to total algebras rather than to partial algebras. Our aim is to develop a formal
model of legal texts using first order logical formulae over total arithmetical algebras.

The algebras we choose are common meadows. Meadows are fields with explicit
division operators added (Bergstra & Tucker, 2007); common meadows are meadows
in which division is made total by adding an absorptive value ⊥ in order to define
1/0 = ⊥, (Bergstra & Ponse, 2016, 2021). Our standard common meadow is that of
the rational numbers Q⊥. In summary:

Method Our method chooses a logic L over a common meadow M . On transforming
texts from the language VEAT into formulae in the logic L ,

T ∈ V E AT → φT ∈ L,

we examine the correspondence and classify the legal texts and illegal texts of VEAT
by analysing the well-formed formulae in L representing the texts.

Thus, this method searches for old and new logics that yield more faithful formal
approximations to legal texts. All are applied to common meadows and we expect that
the well-formed formulae we characterise to be a superset of the (translations of the)
legal texts. Thus, we seek to uncover and approximate formally the underlying logic
of writing conventions.

Our ideas are general and can be applied to all partial functions. We focus on divi-
sion because this work belongs to a (now extensive) programme on the semantics
of computing with arithmetic structures (which we sketch later). In particular, divi-
sion perfectly displays key semantic issues at the level of elementary mathematical
education.

Structure of the paper. In Sect. 2, we discuss some of the background work that led
to this investigation. In Sect. 3 we begin by analysing four kinds of divisions ÷ and
looking at partiality. In Sect. 4, we look at the conventions for dealing with DbZ by
examining several examples of texts and classifying them as legal or illegal; we also
define the tiny language VEAT of arithmetical texts. In Sect. 5, we prove the theorem
above. In Sect. 6, we introduce the common meadows that have division but whose
values are always total using a value ⊥, i.e, 1 ÷ 0 = ⊥. We propose to effect a
translation of texts in VEAT into logical formulae over these structures to model and
clarify formally legality/illegality. In the last section we reflect on where we are in the
quest and on technical issues to do with DbZ.
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2 On Texts, Conventions and Division

We briefly sketch some background to this investigation into conventions, including
technical work on the algebra of division.

2.1 Texts and Conventions

Mathematical texts share structures and notations that are common to many countries.
They are organised by mathematical conventions that have evolved over centuries,
even millennia—the structure created by the definitions, postulates, common notions,
and propositions in Euclid’s 13 Elements is an ancient example. The emergence of
arithmetic and algebra in their practical and theoretical forms expanded the nature of
mathematical texts and developed their own conventions, notably in the search for
clarity and precision of thought.

The sort of mathematical texts we have in mind are texts describing ideas, deduc-
tions and calculations with numbers; typical authors and readers of such texts are
mathematicians, teachers, and school pupils who must ‘show their workings’. Despite
centuries of refinement and a concern for rigour, not all mathematical ideas are under-
stood universally, even in arithmetical texts.

Elementary arithmetic as taught in schools and practiced in everyday life for cen-
turies is the mathematics of addition, subtraction, multiplication and division. The
mathematics has been largely settled since the 16th Century with ‘modern’ notation
and vernacular textbooks Morgan (2024). Yet, the teaching and interpretations of ele-
mentary arithmetic are not always settled professionally: in the case of division, there
are divergent positions on division by zero and the idea of fraction.

Thus, specifically motivated by problems of division by zero in computing, and by
the role(s) of fractions in mathematics education, in Bergstra and Tucker (2023), we
constructed a systematic informal description of a consensus on elementary arithmetic.
Examining what we termed Raw Arithmetic, we made explicit what ideas and options
were widely accepted, rejected or simply varied according to particular perspectives
or personal tastes. Our account recorded many flexible precepts that could generate
a range of informal options on behalf of arithmetical practitioners. This analysis of
requirementswe termedNaiveArithmetic. It identified a significant gap betweenwork-
ing practices and the world of precisely defined formal calculi. In a sequel (Bergstra
& Tucker, 2024), to bridge that gap, we introduced an informal axiomatisation called
Synthetic Arithmetic designed to resolve ambiguities and prepare for more formal
reasoning underpinned by logic.

The technical needs of division require special attention to fractions. The explo-
rations of Raw Arithmetic reveal considerable conceptual difficulties with this term.
One issue is the range of meanings implied by the use of the word ‘fraction’, which
impacts any discussion of 1

0 .
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2.2 Axiomatising and Partiality

The sequence of Raw, Naive and Synthetic stages constitute a systematic reflection
on elementary arithmetical texts. By uncovering certain notions and conventions we
are led to some idea of ‘type-checking for conformance’ against these conventions. In
fact, we show in this paper that any attempt at type-checking against conventions in
arithmetical texts, even in a narrowly designed language fragment, proves to be very
complicated viz. theoretically undecidable and pragmatically very challenging.

The three stages also constitute a rather thorough informal preparation to accom-
pany a formal axiomatisation of arithmetic. In our context, one role of an axiomatisa-
tion is to create a formalism that removes a need for ‘type-checking’mathematical texts
against the principles of (say) the informal axiomatisation of Synthetic Arithmetic.

