
Predator-Prey Q-Learning Based Collaborative
Coverage Path Planning for Swarm Robotics⋆

Michael Watson1, Hanchi Ren2, Farshad Arvin1, and Junyan Hu1

1 Department of Computer Science, Durham University, UK
{michael.watson, farshad.arvin, junyan.hu}@durham.ac.uk

2 Department of Computer Science, Swansea University, UK
hanchi.ren@swansea.ac.uk

Abstract. Coverage Path Planning (CPP) is an effective approach to
let intelligent robots cover an area by finding feasible paths through the
environment. In this paper, we focus on using reinforcement learning to
learn about a given environment and find the most efficient path that
explores all target points. To overcome the limitations caused by stan-
dard Q-learning based CPP that often fall into a local optimum and
may be in-efficient in large-scale environments, two methods of improve-
ment are considered, i.e., the use of a robot swarm working towards the
same goal and the augmenting of the Q-learning algorithm to include a
predator-prey based reward system. Existing predator-prey based reward
systems provide rewards the further away an agent is from its predator,
the paper adapts this concept to work within a robot swarm by simulat-
ing each agent of the swarm as both predator and prey. Simulation case
studies and comparisons with the standard Q-learning show that the
proposed method has a superior coverage performance in complicated
environments.

Keywords: Coverage Path Planning · Reinforcement Learning · Swarm
Robotics.

1 Introduction

The autonomous coverage of unknown environments is a very hot and important
research field in robotics. This task aims to completely cover the entirety of
an environment which means the mobile agents must visit each location safely
and efficiently [1]. Many coverage path planning (CPP) algorithms have been
designed for mobile robots during the past decade, and they have already been
applied to various real-world applications, such as precision agriculture [2, 3],
autonomous vehicle navigation [4], automated harvesting [5,6], search and rescue
[7,8]. Furthermore, CPP also plays an important role in some emerging research
fields, e.g, a multi-arm manipulator could be used to interact with bee hives and
follow the trajectory of the queen honey bee [9].

⋆ This work was supported by EU H2020-FET-OPEN RoboRoyale project [grant num-
ber 964492].



2 M. Watson et al.

There exist several different methods to achieve autonomous coverage, but
this paper aims to improve upon one of the most known reinforcement learning
algorithms, Q-learning [10, 11]. Q-learning is a long-standing algorithm and is
popular due to its simple implementation allowing it to be easily adapted to sev-
eral situations. However, this simpleness also leads to several limitations such as
easily falling into a local optimum or struggling in more complex environments.
These are the main limitations the solution aims to overcome; it is important to
overcome these issues as in more complex use cases such as exploring dangerous
terrain and environments it is vital that the agents can find optimal paths to
save on resources. A shorter path means that more of an environment can be
explored, both in total and within a given period. Furthermore, the algorithm
must be good in more complex environments where there may exist obstacles
that the agents must avoid as it is extremely unlikely that in real-world use cases,
the environment will be unobstructed. Another key technology used throughout
this paper is swarm robotics [12], swarms are a collection of multiple robots
all working together towards the same goal. They are highly effective in explo-
ration tasks as they multiply how much of the environment can be explored
at once. Therefore, this paper focuses on implementing the upgraded algorithm
into a swarm so that they can be used together to provide a superior method of
exploitation.

The paper aims to answer the question: “Can you adapt Q-learning to be
more effective in Coverage Path Planning problems?” To attempt to answer this
question the paper provides a completed algorithm and explains the method
used to obtain the results displayed at the end of the paper. It will explain
the Q-learning method used as well as the adaptions made to improve it for the
necessary purpose. A complete program was made to test the algorithms against
each other simulating custom environments, as well as easily allowing differing
swarm sizes. An implementation of a standard algorithm was also implemented
to be compared. The adapted solution aims to improve upon the existing method
in several ways, it aims to improve performance in complex scenarios in which
obstacles exist increasing the difficulty of exploration. Another vital result is
to ensure that full coverage always occurs within the given movement budget,
it also aims to improve the efficiency of the algorithm by reducing the average
number of steps needed to fully cover. Finally, the solution aims to be consistent
so that it produces reliable results.

