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Abstract

An apparent contradiction exists between the wave nature of quantum mechanics

allowing for superposition of states, and the observations of classical mechanics.

Several possible solutions for this discrepancy have been suggested including the

proposal that quantum and classical dynamics are simply approximations to a

universal dynamics. Collapse models modify the usual Schrödinger equation that

provides this universal dynamics and can be tested experimentally. In this thesis,

we conceive of a Talbot matter-wave interferometer to probe the superposition

of high-mass nanoparticles. We extend existing descriptions beyond the point-

like regime allowing us to test collapse models with masses up to 109u. During

this development, we discover and correct an error in calculating the Talbot

coefficients for a laser grating in the Mie regime. A Bayesian analysis is performed

on simulated data making greater use of each recorded arrival position of the

nanoparticle and provide a real-valued probability density to the parameter space

as opposed to the binary exclusion plots of previous works. We find a limit to the

size of spherical particles that can be used as a result of the grating transformation

being averaged over the particle. As a result, during a collaboration with the

Geraci group at Northwestern University, we develop a numerical method for

finding where arbitrarily shaped particles scatter information about their position

and use these techniques to derive the Talbot coefficients for arbitrary particle

geometries.
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Chapter 1

Introduction

Quantum mechanics stands as a remarkably successful theory for describing the

behaviour of microscopic systems. It can successfully predict various phenomena

such as blackbody radiation [1], atom interferometry [2], semi-conductors [3],

the properties of lasers [4], among many others. Quantum theory also appears

to hold for ever larger systems being shown to hold for systems with masses

of over 25, 000u, or 4.2 × 10−23kg in interferometry experiments [5]. This is

in stark contrast, however, to macroscopic observations that apparently do not

obey quantum mechanics. For example, the famous Schrödinger’s cat thought

experiment shows this disparity between a quantum world, which can exist in

superposition, and the classical world that does not obey superposition. How

the quantum dynamics of superpositions gives way to the probabilistic outcomes

via the Born rule when measured remains unsolved. This is the heart of the

measurement problem.

There exist a number of proposed solutions to this measurement problem,

from the Copenhagen interpretation [6], which is sometimes described as “Shut

up and calculate!”, to more exotic ideas such as the Many-Worlds interpreta-

tion by Hugh Everett [7]. A possible set of solutions are modifications to the

Schrödinger equation known as collapse models which provide a clear mathe-

matical framework that can be tested empirically, unlike the Copenhagen and

Many-Worlds interpretations. These add a stochastic term to the Schrödinger

equation that drives large scale systems into a single state with probabilities

1



Chapter 1 – Introduction

matching the Born rule. Collapse models are distinct from more traditional de-

coherence mechanisms. Decoherence is an effect caused by the quantum system

coupling to the environment and destroys the interference between states leaving

a statistical mixture of states. Collapse models on the other hand, affect even

perfectly isolated systems by providing a noise field throughout space that couples

to all quantum systems, and drives the system into a statistical mixture matching

the Born rule. All collapse models also share an amplification mechanism. This

is needed so that microscopic systems are able to maintain their coherence for

indefinitely long periods of time, while larger, macroscopic systems, decay suffi-

ciently quickly to prevent macroscopic superpositions on large, human, scales [8].

The parameters defining these models must be determined empirically. This can

be achieved in two ways, either by measuring a predicted anomalous heating (or

absence thereof) from the collapse noise, or by directly probing the superposition

of large masses via matter-wave interferometry. The latter requires considerable

effort to overcome various hurdles. This includes mitigating the effects of tradi-

tional decoherence sources which become a greater challenge to deal with as the

system size increases especially for interferometric experiments [9].

Previous macromolecule experiments work with beams of these molecules and

record the number of counts in a given time frame, effectively producing a his-

togram over the measurement space [5, 10]. In order to ensure the coherence for

larger particles, proposed large mass interferometry experiments use a single par-

ticle source with repeated measurements [11]. This procedure leads to a sparse

data set to which we apply Bayes’ rule to make better use of the data. By apply-

ing Bayes’ theorem [12] to the results of simulated interferometry experiments, we

can tune the parameters of an experiment to maximise the effect of a real-world

experiment. We have the option of maximising the information gained in such

an experiment [13], or by maximising the number of parameters of the collapse

model we are able to rule out.

We can use optomechanical techniques to prepare large scale particles as a

coherent source of matter-waves, and to induce the interference effect through

a Talbot interferometer. These optomechanical systems are based in the use

of radiation pressure of light. The use of radiation pressure of light has been

Chapter 1 Shaun J. Laing 2



Chapter 1 – Introduction

demonstrated to affect mechanical motion for many years, from Kepler noticing

that the tails of comets always point away from the sun [14]. Radiation pressure

was confirmed in the lab in 1901 by Nichols and Hull [15]. After the invention of

the laser Arthur Ashkin was able to demonstrate the ability of light to control the

mechanical motion of small dielectric spheres [16] in 1970. These early ‘optical-

tweezers’ used the radiation pressure force from the momentum of light to push

the sphere up, while using the force of gravity to pull the object back down to

Earth. Later work by Ashkin realises that the dielectric sphere is attracted to the

center of a Gaussian beam where the intensity is highest. By tightly focusing the

beam, a 3D potential well can be created by the gradient force allowing the sphere

to be trapped in a horizontally propagating beam. Begining as optical tweezers

used to manipulate biological samples [17], the field of levitated optomechanics

has found a number of uses such as highly sensitive force probes [18]. More

recent work, focused on cooling the motion of optically trapped nanoparticles to

the ground state [19, 20] has opened the door for macroscopic tests of quantum

mechanics. This has allowed researchers to explore various physical principles

from attempting to witness quantum gravity [21] to testing the boundaries of

quantum theory in the mesoscopic regime [10].

The rest of this thesis will be structured as follows. We start in Chapter 2

by introducing the idea of levitated optomechanics focusing on methods of trap-

ping particles and cooling their motion. This chapter mainly focuses on spherical

particles as the interferometry experiment we will discuss uses spherical particles.

However, we are also interested in extending our theory to particles with arbitrary

geometry. As a result of this, the final section of Chapter 2 will focus in trapping

particles with different geometries. In Chapter 3 we introduce the important

concepts of quantum mechanics that will form the backbone of our theoretical

discussion. We start by introducing the density operator and applying this to

the Wigner function, we then introduce a theoretical description of decoherence

that will be necessary to accurately predict the outcome of an interferometry

experiment. Chapter 4 introduces the idea of collapse models giving the theory

of a handful and fully introducing the continuous spontaneous localisation (CSL)

model that will be the main theory explored in the interferometry simulations.

Chapter 1 Shaun J. Laing 3



Chapter 1 – Introduction

With this background theory in place, Chapter 5 will put this all together and

produce the theory for a matter-wave interferometer for particles with radii in

the Mie regime that can test any collapse model that manifests as a source of

decoherence. Bayes theorem is introduced in Chapter 6. This is then used to

analyse the results of our simulations and make predictions regarding the prob-

ability that regions of the CSL parameter space that a given experiment, with

given control parameters, could be ruled out. Finally, in Chapter 7 we consider

the radiation of information for trapped particles. Our discussions start by re-

producing the known results for spherical particles and then applies numerical

methods to find the information radiation pattern for hexagonal plates. This

then informs an approach to finding the scattering decoherence for a particle in

a standing wave phase grating, such that our simulated interferometer can be

applied to any particle geometry.

Chapter 1 Shaun J. Laing 4



Chapter 2

Levitated Optomechanics

From set-ups such as LIGO that used a laser interferometer to measure the change

in path length as a result of gravitational waves [22], to levitating and manipu-

lating the motion of small particles in devices often refereed to as ‘optical tweez-

ers’ [16], optomechanics has proven to be a useful method of measuring and

manipulating mechanical motion. The earliest optical tweezers took advantage of

the scattering force of laser light via radiation pressure. In 1970 Arthur Ashkin

demonstrated the use of radiation pressure to accelerate and trap micron-sized

dielectric particles in liquids and gasses [16]. By illuminating a single particle

with a laser, it can be observed that the particle is accelerated along the direc-

tion of the laser’s propagation, and, if the laser is focused, the particle will be

drawn into the beam centre. In Ashkin’s experiments, the particle was kept in a

glass cell, and when it reached the edge of the cell, it remained trapped in the

laser until it was turned off, at which point the particle begin to drift under the

effects of Brownian motion.

2.1 Trapping Forces

In order to describe the trapping potential of a laser trap, we must understand

the forces acting on the particle. The forces acting on the particle depend on its

size relative to the wavelength of the incident laser light. It is often convenient

to use the dimensionless size parameter kR, where k = 2π/λ is the wave-number

5



Chapter 2 – Levitated Optomechanics

of the incident light and R is the radius of the spherical particle. This gives

rise to three regimes with different methods of finding the forces acting on the

particle. For particles with a size parameter of kR . 1 we can treat the particle

as a point-like dipole. This is the Rayleigh regime. For particles in the range

1 . kR . 100 we are in the Mie (sometimes known as the Mie-Lorentz) regime.

And for particles with a size parameter kR > 100 we are in the geometric optics

regime [23].

2.1.1 Rayleigh Sized Particles

In 1986 Ashkin, along with Dziedzic, Bjorkholm, and Chu, developed the first

single laser trap that could trap the particle in three dimensions [24]. Before this

point, traps only worked to attract particles to the beam axis, other forces were

needed to keep the particle in the same location such as gravity or the radiation

pressure of a second laser [16]. The new trapping scheme proposed by Ashkin et

al. is based on the use of the gradient force. The gradient force is a consequence

of the radiation pressure and points in the direction of positive gradient of light

intensity. This is in contrast to the scattering force that is induced by photons

scattering from the particle and always points in the direction of propagation of

the laser.

In the Rayleigh regime, where the radius of the particle is much smaller than

the wavelength of the incident light R� λ, the scattering force is given by [25]

Fscat(rrr) =
128π5R6

3cλ4

(
m2 − 1

m2 + 2

)2

nmedI(rrr) (2.1.1)

where I(rrr) is the intensity of the laser at the point rrr, nmed is the refractive index

of the medium, m = nobj/nmed is the refractive index of the particle relative to

that of the medium. The gradient force is also given by,

Fgrad(rrr, t) = 4πn2
medε0R

3

(
m2 − 1

m2 + 2

)2 ∇E2(rrr, t)

2
. (2.1.2)

The time average of Eq. (2.1.2) is given as,

Fgrad(rrr) = 〈Fgrad(rrr, t)〉

=
2πn2

medε0R
3

c

(
m2 − 1

m2 + 2

)2

∇I(rrr).
(2.1.3)
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2.1.2 Mie Sized Particles

Figure 2.1: The force acting on the object B as a result of the incident field is

related to the electric and magnetic fields on some surface V surrounding the

object.

For spherical particles with radii comparable to the wavelength of the trapping

laser we must consider the shape of the particle more closely. Different shapes

will have different solutions for the forces acting on the particle. For various

shapes, such as spheres, spheroids,and infinite cylinders, we can use the Mie

equation, based on spherical harmonics, to describe the scattering of light from

the particles [26–28].

We must turn to the Maxwell stress tensor
←→
T to find the force acting on a

particle. The elements of the Maxwell stress tensor are given by [23,29],

Ti,j =

[
ε0εEiEj − µ0µHiHj −

1

2
(ε0ε|E|2+µ0µ|H|2)δi,j

]
(2.1.4)

where Ei and Hi are the i ∈ (x, y, z) component of the electric and magnetic fields

respectively. Under the assumption that the particle is rigid, and by integrating

the time averaged stress tensor over the area of our object, we find the time

averaged force to be,

〈FFF 〉 =

∫
V

〈
←→
TTT (rrr, t)〉 · nnn(rrr)da (2.1.5)
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Figure 2.2: A dielectric sphere with large radius compared to the trapping wave-

length levitated in a Gaussian beam located outside the central bright spot. The

light rays a and b are shown along with the forces that oppose the change in

momentum as each light ray is refracted.

where nnn(rrr) is the unit vector of the closed surface V at the point rrr, and da is the

area element. The force on an object B due to scattering of an electromagnetic

field is shown in Fig. 2.1.

2.1.3 Large Particles

For spheres of large radius compared to the wavelength, the forces acting on the

particle are a result of the change in momentum of the light as it passes through

the particle. The light rays are refracted as they enter and exit the particle.

This causes a shift in the light ray’s momentum. Considering light rays a and

b that enter the particle at equal distance from its centre as seen in Fig. 2.2,

we can explore how the particle’s location in a Gaussian beam affects the forces

acting on it. As the light ray a leaves the particle, it is propagating in a different

direction to when it entered. This leads to a shift on the light’s momentum. The

conservation of momentum gives rise to a force opposing this momentum shift

Fa. When on the beam axis, the particle refracted light rays a and b have the

same intensity. This means that the forces opposing the change in momentum

are equal and opposite in their components orthogonal to the direction of the
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Figure 2.3: A particle trapped in a focused Gaussian beam. Here the particle is

located beyond the focal point. This creates a force pulling it back to the focal

point.

beam prorogation. These beams also undergo Fresnel reflection as they enter

and exit the particle transferring some momentum to the particle. This causes a

scattering force Fscat acting in the direction of laser propagation. However, when

the particle is off-axis, as shown in Fig. 2.2, one of the light rays a has a higher

intensity leading to a greater momentum shift in one direction. As a result, as

net force occurs pulling the particle back to the beam axis [16, 30].

By focusing the laser beam, we can also attract the particle to the beam waist

as is seen in Fig. 2.3. When the particle is moved away from the focal point,

the component of the momentum of the light rays in the direction of the beam

propagation, reduces. This causes a force to act on the particle to restore that

momentum.
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2.2 Trapping Configurations

Since Ashkin first demonstrated it was possible to trap small micron sized spheres

in a laser beam, a number of different configurations have been proposed to trap

these particles. The first traps used only the scattering force to trap particles.

This force attracted the particle towards the centre of the beam and pushed

it in the direction of the laser propagation. Another force was needed to keep

the particle from moving in this direction. Initial experiments took place in a

glass cell where the wall of the cell would prevent the continued motion of the

particle [16].

Later, the force of gravity could be used to restrict the motion of the particle.

A particle can be illuminated by a vertically propagating Gaussian beam above

the laser’s focal point. The particle will feel the upwards directed scattering force

Fscatt and the downwards pointing gravitational force Fgrav. Close to the focal

point, where the laser intensity is large, the particle will feel a net upwards force

Fscatt > Fgrav. However, above the point where the laser has diverged enough, the

intensity leads to a scattering force less that the gravitational force Fscatt < Fgrav.

Thus, the net force on the particle is directed downwards. At the point where

the forces are balanced Fscatt = Fgrav, the particle will hover in place [30].

2.2.1 Optical Tweezers

By using a tightly focused Gaussian laser beam, it is possible to create a single-

beam gradient optical trap, often referred to as an optical tweezer. As long as

the particle stays within a distance smaller than the beam waist of the focal

point, it will feel a harmonic potential centred on the focal point of the laser [31].

This potential is created by the forces discussed in section 2.1. In the Rayleigh

regime, this potential is a result of the gradient force Eq. (2.1.2) towards the focal

point being larger than the scattering force Eq. (2.1.1) in the direction of beam

propagation.

For particles in the geometric optics regime, where kR > 100, a similar ar-

gument about momentum conservation can be used. As the particle moves away

from the focal point, the exiting light rays are refracted away from each other
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Figure 2.4: The optical potential created by a single focused Gaussian beam trap.

A spherical particle with mass m oscillates about the trap centre with a frequency

Ωµ where µ ∈ (x, y, z).

changing the momentum. This induces a force on the particle moving it to con-

serve the total momentum of the system. When the particle has returned to the

focal point of the trap, the forces balance out [32].

The potential energy felt by a point-like particle with a dipole moment PPP in

a slowly varying optical field is given by [33],

U(rrr) = −PPP ·EEE(rrr) (2.2.1)

where the dipole moment is given by

PPP = αEEE(rrr). (2.2.2)

From here, we find the optical force to be

FFF = ∇U. (2.2.3)

In general, electro-magnetic waves osculate rapidly, we take the time average of

the force,

〈FFF 〉 = ∇〈U〉 (2.2.4)

By describing the trap as acting like a Hookeian spring with an optical force

in one dimension of,

Fopt = −kx∆x (2.2.5)
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where ∆x is the displacement of the particle from the trap centre and kx is the

trap stiffness in analogy with the spring constant from Hooke’s law. This leads

to a Harmonic trapping potential of the form,

U(x) =
1

2
kx∆x

2. (2.2.6)

The depth of this potential, known as the trap depth, is often given in units

of the thermal energy kBTCoM where kB is the Boltzmann constant and TCoM is

the centre of mass temperature of the particle’s motion [31]. The trap depth is

the amount of energy needed for the particle to escape the trap and is found

via U(∞) − U(0) where we must consider the fact that for large displacement,

the trap cannot be considered Hookien, and we must use the time average of

Eq.(2.2.1).

In order to calibrate the optical tweezers we must determine the trap stiffness

kx. If we have enough information about the properties of the trapping laser

and the trapped particle, we can determine the trap stiffness. However, the

interaction between the laser and the particle is dependent on many parameters

that are difficult to determine. There are a number of alternate methods to

achieve this. Perhaps the most simple method is to make use of the equipartition

theorem.

In a trap that acts as a harmonic potential, as described in Eq. (2.2.6), we

find the thermal average of the potential is [31],

〈U(x)〉 =
kx
2
〈∆x2〉 =

kx
2

∫ ∞
−∞

p(x)∆x2dx =
kBT

2
. (2.2.7)

Some simple algebra then reveals that the trap stiffness is

kx =
kBT

〈∆x2〉
. (2.2.8)

We can estimate the average 〈∆x2〉 by recording the trajectory of the particle

over some sufficiently long time period ∆t � τot,x where τot,x is the relaxation

time of the trap and take the sample variance

〈∆x2〉 ≈ 1

L

L∑
l=1

(xl − x0)2 (2.2.9)
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where x0 is the mean position of the particle (this should be the trap centre), and

xl is the particle location at the l-th time step.

By following the method given in [31, 34], we can calibrate the trap via the

power spectral density. This is one of the most reliable methods of trap calibra-

tion. Considering a spherical particle with radius R immersed in a fluid with a

viscosity η at some temperature T . Stokes’ law gives the friction coefficient as,

γ = 6πηR (2.2.10)

and the Einstein-Smoluchowski relation gives the diffusion constant as,

D =
kBT

γ
(2.2.11)

where kB is Boltzmann’s constant. The trapped particle follows the same motion

as an over-damped Brownian particle, and according to the Einstien-Ornsein-

Uhlenbeck theory, this motion is found by solving the following Langevin equa-

tion,
dx

dt
=
F (x)

γ
+
√

2DW (t) (2.2.12)

where F (x) is the optical trapping force and W (t) is a white noise term with the

properties

〈W (t)〉 = 0; 〈W (t)W (t′)〉 = δ(t− t′). (2.2.13)

.

In a harmonic potential, the force is given by F (x) = −kxδx. Using this

and Eq. (2.2.12) and by taking the Fourier transform, we find the power spectral

density which has a Lorentzian form and is the expected value of the average

energy in the frequency domain,

P (f) = 〈|x̃(f)|2〉 =
D

2π2(f 2
c + f 2)

(2.2.14)

where fc = kx/(2πγ) is the corner frequency, and x̃(f) is the Fourier transform of

the time dependent position function. After empirically determining the power

spectral density, the parameters fc and D can be found via a least-square fitting

method. From these, the values of kx and γ can be estimated.
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2.2.2 Cavity Optomechanics

It is possible to trap a nano-particle in the optical mode of a Fabry-Perot cavity.

By using a second mode we can also cool the motion of sub-wavelength particles to

the ground state from room temperature [19]. The cavity is made of two mirrors

separated by a distance L. This leads to a number of allowed cavity modes with

angular frequencies,

ωm = mπ
c

L
(2.2.15)

where m is the mode number. The distance between two of these resonant modes

is the free spectral range given by,

∆ωFSR = πc/L (2.2.16)

We can then introduce the quality factor of the cavity Qopt = ωcavτ , where the

photon life time is τ = κ−1. The cavity decay rate κ = κex + κ0 is made up of

the loss rate at the input mirror κex and the loss rate for the various phenomena

in the cavity κ0. The use of a cavity to trap a particle can induce cooling of the

particle motion. This will be discussed further in Section 2.3.4.

2.2.3 Optical Lattices

Optical lattice traps, sometimes called interferometric traps, make use of the

interference effect of light to trap multiple particles. The simplest optical lat-

tice is created by two counter propagating beams generating a standing wave.

This leads to repeating regions of high and low intensity where particles can be

trapped as shown in Fig. 2.5. It is also possible to trap more than one par-

ticle by taking advantage of the multiple trapping sites present in this set-up.

By introducing a third beam, it is also possible to create hexagonal “bee-hive”

like structures [35]. In principal, it is also possible to form all fourteen Bravis

lattice shapes by using no more than four beams [36] and all two-dimensional

shapes have been experimentally demonstrated [37]. The Bravis lattice shapes

beyond the counter propagating beams have not had much application in the

optomechanics community, but have seen considerable use in cold atoms.
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Figure 2.5: Intensity two counter propagating x polarised beams propagating in

the z axis. Each beam has a waist of 2µm and wavelength 1550nm. The intensity

profile is proportional to |EEE(x, z)|2 and is given in units of the maximum intensity

I0.

2.3 Cooling of Particle Motion

A powerful property of optically levitated systems is their decoupling from the

environment. This allows us to perform experiments to test quantum mechanics

on small particles whilst minimising the effects of environmental decoherence.

However, the motion of the particle in the trap still provides some issues prevent-

ing us from using the particle as a coherent source. Therefore, it is advantageous

to cool the motion of the particle. In our interferometry experiments discussed in

Chapter 5, cooling the particle’s motion will be necessary in creating a sufficiently

coherent single particle source for our matter-wave. We discuss here a number of

methods used for cooling the motion of the particle.

2.3.1 Scattering Force Based Cooling

One method of cooling the motion of trapped nano-particles involves the scatter-

ing force. As the particle moves in the trap, the trapping beam is deflected. This

deflection can be measured and used to track the motion of the particle. We can

also plot the power spectrum of the particle’s motion in each axis µ ∈ (x, y, z)
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Figure 2.6: The set-up used in [38]. A nano sphere is trapped at the focus of

a counter-propagating trap with its motion cooled by three cooling lasers, each

propagating in one of the axial directions.

which follows the function,

Sµ(Ω) =
2kBTenv

m

Γ0

(ω2
µ − Ω2)2 + Ω2Γ2

0

(2.3.1)

where Ω/2π is the observation frequency, Γ0 is the damping due to residual gas,

and ωµ is the resonant frequency of the particle in each axis µ ∈ (x, y, z). The

position of the particle is tracked and its velocity calculated for each direction.

A time varying feedback signal for each axis is then generated proportional to

the velocity in that axis plus some offset. This feedback signal is applied to

an acousto-optic modulator that modulates the amplitude of the cooling laser

directed in the µ axis. The cooling laser then applies a scattering force that

opposes the particle motion. This was implemented in a standing wave trap of

counter-propagating, orthogonally polarised beams in [38] in the set-up shown in

Fig. 2.6.

2.3.2 Parametric Feedback Cooling

First demonstrated in 2012 by Gieseler [39], parametric feedback cooling is able

to cool the motion of all translational degrees of freedom using a single laser beam

that is also used for trapping. In essence, feedback cooling works by increasing the
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Figure 2.7: The centre of mass motion in each axis µ is measured by an interfero-

metric signal incident on a detector to measure a given axis of motion. This signal

is then doubled in frequency and phase shifted. The final modulation signal S(Ω)

is the sum of these three signals [39].

trap stiffness kµ as the particle moves away from the centre of the trap hindering

it’s motion. Then, as the particle moves towards the centre again, the trap

stiffness is reduced to avoid increasing the particle’s velocity too much. Unlike

in other feedback methods based on the radiation pressure, which only works in

the direction of laser propagation [40], this scheme is based on the gradient force

which works in all directions. This removes the need for extra lasers to achieve

cooling in each desired direction.

In order to achieve the feedback cooling, we measure the location of the par-

ticle to produce a signal of the particle’s motion for each axis. The frequency of

these signals is doubled and phase shifted to find the modulation signal for the

trap stiffness. Because the frequencies of each axis of motion are not degenerate,

there is no cross-coupling between the signals. Therefore, the signal that drives

the trap stiffness modulation is simply the sum of the three calculated signals.

Because the trap stiffness is directly proportional to the power of the trapping

laser, the modulation signal is sent to any device that can adjust the laser power,

often this is an electro-optic modulator.

The lowest possible centre of mass temperature TCoM is limited by the shot

noise uncertainty in measuring the particle’s position in each axis. We can reduce

the uncertainty by increasing the signal power at the detector either by increasing

the laser power or the particle radius. Both options, however, lead to an increase

in the scattering which introduces recoil heating. A trade-off is needed between
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Figure 2.8: Circuit diagram for feedback cooling the motion of a trapped charged

particle. A feedback voltage Ufb is applied to the particle by amplifying the

voltage signal generated by the particle motion U . This introduces a voltage

noise νfb.

the uncertainty in measured position and the recoil heating to reach the lowest

possible temperatures. By optimising the detection scheme, it is possible to use

feedback cooling to reach the ground state [41]. Optimal detection is discussed

in Chapter 7.

2.3.3 Electromechanical Cooling

If the trapped particle has some charge q, it is possible from [42] to use an RLC

circuit to cool the motion of the particle. This has the benefit of avoiding the

internal heating of the particle through absorption of laser photons. Fig. 2.8 shows

the diagram of the electro cooling set-up. A spherical particle with mass m is

trapped in a potential V (z) with trapping frequency ωz. The work by Goldwater

et al. assumes that the particle is levitated in a Paul trap, but an optical trap

could also be used as demonstrated in [43]. The particle is trapped between two

plates separated by a distance d and with a capacitance C, connected in series

with a resistor R and inductor L. We can derive the equations of motion of the
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particle as,

dz

dt
=

p

m
(2.3.2a)

dp

dt
= − ∂

∂z
V (z)− ΓLq2

md2
p (2.3.2b)

where the damping rate is Γ = R/L. From Eq. (2.3.2b) which we find the

adiabatic damping rate

γad =
ΓLq2

md2
. (2.3.3)

If the circuit is on resonance with the particle motion ωLC = ωz where ωLC =

1/
√
LC, the particle motion cancels the inductance boosting the damping rate.

This resonance damping rate is given by

γres =
(qη
d

)2 Reff

m
(2.3.4)

where the effective resistance is Reff = ωzLQf when connected in parallel, with

quality factor Qf = ωz/Γ, and η is a geometric factor.

By detecting the particle motion via the voltage across the plates U , we can

apply a feedback signal to further cool the motion of the particle. By passing the

signal to an amplifier with a gain G, we can apply a voltage to the particle,

Ufb = (1−G)U (2.3.5)

where we ensue a suitable phase shift betweenGU and U to achieve cooling. Ther-

mal fluctuations will lead to an added noise in the amplifier based on the band-

width B = ∆ω/(2π) where ∆ω is the interval in the noise frequency modes [44].

The voltage noise added by the amplifier

νfb =
√

4kBT nfbRampB (2.3.6)

where T nfb is the noise temperature, Ramp is the resistance of the amplifier, and B

is its bandwidth. From this, and the uncorrelated voltage noise νR, we can find

the total noise,

νtotal =
√

(1−G)2ν2
R +G2ν2

fb (2.3.7)

and the equilibrium center of mass temperature is

TCoM = (1−G)TR +
G2

1−G
T nfb (2.3.8)
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where TR is the temperature of the circuit. By using state-of-the-art amplifiers

with a noise temperature below 20µK and circuit temperatures TR = 5mK, it

is possible to cool the center of mass temperature below 100µK reaching the

motional ground state.

2.3.3.1 Control of Particle Charge

In order to control the motion of the particle via its charge, we must be able to

control the charge on the particle. To maximise the amount of control we have

over the particles, we need to ensure a high charge on the particle. We can charge

the particle in numerous ways.

We can apply a charge to the particle by using an ion beam. In this case, the

maximum charge on the particle is achieved when the net current on the particle

is 0 [45]. We can also make use of an electron beam to apply a negative charge

to the particle. In this case, the charging rate is given by the sum of currents

incident on the particle. This includes the current of the beam itself, the current

produced by electrons and ions from residual gas molecules, the thermal electron

emission current, and any other possible current sources [46].

By applying a high voltage to a conductor in a fluid, such as air, a current

will flow ionising the fluid as it does in a process known as corona discharge. This

produces ions that bombard the particle charging it. The saturation charge that

can be applied to a spherical particle of radius R in a mono-ionized electric field

was calculated for dielectric particles by Pauthenier and Moreau-Hanot as [47],

qmax = 4πε0R
2E0

3εr
εr + 2

(2.3.9)

where E0 is the magnitude of the electric field. From Eq. (2.3.9), we can find an

equation for the rate at which the particle will be charged,

q(t) = qmax
1

1 + τc/t
(2.3.10)

where t is the time and τ is the charging time constant given by,

τc =
4ε0
ρb

(2.3.11)

where ρ is the space-charge density, and b is the mobility of ions [48].
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Figure 2.9: Oscillation amplitudes of a particle from a quadrature detector. The

oscillations are driven by a 10V voltage. The high-voltage source is activated

at t = 0 in the top panel. The amplitude of the oscillations changes in integer

multiples as the charge on the particle changes. In the bottom panel, the high-

voltage source is switched off at t = 0 and we see the amplitude of the particle’s

motion has stabilised.

This can, in principal, be applied to an optically levitated system by feeding a

7kV potential into the chamber by use of a bare wire. This ionises gas molecules

close to the particle charging it. The charge on the particle will make random

jumps in integer units of the elementary charge while the voltage is applied, and

then will maintain the charge indefinitely while the potential is switched off as

shown in Fig. 2.9 [49].