We believe that the value of a systematic analysis to a teacher is to surface insights
hidden in their practice and so can contribute to his or her mastery of the subject
matter. As an analytical tool, one objective of formalisation is to detect, make explicit
and settle technically subtle points and relations; this process leads to a ramification
of options and, so, to a plurality of formal calculi. The four stages of Raw, Naive,
Synthetic and Formal constitute a methodology that can be of use wherein a practice
might benefit from analytical reflection (see Bergstra and Tucker (2024)).

Our early interest in formalisations of arithmetic are motivated by thinking about
the algebra and logic of computer arithmetics, and our studies of computer arith-
metics as abstract data types that need axiomatic specifications; this we summarise
later in Sect. 7.3. Data types in computing are structures modelled by sets with opera-
tions (including boolean operations), i.e., many sorted algebras (Ehrich et al., 1997).
Computer programs invoking these operations must not fail to return a value of some
kind—when executed, they must be total operations. Moreover, these algebras are
specified axiomatically by equations and conditional equations expressing properties
of the operations (Ehrich et al., 1997). Partiality once present is not easy to control
in computation or formal reasoning (cf. Andreka et al. (1988); Gavilanes-Franco and
Lucio-Carasco (1990); Jones and Middelburg (1994); Robinson (1989)).

So, the key point is this: on employing division in a computer then x
0 must return

data of some kind. We have studied some five basic equational calculi, primarily
distinguished by semantic decisions about the meaning of 1

0 . Here, we meet some
formal calculi with semantics that are currently recognisable in the schoolroom, based
on two such decisions: the cases when

(i) 1
0 does not exist—the expected school orthodoxy, and

(ii) 1
0 is an error flag—the common semantics of school calculators.

We have studied this latter case in some detail in the build-up to the current state
of our theory in Bergstra and Tucker (2023), Bergstra and Tucker (2024).
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3 Division and Partiality

3.1 Syntax for Arithmetic

Notions of division can be defined in terms of multiplication in several ways.
Let �r be a signature with 0, 1 as constants and function symbols for addition

x + y, opposite −x , and multiplication x · y. �r is the signature of both rings and
fields. We add a function symbol ÷ for division, with the design decision that x ÷ y
is intentionally partial. This is a signature �m for meadows (to be defined shortly)
(Bergstra & Tucker, 2007).

This syntax allows us to introduce the notion of fracterm (Bergstra & Ponse, 2016):

Definition 3.1 A fracterm is a term over the meadow signature �m whose leading
function symbol is division.

To make ÷ partial is a design decision and is consistent with multiplication as
repeated addition and division as repeated subtraction. Thus, the decision does not
suggest that it would be impossible, or even difficult, to specify useful values for
1÷ 0; in fact, there is a long tradition of assigning values to 1÷ 0, e.g., the value 0 or
the symbol ∞: for more information we refer to these surveys (Bergstra, 2019) and
Bergstra (2021) and subsect. 7.3.

3.2 What is Division?

The partial division operator we use is this:

Definition 3.2 Given a structure A for the signature �r of rings. The possibly partial
function ÷ is defined on A as follows: for a, b, c ∈ A, a ÷ b = c if, and only if, c is
the unique element of A such that b · c = c · b = a. We refer to this as the standard
partial division operator.

Definition 3.3 If a ÷ b = c then c is called the quotient of a and b.

Proposition 3.1 Let A be a structure with the signature �r of rings. Suppose

(i) A |� (∀x)[0 · x = 0] and
(ii) A has more than one element.

Then a standard partial operator ÷ is not a total function as x
0 is not defined.

Proof Let a ∈ A, a �= 0 and suppose a ÷ 0 = c. Then, comparing Definition 3.2,

a ÷ 0 = c ⇐⇒ 0 · c = c · 0 = a.

By (i), a = c · 0 = 0, which contradicts the choice of a.

With Definition 3.2, the partial function÷ is unambiguously defined. It is also possible
that the interpretation of ÷ is a proper partial function but is not standard; this will
happen for instance if 0 ÷ 0 is considered undefined and x ÷ 0 = 0 when x �= 0.

This Definition 3.2 is sufficiently general as long as multiplication is commutative.
A central algebraic idea is this, Bergstra and Tucker (2007):
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Definition 3.4 A meadow is a field G expanded with a division operator ÷, which we
denote G(÷).

In case of a non-commutative multiplication operator, two additional division oper-
ators arise, left division ÷l , and right division ÷r , which may or may not differ for a
given A. In the above definition, for left division only c ·l b = a is required; and for
right division only b ·r c = a is required. The relations between the following division
operations are not obvious unless multiplication is commutative, in which case the
four definitions for ÷,÷l ,÷r ,÷lr , respectively, determine the same functions.

Definition 3.5 Given a structure A for the signature �r of rings. The possibly partial
function ÷l (called the standard partial left division operator) is defined as follows:
for a, b, c ∈ A, a ÷l b = c if, and only if, c is the unique element of A such that
c · b = a.

Definition 3.6 Given a structure A for the signature �r of rings. The possibly partial
function ÷r (called the standard partial right division operator) is defined as follows:
for a, b, c ∈ A, a ÷r b = c if, and only if, c is the unique element of A such that
b · c = a.

