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“If you thought that science was certain - well,

that is just an error on your part."

R. P. Feynman



Abstract

This thesis is structured in three broad sections. The first presents a brief intro-
duction to the field of quantum chromodynamics (QCD) and regularisation methods,
which precedes a more thorough description of the lattice field theoretic approach
to QCD and its non-relativistic formalism, NRQCD, which is used in the analysis
contained within this document.

The second section introduces the first problem of interest, spectral reconstruc-
tion in the case of bottomonium mesons. We focus in particular on the Laplacian
nature of the problem and present the Backus-Gilbert method as a means of pro-
ducing regularised solutions. The resolving power of the method is discussed and
the overall approach is then extended with the inclusion of a novel technique known
as Laplace shifting, which takes advantage of the structure of the problem to pro-
vide a controlled resolution improvement to the method. A study of this technique
is presented and applied to results obtained from Fastsum’s anisotropic NRQCD
ensembles from which connections with a known phenomenon in Monte-Carlo based
physics called Parisi-Lepage statistical scaling are elucidated.

The third and final section focuses on probing the temperature dependence of
the gluon propagator again calculated using the Fastsum Gen-2L ensembles. We
begin by showing results for the propagator in the Coulomb gauge, before extending
to the Landau gauge where we discuss the necessary modifications to support the
lattice anisotropy.
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Chapter 1

Introduction

1.1 The Foundation of QCD

The emergence of quantum mechanics in the early 20th century spurred the rapid
development of radical new theories in opposition to the long-established classical
approaches to physics. Early developments such as the solution to the ultraviolet
catastrophe by Max Planck and the description of the photoelectric effect by Albert
Einstein paved the way for a fully-fledged development of a quantum-mechanical
interpretation of physics starting in the 1920s.

Theoretical studies of the internal forces of the atomic nucleus led Hideki Yukawa
to hypothesise in 1934 the existence of an intermediary ‘carrier’ particle which gen-
erates a force acting in opposition to the Coulombic repulsion between protons in
the nucleus [18]. This particle was called the ‘meson’, derived from the Greek word
mesos (“intermediate”). The first true1 meson, the charged pion, was discovered
in 1947 by a collaboration led by Cecil Powell [19]. Subsequent meson discoveries
in the following decade uncovered shared properties between mesons, classified by
their charge q, isospin I and strangeness s. This connection was codified by Yuval
Ne’eman and Murray Gell-Mann into a scheme dubbed the eightfold way [20, 21],
and is regarded as one of the earliest attempts to describe the underlying symmetries
of QCD.

The emergence of the “subnuclear zoo” of particles in the mid 20th century made
it increasingly improbable that they could each be elementary, and so it was clear
that particle theory needed to be modified to support the existence of so many new
types of particle. The discovery [22] of the ∆++ baryon required the introduction

1The first candidate for Yukawa’s ‘meson’ was discovered in 1936 by Carl David Anderson, but was
later found to be what is now known as the muon, the leptonic cousin of the electron.
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of an additional, hidden degree of freedom to rectify the apparent noncompliance
of the ∆++ with the Fermi exclusion principle. This degree of freedom was later
identified as the SU(3) color charge, when quantum chromodynamics (QCD) was
properly formalised [23, 24].

As with almost every other type of matter present in nature, the quest to map out
the phase diagram of quark matter became of significant interest. Unlike the phase
diagrams of chemistry which are usually in terms of the temperature and pressure
of the system, the analogous quantities in our case are temperature and chemical
potential. At low temperature and chemical potential (as is the current state of
nature here on Earth) one anticipates quark matter to be bound, or confined, to a
hadronic state. As the temperature and chemical potential increase (as was the case
in the early Universe) the quark matter melts and enters a plasma-like state known
as the quark-gluon plasma (QGP). However, arguably the most exotic behaviour
(and the one which eludes researchers the most) exists at lower temperatures but
very high chemical potentials, beyond that of the densest objects known in our
universe: neutron stars. In such conditions, it is theorised [25] that quark matter
enters a color-flavour-locked superconducting state, which we anticipate will exhibit
a similar departure from the properties of ‘conventional’ quark matter to that seen
when metals enter electrically-superconducting states. Further discussion of the
phases of QCD is given in §1.3.

1.2 QCD in the Continuum

Before we can begin to discuss the various properties and phenomena exhibited by
QCD, we must first define it in terms of a quantum field theory. QCD describes the
dynamics of quarks and gluons, and the action which describes their interactions
may be split into two parts:

SQCD = SF [ψ̄, ψ, Aµ] + SG[Aµ], (1.2.1)

where ψ̄(x), ψ(x) are spinor fields describing the antiquarks and quarks respectively
and Aµ are the gluon fields. SF describes the fermionic component of the QCD
action, whereas SG encodes the gauge field dynamics. The fermionic action, coupled
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with some strength g to the gauge field Aµ, is given by

SF [ψ, ψ̄, Aµ] =
Nf∑
i=1

∫
d4x ψ̄(i)(x)

[
γµ(∂µ + igAµ(x)) +m(i)

]
ψ(i)(x)

=
Nf∑
i=1

∫
d4x ψ̄(i)(x)

[
/D +m(i)

]
ψ(i)(x),

(1.2.2)

where (i) denotes the flavor of the fermion when we consider theories with the
number of flavors Nf > 1. The γµ are the 4 × 4 Dirac matrices, that introduce
mixing between the spinor components of the quark fields ψ̄ and ψ. The covariant
derivative is defined as Dµ = ∂µ + igAµ. The gauge action is a function only of the
gluon fields Aµ:

SG[A] = 1
2g2

∫
d4x Tr [FµνF µν ] , (1.2.3)

where we define the antisymmetric field strength tensor as

Fµν(x) = −i[Dµ(x), Dν(x)]

= ∂µAν(x)− ∂νAµ(x) + ig[Aµ(x), Aν(x)].

=
∑
a

Ta
(
∂µA

a
ν(x)− ∂νAbµ(x)− gfabcAbµ(x)Acν(x)

)
=
∑
a

TaF
a
µν(x)

(1.2.4)

where we have used the definition of the adjoint representation of the gluon fields,
given by

Aµ =
N2
c−1∑
a

AaµTa (1.2.5)

where Nc is the number of color charges described by the theory and Ta = λa/2
with λ the Gell-Mann matrices. The quantities fabc are the structure constants of
the representation, defined by [Ta, Tb] = if cabTc.

At first glance, both the fermionic and gauge actions appear similar in form to
their counterparts in quantum electrodynamics (QED). However, the presence of
the commutator in Eq. (1.2.4) which is a result of the non-Abelianness of the theory
provides the first hint of the richness of the interactions described by the gauge
action. Unlike the case of QED where the action is invariant under Abelian U(1)
transformations, the equivalent symmetry for the QCD action is given instead by

3



CHAPTER 1. INTRODUCTION

local, non-Abelian SU(3) rotations:

ψ(x) −→ Ω(x)ψ(x), (1.2.6)

ψ̄(x) −→ ψ̄(x)Ω†(x), (1.2.7)

Aµ(x)→ Ω(x)
(
Aµ(x)− i

g
∂µ

)
Ω†(x), (1.2.8)

where Ω(x) ∈ SU(3). One can see that the gauge action Eq. (1.2.4) is invariant under
the above gauge transformation provided that the covariant derivative Dµ(x) =
∂µ + igAµ transforms as

Dµ(x) −→ Ω(x)Dµ(x)Ω†(x). (1.2.9)

Expectation values for any QCD operator, O, are calculated via the path integral

〈O〉 = 1
Z

∫
Dψ̄DψDA O[ψ̄, ψ, A]eiSQCD , (1.2.10)

Z =
∫
Dψ̄DψDAeiSQCD , (1.2.11)

with
SQCD[ψ̄, ψ, A] = SF [ψ̄, ψ, A] + SG[A]. (1.2.12)

1.3 Exploring the Phase Diagram of QCD

Attention is paid to the temperature, T , at which our dynamics take place and the
chemical potential, µ, which describes the net density of particles in our system.
Figure 1.1 shows the simplified QCD phase diagram, with some interesting phases
noted. The QCD phase diagram is still mostly unexplored, with large swathes of
the phase space being inaccessible using current techniques. The introduction of
a finite chemical potential causes a sign problem wherein the interpretation of the
exponentiated Euclidean action e−S[ψ̄,ψ] as a probability measure is compromised and
Monte Carlo importance sampling (which is the crux of lattice methods and will be
outlined in §1.4.1) cannot be used. The solution to the sign problem is itself highly
sought after by physicists and mathematicians alike. Recent approaches aimed at
circumventing the sign problem have been introduced, the most notable being Taylor
expansions of the action in powers of µ [26] and stochastic quantization methods
using Langevin dynamics [27]. Both approaches work to some limited degree, but are
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Quark-Gluon
Plasma

Hadronic
Matter

0

Quark
Liquid

CFL State (?)

1

Nuclear
 Matter

Figure 1.1: Simplified phase diagram for QCD in terms of the temperature T and bary-
onic chemical potential µB. Shown are the known and putative phases of quark matter.
Adapted from [1].

still affected by constraints such as exponentially increasing compute requirements
(the Taylor expansion) or inability to describe fermion dynamics (the Langevin
method). In this work, we shall focus solely on the finite-temperature aspect at zero
chemical potential.

1.4 Lattice QCD

One of the difficulties which arises in the study of QCD is the handling of strong
coupling constant, αs, at the GeV scale. Unlike quantum-electrodynamics which
may be expanded perturbatively in powers of α ' 1/137, the strong coupling, αs,
grows with decreasing energy scale and is roughly unity at the scale of hadronic
processes, meaning that we cannot probe this regime via perturbative methods.
Several approaches have been formulated in an attempt to study QCD, with each
possessing their respective strengths and weaknesses, but one of the most successful
remedies to this problem comes in the form of lattice QCD.

Lattice field theory as a means of simulating QCD was first proposed by K.G.
Wilson in 1974 [28]. In lattice QCD, the continuum QCD theory is discretised and
embedded into a Euclidean lattice, Λ, using Wick rotated time t→ iτ . The lattice
is characterised by some spacing, a, and volume, V = |Λ|. The fermionic fields
are located at each site x ∈ Λ and are connected in each direction µ by a quantity
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called a link variable Uµ(x), where Uµ = eigaµAµ(x). Fig. 1.2 shows the interpretation
of the link variable, Uµ(x), as a quantity connecting two lattice sites x and x + µ̂

(Fig. 1.2-Left), with the convention for the reversed link shown in Fig. 1.2-Right.
The link variables connecting the sites transform via

Uµ(x)→ Ω(x)Uµ(x)Ω†(x+ µ̂). (1.4.1)

x x+ µ̂Uµ(x) x x+ µ̂U−µ(x) ≡ U†µ(x)

Figure 1.2: Left: Diagram of the link field Uµ(x) connecting two lattice sites, x and x+µ.
Right: Backward link field U−µ(x), the reverse of the link shown in Left.

The continuum fermion action of Eq. (1.2.2) can be cast onto the lattice by
discretising the partial derivative

∂µψ(x) ≈ ψ(x+ µ̂)− ψ(x− µ̂)
2a , (1.4.2)

such that the naive lattice fermion action becomes

SF [ψ, ψ̄, U ] = a4 ∑
x∈Λ

ψ̄(x)
(∑

µ

γµ
Uµ(x)ψ(x+ µ̂)− U−µ(x)ψ(x− µ̂)

2a +mψ(x)
)
.

(1.4.3)
The naive lattice gauge action is given by

SG[U ] = 2
g2

∑
x∈Λ

∑
µ<ν

ReTr[1− Uµν(x)], (1.4.4)

where Uµν(x) is a quantity known as the plaquette, given by a closed loop of link
variables:

Uµν = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν(x). (1.4.5)

Fig. 1.3 shows the plaquette as constructed from the gauge like variables. It can
be shown that Uµν = exp[ia2Fµν +O(a3)] and thus a small-a expansion Eq. (1.4.4)
yields the continuum gauge action of Eq. (1.2.4).

The term ‘naive’ is often used to describe the fermion and gauge actions of
Eq. (1.4.3) and Eq. (1.4.4) as they are shown without applying any of the improve-
ment techniques which are common practice in lattice studies. These techniques
include (but are not limited to) the Symanzik improvement scheme [29], which
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Uµν

x x+ µ̂

x+ ν̂ x+ µ̂+ ν̂

Uµ(x)

Uν(x+ µ̂)

U†µ(x+ ν̂)

U†ν (x)

Figure 1.3: Diagram showing the plaquette, Uµν(x).

leverages higher-order terms in the discretized form of the derivative to remove cor-
rections up to some order in a, and clover-term improvement [30], which uses factors
of the field strength tensor to deliver O(a) improvement on the Wilson action.

The link fields, Uµ(x), are arguably the most fundamental component of the lat-
tice prescription. One can see that, by the transformation property of the link fields
given in Eq. (1.4.1), the trace of the plaquette is gauge invariant. This property holds
for any closed loop of link variables, regardless of size or construction. Two com-
monly studied objects similar in form to the plaquette are the Wilson and Polyakov
loops. In the continuum, the Wilson loop is created by the parallel transport of the
Aµ fields along a closed contour C,

W [C] = Tr
[
P exp

(
i
∮
C
Aµdx

µ
)]
. (1.4.6)

Consider the example where the Wilson loop is represented by a simple rectangular
contour, C = R× T , with R and T the spatial and temporal segments respectively.
On the lattice, this corresponds to a simple product of link variables along the path
represented by C:

W(R, T ) = Tr
 ∏
{x,µ}∈C

Uµ(x)
 . (1.4.7)

The static quark potential can be related to the expectation value of the Wilson
loop via

〈W(R, T )〉 T→∞∝ e−V (R)T (1.4.8)

∝ e−σRT+µ(R+T ) (1.4.9)

where the second line is the result of a strong coupling expansion [31], with σ
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the string tension and µ the perimeter coefficient. The expectation value of the
Wilson loop can act as an order parameter for confinement. In the confined phase,
the quantity − log 〈W(R, T )〉 scales proportionally with the area of the loop, RT ,
whereas in the deconfined phase it scales proportionally with the perimeter, R+ T .

We may also modify the Wilson loop such the extent of the temporal contour
equals the temporal extent of the lattice. In this case, the spatial segments are posi-
tioned atop one another, oriented in opposite directions. This results in a reduction
of the Wilson loop into two disconnected paths oriented in opposite ways along
the temporal direction. This path which winds the temporal direction is known as
the Polyakov loop (also known in the literature as the thermal Wilson line) and is
defined by

P (x) = Tr
[
Nτ−1∏
τ=0

U4(τ, x)
]
. (1.4.10)

This quantity may then be related to the static quark potential, V (R), by taking
the product of the disconnected paths and using the relation given in Eq. (1.4.8):

〈P (x)P †(y)〉 ∝ e−aτNτV (R), (1.4.11)

where we have used T = aτNτ , with aτ the temporal lattice spacing, and R = |x−y|
[32].

The expectation value of a single Polyakov loop, 〈P (x)〉, may also serve as an
order parameter for center symmetry breaking. Consider the center transformation

U4(τ, x)→ zU4(τ, x) (1.4.12)

for all x corresponding to some timeslice τ , where z ∈ {exp (2nπi/Nc)1 for n ∈
[0, . . . Nc)} is an element of the cyclic group Z(Nc). The plaquette is trivially invari-
ant under the transformation given in Eq. (1.4.12), but the Polyakov loop instead
transforms as P → zP . Since z is a member of the cyclic group, 〈zP 〉 will vanish
in the phase where the centre symmetry holds, but will acquire a finite value when
the center symmetry is broken. The connection between center symmetry and de-
confinement becomes manifest when one notes that the Polyakov loop expectation
value obeys

| 〈P 〉 | ∝ e−NτFq , (1.4.13)
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with Fq the free energy of a color charge [31]. It is now evident that the link
fields themselves encode a tremendous amount of information about the state of the
lattice. Although the path integral has now been discretized into a finite series of
integrals by the introduction of the link field formulation, the number of degrees of
freedom are still large and the Euclidean probability function e−S is sharply peaked
about the classical minimum of the action, S, meaning that traditional integration
methods would waste a lot of computation time calculating in regions where e−S is
small. This issue is side-stepped by using Monte Carlo integration with importance
sampling.

1.4.1 Monte Carlo Integration

In order to measure the expectation value of some observable as in Eq. (1.2.10),
one must perform an integral over an infinitely large space of group elements, U ,
and thus it is impossible to evaluate such an integral via analytic means. One can
attempt to instead evaluate Eq. (1.2.10) numerically by taking the approximation

〈O〉 ' 1
N

1
Z

N∑
i

O[Ui]e−S[Ui], (1.4.14)

where the fields Ui are uniformly sampled from the set of all configurations {U}.
Although this would indeed produce the desired value of the path integral as N →
∞, in practise (for high-dimensional systems) the action contribution e−S[U ] is almost
negligible for a large portion of the group space, thus making Eq. 1.4.14 an inefficient
way of evaluating an integral over DU . This may be remedied by instead generating
our Ui via importance sampling, wherein Ui are chosen with probability

p[Ui] = e−S[Ui]

Z
(1.4.15)

and thus the expectation value may be simply evaluated across the set of chosen
samples:

〈O〉 ' 1
N

N∑
i

O[Ui]. (1.4.16)

A popular method for generating importance-sampled configurations is Markov
chain Monte Carlo (MCMC). This involves starting with a random choice for Ui
and then generating a new set of configurations Ui+1 with a transition probability
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P satisfying the so-called detailed balance condition

P [Ui → Uj]p[Uj] = P [Uj → Ui]p[Ui] (1.4.17)

where Ui, Uj ∈ {U}. This ensures that the target distribution p[U ] is obtainable
from any arbitrary starting distribution p0[U ] given a sufficiently long chain of con-
figurations.

There exist additional subtleties which also must be considered with the Markov
chain approach. These include unphysical effects such as autocorrelation (as sub-
sequent elements of the chain are naturally correlated as a result of the generation
process) and equilibration/thermalisation issues (if the choice of p0 is so far from
the target distribution that the generated Ui do not correctly sample the target
distribution). These intricacies have been studied in the context of Monte Carlo
integration with detailed discussion in the literature [31, 32] and therefore will not
be discussed further in this work.

1.5 Finite Temperature on the Lattice

As visible in Eq. (1.4.13), there is a deep connection between the temporal extent
of the lattice and temperature. In order to elucidate this connection, we turn to
the discussion relating Euclidean quantum field theory and the partition function
of a classical statistical mechanical system, which is usually one of the first topics
discussed in any meritorious book on lattice quantum field theory.

The partition function of a quantum-mechanical system is given by

Z(T ) = Tr
[
e−βĤ

]
, (1.5.1)

where Ĥ is the Hamiltonian operator corresponding to the system and β = 1/kBT
the inverse temperature, with kB the Boltzmann constant (which will be set to
kB = 1 in the following). One may re-express the partition function as a path
integral by recalling the form of the evolution operator in Euclidean time,

UE(x1, τ1;x2, τ2) = 〈x1|e−H(τ2−τ1)|x2〉 =
∫
Dx exp

[∫ τ2

τ1
LE(x, τ)dτ

]
. (1.5.2)

The trace in Eq. (1.5.1) restricts the partition function to fields which are periodic
(bosonic) or anti-periodic (fermionic) in time, and so one can express the partition
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function as an integral over these fields:

Z(T ) =
∫
DΦe−SE [Φ], (1.5.3)

with SE[Φ] the Euclidean action for the fields Φ,

SE[Φ] =
∫ β

0
dτ
∫
R3
dx3LE(Φ(τ, x), ∂µΦ(τ, x)). (1.5.4)

The compactification of the time dimension in Eq. (1.5.4) arises when one compares
Eq. (1.5.2) with Eq. (1.5.1) and notes that β = 1/T = Nτ , with Nτ the extent of the
time window, τ2 − τ1 [31, 32].

This equivalence between the temporal extent and the temperature still holds
when the theory is cast onto the lattice. Thus, by simulating our theory on lattices
of different temporal sizes but fixed spatial volume, one may probe the dynamics of
the theory at different temperatures.

1.6 Non-Relativistic QCD

There are three main energy scales which must be considered when studying the
dynamics of a particle: the mass, M , the momentum, Mv, and the kinetic energy,
1
2Mv2. At relativistic speeds, v ∼ 1, these scales are approximately equivalent, but
when the dynamics of the system become non-relativistic we find v � 1 and the
energy scales become widely separated. If one is to model the dynamics of such a
system, larger lattice sizes must be used to sufficiently probe the infrared regime.
This issue may be treated in part by using a renormalisation strategy such as that
of non-relativistic QCD (NRQCD) [33, 34], which decouples the non-relativistic
dynamics from the usual relativistic theory by integrating out contributions from
momenta larger than O(Mb), where Mb is the bottom quark mass, simplifying the
simulation of heavy mesons.