2 Related Work

There are multiple solutions to the CPP problem which can be categorized into
offline and online algorithms [13]. Offline algorithms perform coverage in a static
and known environment, whereas online algorithms work in dynamic environ-
ments. The online algorithm is preferred as most use cases will involve dynamic
environments in which the agent will have to adapt [14]. However, even online
algorithms have their limitations one being they require agents with sensors to
learn about their surroundings. Another is that they lack the same efficiency



Title Suppressed Due to Excessive Length 3

as offline algorithms which can find an optimal path and then stick to it. CPP
algorithms can also take many different approaches [15] such as machine learn-
ing [16], greedy search [17], graph search [18], frontier-based exploration [19] as
well as many others. Each method has its strengths and weaknesses and the
best method to use often depends on the use case. For example, the greedy al-
gorithm (Dijkstra’s algorithm) is simple, easy to implement and generally fast,
but it does not guarantee a global optimum. It is also an offline algorithm which
means it cannot be used in dynamic environments.

Rerinforcement learning is the method which this paper focuses on. Piardi et
al. [20] present a Q-learning algorithm which uses a grid-based map to optimize
the CPP trajectory, this implementation has some limitations. Its simple nature
means it doesn’t work in environments with unknown obstacles. However, it does
provide a good basis for improvement by adapting this algorithm with further
methods. Zhou et al. [21] provide numerous improvements over a standard Q-
learning algorithm to create an optimized algorithm, optimized Q-learning. It
includes improvements such as novel Q-table initialization, a new action-selection
policy, and a new reward function. The limitations of this paper however are that
its reward function is still simplistic, and it also lacks integration for multiple
robots. Puente-Castro et al. [22] make use of a swarm of agents to accomplish the
task as a group. This method effectively demonstrates the usefulness of a swarm
over an individual agent, it shows how using a swarm reduces the individual load
of each agent whilst maintaining the overall result of the solution. The limitation
of this method however is the reward structure, it is very simple and therefore
leaves room for improvement. One method to improve the reward structure is
through the use of a predator-prey based reward structure [23]. This reward
structure combines three different reward functions to produce a reward for the
agent. These rewards given are the predator-prey reward, a boundary reward,
and a smoothness reward, in combination this provides the agent with a much
more responsive representation of its environment. The limitation of this method
comes from its lack of swarm implementation, it focuses on only one agent and
with multiple agents, collisions can reduce the effectiveness of the rewards.

3 Methodology

This solution aims to create an efficient reinforcement learning algorithm for use
in a coverage path planning scenario. Robot agents are used to complete the
coverage. The multiple agents mean more of the environment can be explored
concurrently; it also provides redundancies in the scenario that an agent is lost.
However, there are some drawbacks in the way that the swarm interacts such
as collisions as well as issues in how the swarm explores. The solution to this
is to adapt a reinforcement learning algorithm around the swarm to overcome
these issues. The reinforcement learning method Q-learning was selected as it is
an easy-to-implement method which can be used easily in a swarm as if needed
the agents can act individually.



4 M. Watson et al.

3.1 Foundation Work

An implementation of Watkins Q-learning [10] was used for this solution. Q-
learning is a simple reinforcement learning algorithm which makes use of a data
structure called a Q-table and a function known as the Q-function. Q-learning
works by initializing the agent’s Q-table which holds a predicted reward for
each state the agent can be in, and each action it can take from this state.
The estimated rewards are then continually improved using a specialized Q-
function (1) to produce rewards which represent how beneficial each action is.

The function takes the observed reward and the estimated future value and
updates the value in the table according to the function. The function is formu-
lated as follows:

Q(s, a) = Q(s, a) + α[r + γmaxQ(s′)−Q(s, a)], (1)

where Q(s, a) represents the current Q-value for the given state and action, s′

refers to the next state (the state the current action will lead to), α=Learning
Rate, r=reward and γ=Discount Factor. The function can be altered through
the use of the parameters α, γ. These values can range from 0 to 1. The learning
rate determines how much each learning increment will affect the Q-value, the
greater the learning rate the faster the Q-values will converge. It is therefore
important to have a learning rate small enough that it does not converge too
early but also ensure that it is not so small it takes too long to converge. The
discount factor determines how much importance is placed on the future reward.
The greater the discount factor the more important the function finds the future
reward; it is also important to balance this parameter so that the correct amount
of weighting is placed on the potential future.

Another significant strategy implemented was the Epsilon-Greedy method.
This is a method of introducing some randomness into the agent’s selection of
an action, which allows it to explore and find better paths and actions it can
use. It works by using a value denoted as epsilon, the agent will then choose a
random action with probability ϵ and the best action with probability 1− ϵ. The
value of epsilon then decays and reduces after each cycle so fewer random actions
are taken. Performance can be heavily impacted by both the starting value and
the decay rate of epsilon. If epsilon remains too high the algorithm will take
too many random actions and never be able to converge on a suitable answer.
However, if epsilon starts to low, no random actions are taken, and the agent
gets stuck in a local optima never branching off to explore potentially better
alternatives. A combination of these methods can be seen in Algorithm 1.