Definition 3.7 Given a structure A for the signature �r of rings. The possibly partial
function ÷lr (called the standard partial left/right division operator) is defined as
follows: for a, b, c ∈ A, a ÷lr b = c if, and only if, c is the unique element of A such
that c · b = a or b · c = a (or both).

We will allow structures where division is defined on some arguments where stan-
dard partial division is not defined; in such cases, we will not say that a structure is
equipped with a standard partial division operator.

3.3 On Defining Partial Functions

Defining partial functions in a generic manner is non-trivial. For instance, the square
root function is partial on the real numbers and total on the complex numbers, if one
adopts the convention to return principal square roots, such as +√−1. The notion of
a principal square root is quite specific and does not generalise simply to arbitrary
rings and fields. This raises the question if there is a general definition of a square root
function. For instance:

Definition 3.8 Given a structure A for the signature�r of rings, a partial or total unary
function f (−) is called a square root function if for all a ∈ A,

(i) f (a) is defined if, and only if, for some b ∈ A, b · b = a, and
(ii) if f (a) is defined then f (a) · f (a) = a.

Proposition 3.2 There are infinitely many square root functions on the ring Z integers
in the sense of Definition 3.8.

It seems reasonable to say “let
√
x be a square root function”. In practice, however, that

is far too liberal. By choosing the principal square root one finds a function which is
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holomorphic outside the non-positive reals (assuming one works in a field of complex
numbers).

In the light of this digression, we see that the traditional convention to think in
terms of a unique reasonable result—so evident in the case of division—breaks down
already in the case of square roots. That a result is sought which uniquely satisfies
a certain condition may be standard practice in the case of division, but it is not a
paradigm which derives from how to deal with partial functions in general.

Proposal 3.1 Disallowing say 0 ÷ 0 = 0 as an element of the graph of ÷ is a matter
of design. Here, the design decision in the definition of division works against disam-
biguation in case more than one element c meets the multiplication criterion (here
0 · c = 0).

One might call 0 the ‘principal quotient’ of 0 and 0 in which case it would become
plausible to include 0 ÷ 0 = 0 in the graph of ÷. Doing so is not standard practice.
However, there is no notion of “understanding division” which would stand in the way
of adopting 0÷0 = 0 just as there is no notion of “understanding square roots” which
stands in the way of adopting

√−1 = i . The fact of the matter is that conventions
have developed otherwise so that 0 ÷ 0 is generally considered to be undefined.

4 What are Legal Texts Concerning DbZ?

We now begin our exploration of what are the legal texts according to traditional con-
ventions operating on DbZ. We introduce informally a concrete syntax for a simple
language VEAT and give a stock of examples of legal and illegal fragments of mathe-
matical texts in VEAT . For our purposes, VEAT is sufficiently simple that it does not
need a formal definition for either its syntax or semantics—indeed, that it is informal
is appropriate for our investigation of informal conventions.

4.1 An Informal Model for Texts on Elementary Arithmetic

4.1.1 Arithmetic Data

The arithmetic nature of VEAT is established by sorts that name arithmetic types such
as natural numbers, integers, rationals; typically these are nat, int, rat . To these are
added arithmetical properties R, S, . . . of numbers based on arithmetical operations
and tests, typically these are the operations

+,−, ·,÷, and = .

Thus, inside the statements of VEAT are arithmetic formulae, which are written
over the signature �m of the meadow (cf. Sect. 3). Semantically, these arithmetical
operations and tests will be interpreted in the integers and rationals. Of course, central
to our investigation are the arithmetic terms which feature the operator ÷, especially
the fracterms of Definition 3.1.
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4.1.2 Very Elementary Arithmetical Language

A text in the very elementary arithmetical language VEAT is a sequence of statements
separated by semi-colons. The model will have different classes of statements and to
start only these classes are considered:

1. Declarations namingglobal variables thatwe callparameters:given x, y, . . . : sort
2. Additional assumptions about parameters, written in the form:moreover R. Here

R is an equation t = r , or a negated equation t �= r , where t and r are division-free;
these are the atomic formulae of the language.

3. Assertions that are arithmetical properties: now R.
4. Assertions combined by the implication connective: now-if R then S, with R, S

atomic formulae.

Here given, moreover and now are reserved words which indicate the role of a
statement or part of a statement in the language.

The texts can be adapted to includemore familiarmeans of expression. For example,
we might write

given x, y : sort such that R

as an alternate for
given x, y : sort;moreover R.

4.1.3 An Informal Explanation of Meaning for VEAT

A VEAT text may be understood as a sequence of assertions. The idea is that VEAT
texts are read from left to right as sequences (or top to bottom if displayed vertically).
Variables may be declared only once in a text, and from the position of declaration
onwards a variable keeps the same type and value. Variables may be used in assertions
only after having been declared.

Given a valuation σ of variables into the rationals Q, each text φ in VEAT can be
true (T ), false (F) or meaningless (M). Each assertion in φ can be evaluated: the result
is M if an evaluation of a term involved yields undefined—shortly to be indicated by
⊥; otherwise, the result is either T or F accordingly.