The NRQCD formulation is implemented by introducing an ultraviolet cutoff,
Mbv � ΛNRQCD � Mb, to the QCD Lagrangian which separates short-distance
effects on the scale of M or larger from those which arise from the small momentum
scales ofMv,Mv2 and the scale at which non-perturbative effects take hold, ΛQCD ∼

Mv2 [35]. The resulting Lagrangian is then split into two parts: the leading term
given by the Lagrangian of a Schrödinger field and correction terms which for now

11
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will be absorbed into the perturbation δL0. The NRQCD Lagrangian is then given
by

LNRQCD = ψ†
{
iDt + D2

2M

}
ψ + δL0 (1.6.1)

where Llight contains the dynamics of the light quarks and gluons, δL0 = δLK +
δLE + δLB + δLEE correspond to the kinetic (relativistic), electrostatic and mag-
netostatic scattering and spin-splitting corrections, respectively, and Dτ , D are the
gauge-covariant temporal and spatial derivatives. The corrections are local and their
magnitude curtailed by an O(v4) cut-off, chosen to ensure good agreement with the
relativistic theory, which yields an estimated systematic error of 10% or less [36].
There is, notably, no mass-like term, Mbψ

†ψ, as the non-relativistic framework only
serves to calculate the energy difference from some zero-point [34] and the rest mass
can be removed from the NRQCD dispersion relation via a redefinition of the quark
fields [37]. The NRQCD formulation is well suited to the lattice discretisation pro-
cedure and has a long history of use in research focusing on the study of bottom
quarks and bottomonia [36, 38].

To leading order, the NRQCD lattice action can be expressed in terms of a
hopping expansion,

S
(k)
0 (x) = a3 ∑

x∈{Λ}

[
ψ†(x)ψ(x)

− ψ†(x+ aτ τ̂)
(

1− aτH0

2k

)k
Uτ (x)†

(
1− aτH0

2k

)k
ψ(x)

] (1.6.2)

where k is a positive integer known as the Lepage parameter, introduced to control
the stability of the expansion, required by the condition, max |1−aτH0/2k| < 1 [34].
For the inverse coupling used in our work, β ≈ 1.5, k = 1 is sufficient to simulate
the b quark [37]. H0 is the leading order term of the Hamiltonian, i.e., the discrete
form of the kinetic energy operator

H0 ≡ −
∆(2n)

2Mb

, with ∆(2n) =
3∑
i

(∇+
i ∇−i )n, (1.6.3)

with 2n the order of the derivative and ∇+ and ∇− the usual forward and backward
covariant finite differences, respectively. The corresponding, discrete form of the
leading-order Green’s function for the quark fields is then given by the evolution

12
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equation

G0(x, τ + aτ τ̂) =
(

1− aτH0

2k

)k
U †τ (x)

(
1− aτH0

2k

)k
G0(x, τ) + δx,0δτ+aτ ,0. (1.6.4)

The δτ+aτ ,0 term ensures that G0(x, τ) = 0 for τ < 0 and one sets G0(x, τ = 0) =
S(x) with S(x) the quark field source. This means that the NRQCD propagator
solves an initial-value problem, which is less computationally expensive to simulate
than a fully-relativistic propagator.

In order to account for the correction terms associated with δL0 in Eq. (1.6.1), the
evolution equationG0(x, τ+aτ τ̂) must be modified using the Hamiltonian correction,
δH, such that

G(x, τ + aτ τ̂) = G0(x, τ + aτ τ̂)(1− aτδH), (1.6.5)

where

δH =− (∆(2))2

8M3
b

+ ig0

8M2
b

(∇± · E − E · ∇)

− g0

8M2
b

σ · (∇± × E − E ×∇)− g0

2Mb

σ ·B

+ a2
s∆(4)

24Mb

− as(∆(2))2

16kM2
b

,

(1.6.6)

with g0 the bare coupling, and as, aτ are the spatial and temporal lattice spacings,
respectively [37].

Finally, the mass of the bottom quark, asMb, in our simulation is determined by
tuning the spin-averaged kinetic mass of the s-wave bottomonium mesons (the ηb
and Υ), M(1S) = (M(ηb) + 3M(Υ))/4, such that it equals its experimental value
of M(1S) = 9444.7(8)MeV [2]. In our work, this is achieved by fitting the lattice
dispersion relation

aτE(|p|2) = aτE(|p| = 0) + a2
s|p|2

2ξ2aτM2
+O(a2), (1.6.7)

where ξ = as/aτ is the lattice anisotropy (see §3.1 for details) and |p| corresponds
to the lattice momentum

a2
s|p|2 = 4

3∑
i

sin2
(
niπ

Ns

)
, (1.6.8)

with ni ∈ [−Ns/2, . . . , Ns/2).
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One drawback of the NRQCD formulation is that the continuum limit is not
well defined due to the presence of UV divergent terms which contribute factors of
(asMb)−1 and thus we are limited to the regime where as ∼ 1/Mb [33].
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Chapter 2

Reconstructing the Bottomonium Spec-

trum in NRQCD using the Backus-Gilbert

Method

In this chapter we begin by motivating studies of the bottomonium spectrum before
relating the spectral density function to the Euclidean correlator using the Källén-
Lehman representation. We present a brief overview of reconstruction techniques
before introducing the Backus-Gilbert method. We then discuss improvements upon
the Backus-Gilbert method in §2.8 by exploiting the Laplacian nature of the NRQCD
kernel.

2.1 Bottomonia

The existence of a new ‘quarkyonic’ state of matter has been theorised ever since
the junior years of QCD [39]. The discovery in the early 1970s that quarks become
asymptotically free [40, 41] at sufficiently high energies prompted discussion into
the nature of this boundary between hadronized matter and the theorised plasma-
like state of unconfined quarks and gluons. Studies [42] of the J/Ψ (cc̄) system
predicted melting of the state above the Hagedorn temperature and thus serves as a
signal for the onset of the so-called quark-gluon plasma (QGP), which was eventually
discovered at CERN in 2000 [43]. It is therefore expected that a similar study using
the heavier bb̄ bottomonium system should also exhibit similar behaviour. Thus,
by measuring quantities such as the mass and width of the ground state at finite
temperature, we expect to be able to probe the deconfinement transition.

Lattice QCD is a well-established approach which is able to explain the behaviour
of mesons such as the J/Ψ and the heavier bottomonium system. In the rest of the
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chapter we outline how non-relativistic measurements of the correlation function for
a particular meson channel can be used to extract information such as the ground
state mass and width.

2.2 The Spectral Representation of the Two-Point Correlator

For any given particle, the in-medium properties of bound states are described by its
spectral density function ρ(ω). Properties of particular interest include the mass and
width of the ground and excited states of the particle, along with associated quan-
tities such as transport behaviour, diffusion coefficients and thermal conductivity of
the system.

Consider some operator, O, in Wick-rotated time, τ , which produces some par-
ticle state of which we wish to determine the spectrum. The correlator is given by
the two-point function

G(τ,x) = 〈O(τ,x)O(0,0)〉

= D+(τ,x),
(2.2.1)

where D+(τ,x) is known as the forward-ordered propagator. It can be expressed as
a function of the momentum, p, via the Fourier transform:

G(τ,p) =
∫ ∞
−∞

d3x e−ip·xD+(τ,x). (2.2.2)

We may rewrite G(τ,p) in terms of the energy-momentum space forward ordered
propagator D+(ω,p) by inserting its definition,

D+(τ,x) =
∫ ∞
−∞

dω

2π

∫ ∞
−∞

d3p′eip
′·xe−ωτD+(ω,p′), (2.2.3)

into Eq. (2.2.2), yielding

G(τ,p) =
∫ ∞
−∞

dω

2π

∫∫ ∞
−∞

d3xd3p′e−i(p−p
′)·xe−ωτD+(ω,p′) (2.2.4)

=
∫ ∞
−∞

dω
∫ ∞
−∞

d3p′

2π δ3(p′ − p)e−ωτD+(ω,p′) (2.2.5)

=
∫ ∞
−∞

dω

2π e
−ωτD+(ω,p). (2.2.6)
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Dividing the integral over ω then gives

G(τ,p) =
∫ ∞
−∞

dω

2π e
−ωτD+(ω,p) +

∫ 0

−∞

dω

2π e
−ωτD+(ω,p)

=
∫ ∞

0

dω

2π e
−ωτD+(ω,p) +

∫ ∞
0

dω

2π e
ωτeβωD−(ω,p),

(2.2.7)

where we have used the Kubo-Martin-Schwinger relations for forward and backward-
ordered propagators:

D+(τ,x) = D−(τ + iβ,x), (2.2.8)

D+(ω,p) = eβωD−(ω,p). (2.2.9)

The spectral density function is defined as the difference of the forward and backward
propagators:

ρ(ω) = D+(ω,p)−D−(ω,p)
2π . (2.2.10)

Combining Eq. (2.2.10) with the KMS relations in Eq. (2.2.9) yields:

D+(ω,p) = 2πρ(ω,p)n(ω; β), (2.2.11)

D−(ω,p) = 2πρ(ω,p)(1 + n(ω; β)), (2.2.12)

where n(ω; β) = 1/(eβω − 1) and β is the inverse temperature defined in §1.5.
Substituting the above into Eq. (2.2.7) yields

G(τ,p) =
∫ ∞

0
dω ρ(ω)

[
n(ω; β)e−ωτ + eωτ (1 + n(ω; β))

]
=
∫ ∞

0
dω ρ(ω)cosh[ω(τ − β/2)]

sinh(ωβ/2) .
(2.2.13)

Since we are interested in the properties of the spectrum at finite temperature, we
integrate over the momentum, p, and express the correlation function in the form

G(τ ;T ) =
∫ ∞

0
dωK(τ, ω;T )ρ(ω;T ), (2.2.14)

where K(τ, ω;T ) is called the kernel function and G(τ ;T ) and ρ(ω;T ) are the finite-
temperature correlation and spectral density functions. In the non-relativistic limit,
which we shall make use of in this work, the kernel function of Eq. (2.2.13) reduces to
a simple exponential. This can be seen by making the kernel substitution ω = ω′+M
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with M the particle mass, such that

K(τ, ω;T ) = cosh[(ω′ +M)(τ − β/2)]
sinh[(ω′ +M)β/2] . (2.2.15)

In the regime where M � T , one finds that e−Mβ ≈ 0 and the kernel function
reduces to

K(τ, ω;T ) ≈ e−(ω′+M)(τ−β/2)

e(ω′+M)β/2) , (2.2.16)

= e−(ω′+M)τ . (2.2.17)

Shifting the integration variable of Eq. (2.2.13) to subtract out the particle mass,
M , yields the non-relativistic spectral representation

GNR(τ ;T ) =
∫ ∞
−M

dω′ρ(ω′;T )e−ω′τ . (2.2.18)

For the sake of clarity, we shall drop the prime notation and use ω to denote the non-
relativistic energy. The resulting non-relativistic kernel K(τ, ω) = e−ωτ is tempera-
ture independent and notably lacks periodicity in τ , meaning that the full temporal
extent is accessible for spectral reconstruction (i.e. there are no backward-moving
modes which contaminate the signal at large τ).

One of the difficulties in inverting Eq. (2.2.18) is that G(τ ;T ) generally is of
O(10− 100) observations whereas ρ(ω;T ) is continuous (O(1000+)), meaning that
for a given set of observations G(τ ;T ) measured to within some error, we cannot
expect to uniquely reconstruct the underlying spectrum. It has been previously
argued that ρ(ω) cannot be constrained even when G(τ) is known exactly [44].

Consider the addition of a small oscillatory function δρ to the spectrum:

δρs(ω) = sin(sω). (2.2.19)

By Eq. (2.2.14), the resulting perturbation in G(τ) is of the form

δGs(τ) =
∫ b

a
K(τ, ω)δρs(ω)dω

=
∫ b

a
K(τ, ω) sin(sω)dω −→

s→∞
0,

(2.2.20)

which is true for any integrable kernel function K(τ, ω). Thus, we can make δGs
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arbitrarily small provided s is sufficiently large, and in such a case any numerical
determination of ρ(ω) cannot be exact.

It is for this reason that the spectral reconstruction problem is regarded as ill-
posed as we cannot, in general, entirely constrain the form of ρ(ω).

2.3 Restrictions on the Invertibility of the Laplace transform

The issue outlined in Eq. (2.2.20) is better understood from an information theory
perspective [44]. Problems similar in form to Eq. (2.2.14), known in the literature
as Fredholm equations, have long been studied in an attempt to characterise the
way in which information is transmitted from ρ(ω) to the observations G(τ) [45].
Consider a function of the form

G(τ) =
∫ ∞

0
K(τ, ω)ρ(ω)dω. (2.3.1)

If ρ(ω) and G(τ) are both positive semi-definite, then the convolution with K(τ, ω)
represents a linear transformation in the information space corresponding to Eq. (2.3.1).
That is, one may think of K(τ, ω) as the function which maps the information in
energy space contained in ρ(ω) onto our correlator, G(τ), which is a function of the
temporal coordinate, τ . Consider the eigenvalue problem

∫ ∞
0

φs(ω)K(τ, ω)dω = λsφs(τ) (2.3.2)

where φs is the eigenfunction corresponding to the eigenvalue λs. One may think of
φs as a small packet of information which is transformed from ω-space to τ -space by
our convolution, with λs representing the ‘strength’ of the information transmission.
It is straightforward to show (see Appendix A.1 for detail) that for the Laplacian
kernel e−ωτ the eigenvalues λs are given by

λ±s = ±
√

Γ(s)Γ(1− s) (2.3.3)

where Γ is the Gamma function:

Γ(s) =
∫ ∞

0
xs−1e−xdx, (Re(s) > 0) . (2.3.4)
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If we take s to lie along the functional strip s = 1
2 + iν with ν continuous and

unbounded, the eigenvalues may be re-expressed in the form

|λ±ν |2 =
∣∣∣∣Γ(1

2 + iν
)∣∣∣∣2 ≡ π

cosh(πν) . (2.3.5)

One can now see that as ν → ∞, the eigenvalues λν become arbitrarily small,
meaning the transmissive power decreases and the problem becomes ill-posed. The
authors of Ref. [46] have investigated the Laplace transform further in this context
and conclude that the reconstructibility of a particular Laplace transform may be
evaluated via a study of its eigenvalue decomposition, with artificial neural networks
having general success at reconstructing problems with large eigenvalue components
but require additional regularization when the eigenvalues are small.

2.4 Techniques for Spectral Reconstruction

The construction of rigorous, method-independent estimates for the spectral density
function has thus far eluded physicists, with a number of techniques having been
applied to the reconstruction problem and each with varying degrees of success.

Some well-established approaches use Bayesian inference to extract the form
of ρ(ω). One such example is the Maximum Entropy Method [47] which uses an
entropy-based prior constructed from known constraints on the spectrum (such as
positivity) and has been applied with success to the study of the bottomonium
spectrum [37]. Another more recently proposed approach is Bayesian Reconstruction
(BR) [48] which uses a set of alternative axioms which shape the form of the prior.
Other approaches include Maximum Likelihood methods using multi-exponential
fitting [49] and also Kernel Ridge Regression (KRR) [50]. Thus far, each of the
aforementioned methods provide differing predictions for the bottomonium spectrum
at finite temperature.

In recent years, a well-established method [51–56] from the field of geophysics and
seismology called Backus-Gilbert [57] has received renewed interest in the physics
community as a potential spectral reconstruction technique [58–61]. The method,
named for its originators G.E. Backus and J.F. Gilbert, was originally devised to
estimate the maximum resolving power which could be provided by a set of seis-
mological observations, which in turn allows for the reconstruction of “gross Earth
models" which represent the internal structure of the Earth. We will outline in the
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following section how the method can be adapted to a problem similar in form to
Eq. (2.2.14).

2.5 The Backus-Gilbert Method

The Backus-Gilbert method [57] is a regularisation technique which constructs esti-
mates for the solutions to a category of ill-posed inverse problems which satisfy the
Fredholm integral of the first kind:

g(τ) =
∫ b

a
K(τ, ω)f(ω)dω, (2.5.1)

where g(τ) and K(τ, ω) are known and f(ω) is some unknown function to be re-
constructed. The solution to Eq. (2.5.1) requires the construction of the continuous
function, f(ω), from a finite number of discrete observations, g(τ). At each ob-
servation point, τ , the target function, f(ω), is convolved with K(τ, ω) to produce
the observation. The objective of the Backus-Gilbert method is to construct an
estimate of the target function at some point ω0 ∈ {ω} (with {ω} representing the
window in which f(ω) is to be reconstructed) using only a linear combination of the
observation data g(τ):

f̂(ω0) =
∑
τ

cτ (ω0)g(τ), (2.5.2)

where f̂(ω0) denotes our reconstructed estimate of f(ω0) and cτ (ω0) are a set of
coefficients which are to be determined by the method. Inserting Eq. (2.5.1) into
Eq. (2.5.2) gives

f̂(ω0) =
∑
τ

∫ b

a
cτ (ω0)K(τ, ω)f(ω)dω (2.5.3)

=
∫ b

a
A(ω, ω0)f(ω)dω, (2.5.4)

where we have defined the averaging function:

A(ω, ω0) =
∑
τ

cτ (ω0)K(τ, ω). (2.5.5)

Ideally, one would like to find the values of cτ (ω0) such that A(ω, ω0) resembles the
delta-function as closely as possible, such that f̂ → f . The method therefore makes
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the fundamental assumption that

lim
τ→∞

A(ω, ω0) = δ(ω − ω0). (2.5.6)

In practise this is not possible due to the finite number of observations which can
be obtained from the lattice. This causes A(ω, ω0) to acquire a finite width which
may be minimised via a choice of several criteria, two such examples of which are
the spread criterion, W (s0), proposed in Backus and Gilbert’s seminal paper [57],

W (ω0) =
∫ b

a
12(ω − ω0)2A(ω, ω0)2dω, (2.5.7)

and the least-squares (also known in the literature as ‘Dirichlet’) criterion, J(ω0)
[52],

J(ω0) =
∫ b

a
[A(ω, ω0)− δ(ω − ω0)]2 dω. (2.5.8)

The spread criterion,W (ω0), corresponds to the minimisation of the second moment
of the averaging function. The factor of 12 facilitates the geometric interpretation
of W (ω0) as a box-car estimate of the width of A(ω, ω0) about ω0 [62]. The factor
of (ω − ω0)2 in Eq. (2.5.7) is a localisation factor which penalises contributions at
large |ω − ω0|. In theory, one may choose any such localisation factor which obeys
this property, for example |1−N (ω0, σ)| with N the normal distribution.

Minimising Eq. (2.5.7) with respect to the coefficients cτ (ω0) (see discussion in
Appendix A.2) yields the trivial solution cτ = 0, ∀τ , which may be avoided by en-
forcing unimodularity of the averaging function,

∫
A(ω, ω0)dω = 1. This is achieved

by introducing the unimodularity constraint to Eq. (2.5.7) via a Lagrange multiplier,

W (ω0)→ W̃ (ω0, λ) =
∫ b

a
12(ω−ω0)2A(ω, ω0)2dω−λ

[∫ b

a
A(ω, ω0)dω − 1

]
. (2.5.9)

The coefficients which minimise the criterion are then given by

cτ (ω0) =
∑
τ ′ K̃−1

ττ ′(ω0)C̃τ ′∑
τ,τ ′ C̃τ K̃−1

ττ ′(ω0)C̃τ ′
, (2.5.10)

where we define the constraint vector

C̃τ =
∫ b

a
K(τ, ω)dω, (2.5.11)
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and the kernel weight matrix

K̃ττ ′(ω0) = 24
∫ b

a
(ω − ω0)2K(τ, ω)K(τ ′, ω)dω. (2.5.12)

We shall now discuss the same minimisation procedure on the least-squares cri-
terion given in Eq. (2.5.8). Differentiating with respect to the Backus-Gilbert coef-
ficients yields a more compact solution:

∂cτ ′J(ω0) = 2
∫ b

a
K(τ ′, ω) [A(ω, ω0)− δ(ω − ω0)] dω (2.5.13)

= 2
∑
τ

∫ b

a
cτ (ω0)K(τ, ω)K(τ ′, ω)dω −K(τ ′, ω0). (2.5.14)

As can be seen, there is no trivial solution for cτ and thus no explicit need for a
unimodularity condition. Setting ∂cτ ′J(ω0) = 0 then yields

∑
τ

∫ b

a
cτ (ω0)K(τ, ω)K(τ ′, ω)dω = K(τ ′, ω0), (2.5.15)

cτ (ω0) =
∑
τ ′
K−1
ττ ′Cτ ′(ω0), (2.5.16)

where we now define the corresponding width matrix and constraint vector

Kττ ′ =
∫ b

a
K(τ, ω)K(τ ′, ω)dω, (2.5.17)

Cτ (ω0) = K(τ, ω0). (2.5.18)

One may now see an advantage of using the least-squares criterion over the spread
criterion: the spread criterion has the dependence on the sampling point ω0 encoded
into the matrix K, whereas the least-squares criterion has the ω0 dependence in the
vector-like C. This observation translates into a dramatic computational speed-up,
as the least-squares criterion only requires one inversion of K (which is highly-
singular and poorly conditioned) for the entire sampling window {ω}. However, one
disadvantage of the least-squares criterion is that the lack of unimodularity of the
averaging functions destroys the vertical scaling of the reconstruction. This means
that one cannot re-create the input data, g(τ), from the reconstructed spectrum,
f̂(ω). This creates a dilemma, as explicitly reintroducing the unimodularity condi-
tion moves the ω0 dependence back into the matrix K, removing the speed-up. This
tension between fidelity and reconstruction speed is not the only aspect to be consid-
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ered, however, as each of the two approaches yield differing reconstructions. A more
complete discussion of the reconstructive differences between the two approaches is
detailed in §2.5.1.

At a first glance, the Backus-Gilbert method proves an attractive technique for
spectral reconstruction as it requires few assumptions to be made about the form
of both the input data, g(τ), or the target function, f(ω). It is also algebraic in its
estimation of f(ω), with (in theory) only the number of observations, τ , dictating
the quality of the reconstruction.