By illuminating a nearby metal with UV light we are able to increase the

negative charge on a particle. This works because the UV photons will have

sufficient energy to knock electrons from the surface of the metal such that they

fall onto a nearby levitated nano-particle. This was used in [50] to fully neutralise

the positive charge on a trapped particle. In that work a diamagnetic particle was

trapped in a hybrid magneto-gravitational trap constructed of four pole pieces

made of a ferromagnetic material. Much of the charge on the particle was adjusted

by exposing it to an ionizing radiation source until no motion of the particle in

an oscillating electric potential is detected. Finally, the nearby pole pieces were
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illuminated with UV light that knocked electrons on to the particle.

2.3.4 Cavity Cooling

The main principle of cooling particle motion is to increase the trap stiffness

as the particle moves away from the centre, and to decrease it as the particle

moves towards the centre. This is achieved in feedback cooling by modulating

the laser power with twice the frequency of the particle oscillation. By setting up

a high-finesse optical cavity with an off-resonant laser field, it is possible that the

optical potential will be steeper as the particle ascends the potential than when

it descends.

A sub-wavelength object in a cavity will experience an optical potential given

by,

Uopt = −h̄U0|E0|2f 2(rrr) (2.3.12)

where E0 is the field amplitude, and f(rrr) describes the cavity mode function at

the point rrr, and is given by f(z) = cos kz for a cavity composed of wide plane

parallel mirrors. The particle will create an effective increase to the cavity length

due to the index of its refraction, thus shifting the cavity resonance by U0f
2(rrr),

where the coupling constant is

U0 =
αωL
2ε0V

(2.3.13)

and V is the cavity’s mode volume, ωL is the frequency of the laser light, and α is

the particle’s polarisability. If the frequency of the incident laser ωL is less than

the cavity’s resonance frequency ωC , any particle with a refractive index greater

than 1 will shift the cavity resonance frequency closer to the laser frequency, and

thus increase the power of the cavity field.

As the particle moves along the cavity it changes the shift of the resonance

frequency leading to a time-dependant intensity modulation. The intensity is

maximal when the particle moves away from the anti-node of the cavity standing

wave, leading to an increase in the trap stiffness, and is lowest as the particle

moves towards the anti-node, leading to a decrease in trap stiffness. As a result,

the particle gains less energy moving towards the centre of the trap than it looses

when moving out of the trap [51].
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A more recent method of cooling the particle motion is presented in [19].

In this work, a sub-wavelength particle is trapped at an intensity minimum of

the cavity field. Here, dipole scattering into the cavity mode is prevented by

destructive interference in the cavity. Therefore, only inelastic scattered photons

are allowed. Scattering that increases the particle’s kinetic energy are suppressed

while scattering that decreases the energy are enhanced. Thus the particle will

loose kinetic energy until it reaches the ground state

2.3.5 Cooling in an Optical Lattice

It is possible to reach low occupation numbers, and thus achieve high degrees

of cooling for a particle trapped in an optical lattice. A particle is trapped at

the anti-node of a standing wave produced by a retro-reflected laser with angular

frequency ω0. By using phase modulation, weak side-bands are introduced at

frequencies ω0±ω1. These side-bands produce intensity gradients at the position

of the nano-particle thus inducing forces on the particle with opposite direction

to each other. In order to achieve cooling, the magnitudes of these forces must

be modulated via the modulation of the side-band magnitudes [52].

2.3.6 Comparison of Cooling Schemes

All the cooling schemes discussed above are useful for specific circumstances.

However, in this section we discuss their applicability to the interferometry ex-

periments to be described in Chapter 5.

Using the scattering force based cooling perhaps the simplest method. This

however, requires cooling beams for each direction of the particle’s motion. Be-

cause we are only interested in cooling the particle’s motion in the z axis for our

interferometry experiment. This means that we can achieve all necessary cooling

with only one cooling beam.

As we shall see in Chapter 5, the proposed interferometry experiment goes to

great lengths to minimise decoherence during the particle’s free evolution. Due to

the effect of Coulomb coupling to nearby metallic surfaces will introduce another

source of decoherence during the particle’s free-fall [53] any cooling system reliant
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on the particle having an electric charge is likely to be useful. Although it is

possible to control the charge on the particle, thus charging it to cool then de-

charging for the free-fall, the most efficient methods of controlling the charge

prevent us from working in a vacuum which is needed to reduce the decoherence

from collisions with gas molecules.

The presence of the dielectric in an optical cavity shifts the frequency of the

cavity mode. This means that using a cavity to produce the standing wave for

the phase grating that will be used to induce the interference pattern will likely

introduce a further decoherence within the standing wave. In an Earth-based

experiment, where the particle will fall under the influence of gravity, we could

use a cavity to trap and cool the particle. Then, after some distance gt21/2 below

the trapping laser, we have our standing wave grating that is not produced by

a cavity. This standing-wave grating can be produced by a retro-reflected laser

pulse which would induce some motional perturbation to the particle similar to

the cooling or heating effect of the cavity. However, due to the fact that the

laser is not reflected many times, as it would be in a cavity, these effects are

much smaller. Alternately, the standing-wave could be generated by counter

propagating lasers which would remove this effect altogether. For a space-based

experiment that would be needed to allow for long free-fall times required by

larger particles, this is not practical as the particle will not fall during its free

evolution meaning that the trapping laser will need the same set-up as the grating

laser. Cavity cooling has managed to reach the ground state [19] ensuring that

it can achieve the necessary localisation for an interferometry experiment.

Parametric feedback cooling does not require any cooling beams, working

by modulating the intensity of the trapping beam. This would decrease the

complexity of the set-up making it beneficial for a space based mission where size

and weight greatly increases the cost of launching the experiment. We also avoid

the need for an optical cavity or charging the particle. Feedback cooling has also

been shown to achieve cooling close to the ground state [54] which allows us to

reach the necessary localisation for our proposed interferometry experiments.

In principle, the simplest method to use would be the lattice cooling presented

in [52] which uses a retro-reflected laser to produce a standing wave. This is the
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Figure 2.10: A nano-rod levitated in a standing wave trap. The rod orients itself

such that its length lines up with the polarisation direction.

same set-up as we will use to produce the phase grating in the interferometry

experiment allowing us to use the same set-up. It also reaches occupation numbers

as low as 0.85 ensuring the necessary localisation for interferometry experiments.

2.4 Trapping different shaped particles

Optical levitation is most often performed with spherical particles as their sym-

metry means that there are only three degrees of freedom to consider. However,

we show at the end of Chapter 6 that there is a limit to the size of the particle

we can use for interferometry. The issue with spherical particles seems to be

the size in the direction that the laser propagates. Using a particle that can be

arbitrarily large in either, or both, of the radial axes of the laser, but still small

in the longitudinal axis, could solve this problem allowing us to access greater

masses. In recent years, it has become more common to trap and cool particles

of different shapes. This leads to adding rotational degrees of freedom on top of

the translational ones. This section discusses trapping and cooling some of the

different shapes of particles that could be used.
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2.4.1 Rods

A cylindrical rod contains the desired properties. We can describe the rod by

its length L and its radius R. To increase the mass, we can either increase L

or increase R. In principle it we could increase the radius of the rod until its

diameter is close to the wavelength of the grating laser, and then increase the

length of the rod so that we continue to increase the mass. It has also been

shown that the rotational states of a nano-rod could be used to test large mass

superpositions [55], detect Casimir torque [56], among other proposals. A nano-

rod cooled to a tight orientation then released will enter a superposition of all

possible orientations until integer units of the revival time where constructive

interference recovers the initial, tightly oriented state.

This rod will have five degrees of freedom. Its center of mass positional (x, y, z)

and rotational (θy, θz) motions. by trapping the rod in counter propagating beams

that are linearly polarised in the same direction, the particle orients itself along

the axis of polarisation, thus trapping all degrees of freedom. An example of

this is shown in Fig. 2.10 This occurs as a result of a torque induced by the

difference in angle between the direction of field polarisation and the induced

dipole moment. When the rod is angled away from the direction of polarisation,

the dipole moment of the rod, given by PPP = ←→α EEE sits at an angle θ from the

polarisation direction. This induces a torque proportional to θ on the rod given

by τττ = PPP × EEE [57]. If, however, the trapping light is circularly polarised, the

particle will begin to precess around the z axis whilst maintaining the trap in the

y and z directions [58].

We are also able to track the motion and rotation of the rod. In the Fourier

transform of a signal from the scattered light, such as that shown in Fig. 2.11, we

see two distinct peaks. This first corresponds to the center of mass motion of the

particle along the laser propagation axis νtrans = 2vz/λ, where vz is the velocity

in the z direction. The second frequency peak is a twice the rotational frequency

νrot = 2frot [59]. This can then be used to inform our cooling method allowing us

to cool both the motional, and rotational degrees of freedom of a trapped nano

rod.
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Figure 2.11: An example power spectral density of the recorded signal showing

the peaks relating to its transverse motion νtrans and its rotational motion νrot [59].

Figure 2.12: An image of a hexagon showing the five degrees of freedom that are

observed in [60].

2.4.2 Hexagonal Disks

An alternative geometry we can use are hexagonal disks. These are thin plates in

the z axis, but are wide hexagons in the x−y plane. This allows us to manufacture

disks with a thickness on the scale of the grating laser wavelength, but still be

able to extend the size of the particle in both the x and y directions. This is

different to the rod that could only extend in the direction that its length was

pointed in. These plates have six degrees of freedom, the usual center of mass

motion (x, y, z), and three rotational degrees of freedom (θx, θy, θz). It should be

noted that due to the hexagonal shape of the disks, a rotation of π/3 radians

gives the same shape due to its six lines of symmetry in this rotational axis.

Particle of this geometry can be used to detect gravitational waves as is being
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Figure 2.13: Power spectral density recorded from a QPD of a hexagonal plate

with a thickness of 300nm and vertex-to-vertex diameter of 2.5µm reproduced

from [60]. Although we consider all three rotational degrees of freedom, only

the θx and θy degrees of freedom are observed. This is likely a result of the fact

that the θz motion is not driven as a mechanical mode. We see in Sec. 7.2.5

that if there is motion in this axis, we will be able to detect it. The coloured

lines indicate the calculated frequencies related to the motion in each degree of

freedom from a finite-element simulation and show qualitative agreement.
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done by a team at Northwestern University [60]. Disks of various thicknesses and

diameters have been studied to develop trapping and cooling techniques. We can

see in Fig. 2.13 the power spectral densities recorded by a quadrant photodetector

(QPD) of a hexagonal disk levitated in a standing wave trap consisting of linearly

polarised counter propagating beams with a waist of 12µm. The disk has a

thickness of 300nm and vertex-to-vertex diameter of 2.5µm. Peaks form in the

PSD corresponding to the five degrees of freedom (x, y, z, θx, θy). This allows us

to track and cool all five degrees of freedom. In Chapter 7 we discuss methods

for optimal position and rotational detection for hexagons, such that they can

be maximally cooled. We also discuss how we can apply hexagonal plates to our

theory of an interferometry experiment.
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Background Quantum Mechanics

In this chapter we introduce the necessary quantum mechanical ideas that will

be used throughout the rest of this work. We begin by introducing the density

operator ρ̂ that we use to describe quantum systems. Then we introduce the

Wigner function as a phase-space description of the system that will be useful

in describing the propagation of the quantum system through the interferometer.

The effects of decoherence is given next as this is a phenomena that affects all

quantum systems that are not completely decoupled from the environment and

therefore must be considered.

3.1 Density Operator

Much of quantum mechanics can be described by the use of state vectors in

Hilbert space, such as |ψ〉. This state vector contains the full knowledge of a

pure quantum system and evolves according to the Schrödinger equation

ih̄
∂

∂t
|ψ〉 = Ĥ |ψ〉 (3.1.1)

where Ĥ is the Hamiltonian of the system. This Dirac notation formulation allows

us to simply write a superposition of states as the sum of states,

|ψ〉 =
∑
i=1

ci |ψi〉 (3.1.2)
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where ci are complex amplitudes that fulfil the normalisation condition∑
i=1

|ci|2= 1. (3.1.3)

If our state |n〉 refers to a particle in the nth energy level of a harmonic oscillator,

as shown in Fig. 3.1, we can write the Hamiltonian as

Ĥ =
P̂ 2

2m
+
mω2x̂2

2
(3.1.4)

where ω is the angular frequency and is related to the spring constant via ω =√
k/m. By solving the time-independent Schrödinger equation, we can show that

the energy of a particle in the nth energy level is

En =

(
n+

1

2

)
h̄ω (n = 0, 1, 2, 3, ...). (3.1.5)

In position representation, we find the wave-function for each energy level to be

ψn(x) = 〈x|n〉 =

( √
mω

n! 2n
√
πh̄

)1/2

Hn

(
x

√
mω

h̄

)
exp

(
−mωx

2

2h̄

)
(3.1.6)

where Hn(x) is the Hermite polynomial of order n [61].

However, this state vector formalism is insufficient to capture a statistical mix-

ture of states. A statistical mixture, sometimes simply called a mixed state, is a

mixture of pure states that can be described by the state vector formalism. For

example, an ensemble of silver atoms all prepared with the same spin direction

is a pure state with state vector |α〉, but if there is a mixture of spin directions

present in the ensemble, such that some have their spin described by the state

|α〉 and the rest by the state |β〉 with relative weights wα and wβ, we have a

mixed state. A mixed state cannot be described by the usual linear superposition

equation |α〉 = c− |−〉 + c+ |+〉. To describe these mixed states, we must in-

clude a probability weighting wi distinct from the expansion coefficients c±. The

probability weightings are real numbers that fulfil the normalisation condition∑
i

wi = 1. (3.1.7)
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Figure 3.1: Wave functions for the position of a particle in a quantum harmonic

oscillator ψn(x) in the first five energy levels. The probability distribution of the

measured particle location is p(x) = |ψn(x)|2. The energy is given on the left axis

in units of h̄ω and the right axis gives the number of the energy level. The black

line gives the potential U(x).

We are still able to define the expected value of some observable Â on a mixed

state quantum system. This is given by the ensemble average defined as,

[Â] =
∑
i

wi
〈
α(i)
∣∣ Â ∣∣α(i)

〉
(3.1.8)

where
〈
α(i)
∣∣ Â ∣∣α(i)

〉
is the expectation value of Â on the state

∣∣α(i)
〉
. From

Eq. (3.1.8) we can see that we weight the expectation value by the probability

that the measured state in the ensemble is described by
∣∣α(i)

〉
.

By inserting two completeness relations
∑

n |n〉 〈n| = 1 into the definition of

the expected value,

〈Â〉 =
∑
a

∑
b

〈α|a〉 〈a| Â |b〉 〈b|α〉 (3.1.9)

we can rewrite Eq. (3.1.8) as,

[Â] =
∑
a

∑
b

∑
i

wi
〈
b
∣∣α(i)

〉 〈
α(i)
∣∣a〉 〈a| Â |b〉 . (3.1.10)
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Because we are able to factor out the property of the mixed state that does not

depend on the observable Â, we define the density operator as,

ρ̂ =
∑
i

wi
∣∣α(i)

〉 〈
α(i)
∣∣ (3.1.11)

with corresponding density matrix

ρ = 〈b| ρ̂ |a〉 =
∑
i

wi
〈
b
∣∣α(i)

〉 〈
α(i)
∣∣a〉 . (3.1.12)

We can use the density operator to find the expectation value of an observable,

[Â] =
∑
a

∑
b

〈b| ρ̂ |a〉 〈a| Â |b〉

= tr(ρ̂Â)

(3.1.13)

where tr(x) is the trace of x [62].

For a pure state, |ψ〉 with weight w = 1, the density operator takes the form,

ρ̂ = |ψ〉 〈ψ| . (3.1.14)

We can use the definitions of the density operator from a mixture and pure

state to show the fundamental differences between an ensemble of states and

a superposition. First, we define the pure states |ψ1〉 =
(

1 0
)T

and |ψ2〉 =(
0 1

)T
, each with relative weighting 1/2. Recall the definition of the density

operator Eq. (3.1.11) and the definition of the outer product,

|u〉 〈v| =

(
u1

u2

)(
v1 v2

)
=

(
u1v1 u1v2

u2v1 u2v2

)
(3.1.15)

we find the ensemble density operator to be

ρ̂enseble = w1 |ψ1〉 〈ψ1|+ w2 |ψ2〉 〈ψ2| =
1

2

(
1 0

0 1

)
. (3.1.16)

Alternately, if we have the pure state in a superposition |ψ〉 = (|ψ1〉 + |ψ2〉)/
√

2

and use the definition from Eq. (3.1.14) we find,

ρ̂superposition =
1

2

(
1 1

1 1

)
. (3.1.17)
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The difference between these two density operators is in the off diagonals. The

off diagonals measure the coherence between two of the basis vectors. When the

off diagonals are not 0, we are able to observe quantum interference [63]. If we

look at the pure state ρ̂superposition = 1√
2
(|ψ1〉 + |ψ2〉) × 1√

2
(〈ψ1| + 〈ψ2|) and find

the expectation value of the density operator in the basis of some observable Â

with eigenvectors |a〉, we find,

〈a| ρ̂superposition |a〉 =
1

2
(〈a|ψ1〉 〈ψ1|a〉+ 〈a|ψ1〉 〈ψ2|a〉+ 〈a|ψ2〉 〈ψ2|a〉+ 〈a|ψ2〉 〈ψ1|a〉)

=
1

2
(|〈a|ψ1〉 |2+|〈a|ψ2〉 |2+ 〈a|ψ1〉 〈a|ψ2〉∗ + 〈a|ψ2〉 〈a|ψ1〉∗).

(3.1.18)

The values |〈a|ψi〉 |2 are simple probability amplitudes squared and give a constant

real number. The terms 〈a|ψ1〉 〈a|ψ2〉∗ and 〈a|ψ2〉 〈a|ψ1〉∗ lead to interference

between the states. Considering the statistical mixture ρ̂ensamble = w1 |ψ1〉 〈ψ1|+
w2 |ψ2〉 〈ψ2|, we find,

〈a| ρ̂ensemble |a〉 = w1 〈a|ψ1〉 〈ψ1|a〉+ w2 〈a|ψ2〉 〈ψ2|a〉

= w1|〈a|ψ1〉 |2+w2|〈a|ψ2〉 |2
(3.1.19)

where we only have the probability amplitude terms leading to no interference

between terms.

3.1.1 Time Evolution of the Density Operator

The time dependant Schrödinger equation is,

ih̄
∂

∂t
|ψ〉 = Ĥ |ψ〉

−ih̄ ∂
∂t
〈ψ| = 〈ψ| Ĥ

(3.1.20)

in ket and bra space respectively. Using Eq. (3.1.20) we can apply the differential

operator to the density operator leading to the Von Neumann equation of motion,

ih̄
∂

∂t
ρ̂ = ih̄

∑
i

wi

(
∂

∂t
|ψi〉 〈ψi|+ |ψi〉

∂

∂t
〈ψi|

)
=
∑
i

wi

(
Ĥ |ψi〉 〈ψi| − |ψi〉 〈ψi| Ĥ

)
= − i

h̄
[Ĥ, ρ̂].

(3.1.21)
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which is the quantum equivalent of the Liouville equation which is given as

∂tρ = −{ρ,H} in Poisson bracket notation. The classical Liouville equation

describes the time dependence of the distribution ρ(q, p, t) describing an ensemble

of systems in phase space [64].

3.2 The Phase Space Description

Introduced by Wigner in 1932 the Wigner function is a powerful tool allowing

us to view a quantum system in terms of its phase-space [65]. A classical phase-

space describes the likelihood that a system will have a certain momentum and

position at any given time. For example, the phase-space for some simple har-

monic motion, like a pendulum, would be a circle around the origin. The Wigner

function acts almost as an analogy to this. Discussions on the Wigner function

can be found in standard quantum optics textbooks [4,66] and a review paper by

Case [67]. This section summarises these discussions relevant to our interferom-

etry experiment.

We make the move to considering observables of continuous spectra. Instead

of an observable Â having specific discrete eigenvectors |ai〉 with cosponsoring

eigenvalues ai, continuous variable, such as position x̂ will have continuous eigen-

vectors and values. Many of the operations we perform on discrete systems have

corresponding operations in continuous systems. For summations, we use in-

tegration in the continuous regime, the probability of a system existing in a

narrow interval dx is given by |〈x|ψ〉 |2dx, and we can re-write state vectors as

wave-functions in a given bias by ψ(x) = 〈x|ψ〉. The inverse Weyl transform,

sometimes referred to as the Wigner-Weyl transform, is given by [68],

Ã(x, p) =

∫
exp

[
−ipy
h̄

]〈
x+

s

2

∣∣∣ Â ∣∣∣x− s

2

〉
ds (3.2.1)

and converts an operator Â into a function of phase-space Ã(x, p). The Wigner

function is a special case of the Wigner-Weyl transform defined as the Wigner-

Weyl transform of the density operator divided by Plank’s constant [67],

W (x, p) =
ρ̃(x, p)

h
=

∫
1

h
exp

[
−ips
h̄

]〈
x+

s

2

∣∣∣ ρ̂ ∣∣∣x− s

2

〉
ds. (3.2.2)
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Unlike a regular wave function, which can only assign a value to either position

or momentum at any given time, the Wigner function assigns a value to the full

(x, p) parameter space. However, unlike a traditional probability function, the

value of the Winger function can take negative values, meaning it should only be

viewed as a pseudo-probability function. We can recover a probability function

from the Wigner function, but only for one axis of the phase-space. We achieve

this by integrating over the other variable. After this, we will have a purely

positive function of the form p(x) = |ψ(x)|2=
∫
w(x, p)dp if we integrate out

the momentum term. If we integrate out the position term, we will recover the

equivalent expression for the momentum term.

This is more clearly seen if we assume a pure state such that ρ̂ = |ψ〉 〈ψ| and

〈x| ρ̂ |x〉 = ψ(x)ψ∗(x),

W (x, p) =
1

h

∫
exp

[
−ips
h̄

]
ψ
(
x+

s

2

)
ψ∗
(
x− s

2

)
ds. (3.2.3)

Then, if we integrate over the momentum p, we find,∫
W (x, p)dp =

1

h

∫∫
exp

[
−ips
h̄

]
ψ
(
x+

s

2

)
ψ∗
(
x− s

2

)
dsdp

=
1

h

∫
ψ
(
x+

s

2

)
ψ∗
(
x− s

2

)
hδ(s)ds

= ψ(x)ψ∗(x) = |ψ(x)|2

(3.2.4)

where we have made use of the relation
∫

exp[−ips/h̄]dp = hδ(s). This formu-

lation recovers the Born rule P (x) = |ψ(x)|2 and thus gives the probability of

finding the system in the state x+ δx. We can perform the equivalent operation

integrating over the position variable to find the probability function with respect

to the system’s momentum. An example of the Wigner function in the n = 1

energy level of a harmonic oscillator is given in Fig. 3.2.

3.2.1 Time Dependence of the Wigner Function

In order to find the equation of motion of the Wigner function, we must differen-

tiate it with respect to time. Doing this to the Wigner function of a pure state

Chapter 3 Shaun J. Laing 36



Chapter 3 – Background Quantum Mechanics

x

2.0 1.5 1.0 0.50.0 0.5 1.0 1.5 2.0

y

0.20
0.15

0.10
0.05
0.00

0.05
0.10

0.15
0.20

W
(x

,p
)

1.5

1.0

0.5

0.0

0.5

(a) Wigner Function

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.1

0.2

0.3

0.4

(b) Position probability function

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
p

0.0

0.5

1.0

1.5

2.0

2.5

(c) Momentum probability func-

tion

Figure 3.2: (a) The Wigner function for a particle in the n = 1 energy level

of a harmonic oscillator. We can see clearly that the Wigner function here is

negative for most values of x and p. (b) The probability density function of

measuring the particle at some location found by integrating the Wigner function

over the momentum p(x) =
∫∞
−∞W (x, p)dp. (c) The probability density function

of measuring the particle with some momentum found by integrating the Wigner

function over the position p(p) =
∫∞
−∞W (x, p)dx. These plots are found by setting

m = ω = h = 1.
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from Eq. (3.2.3), we find

∂

∂t
W (x, p) =

1

h

∫
exp

[
−ips
h̄

]
[
ψ
(
x+

s

2

) ∂

∂t
ψ∗
(
x− s

2

)
+
∂

∂t
ψ
(
x+

s

2

)
ψ∗
(
x− s

2

)]
. (3.2.5)

Recalling the time dependant Schrödinger equation,

∂ψ(x, t)

∂t
= − h̄

2im

∂2ψ(x, t)

∂x2
+
U(x)

ih̄
ψ(x, t), (3.2.6)

we can rewrite Eq. (3.2.5) as,

∂W

∂t
=
∂WT

∂t
+
∂WU

∂t
(3.2.7)

where

∂WT

∂t
=

1

4πim

∫
exp

[
−ips
h̄

][
ψ
(
x+

s

2

) ∂2

∂x2
ψ∗
(
x− s

2

)
+

∂2

∂x2
ψ
(
x+

s

2

)
ψ∗
(
x− s

2

)]
ds

(3.2.8)

and

∂WU

∂t
=

1

4πim

∫
exp

[
−ips
h̄

] [
U
(
x+

s

2

)
− U

(
x− s

2

)]
ψ
(
x+

s

2

)
ψ∗
(
x− s

2

)
ds.

(3.2.9)

Eqs. (3.2.7), (3.2.8), and (3.2.9) is equivalent to solving the Schrödinger equation

due to the fact that the wave function and corresponding Wigner function have

a one-to-one relationship apart from an overall phase.

3.2.2 Husimi Q-Function

The Wigner function discussed above is not the only phase-space description

of quantum mechanics. Here we focus on a brief introduction to the Husimi

Q-function as an alternative phase-space description based on the complex eigen-

value for the annihilation operator α = αr + αii. The derivation presented here
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is short and is only intended to show that other phase-space models exits. For

this section we follow the derivation given in Section 12.2 of [66].

For a harmonic oscillator, we can derive the position and momentum variables

from the real and imaginary parts of α as,

x =

√
h̄

2mω
(α + α∗) =

√
2h̄

mω
αr (3.2.10)

p =

√
mh̄ω

2

(α− α∗)
i

=
√

2mh̄ωαi. (3.2.11)

We then define the equivalent phase space volume element as,

dxdp = 2h̄dαrdαi. (3.2.12)

From here, we can define the Q-function of a pure state |ψ〉 as

Q(αr, αi) =
1

π
〈α|ψ〉 〈ψ|α〉 . (3.2.13)

Using the definition of the density matrix of a pure state ρ̂ = |ψ〉 〈ψ|, we can

simplify Eq. (3.2.13) to,

Q(αr, αi) =
1

π
〈α| ρ̂ |α〉 (3.2.14)

which shows that the Q-function is the expectation value of the density operator

of the coherent state |α〉. The main benefit of this method is that it is easy to

compute expectation values from this distribution. However, we are unable to

calculate the probability of one variable by integrating out the other. This is a

major advantage of the Wigner function in our case as we have interest in both

the momentum and position evolution of the matter-wave in our interferometer,

but we are only interested in the probability of its location when we reach the

stage of measurement.

3.3 Decoherence

Any quantum system that is not completely isolated from the environment is

subject to decoherence. This is a process that reduces the coherence of the

system, i.e. the off diagonals in the density operator tend to 0. As a result, this
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can lead to a loss of interference and will bring the system into a single state as

discussed in Sec. 3.1.

Consider a standard double slit experiment to show the effects of decoherence.

We start by preparing the system S in a spatial superposition of states such that

its wave function reads

|ψS〉 = α |ψ+〉+ β |ψ−〉 . (3.3.1)

If the superposition interacts with another system |E〉 such as a measurement

apparatus or the environment, after a sufficient time the entangled state takes

the form,

|ψSE〉 = α |ψ+〉 |E+〉+ β |ψ−〉 |E−〉 . (3.3.2)

We can find the reduced density matrix, contains all the information of all possible

measurements in S, for the system from the total density matrix of the system

and environment ρ̂SE as

ρ̂S = TrE(ρ̂SE)

=|α|2|ψ+〉 〈ψ+|+ |β|2|ψ−〉 〈ψ−|

+ αβ∗ |ψ+〉 〈ψ−| 〈E−|E+〉+ α∗β |ψ−〉 〈ψ+| 〈E+|E−〉 .

(3.3.3)

By taking the trace of the reduced density matrix with the position operator,

we can find the probability density function of recording the particle’s position

as

p(x) = TrS(ρ̂Sx̂) =

= |α|2|ψ+(x)|2+|β|2|ψ−(x)|2+2 Re{αβ∗ψ+(x)ψ∗−(x) 〈E−|E+〉}
(3.3.4)

where ψ±(x) = 〈x̂|ψ±〉. The last term of Eq. (3.3.4) is the interaction term.

As a result, the visibility of the interference pattern is governed by the term

〈E−|E+〉. In the case that the states |E−〉 and |E+〉 are total distinguishable, i.e.

〈E−|E+〉 = 0, there will be not interference pattern observed [69].

3.3.1 Deriving a General Form for Decoherence

We showed in Sec. 3.1.1 that the time evolution of the density operator in a closed

system is given by ∂tρ̂ = [Ĥ, ρ̂]/(ih̄). The natural next step is to find an equivalent
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equation for a system that is in contact with it’s environment. We begin, following

the argument in [70], by defining the total system at time t = 0 as ρ̂SE(0) and its

time evolution as ρ̂SE(t) = Û(t)ρ̂SE(0)Û †(t), where Û(t) = exp
[
−iĤt/h̄

]
is the

unitary time operator. We can then define the time evolution of the system as,

∂ρ̂S(t)

∂t
=

d

dt
TrE

(
Û(t)ρ̂SE(0)Û †(t)

)
=

1

ih̄
TrE

(
[ĤSE, ρ̂SE]

)
.

(3.3.5)

This evolution equation is known as a generalised master equation and is

specified by linear operators that take the density operator of the system, along

with its time evolution until time t, and map it to the differential change at that

time. Should the time-scale be large compared to the time-scale of the envi-

ronmental correlation, we can use a generator, often referred to as the Liouville

super-operator L,
∂

∂t
ρ̂ = Lρ̂ (3.3.6)

to describe the time evolution of a density operator ρ̂.