An implication φ = now-if R then S, is evaluated in the “short-circuit manner”:
if R evaluates to F then φ evaluates to T . If R evaluates to T then φ evaluates to the
evaluation result of S. If R evaluates to M then so does φ.

For a text the following qualitative aspects may be distinguished:

• Syntactic correctness. For instance,

given x : Q;given x : Q;now x = x

is not syntactically correct as x is declared twice; it is assumed that syntactic
correctness is independent of properties of consistency, validity, and legality. So,
the use of say 1

0 will not be taken for a syntactic problem.
• Consistency. The combination of all assumptions that occur in the text is consistent.
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• Validity. For each valuation that meets all declarations and assumptions it is the
case that all assertions are true.

• Legality. Division by zero is avoided in an appropriate manner.

4.1.4 Legality: Positive and Negative Examples, and Undecided Cases

Here are some alternately legal and illegal texts in V E AT .

A legal text: given x : Q;moreover x �= 0; now x

x
= 1.

The argument is simple: given that x is rational and non-zero, it is known thereafter
(i.e., in later assertions) that x is non-zero; in this case, it can be used to show that the
denominator of the only fracterm contained in the text is non-zero.

A non-legal text: given x : Q;moreover x = 0; now x

x
= 1.

Consider the valuation where x = 0, then the declaration and the first assumption
succeeds, but calculating the fracterm fails on division by zero.
Legal: given x : Q;moreover x = 0;moreover x �= 0; now x = 1.
In the absence of any facterms legality boils down to syntactic correctness, which is
satisfied in this case.
Non-legal: given x : Q; now x

x
= 1.

Consider the valuation where x = 0, then the declaration succeeds, and subsequently,
i.e., while reading from left to right, calculating the fracterm fails on division by zero.
Legal: given x : Q;moreover x �= 0;moreover x = 0; now x = 0.
In the absence of any facterms, syntactic correctness suffices.

Non-legal given x : Q;moreover x �= 1; now x

x
= 1.

On the basis of the first and only assumption, it can be shown that the fracterm that
comes later can have a zero denominator.
Legal: given x : Q; now-if x �= 0 then

x

x
= 1.

The argument for legality is non-trivial in this case. Two features combine for their
legality: first of all, for whatever valuation onemay choose, when reading the text from
left to right and evaluating only the expressions that need evaluation, no division by
zero is encountered. Here it matters that now-if R then S is supposedly evaluated in a
short-circuit fashion. Secondly, one finds that the denominator of the (unique) fracterm
at hand is not demonstrably equal to zero, on the basis of preceding declarations.
Importantly, we won’t count the condition x �= 0 of the conditional assertion among
the preceding assumptions.

Non-legal: given x : Q; now-if 0 �= 0 then
0

0
= 1.

Now the first argument still holds: for any valuation, evaluating the declarations and
assertions in a left to right order, and stopping when an evaluation yields false, will not
run into division by zero.But the text contains a fractermwhich under all circumstances
(i.e., for all valuations) will give rise to division by zero. Such fracterms are non-legal.

This last example also illustrates why the condition (in this case 0 �= 0) of the con-
ditional assertion is not considered to be an assumption. Indeed, from an assumption
0 �= 0 it would possible to prove that whatever denominator is non-zero, thus arguing
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that there is no possible issue with division by zero. However, the latter argument is
unconvincing in the presence of a non-legal term.

In general, a termmay be considered non-legal if its value always equals⊥. A legal
text may not contain a non-legal term.

Definition 4.1 A denominator of a fracterm in a text which is demonstrably equal to
zero on the basis of preceding assumptions in the text will be called a logical pole.
Absence of logical poles is a requirement for legality.

Legal: given x : Q;moreover x �= 0; now-if 0 �= 0 then
1

x
= 1.

In this case the only denominator around can be proven to be non-zero on the basis of
the conjunction of preceding declarations and assumptions: no logical poles.

Non-legal: given x : Q;moreover x = 0; now-if 0 �= 0 then
1

x
= 1.

Now the only fracterm involved is not non-legal by itself, but it is non-legal in this
particular context where the assumption x = 0 may be used: a logical pole

Legal: given x : Q; now-if 0 �= 0 then
1

x
= 1. Absence of logical poles.

Non-legal: given x : Q;moreover x = 0; now-if x �= 0 then
x

x
= 1.

Presence of a logical pole.

4.1.5 Legality, a Problematic Concept?

The purpose of a set of conventions is to specify legal versus illegal texts. Here,
however, are two examples of texts for which it seems not to be the case that there
is any clear intuition about legality. The combination of assumptions is inconsistent,
which by itself does not stand in the way of legality.

φ ≡ given x : Q;moreover x = 0;moreover x �= 0; now x

x
= 1.

ψ ≡ given x : Q;moreover x �= 0;moreover x = 0; now x

x
= 1.

We introduce safety as a property of texts, and use it in four different notions of
legality, each of which has some value.

Definition 4.2 A text is safe if for every valuation of its variables, each of the asser-
tions (i.e., declarations, assumptions and conclusions) evaluates to either true or false
when evaluating these linearly from left to right and terminating evaluation at the first
assertion that takes value false.