In the following sections, we study both the strengths and weaknesses of the
method, with a particular focus on the means by which the averaging functions
construct our estimate of the target function, f(ω). which arises from the spread
criterion.

2.5.1 On the reconstructive power of the spread and least-squares criteria

Figure 2.1: Comparison of spectral density functions created by the spread (Eq. (2.5.7))
and least-squares (Eq. (2.5.8)) criteria. The magenta line denotes the expected peak posi-
tion for the ground state using exponential fits to the correlator, the calculation of which is
outlined in §3.2. The coloured vertical lines represent the peak location for the spectrum.
In this example, we compare density functions constructed from the Υ meson correlator
using local quark sources (see §3.3 for further details).

The choice to use the least-squares criterion (Eq. (2.5.8)) over the spread criterion
(Eq. (2.5.7)) is motivated not only by the significant computational speed-up (see
Appendix B.2) but also by the reconstructive power of the averaging functions.
Figure 2.1 shows the difference between the reconstructions produced by each of the
two criteria.
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Figure 2.2: Comparison of the averaging functions produced by the least-squares and
spread criteria. The vertical dashed line is the sampling point ω0 about which we expect
the averaging function to be constructed, and the coloured dropped lines represent the
peak of A(ω, ω0) calculated via argmaxω(A(ω, ω0)). Here we show ω as a fraction of the
sampling window {ω}.

Figure 2.2 shows the localisation error of a sample averaging function for both
criteria. The localisation error is defined as the difference between the desired sample
point, ω0, and the peak position of the averaging function, given by argmaxω[A(ω, ω0)]
(represented by the coloured drop-lines in the figure). Fig. 2.3 shows the localisation
error as a function of the sampling point ω0 for both the least-squares (Fig. 2.3-Left)
and spread (2.3-Right) criteria. In Fig. 2.3 we can see that for both criteria the av-
eraging functions have a systematic negative shift (which in turn will carry forward
into the reconstructed spectrum), however this error is significantly greater for the
spread criterion than the least-squares.

It is important to reduce this localisation error wherever possible, as the negative
shift in the peak position relative to the sample point ω0 means that the averaging
functions sample the underlying spectrum at some ω0 less than the desired value.
In the reconstructed spectrum, this manifests as a noticeable shift in the energy of
the ground and excited states.

One disadvantage of the least-squares criterion, however, is that the lack of
unimodularity of the averaging function destroys the information relating to the
scale of ρ(ω), meaning that the correlator cannot be reconstructed via Eq. (2.2.14).
This reconstruction procedure is useful in characterising the systematic errors in the
method. It is for this reason that the Backus-Gilbert method using the least-squares
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Figure 2.3: Comparison of the offset between sampling position ω0 (as a fraction of the
sampling window) versus the peak position of A(ω, ω0) for both the least-squares and
spread criteria. The whitening parameter α represents the strength of the conditioning
applied to the weight matrix K and is defined in Eq. (2.6.4).

criterion is sometimes referred to in the literature as a spectral ‘appraisal’ method
as only the shape of the spectral features are preserved.

Related Work

As with the spread criterion, modifications to the least-squares criterion also exist
in the literature. One popular modification (not studied in this work) which has
arisen in recent years is the Hansen-Lupo-Tantalo (HLT) method [60], where the
δ(ω − ω0) of Eq. (2.5.8) is replaced by some narrow function centred about ω0 with
a defined width σ (e.g. N (ω0, σ)). This width is then generally made a function of
the position in the sampling window, allowing one finer control over the width of
the averaging functions.

2.6 Weight Matrix Whitening and Inversion

Due to the exponential nature of the NRQCD kernel K(τ, ω) = e−ωτ , the weight
matrix becomes further ill-conditioned as the number of observations τ increases.
This singular behaviour can be observed during the calculation of K−1 via singular-
value decomposition (SVD):

K = UΣV T , (2.6.1)

⇒ K−1 = V Σ−1UT , (2.6.2)
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Figure 2.4: Least-squares weight matrix condition number, cond(K), versus temporal
extent, Nτ , for a range of whitening factor values, α, and choices of ωmin, where we have
added a small stagger to each Nτ so that differences in ωmin are visible. Notice the sudden
increase in the condition as a function of Nτ when ωmin < 0.

where Σ is the diagonal matrix of singular values σi and U, V are, respectively, the
left and right singular, orthogonal vectors of K.

One method of conditioning K−1 is via the inclusion of an additive noise term in
the form of the covariance matrix of the input data G(τ):

K(α) = αK + (1− α)Cov[G(τ)], (2.6.3)

where α is known as the whitening factor or parameter and controls the strength of
the regularisation. Figure 2.4 shows the condition number (defined as cond(K) =
max(σi)/min(σi)) as a function of the temporal extent, Nτ , and the whitening factor,
α. Another similar approach is to regularise K via the addition of a small, diagonal
contribution [45]

K(α) = K + α1. (2.6.4)

This acts in a similar manner to Tikhonov regularization or ridge regression (see
Appendix A.3 for details) to increase the singular values, σi, in a manner such that
the smallest singular values are regularised the most, resulting in a smaller condition
number.
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Both Eqs. (2.6.3) and (2.6.4) are valid ways of treating the ill-condition of K−1

and each allow one to regulate the balance between the resolution width, ε, created
by the kernel function and the resulting reconstruction error, ∆ρ, given by

∆ρ2(ω0) =
∑
τ,τ ′

cτ (ω0)Cov[G]ττ ′cτ ′(ω0). (2.6.5)

The methods for determining the critical value of α which simultaneously minimises
ε and ∆ρ vary in the literature [51, 53, 55, 62, 63]. One issue which plagues this
condition is that the definition of ε is ambiguous, and furthermore depends strongly
on the choice of width criteria (cf. Eqs. (2.5.7) and (2.5.8)). The values of ε and
∆ρ also do not generally vary on the same scale, which means that a small change
in α can yield a large change in both ε and ∆ρ, which requires one to perform
reconstructions at several values of α to characterise the dependence of ε and ∆ρ.

In this work, we posit that there is no rigorously defined approach to finding
the optimal value of α, and so we shall treat it in this work as a free parameter,
the dependence on which must be removed in our final analysis. We also opt to
use the form outlined in Eq. (2.6.4) (which we refer to as ‘Tikhonov’ whitening) for
treating K−1. This approach has the added benefit of not explicitly introducing
noise from the input data into the determination of cτ , enabling one to use the same
set of coefficients for any data which shares the same kernel function K(ω, τ), hence
reducing computation time.

Other traditional approaches to matrix inversion, such as Gauss-Jordan elimi-
nation, are unsuitable for use with near-singular matrices as they suffer from com-
pounding numerical error [64]. In practise, the smallest singular values of Σ may
be zero to within machine precision, causing the reciprocal matrix Σ−1 to become
singular and K−1 be undefined. In this case, it is acceptable to use a generalised
form of the inverse, known as the Moore-Penrose pseudoinverse [65, 66]:

K+ = V Σ+UT , (2.6.6)

where we define

Σ+
ii =

1/σi if σi > ε

0 otherwise
, (2.6.7)

with ε (not to be confused with the resolution width, also denoted ε in the literature)
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the smallest value representable by the computer (i.e. the machine precision). In
this work, we use quadruple precision (128 bits) for the SVD, which corresponds to
a numerical precision of 2113 or 34 decimal places.

2.7 Investigations into the Resolving Power

As highlighted in §2.5, one of the strengths of using a technique such as the Backus-
Gilbert method is that one can gain a fairly good understanding of the resolving
power before any data is introduced to the model. From Eq. (2.5.4) we know that
a well-resolved spectrum is produced when the sampling functions, A(ω, ω0), are a
good approximation to δ(ω − ω0). However, when a finite number of kernel func-
tions are used as a basis for the construction of the averaging functions, A(ω, ω0),
one finds that not only do the functions not correctly describe δ(ω − ω0), but that
the characteristics of the function (such as peak position and width) also acquire
some dependence on the relative position of the sample point, ω0, within the re-
construction window, {ω}. This behaviour is first noticeable in the width criterion
comparison in Fig. 2.3. Figure 2.5 shows A(ω, ω0) (black) at two different values of
ω0 (left-right) and α (top-bottom). The blue and orange lines are Gaussian fits to
the leading and trailing edges of A(ω, ω0), respectively, and highlight the asymme-
try of the function. This asymmetry can result in reconstruction artefacts such as
smearing which worsens towards higher energies in the sampling window or improper
location of the ground state peak in energy space.

The degree of asymmetry and improper location of the averaging functions may
be measured by fitting a Gaussian curve to the upper half of the leading and trailing
edges of A(ω, ω0) (the upper half is used so as to ignore contributions from the nega-
tive side-lobes in the lower halves). This fitting procedure is shown in Fig. 2.5, where
we fit the leading and trailing edges of a sample averaging function A(ω, ω0) early
and late in the time window at strong (α = 10−3) and weak (α = 10−6) whitening.
Here we see that the width of the averaging function depends strongly on its position
in the sampling window, ω0, and that the localisation error, argmaxω(A) − ω0, is
larger for strong whitening.

We now extend this process to the entire time window, comparing the values for
the mean, µA, and width, ΓA, for the leading (N L) and trailing (N T ) fits. Figure
2.6-Left shows the mean of the Gaussian fits while 2.6-Right shows the difference in
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Figure 2.5: Comparison of leading and trailing edge Gaussian fits to averaging functions
A(ω, ω0) located at ω0 = 0.2 and ω0 = 0.6 (as a fraction of the total sampling window
{ω}) for two values of the whitening parameter, α = 10−3 (Top) and α = 10−6 (Bottom).
The correlator time window used to construct the A(ω, ω0) is τ ∈ [1, 128). The blue and
orange curves correspond to the leading and trailing edge Gaussian fits, NL

A and N T
A ,

respectively. The corresponding coloured vertical lines are the means, µ[L/T ]
A , associated

with each fit, N [L/T ]
A .
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Figure 2.6: Left: The fit mean, µA, as a function of the sampling window position, ω0, for
the leading and trailing edges of A(ω, ω0) and for a range of whitening parameter values,
α (shown by colour). The dashed line represents the idealised case where A(ω, ω0) is
perfectly located (i.e. µA = ω0). Right: The asymmetry measure µLA−µTA as a function of
the sampling window position ω0. For both plots, the time window used was τ ∈ [1, 128).

Table 2.1: Particle Data Group (PDG) values [2] for the ground state mass M and width
Γ of a choice of bottomonium states. We note that no width is reported for the hb (1S)
meson.

ηb (1S) Υ (1S) χb1 (1P) hb (1P)

M (MeV) 9398.0± 3.2 9460.30± 0.26 9892.78± 0.26± 0.31 9899.3± 0.8
Γ (MeV) 10.8+4.0 +4.5

−3.7 −2.0 54.02± 1.25 129.64± 0.33 –

the means for the leading and trailing fits. Figure 2.7 shows the same information
for the width of the Gaussian fits.

Figures 2.6 and 2.7 confirm that there is a strong dependence of the averaging
function width ΓA and the localisation error on both the position in the sampling
window and the whitening factor. However, we also see that the asymmetry of the
averaging functions probed by µLA − µTA and ΓLA − ΓTA also worsens as a factor of
both the position and whitening. Each of these effects will influence the resulting
spectrum and cause not only a smearing of spectral features, but also a non-trivial
shift, as described by Eq. (2.5.4).

This form of analysis is critical before attempting a reconstruction using the
method as we can make an a priori estimate of the maximum resolving power and
potential systematic effects of the method, before the introduction of observational
data.

Comparing the values for ΓA in Table 2.1 with those in Fig. 2.7 we can immedi-
ately see that the method will be incapable of resolving the ground state width at
the position along the sampling window which corresponds to the particle masses.
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Figure 2.7: Left: The fit width, ΓA, as a function of the sampling window position, ω0, for
the leading and trailing edges of A(ω, ω0) and for a range of whitening parameter values, α
(shown by colour). Right: The asymmetry measure ΓLA−ΓTA as a function of the sampling
window position ω0. For both plots, the time window used was τ ∈ [1, 128).

However, we shall outline in §2.8 a possible improvement method for increasing the
resolution width (of which ΓA is a proxy) of the averaging functions.

Another variable which strongly influences the resolving power is the number of
observations, g(τ), as can be seen by the critical assumption made in Eq. (2.5.6). If
we expect our averaging functions to produce a more faithful reconstruction as the
number of basis components (equal to the number of observations g(τ)) increases,
then lattices which have access to fewer observations (as is the case with high temper-
atures) will have poorer resolving power. However, one cannot arbitrarily increase
the number of observations (either via probing colder lattices or larger anisotropies)
due to the Moore-Penrose term in Eq. (2.6.7). This tension between machine and
theory arises due to the finite precision with which computers operate – increasing
the number of observations broadens the separation in scale between the highest and
lowest singular values. The information contributed by the largest-time observations
will be so vanishingly small that the Backus-Gilbert method will require exponen-
tially increasing precision in order to avoid the information cutoff introduced by the
Moore-Penrose term. This increase in singular behaviour can be treated via the
prescription outlined in §2.6, but at the cost of broadening the averaging functions
(see Fig. 2.7). Thus, we anticipate that there exists some maximal ‘saturation’ of
the resolving power at some τ2 large. The effects of such a time-window dependence
will be further discussed and treated in §3.7.
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2.8 Laplace Shifting

As discussed in the previous section, Figs. 2.6 and 2.7 show that the reconstruction
errors are small early in the sampling window. One benefit of the spectral recon-
struction problem being of the Laplacian form is that we may take advantage of
the corresponding transform rules to improve the resolution of our reconstruction
routine. Consider again the form of the reconstruction problem:

G(τ) =
∫
ρ(ω)e−ωτdω. (2.8.1)

One may imagine two possible methods of obtaining ρ(ω) from G(τ). First, consider
the case where we invert Eq. (2.8.1) using an ideal inverse Laplace transform. Figure
2.8 depicts the operation of two possible reconstruction methods. The first (and
trivial) approach is marked path A in red, where we may simply take the inverse
Laplace transform of G(τ) to get ρ(ω) directly. Alternatively, we may follow path
B, marked in blue, whereby we multiply the correlator by e∆·τ before taking the
inverse transform to obtain the shifted spectrum ρ(ω−∆), using the transformation
property

e∆·τG(τ) L
−1

=⇒ ρ(ω −∆). (2.8.2)

The shifted spectrum is then related to ρ(ω) by a trivial shift in ω. We emphasise
that in the case of an ideal inverse Laplace transform, both paths A and B are
equivalent.

We now discuss the case where the ideal inverse transform is instead replaced by
the approximation provided by the Backus-Gilbert method. Figure 2.9 depicts the
operation of the two previously-discussed approaches in the Backus-Gilbert case.
Path A now produces the estimate for the spectrum via a convolution of the corre-
lator with the Backus-Gilbert coefficients. Path B again involves multiplying G(τ)
by e∆·τ which, if the Backus-Gilbert approximation to the inverse transform is suf-
ficiently close, yields the shifted spectrum. However, we now find that a trivial shift
does not return the spectrum predicted by path A. The spectrum predicted by path
B is shown in Figs. 2.10 and 2.11.

This distinction arises because the Backus-Gilbert coefficients are themselves
invariant under Eq. (2.8.2), which means that the averaging functions are also un-
changed. Recalling the way in which we obtain estimates of the spectrum from the
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A B=

Figure 2.8: Diagram demonstrating two methods for obtaining the spectral density func-
tion, ρ(ω), from the correlator, G(τ), using the inverse Laplace transform, L−1{·}}.

A B≠BG BG

Figure 2.9: Diagram demonstrating two methods for obtaining the spectral density func-
tion, ρ(ω), from the correlator, G(τ), using the Backus-Gilbert approximation to the
inverse Laplace transform, denoted by BG.
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averaging functions, as shown in Eq. (2.5.4), our reconstructed spectrum would be
unaffected if it were not for the fact that the A(ω, ω0) have a width which changes
as a function of ω0, as shown in Figure 2.7. Thus, by shifting our value of G(τ)
before convolution with the Backus-Gilbert coefficients, we may shift the features of
interest of the spectrum into a sampling region with narrower averaging functions,
thus improving the resolution of the reconstruction. This improvement is shown in
Figs. 2.10 and 2.11 where the improvement due to successively stronger shifts is now
readily seen.

Figure 2.10: Graph of the baseline reconstruction from Backus-Gilbert (blue) compared
with Laplace-shift improved spectra (orange) for the Υ meson. In this example, α = 10−2.
Here the error bars are too small to be seen as the Fastsum NRQCD correlators have
small statistical errors.

One drawback of shifting the correlator is that the error also grows proportionally
with the shift (as can be seen in Fig. 2.11). Given a linear combination of the form
Eq. (2.5.2), the error in G(τ) is propagated to the spectral estimate via

∆ρ̂2(ω0) =
∑
τ,τ ′

cτ (ω0)Cov[G(t)]ττ ′cτ ′(ω0). (2.8.3)

Under the Laplace shift, the covariance matrix is pre- and post-multiplied by a
factor of e∆·τ , which causes small fluctuations in G(τ) to be magnified. This effect
is especially apparent at small values of the whitening factor, α, as the values of
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Figure 2.11: Graph of the baseline reconstruction from Backus-Gilbert (blue) compared
with Laplace-shift improved spectra (orange) for the χb1 meson. In this example, α = 10−2.
Note that the statistical error has been drastically magnified for large ∆, in contrast with
Fig. 2.10.

cτ (ω0) at large τ become large and oscillatory.

In the following results section we apply the Laplace shift improvement routine to
our reconstruction of ρ(ω), treating ∆ as a free parameter. The maximum theoretical
shift is that which brings the ground state peak to the edge of the window, given
by ∆ = M − ωmin where M is the ground state mass and ωmin is the minimum of
the reconstruction window. To facilitate any comparisons with data with differing
ωmin, we define the ‘global’ shift ∆̃ = ∆ +ωmin. We note here that ∆ and ∆̃ also are
subject to the addition of the NRQCD energy shift, E0, just as with the estimate
for the ground state mass, M . This shift is explicitly added from this point forward
to enable direct comparisons between the shift value and the mass, which will be
necessary for the analysis in Chapter 3.

In this chapter, we have outlined the operation of the Backus-Gilbert method
and briefly discussed its strengths and shortcomings in the context of spectral re-
construction. We then explored a potential improvement scheme which exploits the
non-uniformity of the averaging functions to enhance our estimates for the ground
state mass and width.
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2.9 On the Relationship Between the Laplace Shift and ωmin

In §2.2 we derived the spectral representation of the (relativistic) correlator and
took the non-relativistic limit, M � T . In this form, the inverse transform, given
by Eq. (2.2.18), acquires a negative lower bound which corresponds to the mass of the
state. In the case of bottomonia this lower bound, ωmin, corresponds to M = 2Mb.
In practise, we allow the lower bound to vary to account for renormalization effects
in the bottom quark mass and the NRQCD energy shift.

It has previously been suggested that for reconstruction techniques which are
based upon a basis-function construction approach, such as the maximum entropy
method (MEM), there may be a dependence on the resolving power of the resolution
functions (or equivalent components) and the position of the reconstructed feature
in relation to the start of the sampling window [67]. This study showed that the
resolution capabilities of a particular method could be inferred by inspecting the
resolution functions in an SVD basis, where the width of a particular feature was
shown to acquire an increasing artificial contribution as the feature is moved to the
end of the reconstruction window. This particular feature is prevalent in recon-
struction routines which adopt a choice of basis functions and has been invoked as
a motivation for the creation of the Bayesian Reconstruction (BR) method [48, 68].

In our work, we have probed the effect of changing ωmin and its relation to
the Laplace shift. Figures 2.12 and 2.13 show the predicted value for the ground
state mass, M , and full width at half-maximum (hereafter denoted FWHM), re-
spectively, versus the value of ωmin for the ηb meson at T = 189 MeV and T =
47 MeV for a range of whitening values. Overall, we did not find any appre-
ciable difference in the central value for the mass when changing ωmin through
the range ωmin ∈ [−0.1,−0.05, 0.025, 0, 0.025, 0.05, 0.075] a−1

τ (or in energy units,
ωmin ∈ [−0.6, 0.46] GeV)– the only discernible effects are a small reduction in the er-
ror at small α for increasingly positive ωmin at the expense of fit convergence failure
at large α. However, there is a reduction in the ground state width with increasing
ωmin at the higher temperature, consistent with the argument that bringing ωmin

closer to the ground state improves the resolution. This result is partly supported
by previous work [69] which showed a dependence of both the mass and width on
ωmin.

We do note that pushing ωmin too far in either direction is inappropriate. When
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Figure 2.12: Plot showing the predicted ground state mass, M , versus ωmin for the ηb (s-s,
see §3.3) meson at T = 189 Mev (Top) and T = 47 MeV (Bottom). The colour of the data
points represents the whitening factor values, α.

ωmin is too negative the ground state will be far into the sampling window where the
resolving functions are broad and Laplace shifting will break down before reaching
ωmin. An ωmin too positive is usually more unstable for large α and risks cutting into
the peaks of the spectrum or missing the ground state completely. This can be seen
especially at T = 189 MeV in Fig. 2.12, where no estimates could be calculated at
large α. Empirical testing suggests that ωmin = −0.1a−1

τ ≈ −0.6 GeV yields a nice
balance between the aforementioned arguments.