We introduce the dynamical map Wt : ρ̂0 7→ ρ̂t which maps the state ρ̂0 to a

valid state at some later time t. This is given in the operator-sum representation

as,

Wt(ρ̂) =
N∑
k=1

Ŵk(t)ρ̂Ŵ
†
k (t) (3.3.7)

where N ≤ d2 and d is the number of dimensions in the system. Eq. (3.3.7) is

the formal solution to Eq. (3.3.6) under the condition thatWt = eLt for all t > 0.

We introduce a set of operators Ej, where 1 ≤ j ≤ d2 that satisfy,

tr(Ê†i Êj) = δij. (3.3.8)

This allows us to define the operator Ŵk as,

Ŵk =
d2∑
j=1

tr(Ê†jŴk)Êj. (3.3.9)

Letting the operator Êd2 be proportional to the identity operator Ed2 = I/
√
d,
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such that the other elements are traceless,

tr(Êj) =

0 forj = 1, ..., d2 − 1
√
d forj = d2

(3.3.10)

lets us rewrite the dynamical map Eq. (3.3.7) in terms of Êj as,

Wt(ρ̂) =
d2∑

i,j=1

cij(t)Êiρ̂Ê
†
j (3.3.11)

with the hermitian and positive coefficient matrix,

cij(t) =
N∑
k=1

tr(Ê†i Ŵk(t)) tr(Ê†jŴk(t))
∗. (3.3.12)

By setting Lρ̂ = limτ→0(Wτ (ρ̂)− ρ̂)/τ , and performing some lengthy algebra

that is given fully in [70, Sec. 5.3.2], we find the first standard form of the

generator as,

Lρ̂S =
1

ih̄
[Ĥ, ρ̂S] +

d2−1∑
i,j=1

αij

(
Êiρ̂SÊ

†
j −

1

2
Ê†j Êiρ̂S −

1

2
ρ̂SÊ

†
j Êi

)
(3.3.13)

where the complex coefficients are given by,

αij = lim
τ→0

cij(τ)

τ
(3.3.14)

and have dimensions of frequency and make up the matrix ααα.

We find the Lindblad form of the generator L by diagonalising ααα. In this case,

the unitary matrix is given by, UUUαααUUU † = diag(γ1, · · · , γd2−1). From this, we define

the operator L̂k =
∑d2−1

j=1 EjU
†
jk, and thus,

Lρ̂S =
1

ih̄
[Ĥ, ρ̂S] +

N∑
k=1

γk

(
L̂kρ̂SL̂

†
k −

1

2
L̂†kL̂kρ̂S −

1

2
ρ̂SL̂

†
kL̂k

)
(3.3.15)

where , N ≤ d2 − 1, and Ujk are the elements of the unitary matrix. The

generator is specified by a single Hermitian operator Ĥ that does not have to

be the Hamiltonian of the system, and N Lindblad jump operators L̂k which

describe transformations due to the environment (jumps) at rates γk.
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As we are mostly interested in how the decoherence from the environment

recovers classical behaviour from a quantum system, we can choose the Lindbald

operator to be proportional to the Hamiltonian, L̂ =
√
γĤ. This gives the

Lindblad equation of motion,

∂

∂t
ρ̂S(t) =

1

ih̄
[Ĥ, ρ̂S(t)] + γ

(
Ĥρ̂S(t)Ĥ − 1

2
Ĥ2ρ̂S(t)− 1

2
ρ̂S(t)Ĥ2

)
. (3.3.16)

3.4 The Quantum-to-Classical Transition

In classical mechanics we can describe the state of a system at some initial time

t0 as a point in phase space (q, p) with zero uncertainty. We can then describe

the system at some later time t as a new point in phase space determined by the

Hamiltonian-Jacobi equation,

− ∂S

∂t
= H

(
q,
∂S

∂q
, t

)
(3.4.1)

where S is called Hamilton’s Principal Function and is the solution to the differ-

ential equation [71]. The zero uncertainty we have assumed in the initial state

cannot carry over into discussions about quantum mechanics due to the Heisen-

berg uncertainty principle.

We can use an equivalent method to describe the dynamics of a system in the

quantum regime using the Schrödinger equation,

ih̄
∂ψ

∂t
= Hψ. (3.4.2)

We consider a single particle of mass m moving in one dimension as this facilitates

an easy comparison between the two approaches. In this case, we define the wave

function in position representation to be ψ ≡ eiS/h̄. When we put this into

Eq. (3.4.2) and expand the Hamiltonian, we find,

− ∂S

∂t
=

1

2m

(
∂S

∂q

)2

+ V (q)− ih̄

2m

∂2S

∂q2
. (3.4.3)

In the limit S � h̄ and is real, the final term of Eq. (3.4.3) can be neglected.

This recovers the classical Hamiltonian-Jacobi equation (3.4.1),

− ∂S

∂t
=

1

2m

(
∂S

∂q

)2

+ V (q). (3.4.4)
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This is a clear case of the quantum dynamics recovering the classical dynamics

in the macroscopic regime. However, the Schrödinger equation is linear, that is,

if both ψ1 and ψ2 are solutions to Eq. (3.4.2), then c1ψ1 + c2ψ2 is also a solution,

where c1 and c2 are complex coefficients, which is the source of superpositions

observed in quantum mechanics. The same is not true of the Hamiltonian-Jacobi

equation however. Eq. (3.4.1) is non linear, meaning that if S1 and S2 are solutions

to Eq. (3.4.1), then a1S1 +a2S2 is not necessarily also a solution. This mean that

superpositions are not allowed in classical mechanics as expected by observation.

We cannot use this non-linearity to explain the lack of observed macroscopic

superpositions, because in this description, the classical dynamics are only an

approximation to the quantum dynamics. No matter how small, the last term

in Eq. (3.4.3), it is not always zero and can therefore be used to recover the

Schrödinger equation and thus, superposition. This lack of observed macroscopic

superpositions is the core of the “quantum measurement problem” [8].

3.4.1 The Measurement Problem

This measurement problem can be neatly explained by using the Von Neumann

scheme for an ideal measurement process [72]. We consider the microscopic sys-

tem S with some discrete and non-degenerate observable OOO that has eigenvalues

On and eigenvectors |On〉. We also have some measurement apparatus M that is

used to measure the value of OOO. At the start of the measurement, the apparatus

is in its ready-state |M0〉. After the measurement, M will be in the state |Mn〉
which corresponds to different possible macroscopic configurations of M , such

as different positions of a pointer on a scale. We take a moment here to note

that there exist a number of measurement devices, such as semiconductor photon

detectors, that are not traditionally macroscopic. However, the read-out, such

as a pointer on a scale, is macroscopic. As a result there may be a number of

steps between the measurement and macroscopic regime. We also assume that

the interaction between the system S and apparatus M obeys the Schrödinger

equation, as this should govern all natural processes, and is thus linear. We also

assume that there is a perfect correlation between the initial state of the system
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and the final state of the apparatus such that,

Initial State: |On〉 ⊗ |M0〉 → Final State: |On〉 ⊗ |Mn〉 . (3.4.5)

From this we are able to say that if we observe M to be in the state |Mn〉 the

system is in the state |On〉 and thus the observable OOO has a value On.

The measurement problem arises when the system is prepared in a super

position of states, i.e.

|ψ〉 = cm |Om〉+ cl |Ol〉 (3.4.6)

In this situation the linearity of the Schrödinger equation leads to the final state

of the system S and apparatus M to be,

|ψ〉 ⊗ |M0〉 = [cm |Om〉+ cl |Ol〉]⊗ |M0〉

→ cm |Om〉 ⊗ |Mm〉+ cl |Ol〉 ⊗ |Ml〉
(3.4.7)

This final state is an entanglement between the micro-system S and the macro-

apparatus M . Eq. (3.4.7) preserves the superposition in the microscopic state

into the macroscopic measurement apparatus. But that is not what is observed.

We do not measure macroscopic systems to be in a superposition, therefore M

in the above must be in either the state |Mm〉 or the state |Ml〉, but not both.

Because the apparatus is entangled to the system, the system S into either the

state |Om〉 or |Ol〉 depending on which state of the detector is measured. This is

the key result leading to the measurement problem.

By taking repeated measurements with the same initial conditions, we can

observe the states |Om〉 and |Ol〉 with relative probabilities |cm|2 and |cl|2. This

is the Born Probability Rule. The apparent emergence of these probabilities is

another surprising outcome. Both the Schrödinger and Hamiltonian-Jacobi equa-

tions are deterministic for closed systems. Open systems in quantum mechanics

are described by decoherence, where the coherence of the wave-function becomes

tied up in the environment. Classical open systems are also in contact with their

environments. Consider a pendulum that acts as a harmonic oscillator. If the

pendulum is not in a vacuum, the air will act as the environment damping the

pendulum’s motion. At no point in the transition from quantum regime to the
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classical do we encounter any probabilities. This is because the initial state in

both cases is stated exactly. Probabilities in quantum mechanics are truly unique

as classical probabilities arise as a result of uncertainty in our knowledge of the

initial state [73].

Throughout this section we have defined a divide between a quantum system

S and a macroscopic measurement apparatus M . However, we have not given

a definition of where this divide takes place. This is another issue that remains

unsolved, that is: where is the quantum-classical divide? There is no clear pa-

rameter (or set of parameters) about a system that defines it as either quantum

or classical, nor is there any definition of the scale the parameter, e.g. how

much mass a system must have or how many degrees of freedom lead to it being

classical. Interferometry experiments have shown that spatial superposition hold

masses of over 25, 000u, or 4.2× 10−23kg [5]. On the other side of the scale, there

is a clear lack of any quantum effect on macroscopic systems.

Any solution to the measurement problem must solve both, the lack of ob-

served superpositions in the macroscopic regime and the emergence of proba-

bilities that occur when a quantum system is driven into a specific outcome in

agreement with the Born rule. Solutions should also aim to define the quantum-

to-classical transition. This should be achieved by defining the parameter that

leads to collapse and at what values we transition between the two theories. This

chapter is dedicated to exploring proposed solutions to the measurement prob-

lem. Special focus will be given to objective collapse models where we will also

discuss some tests of these models.

3.5 Proposed Solutions to the Measurement Prob-

lem

There are a number of proposed solutions to the measurement problem. In this

section we introduce some of these possible solutions and discuss their merits and

faults. This leads us into the next chapter where we begin by introducing the

idea that quantum and classical dynamics are both approximations to a theory

of universal dynamics.
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3.5.1 The Copenhagen Interpretation

One of the most commonly used solution to the measurement problem, and per-

haps the one most taught to students, is the Copenhagen interpretation prosed

by Bohr in 1928 [6]. This postulate aims to solve the apparent contradiction

between classical and quantum physics by applying an arbitrary divide between

the quantum and classical worlds. It suggests that microscopic systems are gov-

erned by the rules of quantum mechanics (i.e. superpositions are allowed) and

that macroscopic systems are governed by classical mechanics (i.e. superpositions

are repressed). It also suggests that during the measurement process a quantum

system interacts with a classical system causing the wave function to ‘collapse’

forcing the superposition of eigenstates of the observable into just one in a way

governed by the Born rule. The major issues with this interpretation is that it

fails to determine the scale the transition from a quantum system to a classical

one occurs and what parameter of the system drives this change, i.e. is it the

system mass, or the physical dimensions, or even something else that cause the

transition. The Copenhagen interpretation also fails to give any mechanism to

govern the transition or the ‘collapse’ of the wave function.

On the surface, this seems like a sensible model to use. We can make ac-

curate predictions about the outcome of measurements on both quantum and

classical systems without issue. However, we still don’t know how to treat meso-

scopic systems between these two regimes, or if there is a hard border, where

it is. Although the Copenhagen interpretation can be useful for making predic-

tions about quantum systems, it does not give us much, if any, insight into the

quantum-to-classical transition.

3.5.2 Decoherence as a Solution

The effect of decoherence is observed in laboratory experiments and describes the

role that the environment plays during the act of measurement. For the purposes

of our argument, it is sufficient to define the environment as the set of particles

in the radius R = cT where c is the speed of light and T the time during which

the measurement takes place. This gives us all the particles that could causally

interact with the experiment.
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Let us consider a simple two-state quantum system to demonstrate to effect

of decoherence as done by Adler in [74]. Take a quantum system, such as atomic

spin, with an initial state vector,

|ψ0〉 = α |A〉+ β |B〉 (3.5.1)

where |α|2+|β|2= 1. We then probe the system with an apparatus that has initial

state vector |M0〉 which in turn interacts with the environment with initial state

vector |E0〉. This means the total initial state vector is,

|Φ0〉 = |ψ0〉 |M0〉 |E0〉 . (3.5.2)

We then allow the state |Φ0〉 to evolve in time according to the deterministic

unitary evolution giving the state at time t to be |Φt〉 = U |Φ0〉, where U =

exp(−iHt). We can set up our experiment in such a way to ensure that the

initial state evolves into the form,

|Φt〉 = α |A〉
∣∣∣φ(A)
t

〉
+ β |B〉

∣∣∣φ(B)
t

〉
(3.5.3)

where the states
∣∣∣φ(A)
t

〉
and

∣∣∣φ(B)
t

〉
are the entangled states of the apparatus and

environment. After time T these two states are macroscopically distinguishable.

The effect of decoherence is to rapidly decay the inner product,〈
φ

(A)
t

∣∣∣φ(B)
t

〉
(3.5.4)

from 1 at t = 0 to 0 by t = T . The consequence of this is that the interference

between the states |A〉 and |B〉 rapidly disappears as time evolves reducing the

state to a statistical mixture of states with relative weights |α|2 and |β|2. This is

not enough to explain the collapse of the wave function during a measurement.

The time evolution of the state from Eq. (3.5.2) to Eq. (3.5.3) still obeys the

linearity of the Schrödinger equation. We also see that the coherence is not lost,

but is transferred to the environment as shown is Eqs. (3.3.3) and (3.3.4) where

the only terms that include interference contain the environmental state. The use

of decoherence also fails to explain the breakdown of superposition for isolated

systems, such as the universe as a whole.
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3.5.3 The Many-Worlds Interpretation

The many-worlds interpretation devised by Everett [7] proposes the idea that

there is no real breakdown of the superposition. According to this theory, the

linear evolution of the Schrödinger equation holds at all scales, including during

the measurement process. This removes the need for any collapse into a single

state. However, an observer will still only record a single outcome after a mea-

surement. During a measurement in the many-worlds interpretation, the state of

the system and measurement apparatus evolves as it does in Eq. (3.4.7) where

|Mm〉 is the state of the apparatus if it detects the system in the state |Om〉 and

|Ml〉 is the state of the apparatus if it detects the system in the state |Ol〉. In the

many-worlds interpretation, the two parts of this equation exist simultaneously

in different ‘branches’ of the universe, as if they existed in different worlds.

On the surface, this may seem like a sensible solution to the measurement

problem. There is no real collapse of the wave function, only an apparent one.

Observers can only see one branch of the universe causing this apparent collapse.

It also removes the issue of on what scale does the Schrödinger equation break-

down by commenting that it is always valid. However, this interpretation does

not provide an explanation on the origins of probabilities from the Born rule.

Everett’s theory suggests that deterministic evolution always holds. So how do

seemingly non-deterministic probabilities arise from this theory? Another criti-

cism is the lack of falsifiability of the theory. There is no experiment that can

be done to rule out the existence of these ‘other branches’ as all predictions

in standard quantum mechanics agrees with the predictions of the many-worlds

interpretation.
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Collapse Models

In this chapter we cover the so called quantum-to-classical transition and the

measurement problem along with briefly discussing some proposed solutions to

this apparent flaw in quantum theory. In the last chapter, we discussed a handful

of proposed solutions that do not modify the framework of quantum mechanics.

We note that the Schrödinger picture is not the only model describing quan-

tum mechanics. For example, quantum field theory (QFT) was derived out of the

need for a relativistic quantum mechanics and strongly agrees with experimental

evidence. However, QFT is still a linear process allowing superpositions and could

be thought of as a first-order approximation [75]. This chapter introduces modi-

fications to the formulation of quantum theory acting as a unified dynamics that

will simplify to either quantum mechanics or classical mechanics on the relevant

scales. We focus primarily on non-relativistic collapse models which allow for an

instantaneous collapse of the wave function. There have been some attempts at

applying collapse models to relativistic quantum theories [76,77]. However, these

models have not shown much success.

4.1 Quantum Mechanics as an Approximation

This work discusses another possible solution to the measurement problem. That

is, quantum and classical theory are approximations to a more general theory.

As a result, the lack of superpositions in the macroscopic regime are attributed
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to applying quantum theory to a regime where it is not valid. We also describe

the collapse as a physical and dynamical process occurring during the interaction

between the quantum system and the measurement apparatus. Any theory that

encapsulates the full ‘universal dynamics’ must contain the following properties:

1. The universal dynamics must be non-linear to allow the breakdown of the

superposition that occurs during measurement

2. This non-linearity must be sufficiently small in the microscopic regime to be

negligible, thus recovering the linear superpositions experimentally verified

on the microscopic scale

3. As we progress from the micro to the macro scale, the new dynamics must

allow for non-unitary, norm-preserving evolution required to cause all but

one of the possible outcomes to decay exponentially

4. The dynamics must be stochastic, such that the result of a measurement is

random and cannot be predicted, however, the results of multiple measure-

ments must obey the Born rule

Any universal dynamics will be defined by a set of parameters that take values

such that on the microscopic scale, the theory is indistinguishable from quantum

mechanics. The theory must also contain an amplification mechanism such that

for macroscopic scales, these parameters force the theory to be indistinguishable

from classical mechanics. This creates a mesoscopic region where the dynam-

ics are distinct from both quantum and classical mechanics, and are therefore

experientially distinguishable [8].

Non-linear modifications to quantum theory have been explored for many

years. One of the reasons for this is not to solve the measurement problem (al-

though they can, and often do, provide the solutions we are looking for), but

instead because many of the differential equations that describe physical phe-

nomena are non-linear. Proponents of these non-linear modifications ask why the

Schrödinger equation, which seems to be the most fundamental of these equations,

should be an exception. There are two branches of modifications, deterministic

and stochastic non-linear equations.
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4.1.1 Deterministic Non-Linear Modifications

There exist a small number of proposed deterministic non-linear Schrödinger

equations. In this section we introduce two of these theories as a brief intro-

duction, but it should be noted that other deterministic non-linear theories have

been proposed. The first is the logarithmic Schrödinger equation from Bialynicki-

Birula [78],

ih̄
∂

∂t
ψ(xxx, t) =

[
− h̄2

2m
∇2 + V (xxx, t)− b ln

(
|ψ(xxx, t)|2an

)]
ψ(xxx, t) (4.1.1)

where a is an arbitrary real and positive constant with dimensions of length, n is

the dimensionality of the configuration space, and b is a real universal constant

with an upper limit of 4× 10−10eV.

By following Weinberg [79], we find a non-linear equation for wave functions

of discrete variables, which we call k, as,

i
dψk
dt

=
∂h(ψk, ψ

∗
k)

∂ψ∗k
(4.1.2)

where h is a real function satisfying the requirement that for any complex λ,

h(λψk, ψ
∗
k) = h(ψk, λψ

∗
k) = λh(ψk, ψ

∗
k) (4.1.3)

thus ensuring that if ψk is a solution of Eq. (4.1.2), then λψk is also a solution.

By considering the two component (k = 1, 2) 9Be+ ion without a time-varying

external field, Weinberg derived the following equation for the function h,

h = nh̄(a) (4.1.4)

where n = |ψ1|2+|ψ2|2 is the norm and h̄(a) = 2εa2 is a real function of the

variable a = |ψ2|2/n and the term ε which has units of energy and is bounded by

the relation |ε|< 10−15eV.

There remains two major issues with these modifications. That is, determin-

istic non-linear modification can result in superluminal communication in direct

violation of special relativity. This results from the density matrices of two ini-

tially equivalent statistical mixtures becoming inequivalent after after evolution

due to the non-linearity. Different, but equivalent mixtures can be prepared at a
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distance. For example, we can define two equivalent mixtures such that one den-

sity matrix can be used to describe both, ρ =
∑

iAi |ψi〉 〈ψi| =
∑

iBi |φi〉 〈φi|.
If we assume that mixtures of {|ψi〉} and {|φi〉} are particles travelling to one

observer from a distant point, and that they are entangled to two other mixtures

{|αi〉} and {|βi〉} travelling from the same point to another observer in the op-

posite direction. When the first observer measures either of the ensembles, the

collapse drives the observed ensemble for the second observer into one of the de-

fined ensembles. Because these ensembles are equivalent, the density matrix, and

all expectation values, are the same. However, should there be some determinis-

tic non-linearity, over time the density matrices of the two ensembles travelling

to the second observer will become inequivalent. As a result, appropriate mea-

surements will allow the second observer to determine which ensemble they have,

and thus which ensemble the first observer measured [75, 80]. Another issue is

the fact that stochasticisity seems to be necessary to explain the origins of the

probabilities that occur during measurement. For these reasons, investigations

around non-linear modifications tend to focus on stochastic modifications.

4.1.2 Stochastic Non-Linear Modifications

One of the more well known of these stochastic non-linear modifications is given

by Pearle [81]. In this system we replace the Schrödinger equation with a non-

linear equation during measurement.

Before the measurement, the combined micro-system and measurement appa-

ratus exists in an ensemble of state vectors |χk〉 each cosponsoring to a possible

state of the system which all have equal probability of being true. Immediately

after the interaction the state vector of the system takes on the form

|χk〉 =
∑
n

x1/2
n exp[iθn] 〈φn| (4.1.5)

where the amplitude terms xn are the same for all |χk〉 but the phase terms

θn are different. After the interaction, the non-linear Schrödinger equation will

drive all the amplitudes xn to 0 except one that is driven to 1 dependent on the

phase terms of the true |χk〉. A different starting |χk〉 can lead to different final
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states |φn〉. This is why we obtain different results as a consequence of repeated

measurements.

By assigning the probability distribution of the phases over the parameter

space, the Born rule is recovered. This probability must be put in by hand, and

should be chosen to recover the probability rule we want to emerge. This is a fun-

damental limit of this phenomenological model. There should be a fundamental

reason for the probability distribution to be the way it is, not simply to recover

the Born rule.

4.2 Spontaneous Collapse Models

There exists a specific class of modifications to quantum mechanics known as

Spontaneous Collapse Models. They form a dynamical reduction to the wave-

function by inducing spontaneous collapses of the wave-function all the time.

These ‘measurement-like’ collapse events occur for all particles regardless of whether

or not they are interacting with the environment, and regardless if they are single

atom systems, or a more complex system, like a macroscopic measurement device.

In order for a given collapse model to be an effective description of reality, it

must contain a few key properties [8].

• Non-linearity: The modifications must break the linearity of the Schrödinger

equation for macroscopic systems to ensure their localisation.

• Stochastic: Measurements of quantum systems lead to stochastic outcomes

distributed according to the Born rule. Any modification to standard quan-

tum theory must maintain this stochasticisty. This is also necessary to pre-

vent the non-linear terms from leading to super-luminal communication.

• No super-luminal signalling: In order to preserve the causal nature of space-

time, and maintain agreement with special relativity, any modification must

not allow for faster than light communication.

• Amplification: Any modification must not prevent the formation of super-

positions on the quantum scale, but must localise macroscopic systems. In
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order to account for this, there must be a mechanism that amplifies the

rate of the collapse events as the system size increases such that macro-

scopic superpositions are suppressed, but quantum superpositions are able

to last for sufficiently long time scales.

From here we cover a few examples of collapse models discussing their formal-

isation and how this leads to a collapse.

4.2.1 A Simple Example, The QMUPL Model

We begin by discussing a simplified example of a collapse model known as the

Quantum Mechanics with Universal Position Localisation (QMUPL) model as

described in [82]. In one dimension, the universal dynamics is represented by a

stochastic differential equation,

dψt =

[
− i
h̄
Ĥdt+

√
λ(x̂− 〈x̂〉t)dWt −

λ

2
(x̂− 〈x̂〉t)2dt

]
ψt (4.2.1)

where x̂ is the position operator, 〈x̂〉t is the expectation value of the position at

time t, and Wt is a standard Wiener process describing the noise field as a random

walk of the amplitudes of each definite state driving the collapse mechanism. We

also define the collapse constant,

λ =
m

m0

λ0 (4.2.2)

as proportional to the mass of the particle m. Here, m0 is the mass of one nucleon,

and λ0 measures the collapse strength.

For a single Gaussian state of a free particle, the wave function is described

by,

ψt(x) = exp
[
−at(x− x̄t)2 + ik̄tx+ γt

]
(4.2.3)

where the functions at and γt are complex functions of time, and the mean position

and mean momentum x̄t and k̄t are real valued functions of time. For this single

Gaussian case, the function of γt can be omitted as a normalisation factor. The
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remaining equations are then found by solving,

dat =

[
λ− 2ih̄

m
(at)

2

]
dt (4.2.4)

dx̄t =
h̄

m
k̄tdt+

√
λ

2 Re[at]
dWt (4.2.5)

dk̄t = −
√
λ

Im[at]

Re[at]
dWt. (4.2.6)

By noting that the spread in momentum and position of the Gaussian wave

function is

σq(t) =
√
〈q2〉 − 〈q〉2 =

1

2

√
1

Re[at]
(4.2.7)

σp(t) =
√
〈p2〉 − 〈p〉2 = h̄

√
Re[at]2 + Im[at]2

Re[at]
(4.2.8)

and then by solving Eq. (4.2.4) we find the spreads in position and momentum

are given by,

σx(t) =

√
h̄

mω

cosh(ωt+ ϕ1) + cos(ωt+ ϕ2)

sinh(ωt+ ϕ1) + sin(ωt+ ϕ2)
(4.2.9)

σp(t) =

√
h̄mω

2

cosh(ωt+ ϕ1)− cos(ωt+ ϕ2)

sinh(ωt+ ϕ1) + sin(ωt+ ϕ2)
(4.2.10)

where

ω = 2

√
h̄λ0

m0

(4.2.11)

and the functions ϕi are functions of the initial conditions. These spreads do not

increase indefinitely, but reach asymptotic values,

σx(∞) =

√
h̄

mω
(4.2.12)

σp(∞) =

√
h̄mω

2
(4.2.13)

such that σx(∞)σp(∞) = h̄/
√

2, close to the Heisenberg limit. This results

from the standard Hamiltonian causing the wave function to spread, while the
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reduction terms try to localise the wave function. These two features compete

against each other until an equilibrium is reached.

In the case that we have a superposition of two positional Gaussian states,

our wave function is described by,

ψt(x) =ψ1t(x) + ψ2t(x)

= exp
[
−a1t(x− x̄1t)

2 + ik̄1tx+ γ1t

]
+ exp

[
−a2t(x− x̄2t)

2 + ik̄2xx+ γ2t

] (4.2.14)

If we define the distance between the two pointer states in position and mo-

mentum space as Xt = x̄+
t − x̄−t and Kt = k̄+

t + k̄−t , we can use them in a set of

linear deterministic differential equations,

d

dt

(
Xt

Kt

)
=

(
−A1(t) h̄/m

−A2(t) 0

)
·

(
Xt

Kt

)
(4.2.15)

where in the limit of t→∞, the 2× 2 matrix A(t) becomes

A(∞) =

(
−ω h̄/m

−2λ 0

)
. (4.2.16)

From this we can determine that the distances Xt and Kt tend to 0. That is, the

Gaussian wave functions converge towards each other.

The collapse occurs as a result of the measure of one of the states ψ1,2(x)

becoming rapidly small compared to the other such that one component effectively

vanishes. We can define the relative damping of the components as,

Γt = Re[γ1t]− Re[γ2t] (4.2.17)

which satisfies the stochastic differential equation,

dΓt = λX2
t tanh(Γt)dt+

√
λXtdWt (4.2.18)

that can be solved under the initial condition Γ0. From here we can derive the
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probability that the state will finish in either of the states ψ1 or ψ2 to be,

P1 ≈
1

2
[1 + tanh Γ0]

=
|ψ1,0|2

|ψ1,0|2+|ψ2,0|2
(4.2.19)

P2 ≈
1

2
[1− tanh Γ0]

=
|ψ2,0|2

|ψ1,0|2+|ψ2,0|2
(4.2.20)

which recovers the Born rule.

4.2.2 GRW Model

Formulated in 1986 by Ghirardi, Rimini, and Weber [83], the GRW theory at-

tempts to present a unified dynamical description that simplifies to standard

quantum mechanics for sufficiently small systems while maintaining a classical

descriptions of large objects. It introduces a localisation process that occurs at

random times. The probability of such an event taking place in the time interval

dt is λGRWdt. This provides a modification to the usual von Neumann equation

Eq. (3.1.21) for a single particle,

∂

∂t
ρ̂(t) = − i

h̄
[Ĥ, ρ̂(t)]− λGRW (ρ̂(t)− T [ρ̂(t)]) (4.2.21)

where the function T [ρ̂(t)] describes the localisation process driving pure states

into statistical mixtures matching the Born rule. In coordinate representation,

the second term in Eq. (4.2.21) is,

λGRW 〈x̂| (ρ̂− T [ρ̂]) |ŷ〉 = λGRW

(
1− exp

[
−α(x− y)2

4

])
〈x̂| ρ̂ |ŷ〉 (4.2.22)

where λGRW is the rate at which the localisation events occur, and 1/
√
α is the

localisation distance.

It can often be advantageous to separate the centre of mass motion of the

composite system and the individual quantum particles that make them up. In

order to achieve this, we can assume that the localisation process, described by

T [ρ̂(t)] occurs individually for each particle in the system. Considering a system
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of N particles that are each affected by the localisation process with a frequency

λ
(i)
GRW , we can modify Eq. (4.2.21) to be,

∂

∂t
ρ̂(t) = − i

h̄
[Ĥ, ρ̂(t)]−

N∑
i=1

λ
(i)
GRW

(
ρ̂(t)− T (i)[ρ̂(t)]

)
. (4.2.23)

By separating out the center of mass and and internal motion Hamiltonians, Ĥx

and Ĥr respectively, we find Eq. (4.2.23) becomes,

∂

∂t
ρ̂(t) = − i

h̄

(
[Ĥx, ρ̂(t)] + [Ĥr, ρ̂(t)]

)
−

N∑
i=1

λ
(i)
GRW

(
ρ̂(t)− T (i)[ρ̂(t)]

)
(4.2.24)

where T (i)[. . .] contains contribution from the center of mass motion and the

relative motion of the constituent particles. By taking the trace of this over the

internal motion, we recover exactly Eq. (4.2.21) with λGRW =
∑N

i=1 λ
(i)
GRW . This

gives us the amplification mechanism we need. As the system increases in size,

the rate of collapse increases.