Example of a safe text: given x : Q;moreover 1 = 0;now 1

0
= 0.

Example of a non-safe text: given x, y : Q;moreover 1 �= x;now 1

x
= y.

Here are the notions of legality.

Definition 4.3 1. A text is legalA if for each occurrence of a fracterm F in it, it is the
case that:
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(a) the whole of the assumptions (= declarations and assertions with the keyword
moreover) preceding F taken together are consistent with conjunctionCw(F),
and

(b) from Cw(F) it can be shown that the denominator of F is non-zero.

2. A text is legalB if it is safe and in addition for each occurrence of a fracterm F in
it, it is the case that:

(a) the whole of the assumptions (= declarations and assertions with the keyword
moreover) preceding F taken together are consistent with conjunctionCw(F),
and

(b) from Cw(F) it cannot be shown that the denominator of F equals 0.

3. A text is legal f orward if for each occurrence of a fracterm F in it, it is the case that:

(a) some initial segment of the assumptions (= declarations and assertions with the
keywordmoreover) preceding F taken together are consistentwith conjunction
C f orward(F), and

(b) from C f orward(F) it can be shown that the denominator of F is non-zero.

4. A text is legalbackward if for each occurrence of a fracterm F in it, it is the case
that:

(a) some final segment of the assumptions (= declarations and assertions with the
keywordmoreover) preceding F taken together are consistentwith conjunction
Cbackward(F), and

(b) from Cbackward(F) it can be shown that the denominator of F is non-zero.

Consider some examples.

Proposition 4.1 Both φ and ψ above are neither legalA nor legalB. However,

(a) φ is legalbackward but not legal f orward .
(b) ψ is legal f orward but not legalbackward .

Next, let χ ≡ given x : Q; now-if x �= 0 then
x

x
= 1.

We find that χ is safe, that χ is legalB , while χ is not legalA, not legal f orward and not
legalbackward .

Let χ0 ≡ given x : Q; now-if 0 = 1 then
x

x
= 1.

We find that χ0 is safe, and that χ0 is not legal in any of the four senses.

Let χ1 ≡ given x : Q; now-if 0 �= 1 then
x

x
= 1.

We find that χ1 is safe, that χ1 is legalB , while χ1 is not legalA, not legal f orward and
not legalbackward .

At present, we do not have clarity on the question whether or not one of the four
definitions of legality of arithmetical texts (for the limited notation ofVEAT ) should be
preferred as being closer to arithmetical practice, or if any other definition of legality
may be put forward which might enjoy more credibility. However, we do suggest that

(i) legalA is to be preferred over legalB as it offers certainty; and
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(ii) legalbackward is to be preferred over legal f orward as it is local.

Different criteria for non-legality can be found in a similar manner.

Definition 4.4 1. A text is illegalA if for some occurrence of a fracterm F in it, it is
the case that:

(a) the whole of the assumptions (= declarations and assertions with the keyword
moreover) preceding F taken together are consistent with conjunctionCw(F),
and

(b) from Cw(F) it can be shown that the denominator of F is zero.

2. A text is illegalB if it is safe and in addition for some occurrence of a fracterm F
in it, it is the case that:

(a) the whole of the assumptions (= declarations and assertions with the keyword
moreover) preceding F taken together are consistent with conjunctionCw(F),
and

(b) from Cw(F) it cannot be shown that the denominator of F is non-zero.

3. A text is illegal f orward if for each occurrence of a fracterm F in it, it is the case
that:

(a) some initial segment of the assumptions (= declarations and assertions with the
keywordmoreover) preceding F taken together are consistentwith conjunction
C f orward(F), and

(b) from C f orward(F) it can be shown that the denominator of F is zero.

4. A text is illegalbackward if for each occurrence of a fracterm F in it, it is the case
that:

(a) some final segment of the assumptions (= declarations and assertions with the
keywordmoreover) preceding F taken together are consistentwith conjunction
Cbackward(F), and

(b) from Cbackward(F) it can be shown that the denominator of F is zero.

5 Undecidability of Textual Legality

We will first formulate two generalisations of some of the above examples.

5.1 Polynomials and Undecidability

Proposition 5.1 (Polynomial legality proposition.) Let p(x1, . . . , xk) be a polynomial
(i.e., an expression over �r ). Suppose that for all integer values n1, . . . , nk, Q |�
p(n1, . . . , nk) �= 0. Then the text:

given x1, . . . , xk : Z; now 1 ÷ p(x1, . . . , xk) �= 0
is legal.
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Proposition 5.2 (Polynomial non-legality proposition.) Let p(x1, . . . , xk) be a poly-
nomial (i.e., an expression over �r ). Suppose that for some tuple of integer values
n1, . . . , nk, Q |� p(n1, . . . , nk) = 0. Then the text:

given x1, . . . , xk : Z; now 1 ÷ p(x1, . . . , xk) �= 0
is not legal.

Solvability of Diophantine equations over the integers is undecidable; this is a
fundamental theorem of Matijasevitch, who proved that computably enumerable sets
are diophantine, which finally solved Hilbert’s 10-th problem in the negative. See,
e.g., the discussion in Manin (1977) and Matiyasevich (1993).