38



CHAPTER 2. RECONSTRUCTING THE BOTTOMONIUM SPECTRUM IN
NRQCD USING THE BACKUS-GILBERT METHOD

Figure 2.13: Plot showing the predicted ground state FWHM width versus ωmin for the
ηb (s-s, see §3.3) meson at T = 189 MeV (Top) and T = 47 MeV (Bottom). The colour of
the data points represents the whitening factor values, α.
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Chapter 3

Results: Bottomonium Spectral Recon-

struction

In the following chapter we outline the details of the Fastsum anisotropic NRQCD
ensembles, before presenting Backus-Gilbert estimates of the mass and width for
a select variety of bottomonia channels. We focus in particular on the s and p-
wave channels simulated with both local and smeared quark sources, presenting
a comparison between the two. We begin by briefly discussing the estimates for
the ground state mass and width obtained using the original (henceforth named
‘unshifted’) Backus-Gilbert method, before presenting results obtained after the
introduction of the Laplace shift improvement scheme.

3.1 Details of the FASTSUM Ensembles

This analysis makes use of the Fastsum collaboration’s anisotropic Gen-2L ensem-
bles which employ clover-improved [30], dynamical Wilson fermions (Nf = 2 + 1)
and has a Symanzik-improved gauge action [70]. The ensembles cover a broad range
of temperatures (see Table 3.1 for detail) spanning the pseudocritical transition
Tpc ≈ 167 MeV [4, 5]. The lattice is anisotropic, with a space-time anisotropy of
ξ = as/aτ = 3.453(6) [71] with as = 0.11208(31) fm. The pion mass is heavier-than-
nature at Mπ = 239(1)MeV [72].

3.2 Comments on comparisons with experiment

As previously discussed in §1.6, the non-relativistic lattice formalism for QCD is
additively renormalized and as such requires some reference energy with which the
scale may be set. In the Fastsum ensembles the energy shift E0 is calculated by
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Table 3.1: Temporal extent, corresponding lattice temperature in MeV and number of
configurations for the Fastsum Generation 2L ensembles. The double vertical line mid-
table separates the temperatures according to our value of Tpc ≈ 167MeV[4, 5].

Nτ (Ns = 32) 128 64 56 48 40 36 32 28 24 20

T = 1/(aτNτ ) [MeV] 47 95 109 127 152 169 190 217 253 304
Ncfg 1024 1041 1042 1123 1102 1119 1090 1031 1016 1030

comparing [37] the spin-averaged mass of the 1S state with the value obtained from
experiment [2]. If one assumes that the spectrum of ground state of a particle is
given by δ(ω −M) (and neglecting contributions from higher energy states), then
by the spectral representation of the correlator (Eq. (2.2.18)) one finds that

G(τ) ≈ e−Mτ . (3.2.1)

Figure 3.1-Top shows the value of G(τ) for the Υ meson for two types of quark
sources (see §3.3) at T = 94 MeV. The vertical scale is logarithmic, and we can see
that at large τ/aτ the log of the correlator is linear in the lattice time, which is
expected when the ground state becomes dominant.

Although one may directly fit Eq, 3.2.1 with a simple exponential for M , it is
customary in the literature to instead measure a proxy for the mass, given by

Meff(τ) = −∂τ logG(τ) = −〈ω〉ρ , (3.2.2)

where 〈ω〉ρ is the expectation value of the particle energy measured on the spectrum
ρ(ω). Figure 3.1-Bottom shows the effective mass as a function of lattice time for
the Υ meson for two types of quark sources at T = 94 MeV. From this form, one can
see the effective mass associated with a single-exponential state such as Eq. (3.2.1)
converges atM in the limit of large lattice time, in which the ground state dominates.
In the small-τ regime excited states contribute toward the value of Meff, while at
large-τ there is a signal-to-noise problem (which we shall revisit in detail in §4). We
have opted to fit the Meff plateau in the intermediate-τ region to use as our value
of M for comparison. Figure 3.2 shows the mass splitting for a selection of meson
channels derived from single-exponential fits to our “zero-temperature” correlator
(T = 47 MeV) compared with the experimental values obtained by the Particle Data
Group (PDG) [2]. Since the intention of this work is to assess the suitability of the
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Figure 3.1: The correlator G(τ) (Top) and effective mass aτMeff(τ) (Bottom) for the Υ
meson versus lattice time τ/aτ , for local (l-l) and smeared (s-s) quark sources (see §3.3) at
T = 94 MeV (Nτ = 64). The magenta line represents the estimates obtained from a single
exponential fit to our “zero-temperature” (T = 47 MeV, Nτ = 128) correlator. For the
effective mass plot (Bottom), a small offset in the data has been introduced to aid visual
comparisons between the two curves, with the transparent region denoting the error in
the effective mass.

Backus-Gilbert method in ascertaining particle masses and widths, we shall instead
compare our Backus-Gilbert results with the results of a single-exponential fitting
procedure instead.

3.3 Local vs. smeared quark sources

The naive implementation of a fermion source ψ(x) (with x ∈ {Λ}) would be the
exactly localised field ψ(x0) for some lattice coordinate x0. This is known as a local or
point source. Although such a source would indeed be capable of probing the physical
state encoded by some set of interpolating operators, one can augment the operator
by extending the source with some smearing function to include contributions from
neighbouring fermion fields, which can result in improved overlap with the desired
state [32], as shown in Fig. 3.1. This general group of augmented approaches are
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Figure 3.2: Comparison of single exponential fits to the NRQCD correlator for select
channels at our lowest lattice temperature (T = 47 MeV) versus experimental Particle
Data Group (PDG) values [2]. Closed faces denote local quark sources whilst open faces
denote smeared quark sources (see §3.3). The NRQCD energy shift E0 is set by matching
MPDG

Υ with the result obtained for M latt
Υ using smeared quark sources.

known as smeared or extended sources. The Fastsum ensembles which we shall make
use of in this analysis contain both local quark source correlators and Gaussian [73]
smeared source correlators, with a smearing width of 2.5 spatial lattice units [74].
In the following, we shall refer to data generated using local and smeared quark
sources with the labels ‘l-l’ and ‘s-s’ respectively.

3.4 Determining the ground state mass and width

In order to extract physical values for the ground state mass and width from the
spectrum, we consider the ground state for the spectral density function to be the
first prominent peak closest to the expected value of the mass derived from single-
exponential fits. We assume that the ground state feature is given by a Gaussian
distribution, which corresponds roughly to a single-state with central value µ and
width σ. To compensate for the fact that ρ(ω) is not required to be strictly positive
when using the least-squares criterion, we opt to only fit the upper half of the ground
state peak. We further restrict the fit region to only include the leading portion of
the peak, as it is often the case that the averaging functions are broad enough to
incur contributions from excited states, as seen in Figs. 2.10 and 2.11.

The Laplace shifting procedure also causes oscillatory behaviour to manifest at ω
early in the sampling window, which grows with increasing ∆. In order to fulfill the
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‘prominence’ condition of the ground state, we disregard any reconstructed spectrum
where the peak preceding the ground state exceeds 50% of the height of the ground
state. This is a conservative restriction which we believe prevents the peak finding
algorithm from incorrectly identifying a noise artefact as the ground state.

Once the peak finding algorithm has identified a candidate ground state, the
central value of the Gaussian fit, µ, is reported as the ground state mass, M , and
the FWHM width is given by Γ = 2

√
2 log 2σ.

3.5 Unshifted results

We begin by briefly presenting some results obtained using the original (unshifted)
interpretation of the Backus-Gilbert method, and the least-squares criterion defined
in Eq. (2.5.8). Figures 3.3-3.6 show the ground state mass and width versus the
temperature for the ηb and Υ mesons, using local and smeared quark sources. It
is readily seen that there is a strong dependence on the whitening parameter α for
both the ground state mass and the width. Also noticeable is the statistical error
that grows as a function of α. The large deviation in the central values for large α
suggests that the localisation and broadening artefacts described in §2.7 are inducing
a systematic shift towards small M/large Γ.

Comparing Figs. 3.4 and 3.6 with Figs. 3.3 and 3.5 also highlights the effect of
implementing point versus smeared quark sources. When we apply a smearing oper-
ator to the quark sources there is better overlap with the ground state as the signal
from higher excited states are suppressed, which should help to reduce shifting of
the spectral features when the averaging function is broader than the mass splitting
between the ground and first excited states.

Overall, for the unshifted results we observe a good overlap with the expected
value of the ground state mass only in the case of smeared quark sources and at the
smallest values of α, with the associated estimates of the mass having a very large
error. The estimates of the ground state width are very poor for local quark sources,
but are improved in the case of smeared sources. The predicted width decreases with
α as expected, but are still O(GeV) in scale.
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Figure 3.3: Mass (Left) and width (Right) of the η meson (l-l) versus temperature. The colour represents the value of the whitening parameter, α.

Figure 3.4: Mass (Left) and width (Right) of the ηb meson (s-s) versus temperature. The colour represents the value of the whitening parameter, α.

45



C
H
A
PT

ER
3.

R
ESU

LT
S:B

O
T
T
O
M
O
N
IU

M
SPEC

T
R
A
L
R
EC

O
N
ST

R
U
C
T
IO

N

Figure 3.5: Mass (Left) and width (Right) of the Υ meson (l-l) versus temperature, The colour represents the value of the whitening parameter, α.

Figure 3.6: Mass (Left) and width (Right) of the Υ meson (s-s) versus temperature, The colour represents the value of the whitening parameter, α.
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3.6 Laplace-shifted results

Motivated by the poor results for the unshifted Backus-Gilbert method, we now
present results for the ηb, Υ, χb1, and hb bottomonium mesons generated using
the Fastsum ensembles, employing the Laplace shift improvement routine to the
Backus-Gilbert method, as outlined in §2.8. In this approach, we must remove
the dependence of the mass and width on both the whitening factor, α, and the
shift parameter, ∆̃, shown in Fig. 3.7 and 3.8, which we shall attempt to do via an
extrapolation routine.

Figure 3.7: 3D histogram of the ground state mass of the Υ meson versus the Laplace
shift parameter, ∆̃. The colour of the samples represents the whitening factor, α, used.
The hatched region denotes the maximum possible Laplace shift ∆̃ = M and the magenta
line is the estimate for the Υ mass obtained using exponential fits.

When generating mass and width data, we can easily sample many points in
the parameter space of ∆̃ as the dependence is purely a multiplicative scaling of
G(τ), but sampling the α dependence requires an iteration of the Backus-Gilbert
method for each α (as the dependence is contained within cτ ). For our extrapolation
routine, we sample approximately O(10) values of α and O(40) values of ∆̃. We opt
to perform the extrapolation in ∆̃ first, before extrapolating in α, to maximise the
statistics in the fits which carry onto the second extrapolation step.
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Figure 3.8: 3D histogram of the ground state mass of the Υ meson versus the whitening
factor, α. The colour of the samples represents the value of ∆̃ used. The magenta line is
the estimate for the Υ mass obtained using exponential fits.

Figure 3.7 shows the mass distribution of the Υ meson as a function of the
Laplace shift parameter, ∆̃, in histogram form with the value of, α, represented by
the color of the bar. The height of the bars represents the frequency. Figure 3.8
shows the mass distribution as a function of the whitening parameter, α, with ∆̃
represented by the color. In both plots, the magenta line is the mass of the Υ from
single exponential fits.

The maximal value of the ∆̃-shift which produces a valid (but not necessarily
interpretable) result is ∆̃ = M , with M the ground state mass of the system. This
corresponds to the hatched wedge in Fig. 3.7. When ∆̃ > M , the ground state
feature is ‘pushed’ outside of the sampling window by the shift transformation and
is no longer observable.

It is evident from Figs. 3.7 and 3.8 that there is a strong systematic dependence of
the mass on the value of α and ∆̃. In Fig. 3.7 we see that for fixed ∆̃ = E0 ∼ 7.5 GeV
(i.e., no shift with respect to E0) there is a strong dependence of mass on the
whitening parameter, α, but this dependence is not seen for ∆̃ ∼ 9 GeV. Similarly,
we see in Fig. 3.8 that for fixed log10 α ∼ 1 the mass is strongly dependent on ∆̃,
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Figure 3.9: Example of plot showing the bootstrap predictions for the ground state mass
as a function of the adjusted Laplace shift, ∆̃, for α = 10−9 (Top) and α = 10−2 (Bottom).
The hatched region is the maximum allowed shift ∆̃ = M . The magenta cross represents
M(α). The right hand side of the figure shows the distribution of the central fit along
the face of the wedge compared with the expected value in red, with the magenta line
corresponding to M(α).

but that the relative uniformity in the colour of the distribution at log10 α ∼ −9
suggests that this dependence has fallen away.

Both Figs. 3.9 and 3.10 show a normal distribution inM which arises in the limit
α→ 0 and ∆̃→M (represented by the boundary of the hatched region), suggesting
that these limits provide a natural extrapolation point for our routine.

Figure 3.9 shows the mass as a function of ∆̃ for α = 10−9 and α = 10−2, and
for T = 47 MeV. Fitting M(∆̃;α) with the linear ansatz

M(∆̃;α) = A(α)∆̃ +B(α) (3.6.1)
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Figure 3.10: Plot showing the values of the wedge crossings as a function of α. The
distribution in the leftmost pane is the α→ 0 (represented in log-space by log10 α = −∞)
extrapolated values for the central fit, with the dot-dashed black line representing the
central value. The red dashed line is the single-exponential fit estimate of the mass.

and extrapolating to the intersection of the line ∆̃ = M (represented by the magenta
cross on the hatched region of Fig. 3.9) yields the mass as a pure function of the
whitening parameter

M(α) = B(α)
1− A(α) . (3.6.2)

The linear ansatz is motivated by the apparent linear dependence of M with ∆̃
(Fig. 3.9-Bottom) and of the position of the averaging functions on the position
in the sampling window, as shown in Fig. 2.6. This explicitly highlights the issue
with Backus-Gilbert caused by the averaging functions being improperly located
(as shown by Fig. 2.3). When the centre of A(ω, ω0) differs from ω0, we measure
smaller values for the mass and our resulting linear extrapolation is tilted upwards
(see Fig. 3.9-Bottom), producing an over-estimate for M(α).

This fitting process can be repeated for each value of α, which is shown in
Fig. 3.10. In a similar manner to the ∆̃ extrapolation, we may now remove the α
dependence using a fit function of the form

M(α) = CeD log10 α +Mα=0, (D > 0), (3.6.3)

where Mα=0 represents our extrapolated value of the mass. This functional form is
motivated by the fact that the whitening parameter, α, is sampled at each order of
magnitude, and that we anticipate the dependence of the mass on α to fall away

50



CHAPTER 3. RESULTS: BOTTOMONIUM SPECTRAL RECONSTRUCTION

yielding the ‘true’ mass in the limit where α → 0. Simplifying the exponential in
Eq. (3.6.3) reduces the function to to the power-law form

M(α) = CαD̃ +Mα=0, (D̃ > 0), (3.6.4)

with D̃ = D/ ln(10). Both functional forms were tested with the fitting routine, with
Eq. (3.6.3) converging more consistently than Eq. (3.6.4), despite their mathematical
equivalence.

To test the stability of the extrapolation routine, we also explicitly test the case
where C = 0 in Eq. (3.6.3) (corresponding to a constant fit). In all cases, we measure
the reduced χ2 value as a goodness-of-fit statistic, which is shown in Figs. 3.23 and
3.24.

We perform a similar routine for the determination of the ground state width Γ,
shown in Figs. 3.11 and 3.12 for the Υ meson (s-s) at T = 47 MeV. We loosen the
restriction that Γ(∆̃;α) be linear in ∆̃ and also test exponential ansätze of the form

Γ(∆̃;α) = A(α)e−B(α)∆̃ + C(α), (3.6.5)

as we anticipate the width to be finite and constant when the width of the averaging
functions becomes narrower than the true width of the underlying state.
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Figure 3.11: Example of plot showing the bootstrap predictions for the ground state width,
Γ, as a function of the Laplace shift, ∆̃, for α = 10−9 (Top) and α = 10−2 (Bottom). The
vertical dashed line represents ∆̃c(α), the point of intersection between M(∆̃;α) and the
hatched region of Fig. 3.9 (i.e. ∆̃c(α) = M(α)) The right hand side of the figure shows
the distribution of the central fit about Γ(∆̃c;α), denoted by the magenta line.

Figure 3.12: Plot showing the values of the width, Γ, evaluated at the wedge crossings
∆̃ = ∆̃c as a function of α. The distribution in the leftmost pane represents the α →
0 extrapolated values for the central fit to the width, with the dot-dashed black line
representing the central value.
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Figure 3.13: Left: Scatter plot of the bootstrap estimates for the ground state mass of the Υ meson (s-s) versus the Laplace shift parameter, ∆̃.
Overlaid is the prediction from the extrapolation routine (black) and the prediction from the single-exponential fits (red). The colour of the samples
represents the whitening factor, α, used. Right: Corresponding plot for the ground state width with the prediction from the extrapolation routine
represented by the magenta cross.
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Figure 3.14: Left: Scatter plot of the bootstrap estimates for the ground state mass of the Υ meson (l-l) versus the Laplace shift parameter, ∆̃.
Overlaid is the prediction from the extrapolation routine (black) and the prediction from the single-exponential fits (red). The colour of the samples
represents the whitening factor, α, used. Right: Corresponding plot for the ground state width with the prediction from the extrapolation routine
represented by the magenta cross.
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Figures 3.13 and 3.14 show the distribution of the bootstrap estimates for the
ground state mass and width with the corresponding extrapolated results overlaid
for the Υ meson using smeared and local quark sources respectively at T = 47 MeV.
Also overlaid is our estimate of the mass using single exponential fits. In the case of
smeared quark sources, there is a linear convergence towards the expected value of
the mass and zero-width as both α→ 0 and ∆→M , demonstrating the resolution
improvement gained from the Laplace shifting procedure. However, we can see that
the estimates obtained from local quark sources (Fig. 3.14 as an example) exhibit a
non-trivial relation with the shift parameter and thus is not described by the models
given by Eq. (3.6.1) and Eqs. (3.6.3) and (3.6.4). Extrapolations using these models
yielded χ2

ν goodness-of-fit values of 102 − 108 (see Appendix B.1), which shows a
complete failure of the routine in the case of local quark sources. As such, we will
focus on the smeared quark source data (which has already been shown to exhibit
better affinity with the ground state in Fig. 3.1-Bottom) and leave adjustments
necessary to support extrapolations using local quark source data to future work.

Comparing Figs. 3.13 and 3.14 with the unshifted results presented in §3.5,
one can see not only a vast improvement on the measured values for the mass
and width, but also smaller calculated values for the uncertainty (which we wish to
highlight is a mixture of statistical and systematic in origin). Another added benefit
of using the Laplace shift procedure is that the resolution limit is much lower than
in the unshifted approach, as the shift moves the ground state peak to a region
with narrower averaging functions. This means that the results for the width, Γ,
can be smaller when a shift is introduced. As such, one should ideally expect to
see a finite result for Γ emerging from the shift procedure only if the width of the
underlying state is resolvable in at least the narrowest of the averaging functions.
If the measured value of Γ is instead consistent with zero, then the method cannot
resolve the underlying state and Γ only represents an upper bound on the state
width.

Figures 3.15-3.20 show the different predictions in box-and-whisker form for the
ground state mass and width provided by the extrapolation routine for a series of
lattice temperature. For a given temperature, each data point associated with the
box-and-whisker is generated by re-running the extrapolation routine with a coarser
step in ∆̃ and α, and also testing the case where we set D = 0 to the the fit described
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in Eq. (3.6.3) (i.e. the exponential fit is replaced with a linear one). The magenta
bands in the mass plots corresponds to our best estimate from single-exponential
fitting, with the darkest band corresponding to 1-σ errors and the lightest band
representing an error of 5% in lattice units (with the 5% not including the NRQCD
energy shift E0).

The body of the box represents the interquartile range associated with the set
of predictions (the central 50% of observations, assuming a normal distribution)
with the dashed green and block red lines corresponding to the ensemble mean and
median, respectively. The ensemble median is a better estimate of the ground state
mass and width, as the number of observations is small and the distribution of
estimates are asymmetrical, as highlighted by the noticeable difference in the mean
and median results. This asymmetry can be seen in the taper of the box plot, which
represents the 95% confidence interval associated with the median. When the taper
is short, the confidence in the median is better, while a longer taper signals poorer
confidence. In cases where the taper is sufficiently long as to ‘fold’ back on itself (e.g.
the T ∼ 300 MeV results in Figs. 3.15), this usually signals that there is insufficient
data to correctly construct the box plot or there is a large underlying variance, as
the confidence interval of the median exceeds the interquartile range (IQR) of the
data. Finally, any points beyond the whiskers of the plot are deemed outliers and
highlighted in black, with the whiskers positioned 1.5 × IQR above and below the
box.

Across the three meson channels tested we see that there is relatively good agree-
ment between the ground state mass as measured using the extrapolation routine
and the estimate from single exponential fits. Almost all temperatures yield mass
estimates which lie within 5% of the expected mass, with no discernible dependence
of the mass on the temperature. Estimates of the ground state width given by
the extrapolation routine appear to increase with increasing temperature and are
roughly consistent with zero-width at the lowest temperatures.

For smeared source results, the values for ground state width are far better for
in comparison with the O(GeV) widths predicted by the unshifted Backus-Gilbert
method. This can be seen in full in Table 3.2, which gives the predicted ground
state mass and width for each of the channels.