4.2.3 Diósi-Penrose Model

In 1987 Diósi produced a stochastic modification to quantum mechanics based

on gravity induced collapse [84]. By introducing a gravity dependant white-noise

term, the Von Neumann master equation is modified to be,

∂tρ̂t = − i
h̄

[Ĥ, ρ̂t]−
G

2h̄

∫∫
[f̂(rrr), [f̂(rrr′, ρ̂t]]

drd3r′

|rrr − rrr′|
(4.2.25)

where G is the usual Newtonian gravitational constant, and f̂(rrr) is the mass

density operator of the system. From here, we can introduce the characteristic

damping time,

[τd(x, x
′)]−1 =

G

2h̄

∫∫
[f(rrr|x)− f(r′r′r′|x′)]2d

3rd3r′

|rrr − rrr′|
(4.2.26)

where the mass density at the point rrr is given by f(rrr|x). As the distance between

the positions x and x′ decrease, the damping time increases, tending to τd = ∞
when the positions coincide, i.e. when x = x′.

Chapter 4 Shaun J. Laing 59



Chapter 4 – Collapse Models

A similar model of gravitational collapse was independently conceived of by

Penrose [85, 86]. In this formulation, Penrose considers a superposition of the

states |α〉 and |β〉. These states both have the energy E,

i
∂ |α〉
∂t

= E |α〉 i
∂ |β〉
∂t

= E |β〉 . (4.2.27)

In a standard quantum superposition, i.e. ignoring gravity, where |ψ〉 = a |α〉 +

b |β〉, the total state will also have the same energy

i
∂ |ψ〉
∂t

= E |ψ〉 . (4.2.28)

By introducing the effect of gravity the differential operator ∂/∂t corresponds to

the action of a Killing vector representing the time displacement of stationarity

for each state. In this case, the Killing vector refers to a vector field that moves

the Schwarzchild metric by an amount dt but does not change the metric.

In general, the Killing vector for each state is different. However, the Schrödinger

equation applies to each state and the superposition of the states. This is at odds

with the general relativity view point. Penrose thus suggests taking an approxi-

mate point-wise identification between the two space-times arising from the two

states. This leads to an energy uncertainty in the superposition EG which is

considered a fundamental aspect of the superposition. From the Heisenberg un-

certainty principle, we find that h̄/EG is the rate at which the superposition

decays, equivalent to Diósi’s τd.

4.2.4 Continuous Spontaneous Localisation

The Continuous Spontaneous Localisation (CSL) model, originally described in [87],

is the most advanced and well studied collapse model. For this reason, it will be

the focus of our simulations, although in principle our simulations are general

enough to work for any collapse model that can be described as manifesting as a

decoherence term.

In the mass proportional form derived by Pearle and Squires [88] we have a
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differential equation similar to the form of Eq. (4.2.1),

d

dt
|ψ〉t =

[
− i

h̄
Ĥdt+

√
γ

m0

∫
[M(xxx)− 〈M(XXX)〉t]dWt(xxx)dxxx

− γ

2m2
0

∫
[M(xxx)− 〈M(xxx)〉t]2dtdxxx

]
|ψ〉t . (4.2.29)

Here we have used the standard Hamiltonian Ĥ, a reference mass m0 often chosen

to be the mass of one nucleon, the coupling constant γ that sets the strength of

the decoherence term, and an ensemble of Wiener processes for each point in

space Wt(xxx). We have also used the smeared mass density operator,

M(XXX) =
∑
j

mjNj(xxx) (4.2.30)

Nj(xxx) =

∫
g(yyy − xxx)α†j(yyy)αj(yyy)dyyy (4.2.31)

where α†j(yyy) and αj(yyy) are the creation and annihilation operators for particle of

type j at the position yyy. The smearing function is given by,

g(xxx) =
exp[−xxx2/2r2

c ]√
2πrc

(4.2.32)

where rc = 1/
√
α is the localisation distance.

The collapse is governed by the density number operators α†j(yyy)αj(yyy) which

means that superposition of different numbers of particles in different locations are

suppressed. This is the second-quantised version of collapsing the wave-function.

Second quantised collapse models are formulated in the language of quantum

field theory and allow us to work with systems of indistinguishable particles. In

position representation, the suppression of the off diagonal elements of the matrix

is given by,
d

dt
〈xxx′| ρt |xxx′′〉 = −Γ(xxx′,xxx′′) 〈xxx′| ρt |xxx′′〉 (4.2.33)

with decay function,

Γ(xxx′,xxx′′) =
γ

2

N∑
i,j=1

[
G(xxx′i − xxx′j) +G(xxx′′i − xxx′′j )− 2G(xxx′i − xxx′′j )

]
(4.2.34)

Chapter 4 Shaun J. Laing 61



Chapter 4 – Collapse Models

where the N is the number of nucleons in the system, an approximation allowed

because the effect of electrons are negligible in comparison to that of nucleons.

We also have the function,

G(xxx) =
exp[−xxx2/4r2

c ]

(4πr2
c )

3/2
. (4.2.35)

We find that for a single nucleon, Eq. (4.2.34) reduces to,

Γ(xxx′,xxx′′) =
γ

(4πr2
c )

3/2

(
1− exp

[
−|x
xx′ − xxx′′|2

4r2
c

])
(4.2.36)

which is equivalent to the one particle GRW collapse term in Eq. (4.2.22) [8].

Chapter 4 Shaun J. Laing 62



Chapter 5

Interferometric Tests of Collapse

Models

The values of the constants of the collapse models discussed in the previous

chapter, such as the rate and length scale λc and rc in CSL, must be determined

experimentally. A matter wave interferometer is an effective tool to probe the

superposition of massive objects which we can use to put bounds on the values

of the model parameters. Similar interferometry techniques have often been used

to test the wave nature of various phenomena, from Thomas Young proving the

wave nature of light [89], to the verification of the de Brogile wavelength using

scattered electrons [90]. The work in this chapter primarily follows the discussion

given in [91]. However, we begin by briefly discussing non-interferometric tests

of CSL. We then introduce the theory of the Talbot interferometer and extend

this into the Mie regime. Section 5.4.3 provides new contributions including the

polarisation of scattered light in the scattering decoherence in the grating.

5.1 Non-Interferometric Tests of Collapse Mod-

els

Non-interferometric tests measure the collapse noise of a system. This is a mod-

ification that results in Brownian motion in addition to the standard quantum

dynamics. Various non-interferometric experiments aim to detect this Brownian
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motion and use this to inform the bound of collapse models. This results in

exclusion plots of the type given in Fig. 5.1.
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Figure 5.1: A plot of the CSL parameter space showing regions excluded by var-

ious non-interferometric experiments reproduced from [9]. The shaded exclusion

regions are discussed in the main text. The shaded grey region is the theoretical

lower bound for the CSL parameters. It ensures that macroscopic systems are

localised sufficiently quickly. These bounds are chosen to ensure that a 10µm ra-

dius graphine disk collapses in 0.01s, ensuring that the smallest object the human

eye can realise is localised within the time resolution of the eye.

The Yellow region of Fig. 5.1 is found by measuring the increase in internal

energy of a system due to the collapse noise. CSL predicts an energy gain rate of

dE

dt
=

3

4

λch̄
2m

r2
cm

2
0

(5.1.1)

where m0 is the mass of a nucleon and m is the total mass of the particle. By

dividing by the mass we find the energy gain rate per unit mass. Low temperature

experiments are able to reduce their heating rates to 10−10W/kg with a residual

heating from unknown sources at 10−11W/kg. This corresponds to a maximum

value of λc = 3.1× 10−11Hz at rc = 10−7m [92].
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We find the bounds in red in Fig. 5.1 by considering the diffusion in position

of a cloud of cold atoms [9, 93]. CSL predicts an increase to the heating rate

of particles given by Eq. (5.1.1) which manifests in a cloud of cold atoms as an

increase to the spread of the cloud equal to

〈x̂xx2〉t = 〈x̂xx2〉QM
t +

λch̄
2

2r2
cm

2
0

t3. (5.1.2)

where 〈x̂xx2〉QM
t is the expansion predicted by standard quantum mechanics. Ex-

periments are able to cool clouds of 87Rb atoms down to the temperatures in the

pK range [94]. By measuring the standard deviation of the gas cloud after it has

been allowed to expand for a short time and comparing this data to Eq. (5.1.2)

with various values of λc and rc we find an upper bound to λc of 5.1× 10−8Hz for

rc = 10−7m.

We can also infer the collapse noise from anomalous noise in optomechanical

systems. We can describe the noise spectrum of a mechanical resonator observed

by a light field as

SDNS(ω) = SOPTO(ω) + SENV(ω) + SCM (5.1.3)

where SOPTO(ω) is the standard optomechanical contribution, SENV(ω) is the

contribution from environmental sources, and SCM is the residual noise from the

collapse model. There are three main classes of systems that can be used to test

collapse models. First are the cantilever experiments, shown in green in Fig. 5.1,

where the motion of a ferromagnetic sphere attached to a silicon cantilever is

observed. The second are various gravitational wave detectors shown in blue in

Fig. 5.1. The final type are levitated systems, where the motion of a levitated

sphere is observed, shown in purple in Fig. 5.1 [9].

The Brownian motion induced by the collapse noise accelerates particles caus-

ing them to radiate if they are charged [95]. The rate of emission of photons with

energy E is found from

dΓ

dE
= Natoms(N

2
A +NA)

λch̄e
2

4π2ε0m2
0r

2
cc

3E
(5.1.4)

where Natoms is the number of atoms of atomic number NA.
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The heating effects of cosmological bodies, such as Neutron stars and Neptune,

can also be used to estimate the bounds on collapse models [96]. Assuming

that the thermal emission of radiation, described by the Stefan-Boltzmann law is

balanced by the heading from CSL, we find an estimate of the collapse rate given

by,

λc =
16R2m2

0πr
2
cT

4σ

3mh̄2 (5.1.5)

where T is the black-body temperature, σ is Stefan’s constant equal to 5.6 ×
10−8W m−2K−4, R is the radius of the body, and m is its mass.

The tests of collapse models, that are discussed above, are useful tools for im-

posing bounds on potential collapse models. However, for a more direct bound,

we must directly probe the superposition of macroscopic scale objects. The re-

mainder of this chapter introduces a Talbot style interferometer with a phase

grating created by a standing wave laser beam. We build the theory of a Talbot

interferometer using a single, optically trapped and cooled particle, as a coherent

source. Then we extend this theory beyond the point-like approximation to allow

spherical particles in the Mie regime and apply the effects of known decoherence

sources and CSL to the final interference pattern. Our theory is used to produce

simulations that can be analysed via a Bayesian approach in the next chapter to

inform later experiments.

5.2 Talbot-Lau Interferometry

In 1836, Talbot observed a self-imaging effect of periodic structures in near-field

diffraction [97]. That is, the image of the grating will be repeated at regular

intervals of length, called the Talbot Length LT = d2/λ, where d is the grating

period and λ is the incident wavelength. This self-image is off-set by half a period

when the distance is an odd integer multiple of LT and reproduces exactly for

even multiples of LT [98] and is shown in Fig. 5.2.

A Talbot interferometer can be simply described by a periodic grating a dis-

tance L1 from a point source and a screen a distance of L2 after the grating. In

the paraxial approximation, this grating introduces a set of wave vectors each

separated by the diffraction angle λ/d. In the near-field, these diffraction orders
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Figure 5.2: The interference pattern from a periodic grating with 10 slits. Near

the grating on the left, we see the near-field Talbot effect and the characteristic

self-imaging feature. This image is reproduced from the supplementary of [99].

overlap and are able to interfere with each other. A grating that extends infinitely

in the x direction can be described by an amplitude transmission function,

t(x2) =
∞∑

j=−∞

bj exp
[
2πij

x2

d

]
(5.2.1)

where x2 is the position on the grating. We have used the eikonal approximation

which treats scattering problems as differential equations, in this scenario it allows

us to find the transmission functions by integrating over straight lines. A Fresnel-

Kirchoff integral then gives the intensity of the pattern at some point x3 on the

screen,

IT (x1, x3) ∝
∣∣∣∣∫ t2(x2) exp

[
2π

λ
i(l1 + l2)

]
dx2

∣∣∣∣2 (5.2.2)

where l1 =
√
L2

1 + (x2 − x1)2 and l2 =
√
L2

2 + (x3 − x2)2 are the distances tra-

versed by the light ray originating at x1, passing through the grating at x2, and

arriving on the screen at x3.

A Talbot-Lau set up, as shown in Fig. 5.3, works by replacing the point source

and screen by gratings with periods d1 and d2 respectively. The first grating is
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illuminated by an uncollimated particle beam and acts as a spatially incoherent

source with an intensity given by,

|t1(x1)|2=
∞∑

l=−∞

al exp

[
2πil

x1

d1

]
(5.2.3)

where the coefficients al ensures symmetry for the components around l = 0 and

that the l = 0 component is equal to 1 thus, the imaginary parts of each coefficient

cancel out for ±l. The detector captures particles from a wide area and thus has

poor spatial resolution. To account for this, the third grating is moved through

a distance x3s to produce a periodic detection function determined by the flux

transmission function,

|t3(x3 − x3s)|2=
∞∑

n=−∞

cn exp

[
2πin

x3 − x3s

d3

]
. (5.2.4)

The final detection pattern is then a function of the translation of the third

grating [100],

STL(x3s) ∝
∫
|t3(x3 − x3s)|2ITL(x3)dx3 (5.2.5)

where

ITL(x3) ∝
∫
|t1(x1)|2IT (x1, x3)dx1. (5.2.6)

Such a set-up can be applied to C70 fullerene molecules [10]. This experiment

was performed with free-standing gratings made of gold. As the particle gets

larger, the distance between its surface and the walls of the grating decrease.

This leads to a deviation in the potential from the eikonal approximation and

more realistic results using the full Casimir-Polder potential [101, 102]. Particles

passing through the grating are then likely to suffer attractive forces when they

get too close to the walls leading to many of them being removed from the beam.

The grating then risks becoming clogged with particles from the beam further

deviating from the given theory. The result of this is that the interferometer can

only work with very specific de Broglie wavelengths for the particle beam [103].

5.2.1 Laser Gratings

A viable solution to this is to replace the second material grating with a retro-

reflected coherent laser beam creating a standing wave polarised in the x direction
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Figure 5.3: A Talbot-Lau interferometer set up. A coherent sum of all paths (four

are shown) from each point x1 to x3 gives the interference effect. The grating x3

can move to create a position dependant signal on the detector.

with a function EEE = 2E0 sin(kz) cos(ωt)x̂xx. This creates a periodic variation in the

electric field amplitude that couples to the particle’s polarisability. The resulting

shift in energy leads to a periodic phase shift in the matter-wave beam. In

the Fourier transform picture, this manifests as the particles acquiring integer

multiples of the grating momentum pd = 2h/λG to the transverse motion of the

particle beam. The different diffraction orders are then able to interfere with each

other leading to a measurable interference pattern after some free-evolution [104].

In a laser grating, the coherent phase shift effect is governed by the integral

over the electric field potential. The position dependant phase shift is then given

by [11,105],

φ(z) =
1

h̄

∫
V (z, t)dt = φ0 cos2 kz (5.2.7)

where V (z, t) = PPP ·EEE and PPP = αEEE is the polarisation of the particle due to the

electric field and k = 2π/λG is the wave-number of the grating laser.

Using a laser as a grating introduces the complexity that we must consider

the possibility of grating photons being either absorbed or scattered from the

particle. If we consider the absorbed photons and define the photon absorption

rate as,

Γabs(z, t) =
σabs

hν
|EEE(z, t)|2 (5.2.8)
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where σabs is the absorption cross section, we find the position dependant number

of absorbed photons to be,

nabs(z) =

∫
Γabs(z, t)dt = nabs

0 cos2(kz). (5.2.9)

The equivalent equations for scattering are,

Γsca(z, t) =
σsca

hν
|EEE(z, t)|2 (5.2.10)

nsca(z) =

∫
Γsca(z, t)dt = nsca

0 cos2(kz) (5.2.11)

where σsca is the scattering cross section [11,104].

5.3 A Single Source Talbot Interferometer

Most Talbot interferometers use a Talbot-Lau set-up. This uses three gratings.

The first creates coherence in the particle beam. The second creates a phase shift

generating the diffraction pattern. And the final grating is shifted to measure the

particle transmission as a function of this shift. However, by using a single particle

prepared with sufficient coherence, and with large enough spatial separations to be

detectable by optical means, allows us to do away with the first and third grating.

The interferometer, as shown in Fig. 5.4, discussed here uses the derivation found

in the supplementary of [11] to inform the derivation of the interference pattern

that will be observed from the single source Talbot interferometer. In order to

reach the masses necessary to constrain the parameters of collapse models, we

must run the experiment for long times. To achieve this we will need to isolate the

system from the environment very well, and have a long drop for the particle to

fall. Both of these issues are solved by performing the experiment in space, such as

in the proposed MAQRO mission [106]. This allows us to reach low environmental

temperatures and low pressures to minimise the effects of decoherence. The low

gravity means that we do not have to build impractically large drop towers to

reach the necessary free-fall times to witness interference of matter-waves of large

scale objects.

There are a number of possible ways to load the particle into the optical

trap. The most simple way is to suspend the particles in an ethanol solution
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Figure 5.4: Diagram of the proposed interferometer from [11]. (a) a particle is

trapped and cooled to 20mK in a harmonic potential then released. (b) the par-

ticle passes a phase grating provided by a retro-reflected standing wave laser. (c)

after another free-fall the particle arrives on a glass slide where (d) a microscope

records its position.

and, using commercially available medical nebulisers, spray the particles into the

trap [107]. This is an effective technique in earth based systems. The particles

can be sprayed into the vacuum chamber, and when one is caught, the chamber is

sealed and pumped down. Methods like this have the issue of needing to work in

normal air pressures, they also introduce droplets of the suspension liquid in the

chamber potentially adding to the background residual gas. To load the particle in

vacuum, which is the more likely case for space based missions such as MAQRO,

we have two options. The first is to use a laser-induced desorption technique.

The particles are initially attached to a substrate above the trap. A pulsed laser

is then focused to the back of the substrate inducing acoustic shock-waves that

eject particles from the substrate [108]. This has been show to work at pressures

as low as 1mbar. Alternately, it is possible to use a piezoelectric transducer for

particle loading in vacuum [109]. In this method, a glass substrate containing

the particles to be trapped is clamped to a piezoelectric ring that is driven at

the resonant frequency of the glass. This shaking releases nano particles that

can be trapped. Piezo launching has been widely used to trap particles ranging

from 170nm to 3µm in diameter [110–112] as well as clumps of particles [113]. It
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has been demonstrated that this method works in vacuum down to pressures of

0.6mbar. Due to the lower pressures that it works in, the piezoelectric method of

particle loading is perhaps the most efficient method to be used.

Using one of the techniques discussed in section 2.3, we are able to cool the

centre of mass motion of a massive particle to a state sufficiently cool enough

to provide us with the necessary coherence. After interaction with the laser

grating, the particle’s location can be measured in a number of different ways.

One possibility is to deposit the particle onto a glass slide and determine its arrival

location via a microscope [11]. We can also use interferometric means of detecting

the particle’s position after the interferometer. When the particle is illuminated

by the same laser used for the initial trapping and cooling, it will scatter light

that interacts with the coherent laser light. The intensity of the measured light

will vary with the position of the particle which can be used to estimate the

particle’s position [114]. More recent proposals for measuring the position of the

particle include a self-interference method [115]. In this method the particle is

located between a detector and a mirror. The light scattered from the particle

passes through one of two lenses. The image created by one lens is reflected back.

This reflected image interferes with the directly scattered light and the other lens

focuses both fields on a detector. The phase of the interference, and thus the

measured intensity, is a function of the distance between the particle and the

mirror. By simply holding the mirror stationary, the interferometric signal is a

function of the particle’s position. To maximise the re-usability of the particle,

thus ensuring the same mass between runs, it would be most advantageous to use

an interferometric method of position detection.

This process can be repeated N times, with identically fabricated particles

or even by reusing the same particle, to build up the interference pattern. This

pattern can then be compared to the pattern we would expect from a more

classical treatment to determine how ‘quantum’ the particle behaves. Alternately,

we can use a Bayesian treatment, which will be discussed in full in Chapter 6,

of the measured arrival locations to gain more information from each data point,

and to provide an objective measure as to how sure we are that we can rule out

a given classicalisation model.
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5.3.1 MAQRO Experiment

We envision a space-based platform on which these experiments would be per-

formed. Our simulations primarily use the conditions that would be present in the

proposed MAQRO experiment as described in [114]. This is a proposed medium-

sized space-based experiment first submitted in response to the 2010 ‘M3’ call of

the ESA as a part of the Cosmic Vision program. In this section we introduce

the MAQRO experiment and the conditions that our simulations will use.

The time scale for a given experiment is based on the Talbot time tT = md2/h

and so scales with the mass and grating period squared. In order to add any new

information to the bounds on a collapse model, we must use sufficiently massive

particles. Increasing the mass of the test particle necessitates a longer free-fall

time in order to create a clear interference pattern. For this reason it may be more

convenient to perform these experiments in space, where the particle remains

effectively at rest with respect to the apparatus. We also potentially have the

benefit of not having to pump down the apparatus to a low pressure to decrease

the effect of collisional decoherence, although the concept of having the platform

exposed to space remain a point of discussion. The experimental parameters we

have assumed for a ‘MAQRO-like’ experiment are given in Table 5.1.

The values chosen for the center of mass and internal temperatures are realis-

tic experimental values that have been reached in laboratory settings for particles

of similar sizes to the ones we are considering [51, 116]. We are able to achieve

the center of mass temperature via feedback cooling as described in section 2.3.2.

Although ground state cooling has been achieved [19,54], this remains a potential

challenge for a MAQRO-like experiment. In our simulations, we do not reach the

ground state of motion for the particle, this thermal state will still provides a suffi-

ciently coherent source for our experiments. This also prevents excessive internal

heating reducing the amount of black-body thermal emission, see section 5.5.2.

The environmental temperature of 20K is given in [114] as the maximum

temperature to minimise decoherence from black-body absorption of photons.

Although the temperature of space is approximately ten times lower than this

value, we note that the spacecraft on which the experiment is situated will emit

some amount of heat, so the value of 20K is a realistic value to choose here.
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Symbol Name Value

ρ Si particle density 2329kg m−3

λG Grating laser wavelength 2d = 354nm

ν Trapping frequency 200kHz

Tcom Initial center of mass temperature 20mK

Tint Initial internal temperature 25K

Tenv Environmental temperature 20K

Pg Residual gas pressure 10−13Pa

t1 First free-fall time 2tT

φ0 Phase parameter Chosen based on particle mass

t2 Second free-fall time Chosen based on particle mass

σz Gaussian Position Width
√
kBT/(4π2mν2

m)

σm Measurement Position Uncertainty σz + (10nm/100s)t

Table 5.1: Control parameters used in the MAQRO-like scenario. The values of

the free-fall time t2, and phase parameter φ0 are the control parameters and are

varied for each new experimental set-up, such as changing the particle mass.
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5.3.2 Initial State

In the first stage of the experiment, a dielectric nano-particle is trapped in and

optical trap. The centre of mass motion of this particle is cooled to TCM . We only

need to cool motion of the particle in the z-axis as we only consider the motion of

the particle in this direction. This assumption requires that the x and y motion

of the particle are separable from the z motion throughout the experiment, and

that the grating interaction does not depend on the x and y coordinates. This

can be achieved by aligning the grating laser to the z axis and using a sufficiently

wide spot area such that the particle is uniformly illuminated by the grating laser

over the duration of the laser pulse.

The optical trap that cools the particle can be described by a harmonic oscil-

lator model as discussed in section 2.2.1. Therefore, when the particle is released

from the trap, it will have a motional state that can be modelled by a thermal

harmonic oscillator [66],

〈x| ρ̂ |x′〉 = ψ(x)ψ∗(x) =

√
mνM
h̄π

tanh

(
h̄νM

2kBTCM

)
× exp

[
−mνM

4h̄
tanh

(
h̄νM

2kBTCM

)
(x+ x′)2 − mνM

4h̄
coth

(
h̄νM

2kBTCM

)
(x− x′)2

]
.

(5.3.1)

By inserting Eq. (5.3.1) into Eq. (3.2.2) and setting x = z+s/2 and x′ = z−s/2,

we can describe this state by the following Gaussian Wigner function of its one

dimensional motion,

w0(z, p) =
1

2πσzσp
exp

(
− z2

2σ2
z

− p2

2σ2
p

)
(5.3.2)

where where the standard deviations of the position and momentum are,

σz =

√
h̄

4πmνM
coth

(
hνM

2kBTCM

)
(5.3.3a)

σp =

√
πh̄mνM coth

(
hνM

2kBTCM

)
(5.3.3b)

and νM is the trap frequency [66]. For the realistic values considered here such

that hνM � kBTCM and cothx ≈ 1/x giving the form of σz given in Table 5.1,
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the Winger function given in Eq. (5.3.2) appears the same as a classical thermal

phase-space distribution in a harmonic oscillator. All of the diffraction effects

and all relevant decoherence mechanisms can be contained within this phase-

space description. However, it is more convenient to use a characteristic function

representation which is defined as the Fourier transform of the Wigner function,

χ(s, q) =

∫
w(z, p)ei(qz−ps)/h̄dzdp. (5.3.4)

As the particle is released from the optical trap its characteristic function reads,

χ0 = exp

(
−
σ2
zq

2 + σ2
ps

2

2h̄2

)
. (5.3.5)

We find that for realistic experimental values, the width of the particle’s momen-

tum spread is much larger than the momentum unit of the grating laser Pd = h/d,

for the values νM = 200kHz and TCM = 20mK on a grating with 2d = 355nm, we

find that σp/Pd ≈ 104. As a result the initial state of the particle extends over

many grating periods. If we only look at the centre of the interference pattern

we can make the approximation that the distribution is flat, we are therefore

justified in using the expression,

χ0(s, q) ≈
√

2πh̄

σp
exp

(
−σ

2
zq

2

2h̄2

)
δ(s) (5.3.6)

where δ(s) is the Dirac delta function and approximates the Gaussian as arbi-

trarily narrow, which greatly simplifies our equations [11].

5.3.3 Propagation

While the particle is in free-fall, that is between the trap, grating pulse, and

position detection, the matter-wave of the particle will be allowed to evolve freely.

In an ideal system, we could represent this free evolution for a time t as a sheering

transformation in phase space of the form χt(s, q) = χ0(s − rt/m, q). However,

for a realistic description of the interferometer, we must consider the effects of

any external accelerations and all sources of decoherence.

The presence of an acceleration leads to the Hamiltonian,

Ĥ(t) =
P̂ 2

2m
+ma(t)z (5.3.7)
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Figure 5.5: The characteristic function Eq. (5.3.5) as the particle is released from

the trap

for motion in the z axis, where a(t) is the time dependant acceleration. We must

also consider any decoherence effects that take place during the particle’s free-

evolution. We describe the evolution of the particle’s state in the presence of

decoherence by the equation,

∂tρ = −i[Ĥ(t), ρ] + L(t)ρ (5.3.8)

where the first term is the pure quantum evolution and the second term includes

the effects of decoherence. Each source of decoherence that we consider will

add an extra time dependant Lindblad supperoperator L(t) which, in position

representation, takes the form,

〈z| Lρ |z′〉 = Γ(t)[g(z − z′)− 1] 〈z| ρ |z′〉 (5.3.9)

which describes random jump events 〈z| ρ |z′〉 → g(z − z′) 〈z| ρ |z′〉 taking place

with rate Γ(t) which may or may not have a time dependence. The spatial

resolution function of the decoherence is normalised such that g(0) = 1. Super

positions with a width z − z′ for which g ≈ 0 decohere with the full rate Γ(t).

In our phase-space picture, the decoherence effect is represented by a mo-

mentum averaging transformation. This transforms the characteristic function
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Figure 5.6: The characteristic function Eq. (5.3.10) after the matter-wave has

evolved for t1 = 2× 106s. We have ignored the effects of decoherence in this plot.

as,

χt(s, q) = χ0

(
s− qt

m
, q

)
exp

(
i

h̄
[q∆z(t)−∆p(t)s] +

∫ t

0

dτΓ(τ)
[
g
(
s− qτ

m

)
− 1
])

(5.3.10)

where the momentum and position shifts are given by,

∆p(t) = m

∫ t

0

a(t′)dt (5.3.11a)

∆z(t) =

∫ t

0

∆p(t′)/mdt′. (5.3.11b)

5.3.4 Grating Transformation and Interference Effect

After a free-evolution time t1 the particle is illuminated by a pulsed retro-reflected

laser to create a standing wave. This standing wave provides a modulation φ(z)

to the phase of the particle’s matter-wave which leads to an interference after

the grating. In position space, this position dependant phase shift has the effect
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Figure 5.7: The characteristic function Eq. (5.3.13) after the particle has evolved

for a time t1 = 2× 106s and interacted with the standing wave laser grating. We

have assumed the point-like approximation given in Sec. 5.4.1.

of multiplying the wave function by exp[iφ(z)] [104]. Because the characteris-

tic function is a Fourier transform, we are able to make use of the convolution

theorem that states [117, Eq. 9],

F [a× b] = {F [a] ∗ F [b]} (5.3.12)

The effect of the grating on the characteristic function is thus a convolution

expressed in terms of Talbot coefficients Bn(ξ),

χG(s, q)→
∑
n

B̃n

(s
d

)
χt

(
s, q + n

h

d

)
(5.3.13)

where d = λG/2 is the grating period determined by the wave length of the grating

laser λG. The Talbot coefficients contain all the coherent and decoherent effects

of the laser grating. A full treatment, in both the Rayleigh and Mie regimes, is

given in section 5.4.