Let V be be a set of natural numbers which is computably enumerable but not
computable. As a consequence of Matijasevitch’s Diophantine Theorem, there is a
number k and a k + 1 variable polynomial pV (x1, . . . , xk, y) such that n ∈ V if, and
only if, for some n1, . . . , nk ∈ Z it is the case that Q |� p(n1, . . . , nk, n) = 0.

Theorem 5.1 Consider the family Tn of texts parametrised by n ∈ N:

Tn ≡ given x1, . . . , xk : Z; now 1 ÷ pV (x1, . . . , xk, n) �= 0.

Then the legality of text Tn is an undecidable property of n.

Proof The result follows from the definition of pV in combination with both above
propositions: Tn is not legal if, and only if, n ∈ V .

Here is a slightly stronger fact.

Corollary 5.2 Safety is not decidable.

Proof In the proof above legality and safety coincide.

5.2 Some Conclusions Concerning Traditional Conventions on DbZ Legality

From Theorem 5.1 we infer the following conclusions:

1. The rules behind the notion of legality in the practice of school arithmetic cannot be
simple, sound and complete at the same time. Here simple means finite in number
with computably enumerable consequences; sound means the rules generate only
legal texts; and complete means that the rules generate all legal texts.

2. In as far as attempts are made to write down rules for text legality in relation to
DbZ, divergence between the results of different attempts is to be expected.

3. Text legality with respect to DbZ differs for different underlying fields of numbers.
4. In arithmetics where the general polynomial legality or non-legality propositions

5.1 and 5.2 fail or are unknown, the undecidability resultmay disappear. Instead the
question will arise for which polynomials can the polynomial legality proposition
be maintained; and, similarly, for the polynomial non-legality proposition.

5. Extracting rule sets for text legality in connection with DbZ is a valid research
topic.

In the teaching of arithmetic, the idea that understanding expression or text legal-
ity comes or should come in advance of “learning arithmetic” is not plausible. It is
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remarkable that the idea that DbZ can be avoided if only “one properly understands
numbers” is so wide-spread. The problem is a hard example of the complexity of type
checking.

6 CommonMeadows and Logics

We now turn to logics to model legality under traditional conventions. Our method
for progressing legality/illegality using logics needs semantics that is clear, precise
and very well understood. Logics defined over signatures have clear precise syntax; if
satisfaction is defined by total algebras then they have clear precise semantics. Partial
algebras cause considerable semantic complications even for equational logics. Thus,
we choose total algebras that can mimic or simulate partiality to enable us to apply
logics with easy and reliable semantics.

6.1 CommonMeadows

The algebras we choose are enlargements G(÷) of fields G with division to which are
added the new element ⊥, which is an absorbtive element, i.e., for all x ∈ G,

x + ⊥ = ⊥, x · ⊥ = ⊥,−⊥ = ⊥, etc.

If x ÷ y is not defined in G then we define x ÷ y = ⊥.
This technique of adding⊥ to totalise the partial operations of an algebra A is quite

general and has been studied in Bergstra and Tucker (2022a), where the process was
specified by a general operator Enl⊥(A) on algebras A. In addition, in Bergstra and
Tucker (2022a), the operator Enl⊥ has a left inverse Pdt⊥ so that Pdt⊥(Enl⊥(A)) = A.
The idea is that Enl⊥ totalises the partial operations of algebras by adding⊥, and Pdt⊥
recovers partial algebras by removing ⊥.

The total algebras we will use for our investigation are these (Bergstra & Ponse,
2021, 2016):

Definition 6.1 For G a field,
Enl⊥(G(÷))

is a common meadow. In common meadows, for all x ,

x ÷ 0 = ⊥.

The design decision that is the focus of this paper is the use of a partial division
operator on G; this will not be changed by our total methods. Now, notice that the
legality of terms and formulae over a total algebra Enl⊥(G(÷)) is not an issue as
they are defined by standard rules of first order logic, i.e., all well-formed first order
formulae are legal in working with Enl⊥(G(÷)).

Secondly, note the important role of equality. Now, the underlying field G and
the enlargement Enl⊥(G(÷)) are total algebras and therefore both come with a native
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notion of equality, written= in both cases.Whilst equality in the partial meadowG(÷)

is complicated, as there are several options as what to do when terms are undefined,
equality in the common meadow Enl⊥(G(÷)) is an unambiguously defined standard
notion. Indeed, to some extent equality in the common meadow approximates the
use of = in elementary arithmetic with ÷ under traditional conventions. However,
that approximation is a rough one: for instance, consider this well-formed and valid
equation over Enl⊥(G(÷)):

Enl⊥(G(÷)) |� 1 ÷ 0 = (−1) ÷ 0.

Although legal in the first order logical language, this equation is to be rejected by
mathematicians working with traditional conventions because of its illegal fracterm.

6.2 Logic of Traditional Conventions for Handling DbZ

Our catalogue of examples of texts and our formulations of legality and illegality
reflect arithmetic practices in which

(i) division by zero must be avoided;
(ii) notations involving division by zero lie outside the realm of legal notations, which

are to be used in school and perhaps even in mathematics generally;
(iii) there is conceptual evidence of the non-existence of (say) 1/0, which suggests that

avoiding division by zero is a practice which follows from the very understanding
of arithmetic as a cognitive asset.