Our prediction of a temperature-insensitive mass is partially supported by the
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literature, where previous studies are found to be in contention. It was reported in
[75] and [76] that reconstructions using the MEM showed that there was no tem-
perature dependence of the ground state mass of the Υ, whilst the χb1 exhibited
some thermal sensitivity. Subsequent work [37] found that there was thermal mod-
ification of the bottomonia correlators for both temperatures and it was reported
that a general broadening of the peak associated with the ground state was observed
above Tc, consistent with the melting of the state. Another study using the MEM
[77] predicted that the Υ and ηb both survive up until 2Tc (beyond the temperatures
probed in this work) whilst the χb1 exhibited melting between 1−2Tc. This appears
to be supported by our findings, where we observe a greater ground state width for
the χb1 than the Υ and ηb at high temperature. We remark that there appear to
be little to no bottomonia studies probing the hb state, and so we make no further
comment in this regard.

A more recent study [78] using high-statistics Bayesian approaches suggest that
the apparent discrepancies in temperature dependence between published results is
a facet of the reconstruction methods used. It is a well-known fact that each recon-
struction method leaves a ‘fingerprint’ within the systematic error of the analysis
and the authors of the paper state that closer attention must be paid to the analysis
of these uncertainties before commenting on the temperature effects of the spectra.

We conclude by highlighting Figures 3.23 and 3.24, which show the value of
the reduced chi-square statistic scattered against the ground state mass for each of
the channels, at each temperature tested. For each channel, the biggest estimates
for the mass appear to coincide with the poorest fits (i.e. χ2

ν � 1) and lowest
temperatures, while those which exhibit overfitting (χ2

ν � 1) tend to still lie close to
the expected value. This appears counter-intuitive at first, as the reconstructions at
the lowest temperatures can access the highest number of basis functions, but this
is often at the expense of noise arising in the mass extrapolations at small α. It is
evident from this analysis of the χ2

ν values that there is room for improvement for
our fitting and extrapolation routine – a simple cut in the data, i.e. restricting fits
to some maximal χ2

ν value would reduce the systematic positive shift in the mass,
reinforcing the suggestions of the authors of Ref. [78] that further care must be
taken to correctly characterise any and all systematic effects.
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Figure 3.15: Box-plot of the ground state mass, M , versus temperature, T , for the ηb
meson (s-s). The solid red and dashed green lines represent the ensemble median and
mean respectively, with the body of the box representing the confidence interval and the
whiskers denoting the inliers. The outliers are denoted by thick black circles (see text
for detail). The magenta line represents the expected mass from exponential fits to the
correlator.

Figure 3.16: Box-plot of the ground state width, Γ, versus temperature, T , for the ηb
meson (s-s). The solid red and dashed green lines represent the ensemble median and
mean respectively, with the body of the box representing the confidence interval and the
whiskers denoting the inliers. The outliers are denoted by thick black circles (see text for
detail). 58
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Figure 3.17: Box-plot of the ground state mass, M , versus temperature, T , for the Υ
meson (s-s). The solid red and dashed green lines represent the ensemble median and
mean respectively, with the body of the box representing the confidence interval and the
whiskers denoting the inliers. The outliers are denoted by thick black circles (see text
for detail). The magenta line represents the expected mass from exponential fits to the
correlator.

Figure 3.18: Box-plot of the ground state width, Γ, versus temperature, T , for the Υ
meson (s-s). The solid red and dashed green lines represent the ensemble median and
mean respectively, with the body of the box representing the confidence interval and the
whiskers denoting the inliers. The outliers are denoted by thick black circles (see text for
detail) 59
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Figure 3.19: Box-plot of the ground state mass, M , versus temperature, T , for the χb1
meson (s-s). The solid red and dashed green lines represent the ensemble median and
mean respectively, with the body of the box representing the confidence interval and the
whiskers denoting the inliers. The outliers are denoted by thick black circles (see text
for detail). The magenta line represents the expected mass from exponential fits to the
correlator.

Figure 3.20: Box-plot of the ground state width, Γ, versus temperature, T , for the χb1
meson (s-s). The solid red and dashed green lines represent the ensemble median and
mean respectively, with the body of the box representing the confidence interval and the
whiskers denoting the inliers. The outliers are denoted by thick black circles (see text for
detail). 60
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Figure 3.21: Box-plot of the ground state mass, M , versus temperature, T , for the hb
meson (s-s). The solid red and dashed green lines represent the ensemble median and
mean respectively, with the body of the box representing the confidence interval and the
whiskers denoting the inliers (see text for detail). The magenta line represents the expected
mass from exponential fits to the correlator.

Figure 3.22: Box-plot of the ground state width, Γ, versus temperature, T , for the hb
meson (s-s). The solid red and dashed green lines represent the ensemble median and
mean respectively, with the body of the box representing the confidence interval and the
whiskers denoting the inliers. The outliers are denoted by thick black circles (see text for
detail).
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Figure 3.23: Plot of χ2
ν vs M for the ηb (s-s) (Top) and Υ (s-s) (Bottom) mesons, for a

range of temperatures, with the vertical magenta bands corresponding to the 1σ (dark)
and 5% (light) bounds on the mass estimated using exponential fits.
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Figure 3.24: Plot of χ2
ν vs M for the χb1 (s-s) (Top) and hb (s-s) (Bottom) mesons, for a

range of temperatures, with the vertical magenta bands corresponding to the 1σ (dark)
and 5% (light) bounds on the mass estimated using exponential fits.
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Table 3.2: Table of results for the ground state mass M and FWHM width Γ for each of the tested meson channels using smeared quark sources,
generated in the time window τ ∈ [1, Nτ ).

Nτ 20 24 28 32 36 40 48 56 64 128
T

ηb (s-s)
M (GeV) 9.489+05

−87 9.510+12
−18 9.5632+25

−89 9.466+18
−02 9.463+42

−19 9.459+34
−31 9.508+61

−57 9.48+01
−24 9.49+02

−19 9.52+08
−19

Γ (MeV) 369+480
−300 344+76

−380 149+31
−463 151+44

−36 114+24
−25 102+23

−40 40+36
−61 38+140

−64 2+105
−76 −161+98

−121

Υ (s-s)
M (GeV) 9.547+57

−12 9.470+09
−47 9.536+28

−21 9.505+23
−19 9.447+19

−60 9.490+24
−54 9.53+12

−03 9.52+24
−01 9.55+09

−21 9.546+46
−13

Γ (MeV) 340+180
−160 151+22

−80 170+53
−96 142+10

−60 149+12
−74 89+24

−70 51+32
−108 32+88

−73 −23+150
−30 −110+60

−55

χb1 (s-s)
M (GeV) 9.869+24

−51 10.177+47
−71 10.063+23

−24 9.926+15
−48 10.05+03

−10 10.134+15
−33 10.01+01

−26 10.08+03
−23 10.03+06

−21 10.05+06
−23

Γ (MeV) 700+250
−200 360+100

−200 310+180
−350 208+77

−390 88+204
−14 −5+160

−38 −61+53
−120 −74+138

−36 −122+108
−138 −280+107

−155

hb (s-s)
M (GeV) 10.02+31

−03 10.222+20
−17 10.0084+97

−66 9.929+15
−14 10.142+57

−15 10.118+16
−46 10.02+01

−28 10.08+03
−23 10.04+08

−22 10.08+10
−21

Γ (MeV) 493+370
−70 510+170

−350 312± 200 218+57
−560 118+26

−89 −68+270
−51 −33+89

−110 −76+100
−68 −134+110

−150 −250+130
−110
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3.7 Probing the systematic effect of changing the time window

Besides the extrapolation routines to remove the unphysical α and ∆̃ dependence
from the results, the effect of the time window used for the spectral reconstruction on
the mass and width predictions should also be studied. By construction, lattices at
lower temperature have access to a longer range of time data than lattices at higher
temperature. Recall that, according to Eq. (2.5.6), we anticipate the reconstruction
to be more accurate as the time extent increases. Thus, for a more accurate compar-
ison of temperatures, we also reconstruct the ‘zero-temperature’ (T = 47 MeV) mass
and width from correlators truncated to the maximum time window accessible by
each lattice temperature (i.e., we compare the spectrum derived from T = 95 MeV
(Nτ = 64) correlator with the T = 47 MeV correlator truncated to the window
τ ∈ [0, 64)).

Figures 3.25-3.32 show the zero-temperature (T = 47 MeV) results for the ground
state mass and width, given by the extrapolation routine outlined in §2.8, as a func-
tion of the temporal extent τ ∈ [0, τ2) provided to the Backus-Gilbert routine.
Since our reconstructions use the full temporal extent, Nτ , available at each lat-
tice temperature, the zero-temperature plots should reveal, upon comparison with
Figs. 3.15-3.21, any systematic effects caused by changing the time window provided
to the spectral reconstruction routine.

Figures 3.26, 3.28, and 3.30 exhibit the same increasing width as seen in the fi-
nite temperature results, suggesting that the dependence of the ground state width
on the temperature may instead be a facet of the restricted time window at large
temperature and not some physical mechanism such as broadening of the peak due
to melting of the state. This is expected to some extent with Backus-Gilbert re-
construction, as restricting the number of observations causes broadening of the
underlying averaging functions, which in turn worsens the resolving power.
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Figure 3.25: Box-plot of the zero-temperature (T = 47 MeV) estimate of the ground state
mass, M , for the ηb meson (s-s) versus temporal extent of the spectral reconstruction
,τ2/aτ . The solid red and dashed green lines represent the ensemble median and mean
respectively, with the body of the box representing the confidence interval and the whiskers
denoting the inliers (see §3.6 for detail). The magenta line represents the expected mass
from exponential fits to the correlator.

Figure 3.26: Box-plot of the zero-temperature (T = 47 MeV) estimate of the ground state
width, Γ, for the ηb meson (s-s) versus temporal extent of the spectral reconstruction,
τ2/aτ . The solid red and dashed green lines represent the ensemble median and mean
respectively, with the body of the box representing the confidence interval and the whiskers
denoting the inliers (see §3.6 for detail). 66
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Figure 3.27: Box-plot of the zero-temperature (T = 47 MeV) estimate of the ground state
mass, M , for the Υ meson (s-s) versus temporal extent of the spectral reconstruction,
τ2/aτ . The solid red and dashed green lines represent the ensemble median and mean
respectively, with the body of the box representing the confidence interval and the whiskers
denoting the inliers (see §3.6 for detail). The magenta line represents the expected mass
from exponential fits to the correlator.

Figure 3.28: Box-plot of the zero-temperature (T = 47 MeV) estimate of the ground state
width, Γ, for the Υ meson (s-s) versus temporal extent of the spectral reconstruction, τ2/aτ .
The solid red and dashed green lines represent the ensemble median and mean respectively,
with the body of the box representing the confidence interval and the whiskers denoting
the inliers (see §3.6 for detail). 67
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Figure 3.29: Box-plot of the zero-temperature (T = 47 MeV) estimate of the ground state
mass, M , for the χb1 meson (s-s) versus temporal extent of the spectral reconstruction,
τ2/aτ . The solid red and dashed green lines represent the ensemble median and mean
respectively, with the body of the box representing the confidence interval and the whiskers
denoting the inliers (see §3.6 for detail). The magenta line represents the expected mass
from exponential fits to the correlator.

Figure 3.30: Box-plot of the zero-temperature (T = 47 MeV) estimate of the ground state
width, Γ, for the χb1 meson (s-s) versus temporal extent of the spectral reconstruction,
τ2/aτ . The solid red and dashed green lines represent the ensemble median and mean
respectively, with the body of the box representing the confidence interval and the whiskers
denoting the inliers (see §3.6 for detail). 68
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Figure 3.31: Box-plot of the zero-temperature (T = 47 MeV) estimate of the ground state
mass, M , for the hb meson (s-s) versus temporal extent of the spectral reconstruction,
τ2/aτ . The solid red and dashed green lines represent the ensemble median and mean
respectively, with the body of the box representing the confidence interval and the whiskers
denoting the inliers (see §3.6 for detail). The magenta line represents the expected mass
from exponential fits to the correlator.

Figure 3.32: Box-plot of the zero-temperature (T = 47 MeV) estimate of the ground state
width, Γ, for the hb meson (s-s) versus temporal extent of the spectral reconstruction,
τ2/aτ . The solid red and dashed green lines represent the ensemble median and mean
respectively, with the body of the box representing the confidence interval and the whiskers
denoting the inliers (see §3.6 for detail). 69



Chapter 4

Limitations of Laplace-Shift Improvement

In this chapter we discuss the effects of the Laplace shift improvement technique on
the spectral error predicted by the Backus-Gilbert method. We propose to impose
a maximum bound on the allowed Laplace shift, argued on the basis of the form of
the variance for a general two-point correlator.

Figure 4.1: Plot of the relative error in the reconstructed spectrum as a function of the
adjusted Laplace shift parameter ∆̃. In this example, we measure the error at ω0 =
9.5 GeV, T = 47 MeV and α = 10−3. Note the logarithmic scale on the y-axis.

There are two main issues which arise when applying the Laplace shift transform
to improve the reconstruction resolution. The first is that stronger shifts move the
important features of the spectrum, such as the ground state, increasingly closer to
the edge of the fit window. The technique relies on the assumption that the spectrum
is negligible outside of the window to avoid unwanted amplification of the shifted
spectrum by the oscillations of the analytically-continued averaging functions. The
second issue which arises is the stability of the error under strong shifts. Figure
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4.1 shows the relative error in the spectrum at ω0 = 9.5 GeV as a function of
the adjusted shift parameter, ∆̃. At some value of ∆̃, seemingly regardless of the
underlying channel, the relative error begins to suddenly increase exponentially.
Recall that the error in the reconstructed spectrum is given by

∆ρ2(ω) =
∑
τ,τ ′

cτCov(G)ττ ′cτ ′ . (4.0.1)

Under the shift transform defined in Eq. (2.8.2), the covariance matrix transforms
as

Cov(G)ττ ′ ⇒ e∆·τCov(G)ττ ′e∆·τ ′ (4.0.2)

and since at large τ the unshifted correlator, G(τ), behaves like G(τ) ∼ e−Mτ , with
M the mass of the target state, we would expect that the covariance matrix become
‘flat’ in the limit where ∆→M .

We can estimate the degree of ‘flat-ness’ of the covariance matrix by measuring
its condition number, κ. Let Σ∆ = Cov(G; ∆); the condition number is then defined
as

κ(∆) = cond [Σ∆] = ||Σ∆|| · ||Σ−1
∆ || =

σmax

σmin
, (4.0.3)

where σ are the singular values of the covariance matrix, obtained using singular-
value decomposition, and || · || denotes the Frobenius norm, ||A|| =

√∑
i,j |aij|2.

Figure 4.2 shows the condition number as a function of the shift parameter, ∆,
calculated from the T = 47 MeV (Nτ = 128) correlator truncated to the time window
τ ∈ [0, τ2). Naively, one would expect the condition number to be a minimum when
∆ = M , which appears at first glance to be supported by Fig 4.2. Figure 4.3 shows
the predicted mass (of which the value of ∆ at min[κ] is a proxy) as a function
of aτ/τ2, for several choices of meson channel, with the expected masses derived
from single-exponential fits overlaid. Fig. 4.3 shows that the predicted mass for all
channels lie below the expected values, contrary to the naive expectation.

4.1 Connection with Parisi-Lepage Statistical Scaling

In order to understand why the mass predicted by the condition number method is
less than one would expect given the channel, we must turn to G. Parisi [79] and
G.P. Lepage [80] who first elucidated this phenomena in the 1980s.

Consider the correlation function for some general state, H, obtained by acting
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Figure 4.2: Covariance matrix condition number, κ(∆), versus ∆ for the Υ meson (s-s) Top
and χb1 meson (s-s) Bottom at several values of aτ/τ2. The largest lattice size Nτ = 128aτ
(T ' 47 MeV) has been used to maximise the available choices of aτ/τ2. The black crosses
denote the minimum of the condition curve (the predicted masses shown in Fig. 4.3)
and the black and magenta lines correspond to the the single-exponential fit estimate of
the pseudoscalar and channel masses respectively. The grey horizontal line at κ = 10−16

corresponds to the precision threshold of 64-bit floating point numbers (the maximum
number of decimal places which may be represented is 16, thus the largest computable
condition is 10−16).
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Figure 4.3: Predicted mass for a collection of meson channels versus the time-window
extent aτ/τ2.

Table 4.1: Matrices appearing in the (relativistic) interpolating operators and the associ-
ated quantum numbers and meson states for b-quarkonia, with light sector quarkonia for
reference [6].

Γ 2S+1LJ JPC uū bb̄

γ5
1S0 0−+ π ηb

γi
3S1 1−− ρ Υ

γiγj
1P1 1+− b1 hb

1
3P0 0++ a0 χb0

γiγ5
3P1 1++ a1 χb1

the current operator, J , on the vaccuum:

GH(x, t) = 〈Jx,tJ†0〉 (4.1.1)

≡ 〈0|Jx,tJ†0 |0〉 . (4.1.2)

Converting to the Heisenberg picture and inserting a complete set of eigenstates
1 = |n〉 〈n| yields

〈Jx,tJ†0〉 = 〈0|J0e
−ĤtJ†0 |0〉 (4.1.3)

=
∑
n

| 〈0|J0|n〉 |2e−Ent, (4.1.4)
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where we have used the relation Ĥ |n〉 = En |n〉. The higher energy states are
suppressed at long-t, such that we may approximate

GH(x, t) ≈ e−Mt, (4.1.5)

with M the ground state. Recalling the Monte Carlo method for estimating expec-
tation values outlined in §1.4.1, the correlator is given by

GH(x, t) = 〈Gi(x, t)〉 , (4.1.6)

where Gi represent the values of 〈Jx,tJ†0〉 evaluated over each of the Ni Monte Carlo
configurations. The correlator, GH , is real-valued by charge-conjugation symmetry,
but Gi need not be in general, giving rise to the following conditions on Gi:

lim
Ni→∞

〈Im(Gi)〉 = 0, ∀x, t , (4.1.7)

lim
Ni→∞

〈Im(Gi)Re(Gi)〉 = 0, ∀x, t , (4.1.8)

where we highlight that the second condition is a direct consequence of the first.
The variance associated with Eq. (4.1.6) is given by

Var(GH) = E[(Gi −GH)∗(Gi −GH)]

≈ 〈Re(Gi)2〉 −G2
H ,

(4.1.9)

where, by Eq. (4.1.7), we have used the relation 〈G∗i 〉 ≈ 〈Re(Gi)〉 ≈ GH . We can
build upon this picture by noting that

2 〈Re(Gi)2〉 = 〈|Gi|2〉+ 〈G2
i 〉 , (4.1.10)

and so the variance becomes

Var(GH) = 1
2 〈|Gi|

2〉+ 1
2 〈Gi

2〉 −G2
H . (4.1.11)

The first term in Eq. (4.1.11) corresponds to the correlation function of a state
with hadron-antihadron quantum numbers, whereas the second term represents the
correlation function of a state containing hadron-hadron quantum numbers. The
third term, being the square of the correlator, only corresponds to a single hadron.
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There is no conservation law preventing the rearrangement of the quantum num-
bers in 〈|Gi|2〉 to give the hadron-antihadron quantum numbers of some associated
channel H̃. Figure 4.4 shows how the quantum numbers of a proton-antiproton pair
may be rearranged into three pions. If we choose a channel such that M

H̃
< MH

then we find that, by Eq. (4.1.4)

Var(GH) ≈ e−2M
H̃
t (4.1.12)

and thus the signal to noise ratio goes as e−(MH−M
H̃

)t (i.e., our signal worsens with
t). It is well-known that the signal to noise ratio for the proton on the lattice
grows exponentially with 3/2mπ and is known colloquially as the “Golden Window“
problem [81, 82].

Figure 4.4: Diagram showing how a proton-antiproton pair may be rearranged to produce
three pions.

The same principle outlined in Fig. 4.4 also holds for mesonic systems – however,
the pictorial representation is no longer as persuasive as the quark structure is
unchanged under the rearrangement of quantum number. Instead, consider the
two-point correlator corresponding to some meson comprised of two quarks, where
we explicitly denote the flavours by (1) and (2):

GΓ(x, t) = 〈J (1,2)
x,t J

†(1,2)
0 〉 , (4.1.13)

where J (1,2)
x,t = q

(1)
x,tΓq

(2)
x,t and Γ ∈ {1, γi, γ5, γiγ5, γiγj}. The first term in Eq. (4.1.11)

is then given by
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〈|Gi|2〉 = 〈J (1,2)
x,t J

†(1,2)
0

(
J

(1,2)
x,t J

†(1,2)
0

)†
〉

= 〈
(
q

(1)
x,tΓq

(2)
x,t

) (
q

(2)
0 Γq(1)

0

) (
q

(2)
0 Γq(1)

0

)† (
q

(1)
x,tΓq

(2)
x,t

)†
〉

= 〈
(
q

(1)
x,tΓq

(2)
x,t

) (
q

(2)
0 Γq(1)

0

) (
q

(1)
0 Γq(2)

0

) (
q

(2)
x,tΓMq

(1)
x,t

)
〉

= 〈
(
q

(2)
x,tΓq

(1)
x,t

) (
q

(1)
x,tΓq

(2)
x,t

) (
q

(2)
0 Γq(1)

0

) (
q

(1)
0 Γq(2)

0

)
〉

= cPS 〈
(
q

(2)
x,tγ5q

(2)
x,t

) (
q

(1)
x,tγ5q

(1)
x,t

) (
q

(2)
0 γ5q

(2)
0

) (
q

(1)
0 γ5q

(1)
0

)
〉+ add. terms,

(4.1.14)

where we have used γ5Γγ5 = ±Γ† and have obtained the last line in Eq. (4.1.14)
by expanding the terms using the general Fierz identity [83] (see Appendix A.4 for
details):

(χ̄Γψ)(ψ̄Γχ) = cS(χ̄χ)(ψ̄ψ) + cV (χ̄γµχ)(ψ̄γµψ) + cA(χ̄γµγ5χ)(ψ̄γµγ5ψ)

+cPS(χ̄γ5χ)(ψ̄γ5ψ) + cT
2 (χ̄σµνχ)(ψ̄σµνψ),

(4.1.15)

where the coefficients, cS, cV , cA, cPS, cT , are the respective scalar, vector, axial, pseu-
doscalar and tensor coefficients corresponding to Γ and are given in Table 4.2 (see
Appendix A.4 for details of their calculation). We also define σµν = 1

2[γµ, γν ]. The
additional terms correspond to the additional bilinear products generated during
expansion, such as scalar-scalar, vector-vector and also cross-terms such as scalar-
vector, etc.