After the grating pulse, the particle is allowed to freely evolve again for a time

t2. This is achieved in the characteristic function by applying the transformation

in Eq. (5.3.10) to Eq. (5.3.13). This results in the characteristic function where
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Figure 5.8: The characteristic function Eq. (5.3.14) after the particle has evolved

for times t1 = t2 = 2 × 106s and passed through the phase grating. We have

ignored all sources of decoherence in this graph for simplicity.

the particle’s position is measured becoming,

χt2(s, q) =
∑
n

B̃n

(
s

d
− qt2
md

)
exp

{
i

h̄
[q∆z(t2)−∆p(t2)s] +

∫ t2

0

Γ(t1 + τ)
[
g
(
s− qτ

m

)
− 1
]
dτ

}
× exp

{
i

h̄

[(
q + n

h

d

)
∆z(t1)−∆p(t1)

(
s− qt2

m

)]
+∫ t1

0

Γ(τ)

[
g

(
s− q t2 + τ

m
− n hτ

md

)
− 1

]
dτ

}
× χ0

(
s− q t1 + t2

m
− nht1

md
, q + n

h

d

)
(5.3.14)

We recover the density distribution of the final state of the particle, i.e. the

interference pattern, by projecting the position from the density matrix. This has

the same effect as computing the marginal distribution from the Wigner function

(see Eq. (3.2.4)). To find this from our characteristic function, we perform the

inverse Fourier transform over q holding s = 0 which retains the effect of the δ(s)
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in Eq. (5.3.6),

w(z) = 〈z| ρ |z〉 =
1

2πh̄

∫
χt2(0, q) exp

[
−iqz

h̄

]
dq

=
m√

2πσp(t1 + t2)

∑
n

exp

[
2πin

µd
(z − δz)

]
B̃n

(
nt2
µtT

)
exp

{
−1

2

[
2πnσzt2
d(t1 + t2)

]2
}

× exp

{∫ t2

0

Γ(t1 + τ)

[
g

(
nhτ

µmd

)
− 1

]
dτ +

∫ t1

0

Γ(τ)

[
g

(
nht2
µmd

t1 − τ
t1

)
− 1

]}
(5.3.15)

where the Talbot time tT = md2/h appears as a natural time scale for the ex-

periment. The resultant function is a periodic fringe pattern oscillating at the

geometrically magnified grating period D = µd, where µ = (t1 + t2)/t1. We also

have a shift in the fringe pattern that occurs in the presence of a time-dependant

homogeneous acceleration a(t) given by,

δz = ∆z(t1 + t2)−µ∆z(t1) =

∫ t1+t2

0

∫ t

0

a(τ)dτdt−µ
∫ t1

0

∫ t

0

a(τ)dτdt. (5.3.16)

However, we do not consider any accelerating being present in experiments, so

this is set to δz = 0. The final interference pattern can be further simplified

by using Euler’s formula eiθ = cos θ + i sin θ and by noticing that the Fourier

components are symmetrical about n = 0 and are identically equal to 1 when

n = 0 as discussed for Eq. (5.2.3). By also recalling that sin(−θ) = − sin(θ)

we can also remove the imaginary components, which will sum to 0. Finally, we

make the substitution

Rn = exp

{∫ t2

0

Γ(t1 + τ)

[
g

(
nhτ

µmd

)
− 1

]
dτ +

∫ t1

0

Γ(τ)

[
g

(
nht2
µmd

t1 − τ
t1

)
− 1

]}
.

(5.3.17)

This leave the final interference pattern as

w(z) =
m

A

[
1 + 2

∞∑
n=0

RnB̃n

(
ndt2
tTD

)
e
−2
(
nπσzt2
Dt1

)2
cos

(
2πnz

D

)]
(5.3.18)

where A =
√

2πσp(t1 + t2).
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5.4 Derivation of the Talbot Coefficients

In this section we derive the Talbot coefficients discussed in section 5.3.4. We start

by deriving the Talbot coefficients in the Rayleigh limit following the argument

given in the supplementary of [11]. Next we introduce the concepts of Mie theory

and apply this to extend the Talbot coefficients to particle in the Mie regime.

This application to Mie theory was first done in [105], however, we build upon

this work by considering the polarisation of the scattered light to provide a more

accurate description of the decoherence in the grating.

The electric field of the grating couples to the polarizability of the particle

and induces a phase shift given by φ(z). The effect of the grating is expressed in

terms of Talbot coefficients as described in Eq. (5.3.13). The coherent effects of

the grating are given by,

Bn(ξ) = Jn(φ0 sin πξ) (5.4.1)

where Jn(x) is the Bessel function of the first kind, and φ0 is the amplitude of

the phase shift. The phase shift is found by integrating the optical potential the

particle feels over the pulse duration as done in Eq. (5.2.7).

5.4.1 Talbot Coefficients in the Rayleigh Regime

For a point-like dipole, the real part of the particle’s polarizability determines

the optical potential in the presence of the standing wave electric field EEE(z, t).

Under the assumption that the laser spot area is much larger than the size of

the particle, such that the laser can be approximated as a plane-wave during the

duration of the laser pulse, and that the laser propagates in the z direction, the

potential is given by [11,104],

V (z, t) = −1

4
Re[α(ω)]|EEE(z, t)|2. (5.4.2)

where α(ω) is the frequency dependant polarisability [118],

α(ω) = 4πε0R
3 ε(ω)− 1

ε(ω) + 2
. (5.4.3)
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Combining Eqs (5.2.7) and (5.4.2), we find the magnitude of the phase shift

as,

φ0 =
2 Re[α(ω)]

h̄cε0

EG
aG

(5.4.4)

where the pulse energy is EG =
∫
PG(t)dt, the integral of the laser power over

the pulse duration, and the area of the laser is aG. The quantity EG/aG is the

fluence and determines the amount of energy that passes though a unit area. Our

assumption that the laser’s waist is much wider than the radius of the particle

means the fluence is constant across the particle.

We must also consider a number of incoherent effects taking place whilst the

particle is illuminated by the grating laser to fully describe the effect on the

matter wave. Whilst in the grating, the particle will absorb photons from the

beam which will transfer momentum to the particle in units of photon momentum

Pd. The stochastic absorption process is governed by the master equation [119],

Labsρ = γabs

[
cos
(πx
d

)
ρ cos

(πx
d

)
− 1

2

{
cos2

(πx
d

)
, ρ
}]

(5.4.5)

where the absorption rate γabs determines the mean number of absorbed photons

nabs
0 , which can be found by solving Eq. (5.2.9) with the Rayleigh absorption

cross-section σabs(ω) = ω Im[α]/cε0.

nabs
0 =

4σabs

hc
λG
EG
aG

. (5.4.6)

Because the laser pulse is only active for a short time, 10ns [11], we can

neglect the motion of the particle during the pulse and integrate (5.4.5) explicitly

to find the Fourier coefficients of the absorption mask in terms of modified Bessel

functions as,

R(abs)
n (ξ) = exp

[
−n

abs
0

2
(1− cos πξ)

]
In

[
nabs

0

2
(1− cos πξ)

]
. (5.4.7)

We can then describe the total effect of the grating by convolving the coherent

and absorption effects

B̃n

(s
d

)
=
∑
k

Bn−k

(s
d

)
Rk

(s
d

)
(5.4.8)
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to arrive at our total Talbot coefficients

B̃n(ξ) = en0 sin2(πξ/2)
∑
k

Jn−k(φ0 sinπξ)Ik

{
nabs

0

2
[1− cos(πξ/2)]

}
. (5.4.9)

By noting that J−n(x) = Jn(x) and using Graf’s addition theorem for mixtures

of modified and regular Bessel functions, which in this case reads [120],(
a− b
a+ b

)n/2
Jn(− sgn(b+ a)

√
a2 − b2) =

∑
k

Jk(a)Ik+n(b) (5.4.10)

we can simplify the Talbot coefficients to be

B̃n(ξ) = e−ζabs(ξ)

[
ζcoh(ξ) + ζabs(ξ)

ζcoh(ξ)− ζabs(ξ)

]n/2
Jn

[
sgn{ζcoh(ξ)− ζabs(ξ)}

√
ζ2

coh(ξ)− ζ2
abs(ξ)

]
(5.4.11)

where we have made the substitutions ζcoh(ξ) = φ0 sin πξ and ζabs(ξ) =
nabs
0

2
(1−

cosπξ).

If the effects of scattering are of any concern, they can be included by another

convolution with the scattering mask derived from the equivalent Lindblad term

as the absorption [119]

R(Sca)
n (ξ) = exp

[
−n

sca
0

2

(
1− 3 cos(πξ)

sin πξ − j1(πξ)

2πξ

)]
In

[
nsca

0

2

(
3

sin πξ − j1(πξ)

2πξ
− cosπξ

)]
(5.4.12)

where the mean number of photons is nsca
0 = σscaλε0

πRe[αp]
φ0 and the scattering cross-

section is σsca = (2π/λ)4|αp|2/6πε20. For the materials considered here, nsca
0 � 1 in

the point-like regime. Therefore the scattering effect is negligible. This, however,

does not continue to hold in the Mie regime.

5.4.2 Mie Theory

In order to put sufficiently low bounds on the collapse model we are testing, we

must use larger systems. For tests of CSL this means we must increase the mass of
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our particles. Increasing the mass of a spherical particle necessarily means that we

must increase it’s radius. The treatment to find the Talbot coefficients given the

the preceding section is only valid for particles whose radii is significantly smaller

than the wavelength of the grating laser. That is kR� 1. For particles with a size

parameter kR & 1 we can no longer use the Rayleigh approximation. Thankfully,

however, Mie theory provides us with exact solutions to the scattering problem

for particles of arbitrary size. In this section we follow the derivation of Mie

theory following the treatment given in [26]. We begin by finding a set of vector

harmonic functions which we can use to rewrite the electric field as a weighted

sum of these functions. Then we solve for the relevant expansion coefficients to

simplify the expression of the electric field. Finally, we use this formulation to

solve for the scattering amplitudes of each component of the scattered electric

field.

As we are interested in the scattering by a sphere we aim to rewrite the fields

in spherical polar coordinates. The fields must solve the Helmholtz equation,

∇2EEE + k2EEE = 0

∇2HHH + k2HHH = 0
(5.4.13)

where k = ω2εµ. They must also be divergence free,

∇ ·EEE = 0

∇ ·HHH = 0
(5.4.14)

and cannot be independent,

∇×EEE = iωµHHH

∇×HHH = iωµEEE.
(5.4.15)

We find that the spherical vector harmonics fulfil all necessary conditions,

MMM e,m,n = ∇× (rrrψe,m,n) (5.4.16a)

MMM o,m,n = ∇× (rrrψo,m,n) (5.4.16b)

NNN e,m,n =
∇×MMM e,m,n

k
(5.4.16c)

NNN o,m,n =
∇×MMM o,m,n

k
. (5.4.16d)
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Type First Kind Second Kind

Spherical Bessel Functions jn(x) yn(x)

Spherical Hankel Functions h
(1)
n (x) = jn(x) + iyn(x) h

(2)
n (x) = jn(x)− iyn(x)

Table 5.2: Spherical Bessel and Hankel functions.

These are extensions to the scalar spherical harmonics that are solutions to the

Laplace equation in spherical coordinates [121]. We use rrr as the radius vector

and we have the generating functions,

ψe,m,n = cosmφPm
n (cos θ)zn(kr) (5.4.17a)

ψo,m,n = sinmφPm
n (cos θ)zn(kr) (5.4.17b)

where zn(x) is any of the spherical Bessel functions given in Table 5.2, and

Pm
n (cos θ) are the Legendre functions of the first kind with degree n and order

m. These generating functions give us four vector spherical harmonic functions,

Any solution to the field equations can be expanded into an infinite series of

the equations (5.4.16). We can expand the electric field for an x-polarized wave

in spherical harmonics, EEEi = E0eeex exp[ikr cos θ] in our vector spherical harmonics

as,

EEEi =
∞∑
m=0

∞∑
n=m

(Be,m,nMMM e,m,n +Bo,m,nMMM o,m,n

+ Ae,m,nNNN e,m,n + Ao,m,nNNN o,m,n)

(5.4.18)

where the A and B coefficients are to be determined. From the orthogonality

between sinmφ and cosm′φ for all m and m′, we can say that the vectors MMM e,m,n

and MMM o,m,n are orthogonal. We also note that (NNN o,m,n,NNN e,m,n), (MMM o,m,n,NNN o,m,n),

and (MMM e,m,n,NNN e,m,n) are all mutually orthogonal sets of functions. From these

orthogonality conditions we can find expressions for the A and B coefficients.

We find that Be,m,n = Ao,m,n = 0 for all m and n, and the remaining coefficients
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vanish unless m = 1. This then leaves us with the following expansion coefficients,

Ae,1,n = −iE0i
n 2n+ 1

n(n+ 1)
(5.4.19a)

Bo,1,n = inE0
2n+ 1

n(n+ 1)
. (5.4.19b)

We can now fully describe the wave in terms of spherical harmonics,

EEEi =
∞∑
n=1

En(MMM
(1)
o,1,n − iNNN

(1)
e,1,n) (5.4.20)

where En = inE0(2n+ 1)/n(n+ 1) and we append the superscript (1) to the har-

monics whose radial component is dependant on the generating functions specified

by jn(x). If the field EEEi is incident on a homogeneous, isotropic sphere of radius

R and we apply the boundary conditions,

(EEEi +EEEs −EEEI)× eeer = 0 (5.4.21)

we can determine the internal EEEI and scattered EEEs fields,

EEEI =
∞∑
n=1

En(cnMMM
(1)
o,1,n − idnNNN

(2)
e,1,n) (5.4.22a)

EEEs =
∞∑
n=1

En(ianNNN
(3)
e,1,n − bnMMM

(3)
o,1,n) (5.4.22b)

where the superscript (3) specifies that the radial component of the relevant

generating function is determined by the spherical Hankel function h
(1)
n (x). For a

particle with a permeability µ equal to that of the surrounding medium, we find

the coefficients inside the particle to be,

cn =

√
εψn(x)ξ′n(x)−

√
εξn(x)ψ′n(x)

ψn(
√
εx)ξ′n(x)−

√
εξn(x)ψ′n(

√
εx)

(5.4.23a)

dn =
ψn(x)ξ′n(x)− ξn(x)ψ′n(x)

ψn(
√
εx)− ξ′n(x)ψ′n(

√
εx)

(5.4.23b)
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and the coefficients of the scattered functions are,

an =

√
εψn(
√
εx)ψ′n(x)− ψn(x)ψ′n(

√
εx)√

εψn(
√
εx)ξ′n(x)− ξn(x)ψ′n(

√
εx)

(5.4.24a)

bn =
ψn(
√
εx)ψ′n(x)−

√
εψn(x)ψ′n(

√
εx)

ψn(
√
εx)ξ′n(x)−

√
εξn(x)ψ′n(

√
εx)

(5.4.24b)

where ε is the relative permittivity of the particle, such that
√
ε = m is its

complex refractive index, and we have made use of the Riccati-Bessel functions,

ψn(ρ) = ρjn(ρ) (5.4.25a)

ξn(ρ) = ρh(1)
n (ρ). (5.4.25b)

We can now define the scattering, extinction, and absorption cross-sections

for a large particle,

σsca =
2π

k2

∞∑
n=1

(2n+ 1)(|an|2+|bn|2) (5.4.26a)

σext =
2π

k2

∞∑
n=1

(2n+ 1) Re[an + bn] (5.4.26b)

σabs = σext − σsca. (5.4.26c)

Finally we define the scattering matrix elements,

S1(θ) =
∑
n

2n+ 1

n(n+ 1)
(anπn(θ) + bnτn(θ)) (5.4.27a)

S2(θ) =
∑
n

2n+ 1

n(n+ 1)
(anτn(θ) + bnπn(θ)) (5.4.27b)

which makes use of the angle-dependant functions,

πn(θ) = −dPn(cos θ)

dθ

1

sin θ
(5.4.28a)

τn(θ) =
d

dθ

(
−dPn(cos θ)

dθ

)
. (5.4.28b)
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Figure 5.9: Light scattering off a particle showing the scattering plane and the

components of the scattered light êθ, êφ, and êr. Because the wave is transverse

in the far-field, êr = 0 [26].

From this, we define the components of the scattered light to be,

Esθ = E0
eikr

−ikr
cosφS2(θ) (5.4.29a)

Esφ = −E0
eikr

−ikr
sinφS1(θ). (5.4.29b)

Here we have defined the scattered field in terms of its θ and φ components

relative to the scattering plane as shown in Fig. 5.9.

5.4.3 Talbot Coefficients Beyond the Point-Like Approx-

imation

This section builds on the theory set out in [105] and progresses to correct an

error presented in that paper. The previous work uses a scaler scattering func-

tion ignoring the polarisation of the scattered light, thus underestimating the

decoherence due to the scattering of grating photons. However,we consider the

polarization of the scattered light, by using a vector scattering function, to ensure

the full scattering decoherence that takes place in the laser grating and produce

a more accurate function describing the Talbot coefficients.
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To model the coherent effects we must first find the longitudinal force on the

particle as a result of the laser beam. We also note that for the short pulse

durations that we consider here, we can neglect transverse forces. By integrating

the stress tensor over a spherical surface surrounding the particle, we find the

longitudinal force to be,

Fz(z)

I0k−2c−1
= −(kR)4

∞∑
l=1

∑
m=±1

Im

[
l(l + 2)

√
(l −m+ 1)(l +m+ 1)

2l + 3)(2l + 1)

(2al+1,ma
∗
l,m + al+1,mA

∗
l,m + Al+1,ma

∗
l,m + 2bl+1,mb

∗
l,m + bl+1,mB

∗
l,m +Bl+1,mb

∗
l,m)

+m(2al,mb
∗
l,m + al,mB

∗
l,m + Al,mb

∗
l,m)

]
(5.4.30)

where al,m = alAl,m and bl,m = blBl,m. Here al and bl are the scattering coefficients

from Mie theory given in Eq. (5.4.24). We also use the coefficients,

Al,m =
il+1
√

4π(2l + 1)

2α2
√
l(l + 1)

mζ(l + 1) (5.4.31a)

Bl,m =
il
√

4π(2l + 1)

2α2
√
l(l + 1)

ζ(l) (5.4.31b)

where ζ(l) = 1
2
[(−1)l exp(−ikz) + exp(ikz)] where z represents the z coordinate

of the particle’s center of mass. Because we only consider a linearly polarized

standing wave, the force takes the form Fz(z) = −F0 sin 2kz. We determine

F0 by evaluating Eq. (5.4.30) at z = −λ/8. We can compare this to the value

expected from the Rayleigh approximation for various sizes of particles to see

the deviation from Mie theory as the particle size increases. The relationship

between the force and the potential is simply given by F (z) = −∇V (z), which

gives a potential of V (z) = −F0

k
cos2 kz. Now if we perform the same integral as

in Eq. (5.2.7) we find the phase parameter to be,

φ0 =
F0τ

kh̄
. (5.4.32)

If we assume a rectangular pulse such that the laser intensity I0 = 4PG/aG =

cε0|E0|2/2 remains constant during the duration of the pulse, we can show that

the pulse duration has the relation,

τ =
8

cε0|E0|2
EG
aG

. (5.4.33)
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Figure 5.10: Amplitude of the optical force F0, in units of I0/(ck
2), as a function

of the mass of a silicon nano-sphere in a beam with wavelength λ = 354nm. In

orange is the Rayleigh approximation result, and in blue is the result as calculated

by Eq. (5.4.30) based on a Mie theory treatment.

From this we can write the phase parameter as,

φ0 =
8F0

h̄cε0k|E0|2
EG
aG

(5.4.34)

The incoherent effects resulting from the scattering of grating photons can be

described by the Lindblad superoperator which gives the decoherence effect of

the scattered grating photons,

Lµsca(ρ) = |α(t)|2
∫ (

2Tk,ck,ck,cµ(r̂)ρT ∗k,ck,ck,c,µ(r̂)− {|Tk,ck,ck,c,µ(r̂)|2, ρ}
)
δ(ωk − ω0)dkkk (5.4.35)

where here α(t) is the photon number, and µ = êθ, êφ is the polarization vector

of the scattered light with respect to the scattering plane as shown in Fig. 5.9.

The collisional operators Tk,ck,ck,c,µ(r̂) describe the scattering out of the cavity mode

and are defined as,

Tk,ck,ck,c,µ(r̂) =

∫
〈kkk| T̂ µ(r̂)

∣∣k′k′k′〉 〈k′k′k′∣∣ccc〉 dk′k′k′
=

ic2

2πω0

∫ 〈
k′k′k′
∣∣ccc〉 fµ(kkk,kkk′)e−i(kkk−kkk

′)·r̂dk′k′k′
(5.4.36)

where fµ(kkk,kkk′) is the scattering amplitude with polarisation µ, and |ccc〉 is the

mode function of the standing wave. The mode function is defined such that
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in position representation it reads, 〈rrr|ccc〉 = f(rrr)/
√
V0, where V0 is the mode

volume of the standing wave. If we assume that the laser pulse duration is short

enough that free evolution during the interaction is negligible and we are working

in the longitudinal eikonal approximation as discussed in section 5.2, we can

describe the effect on the matter wave due to scattering by the scattering mask

Rµ
sca(z, z

′) = exp
[∫
Lµsca(z, z′)dτ

]
in the position representation, which is given

by,

Lµsca(z, z′) = |α(t)|2
∫
δ(ωk − ω0)

[
2Tk,ck,ck,c,µ(z)T ∗k,ck,ck,c,µ(z′)− |Tk,ck,ck,c,µ(z)|2−|Tk,ck,ck,c,µ(z′)|2

]
.

(5.4.37)

We also make the assumption that the waist of the laser is sufficiently larger than

the particle radius such that we can approximate the standing wave by the func-

tion EEE(rrr) ≈ E0x̂xx cos(kz). Thus we use the mode function 〈z|ccc〉 = cos(kz)/
√
V0

to show,

Tk,ck,ck,c,µ(z) =

√
2π3

V0

(
T ∗k0,kk0,kk0,k,µ

(z) + T ∗−k0,k−k0,k−k0,k,µ(z)
)

(5.4.38)

where we have used the scattering operators Tk0,kk0,kk0,k,µ(z) = 〈kkk0| T̂ µ(z) |kkk〉. By using

the substitutions nnn = kkk′/|k|, z → z − s/2, and z′ → z + s/2, and assuming that

the incoming wave kkk is pointing in the z direction, we can rewrite Eq. (5.4.37)

as,

Lµsca
(
z − s

2
, z +

s

2

)
=
|α(t)|2πc

V0

[ ∫
|fµ(k, knnn)|2(e−i(1−nz)ks − 1)dΩ

+

∫
f ∗µ(k, knnn)fµ(−k, knnn)e−i2kz(eiknzs − cos(ks))dΩ

+

∫
f ∗µ(−k, knnn)fµ(k, knnn)ei2kz(eiknzs − cos(ks))dΩ

+

∫
|fµ(−k, knnn)|2(ei(1+nz)ks − 1)dΩ

]
(5.4.39)

where Ω is the solid angle associated with the outgoing wave k′. Exploiting the

spherical symmetry of the nano particle we obtain a symmetry in the scattering

amplitude, fµ(−k, knnn) = fµ(k,−knnn), and the scattering mask,

Rµ
sca

(
z − s

2
, z +

s

2

)
= exp [F µ(s) + aµ(s) cos(2kz) + ibµ(s) sin(2kz)] . (5.4.40)
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Here we make use of the polarisation dependant scattering functions from Eq. (5.4.39)

as,

aµ(s) =
8π

h̄ω

EG
aG

∫
Re
[
f ∗µ(k, knnn)fµ(−k, knnn)

]
[cos(knzs)− cos(ks)] dΩ (5.4.41a)

bµ(s) =
8π

h̄ω

EG
aG

∫
Im
[
f ∗µ(k, knnn)fµ(−k, knnn)

]
sin(knzs)dΩ (5.4.41b)

F µ(s) =
8π

h̄ω

EG
aG

∫
|f(k, knnn)|2[cos((1− nz)ks)− 1] dΩ (5.4.41c)

where we have expressed the time integral in terms of the laser parameters∫
|α(t)|2dτ = 4V0EG/h̄ωaG. The integrals over the sphere are solved numerically.

This is not a trivial task. The area element of a sphere is dΩ = sin θ dθdφ which

is a function of θ. As a result the closer we get to the poles, i.e. θ → 0, the area

element gets smaller leading to numerical errors. By assigning weights to each of

the area patches, we can approximate the integral as,∫
f(rrr)dΩ ≈

N−1∑
i=0

wif(rrri). (5.4.42)

We use the Lebedev quadrature rules that determines the points rrri and their rela-

tive weights wi which are chosen to correctly reproduce spherical harmonics [122].

To complete this set of equations, we must determine the scattering amplitude

for the polarisation µ = êθ, êφ by using results from Mie theory. We can define

the scattered light with respect to the incoming wave via [26],

Es,θ ≈ E0
eikr

−ikr
cosφ S2(cos θ) (5.4.43a)

Es,φ ≈ −E0
eikr

−ikr
sinφ S1(cos θ) (5.4.43b)

from which we can extract the scattering amplitudes,

fθ(k, knnn) = cosφS2(cos θ)/k (5.4.44a)

fφ(k, knnn) = sinφS1(cos θ)/k (5.4.44b)

where the functions S1 and S2 are the same as in Eq. (5.4.27). To account for

the incoherent effects as a result of the absorption of grating photons, we follow
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the same procedure as in section 5.4.1, but replace the absorption cross section

with the Mie equivalent given in Eq. (5.4.26c).

Putting our absorption and scattering decoherence masks into a single mask

we get,

Rtot

(
z − s

2
, z +

s

2

)
=Rθ

Sca

(
z − s

2
, z +

s

2

)
Rφ
Sca

(
z − s

2
, z +

s

2

)
Rabs

(
z − s

2
, z +

s

2

)
=exp

[∫ tpulse

0

(
F (s) + a(s) cos(2kz) + ib(s) sin(2kz)

− 2nabs
0 sin2(kz) sin2(−2ks)

)
dτ

]
(5.4.45)

where a(s) = aθ(s) + aφ(s), b(s) = bθ(s) + bφ(s), and F (s) = F θ(s) + F φ(s). We

then take the Fourier components of the decoherence mask and convolve them

with the coherent effects as we did in the Rayleigh regime to find the total Talbot

coefficients to be,

B̃n

(s
d

)
= eF−ζabs

∞∑
k=−∞

(
ζcoh

(
s
d

)
+ a(s) + ζabs

(
s
d

)
ζcoh

(
s
d

)
− a(s)− ζabs

(
s
d

))n+k
2

Jk(b(s))Jn+k

(
sgn

[
ζcoh

(s
d

)
− a(s)− ζabs

(s
d

)]
√
ζ2
coh

(s
d

)
− (a(s) + ζabs

(s
d

)
)2

) (5.4.46)

where we have used the same definitions of ζcoh(ξ) and ζabs(ξ) as before.

5.5 Decoherence within the Interferometer

We now include the effects of environmental sources of decoherence into our

theory. We use [11] to inform our analysis of the decoherence. The last line

in Eq. (5.3.15) gives the effect of environmental decoherence. It acts as a term

reducing the amplitude of the interference fringes by an amount Rn. As we are

considering multiple sources of decoherence, it is more convenient to consider

the reduction term from each source. This gives a total reduction to the fringe
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amplitudes of Rtot
n =

∏
iR

(i)
n for each source i. We can introduce the dimensionless

integration variable ϑ to simplify the decoherence terms to be

R(i)
n = exp

{∫ 1

0

[t2Γi(t1 + t2ϑ) + t1Γi(t1 − t1ϑ)]

[
gi

(
nht2ϑ

mD

)
− 1

]
dϑ

}
. (5.5.1)

For sources of decoherence that have no time dependence, we can further

simplify the decoherence reduction terms to be,

R(i)
n = exp

{
−Γi

[
1− fi

(
nht2
mD

)]
(t1 + t2)

}
(5.5.2)

where

f(x) =

∫ 1

0

g(xϑ)dϑ (5.5.3)

which determines the decoherence strength for a finite interference path separa-

tion on average. The decoherence process takes away full information about the

particle when f(x) = 0 causing the matter-wave to decohere at the maximum

rate Γ. We consider four independent sources of environmental decoherence:

1. Absorption of Thermal Radiation

2. Emission of Thermal Radiation

3. Elastic Scattering of Thermal Radiation

4. Collisions with Residual Gas Particles

For each source, we must determine the decoherence rate Γ(t) and the decoherence

function g(x).

5.5.1 Absorption of Thermal Radiation

While the particle is in free fall, it will absorb photons from the isotropic back-

ground field. Each photon of frequency ω transfers h̄ω/c of momentum to the

particle. In one dimension, the master equation for this process is,

Labsρ =

∫
dωγabs(ω)

[∫
|nnn|=1

d2n

4π
exp

(
iωnz×
c

)
ρ exp

(
−iωnz×

c

)
− ρ
]

(5.5.4)

Chapter 5 Shaun J. Laing 95



Chapter 5 – Interferometric Tests of Collapse Models

106 107 108 109 1010

Mass [u]

0.0

0.2

0.4

0.6

0.8

1.0

Vi
sib

ilit
y 

M
od

ifi
ca

tio
n

Collision
Absorption
Scattering
Emission
Position Uncertainty

Figure 5.11: The effect on the visibility of the interference pattern by each source

of decoherence and the measurement uncertainty for a MAQRO-like experiment

for varying masses. The values of φ0 and t2 are optimised using the method given

in sec 6.5.

where the spectral absorption rate is given by,

γabs(ω) =
(ω/πc)2σabs(ω)

exp(h̄ω/kBTenv)− 1
. (5.5.5)

With these equations, we can now determine the decoherence parameters,

Γabs =

∫
γabs(ω)dω (5.5.6a)

gabs(x) =

∫
γabs(ω)

Γabs
sinc

(ωx
c

)
dω (5.5.6b)

fabs(x) =

∫
γabs(ω)

Γabs

Si(ωx/c)

ωx/c
dω (5.5.6c)

where Si(x) =
∫ x

0
sin(t)/tdt is the sine integral.
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5.5.2 Emission of Thermal Radiation

The emission of radiation is the time reversal of the absorption and has the same

effect on the particle’s matter-wave. If the emission pattern is isotropic, we can

use the absorption master equation Eq. (5.5.4) replacing the absorption rate with

the spectral emission rate for internally hot particles,

γemi(ω, Tint) =
( ω
πc

)2

σabs(ω) exp

(
− h̄ω

kBTint

)
(5.5.7)

and we can use parameters of the same form as given in Eq. (5.5.6). If, however,

the particle cools down significantly during it’s free-fall, the emission rate will be

dependant on time and we must use the reduction term,

(5.5.8)
R(emi)
n = exp

{∫
dω

∫ 1

0

[t1γemi(ω, Tint(t1 − t1ϑ))

+ t2γemi(ω, Tint(t1 + t2ϑ))]

[
sinc

(
nhωt1t2

(t1 + t2)mcd
ϑ

)
− 1

]
dϑ

}
.