Clearly, the idea of legality for elementary arithmetic texts is part of a well-
established social practice.

Proposal 6.1 Legality conventions for elementary arithmetic constitute a well-
established, seemingly quite uniform, social practice, abundantly present in elemen-
tary teaching. At the same time, no published research on these legality conventions
seems to exist.

What are these conventions? How to specify them? Are the legality conventions
unique, or are there different traditions on the matter?

Proposal 6.2 Traditional elementary arithmetic comes with conventional rules and
guidelines, which may be implicit, regarding the legality of expressions for use in
adequate texts. These legality conventions are more restrictive than the conventions
that come with Enl⊥(Q(÷)), which is evidenced by the expression 1 ÷ 0 which is
legal for Enl⊥(Q(÷)) and which is not considered legal in traditional/conventional
arithmetic.

Having introduced the elementary arithmetic languageVEAT and the total structure
Enl⊥(Q(÷)), the method comes into focus.

The method is to choose, adapt and design logics L over the common meadow
Enl⊥(Q(÷)), and transform texts from the language VEAT into formulae in the logic
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L . In the well behaved world of logics over Enl⊥(Q(÷)), we can attempt to classify
the well-formed formulae of L that represent the legal texts and illegal texts of VEAT .

Because of the simplicity of VEAT , the translation

T ∈ V E AT → φT ∈ L

will be straight-forward and easy to see:

(i) the separator ; of VEAT becomes a conjunction in L; and
(ii) conditionals become implications in L .

In fact, as we build up momentum, we might talk about traditional legality directly in
L .

The logics we need depart from classical logics as their semantics must accommo-
date ‘short circuit’ reading of formulae to cope with our examples and definitions.

Starting with Enl⊥(Q(÷)) as a formal tool, the details of legality conventions for,
say, school arithmetic are a topic for logical research. More explicitly:

Proposal 6.3 Having formulated the problem, we conjecture that Enl⊥(Q(÷)) can
serve as a point of departure for developing arithmetic with conventional notational
constraints about DbZ.

7 Concluding Remarks

We comment on various perspectives on division by zero and on some directions for
further research.

7.1 Traditional Conventions and Formal Texts

Antipathy to division by zero is evident in the traditional conventions on writing
arithmetical texts, wherein formulae that might allow division by zero are strictly
avoided. We have posed the novel problem of establishing a set of precise rules or
guidelines for writing arithmetical texts that capture these traditional conventions.
We have shown, using computabilty theory, that such guidelines cannot be simple,
sound and complete. But we have also introduced a method to explore the scope and
limits of traditional conventions using formal logics applied to special total algebraic
structures called commonmeadows. The logics can dissect partiality as it ismanifested
by division in arithmetical texts, using technical concepts that allow us to classify,
in an approximate and rigorous way, the texts that are legal or illegal according to
traditional conventions. Of course, as the approximations become more complex and
the examples more subtle the question arises:

Does there exist a set of practical and precise rules or guidelines for writing arith-
metical texts that capture conventions in traditional practice? Is there at least a kernel
of precise rules or guidelines that can be applied soundly in informal practices?

At this stage, it is clear that traditional conventions do exist but it is not clear that they
are unique or that there is a kernel that captures a stable social consensus, as simple
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examples persistently escape or contradict seemingly reasonable formal conditions.
This paper has uncovered some barriers to be taken down. First, there are technical
issues of formulating properties in logics. Second, there is the role of undecidability in
making judgements in theory and practice. Third, there are the effects of inconsistency
arising from false assumptions.

Perhaps no single logic can do. It is perfectly reasonable to explore simultaneously
the use of a number of different logics to analyse components of legal and illegal texts.
Perhaps a patchwork of different logics applied to common meadows can serve to
define a kernel.

In this paper we have only scratched the surface: enough to establish the problem
and its difficulty and to see the need, or at least the plausibility, of using common
meadows and suitable logics. Some candidates worth investigating are 3-valued or
4-valued ‘short circuit’ logics (Bergstra et al., 1995; Ponse & Staudt, 2018).

The notation VEAT for texts on elementary arithmetic here comprises only a part of
what is needed to capture at least the spirit of teaching notes or a simple textbook on
arithmetic. Apart from primitives for modularisation of text (sections, chapters etc.),
one needs at least: (i) function definitions, (ii) statements about function definitions
(e.g., x is in the domain of function f ), (iii) examples (importing a module with
parameters and assumptions), (iv) links with figures and diagrams, (v) exercises, and
(vi) exams.

For instance, exercises may be taken to have the following forms (with e an expres-
sion, and A an assertion):

“Is the expression e in simplified form?”,
“Simplify the expression e?”,
“Is the assertion A valid?”,
“What is the value of the expression e?”.

Detailing a format for modelling texts about elementary arithmetic is a project in its
own right and may have unexpected uses.