Table 4.2: Fierz identity coefficients for the bilinears of a product of spinors. The calcu-
lation of these coefficients is outlined in Appendix A.4.

cS cV cPS cA cT

Γ 1 γµ γ5 γµγ5 σµν/
√

2

SxS 1/4 1/4 1/4 −1/4 −1/4
VxV 1 −1/2 −1 −1/2 0
PSxPS 1/4 −1/4 1/4 1/4 −1/4
AxA −1 −1/2 1 −1/2 0
TxT −3/2 0 −3/2 0 −1/2

It is evident from the table of coefficients that every choice of Γ contains contri-
butions from the pseudoscalar channel, which is the lightest allowed mesonic state.

76



CHAPTER 4. LIMITATIONS OF LAPLACE-SHIFT IMPROVEMENT

Finally, using Wick’s theorem,

〈ηi1 η̄j1 . . . ηin η̄jn〉 = 1
Z

∫ N∏
k

dηkdη̄k ηi1 η̄j1 . . . ηin η̄jn exp
 N∑
l,m

η̄lMlmηm

 (4.1.16)

= (−1)n
∑
P{n}

sign(P )(M−1)i1,jP1
. . . (M−1)in,jPn (4.1.17)

where P{n} denotes the set of permutations, we may express 〈|Gi|2〉 in terms of the
quark propagator Sx,t = M−1,

〈|G2
i |〉 = 〈Tr

[
(γ5S

†(2)
0;x,tγ5S

(1)
0;x,t)2

]
〉+ add. terms, (4.1.18)

where the additional terms contain contributions from the other channels and also
disconnected bubble contributions from the pseudoscalar channel along with spon-
taneous flavour-changing diagrams which are disallowed.

In Fig. 4.3 we can see this behaviour in action. For a set of meson channels with
varying quantum numbers, the predicted mass from the variance tends toward the
predicted value for the ηb (the pseudoscalar) meson mass as aτ/τ2 → 0.

The signal-to-noise problem has attracted renewed interest in recent years, with
studies of the magnitude-phase decomposition of the correlator[82] showing that
the signal-to-noise problem is generated by the complex phase of the correlator,
whereas the magnitude does not exhibit such behaviour. Furthermore, encouraged
by improvements in high-performance computing and the onset of new machine-
learning assisted approaches [84, 85] pure-gauge SU(2) focuses on a technique known
as neural-network contour deformation, wherein the path integral is deformed such
that desired observables become transformed into new observables which posses the
same expectation values but exhibit different variance properties.
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Chapter 5

The Coulomb-Gauge Gluon Propagator

5.1 Introduction

The gluon, being the mediator of the strong force, encodes much of the ‘richness’ of
quantum chromodynamics. Yet, six or so decades after its existence was first postu-
lated, there is still much which is unknown about its dynamics. It is believed in the
physics community that the secret to color confinement should be contained within
the properties of the gluon. However, so far no analytic proof of color confinement
has been shown in any non-Abelian theory, let alone QCD. There exists a plethora
of experimental evidence to support this behaviour, such as the absence of observed
fractional charges (i.e. free quarks) and the production of hadron cascades in high
energy particle-particle collisions. On the lattice, one may probe confinement via
a variety of methods, some of which were touched upon in §1.4. Some of these
approaches are based on simpler observables made up only of the link variables Uµ,
such as the Polyakov loop expectation value, while other approaches include direct
calculation of the inter-quark potential which also can act as a test of confinement
[14].

In the next two chapters we attempt to test for a confinement signal via studies
of the gluon propagator, first in the Coulomb gauge, before extending to the Landau
gauge, both calculated using the Fastsum NRQCD ensembles.

5.2 Gauge Fixing, Gribov Copies and Confinement

There is much discussion (and even contention) surrounding the way in which the
gluon propagator is expected to change as the system passes through the decon-
finement transition. Part of this discussion is fuelled by the fact that the gluon
propagator is not a gauge-invariant observable, since it is constructed from the two-
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point correlator of the gluon fields, Aµ, and thus must be gauge-fixed, adding an
additional layer of complexity to any analysis. Two popular gauges in the literature
are the Coulomb gauge,

~∇ · ~A =
∑
i

∂iAi = 0, (5.2.1)

where i = (1, 2, 3) and the Landau gauge,

∂µAµ =
∑
µ

∂µAµ = 0, (5.2.2)

where µ = (1, 2, 3, 4).

Currently, there are several confinement scenarios based upon studies of the
ghost propagator and BRST symmetry (the Kugo-Ojima scenario [86]). The gauge-
variance of the quark-antiquark potential (the Gribov-Zwanziger scenario [87, 88])
predicts that the gluon propagator is expected to become suppressed in the infrared.
A review of these scenarios and their relation to confinement is given in Ref. [89].

In this analysis, we focus solely on the gluon propagator and will defer discussion
on the ghost propagator to a later point. We first consider the Gribov-Zwanziger
confinement scenario and, to better understand the motivation of this scenario, we
must discuss the Gribov ambiguity. The path integral contains an over-counting of
the gauge fields Aµ which is caused by the presence of gauge orbits, defined as

orb[Aµ] =
{
AΩ
µ |AΩ

µ = ΩAµΩ† − i

g0
(∂µΩ)Ω†; Ω ∈ SU(N)

}
. (5.2.3)

which are sets of gauge fields that are equivalent under a gauge transformation.
This over-counting was formally solved by Fadeev and Popov [90] by incorporating
ghost-fields into the path integral to reduce the contributions from the gauge orbit
to a single configuration (see Appendix A.5). This procedure is sufficient in the case
of Abelian gauge theories such as QED, but it was discovered by Gribov [87] that
for non-Abelian gauge theories there exist non-equivalent configurations which also
obey a given gauge condition. These configurations are known as Gribov copies and
are removed by restricting the path integral to the region where the Fadeev-Popov
operator,

M [AΩ
µ ] =

δF [AΩ
µ ]

δΩ , (5.2.4)

with F [AΩ
µ ] our gauge condition, is strictly positive-definite. This first Gribov region
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(FGR) is then denoted by the set

ΩGribov = {Aµ|F [Aµ] = 0 ∩M [Aµ] > 0} . (5.2.5)

However this still leaves remnant copies, which must be removed by demanding that
F [AΩ

µ ] be minimized globally within the FGR (this is called the fundamental modular

region) and is in general non-trivial to locate [91].

The original Gribov-Zwanziger confinement scenario states that gauge config-
urations which lie close to the boundary of the FGR (called the Gribov horizon)
contribute the most toward the infrared behaviour of the propagator [92], causing
the gluon propagator to vanish and an enhanced ghost propagator. However, in
the refined Gribov-Zwanziger scenario [93, 94] the gluon propagator is expected to
become IR-finite and the ghost propagator divergent. The behaviour of the gluon
propagator in the infrared limit is a point of contention in the literature, with several
approaches to the study of the scenario yielding contrasting results. This is believed
to be exacerbated in part due by the large lattice sizes required to probe the infrared
limit [93].

Regardless, the two Gribov-Zwanziger scenarios inspire interest when one is re-
minded that deconfinement is an inherently gauge-invariant process, whereas the
gluon propagator is a gauge-variant quantity. Thus, the essence of this approach
is that we should be able to probe the deconfinement transition via measurements
of the gluon propagator at different temperatures, regardless of our choice of gauge
fixing.

For clarity, we will first discuss the gauge fixing process and subsequent gluon
propagator calculation in terms of the Coulomb gauge given in Eq. (5.2.1), and will
introduce necessary modifications to support the lattice anisotropy for Landau gauge
(Eq. (5.2.2)) in Chapter 6. In the meantime, we shall make explicit the anisotropy
of the lattice spacing (i.e., a = aµ) to support later discussion and highlight once
more that as and aτ represent the spatial and temporal lattice spacing, respectively.

The action of fixing the gauge condition given in Eq. (5.2.1) corresponds to (see
Appendix A.6 for details) the maximisation of the continuum functional, [92, 95]

W [Aµ] =
∑
µ

∫
d4xTr

[
A2
µ

]
, (5.2.6)
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for the continuum gauge fields, Aµ. By discretizing the integral and using the lattice
definition of the gluon field, Uµ(x) = e−ig0aµAµ(x), we have,

Aµ(x) =

{
Uµ(x)− U †µ(x)

}
traceless

2ig0aµ
+ O(a2), (5.2.7)

and thus can express the discretised, lattice gauge functional as

F [UΩ
µ ] = 1

|Λ|Nc(Nd − 1)
∑
x,µ

ReTr
[
UΩ
µ (x)

]
, (5.2.8)

which is then minimised with respect to the set of gauge transformations, {Ω}, over
the entirety of the lattice. The minimisation of Eq. (5.2.8) is not a trivial problem
and in general we must use algorithmic approaches which iteratively converge on
the maximum of F [UΩ] to obtain the set of transformations, {Ω}, which fix the
gauge. In this work, we employ a pre-existing gauge fixing algorithm [96] based on
the over-relaxation method (details of which are outlined in Ref. [97]). Since the
process of maximising the gauge fixing functional exhibits stochastic convergence,
we measure the progress of the gauge fixing algorithm using the criterion

(~∇ · ~A)2 ≡ 1
|Λ|

∑
x∈{Λ}

N2
c−1∑
c=1

[
~∇latt · ~Ac(x)

]2
, (5.2.9)

where we have defined the lattice 3-divergence

~∇latt · ~Ac(x) =
∑
i

Aci(x+ asî)− Aci(x)
as

, (5.2.10)

with Aci the Gell-Mann components of the SU(3) gauge fields, Ai. The gauge fixing
condition given in Eq. (5.2.8) is evaluated independently over each time slice, with
the gauge fixing algorithm halting when (~∇ · ~A)2 ≤ 10−16.

5.3 Calculating the Gluon Propagator

The instantaneous gluon propagator is defined as the two-point function of the Aµ
fields at some time, t,

Dab
ij (x− y; t) = 1

|Λ| 〈A
a
j (x, t)Abj(y, t)〉 , (5.3.1)
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and is tensor-like in the color components, a, b ∈ {1, . . . , 8} and the spatial Lorentz
indices, i, j, where the color components of the gluon fields, Ai, are given by

Aµ(x) =
N2
c−1∑
a=1

Aaµ(x)Ta, (5.3.2)

with Aaµ the real-valued color components of Aµ and Ta the set of Nc ×Nc matrices
which span the Lie algebra su(Nc) and form a basis which define the adjoint repre-
sentation of the group. For Nc = 3, Ta = λa/2, with λa the Gell-Mann matrices.

In momentum space, the unequal time gluon propagator is given by

Dab
ij (p; p4) = 1

|Λ| 〈A
a
i (p, p4)Abj(−p,−p4)〉 , (5.3.3)

where p is the 3-momentum and the gluon fields in momentum space are given by

Ai(p) = e−ig0p̂as/2

2ig0as

[
Bi(p)−

1
3TrBi(p)

]
, (5.3.4)

where for brevity we have definedBi(p) ≡ Ui(p)−U †i (−p), with Ui(p) ≡
∑
x e
−ip·xUi(x).

We may decouple the scalar propagator, D(|p|), from the tensor-structure of Dab
ij

using
Dab
ij (p) = δab

(
δij −

pi · pj
|p|2

)
D(|p|), (5.3.5)

which when taking the trace over the color and Lorentz components yields

D(|p|) = 2
(N2

c − 1)(Nd − 1)|Λ|
∑
i,a

Tr [〈Aai (p, p4)Aai (−p,−p4)〉] , (p 6= 0), (5.3.6)

D(|p|) = 2
(N2

c − 1)Nd|Λ|
∑
i,a

Tr [〈Aai (p, p4)Aai (−p,−p4)〉] , (p = 0). (5.3.7)

The lattice momentum, p̂i, which arises as the conjugate coordinate to xi, is
given by

p̂i = 2πxi
asNs

(5.3.8)

where xi ∈
(
−Ns

2 ,
Ns

2

]
and Ns represents the spatial extent of the lattice. It is

also necessary to incorporate the one-loop momentum correction based on the form
of the lattice action used. For the naive Wilson action, corrections to the (four-
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dimensional) momentum pole D(q) = 1/q2 go as

D(q) =
a2
µ

4∑µ sin2 (q̂µaµ/2) , (5.3.9)

and thus we would define the (Wilson) corrected momentum

qWµ = 2
aµ

sin(q̂µaµ/2). (5.3.10)

We note that this correction still holds for the case of the three-momentum |p|. In
the case of a Symanzik-improved action, such as the one used for the Fastsum

ensembles, the corresponding momentum correction is given by [3]

qIµ = 2
aµ

√√√√sin2
(
q̂µaµ

2

)
+ 1

3 sin4
(
q̂µaµ

2

)
. (5.3.11)

Unless otherwise specified, plots containing q correspond to the corrected momen-
tum while q̂ will correspond to the momentum as calculated in Fourier space (i.e.
Eq. 5.3.8).

5.3.1 Renormalization in the Coulomb gauge

Since the Coulomb gauge has an inherent gauge freedom along the temporal axis,
one may assume that the static propagator, given by

Dstatic(|p|) =
∑
p4

D(p4, |p|), (5.3.12)

correctly averages out any dependence on the temporal momentum p4. However,
previous studies [14, 98] suggest that this procedure is incorrect as the gluon propa-
gator exhibits spurious scaling on finite lattices. In the continuum limit, we expect
the gluon propagator to approach the leading-order (from perturbation theory at
|p| → ∞) form

Dtree(|p|) =
∫
dp4

1
|p|2 + p2

4
= 1

2|p| . (5.3.13)

On the lattice, one must integrate over the Brillouin zone corresponding to p4, given
by

Dlatt(|p|) =
∫ π/aτ

−π/aτ

dp4

2π
1

|p|2 + p2
4

= 1
|p|π

arctan
(

π

aτ |p|

)
. (5.3.14)
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The additional |p| dependence means that the lattice analogue of the static propa-
gator is no longer multiplicatively renormalized. It should be noted, however, that
the propagator at fixed energy, p4, should be free of such scaling violations and thus
would allow one to study the gluon propagator at fixed p4, at the expense of smaller
statistics.

The authors of Ref. [98] suggest an alternative approach to the static propaga-
tor calculation which restores the multiplicative renormalizability. The idea is to
factorise the 3-momentum and energy components using the relation

D(|p|) = f(|p|)g(z), (5.3.15)

where we have defined z = ξp4/|p|, with ξ the lattice anisotropy. We can calculate
the scaling factor g(z) by comparing the bare propagator at some energy, p4, with
the zero-energy, p4 = 0, propagator D(|p|, 0),

g(z) = (1 + z)2D(|p|, p4)
D(|p|, 0) , (5.3.16)

where we define g(0) = 1. Fitting the above with a function of the form

ĝ(z) = (1 + z2)α, (5.3.17)

for the exponent, α, allows one to remove the z-dependence from the bare propagator
by calculating the f -factor

f(|p|) = 1
Nτ

∑
p4

D(|p|, p4)
ĝ(z) = 1

Nτ

∑
p4

, D(|p|, p4)(1 + z2)−α (5.3.18)

and thus we may express the static form of the bare gluon propagator as D(|p|) =
f(|p|)/|p|. Once the p4 dependence has been averaged out, we may renormalize
the bare propagator via the usual approach by comparing with the leading order
behaviour at some renormalization point, µ, far into the continuum:

Dµ(|p|)
∣∣∣
µ=∞

= 1
2|p| , (5.3.19)

where we note that the gluon propagator is multiplicatively renormalized, i.e.

Dµ(|p|)
∣∣∣
µ=∞

= Z(µ)Dlatt(|p|). (5.3.20)
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Table 5.1 shows the value for the fit parameter, α, versus lattice temperature and
corresponding temporal extent. We wish to highlight how remarkably close each
value of α is to unity, suggesting that the modifications from the method outlined
above produce a static propagator not far removed from the naïve static propagator
given in Eq. (5.3.12). It should be noted that this behaviour was also observed by
the authors of the scheme, where they found that the modification was very small
for a wide range of couplings [98]. Although this scheme was originally devised for
use with the isotropic Coulomb gauge case, studies using anisotropic lattices [91]
suggest that this scheme is still applicable when ξ = as/aτ > 1.

Table 5.1: Table of g(z) fit parameters, α, (see Eq. (5.3.17)) versus lattice temperature.

T/Tc 0.28 0.57 0.76 1.01

α 1.00025(34) 0.99990(66) 1.00031(89) 0.9996(12) . . .

Ncfg 185 241 224 334

T/Tc 1.14 1.51 2.27 3.03 4.54

α 1.0000(14) 1.0003(20) 0.9993(35) 0.9987(54) 1.000(11)
Ncfg 450 235 196 124 123

5.4 Estimating the effective mass of the gluon

We can test the infra-red behaviour of the gluon propagator against that predicted
by the various confinement scenarios by estimating the effective mass associated
with the propagator. For a free, massless particle in three dimensional space, the
propagator behaves as

D(p) ∼ 1
2|p| , (5.4.1)

and diverges as p→ 0, whereas the free, massive particle contains a mass term

D(p) ∼ 1√
|p|2 +m2

, (5.4.2)

and is finite for p → 0. The effective mass can be estimated via a variety of ways:
the Gribov formula [87], derived from variational Hamiltonian approaches, gives a
form for this effective mass in Coulomb gauge as a function of |p|:

D(|p|;µ)
|p|

∣∣∣
µ=∞

= 1√
|p|4 +M4

IR

. (5.4.3)
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This is equivalent to the Yukawa-inspired form for a massive particle,

D(|p|;µ)
∣∣∣
µ=∞

= 1√
|p|2 +m(|p|)2

, (5.4.4)

whenm(|p|) = M2
IR/|p| (i.e. the effective mass is itself a function of the momentum).

Ifm(|p|) diverges as |p| → 0, then one may conclude that the effective mass is infinite
and the gluon no longer can propagate, thus becoming confined.

In our analysis we attempt to fit both Eqs. (5.4.3) and (5.4.4) to the infrared
propagator. When fitting the infrared region, we (unless otherwise specified) fit the
propagator in the region |p| ∈ [0, pmax) and will measure the fit parameters as a
function of pmax. Thistests any dependence of the effective mass on the momentum,
as we expect to be the case for the fit corresponding to Eq. (5.4.4).

5.5 Averaging and data-cutting routines

In order to minimise the effect that discretisation artefacts have on the propagator
calculation, we employ a series of averaging and slicing routines which are outlined in
detail in Ref. [3]. As with the previous section, we shall first outline the data cutting
routines as applicable in the case of Coulomb gauge and leave any modifications
required to support Landau gauge until a subsequent section.

It is a well-known fact that the discretization procedure needed for the lattice
formalism introduces artefacts caused by the finite lattice spacing. However, when
working with vector-like quantities on the lattice an additional source of error arises
due to the breaking of O(Nd) rotational hypersymmetry by the finite spacing. This
means that, for example, some quantity measured at a position r = (0, 0, 3, 4) is not
expected to be equivalent to the same quantity measured at position r′ = (0, 0, 0, 5),
despite the fact that |r| = |r′|. This is because continuous rotational symmetry is
explicitly broken. In general, we find that values for the propagator generated
on-axis are affected the most by discretization errors, whereas the behaviour is
more uniform for those close to the body-centred diagonal (BCD) vector, x̂BCD =
1/
√
Nd

∑Nd
i n̂i with n̂i the unit vector in the ith direction.

Although O(Nd) symmetry is broken by the lattice, the subgroup Z(Nd) is pre-
served. For Coulomb gauge, where the time direction is explicitly unfixed, we antic-
ipate permutations amongst the set of spatial coordinates to yield equivalent values
for the gluon propagator. This gives rise to the first routine, which we shall call
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Z(3) averaging. For example, if q(x, y, z) = (3, 2, 1) then we expect the (static)
propagator to obey

D(3, 2, 1) = D(1, 3, 2) = D(2, 1, 3) = D(1, 2, 3) = D(2, 3, 1) = D(3, 1, 2),

and so average over this set of equivalent points.