The time dependence of the particle’s internal temperature can be estimated

by solving the differential equation mcm∂tTint =
∫
h̄ω[γabs(ω) − γemi(ω, Tint)]dω

where cm is the specific heat capacity of the particle material.

5.5.3 Elastic Scattering of Thermal Radiation

The long wavelengths of the thermal background radiation allows us to use the

Rayleigh approximation to determine the rate of decoherence from this source.

The decoherence is governed by the master equation,

Lscaρ̂ =

∫
γsca(ω)

{
exp

[
iω(nz − n′z)ẑ

c

]
ρ̂

exp

[
iω(n′z − nz)ẑ

c

]
d2nd2n′

16π2
− ρ̂
}
dω (5.5.9)

where the spectral scattering rate is,

γsca =
(ω/πc)2σsca(ω)

exp(h̄ω/kBTenv)− 1
. (5.5.10)
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Figure 5.12: The internal temperature for 106u spherical nano particles of differ-

ent materials reproduced from [11]. While the particle is in the trap, the internal

temperature increases as a result of absorbing photons from the trapping laser.

The silica (dashed line) particle reaches an equilibrium temperature while the

silicon particle (solid line) continues to heat. When the trap is switched off, the

silica particle rapidly cools due to emission of thermal radiation while the silicon

particle’s temperature remains constant.

This gives the decoherence parameters,

Γsca =

∫
γsca(ω)dω (5.5.11a)

gsca(z) =

∫
γsca(ω)

Γsca

sinc2
(ωz
c

)
dω (5.5.11b)

fsca(z) =

∫
γsca

Γsca

[
Si(2ωz/c)

ωz/c
− sinc2

(ωz
c

)]
dω. (5.5.11c)

5.5.4 Collisions with Residual Gas Particles

To simplify the calculations, we can assume that each collision event transfers

sufficiently many grating momenta that it fully resolves adjacent interference

paths such that the decoherence function gcol(x) vanishes for x 6= 0 simplifying

the reduction term to R
(col)
n = exp[−Γcol(t1 + t2)]. We also assume that the

residual gas with pressure pg is made up of nitrogen (with a mass of 28 amu) and
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is in thermal equilibrium with the environment. The mean velocity of the gas

particles thus reads as vg =
√

2kBTenv/mg. We obtain an expression for the total

scattering rate from a van der Waals scattering model,

Γcol ≈
4πΓ(9/10)

5 sin(π/5)

(
3πC6

2h̄

)2/5
pgv

3/5
g

kBTenv
(5.5.12)

where Γ(x) is the gamma function and the van der Waals coupling constant C6

is determined by the London formula [123] to be,

C6 ≈
3αp(ω = 0)αgIgIp
32π2ε20(Ip + Ig)

. (5.5.13)

Here we have used the functions αp, αg for the static polarizabilities of the particle

and gas, and Ip, Ig as their ionization energies. For nitrogen gas, we use the values

αg = 1.74Å
3×4πε0 and Ig = 15.6eV [124]. We can estimate the ionization energy

of our particle by using the bulk work function, and their static polarizability is

found by using Eq. (5.4.3). For silicon nanospheres we find that Ip ≈ 5eV, and

we set the static permittivity in Eq. (5.4.3) to ε = 11.9.

5.5.5 Position Resolution

We consider the finite position resolution that will affect any experiment. The

measured position of the particle z after a total free-evolution time t1 + t2 will

be distributed around the “true” value. We assume a linear drift of the space-

craft position with time, as consistent with ESA estimates found during a design

study [114] We model this as a convolution with a Gaussian kernel of width,

σm = σz + (10nm/100s)(t1 + t2). (5.5.14)

After applying the Fourier transform and the convolution theorem, we find that

this uncertainty can be included as a decoherence term,

Rmeas
n = exp

[
−1

2
(nkσm)2

]
. (5.5.15)

5.6 Including Collapse Models

The last thing we need to include in our theory is the effect of the collapse

model we are testing. The effect of collapse models manifest in similar ways to

Chapter 5 Shaun J. Laing 99



Chapter 5 – Interferometric Tests of Collapse Models

decoherence mechanisms in our theory, that is they reduce the visibility of the

fringes. As a result, we are able to include them as an extra decoherence term,

RCollapse
n (θθθ) = exp

{
−ΓCSL(θθθ)

[
1− fCSL

(
nht2
mD

,θθθ

)]
(t1 + t2)

}
(5.6.1)

where θθθ is a vector containing the physical parameters defining the collapse model

that we are interested in estimating. The theory discussed so far has been a

general approach to the interferometer that can be applied to any collapse model

that manifests as a decoherence source. In our simulations we mainly focus on

the Continuous Spontaneous Localisation model (CSL) discussed in section 4.2.4.

The CSL effect is constant in time so we can model the decoherence as done in

Eq. (5.5.2).

5.6.1 CSL in the Rayleigh Regime

For small structures where the inter-particle distance is smaller than the localisa-

tion scale rc, we can set the master equation for the CSL collapse in one dimension

to be [125],

LCSLρ = λc

(
m

m0

)2 [
8π3/2r3

c

∫
dz′g(ẑ − z′)ρg(ẑ − z′)− ρ

]
(5.6.2)

where m0 is a reference mass taken to be the mass of a single nucleon. This allows

us to determine the decoherence parameters needed for our model,

ΓCSL =

(
m

m0

)2

λc (5.6.3a)

g(x) = exp

(
− x2

4r2
c

)
(5.6.3b)

f(x) =

√
πrc
x

erf

(
x

2rc

)
(5.6.3c)

and we have found f(x) via Eq. (5.5.3).

5.6.2 CSL Beyond the Rayleigh Regime

For the larger particles that we want to use, we must generalise the master equa-

tion to particles of all possible radii. We can write the one-dimensional Linblad
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superoperator for the state of the particle in the position representation as [126],

LCSL(z, z′) = −λc(4πr
2
c )

3/2

(2πh̄)3

∫
µ̃2(qqq)

m2
0

e−r
2
cqqq

2/h̄2
(
e−iqz(z−z′)/h̄ − 1

)
dqqq (5.6.4)

where µ̃ is the Fourier transform of the particle’s mass density µ(xxx),

µ̃(qqq) =

∫
e−iqqq·xxx/h̄µ(xxx)dxxx. (5.6.5)

If the particle is a homogeneous sphere, we find the Fourier transform of the mass

density to be,

µ̃(qqq) =
4πh̄ρR2

q
j1

(
qR

h̄

)
(5.6.6)

where j1(x) is the spherical Bessel function of the first kind, ρp is the density

of the particle, and R is the radius of the nano-sphere. From this, we can now

derive the decoherence parameters,

ΓCSL = Aλc

∫ ∞
0

e−α
2

j2
1

(
αR

rc

)
dα (5.6.7a)

fCSL(x) =
A

ΓCSL
λc
rc
x

∫ ∞
0

e−α
2

j2
1

(
αR

rc

)
Si

(
αx

rc

)
dα

α
(5.6.7b)

where we have used the dimensionless pre-factor A = (36/
√
π)(m/m0)2(rc/R)2

and have used the integration variable α = qrc/h̄. Both equations must be solved

numerically, however, the value of rc is very small leading to underflow issues.

The value rc/h̄ gives us more sensible values over which to integrate and avoids

these underflow errors.
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Bayesian Inference

Most experiments that aim to put bounds on the values of the CSL parameters

θθθ = [λc, rc] apply a binary approach to their exclusion zones [9, 126] applying a

hard border between regions of the parameter space that are excluded and regions

that are not excluded. This chapter begins with a brief overview of Bayesian

inference in Sections 6.1 and 6.2. In the remainder of this chapter we provide

a novel approach using the techniques of Bayesian inference to apply a vale to

the probability that each set of parameters is not excluded by the experimental

data, and use this to produce a predictive model to estimate the necessary control

parameters for a real experiment.

6.1 Introduction to Bayesian Inference

The basis of Bayesian inference is built on the use of Bayes’ rule,

P (Y |X) =
P (X|Y )P (Y )

P (X)
(6.1.1)

where Y is some hypothesis and X is some data relating to that hypothesis.

The posterior P (Y |X) is the probability that the hypothesis Y is true given

some data X. P (Y ) is the probability that Y is true before we have collected

any data and is called the Prior, and contains all the previous information we

have collected about the hypothesis. P (X|Y ) is the probability of measuring the

data X given that the hypothesis Y is true, called the Likelihood. And the term
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P (X) is a normalisation constant describing the probability of measuring the

data X. This normalisation term is often referred to as the Evidence. In certain

problems, such as parameter estimation problems, it is often convenient to omit

the evidence term, replacing the equality in Eq. (6.1.1) with a proportionality,

P (Y |X) ∝ P (X|Y )P (Y ) [12].

We introduce the coin toss, which is a typical example for the use of Bayes’

theorem, as an illustrative example. This will allow us to explore how we make

use of Bayes’ rule such that we can then apply it to our own problem of collapse

parameter estimation. A coin toss is a Bernoulli process following the binomial

distribution,

P (x|θ) = θx(1− θ)1−x (6.1.2)

where θ is the probability that the coin will give heads on any any given throw,

and x is the outcome of the given throw (either 1 for heads or 0 for tails). If

we assume that all possible weightings, θ, for a given coin are equally likely, we

create the uniform prior,

P (θ) =

1, if 0 ≤ θ ≤ 1

0, otherwise
(6.1.3)

this is a good method of including ignorance about the parameters we are esti-

mating, but may not always be the best case. We will return to this idea of an

unbiased prior later in section 6.2.

If we proceed to run the experiment, that is flip the coin and record the

outcome, N times, such that we collect a set of data XXX = [x1, x2, x3, ..., xN ], we

can find the posterior for this set of data. We start by finding the posterior for the

first outcome as P (θ|x1) ∝ θx1(1−θ)1−x1 . Note that we have omitted the evidence

as this will not affect the estimated parameter and because we have bounded θ to

lie in the region 0 ≤ θ ≤ 1, we allow P (θ) = 1. Recall that the prior contains all

of our previous knowledge about the system, that means for our second outcome,

our prior should contain what we have learned from the first measurement such

that our prior now takes the form P (θ) = P (θ|x1) = θx1(1 − θ)1−x1 , where we

once again do not include normalisation. Therefore our new posterior will be

P (θ|x1, x2) = θx2(1− θ)1−x2θx1(1− θ)1−x1 . We can repeat this process to find the
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posterior for all measured outcomes to be

P (θ|XXX) ∝
N∏
i=1

P (xi|θ)P (θ) (6.1.4)

such that the likelihood of measuring all XXX is given by P (XXX|θ) =
∏N

i=1 P (xi|θ).
An example of this Bayesian updating for a specific coin toss example with dif-

ferent priors is given in Fig. 6.1.
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Figure 6.1: The results of N Bernoulli trials of tossing a coin weighted to give

heads 70% of all tosses. The solid line is the result of using the uniform prior,

while the dashed and dotted lines give the results of priors containing different

assumptions about the coin.

Fig. 6.1 (a) gives the prior, i.e. our knowledge and assumptions before any

measurements are taken. Three priors are shown in Fig. 6.1. The solid blue line
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gives the uniform prior, the dashed orange line shows the Jeffreys’ prior which is

an uninformative prior based on the likelihood used in the experiment, and the

dotted green line shows a Gaussian prior centred on 0.5 with a spread of σ = 0.25,

i.e. an uncertain assumption that this is a fair coin. The following panels show

the posteriors after N measurements for each prior. In panel (b) all the priors

tend to 0 at θ = 0 as we have only measured a single value, a head. The only

thing we can say with such a small sample is that the coin cannot be weighted

such to always give tails. In panel (c) we have mostly measured heads, but have

measured some tails. This allows us to say that it is impossible that the coin

is weighted to only give heads. The data we have collected does suggest a bias

towards heads which all the posteriors show to varying degrees. As we collect

more data (panels (d) to (i)) the peaks of each posterior tend to the same value

and their respective widths decrease. This suggests that the estimated θ of all

priors will tend to the same value given enough data. The outcome of only a few

data points does not provide much information at all, therefore our understanding

is heavily dominated by our prior expectations. However, after many data points,

the posterior becomes dominated by the likelihood function, and so we are led to

the same conclusion regardless of our prior beliefs. but we can see that the choice

of prior does affect how many test we must perform to get a good estimate of

θ. The decrease in the peaks’ widths suggest that we also become more sure of

our estimate of θ, the peak width corresponds to the uncertainty in our estimate.

After around 100 runs (panels (g), (h), and (i)), we see that the estimate of θ

does not vary greatly, but our uncertainty of the value changes as ∝ 1/
√
N .

6.1.1 The 2 Dimensional Case

In principle we are also able to expand our analysis to estimate the multivari-

ate parameter θθθ = [θ1, θ2, ..., θN ]. In the case of CSL, we have a 2 dimensional

parameter θθθ = [rc, λc], so we shall limit our discussions here to a 2 dimensional

example.

We can imagine a hypothetical system that leads to randomly distributed

measurement data. For example, this could be the measured position of a particle

in the 0th energy level of a 2-dimensional quantum harmonic oscillator. This

Chapter 6 Shaun J. Laing 105



Chapter 6 – Bayesian Inference

data is distributed via a Gaussian process in space about a position (x0, y0) that

is unknown. This gives the likelihood of measuring a location (x, y) as,

p(x, y|x0, y0) ∝ exp

[
−(x− x0)2

2σ2
+

(y − y0)2

2σ2

]
(6.1.5)

where the value of σ is known. We assign a flat prior to the x0, y0 parameter

space. This flat prior is equivalent to the uniform prior discussed in the previous

section and this choice of prior will be discussed in the next section. Then we

measure the outcome of the process to estimate the parameters x0 and y0.
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Figure 6.2: A flat prior and calculated posteriors after N measurements. The

purple crosses indicate the measured data that leads to the given posterior.

Fig. 6.2 shows the data collected and the posteriors calculated for that data.

As we collect more data, the peak in the posterior tends to a value of x0 = 3 and

y0 = −2 which were the values used to generate the data. We also see that as N

increases, the width of the peak decreases indicating that we are becoming more

certain in our estimate of the unknown parameters.
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6.2 Choice of Prior

As we have seen in Fig. 6.1 the choice we make for the prior has an impact on the

final posterior for small numbers of data points. As a result we must choose the

prior in the analysis of the results from the interferometry experiment carefully.

We can choose either to base our prior on previous experimental results, or an

uninformative prior that assumes no prior knowledge.

The first type, basing our prior on previous experimental results, is as simple

as using the posterior from a previous experiment as our prior. If our coin toss

example above ended after N = 10, we would not be sure exactly what the bias

of the coin is, as the peak is very wide. However, using this posterior would

mean we would approach the true value much quicker than if we started with

a different prior. In the absence of such previous experiments, we must choose

the prior carefully. While it may seem sensible to assign a constant probability

density over the parameter space, this may not produce the most reliable results

at small numbers of data points.

6.2.1 Uninformative Priors

We may also want to avoid injecting any bias into the Bayesian analysis of our

results. This is achieved by the use of an uninformative prior. Uninformative

priors are often useful when we want to maintain scientific objectivity and to

better compare with other experiments [127, 128]. There are four main types of

uninformative priors that we consider [128],

• Uniform Prior

• Jeffreys’ Prior

• Reference Prior

• Maximal Data Information Prior (MDIP)
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6.2.1.1 Uniform Prior

The uniform prior is the simplest of the priors and is found by setting the prior

over the entire parameter space equal to a constant value. This is shown as the

solid blue line in Fig. 6.1. In an experiment like the coin toss with a definite

region of applicability, this prior is normalisable. However, if the region that the

parameters of interest lie in is infinite, then the prior is not normalisable. For the

case of CSL, we can make the claim that the probability of the parameters lying

outside the region of parameter space we are interested in is 0. This allows us to

normalise the prior within that region of parameter space.

6.2.1.2 Jeffreys’ Prior

Proposed by Sir Harold Jeffreys, the Jeffreys’ prior is designed to be invariant

under reparametrisation of the model [129]. It is defined as P (θθθ) ∝
√

det(I(θθθ))

where

Ii,j(θθθ) =

∫ (
∂

∂θi
log p(x|θθθ) ∂

∂θj
log p(x|θθθ)

)
p(x|θθθ)dx (6.2.1)

is the Fisher Information matrix. This is a measure of the sensitivity of the

likelihood function to changes in θθθ [130]. Although the equations are given for

multi-dimensional problems, Jeffreys’ prior does not always cover these multi-

dimensional problems well [127]. Therefore, care must be taken when choosing

the prior for the types of problems such as parameter estimation in CSL.

6.2.1.3 Reference Prior

The reference prior is an attempt to modify the Jeffreys’ prior by reducing the

dependence amongst parameters. These dependencies are often introduced by

Jeffreys’ prior and can lead to poor performance or inconstancies [128]. Intro-

duced by Bernardo in 1979 [131] by maximising the expected Kulback-Liebler

(KL) divergence, discussed below, to ensure the data has the maximal effect on

the posterior.

To generate a reference prior, we maximise the discrepancy between the prior

and the likelihood of a sufficient statistic t(XXX). This is some quantity that, when

evaluated from the sample of data, provides the same information about the
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parameters as using the data directly. For an example of the sufficient statistic

we can use the likelihood of the coin toss in Eq. (6.1.2) and recall the property

P (XXX|θ) =
∏n

i=1 P (xi|θ). In this case, for a set of measured outcomes XXX =

[x1, x2, ..., xN ], we have the total likelihood,

p(XXX|θ) ∝ θ
∑N
i=1 xi(1− θ)N−

∑N
i=1 xi . (6.2.2)

From this, we can define the sufficient statistic as t(XXX) =
∑N

i=1 xi. Here we have

used xi ∈ (0, 1) where 0 represents tails and 1 represents heads as discussed in

the coin toss example above.

To derive the reference prior we want to maximise the KL divergence [132],

〈KL〉 =

∫ ∫
p(θ|t)p(t) log

[
p(θ|t)
p(θ)

]
dθdt. (6.2.3)

And making use of the conditional probability rule p(θ, t) = p(θ|t)p(t) [12], we

can find the mutual information between t and θ, which is a measure of their

dependence. We do this because we do not know the value of t(XXX) before we

collect the data and this is akin to maximising the expected KL divergence,

M.I. =

∫ ∫
p(θ, t) log

[
p(θ, t)

p(θ)p(t)

]
dθdt. (6.2.4)

By maximising the mutual information, we maximise the dependence the vari-

ables θ and t have on each other. As a result, this gives the data the maximum

influence on the final posterior over the prior. This is a useful method for gener-

ating priors that can be extended to multi-parameter problems [132]. However,

for these multi-parameter cases, it is often difficult to generate a reference prior

due to the high dimensionality of the integrals used. There may also not be an

obvious sufficient statistic that can be used making this prior not feasible for a

given problem.

6.2.1.4 Maximal Data Information Prior

The Maximal Data Information Prior (MDIP) is based on the likelihood function

of the experiment [128],

p(θθθ) ∝ exp

[∫
p(x|θθθ) log p(x|θθθ)dx

]
(6.2.5)
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and is defined such that we maximise the average information contained in the

likelihood relative to the prior. That is, the prior is chosen such that it maximises

the function, ∫∫
p(x|θθθ) log p(x|θθθ)dxp(θθθ)dθθθ +

∫
p(θθθ) log p(θθθ)dθθθ. (6.2.6)

Unlike the Jeffreys’ prior, the MDIP is easily extendible to multi-parameter

problems and maintains stability [133]. As a result, this makes the MDIP a more

suitable choice of prior for the MAQRO experiment.

6.3 Simulations of the Interferometer

Using the theoretical model of the matter-wave interferometer derived in Chap-

ter 5 we are able to build a simulation of the experiment. We can then apply

Bayesian techniques to the simulated results to calculate the probability distri-

bution we could achieve over the CSL parameter space in an actual experiment.

The key result of our theoretical model is equation (5.3.15) which describes

the final interference pattern after the full propagation. In our simulations, we

are only interested in the final observation point of the particle. Therefore, to

model a particle traversing the interferometer we choose a random measurement

location z weighted by the probability function w(z). By running the simulation

N times, and counting the number of times we measure a particle in the region

z+δz, we reconstruct the interference pattern w(z). Fig. 6.4 shows the theoretical

likelihood of measuring a particle at some position z along with a histogram

showing the number of times each z+δz bin measures a particle. The region z+δz

appears naturally in the simulations due to the discrete nature of computational

simulations, that is we must use a discrete z-axis. The size of the interval δz is

controlled by the number of points we include on the z-axis. Using this set-up we

can begin to collect data to predict the results of a given experiment.

6.3.1 Bayesian Analysis of Simulated results

We consider any collapse model that manifests as a decoherence term in the

interferometer and is described by a set of unknown parameters θθθ = [θ1, θ2, ..., θN ].
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a

b

c

p(θ|x)histogram

Figure 6.3: Illustration of the scenario considered showing a particle localised

in a harmonic dipole trap as used in [91] (a) the wave function of which, when

released, expands to cover several fringes of a standing wave grating (b) formed

by retroreflection of a light pulse. The arrival location of particles is recorded

(c) some time after the grating. In typical scenarios, the number of data points

is small and taking a histogram of arrival positions (left) may be sufficient to

evidence wave nature of the particle, the Bayesian inference approach makes

fuller use of the available information and can hope to constrain free parameters

in CSL.

We can then split the total decoherence in Eq. (5.3.18) into its component terms

Rn = Rcollapse
n (θθθ)REnv

n where Rcollapse
n (θθθ) is the decoherence caused by the collapse

model, and REnv
n is the effect of environmental decoherence sources. This gives us

the joint probability p(z,θθθ). With this in mind, we are able to find the likelihood

of measuring the particle at a location z after the interferometer as,

p(z|θθθ) = W (z)
βm∫

p(z, θθθ)dz

[
1 + 2

∞∑
n=0

Rcollapse
n (θθθ)REnv

n An cos(nkz)

]
(6.3.1)
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Figure 6.4: The probability distribution for a 106u nano particle in a MAQRO-

like experiment with control parameters φ0 = 4 and t2 = 1.6tT which are given in

Table 5.1. In blue is the result of equation (5.3.15) while the red histogram shows

the number of times the particle is measured in the range z + δz after 10, 000

experimental runs.

where we have simply rewritten Eq. (5.3.15). For brevity, we describe the pitch

of the interference pattern with k = 2π/D and the Talbot terms with

An = Bn

(
ndt2
tTD

)
exp

[
−2

(
nπσxt2
Dt1

)2
]
. (6.3.2)

We also include the multiplicative window W (z) that represents the limited spa-

tial window over which we collect data. This limits the equation to a given spatial

region S given by,

W (x) =

1 if x ∈ S

0 if x /∈ S
(6.3.3)

Assuming independent and identically distributed position measurements,

the joint probability of all N measurements ZZZ = (z1, z2, . . . zN) is p(ZZZ|θθθ) =
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ΠN
i=1p(zi|θθθ). Thus the probability of a set of parameters θθθ is given by,

p(θθθ|ZZZ) ∝ p(ZZZ|θθθ)p(θθθ) (6.3.4)

where we neglect the evidence as it has no bearing on θθθ.

The two parameter CSL model can be included by using Eq. (5.5.2) as the CSL

decoherence term and setting Γi and fi(x) to the relevant terms in Eq. (5.6.7).

In principal, we can use any collapse model in this place, but due to the fact that

CSL has been well studied, it is a useful theory to use to test our method.

We use the MDIP for our prior in this example. It is found by inserting

Eq. (6.3.1) into Eq. (6.2.5). Then we can find the posterior p(θθθ|ZZZ) after collecting

data ZZZ. Initially, we distribute the data according to the conditional likelihood

p(zi|θθθ = 0), i.e. the results we expect should there be no CSL effect. This has the

benefit of maximising the extent of the regions on the parameter space that such

an experiment could potentially exclude. Such posteriors are shown in Fig. 6.5.
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Figure 6.5: Probability distributions p(θθθ|ZZZ) for the CSL model with MAQRO-like

parameters, as detailed in the text, using the Maximal Data Information Prior,

with N points picked from distribution p(zi|θθθ = 0). (a) N = 0 is the prior;

(b–d) are for N as indicated. The GRW value [83], Adler values [134], and lower

bound, discussed in the text, are motivated by theoretical considerations. The

red dashed upper bound is found such that 95% of the probability distribution is

below this line.

6.3.2 Priors used to Estimate the CSL Parameters

As discussed in Sec. 6.2, the choice of prior used is critical to the outcome of

the analysis of the collected data, especially in a MAQRO experiment where we
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Figure 6.6: A set of possible priors to be used in the analysis of a matter-wave

interferometry experiment using a silicon sphere with mass 8u. (a) shows the

Jeffreys’ prior, (b) is the MDIP, and (c) shows the experimental prior that sets

all previously excluded values to a probability of 0.

are likely to have a small number of data points. The prior we choose could

introduce unwanted assumptions affecting our final results, or if chosen well will

lead to more informative posteriors or even reduce the number of measurements

we need to take in order to exclude regions with sufficient confidence. Due to the

numerical nature of our simulations, we must also consider a region over which

our analysis can take place. This will introduce a region of parameter space θθθS in

which the prior follows the value of a given function, but outside of this region,

the value of the prior will be 0,

p(θθθ) =

f(θθθ) if θθθ ∈ θθθS
0 if θθθ /∈ θθθS.

(6.3.5)

We must choose the region θθθS such that we capture the information about the

parameter values of interest. But we should avoid making this region too large

as to avoid adding too much computational expense. We look to Fig. 5.1 as a

guide. In this figure, we see an unshaded region that has not been ruled out by

experiment or theory, so the chosen region must include this space. We also see

a number or shaded regions relating to parts of the parameter space ruled out

by various experiments. The purple region at the top shows the region that has

been excluded by previous interferometry experiments, for comparison with these

previous experiments, it is pertinent to set the maximum value of λc to 10−4Hz
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as well. We also note the theoretical lower bounds given by the grey line and

shaded region. There is little need for the value of λc to go below 10−20Hz as

these values are excluded by theory.

The bounds on rc are chosen to cover the entire region that has not yet

been experimentally, or theoretically, excluded. We choose to work in the region

10−10 ≤ rc ≤ 10−1m as this also captures the regions excluded by various non-

interferometric test that contain interesting features, such as the minimum in the

blue region, for better comparison.

The first prior we consider is a uniform prior. In this case, we assume a

constant prior in the region θθθS and 0 elsewhere f(θθθ) = Const.. On the surface

this might seem like a sensible choice. However, as discussed in section 6.2,

assuming that all possible parameters in a region are equally likely risks injecting

a bias into our results, as this prior still contains an assumption. We aim to use

a prior that contains as few assumptions as possible, preferably none. For this

reason we initially look to the Jeffreys’ prior.

In Jeffreys’ prior we set f(θθθ) = A
√

det[I(θθθ)] where A is a normalisation con-

stant, and I(θθθ) is the Fisher information matrix given in Eq. (6.2.1). It is invariant

under reparametrisation, meaning that if we reparametrise θθθ in our likelihood,

we can perform the inverse change of variables on our posterior to recover our

original parametrisation. It also follows from the Fisher information which mea-

sures how the likelihood changes with θθθ. Therefore, the only assumptions that go

into the prior are built into the experiment itself. This does have the issue that

changing the experimental parameters, such as the particle’s mass, will affect

the prior making comparisons between experimental setups more difficult. The

Jeffreys’ prior does not always scale up to multidimensional problems effectively,

often becoming unstable [127] which is a problem for our tests. We find that in

the case of our experiments, this prior leads to poor posteriors, as was discussed

in section 6.2.1.2. In this specific experiment, we also find that the Jeffreys’ prior

is sensitive to instabilities leading to unphysical posterior distributions.

When considering the reference prior, we must first start by defining a suf-

ficient statistic t(ZZZ). This is already a difficult task due to the nature of the

likelihood given in Eq. (6.3.1). The measured arrival locations are contained
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within a Fourier sum. Along with the product function used to produce the

likelihood of all measured arrival locations makes it such that there is no clear

sufficient statistic to choose. We also must consider the computational complex-

ity that would come with choosing this prior. We find the prior that maximises

the mutual information between θθθ and ZZZ. This procedure is computationally

expensive and would take a long time to run. This is especially an issue when we

want to compare the results for multiple different scenarios, as a new prior must

be found for each scenario.

We are left with the Maximal Information Data Prior (MDIP) as our best

option. This prior is not only easy to implement to this experiment, it is also

a good choice to maximise the information we gain from each data point. With

ease we are able to find this prior numerically from the likelihood as,

f(θθθ) = A exp

[∫
p(z|θθθ) log p(z|θθθ)dz

]
, (6.3.6)

where A is again a normalisation constant. This prior maximises the effect of

each data point on the posterior quickly overwhelming the prior [133].