The basic reward structure used for standard Q-learning is simple, a positive
reward is given the first time a location is seen, and a negative reward is given
each time the agent moves. This negative reward acts as a movement penalty, it
is given so that the agent will aim to cover the environment in a minimal number
of steps as the more it moves the smaller the reward it gains.

r =

{
1, Undiscovered Location
−0.05, Movement Penalty.



Title Suppressed Due to Excessive Length 5

Algorithm 1 Q-learning

1: Initialize Q(s, a) as 0 ;
2: for each episode do
3: Initialize s;
4: for each step of the episode do
5: Random p;
6: if p < ϵ then
7: Any action a;
8: else
9: a = maxQ(s);
10: end if
11: Take action a, gather r, s′;
12: Q(s, a) = Q(s, a) + α[r + γmaxQ(s′)−Q(s, a)];
13: s = s′;
14: end for
15: Until s is terminal.
16: end for

Backtracking is another method implemented into the solution to assist the
agent in what to do when it sees no unvisited neighbours. If the agent reaches a
position where it has no unvisited neighbours, it will begin to retrace its steps
until it sees an unvisited location and it will then return to normal. The use
of backtracking is to overcome situations where the agent becomes stuck in a
loop moving between locations it has already seen until it terminates. Although
backtracking is not efficient it is effective at ensuring the environment will always
be completely covered and the agent will not get stuck. Coverage is guaranteed
as anywhere the agent can reach it must have passed at some point and this
method of backtracking ensures it is seen again and can be explored this time.
This does create some limitations however as this form of backtracking is not
very efficient because it retraces its steps. This occurs each time the agent starts
backtracking. It could be improved by implementing a better method which
remembers the location where the agent stopped backtracking and returned to
exploration, this location could then be returned if the agent needs to backtrack
again.

3.2 Swarm Structure

This solution makes use of multiple agents working together to create a collabo-
rative swarm. The implementation of the swarm allows for the use of a changing
number of agents, the swarm can contain any number of agents and still func-
tion correctly. Using more agents will allow for faster exploration, but it requires
greater computational resources. The agents of the swarm all use the same al-
gorithm however they use individual Q-tables so they can determine their best
paths individually. This is necessary to take full advantage of the swarm as with
a shared Q-table all agents would attempt to follow the same path which would
negate the advantages of using a swarm in the first place. The use of one Q-table



6 M. Watson et al.

would also lead to agents disrupting other agents’ Q-values leading to worse re-
sults than using a single agent. There is also a central controller of the swarm
which holds information about the swarm. This includes information about the
locations of all swarm members, which allows any member to know the position
of the other members. This can be used for both avoiding collisions as well as in
the reward function (2). The controller also holds how much coverage the swarm
has completed so it can monitor progress and tell the members to stop once
coverage is complete.

There exist some potentially problematic interactions with agents in the
swarm, one of which is how the agents avoid crashing. In the simulation, a
crash occurs when two agents move into the same location. This is overcome by
restricting the agent’s movement to not allow actions which will result in the
agents overlapping. This can reduce performance sometimes as agents may have
to wait for other agents to move first before they can, but it is vital to ensure
all agents remain safe.

Another problem is the fact that with multiple agents exploring different
locations, the agents cannot know when they have collectively covered the en-
tirety of the environment. Without some shared information of what each agent
has covered the agents will run until they have covered the entire environment
individually. This is overcome using a simulated server that holds the amount of
the environment covered, this allows any agent to access the collective memory
to share what they have covered and know when to stop. The server also holds
the specific locations that have been explored, this avoids duplicate counting as
well as allowing the correct rewards to be given to the agent for unexplored and
explored locations.