The second set of procedures involve slicing the data such that momenta which
are far offset from the BCD (i.e. close to on-axis) are removed. This can be achieved
by restricting momenta to within a certain defined radius, r̂, of the three-dimensional
BCD vector, x̂BCD = 1/

√
3 (1, 1, 1), in what is known in the literature as a cylinder

cut. The radius is given by
r̂ = |p̂| sin(θp̂), (5.5.1)

with the angle θp̂ measured with respect to the BCD vector,

θp̂ = arccos
(
p̂ · x̂BCD

|p̂|

)
. (5.5.2)

We can further restrict the momenta to produce a cone cut by limiting the angle θp̂.
Following the procedure outlined in Ref. [3], we restrict the momenta to a radius
of 1p̂/as = 2π/asNs for cylinder cuts and an angle of θ = 0.174 rad. ≈ 10◦ for the
cone cuts.

The cone cut is considered to be more of an ultraviolet cut by its construction,
and so to preserve as much data as possible in the infra-red (in order to estimate
the effective mass) we may employ a ‘hybrid’ cut where the angular restriction is
dropped below when q . 1 GeV.

5.6 Results

In this section and the following, we use our value of the pseudo-critical transition
temperature, Tpc (see Table 3.1), as a stand-in value for the ‘confinement temper-
ature’, which we shall denote Tc. If our estimate of the pseudocritical transition
temperature is a fair representation of the temperature at which the deconfinement
transition is expected to occur, then we should observe a difference in the behaviour
of the gluon propagator as our temperature passes through T = Tc. We also note
that, unless otherwise stated, all plots showing multiple temperatures are given a
small stagger in the momentum |p| to aid the visual separation of overlapping data
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Figure 5.1: Values for the renormalized (µ = 6 GeV) gluon propagator as a function
of momentum for several temperatures. The number of data points shown has been
thinned (see text for detail) and results for only some temperatures are shown to aid
visual comparison.

and, where there is an abundance of data points, we omit results for intermediary
temperatures and reduce the number of data points shown to maintain intelligibility.
In cases where we perform fits to the data, we stress that all available data (subject
to cutting routines) is used for the fit.

Figure 5.1 shows the gluon propagator (renormalized at µ = 6 GeV) as a func-
tion of the 3-momentum |p|, for a range of temperatures spanning the transition
temperature, Tc. There is a remarkable agreement in the form of D(|p|) across the
expected transition about T = Tc, with the propagator only departing in the infra-
red (|p̂| . π/as) from the general trend beyond T = 3Tc. This corresponds to our
smallest available lattices, Λ8 = 8 × 323 and Λ12 = 12 × 323. Figure 5.2 shows the
renormalized (µ = 6 Gev) dressing function Z(|p|) = 2|p|D(|p|) as a function of |p|
at several temperatures, which we expect to approach unity at large |p|. The spu-
rious scaling of D(|p|) is visible at large momenta as the dressing function departs
from the expected one-loop result of Z(|p|) ∼ 1. This ‘drooping’ effect seen at large
|p| has been previously attributed to inconsistencies between the momentum correc-
tion (Eq. (5.3.11)) and the leading-order behaviour at the continuum in the Landau
gauge [99]. Figure 5.3 further probes the IR behaviour by plotting the propagator
at select temperatures as a ratio of our zero-temperature (T = 47 MeV= 0.3Tc,
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Figure 5.2: Renormalized (µ = 6 GeV)Coulomb gauge gluon propagator as a ratio of the
tree level form for several lattice temperatures. The number of data points shown has
been thinned (see text for details) and results for only some temperatures are shown to
aid visual comparison.

Λ128 = 128× 323) ensemble in the region |p| < π/as, where we define

R128(|p|;T ) = D(|p|;T )
D(|p|, T = 0.3Tc)

. (5.6.1)

The small-|p| temperature effects are now readily highlighted by Figure 5.3.

Having shown a potential sensitivity of the propagator to temperature far above
Tc, we now present the results of the effective mass fits. Figure 5.4 shows the Yukawa-
inspired mass (Eq. (5.4.4)) as a function of |p| for several values of the temperature.
We can see that m(|p|) appears to plateau below |p| ∼ 1GeV for T . 2Tc, but
rapidly increase for T & 2Tc, suggesting that the effective mass may diverge at
higher temperatures. In Figure 5.5 we plot the mass estimate corresponding to
the Gribov formula, given in Eq. (5.4.3). Here, we fit the Gribov formula in the
momentum window |p| ∈ [0, |p|max) and show the mass as a function of |p|max.
Linearly extrapolating MIR(|p|) from below |p|max < 2GeV to |p|max = 0 (shown in
Figure 5.6 and detailed in Table 5.2) again suggests that the effective mass plateaus
below T = 2Tc whilst for T > 2Tc we see an increase in MIR proportional to T .
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Figure 5.3: Values for the renormalized (µ = 6 GeV) gluon propagator as a fraction of the
zero-temperature (T = 47 MeV=0.3Tc) propagator for select values of T/Tc.

Figure 5.4: Yukawa-inspired mass fit parameter, m(|p|), as a function of |p| for a range of
lattice temperatures.
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Figure 5.5: Gribov mass fit parameter, MIR(|p|), as a function of the fit cut-off, |p|max, for
a range of lattice temperatures.

Figure 5.6: Extrapolated Gribov mass fit parameter, MIR, for a range of lattice tempera-
tures.

In this chapter we have discussed the different confinement scenarios for the gluon
propagator and how they signal confining behaviour. We then calculated the gluon
propagator in the Coulomb gauge, where we only observed temperature dependent
behaviour far above the expected transition temperature Tc, instead departing from
the low-temperature trend around T = 3Tc. This behaviour was also reported
by the authors of Ref. [14] in SU(2) Yang-Mills, suggesting that this late onset of
temperature dependent behaviour may instead be a facet of the choice of gauge,
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Table 5.2: Table of the |p|max → 0 extrapolated Gribov masses, MIR, for each lattice
temperature. The χ2

ν are the goodness-of-fit values and Ncfg the number of configurations
used for the extrapolation.

T/Tc 0.28 0.57 0.76 1.01 1.14

MIR (GeV) 0.2904(46) 0.2918(65) 0.2911(75) 0.2865(86) 0.2830(91)
χ2
ν 12.93 6.33 4.56 3.04 2.64

Ncfg 185 241 224 334 450

T/Tc 1.51 2.27 3.03 4.54

MIR (GeV) 0.287(11) 0.314(13) 0.344(16) 0.391(21)
χ2
ν 1.82 1.69 2.37 4.23

Ncfg 235 196 124 123

rather than a property of the SU(2) theory. They cite previous investigations [100,
101] which posit that the Coulomb gauge propagators do not couple to the physical
string tension but instead couple the spatial string tension of the reduced theory,
which persists beyond Tc. A separate study into the phases of QC2D suggested that
this ‘postponement’ of deconfinement [102] is caused by an emergent chiral-spin
symmetry phase which exists between T ∈ [Tc, 3Tc], which is consistent with our
observations.
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Chapter 6

The Landau-Gauge Gluon Propagator

Table 6.1: Table of various publications on the gluon propagator from both dynamical and
quenched lattice QCD methods, along with pure lattice Yang-Mills. Entries which do not
use Landau gauge use Coulomb instead. We also remark that “Finite T” includes studies
at a single (non-zero) temperature, along with studies at multiple temperatures [3, 7–16].

ArXiv ID Dynamical SU(3) Landau Finite T Anisotropic Year

This work X X X X X 2023
2206.02320 X X X 2022
1912.12086 X X X 2019
1401.6908 X X 2014
1311.5707 X X 2013
1212.1102 X X X 2012
1207.3029 X X X 2012
1105.6185 X X X 2011
1011.0007 X X X 2010
0811.4635 X X X 2008
0008001 X 2003
0008001 X X X 2001
0008001 X X X 2000
9803015 X X 1998

In the previous section, we observed a delay in the onset of deconfinement, in-
ferred from the form of the propagator, until at least T = 3Tc in the Coulomb
gauge. However, since the temporal extent of the lattice encodes temperature de-
pendence, it is not such a naive assumption that the Coulomb gauge propagator
should be expected to exhibit a more complex relationship with any temperature
dependent behaviour, as hinted by the existence of the ‘spatial’ string tension which
the Coulomb gauge has been purported to probe [100, 101].

In this chapter, we build upon our Coulomb gauge work by extending our gauge
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fixing procedure to incorporate the time direction. This could either be achieved
via an independent fixing of the temporal links in the Coulomb gauge to remove the
residual gauge freedom, such as the Integrated Polyakov Gauge [98] (IPG) used by
the authors of the SU(2) calculation described in [91], or a simultaneous fixing in
all four directions which corresponds to the (continuum) Landau gauge condition,

∂µAµ = 0. (6.0.1)

We will make use of the Landau gauge condition in this work as it is a natural
extension of the Coulomb gauge to four dimensions, rather than the IPG which is a
transformation upon the temporal links of the already Coulomb-fixed configuration.

For isotropic lattices, Landau gauge fixing is implemented in a similar manner
to the Coulomb gauge. Table 6.1 lists a selection of lattice-based analyses which
focus on Coulomb and/or Landau gauge gluon propagators on isotropic and/or
anisotropic lattices. From our review of the current literature, it appears that there
are few attempts at studying the gluon propagator in Landau gauge on anisotropic
lattices, and this work is potentially the first to do so at several temperatures using
dynamical QCD on anisotropic lattices.

6.1 Landau gauge for anisotropic lattices

Before we delve into the intricacies of modifying the gauge fixing functional to
support space-time anisotropy, it is beneficial to discuss the naive anisotropic gauge
action,

SW [U ; γg] = β
∑
x∈{Λ}

 1
γg

∑
i<j≤3

ReTr[1− Uij(x)] + γg
∑
i≤3

ReTr[1− Ui4(x)]
 , (6.1.1)

where γg is the bare gauge anisotropy. Expanding the action in terms of the field
strength, Fµν , for small a yields the tree-level anisotropy, as/aτ = γg = ξ0. Just
as the bare coupling, β, undergoes renormalization so too does the bare anisotropy.
We denote the renormalized gauge anisotropy by ξR = ξR(ξ0, β).

Since the Fastsum ensembles make use of anisotropic lattices, modifications
must be make to support the difference in lattice spacing. The first necessary mod-
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Figure 6.1: Uncut Landau gauge gluon propagator as a function of q̂a with anisotropy
corrections applied. In this example, Nτ = 16 (T = 380 MeV). Notice the “fanning" which
worsens with increasing q̂4, caused by finite spacing errors[3]. The vertical, tendril-like
curves are proportional to the temporal lattice extent Nτ and greatly effect the quality of
the signal when the lattices are largest.

ifications pertain to the gauge fixing functional, that reads

W [Aµ] =
∑
µ

∫
d4xTr[A2

µ], (6.1.2)

and can be recast in terms of the lattice link variables, Uµ, via a small-aµ expansion
to give

F [UΩ, ξ] = 1
|Λ|Nc(Nd − 1)

∑
x,µ

ξ2
µReTr

[
UΩ
µ (x)

]
. (6.1.3)

We have defined ξµ = (1, 1, 1, ξR). The anisotropic form of the Landau gluon prop-
agator is then given by

Dab
µν(q) = ξµξν

|Λ| 〈A
a
µ(q)Abν(−q)〉 . (6.1.4)

Since the 4-momentum carries units of π/a, it must also be modified to account for
the difference in lattice spacing:

q̂2 ≡
∑
i

q̂2
i + (ξRq̂4)2. (6.1.5)
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6.2 Measuring the Infrared Exponent

Studies into the Landau gauge gluon propagator using the Dyson-Schwinger formal-
ism [103] suggest that the gluon dressing function, defined as

Z(q2) = q2D(q2), (6.2.1)

exhibits the functional form
Z(q2) ∝ (q2)2κ, (6.2.2)

in the infrared, with κ a parameter known as the Dyson-Schwinger exponent which
is characteristic of the IR behaviour. A value of κ = 0.5 indicates a finite propagator,
whereas values above and below represent infinite and vanishing gluon propagators,
respectively [10]. Using the DS formalism, previous studies [103] have found κ ≈

0.595 and lattice approaches have reported an exponent of κ ≈ 0.5 [10].

6.3 Results

In the following subsection we present results for the gluon propagator in the Landau
gauge. We remark that the data follows a similar data cutting routine as outlined
in Chapter 5, albeit without the equivalent Z(4) averaging routine, which cannot be
readily implemented in the anisotropic Landau case as the anisotropy term breaks
Euclidean 4d hypercubic rotational symmetry. We also note that the cone cut has
been extended to incorporate the temporal momentum p4, adjusted by a factor of ξR
to account for the anisotropy. It should be noted that this procedure causes a more
dramatic cutting of the data, as now only values of p4 which are approximately
divisible by ξR are close enough to the BCD to satisfy the cone cut. Figure 6.1
shows the uncut gluon propagator for the 16 × 323 lattice, in which the dramatic
discretisation error due to finite lattice spacing is readily apparent. The vertical
‘fringes’ become more frequent as the temporal momentum extent increases.

We also wish to draw comparisons between Fig. 6.1 and the isotropic Landau
gauge propagator shown in Fig. 1 of [3], which shows a similar behaviour albeit
without the large vertical ‘curves’ in q̂2a2D(q̂), which may be an artefact of the
lattice anisotropy.

Since our analysis focuses explicitly on the infrared region, which is heavily sup-
pressed by the cone cut, we employ for the Landau gauge propagator a hybrid cut
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Figure 6.2: Renormalized (µ = 8 GeV) Landau gauge gluon propagator D(q) at several
values of T/Tc. Note the logarithmic scale on the vertical axis to accentuate the IR
behaviour. For q < 3 GeV all data satisfying the cutting routine is shown and for q ≥
3 GeV. We show a ‘thinned’ set of data for visual clarity.

wherein the only the radial restriction (the cylinder cut) is enforced below some q̂min,
after which we use the cone cut outlined in §5.5. Empirical testing suggests that a
cut radius of q̂min ∼ 1 for the smallest lattices with a gradual decrease to q̂min = 0
for the largest lattices gives the best performance.

Figure 6.2 shows the renormalized (µ = 8GeV) gluon propagator at several val-
ues of T/Tc. Comparing with the case of the Coulomb gauge propagator, we now
see temperature dependent effects in the infrared at a slightly lower temperature,
beginning between T = Tc and T = 2.25 Tc. This infrared behaviour is more visible
in the dressing function q2D(q), shown in Figure 6.3.

Fitting the Dyson-Schwinger exponent discussed in §6.2 proved more of a chal-
lenge than expected, possibly exacerbated by the harsh cutting of the data to avoid
the finite spacing artefacts. Figure 6.4 shows the result of fitting Eq. 6.2.2 in the fit
window q ∈ [0, qmax) and measuring the fit result for κ as a function of qmax. We
note that the constant result for T = 4.54 Tc is due to a lack of data– the maximum
attainable momentum for an 8 × 323 lattice is approximately 2 GeV. The lowest
temperature (and most affected by discretization errors) at T = 0.28 Tc appears
to predict a diverging exponent as qmax → 0, whereas the remaining temperatures
predict κ . 0.5.

We can also probe the DS exponent in a manner which is not dependent on the
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Figure 6.3: Renormalized (µ = 8GeV) dressing function q2D(q) as a ratio of the tree level
form for several values of T/Tc.

Figure 6.4: Fitted values for the DS exponent κ versus the maximum fitted momentum
qmax for several values of T/Tc. Note the apparently diverging result for T = 0.28 MeV
which may be caused by the distortion of the propagator in q ∈ [0, qmax] by the cutting
routine.
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Figure 6.5: Linear fits to the logarithmic dressing function lnZ(q) for several values of
T/Tc.

fit window by rearranging Eq. (6.2.2) into the linear form

ln(Z(q)) = 2κ ln(q2) + ln(A), (6.3.1)

where A is the coefficient of proportionality corresponding to Eq. (6.2.2). Figure 6.5
plots this linear form for several values of T/Tc, including linear fits to ln(Z(q)) in
the range q̂ ∈ [0, π/as). The values of κ predicted by this method, given in Table
6.2, produce similar results compared with Fig 6.4 where we now see a much smaller
exponent, with a finite value for κ predicted for our coldest temperature. Overall,
the values for the exponent given in Table 6.2 are much smaller than expected,
with the exponents spanning T ∈ [0.5 Tc, 2.5 Tc] being almost zero. This is further
supported by effective mass fits in the style of Eq. (5.4.4), where for Landau gauge
we now fit the propagator with a function of the form

D(q) = 1
q2 +m(q)2 . (6.3.2)

Figure 6.6 shows the value of m(q)2 as a function of q for several temperatures,
where we can see that for most temperatures (aside from T = 4.54 Tc) the effective
mass is consistent with zero, suggesting that the propagator behaves as D(q) ∼ 1/q2

in the infrared and thus the corresponding DS exponent for the dressing function
Z(q) = q2D(q) should be zero, roughly in agreement with the values reported in
Table 6.2.
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CHAPTER 6. THE LANDAU-GAUGE GLUON PROPAGATOR

Table 6.2: Values for the Dyson-Schwinger exponent, κ, obtained using the linear fit
approach outlined in Eq. (6.3.1) with associated values of the reduced chi-square goodness-
of-fit, χ2

ν .

T/Tc 0.28 0.57 1.01 1.14 2.27 4.54

κ 0.269(55) -0.117(54) 0.002(60) 0.005(60) 0.092(38) 0.370(32)
χ2
ν 6.11 0.3 0.11 0.24 0.05 0.03

Figure 6.6: Yukawa-inspired mass function, m2(q), as a function of q for several values
of T/Tc. Note that the T = 0.28 Tc result can probe a finer set of momenta due to the
increased temporal extent, Nτ , which is why it can be seen more than once in some clusters
of data.
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CHAPTER 6. THE LANDAU-GAUGE GLUON PROPAGATOR

In this chapter we extended our previous work in the Coulomb gauge to include
the temporal direction by fixing to the Landau gauge condition, given in Eq. (5.2.2).
We discussed the necessary modifications to the gauge-fixing procedure to support
anisotropic lattices before motivating power-law fits to the gluon propagator from
studies of the propagator in the Dyson-Schwinger formalism. Overall, we find that
the Landau gauge gluon propagator suffers from an appreciable degradation in signal
as T → 0 due to finite spacing and anisotropy effects. The momentum cutting
procedure employed to control the signal harshly reduces the available statistics,
but the remaining signal exhibits some degree of thermal modification above Tc in
the infrared.
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Chapter 7

Conclusion

The work reported in this thesis may be classified by two research objectives. The
first is to explore the bottomonium spectrum at finite temperature spanning the
expected deconfinement transition and report any temperature dependence (or lack
thereof) for the estimated values of the ground state mass and width.

In Chapter 1 we briefly introduced QCD and discussed how it can be modified
to simulate the non-relativistic dynamics of bottomonia (NRQCD) and how it can
be regularized and discretised using lattice field theory. In Chapter 2 we motivated
bottomonia as a probe for deconfinement, discussed the process of spectral recon-
struction and outlined potential techniques for approaching the inverse problem
contained therein, highlighting the Backus-Gilbert method as an algebraic solution
to the inversion of ill-posed data.

Within the context of the Backus-Gilbert method, we discussed two approaches
differing by the definitions of the widths of the averaging functions (the spread
and least-squares criteria). We compared them in terms of reconstructive power
and computational complexity. We found that the least-squares definition produced
narrower and more localised averaging functions, orders of magnitude faster than
the spread definition, but at the expense of losing the ability to reconstruct the
original correlator and a less-rigorous measure of the resolution width.

We then presented modifications to the Backus-Gilbert method to exploit the
Laplacian nature of the NRQCD kernel function via the introduction of a new free
parameter (the Laplace ‘shift’), which was tested using correlator data correspond-
ing to the ηb, Υ, χb1 and hb bottomonium. Initial results for the ground state mass
and width using smeared quark sources appear promising, but the routine used to
remove dependence on the new free parameter is marred by correlations from poor
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statistics and does not adequately describe systematic effects due to changing the
time-window. It was found that estimates derived from smeared quark sources per-
formed far better than those obtained from local quark source data, which exhibited
a non-trivial dependence on the shift and whitening parameters. Furthermore, the
systematic error caused by the inclusion of predictions with a poor χ2

ν goodness-
of-fit remains unaddressed. Overall, no significant dependence of the value of the
ground state mass on the temperature was found, whilst the ground state width was
found to increase proportionally with temperature. We believe this increase to be
a facet of the time extent used to reconstruct the underlying meson spectrum, and
our estimates for the width cannot be presented as being consistent with the true
underlying state width without a further analysis of the time-window effects.

Our findings suggest that the unshifted form of the Backus-Gilbert method is not
well-suited to spectral reconstruction due to the broad sampling functions which it
generates for the values of Nτ used in current lattice simulations. However, promise
does appear to lie in the Laplace shift transform approach where we have observed
an improvement in the resolution of any ground state features from spectra which
were previously poorly reconstructed in the unshifted approach, such as the χb1. It
would be particularly interesting to see how this approach applies to other methods
which also have a resolution width dependent on the position of the feature within
the sampling window (as is the case with the MEM), especially in the context of the
recent discussion [67–69] on the relationship between the minimum of the sampling
window and the resulting resolution which suggest that there may be a deeper
connection with the Laplace shift transform routine.

We concluded the discussion on the Backus-Gilbert method in Chapter 4, where
we attempted to characterise the relationship between the error induced by the
Laplace shift and the value of the shift parameter. A connection between this
relationship and the signal to noise problem predicted by G. Parisi [79] and G.P.
Lepage [80] was revealed, where we found that the theoretical upper bound on the
Laplace shift is given by the mass of the psuedoscalar meson, regardless of the type
of meson channel used for the spectral reconstruction.