The final prior we consider is motivated by previous experimental results,

which we call the “Experimental Prior”. This prior is defined as constant over

all values of θθθ that have not been excluded by previous experiments, and zero

to the values that have been excluded. The uncoloured region in Fig. 5.1 shows

the regions of the parameter space that have, and have not been excluded by

experiment.

6.4 Parametrisation by Information Gain

By considering the information gain, we make a more systematic use of all of

the distribution with respect to previous methods that simply produced a his-

togram, like the one shown in Fig. 6.4. If we use the information gained from

the experimental prior, we can use this to quantify how much we have learned

about the CSL parameter space compared to previous exclusion plots. However,

using other priors, such as the MDIP, considers the change of the full parameter

space as we have collected data. This thus provides us with a robust method to

compare similar experiments and optimise their control parameters.
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A single valued macroscopicity constant has been suggested as a method to

compare the results of various classicalisation experiments [135]. It considers any

modification to the Von Neumann equation of the form,

∂tρ =
[HHH, ρ]

ih̄
+ Lρ (6.4.1)

where

Lρ =
1

τ

[∫
d3sd3qg(s, q)L(sss, qqq)ρL†(sssqqq)− ρ

]
(6.4.2)

and

L(sss, qqq) = exp

[
i

h̄
(ppp · sss− qqq · x)

]
(6.4.3)

is a translation in position and momentum space. We also have the function

g(s, q) which is a phase-space distribution with position and momentum standard

deviations σs and σq. The effective coherence time is defined as τ = τe(me/m)2,

where τe and me are a reference time-scale and reference mass respectively. For

a given set of σs and σq we can perform an experiment to rule out various time

parameters τe. We then define the macrosopicity as,

µm = log10

(τm
1s

)
(6.4.4)

where τm is the maximum value of τe that has been excluded.

However, this method still contains a number of issues. Firstly, the value of

µ can only rank superposition experiments. Therefore, we cannot use this metric

to quantify the benefit of non-interferometric experiments, such as anomalous

heating experiments [136]. This metric is also based on the coherence time scale

τ not the decoherence rate λC that our models are built around. In order to use

this metric, we must reparametrise our models. This limits our choice of prior to

one that is invariant under reparametrisation, such as the Jeffreys’ prior, which

has issues previously discussed.

We can solve these issues by using a more general metric, such as information

as defined by Shannon [13]. We can quantify the amount of information in a

posterior relative to the prior by [12],

H(ZZZ) =

∫
p(θθθ|ZZZ) log2

[
p(θθθ|ZZZ)

p(θθθ)

]
dθθθ (6.4.5)
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where the use of log2 ensures that the units of H is bits. For reference, we include

the value of H in each posterior in Fig. 6.5.

The use of an information based approach to quantifying the outcome of tests

of collapse models allows for easier comparison between experiments. Using the

expected information gain we can effectively compare the results of experimental

realisations with different sets of control parameters.

6.4.1 Expected Information Gain

We can predict the information gain that we expect from an experiment before

any data is collected. This then allows us to predict how useful an experiment

will be, and thus optimise the experimental parameters. The expression for this

expected information gain is the information weighted by the evidence, integrated

over all possible data realisations, [12],

〈H〉 =

∫
H(ZZZ)p(ZZZ)dZZZ. (6.4.6)

Due to the large number of dimensions in ZZZ, this integral is very costly to

integrate numerically. For this reason we use a Monte-Carlo estimation of the

integral. The first point to be solved is how to pick the data ZZZ. A traditional

Monte-Carlo estimation would approximate the integral
∫
f(x)p(x)dx by the sum∑N

i=1 f(xi) where the values xi are distributed according to the function p(x). It

may seem sensible to approximate the expected information by
∑N

i=1H(ZZZi) where

each set of measured points ZZZi =
[
z

(1)
i , z

(2)
i , · · · , z(M)

i

]
where each z

(m)
i are chosen

from the evidence p(z). This is only a valid method of point-picking should

p(ZZZ) =
∏

i p(zi) be true. The evidence of a single data point is,

p(zi) =

∫
p(z|θθθ)p(θθθ)dθθθ. (6.4.7)

However, if we record multiple data points, the evidence of this is,

p(ZZZ) =

∫
p(ZZZ|θθθ)p(θθθ)dθθθ

=

∫ [∏
i

p(zi|θθθ)

]
p(θθθ)dθθθ.

(6.4.8)
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The product of Eq. (6.4.7) is not the same as Eq. (6.4.8). Therefore, this is not

an acceptable method of point-picking.

Instead, we make use of Markov Chain Monte-Carlo (MCMC) techniques to

estimate the equation [137,138]. Inserting Eqs. (6.1.1) and (6.4.5) into Eq. (6.4.6)

we can rewrite the expected information as,

〈H〉 =

∫ ∫
p(ZZZ|θθθ)p(θθθ) log2

[
p(ZZZ|θθθ)
p(ZZZ)

]
dθθθdZZZ (6.4.9a)

=

∫ ∫
{log2[p(ZZZ|θθθ)]− log2[p(ZZZ)]}p(ZZZ|θθθ)p(θθθ)dθθθdZZZ (6.4.9b)

≈ 1

M

M∑
i=0

{log2[p(ZZZ(i)|θθθ(i))]− log2[p(ZZZ(i))]} (6.4.9c)

where M is the number of runs to be performed, and the values of θθθ(i) are

distributed according to the prior p(θθθ), and the values of ZZZ(i) are distributed

according to the conditional likelihood p(ZZZ|θθθ = θθθ(i)). In general, the value for

p(ZZZ(i)) is found by a second Monte-Carlo integration, but because our parameter θθθ

has only two dimensions, it is more practical to perform the numerical integration

than to directly calculate this quantity.

6.4.2 Expected Information with no Collapse

Another useful metric is the information we would expect to see should there

be no collapse effect. We can estimate this simply by calculating Eq. (6.4.5)

with the value of ZZZ distributed about p(ZZZ|θθθ = 0). Running this M times and

taking the average helps to smooth out numerical fluctuations due to the random

nature of the measured zi locations. By assuming no CSL effect the results of the

simulation will lead to the lowest bounds on the parameters possible under the

given experimental conditions. we denote this value as 〈H〉θθθ=0.

Using the metric of expected information, we can make predictions about the

optimum experimental set-up. The use of Bayesian analysis and the information

metric at θθθ = 0 allows us to clearly estimate the number of measurements that

would be needed to put the lowest possible bounds on the CSL parameters in a

given experiment. In Fig. 6.7, we see that for both priors there is a rapid gain in

information below 2000 data points. After this, we gain much less information per
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each new data point from the experimentally motivated prior (in blue). However,

the information we gain from the MDIP is much greater and continues to grow

more rapidly for each new data point. Despite this, we find that by the 10,000th

data point, for both priors the information gain per new data point is relatively

small, so this is a sensible point to end taking new measurements.
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Figure 6.7: Expected information 〈H〉θθθ=0, under the assumption that there is no

CSL effect, as a function of the number of measurements for an experiment using a

spherical particle of mass 108u with parameters given in Table 5.1 and φ0 = 0.917

and free-evolution time t2 = 1.177tT . The blue line gives the information gained

with respect to a prior based on previous experimental results, and the orange

line is the information gained from the MDIP.

We can also use the same method to estimate the best mass of particle to

use. In a MAQRO like experiment, it would be easier to load the space-craft

with a set of particles of roughly equal mass. For this reason, it is pertinent to

predict the most effective mass to use. Fig. 6.8 shows the information gain as a

function of particle mass for both the MDIP (orange) and the prior motivated by

experimental results (blue). This is shown with no assumptions about the true
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parameters of CSL using Eq. (6.4.9c) in panel (a), and under the assumption that

there is no CSL effect in panel (b).
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Figure 6.8: Expected information gain after 10,000 measurements when starting

from the MDIP (orange line) and the experimental prior (blue line) with param-

eters given in Table 5.1 and φ0 = 0.917 and free-evolution time t2 = 1.177tT . (a)

shows the expected information with no assumptions about the true value of the

CSL parameters 〈H〉, while (b) shows the expected information assuming that

there is no CSL effect in reality, 〈H〉θθθ=0.

These figures show that the choice in our prior is critical to the amount of

information we gain. This is because the information contained in the prior

from Eq. (6.4.5) is always relative to the prior that the posterior is generated

from. Thus, even when two equal posteriors are generated from different priors,

their information gain will be different. It is perhaps unsurprising to find the

MDIP often leads to more information gain than the experimental prior. This

is because the MDIP is designed to maximise the KL divergence, and thus the

information gain. Comparison between experiments is best performed by using

the experimental prior. This will tell us how much information we have gained

about the parameter space compared to what we have already learned. By then

updating the experimental prior with the previous posterior, we can continue to

quantify our information gain.

In Fig. 6.8 (a) we see that we would not expect to see any gain in the informa-

tion relative to the MDIP until sufficiently large masses 108u. This information
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peaks around 109u where the information gain falls off rapidly. We note that at

the masses at which the information falls to 0 corresponds to masses of particles

with diameters close to the grating period. At this point, the effect of the grating

is averaged out over the particle meaning we need a larger fluence to achieve the

same phase shift. However, increasing the fluence also increases the scattering

and absorption of grating photons leading to higher decoherence. To account for

this, and thus use higher mass particles, we will consider particles with differ-

ent geometries in Chapter 7. We also see that the information gained increases

steadily when we use the experimental prior until it begins to fall off reaching 0

at the same mass as predicted from the MDIP. This suggests that we should aim

to use masses around 109u and the MDIP as our chosen prior to maximise the

amount of information we can obtain from our experiments.

We can also compare this with Fig. 6.8 (b) plotting the information we could

expect to learn should no CSL effect be measurable. This graph shows an increase

in information with increasing particle mass, peaking at around 109u. After this

mass, the information gained relative to both priors falls off rapidly as it does in

Fig. 6.8 (a). We also note that we gain significantly more information starting

with the MDIP than we do starting with the experimental prior. This is as

we expect. The MDIP is designed to contain minimum information, and thus

maximise the information gained from each data point. The experimental prior

on the other hand, contains information gained from previous experiments, and

thus provides a limit to the amount of information we can gain.

6.4.3 Parametrisation by Decoherence rate λc

The information gain is a useful way to measure how much of the parameter

space of a collapse model is ruled out by experiment and parametrise this by

a single value. Previous works have achieved this by using the value of λc at a

specific value of rc, usually 10−7m. Fig. 6.9 shows how the upper bound we assign

from the posterior, found under the assumption that there is no measurable CSL

effect, changes with the mass of the particle starting with either the MDIP or

the experimental prior. For a given posterior we can plot the upper bound as

the line that splits the parameter space such that the integral of the probability
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Figure 6.9: The height of the upper bound of λc at rc = 10−7m that we plot with

95% confidence under the assumption that there is no measurable CSL effect.

The blue line shows the value we obtain starting from the experimental prior and

the orange line show the value we obtain starting with the MDIP.

distribution below it is 95% of the integral over all of the parameter space. This

line defines a curve in the λc, rc parameter space is defined by the parameter Λ

which we call the decoherence strength. It is used to govern the strength of a

generic decoherence mechanism via,

Rdeco
n = exp

[
−Λ(t1 + t2)(nκd)2

2

]
(6.4.10)

where κ = t1t2
(t1+t2)tT

[106]. By setting n = 1, we can easily compare Eq. (6.4.10) to

the decoherence from CSL Eq. (5.6.1). By equating the two functions, RCollapse
1 (θθθ) =

Rdeco
1 , and some simple algebra, we can define a function, λc(Λ, rc) which can be

plotted over our posteriors,

λc =
−Λ(κd)2

C
∫

exp[−α2]j1(αR/rc)dα(f(x)− 1)
(6.4.11)

Chapter 6 Shaun J. Laing 123



Chapter 6 – Bayesian Inference

0 2 4 6 8 10
N

2

4

6

8

10

x

Estimate
True value

Figure 6.10: A representation of an iterative bisection algorithm attempting to

find the true value of some parameter x. We start at N = 0 with an initial guess

of x0 = 1. We find this is lower than the true value xtrue = 8.2 so we add 5 such

that x1 = 6. This is repeated until N = 2 where x2 > xtrue. At this stage we

know the value of xtrue must be between x1 and x2 so we set these as the lower xl

and upper xu bounds respectively. The next value is chose between these values

xn = (xl + xu)/2 until xn converges on xtrue. At each step we update the bounds

such that if xn > xtrue, we set xu = xn and if xn < xtrue we set xl = xn.

where C = 36
√

2/π(M/m0)2(rc/R)2. In our simulations this line is found via an

iterative bisection algorithm. This will increase or decrease the value of Λ until

the integral
∫
θθθ<line

p(θθθ|ZZZ)dθθθ has passed 95% of the integral over the full parameter

space. Then we choose values between the highest and lowest values of Λ until

the integral is approximately 95% of the total. This is shown visually in Fig. 6.10

This gives us the upper bound that is shown as the dashed orange line in

Fig. 6.5. To find the value for λc plotted in Fig. 6.9, we simply read of the value

off the upper bound line at the point where rc = 10−7m

Comparing Figs. 6.8 (b) and 6.9, we can see how the value of λc changes with

the information gain. We see that as the information increases, the value of λc

decreases. This is as we expect, as the value of 〈H〉 is a measure of how the

posterior changes from the prior, and as the posterior deviates from the prior,

we gain confidence in the bounds of the CSL parameters, and can thus put them

lower.
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6.5 Choosing the Control Parameters

In table 5.1, we do not give specific values for the phase parameter φ0 or the

second free-fall time t2. These are two of the easiest parameters to control in the

experiment. To change the phase, we need only change the power to the grating

laser as the phase parameter is proportional to the energy in the laser as seen in

Eq. 5.4.34. The free-evolution time is also easily altered because, in a space-based

experiment such as MAQRO, the particle is at rest with respect to the apparatus,

so we only need to change the time we wait between pulsing the grating laser and

measuring the particle location.

Therefore, we should aim to choose values that will maximise the efficiency of

the experiment. We begin by defining a vector of the control parameters we are

interested in optimising as CCC = [φ0, t2]. For every new experimental scenario we

wish to test, such as different particle mass or environmental parameters, we must

optimise the parameters CCC. We consider two main approaches, an information

based approach, and a visibility based approach.

6.5.1 Choosing Parameters to Maximise Information Gain

We can use an information based approach to parametrise the results of our

experiments. We aim to maximise the information gained from a hypothetical

experiment performed with a given set of control parameters CCC via a gradient

ascent. This is performed by choosing a starting point in the parameter space,

CCC0 and evaluating the expected information gained by performing the experiment

〈H〉(CCC0). We then evaluate the same process taken at four points around the

initial position in the parameter space. This is achieved by adding a value ±δφ0

to the position in the φ0 axis or ±δt2 to the value in the t2 axis to find the four

values around our initial position. Then after evaluating to find the expected

information gain at each of these new locations, we pick the location with the

highest value as our new initial guess. This process is repeated, forming a path in

the parameter space, until the expected information of our ‘initial guess’ 〈H〉(CCC0)

is larger than any of the values surrounding it. At this point we assume that we

have reached a maximum in the information gain and therefore, the optimum

Chapter 6 Shaun J. Laing 125



Chapter 6 – Bayesian Inference

parameters.

There still remains some issues with this approach. We must optimise the

values δφ0 and δt2 to ensure that the algorithm converges at a sensible rate and

towards an accurate value. This method is also not guaranteed to converge on

the true optimum set of parameters as local maxima can trick the algorithm into

thinking it has reached the optimum value. See Fig. 6.11 for a one dimensional

representation of this.
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Figure 6.11: A simple 1D example of a gradient ascent algorithm. 1) We choose

an initial value of x as x0. 2) The algorithm changes the value of x0 moving up

the peak. 3) The algorithm sees that the value of the function either side of the

current x0 is less than at the current x0 so returns this value of x0. However, this

is only a local maximum, the global maximum is found at x ≈ 1.65.

An easy solution to this is to raster over the whole parameter space and find

the information gained for an experiment with every possible set of parameters

CCC. In order to make this computable, we must put bounds on the the parameter

space. The lower bounds on the φ0 axis is simple, we must get as close to 0 as

possible. We cannot set the lower bound to 0 as this corresponds to a laser power

of 0, i.e. the laser is off. In this case there is no grating, and thus no interference

pattern to observe. We set the bounds on φ0 to be 0.1 ≤ φ0 ≤ 4π. This value is

chosen as the peak in the visibility of the final interference pattern is entirely in

this range for all masses that we are considering here. For small free-evolution

times, we recover the classical grating effect on the particle, which can be found by

Chapter 6 Shaun J. Laing 126



Chapter 6 – Bayesian Inference

using the small angle anproximation sin(x) = x on the coherent Talbot coefficients

Eq. (5.4.1) to get Bn = Jn(φ0πξ). Longer free-evolution time scales also have

the effect of increasing the amount of decoherence from environmental sources.

Therefore, we stick to the regime of t2 ≈ tT and set the range to 0.5tT ≤ t2 ≤ 1.5tT

which is suggested in the supplementary to [11]. Using this we can plot the

information gained from an experiment as a function of the control parameters

H(CCC). When we have this data, we can easily find the optimum parameters by

choosing the coordinates of the parameter space that leads to a maximum in

〈H〉(CCC).

This approach also requires a trade off between the accuracy of the outcome

and the speed that it takes. The calculation of 〈H〉(CCC) is computationally ex-

pensive, so it is more efficient to calculate the value at as few points in the CCC

space as possible. However, if the grid we use to represent the CCC space is too

coarse, we may loose important details, such as the global maximum. In order

to ensure sufficient precision in the CCC space, we must accept a long computa-

tion time. This becomes an issue when we want to compare the results between

various experimental scenarios.

The issue of this approach taking a long time to run still exists. In order to

solve this problem, we can run the optimisation function for various masses in the

range we want to explore and find the optimum parameters for each mass. This

will give us two sets of data that can be plotted for the optimum φ0 and t2 with

respect to the particle’s mass. The sets of optimum parameters as functions of

the particle mass are then saved and accessed when we want to find the optimum

parameters for any mass. To find the optimum values between points that we

have found we use an interpolation function. This is a function that allows us to

estimate the value of a function between two points of data we have collected.

We achieve interpolation via the scipy interpolate library. As a result, we

can estimate the optimum parameters for any particle mass, as long as the rest of

the experimental parameters match the values given in table 5.1. Although this

seems like a sensible method to use, the interpolation function does not take into

account any of the physics of the system. As a result it is likely to give us values

that are not physically meaningful, such as negative phase and free-evolution
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times.

In principle, these parameters are easy to modify even between experimental

runs. As a result it is possible to maximise the information gained from the Nth

data point by maximising the expected information gain for one data point where

the prior contains all of the previously collected data 〈H〉(zN |CCC, z1, z2, ..., zN−1)

via one of the methods previously mentioned. This will take a significantly long

time to calculate greatly increasing the amount of time needed between measure-

ments. This may be a practical method should the lifetime of the experiment

not be a limiting factor. However, should the experiment need to be completed

in a short amount of time, it would be more practical to maximise the expected

information gain for all measured locations as this will only need to be calculated

once.

In this section we have discussed three methods to optimise the control pa-

rameters in our experiment. We have discussed a gradient ascent algorithm,

rasterising the expected information over the whole parameter space, and at-

tempting to maximise the information based on all previous data points. Using

a gradient ascent requires us to optimise the parameters controlling the distance

between each step to ensure speed and accuracy. This method also has an issue

with finding only local maxima as opposed to the true maximum. To account

for this, we considered finding the information for the full parameter space to

find a global maximum. Calculating the expected information is computationally

expensive and slow. This means that finding the information for every point in

the multi-dimensional parameter space CCC may be prohibitively time consuming.

These issues also exist when finding the optimum parameters for each experi-

mental run. If we use the gradient ascent, we risk finding local maxima, and if

we raster over the full space CCC this will take excessively long time scales made

worse by having to repeat this every run. A significantly faster approach is to

use the change in the visibility of the interference pattern as a result of the CSL

decoherence to motivate our choice of the parameters.
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6.5.2 Choosing Parameters to Maximise the Change in

Visibility

The aim of an interferometry experiment is to observe the effect of CSL on the

interference pattern of a matter-wave made by a massive particle. Therefore

it is sensible to choose the parameters such that this effect is maximised. In

previous works [11], the values have been chosen simply to maximise the sinusoidal

visibility,

νsin(CCC) =
2m√

2πσp(t1 + t2)

∣∣∣∣B1

(
t2d

tTD
,CCC

)∣∣∣∣ exp

[
−2

(
πσzt2
t1D

)2
]
. (6.5.1)

This assumes that maximising the visibility of the pattern maximises the potential

reduction from CSL. However, we aim to maximise this quantity directly. We can

define the CSL reduced visibility as,

νred(CCC) = νsin(CCC)Rcollapse
1 (θθθ,CCC). (6.5.2)

The optimum parameters are then found by maximising the equation νsin(CCC) −
νred(CCC).

It is possible to use a similar gradient accent algorithm as discussed for the

expected information based approach in Sec. 6.5.1. Using this method has many

of the same issues as discussed in that section. We must optimise the parameters

δφ0 and δt2 to ensure accurate and fast results. But we still have the issue that

we may sit on a local maximum and not a global maximum.

Due to the fact that calculating the values of both νsin and Rcollapse
1 do not take

a significantly long time, it is practical to raster a grid over the full CCC space and

find the value of νsin(CCC) − νred(CCC) for each point in the parameter space to find

the maximum. Although this still takes a large fraction of the total computation

time for each simulated experimental scenario, it is faster than the information

based approaches and is likely to provide more accurate results than the gradient

accent version.

The optimum values for various masses of particles using the MAQRO-like

parameters are given in Fig. 6.12. The graph shows that as the mass of the

particle increases, the optimum values for both φ0 and t2 decrease until they
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Figure 6.12: Optimum values of φ0 and t2 for various nanosphere masses.

reach the lowest allowed values. This is a result of various decoherence mecha-

nisms becoming more prominent as the particle mass increases. As the radius of

the nanosphere increases, the scattering and absorption decoherence mechanisms

within the grating beam become larger as shown in Eqs. (5.4.41) and (5.4.46),

and so lower beam energies are required to prevent decoherence. The value of

the free-evolution time t2 also reduces to reduce the effect of the matter-wave

extending further in space and washing out the interference pattern.

6.6 Scenario Comparisons

The expected information metric introduced in Sec. 6.4.1 facilitates the compar-

ison with different experiments and scenarios. For these comparisons we focus

on the maximum information we could expect to get from the scenario. That is,

the information we would expect to see if there was no CSL effect after 10, 000

measurements, which is the point at which the information gain per data point

has mostly levelled off as seen in Fig. 6.7.
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Figure 6.13: The expected information gain under the assumption that there is

no CSL effect for various residual gas pressures as a function of particle mass.

We first compare the effect of different residual gas pressures as this is one of

the key benefits of the space-based nature of experiments like MAQRO shown in

Fig. 6.13.

We clearly see that minimising the gas pressure leads to a gain in the maximum

obtainable information, and the maximum particle mass that can be used. This

is true even when using the MDIP, which is based on the experimental scenario,

as our prior and so will change as the parameters change. We also note that

there reaches a point where the information can no longer increase. At this

point, there is some other mechanism preventing the formation of the interference

fringes. We also see that there is little improvement in reducing the pressure from

10−14hPa to 10−15hPa. Pressures this low are very difficult to achieve in practice.

Previous work proposing parameters at which MAQRO will work often give more

conservative estimates for the needed pressure [106]. However, with the detailed

argument given here, we can argue that lower pressures are advantageous.

The second key parameter to control in a MAQRO-like mission is the space
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craft drift. For all simulations we have performed, we have included an extra

decoherence parameter to represent the position resolution for the final measure-

ment of the particle,

RResolution
n = exp

[
− n(2π)2

2(Dσm)2

]
, (6.6.1)

where σm (given in Table 5.1) is the position uncertainty that the initial state is

prepared to, plus a constant rate of increase due to the spacecraft drift, which

is informed by technical specifications such as [114]. As with the residual gas

pressure scenarios, we can change the rate of increase in σm to see how that

changes the information we can obtain from an experiment. Fig. 6.14, we change

the length of this increase and observe the effects on the information gain for

various particle masses.
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Figure 6.14: Total information gain after N = 10000 data points under the as-

sumption that there is no measurable CSL effect for various increase in measure-

ment uncertainty as a result of space craft drift. Each plot is found by adjusting

the width of the increase per 100s.

As we reduce the rate at which the width of σm increases, we are able to reach
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higher masses of particles, and thus more information, before the uncertainty

in the measured location overwhelms the interference pattern. Bellow around

10nm/100s we note that further decreasing this rate has very little effect. This is

due to the limiting factor of the particle’s diameter that was discussed previously.

We see in all the graphs of 〈H〉 plotted throughout this section that the

information falls off rapidly as we pass a mass of 2 × 109u the radius of the

particle becomes 70nm which is on the same order of magnitude as one half

of the grating period. At this size, the phase shift effect of the Talbot grating

begin to average over the whole particle, and begin to cancel out. A possible work

around for this would to be to use a different geometry of particle such that it can

be extended in the x− y plane without increasing size in the z axis. In the next

chapter, we consider a numerical approach to track the motion of arbitrary shaped

particles in order to optimise their motional cooling. The approach developed for

considering information translates directly into computing the Talbot coefficients.

For spherical particles this was done via Mie theory, however, now we have the

tools to find them for any shaped particle.
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Information Radiation in a Beam

So far, all of our discussion about the interferometer has assumed that we are

using spherical particles. However, it may be more practical to use particles

with different geometries. We have already discussed in Section 2.4 that it is

possible to trap and control particles with different shapes, such as rods, disks,

and ellipsoids. Using different shapes may allow us to reach higher mass particles

and still observe an interference pattern in our interferometer. If we consider a flat

disk, we can increase the radius of the disk without increasing its width allowing

us to reach higher masses without reaching the size limit of the grating period. In

our theoretical model, the shape of the particle is only considered in two places,

in the mass density function µ(xxx) in the CSL decoherence terms Eq. (5.6.5), and

in the scattering amplitudes in the Talbot coefficients Eq. (5.4.41). This section is

devoted to developing a numerical method to find the Talbot coefficients for any

shaped particle. In doing this we also provide a method to find where information

about the particle’s motion is scattered to.

The work of this chapter was performed as part of a collaboration, which

included an extended visit, with the Geraci group at Northwestern University.

Their research involves trapping hexagonal plates in a standing wave trap for the

purpose of high frequency gravitational wave detection. Understanding where

the information of the particle’s motion is scattered to is key in optimising the

cooling scheme. Cooling the particle’s motion is key to avoid unwanted noise

and accurately detect gravitational waves [60, 139]. This work is then adapted
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by taking the numerical scattering information that leads to the information

patterns, and using this to build the vector scattering amplitudes in Eq. (5.4.44).

There exists a solution to the scattering amplitude under conditions of symme-

try in the particle such as for spheres [26], spheroids [27], and infinite cylindrical

rods [28], but not for arbitrary geometries. As a result, we must turn to numerical

methods to solve this. We focus on using the program Scuff-EM [140] that uses

a method of surface currents to solve the scattering problem. There are other

software packages designed to solve scattering problems such as PyGDM2 and

COMSOL. These work by discretising the volume of the object, while Scuff-EM

only considers the surface of the object significantly reducing the computational

resources required for large objects. However, these tools were used to cross

check the Scuff-EM results during collaboration with the Geraci group. We are

also interested in how information about the particle’s position is scattered. Al-

though we focus our discussions on hexagonal disks such a the ones used in [60],

in practice our methods can be used for particles of any arbitrary shape.

In Sections 7.2.2 and 7.2.4, we develop a new method to find the information

radiation patterns using the Fisher information and numerically calculated scat-

tered electromagnetic fields. Then in Section 7.2.5 we apply this technique to

hexagonal plates showing the applicability of this model for arbitrary shapes.

7.1 Scuff-EM

Scuff-EM (Surface CUrrent/Field Formulation of ElectroMagnitism) is an open

source implementation of the surface integral equation/boundary-element method

(SIE/BEM) to solve electromagnetic scattering problems [140]. Starting with a

known geometry in some medium (this could be vacuum, some fluid, or some gas)

and illuminating the geometry with some known incident EM field, we can use

these techniques to find the unknown scattered field as shown in Fig. 7.1. The

SIE formulations solve for 2D surface currents,

KKK(x) = n̂nn(x)×HHH(x) (7.1.1a)

NNN(x) = −n̂nn(x)×EEE(x) (7.1.1b)
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Figure 7.1: The scattered field at the point rrr is calculated due to the surface

currents at the point rrr′ on the surface of the object O which arise from the

incident field.

which are obtained from fields tangential to the body’s surface. Here n̂nn(x) is

the normal vector pointing out of the surface at the point x which lies on the

surface of the body. For simplicity we adopt the following vector notation for

fields, surface currents, and the Dyadic Green’s function,

FFF =

(
EEE

HHH

)
(7.1.2a)

CCC =

(
KKK

NNN

)
(7.1.2b)

GGG =

(
ΓΓΓEE ΓΓΓEM

ΓΓΓME ΓΓΓMM

)
(7.1.2c)

where we have used the 3 × 3 Dyadic Green’s function ΓΓΓAB giving the field of

type A from the surface current of type B. We can now find the fields on the

surface as a function of surface currents as

FFF =MMMCCC (7.1.3a)

MMM =

(
n̂nn∇·
iωε

n̂nn×
−n̂nn× n̂nn∇·

iωµ

)
. (7.1.3b)
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Figure 7.2: Electric fields scattered from dielectric spheres illuminated by plane

waves with different size parameters R/λ and refractive index of n = 1.5 sus-

pended in a vacuum. The top row are analytical results while the bottom row are

results from Scuff-EM. Differences in the scattered fields are the result of finite

meshing in Scuff-EM.

where Eq. (7.1.3a) is the matrix-vector product,

FFF =

(
n̂nn∇·KKK
iωε

+ n̂nn×NNN
−n̂nn×KKK + n̂nn∇·EEE

iωµ

)
(7.1.4)

where the values of ε and µ are the permittivity and the permeability of either

the object or surrounding medium respectively. Eq. (7.1.3) only describes fields

on the surface of the object O. The field at any point in space rrr, either inside or

outside the object, is given by

FFF(rrr) =

+GGGout(rrr, rrr′) ∗ CCC(rrr′) +FFFout
sources(rrr), rrr /∈ O

−GGG in(rrr, rrr′) ∗ CCC(rrr′) +FFF in
sources(rrr), rrr ∈ O

(7.1.5)

where GGGout,in are the Green’s functions (Eq. (7.1.2c)) for the medium outside and

inside the body, FFFout,in
sources are the fields created by point sources, and ∗ refers to a

convolution [141].