3.3 Predator-Prey Improvement

Predator-Prey is a method which simulates the animal relationship between
predator and prey. Specifically, it mimics the behaviour of the prey, in which
they aim to get as far from the predator as quickly as possible. This method
was adapted into a reinforcement learning scenario by Zhang et al. [23]. The
method implemented in their paper focuses on using one agent to fully explore an
environment. This is done by simulating a predator at one end of the environment
so that the agent will move quickly away from it, the method is effective at getting
the agent to move in straight lines as it is its optimal pathing for maximum
distance. This behaviour is especially useful in a coverage scenario as moving
in straight lines avoids any small pockets of unvisited locations being missed
and needing to be found later. Once a boundary is reached the predator can
then be moved to encourage the agent to move in a direction of choice, by
doing this repeatedly the agent can sweep the entirety of the environment very
effectively. The solution is built upon this method; however, it is altered to work
in a swarm. The key difference is that instead of simulating a predator for the
agent to run from all agents in the swarm simulate both predator and prey. An
individual agent aims to move as far as possible from the other agents in the
swarm, simulating the prey with every other member of the swarm acting as its



Title Suppressed Due to Excessive Length 7

predator. This method is effective when the entire swarm begins in the same
region of the environment as it means the swarm spreads out which allows for
different regions of the environment to be explored faster. A reward is given
depending on how far the agent is from its closest predator (2). The reward for
moving to neighbour x is formulated as follows:

rp(x) =
D(x)−Dmin(xn)

Dmax(xn)−Dmin(Xn)
, (2)

where D(x) gives the distance from x to its nearest predator. Dmax(xn) gives
the maximum distance between one of x’s neighbours and any predator, and
Dmin(xn) gives the minimum distance between one of x’s neighbours and any
predator.

Two further functions are also used which give rewards based on the smooth-
ness of the path travelled and the boundary of the next state. The smoothness
reward gives a reward based on the direction of the agent’s travel (3), if it moves
in the same direction multiple times it receives a greater reward. This is done
to entice the agent into moving in straight lines, as well as discourage moving
back along its path when unnecessary. The reward for moving to neighbour x is
formulated as follows:

rs(s) =

∠xk−1xkx = 0◦, reward = 1
∠xk−1xkx = 90◦, reward = 0.5
∠xk−1xkx = 180◦, reward = 0

(3)

where xk−1 and xk are the positions covered at k − 1 and k, respectively. The
reward is given based on the angle between the vectors (xk−1−xk) and (xk−x).

The boundary reward gives a reward based on the number of unvisited neigh-
bours a given location has (4). The fewer the neighbours the greater the reward.
This helps the agent to move into locations which may otherwise get cut off and
left behind. The reward for moving to neighbour x is formulated as follows:

rb(x) =
Nmax − xN

Nmax
, (4)

where Nmax is the total number of neighbours and xN is the number of unvisited
neighbours x has.

The rewards are then combined to give a complete reward. They are combined
with different weights to manipulate the importance of each individual reward.
It is formulated as follows:

r(x) = wp(rp(x)) + ws(rs(x)) + wb(rb(x)), (5)

where wp, ws and wb represent the weights for the predation reward, smoothness
reward and boundary reward, respectively. r(x) is the final reward which is
returned to the agent. The weights can be changed to differing values to change
how rewards are given to the agent. A larger weight means more emphasis is
placed on that reward; this allows for the algorithm to work in different ways



8 M. Watson et al.

such as focusing on spreading out as quickly as possible or trying to move in only
straight lines. Using powerful values for the weights which are much higher than
the others can lead to a worse performance as it overpowers the other reward
functions and only one is truly considered.

The pseudocode for the complete algorithm can be seen in Algorithm 2. This
combines all improvements including the use of a swarm, the use of backtracking
and the use of the adapted reward function.

Algorithm 2 Improved Predator-Prey Swarm Q-learning

1: Initialize Swarm;
2: for each agent in Swarm do
3: Initialize Q(s, a) as 0;
4: Initialize Exploration Count;
5: end for
6: for each episode do
7: for each agent in Swarm do
8: Initialize s;
9: end for
10: for each step of the episode do
11: for each agent in Swarm do
12: Random p;
13: if p < ϵ then
14: Any action a;
15: else
16: if there is an unvisited location then
17: a = maxQ(s)
18: else
19: a = Previous action
20: end if
21: end if
22: Take action a, gather s′, gathering r using (5);
23: Q(s, a) = Q(s, a) + α[r + γmaxQ(s′)−Q(s, a)];
24: if s′ is unvisited then
25: Exploration Count += 1;
26: end if
27: s = s′;
28: end for
29: Until s is terminal.
30: end for
31: end for

4 Results and Evaluation

The results are simulated in a custom-made environment, which is a square grid
that can vary in size. Throughout the testing, the weights used in (5) are wp = 2,



Title Suppressed Due to Excessive Length 9

 

(a)

 

(b)

 

(c)

 

(d)

Fig. 1. The trajectories of 5 agents using the proposed method on an environment size
12 with random placed obstacles at (a) 0 seconds, (b) 14 seconds, (c) 28 seconds, and
(d) 42 seconds.