Future research directions for the Backus-Gilbert analysis could include a com-
parative study with the HLT method [60], which is another novel approach to
the Backus-Gilbert method which has become increasingly popular in the finite-
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temperature community during the course of this work. The HLT method differs by
specifying the form of the averaging functions as an input to the method, rather than
having them being reconstructed by the kernel function. The advantage is that it
does not suffer from the same position-dependent resolution problem as the original
Backus-Gilbert approach which the Laplace shift method is based upon. Further
work should be made towards understanding the systematic effects of Backus-Gilbert
methods with respect to the concerns highlighted in Ref. [78] regarding improper
consideration of systematic uncertainty. Comparisons of these two methods could
further elucidate the mechanism by which the averaging functions propagate un-
certainty through to the reconstructed spectrum, which has long been an unknown
problem with Backus-Gilbert [56].

In Chapter 5 we motivated the gluon propagator as a second potential method
of probing the deconfinement transition. Results were presented for the gluon prop-
agator in the Coulomb gauge, where we attempted to infer confinement via the
measurement of an ‘effective gluon mass’ in the infrared region using several tech-
niques. It was discovered that the form of the gluon propagator D(|p|) begins to
exhibit a noticeable thermal modification around T = 3 Tc and above, well beyond
the expected deconfinement temperature. The effective mass was found to be finite
in the limit |p| → 0 below T ∼ 1.5 Tc, consistent with confinement, and became
increasingly large above 1.5 Tc. This postponement in temperature-dependent be-
haviour has been previously observed in two-color lattice studies [14] and studies
into continuum QC2D suggest that this behaviour is due to an emergent chiral-spin
symmetry [102]. The appearance of such behaviour in our work incites interest and
could potentially suggest that an equivalent mechanism may also occur in SU(3)
QCD, but further analysis would be required before such a claim could be reason-
ably made.

We then extended our study of the gluon propagator by introducing Landau
gauge fixing in Chapter 6, where we described the necessary modifications for the
gluon propagator calculation to support gauge fields derived from anisotropic en-
sembles. A method for probing for temperature modification in the infrared was
presented in the form of an exponent fit motivated by studies of the propagator
using the Dyson-Schwinger formalism. We were able to reproduce similar results
for the propagator seen in other studies on the isotropic Landau gauge, but with
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a noticeable increase in noise which we believe are finite spacing artefacts brought
on from the anisotropy. In conclusion, we determined that the Landau gauge gluon
propagator experiences thermal modification above Tc , in contrast with the post-
ponement in thermal effects until T = 3 Tc observed in the Coulomb gauge. Results
obtained for the Dyson-Schwinger exponent were approximately consistent with zero
for T ∈ [0.5 Tc, 2.5 Tc] (in contrast to the value of κ ∼ 0.5 observed in the literature)
but were finite for T = 0.3 Tc, 4.5 Tc. The poor values of χ2

ν goodness-of-fit recorded
and the extreme data cutting required to clean the Landau gauge propagator signal
suggest that the exponent approach requires further analysis. Measurements of the
effective Yukawa mass for the Landau gauge propagator are approximately zero for
T < 1.5 Tc and diverge for T > 2 Tc, suggesting that the gluon propagates like
a massless particle in the confined phase, which is in contention with the results
predicted by the Coulomb gauge.

As mentioned in Chapter 6, the gluon only represents one half of the dynamics
encoded by the gluonic sector of the action – the other being the ghost fields needed
to counteract the Gribov copies in the theory. A potential future research direction
for the gluon propagator analysis would be to extend the work to include studies
of this ghost propagator, which represents the second ‘component’ of the Gribov-
Zwanzinger scenario and is the focus of the Kujo-Ojima confinement scenario. In
this case, one should also perform a concurrent study of the Gribov copy effects in a
manner similar to that performed in Ref. [91] for the SU(2) theory, which attempted
to probe the FMR via a direct calculation of the eigenvalues of the Fadeev-Popov
operator. For both the Coulomb and Landau gauge gluon propagator calculations,
further study should include larger lattices with a greater range of momentum which
are able to more deeply probe the infrared region in an attempt to reconcile the
disagreement observed between our Coulomb and Landau gauge results. The Landau
gauge propagator in particular could benefit from a focused analysis on finite spacing
artefacts in the anisotropic case, along with a study of the effects generated by
the breaking of continuous rotational symmetry into hypercubic symmetry (by the
lattice) and further breaking to cubic symmetry (by the anisotropy).
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Appendix A

Mathematical Appendix

A.1 Deriving the eigenvalues of the Laplace transform

The following is a derivation of the eigenvalues of the Laplace transform, based on
the derivation given in Ref. [44]. Consider a function of the form

G(τ) =
∫ ∞

0
K(τ, ω)ρ(ω). (A.1.1)

The eigenproblem associated with Eq. (A.1.1) is given by

∫ ∞
0

K(τ, ω)φs(ω)dω = λsφs(τ), (A.1.2)

where φs are the eigenfunctions of the system. Let us now assume that the eigen-
functions take the form

φs(ω) = Aω−s +Bωs−1, (A.1.3)

(with A,B, s ∈ C) where the insertion of the above into the original problem
Eq. (A.1.1) yields

Gs(τ) =
∫ ∞

0
K(τ, ω)

[
Aω−s +Bωs−1

]
dω. (A.1.4)

Substituting z = ωτ allows us to express the kernel as a single-variable function
K(z):

Gs(τ) =
∫ ∞

0
K(z)

[
A
(
z

τ

)−s
+B

(
z

τ

)s−1
]
dz

τ
. (A.1.5)
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The integral over K(z) and z is a type of Mellin transform [138], M{·}, which in
the case of a Laplacian kernel K(x) gives the Γ function,

M{K(x)} (s) =
∫ ∞

0
xs−1K(x)dx, (A.1.6)

Γ(s) =
∫ ∞

0
xs−1e−xdx, (A.1.7)

where we demand that Re(s) > 0 for convergence, but further restrict to 0 <

Re(s) < 1, to also ensure the proper convergence of Γ(1 − s). Eq. (A.1.5) in terms
of the continuous label s is given by:

Gs(τ) = AΓ(1− s)τ s−1 +BΓ(s)τ−s, (A.1.8)

where we are free to make a choice of constants A,B:

A =
√

Γ(s), and B = ±
√

Γ(1− s), (A.1.9)

such that Gs(τ) becomes

Gs(τ) = ±
√

Γ(s)Γ(1− s) φs(τ). (A.1.10)

The eigenvectors φs are given by

φ±s (ω) =
√

Γ(s)ω−s ±
√

Γ(1− s)ωs−1, (A.1.11)

and the corresponding eigenvalues are

λ±s = ±
√

Γ(s)Γ(1− s). (A.1.12)

By the Mellin inversion theorem [138], the inverse of Γ(s), defined by

e−x =M−1 {Γ(s)} = 1
2πi

∫ c+i∞

c−i∞
x−sΓ(s)ds, (A.1.13)

converges absolutely for any real value a < c < b provided that Γ(s) is analytic in the
fundamental strip a < Re(s) < b and Γ(s) tends uniformly to zero as Im(s)→ ±∞.
Thus, we are free to consider solutions which lie on the line s = 1

2 + iν, where ν ∈ R,
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which yields

λ±ν = ±
∣∣∣∣Γ(1

2 + iν
)∣∣∣∣ , (A.1.14)

|λ±ν |2 =
∣∣∣∣Γ(1

2 + iν
)∣∣∣∣2 ≡ π

cosh(πν) . (A.1.15)

It is now evident that as the continuous variable ν →∞ the eigenvalues λ±ν become
arbitrarily small, thus making the problem ill-posed.

A.2 Minimisation of the Backus-Gilbert Spread Function

The spread criterion [57] is defined in Eq. (2.5.7) as

W (ω0) = 12
∫ b

a
(ω − ω0)2A(ω, ω0)2dω, (A.2.1)

where the factor of 12 facilitates the geometric interpretation of the width [62]. The
value of W (ω0) calculated from Eq. (A.2.1) represents the box-car estimate of the
resolution (i.e., the error in ω at ω0 is ±W (ω0)/2). The factor of (ω − ω0)2 is the
localisation factor and is often replaced by functions which serve a similar purpose
in the literature.

Minimising Eq. (A.2.1) with respect to the averaging coefficients cτ ,

∂cτ ′W (ω0) = 24
∑
τ

∫ b

a
(ω − ω0)2cτK(τ, ω)K(τ ′, ω)dω = 0, (A.2.2)

reveals the trivial solution cτ (ω0) = 0, ∀τ . Demanding that the minimisation be
subject to the constraint that

∫
A(ω, ω0) = 1 allows us to rewrite Eq. (A.2.1) using

a Lagrange multiplier:

W̃ (ω0, λ) = 12
∫ b

a
(ω − ω0)2A(ω, ω0)2dω + λ

[∫ b

a
A(ω, ω0)dω − 1

]
. (A.2.3)

Minimisation with respect to cτ (ω0) then gives

∂cτ ′W̃ (ω0, λ) = 24
∑
τ

∫ b

a
(ω − ω0)2cτK(τ, ω)K(τ ′, ω)dω + λ

∫ b

a
K(τ ′, ω)dω = 0.

(A.2.4)
Equation (A.2.4) together with the unimodularity constraint may be expressed in

120



APPENDIX A. MATHEMATICAL APPENDIX

matrix form by defining the kernel width matrix, Kττ ′ ,

Kττ ′(ω0) = 12
∫ b

a
(ω − ω0)2K(τ, ω)K(τ ′, ω)dω, (A.2.5)

and the kernel constraint vector, Cτ ,

Cτ =
∫ b

a
K(τ, ω)dω, (A.2.6)

such that we may write Eq. (A.2.4) in the form of a matrix-vector product

2K C

CT 0

 ·
c(ω0)

λ

 =

0

1

 , (A.2.7)

encodes both the width minimsation and the unimodularity constraint of Eq. (A.2.3).
This system of equations can then be directly solved for the Lagrange multiplier λ

λ = − 2
CTK−1C

, (A.2.8)

and the Backus-Gilbert averaging coefficients, given by

cτ (ω0) = K−1C
CTK−1C

. (A.2.9)

The values of cτ (ω0) associated with the spread function result in averaging functions
that are relatively broad with small, smoothly varying side lobes. One drawback
of the spread function is that the width matrix K explicitly depends on ω0 and so
must be regenerated for each point in ω-space which is sampled. This represents an
intense computational burden and is often the cause of the spread function being
overlooked when a high sampling rate is needed. This issue may be remedied by
shifting the localisation dependence to a lower-dimension object (i.e. a vector).

A.3 Tikhonov Matrix Regularisation

Consider some matrix A which acts upon some unknown vector x to give b:

Ax = b. (A.3.1)
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If b is known, we can determine x via a least-squares minimisation of the residuals
r, where

r = ||Ax− b||2 (A.3.2)

which is trivially minimised when x = A−1b. Tikhonov regularization [45] acts to
give preference to a particular estimate x̂ by introducing a regularization term to
the residuals:

rΓ = ||Ax− b||2 + ||Γx||2, (A.3.3)

where Γ is known as a Tikhonov matrix. The regularised estimate, x̂, is then given
by

x̂ = (ATA+ ΓTΓ)−1AT b. (A.3.4)

Consider the case where Γ = α1. Using the singular value decomposition of A,

A = UΣV T , (A.3.5)

we may write Eq. (A.3.4) as

x̂ = (V ΣTUTUΣV T )V ΣTUT b. (A.3.6)

Introducing the Tikhonov matrix, Γ = α1, then yields

x̂ = (V ΣTΣV T + αV V T )−1V ΣTUT b (A.3.7)

= V (ΣTΣ + α2
1)−1V TV ΣTUT b (A.3.8)

= V DUT b, (A.3.9)

where we have defined
D = (ΣTΣ + α2

1)−1ΣT . (A.3.10)

The diagonal elements of D are given by

Dii = σi
σ2
i + α2 . (A.3.11)

The whitening procedure adopted by our approach uses a similar style of whitening
where the Tikhonov matrix is directly applied to the target matrix before inver-
sion, leading to an increase in the inverse singular values in a similar manner to
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Table A.1: Table of matrix contractions corresponding to each current component in the
Fierz identity, for a given ΓM [17].

ΓM

1 γρ γ5 γργ5 σρλ/
√

2

ΓMΓM 1 4 · 1 1 −4 · 1 −6 · 1
ΓMγµΓM γµ −2γµ −γµ −2γµ 0
ΓMγ5ΓM γ5 −4γ5 γ5 −4γ5 −6γ5

ΓMγµγ5ΓM γµγ5 2γµγ5 −γµγ5 2γµγ5 0
ΓMσµνΓM σµν 0 σµν 0 −2σµν

Eq. (A.3.11).

A.4 General Fierz Identities

The Fierz identity [83] allows one to rewrite the bilinears of the product of two
spinors as a linear combination of the products of the bilinears of the individual
spinors. The general decomposition of some bilinear ψχ̄ in the space of Dirac ma-
trices is given by:

ψχ̄ = 1
4

[
(χ̄ψ)1 + (χ̄γµψ)γµ −

1
2(χ̄σµνψ)σµν − (χ̄γµγ5ψ)γµγ5 + (χ̄γ5ψ)γ5

]
. (A.4.1)

From Eq. (A.4.1) one can calculate the scalar contraction of the product of any two
general bilinears by pre and post-multiplying by the relevant gamma matrix-spinor
pairs. Consider some particle M which has the corresponding interpolating matrix
ΓM ∈ [1, γρ, γ5, γργ5, σρλ], then we may write the product of its bilinears as

(ψ̄ΓMψ)(χ̄ΓMχ) = 1
4

[
(χ̄ψ)(ψ̄Γ2

Mχ) + (χ̄γµψ)(ψ̄ΓMγµΓMχ)

− 1
2(χ̄σµνψ)(ψ̄ΓMσµνΓMχ)− (χ̄γµγ5ψ)(ψ̄ΓMγµγ5ΓMχ)

+ (χ̄γ5ψ)(ψ̄ΓMγ5ΓMχ)
]
. (A.4.2)

The gamma matrix algebra in the second factor of each term may be simplified by
using the contractions in Table A.1 for some ΓM . Inserting the relevant factors from
Table 4.2 into Eq. (A.4.2) then produces the correct Fierz coefficients given in Table
4.2.
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A.5 The Fadeev-Popov Procedure

For simplicity, consider the partition function associated with the Yang-Mills La-
grangian, given by

ZYM =
∫
DAµeiSYM[Aµ]. (A.5.1)

Each gauge field, Aµ, is a member of a gauge-orbit comprised of fields equivalent
under a gauge transformation. We can then break the path integral over the fields,
Aµ, into an integral over each gauge orbit using

ZYM =
∫
DΩDAΩ

µ , e
iSYM[AΩ

µ ] (A.5.2)

where AΩ
µ is a singular member of the gauge orbit. Using the fact that the action is

invariant under a gauge transformation, we can rewrite the partition function as

ZYM =
∫
DAΩ

µe
iSYM[AΩ

µ ]
∫
DΩ, (A.5.3)

where we can now see that
∫
DΩ is precisely the factor by which the partition

function is over-counted. Given some gauge condition F [Aµ], Fadeev and Popov
proposed the insertion of the unitary quantity

1 = det
(
δF [AΩ

µ ]
δΩ

)∫
DΩδF [AΩ

µ ], (A.5.4)

into Eq. (A.5.3) such that it becomes

ZYM =
∫
DAΩ

µdet
(
δF [AΩ

µ ]
δΩ

)∫
DΩδF [AΩ

µ ]eiSYM[AΩ
µ ]. (A.5.5)

The partition function ZYM is now given by an integration over physically distinct
fields, where gauge-equivalent fields along the gauge orbit are removed by the δF [AΩ

µ ]
term.

A.6 Deriving the Gauge Functional

It is a long-established [92, 95] fact that the isotropic Coulomb and Landau gauge
conditions may be fixed on the lattice via the maximisation of the gauge functional:

W [A] =
∑
µ

∫
d4xTr[A2

µ]. (A.6.1)
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Consider the application of an infinitesimal gauge transformation, which on the
lattice is represented via

Uµ(x)→ Ω(x)Uµ(x)Ω†(x+ µ), (A.6.2)

where Ω(x) = eiεH(x), with ε small and H(x) traceless and Hermitian. Under
Eq. (A.6.2) the Aµ fields transform as

Aµ(x)→ Aµ(x) + ε (i[H(x), Aµ(x)]− ∂µH(x)) , (A.6.3)

correct to O(ε2). Inserting the above into the gauge functional Eq. (A.6.1) yields

W [A]→
∑
µ

∫
d4xTr

[
A2
µ + 2iεAµ[H,Aµ]− 2εAµ∂µH

]
+O(ε2) (A.6.4)

→ W [A]− 2ε
∑
µ

∫
d4xTr [Aµ∂µH] +O(ε2), (A.6.5)

where we have used Tr[A+B] = Tr[A] +Tr[B] in Eq. (A.6.4) to separate each term
in Aµ and have used periodicity of the trace to remove the commutator. Integrating
Eq. (A.6.5) by-parts allows us to write

W [A]→ W [A]− 2ε
∑
µ

(
[AH]∞−∞ −

∫
d4xTr[(∂µAµ)H]

)
+Oε2 (A.6.6)

→ W [A] + 2ε
∑
µ

∫
d4xTr[(∂µAµ)H] +O(ε2) (A.6.7)

where we have explicitly assumed that H(x) vanishes in the limit x → ∞. If the
transform in Eq. (A.6.2) maximises the functional W [A], then we must have

∑
µ

∫
d4xTr[(∂µAµ)H] = 0. (A.6.8)

Since the above is valid for any arbitrary (traceless Hermitian) choice of H(x), we
may set H(x) = 1 and thus we find that Eq. (A.6.1) corresponds to a minimisation
of the Landau gauge condition,

∂µAµ = 0, (A.6.9)

across the lattice. We note that the above prescription holds for the Coulomb gauge
condition ∂iAi = 0 via the simple modification µ = {1, 2, 3, 4} → i = {1, 2, 3}.
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Technical Appendix

B.1 Goodness-of-Fit Determination

In our analysis we make use of the reduced chi-square statistic as a means of deter-
mining the goodness-of-fit associated with a particular fitting routine. The reduced
chi-square statistic is defined as

χ2
ν = χ2

ν
, (B.1.1)

with ν the number of degrees of freedom for the model and χ2 the weighted sum of
squared deviations, given by

χ2 =
∑
i

(yobsi − yfiti )2

σ2
i

, (B.1.2)

where yobsi and yfiti are the observed and modelled data values respectively, and σi
the standard deviation of the observed data. In the case where there is appreciable
correlation between observations, we use the correlated chi-square statistic defined
by

χ2
ν = rTWr

ν
, (B.1.3)

where ri = (yobsi − yfiti ) and W is the weight matrix, equal to the inverse of the
covariance matrix of yobs.

Generally, χ2
ν � 1 signals a poor fit of the model to the underlying data, whereas

χ2
ν < 1 signals overfitting or potential overestimation of the error of the observations.

Fits with χ2
ν ∼ 1 are considered a fair fit to the underlying data and its error[111].

B.2 Operation Counting for the Backus-Gilbert Method

The least-squares criterion only requires a single matrix inversion to calculate a
complete set of coefficients cτ , whereas the spread criterion requires Nω inversions
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where Nω is the number of sampling points ω0. To perform the inverse, the singular
value decomposition (SVD) is first calculated at a cost of O(N3) operations.

Figure B.1 compares the time required to calculate one complete set of Nω ×Nτ

coefficients for both the least-squares (Eq. (2.5.8)) and spread (Eq. (2.5.7)) criteria.
The ratio of the two curves approaches the value of Nω as Nτ →∞.

Figure B.1: Comparison of time to calculate Nω ×Nτ = 500Nτ coefficients for the least-
squares versus spread criteria. The horizontal lines represent some example times for
reference.

B.3 Use of open-source libraries

This work makes use of several open-source libraries. Along with the standard
Python libraries which are commonplace in numerical analysis (numpy, pandas, and
matplotlib) we also use several external libraries, details of which we shall outline
below.

The code created to generate the Backus-Gilbert coefficients depends largely on
two open-source software libraries: GNU MP and MPFR, and ZKCM [144]. GNU
MP (Multi-Precision) and MPFR (Multi-Precision Floating Reliable) are C libraries
which allow the user to reliably define arbitrary precision variables when needing
to calculate quantities beyond the maximum allowed by the compiler1. ZKCM
(Komplexezahl Complex Multiprecision) is a C++ extension of the GNU MP and
MPFR libraries designed for complex matrix calculations and is used to accurately
perform the singular-value decomposition of the kernel weight matrices.

For both the Backus-Gilbert and gluon propagator codes, we make use of the
gvar Python package [135] for the propagation of statistical errors and correla-

1For C, this is typically double precision (64-bit) but most modern compilers also support long double
as quadruple precision (128-bit) floating point.
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tion through complex functions. GVar assumes that the data represents Gaussian-
random variables, which is valid under the assumptions of the central limit theorem.

The gauge fixing algorithm we have used for the calculation of the gluon propa-
gator in both the Coulomb and Landau gauges was created by J. Marques [96] for
use with the Fastsum Gen-2 ensembles, and was adapted in a minor way to sup-
port the Gen-2L ensembles in this work. The ensembles themselves are manipulated
using the lyncs.io package[110] which enables the I/O of OpenQCD gauge field
data directly in Python.
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