It is easy to recognise the Avoidance Principle at work in mathematical writings.
It assumes that text and meaning—syntax and semantics—are intimately connected
and seeks to preserve verisimilitude for texts by playing safe with partiality. This is
consistent with the practice of mathematicians who fuse syntax and semantics to the
extent that syntax is not acknowledged explicitly and disappears. However, another
attitude to partiality is possible, namely don’t bother about legality at all and assume
that in each case the semantics of the text will be evident, or at least sort itself out.
This seems to amount to embracing the independence of syntax and making it primary
in some sense. This attitude can be expressed as a Principle and studied too. Such
directions connect with positions in the philosophy of mathematics, of course.

7.2 Other Directions

As to the form of traditional conventions, a more radical approach could be to embrace
the evidence of practice directly and assemble a corpus of elementary mathematical
texts and apply some form of machine learning to them. This approach has worked
well in a not unrelated context: programmers’ coding conventions (Allamanis et al.,
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2014). In many software development projects there is a kernel of precise rules or
guidelines for the programmers to follow. The conventions are necessary to promote
understanding and collaboration between coders on a development project and for
later maintenance of their product. But programmers do not follow the rules despite
being certain about the importance of their existence. One can say that the coding
conventions fail to capture the practice of coding. As is established in Allamanis et al.
(2014),machine learning can explore practicewith the aimof improving the usefulness
and value of the coding conventions.

The phenomena of association v. disassociation as highlighted in Nicaud et al.
(2001) are important for acquiring an understanding of the psychology of reading
texts on arithmetic—and hence the nature of traditional conventions. At a very high
level of association, if something is incomprehensible it triggers disassociation and
changes to a very low level of association where each detail matters a lot. In practice,
the levels of association as maintained by individual persons differ in time, changing
in an oscillating pattern as needed for understanding, and differ between persons.

7.3 Options for Total Algebras to Define DbZ

Adopting 1/0 = ⊥ as in common meadows is an option that provides a useful tool for
investigating several technical details of conventional arithmetic, including its algebra
and logic, and its semantic role in computing. Common meadows are fully motivated
by such applications; indeed, common meadows constitute an unavoidable ingredient
for the investigation and formalisation of elementary arithmetic as it occurs in practice.

Can other algebras with total division be used in our methods in place of common
meadows?

Another well-known option for totalisation is to adopt 1/0 = 0. Theoretical work
in that direction has started with Komori (1975) and Ono (1983). In Bergstra and
Tucker (2007), 1/0 = 0 was adopted for the purpose of algebraic specification of
an arithmetical data type of rationals. Since Bergstra and Tucker (2007), quite some
theory has beendeveloped for these total algebras,which are called involutivemeadows
because (x−1)−1 = x for all x . In Bergstra and Middelburg (2015), the structure
theory of fracterms is investigated under the assumption that 1/0 = 0. An experiment
with using 1/0 = 0 as an assumption for an application in forensic reasoning can
be found in Bergstra (2019). For calculations involving probability, having 1/0 = 0
may be advantageous (Bergstra, 2019)—much more work will be needed, however, to
confirm that suggestion. Adopting 1/0 = 0, as a matter of convenience, not as a matter
of principle, has become common practice for proof checking systems, of which there
are many.

As stated above, adopting 1/0 = 0 is rather uninformative regarding the practice of
elementary arithmetic, for instance as present in teaching. In Michiwaki et al. (2016);
Okumura and Saitoh (2018) a line of work is promoted where adopting 1/0 = 0
(or rather a generalisation of that identity phrased in terms of evaluating a Laurent
series in its pole) is claimed to be useful for analysis, geometry, and trigonometry. A
book-length study of this direction is Saitoh (2021).
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In this case, letQ0(÷) denote the involutive meadow of rationals totalising division
in Q(÷). Now considering closed terms in Q0(÷), forces one to view a closed term
such as 1÷ ((5−6)+1) as illegal, thereby confusing matters of legality and equality;
this stands in the way of the separation of concerns which is a benefit of working with
Enl⊥(Q(÷)).

Yet another strand of DbZ theory comes from computer programming where adopt-
ing 1 ÷ 0 = +∞ has become a common practice, in part thanks to floating point
conventions. Theoretical work in that direction, including the design of arithmetical
data types such as the transrational numbers, starts with Anderson et al. (2007). In
dos Reis et al. (2016); dos Reis (2019) and one finds an approach to real analysis
based on the adoption of 1÷ 0 = +∞. An algebraic specification of the abstract data
type of transrational numbers is given in Bergstra and Tucker (2020). A refinement
of these types of models that integrate the approach of common meadows is Bergstra
and Tucker (2022b).

Adopting 1 ÷ 0 = ∞ (unsigned infinity) has been proposed in Setzer (1997) and
analysed in significant detail in Carlström (2004, 2005) and Bergstra and Tucker
(2021), in the theory of wheels. Although this option is not common in computational
practice, though it suits models of exact real arithmetic, its significance undeniably
rests on the observation that the wheels of rationals, reals, and complex numbers arise
naturally and unavoidably when contemplating arithmetical data types which capture
the topological characteristics of the Riemann sphere. It is fair to say that of the four
mentioned options, wheels are most clearly rooted in classical mathematics.
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