 

(a)

 

(b)

Fig. 2. The (a) Coverage/Time and (b) Movement/Time of the proposed method with
swarm size 5 on an environment size 12 with random placed obstacles.

ws = 1, wb = 1.5. The learning rate was 0.001, the discount factor was 0.9, the
starting epsilon value was 0.2 and there were 1000 learning episodes carried out.
There was a movement budget set based on the environment size, this was the
maximum number of steps allowed for each coverage attempt.

4.1 Coverage Performance in Cluttered Environments

The following plots illustrate an example of coverage in an environment of size
12 with a swarm size of 5 agents. Some obstacles are randomly placed in the
environment. These results will show how the agents navigate in more complex
environments.

In Fig. 1, the trajectories of the agents can be seen. It demonstrates how
each agent explores their section of the environment and also demonstrates the
predator-prey methodology with the agents moving apart to explore different
edges of the environment.

Figures 2(a) and 2(b) show that even when obstacles are added the algorithm
maintains its consistency with tight groupings of the simulations. It also shows
that even with obstacles the algorithm always ensures that the environment is
covered.



10 M. Watson et al.

 

(a)

 

(b)

Fig. 3. The (a) Coverage/Time and (b) Movement/Time of the proposed method with
different swarm sizes.

4.2 Coverage with Different Swarm Sizes

To test the performance of our strategy when using different number of robots,
the next plots show the coverage in an environment of size 12 with differing
swarm sizes, i.e., 3, 5, and 10 agents all using the same predator-prey learning.

Figures 3(a) and 3(b) show the comparisons of different swarm sizes. This
provides evidence of the effectiveness of the swarm as by adding additional agents
the speed of the solution is drastically improved. These plots show that reliable
results can be provided by any size swarm however the larger the swarm the
better the results. This is useful to know as depending on the use case there may
be different restrictions on the number of agents a swarm can have.

4.3 Comparison with Standard Q-Learning

The following graphs demonstrate the comparison between the standard Q-
learning [10] and the version created in this paper. Each algorithm was run
for 50 loops and then the average results of the simulations were plotted so they
could be compared. A swarm of 5 agents in the same environment was used for
both algorithms to ensure a fair comparison.

It can be seen in Figure 4(a) and Figure 4(b) that the predator-prey algorithm
performs very well ensuring that the environment is always covered. Whereas
with the standard Q-learning, there are some cases in which coverage fails and
the entire movement budget is expended. This can be seen in Figure 4(a), not
every line (simulation) reaches 100% before the end of the time. This was an
important criterion to meet for the solution ensuring that the environment can
always be completely covered in a small number of steps, ensuring that the
algorithm was efficient. This could potentially be further improved by improving
the backtracking part of the algorithm.

Figure 4(a) and Figure 4(b) also show the improved algorithm is much more
consistent providing similar results for all simulation loops, whereas the standard
algorithm results vary drastically in its results. This was also important to ensure
that the swarm would act predictably so that the user could know how the swarm



Title Suppressed Due to Excessive Length 11

 

(a)

 

(b)

Fig. 4. Comparison between Predator-Prey and Standard algorithms with (a) Cover-
age/Time and (b) Movement/Time.

would perform before using it, this is a very important factor in some potential
use cases.

5 Conclusion

This paper utilizes a robot swarm using an adapted Q-learning algorithm to
learn about their environment and plan an efficient path to explore it. The
solution managed to successfully extend a standard predator-prey Q-learning
to allow agents of the swarm to simulate both prey and predator, this led to
a more effective coverage as agents aimed to stay apart and therefore covered
different sections of the environment. The solution was much more efficient than
a standard Q-learning swarm, ensuring that the environment was fully covered
in fewer steps. The efficiency and effectiveness were then validated by various
simulation case studies.