7.1.1 Numerical solutions

We want to apply this method to a numerical solver so that we can find the field

scattered by particles with arbitrary geometry. The first step is to discretise the

Chapter 7 Shaun J. Laing 137



Chapter 7 – Information Radiation in a Beam

object. We use some chosen software package to convert an object into the right

format. In our work, we use the software Gmsh [142] to generate basic meshes of

an object and then pass this simple mesh to mmgs [143] which converts the mesh

into a set of roughly equally sized triangles that Scuff-EM can use to optimise the

calculations by reusing surface currents, though in principal any meshing software

that can produce the correct form of meshes can be used. Now this mesh can be

passed to Scuff-EM.

This first thing Scuff-EM does is to assign a basis function to each interior

edge on the mesh. These basis functions are given by

fffn(rrr) =


ln

2A+
n
ρρρ+
n , rrr in T+

n

ln
2A−n

ρρρ−n , rrr in T−n

0, otherwise

(7.1.6)

where ln is the length of the nth edge, A±n is the area of the triangle T±n , and ρρρ±n

is the position vector of the triangle defined with respect to its free vertex. The

plus or minus defines the direction of the surface current with respect to the nth

edge. The functions fffn(rrr) are used to represent the surface currents [144].

We now have the necessary components to solve for the boundary element

matrix MMM and RHS vector vvv,

MMMmn = 〈fffm|ΓΓΓ
EE |fffn〉 (7.1.7)

vvvm = −
〈
fffm
∣∣EEEi
〉
. (7.1.8)

This is the most computationally expensive part of the calculations as for every

element we have a four dimensional integral, surface integrals over two triangles,

that must be solved numerically. The more edges we have, the more of these

integrals must be performed. We then must solve the linear systemMMMkkk = vvv where

kkk is a vector of the surface-current expansion coefficients kn. By phrasing this

as a matrix inversion problem Scuff-EM is able to make use of highly optimised

routines. By using the surface current density KKK(rrr) =
∑
knfffn(rrr), we can find
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the scattered electric and magnetic fields,

EEES(rrr) =
∑
n

kn

∫
ΓΓΓEE(rrr, rrr′)fffn(rrr′)drrr′ (7.1.9)

HHHS(rrr) =
∑
n

kn

∫
ΓΓΓME(rrr, rrr′)fffn(rrr′)drrr′. (7.1.10)

This provides a robust and simple way to find the electric and magnetic fields

scattered from a dielectric object and is computationally cheap to evaluate the

field after solving the matrix inversion problem [145]. Fig. 7.2 shows the elec-

tric fields scattered from a sphere illuminated by a plane wave for various size

parameters R/λ as calculated by Scuff-EM compared with the analytical results.

For simplicity, we keep a constant particle size and alter the size parameter by

changing the wavelength of the incident light.

7.1.2 Scuff-EM Implementation of a Gaussian Beam

Because particles are often levitated in Gaussian TEM00 laser beam, we want to

ensure that the implementation of the Gaussian beam in Scuff-EM is accurate.

We also discovered an apparent discrepancy with our results compared to those

presented in [146] and so we sought to ensure that the Scuff-EM implementa-

tion was accurate. Working in the paraxial approximation, we can define an x

polarised beam propagating in the z axis as,

EEE(r, z) = E0x̂xx
w0

w(z)
exp

(
−r2

w(z)2

)
exp

[
−i
(
kz + k

r2

2R(z)
− φ(z)

)]
(7.1.11)

where r is the radial distance from the propagation axis, z is the direction along

the propagation axis from the focal point of the beam, and w0 is the beam waist,

that is the radius of the beam at the focal point [147]. We have also defined the

following functions,

w(z) = w0

√
1 +

(
λz

φw2
0

2)
(7.1.12)

is the beam radius at the point z, defined as the point at which the field amplitude

falls to E0/e,

R(z) = z

[
1 +

(
πw2

0

zλ

)2
]

(7.1.13)

Chapter 7 Shaun J. Laing 139



Chapter 7 – Information Radiation in a Beam

is the radius of curvature of the wave front at the point z,

φ(z) = arctan

(
zλ

πw2
0

)
(7.1.14)

is the Gouy phase shift resulting from the act of focusing the beam [148]. This

description is only valid in the paraxial regime were the divergence angle θd =

λ/(πw0) is small enough that we can use the small angle approximation of

trigonometry. However, if we want to use a more highly focused beam we must

go beyond the paraxial approximation.

The Gaussian beam implementation built into Scuff-EM is based on [149]

which defines Gaussian beams beyond the paraxial approximation based on a

complex source point model. In this model electric dipoles are oriented along

the x-axis, polarisation axis, and magnetic dipoles are oriented along the y-axis.

In the complex source point model, we place these dipoles at the point z0, the

electric fields from these sources can be written as,

f(kR) = j0(kR) + j2(kR)

g(kR) = j0(kR) + j2(kR)/2
(7.1.15)

where jn(x) is the spherical Bessel function of order n, k is the wave number, and

R =
√
x2 + y2 + (z − iz0)2 is the radius of curvature of the beam. This gives the

electric field as,

EEE =

{
g(kR) + [f(kR)− g(kR)]

x2

R2
+
i

2
f(kR)k(z − iz0)

}
x̂xx

+ [f(kR)− g(kR)]
xy

R2
ŷyy

+

{
[f(kR)− g(kR)]

xz

R2
− i

2
f(kR)kx

}
ẑzz

(7.1.16)

We can test the Scuff-EM implementation of the Gaussian beam by plotting

the field generated in the absence of a scatterer. This is shown in Fig. 7.3

7.1.3 Alternative Method for Defining a Gaussian Beam

In order to test our numerical approach, we want to be able to compare to ana-

lytical results, such as the ones presented in [146]. The Gaussian beam defined
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(a) Beam focused by a0.1 NA lens leading to a beam waist of 4.9µm and a divergence

angle of 0.1 radians.
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Figure 7.3: The real part of the electric field as output by Scuff-EM in the absence

of a scatterer for two Gaussian beams with different beam waists. The red lines

show the beam radius as given by Eq. (7.1.12)

.
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in [146] is based off integrals over a mono-chromatic plane wave EEEin. This is

the Angular Spectrum Method [29]. In this approximation, the field close to the

focus takes the form,

EEE(rrr) =
k0f

2πi

∫
D±

EEE±∞(f, θk, φk) exp[ikr cos θk cos θ + ikr sin θk sin θ cos(φk − φ)]dΩk

(7.1.17)

where f is the focal length, k0 = 2π/λ, NA = sin θNA, and

EEE±∞(f, θk, φk) =
√
|cos θk|[EEEin(f, θk, φk) · eeeφ(θk, φk)]eeeφ(θk, φk)

±
√
|cos θk|[EEEin(f, θk, φk) · eeeρ(θk, φk)]eeeφ(θk, φk)

(7.1.18)

and our integration is over the limits D+ = {0 ≤ θk ≤ θNA, 0 ≤ φk ≤ 2π}, and

D− = {π − θNA ≤ θk ≤ π, 0 ≤ φk ≤ 2π}.
We can achieve the same field in Scuff-EM via the method of numerical spher-

ical integration called the Lebedev rule which we had used in Sec. 5.4.3. From

this we can write the field as a weighted sum of plane waves that can be passed

to Scuff-EM to define the Gaussian beam. For the rest of this work, we use this

field in Scuff-EM.

7.2 Information Radiation

A particle trapped in an optical trap will scatter the trapping light in all direc-

tions. This scattered light can be collected and used to track the position of the

particle as described in Section 2.3. However, in order to know the position of

the particle with maximum precision, we must know where the light that carries

the information about the particle’s location is scattered to. It is important to

note that the scattered information is not the same as the scattered power. For

example, the power scattered by a dipole backwards and forwards is the same,

but the forward scattered light carries no information about the particle’s posi-

tion. For this, we use Information Radiation Patterns (IRPs) to show where the

information on the particle motion is scattered to.

For trapped spheres there exists analytical solutions to find the IRP for each

degree of freedom of the particle which are discussed below. Initially there only

existed a solution for particles in the Rayleigh limit [41], but later a method for
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solving the information scatter for arbitrary sized spheres was demonstrated [146].

The Rayleigh regime method used an interference between the scattered light and

an ideal reference field to determine the direction that the information is scattered

to as the particle moves in the direction µ.

7.2.1 Analytical Information Radiation Pattern in the

Rayleigh Limit

For particles in the Rayleigh regime, we can use the model presented in [41] to

find the information patterns. We begin by modelling the incident electric field

as a plane-wave. If we assume that it is x polarised and travels in the z direction,

it takes the form,

EEEi(rrr0) = E0nnnx exp(iAkz0) (7.2.1)

where rrr0 = (x0, y0, z0) is the position of the particle and A is a geometric factor

resulting from the Gouy phase-shift. In a mildly focused beam, such as the one

we are considering here, it can be shown that A = 1 − (kzR)−1 where zR is the

Rayleigh range [150]. The particle then radiates the scattered field

EEEs(rrr) = EEEd(rrr) exp[−ik(r0r0r0 · nnnr − Az0)] (7.2.2)

where nnnr is the unit vector oriented in the radial direction. EEEd(rrr) is the field

emitted by an x oriented dipole at the origin and emits the differential power

dpdip(θ, φ) =
3Pdip

8π
[1− sin2(θ) cos2(φ)]dΩ (7.2.3)

where Pdip is the total radiated power. For a Rayleigh sphere, this can be thought

of as the power that would be scattered into the solid angle dΩ from the particle

should it be at rest in the origin.

Because the information of the particle’s position is contained only in the

phase of Eq. (7.2.2), we can make use of a homodyne measurement by interfering

the scattered light with an ideal reference field,

EEEref(rrr) = −iγEEEd(rrr) (7.2.4)

where γ � 1 such that the ideal reference field is the field scattered from the

particle at rest at the origin with a much greater intensity and a π/2 phase shift.
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By interfering the scattered and reference fields, we can read out a power on a

detector covering the solid angle dΩ, located in the far field at the position (θ, φ)

as,

dpdet(θ, φ) = [γ2 + 2γk(rrr0 · nnnr − Az0)]dpdip. (7.2.5)

We consider the particle moving in only one direction µ ∈ (x, y, z) such that

is position in the other two axes is 0. This then allows us to simplify Eq. (7.2.5)

to,

dp
(x)
det(θ, φ) = [γ2 + 2γk sin(θ) cos(φ)x0]dpdip (7.2.6a)

dp
(y)
det(θ, φ) = [γ2 + 2γk sin(θ) sin(φ)y0]dpdip (7.2.6b)

dp
(z)
det(θ, φ) = [γ2 + 2γk(cos(θ)z0 − Az0)]dpdip (7.2.6c)

which is linearly dependant on the position in the µ axis. Note that we only need

to consider the effects of the Gouy phase shift of motion in the z axis. The first

term in these equations are the same and independent of the particle position. It

dominates the measurement fluctuations as shot noise. Therefore, we can write

the power spectral density of these fluctuations as

dsdet
pp (θ, φ) =

h̄kc

2π
γ2dpdip. (7.2.7)

We use this to find the power spectral density of the measurement imprecision at

the detector for each direction of particle motion as,

s
(x)
imp(θ, φ) =

dsdet
pp (θ, φ)

(2γk sin(θ) cos(φ)dpdip)2
(7.2.8a)

s
(y)
imp(θ, φ) =

dsdet
pp (θ, φ)

(2γk sin(θ) sin(φ)dpdip)2
(7.2.8b)

s
(z)
imp(θ, φ) =

dsdet
pp (θ, φ)

(2γk(cos(θ)− Az0)dpdip)2
. (7.2.8c)

Finally, we find the information as a function of direction to be,

Iµ(θ, φ) =
S

(µ)
imp

s
(µ)
imp(θ, φ)

(7.2.9)
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(a) IRP for motion in the

x axis

(b) IRP for motion in the

y axis

(c) IRP for motion in the

z axis

Figure 7.4: The information patterns for particle motion in each axis. Reproduced

from [41].

where S
(µ)
imp is the total imprecision and is given by S

(µ)
imp = [

∫
s

(µ)
imp(θ, φ)]−1. This

leads to the set of equations,

S
(x)
imp = 5

h̄c

8πk

1

Pdip

(7.2.10a)

S
(y)
imp =

5

2

h̄c

8πk

1

Pdip

(7.2.10b)

S
(z)
imp =

1

(5/2) + A2

h̄c

8πk

1

Pdip

. (7.2.10c)

The imprecision in the z axis is a result of the Gouy phase shift that occurs due

to the focusing of the light. For motion in the x and y axes it results from the

polarisation of the incident light.

7.2.2 Numerical Solution for the IRP for Rayleigh Spheres

We can use the output of the scattered fields from Scuff-EM (or any other

numerical solver) to produce the IRPs for each motional axis. To begin, we

model a spherical particle using the gmsh software [151] with relative permittiv-

ity ε = 2.07, and a size parameter of R/λ = 0.01, which is comfortably in the

Rayleigh regime and illuminate it with an x-polarised plane wave travelling in

the positive z direction with a wavelength of λ = 1550nm.
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We find the reference field by placing the scatterer at the origin and recording

the scattered field. This field is then multiplied by −iγ where γ = 1000 to find

the reference field given in Eq. (7.2.4). Taking this field, we can also find the

value of dpdip across each detector. For simplicity, we rewrite the denominators

in Eq. (7.2.8) as dβ2
µ. We also note that due to the linearity of Eqs. (7.2.6), we can

rewrite them as a straight line dp
(µ)
det = c + dβµµ. By positioning the particle at

various displacements in the axis µ and measuring the scattered field, we can plot

the differential power at each detector as a function of particle position. Then,

using parameter estimation techniques, in this case we use a best fit straight line,

we find the value of dβµ and insert this into the relevant Eq. (7.2.8) to find the

imprecision that will lead to the corresponding information radiation pattern as

shown in Fig. 7.5.

(a) IRP for the x position (b) IRP for the y position (c) IRP for the z position

Figure 7.5: Information radiation patterns for the µ location of a particle illumi-

nated by a plane wave.

7.2.3 Analytical Information Patterns for Large Spheres

For particles with arbitrary size and refractive index, we have two main ap-

proaches to find the information pattern for the particle’s motion. First we can

use a method informed by quantum mechanics from [146]. This uses the coupling

between inelastically scattered photons to phonons of particle motion through

Stokes and anti-Stokes scattering. The second method is equivalent to the first

but measures the amount of information entering an area from the Fisher infor-

mation operator.
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7.2.3.1 Quantum Approach

The Hamiltonian describing the interaction between the particle’s motion and

the electromagnetic field is given by,

Ĥ =
p̂pp2

2m
+ V (r̂rr) + Ĥem − F̂FF · r̂rr (7.2.11)

where the first term is the standard motional Hamiltonian, the second is optical

trapping potential, the third describes the free dynamics of the field in the pres-

ence of a dielectric particle, and the last term describes the interaction between

the particle motion and the electromagnetic field. It is this last term that we are

interested in here. The radiation pressure operator F̂FF has an expectation value

given by,

〈F̂FF〉 = ∇V (rrr)|rrr=0. (7.2.12)

Also assuming that the particle is trapped in a standard three-dimensional har-

monic potential, we obtain,

V (r̂rr) =
m

2

∑
µ

Ω2
µr̂

2
µ (7.2.13)

for each axis µ ∈ (x, y, z). By making use of Eq. (7.2.11) that the Heisenberg

equation of motion for the µ component for the particle’s motion is given by,

d2r̂µ
dt2

+ Ω2
µr̂µ =

F̂µ
m
. (7.2.14)

By deriving the equivalent classical equation of motion and promoting the dynam-

ical variables to quantum operators, and comparing with the previous equation,

we are able to find an expression for the vector components of the radiation

pressure operator in terms of the electric and magnetic field operators ÊEE(rrr) and

B̂BB(rrr),

F̂µ = −ε0
2

lim
r→∞

r2

∫
(eeer · eeeµ)[ÊEE

2
(rrr) + c2B̂BB

2
(rrr)]dΩ (7.2.15)

where dΩ is the solid angle element, eeer is the radial unit vector, and eeeµ is the

unit vector in the µ direction. In terms of the normalised scattering eigenmodes
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for a fixed sphere at the origin FFF κ(rrr), the field operators are,

ÊEE(rrr) = i
∑
κ

√
h̄ωκ
2ε0

[FFF κ(rrr)âκ − H.c.] (7.2.16)

B̂BB(rrr) =
∑
κ

√
h̄

2ε0ωκ
[∇×FFF κ(rrr)âκ + H.c.] (7.2.17)

where the index κ is a multi-index containing the polarisation index and the wave

vector, and the term H.c. indicates the hermitian conjugate.

We can now write the Hamiltonian Eq. (7.2.11) as,

Ĥ = h̄
∑
µ

Ωµb̂
†
µb̂µ + h̄

∑
κ

ωκâ
†
κâκ + h̄

∑
κκ′µ

gκκ′µâ
†
κâκ(b̂

†
µ + b̂µ) (7.2.18)

where â†κ and âκ are the photonic creation and annihilation operators, and b̂†µ

and b̂µ are the bosonic creation and annihilation operators. The third term in

Eq. (7.2.18) describes the Stokes and anti-Stokes processes of the light scattering

to produce of absorb a phonon in the µ direction.

The interaction between the photons and phonons are described by the cou-

pling rates gκκ′µ which are given by,

gκκ′µ = r0µ
c
√
kk′

2
lim
r→∞

r2

∫
(êeer · êeeµ)[

FFF ∗κ(rrr) ·FFF κ′(rrr) +
1

kk′
∇×FFF ∗κ(rrr) · ∇ ×FFF κ′(rrr)

]
dΩ (7.2.19)

where FFF κ(rrr) are the normalised scattering eigenmodes in the presence of an un-

moving dielectric sphere. We assume that the particle is in the presence of a

classical field given by,

EEEcl(rrr, t) = i
∑
κ

√
h̄ωκ
2ε0

[FFF κ(rrr)ακe
−iωκt − c.c] (7.2.20)

where ακ is the coherent complex amplitude of the mode κ. This allows us to

write the linearised coupling rate,

Gκµ =
∑
κ′

ακ′gκκ′µ. (7.2.21)
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Because we are only concerned with where the information goes, and not if it

comes from a Stokes or anti-Stokes photon, we can write the information about

the particle’s motion in the µ axis as

Iµ(θ, φ) =

∑
g

∫∞
0
k2|Gκµ|2δ(ωκ − ω0)dk∑
g|Gκµ|2δ(ωκ − ω0)

. (7.2.22)

The methods described here are useful analytical methods to produce the IRPs

for spheres. However, this method is difficult to implement numerically and has

no obvious extension to particles with arbitrary geometry. By using arguments

from Fisher information, we can use numerical techniques to find the IRPs for

particles with any shape.

7.2.3.2 Fisher Information Approach

In the method derived by Hüpfl et al. [152] the equivalence between the Poynting

vector and the Fisher information vector is utilised to derive the information

passing through a given area. In the far field regime, the time averaged Poynting

vector is given by,

SSSP = Re[EEE∗ω ×HHHω]/2 (7.2.23)

where EEEω and HHHω are the complex amplitudes of the electric and magnetic fields

respectively. From this, we define the amount of optical power entering a photo

detector located at (θ, φ) to be,

P (θ, φ) =

∫
SSSP · dAAAi (7.2.24)

where AAAi is the outward pointing area vector for the detector i located at (θ, φ).

We can define the Fisher information flux in analogy to the Poynting vector

as,

SSSFI =
2

h̄ω
Re[∂µEEE

∗
ω × ∂µHHHω]. (7.2.25)

Here we differentiate the fields with respect to the quantity µ. A full derivation is

provided in [152]. In this case, the fields are the scattered fields from the particle

as it moves through the µ axis. We then find the rate of information transfer

across a detector to be,

Iµ(θ, φ) =

∫
SSSFI · dAAAi. (7.2.26)
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Figure 7.6: The information radiation patterns for spheres of different sizes illu-

minated by an x polarised Gaussian beam propagating in the positive z direction

as shown in [146]. In a) the beam is focused to a waist of w0 = 0.66µm by a

NA=0.75 lens, and in b) it is focused to a waist of 4.9µm by a NA=0.1 lens. Each

panel shows the detection efficiency for the left and right lens, when in blue the

detection efficiency is sufficient to allow ground state cooling.
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It is clear that it is much easier to apply a numerical approach to this method

that the method given in Sec. 7.2.3.1. We must simply find the scattered electric

and magnetic fields as our particle moves through some axis µ. Because this

method does not assume spheres, we are also able to extend this to particles

with arbitrary geometries. It is also possible to see how other degrees of freedom,

such as rotational motion, can affect the IRP simply by changing this property.

For example, we can rotate asymmetrical particles and generate an IRP for the

particle’s rotation.

7.2.4 Numerical Information Patterns for Large Spheres

We use the output from Scuff-EM of the scattered electric and magnetic fields to

find the information radiation pattern based on Sec. 7.2.3.2. We begin, as before,

by meshing the particle of interest and illuminating it by the relevant EM field.

We then measure the scattered field on the surface of an imaginary sphere with a

radius r = 1m such that we are in the far field regime. We do this for the particle

being located at the locations ±λ/100 such that the distance between the points

is sufficiently small such that the change in the scattered fields is linear and we

can use a first-order centred difference approximation of the derivative. At each

location (θ, φ), we measure the complex scattered electric and magnetic fields

for the particle as EEE±µ (θ, φ) and HHH±µ (θ, φ), where the ± denotes if the particle

is located on the positive or negative side of the origin, and µ determines the

axis the particle is displaced in. For ease of notation, we split the vectors into

EEE = [Ex, Ey, Ez]. Thus, the components for the relevant differentials is given by,

∂µE
∗
j,µ ≈

E∗+j,µ − E∗−j,µ
λ/100− (−λ/100)

(7.2.27a)

∂µHj,µ ≈
H+
j,µ −H−j,µ

λ/100− (−λ/100)
(7.2.27b)

where j = x, y, z. Then, by inserting EQs. (7.2.27) into Eq. (7.2.25), we find the

information radiation patterns as

Iµ(θ, φ) = SSSFI(θ, φ) ·AAAi (7.2.28)

where the area vector of the detector pointing away from the origin.
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(a) IRPs created with a lens of NA = 0.75.

(b) IRPs created with a lens of NA = 0.1.

Figure 7.7: Information patterns for varying radii of spherical particles in Gaus-

sian beams formed by lenses of different numerical apertures. These plots are

generated by applying the method in Sec. 7.2.3.2 in Scuff-EM.
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Figure 7.8: A sketch of a hexgonal plate trapped in a standing wave showing all

six degrees of freedom.

Care must be taken when deciding the numerical accuracy when producing

the IRPs. We must ensure that the mesh of the object is sufficiently dense such

that the scattered fields are accurate, but there remains a practical limit to the

mesh density we can use set by computational resources. Increasing the number

of points in the mesh increases the accuracy of the replicated IRP. However, care

must be taken as the complexity of the Scuff-EM calculations increases with the

number of edges by a factor of N4 [145].

Comparing the results from Fig. 7.7 and Fig. 7.6, we can confirm a qualita-

tive agreement between the numerical and analytical methods, apart from in the

R/λ = 2.24 spheres moving in the z axis which has a 90◦ rotation around the z

axis. This gives us a high degree of confidence in our numerical model allowing

us to apply it to other shapes.

7.2.5 Information Radiation Patterns from Hexagonal Plates

We follow the same method utilised in Section 7.2.3.2 to find the information

patterns for our hexagonal plates shown in Fig. 7.8. This method follows the

same procedure as in Section 7.2.4, but we also must consider the rotational

degrees of freedom. In this case, we have the three motional degrees of freedom

(x, y, z), and the rotational degrees of freedom (θx, θy, θz) where the axis in the
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Particle Type Diameter Thickness

B1 300nm 2.5µm

B2 200nm 3µm

B3 200nm 5µm

Table 7.1: Dimensions for the hexagonal plate particles.

subscript defines the axis that the hexagon is rotated around (see Fig. 2.12 for

an image of these degrees of freedom). Recalling Eq. (7.2.25), we find the Fisher

information flux through an area Ai by measuring the change in the electric

and magnetic fields passing through the area as we change the property of the

particle µ. Until now, we have only considered µ to be the axis of the particle’s

motion. However now, we extend that to also include the particle’s orientation,

µ = (x, y, z, θx, θy, θz). In the same way that we use Eq. (7.2.27) to find the change

in the fields as we move the particle from µ = λ/100 to µ = −λ/100, we can make

a small change in the rotation of the particle and replace the denominator with

this angular change, in this case we have rotated from −1◦ to +1◦.

In Fig. 7.9, we see the IRPs for each degree of freedom µ for hexagonal disk

particles with dimensions given in Table 7.1 trapped in a standing wave trap.

These plots are symmetrical in the z direction due to the counter propagating

beams in the z axis. We also notice that the IRPs for the motional degrees of

freedom show preference to the direction of the particle’s motion. This matches

the results we would expect to see from the results of the sphere IRPs. For the

rotational degrees of freedom, we see that the IRPs favour the direction that light

is reflected at each rotation in the θx and θt degrees of freedom. The θz however,

scatters information primarily in the x and y axes as this is where the change in

the particles shape occurs.
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Figure 7.9: IRPs for each degree of freedom µ of a hexagonal disk trapped in

a standing wave trap made up of two counter propagating beams with a beam

waist of w0 = 12µm. Each particle has a vertex-to-vertex diameter of 2.5µm to

5µm and a thickness of either 300 or 200nm. These are based on the B1 and B2

batches from [60].
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Figure 7.10: Scattering amplitude components calculated from Scuff-EM for a B1

hexagonal disk.

7.3 Numerical Solutions for the Talbot Coeffi-

cients

We now direct our focus to numerical solutions for the Talbot coefficients. In

previous sections of this chapter, we have derived a numerical method for cal-

culating the information contained in scattered light. We have then validated

this by applying the method to geometries with known results. Now that we

have confidence in this approach, we can use the same techniques to derive the

scattering amplitudes needed to find the Talbot coefficients. The scattered field

output by Scuff-EM is proportional to the scattering amplitude. By setting the

magnitude of the incident field E0 = 1 we will recover the scattering amplitude in

each of the Cartesian components. As a result, we can use the output scattered

field to calculate the value of the scattering amplitudes fµ(k, knnn).

Scuff-EM outputs the Cartesian components of the scattered field, as shown in

Fig. 7.10 for a silicon B1 hexagon in a 12µm beam with wavelength λ = 1550nm.

However, the analytical scattering amplitudes use the angle from the scattering

direction to define the polarisation of light scattered in each direction as was

shown in Fig. 5.9 in section 5.4.2. We can perform a coordinate transform to find

the θ and φ components of the scattering amplitude,

fφ = (− sinφ)fx + (cosφ)fy (7.3.1a)

fθ = (cos θ cosφ)fx + (cos θ sinφ)fy + (− sin θ)fz. (7.3.1b)

These are then used in place of fµ(kkk,kkk′) which enter the Talbot coefficients
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via the scattering terms,

aµ(s) =
8π

h̄ω

EG
aG

∫
Re
[
f ∗µ(k, knnn)fµ(−k, knnn)

]
[cos(knzs)− cos(ks)] dΩ (7.3.2a)

bµ(s) =
8π

h̄ω

EG
aG

∫
Im
[
f ∗µ(k, knnn)fµ(−k, knnn)

]
sin(knzs)dΩ (7.3.2b)

F µ(s) =
8π

h̄ω

EG
aG

∫
|f(k, knnn)|2[cos((1− nz)ks)− 1] dΩ (7.3.2c)

The next steps would be to compute these scattering terms for new shapes of

particles and replace them in the Talbot coefficients Eq. (5.4.46). The optimum

shape should be chosen such that the values of Eq. (7.3.2) are minimised to reduce

the amount of decoherence, whilst also ensuring that the phase shift parameter

φ0 (Eq. (5.4.33)) can be kept as large as possible as to maximise the interference

effect. This optimisation is an interesting problem for future work.
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Conclusion

We aimed to explore the extent to which feasible experiments could possibly

constrain the parameters of collapse models such as CSL. These models aim

to explain the apparent quantum-to-classical transition but have parameters that

must be experimentally determined. The approach presented here was to consider

a matter-wave interferometer using large masses and spatial separations to probe

large scale superpositions. Due to the sparse nature of the data in such an

experiment, we apply Bayesian inference to extract as much value from each

data point as possible. This produces a real-valued probability distribution over

the whole parameter space of the collapse model in contrast to previous works

that only considered a binary exclusion to regions of the parameter space. By

analysing the full final probability density using Bayesian information gain, we

are able to quantify the worth of a given experiment, and thus find optimum

experimental parameters.

In order to maximise the information, we find that we must use particles with

radii beyond the point-like approximation. Therefore, we employ Talbot coef-

ficients derived using Mie theory from the literature. However, we found that

these literature results are incorrect and we preset a corrected description. Fur-

thermore we show that spherical particles are not the most optimum shape for

constraining CSL parameters. Using recently published concepts about informa-

tion carried by a scattered field, we present a method for numerically computing

the Talbot coefficients for particles with arbitrary geometries. This is verified
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against analytical results and applied to thin, hexagonal disk like structures.

We have predicted that in a MAQRO-like experiment, we could be able to

push the upper bound of λc down to 10−19Hz at rc = 10−7m using spherical

particles with mass of 7 × 108u. This is an improvement of almost 6 orders of

magnitude compared to previous experiments. Further work incudes applying

the simulations of the interferometer to the hexagonal disks with numerically

derived Talbot coefficients and observing how much these geometries can further

constrain collapse models.
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