References

1. Cao, Z.L., Huang, Y., Hall, E.L.: Region filling operations with random obstacle
avoidance for mobile robots. Journal of Robotic systems 5(2), 87–102 (1988)

2. Höffmann, M., Clemens, J., Stronzek-Pfeifer, D., Simonelli, R., Serov, A., Schet-
tino, S., Runge, M., Schill, K., Büskens, C.: Coverage path planning and precise
localization for autonomous lawn mowers. In: 2022 Sixth IEEE International Con-
ference on Robotic Computing (IRC), pp. 238–242. IEEE (2022)

3. Huang, K.C., Lian, F.L., Chen, C.T., Wu, C.H., Chen, C.C.: A novel solution with
rapid voronoi-based coverage path planning in irregular environment for robotic
mowing systems. International Journal of Intelligent Robotics and Applications
5(4), 558–575 (2021)

4. Xie, S., Hu, J., Ding, Z., Arvin, F.: Cooperative adaptive cruise control for con-
nected autonomous vehicles using spring damping energy model. IEEE Transac-
tions on Vehicular Technology 72(3), 2974–2987 (2023)

5. Hameed, I.A.: Intelligent coverage path planning for agricultural robots and au-
tonomous machines on three-dimensional terrain. Journal of Intelligent & Robotic
Systems 74(3), 965–983 (2014)



12 M. Watson et al.

6. Wang, L., Wang, Z., Liu, M., Ying, Z., Xu, N., Meng, Q.: Full coverage path
planning methods of harvesting robot with multi-objective constraints. Journal of
Intelligent & Robotic Systems 106(1), 17 (2022)

7. Rekabi-Bana, F., Hu, J., Krajńık, T., Arvin, F.: Unified robust path planning and
optimal trajectory generation for efficient 3d area coverage of quadrotor uavs. IEEE
Transactions on Intelligent Transportation Systems 25(3), 2492–2507 (2024)

8. Wu, K., Hu, J., Li, Z., Ding, Z., Arvin, F.: Distributed collision-free bearing coor-
dination of multi-uav systems with actuator faults and time delays. IEEE Trans-
actions on Intelligent Transportation Systems (2024)

9. Rekabi-Bana, F., Stefanec, M., Ulrich, J., et al.: Mechatronic design for multi
robots-insect swarms interactions. In: 2023 IEEE International Conference on
Mechatronics (ICM), pp. 1–6. IEEE (2023)

10. Watkins, C.J.C.H.: Learning from delayed rewards (1989)
11. Clifton, J., Laber, E.: Q-learning: Theory and applications. Annual Review of

Statistics and Its Application 7, 279–301 (2020)
12. Navarro, I., Mat́ıa, F.: An introduction to swarm robotics. Isrn robotics 2013,

1–10 (2013)
13. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics.

Robotics and Autonomous systems 61(12), 1258–1276 (2013)
14. Champagnie, K., Arvin, F., Hu, J.: Decentralized multi-agent coverage path plan-

ning with greedy entropy maximization. In: 2024 IEEE International Conference
on Industrial Technology, pp. 1–6 (2024)

15. Tan, C.S., Mohd-Mokhtar, R., Arshad, M.R.: A comprehensive review of coverage
path planning in robotics using classical and heuristic algorithms. IEEE Access 9,
119,310–119,342 (2021)

16. Xing, B., Wang, X., Yang, L., Liu, Z., Wu, Q.: An algorithm of complete cover-
age path planning for unmanned surface vehicle based on reinforcement learning.
Journal of Marine Science and Engineering 11(3), 645 (2023)

17. Jia, Y., Zhou, S., Zeng, Q., Li, C., Chen, D., Zhang, K., Liu, L., Chen, Z.: The uav
path coverage algorithm based on the greedy strategy and ant colony optimization.
Electronics 11(17), 2667 (2022)

18. Nasirian, B., Mehrandezh, M., Janabi-Sharifi, F.: Efficient coverage path planning
for mobile disinfecting robots using graph-based representation of environment.
Frontiers in Robotics and AI 8, 624,333 (2021)

19. Zhou, B., Zhang, Y., Chen, X., Shen, S.: Fuel: Fast uav exploration using incremen-
tal frontier structure and hierarchical planning. IEEE Robotics and Automation
Letters 6(2), 779–786 (2021)

20. Piardi, L., Lima, J., Pereira, A.I., Costa, P.: Coverage path planning optimization
based on q-learning algorithm. In: AIP Conference Proceedings, vol. 2116. AIP
Publishing (2019)

21. Zhou, Q., Lian, Y., Wu, J., Zhu, M., Wang, H., Cao, J.: An optimized q-learning
algorithm for mobile robot local path planning. Knowledge-Based Systems 286,
111,400 (2024)

22. Puente-Castro, A., Rivero, D., Pazos, A., Fernandez-Blanco, E.: Uav swarm path
planning with reinforcement learning for field prospecting. Applied Intelligence
52(12), 14,101–14,118 (2022)

23. Zhang, M., Cai, W., Pang, L.: Predator-prey reward based q-learning coverage
path planning for mobile robot. IEEE Access 11, 29,673–29,683 (2023)


