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Abstract: Electronic health records (EHRs) are a critical tool in healthcare and capture a wide array
of patient information that can inform clinical decision-making. However, the sheer volume and
complexity of EHR data present challenges for healthcare providers, particularly in fast-paced envi-
ronments such as intensive care units (ICUs). To address this problem, the automatic summarization
of the main problems of patients from daily progress notes can be extremely helpful. Furthermore, by
accurately predicting ICU patients’ lengths of stay (LOSs), resource allocation and management can
be optimized, allowing for a more efficient flow of patients within the healthcare system. This work
proposes a hybrid method to summarize EHR notes and studies the potential of these summaries
together with structured data for the prediction of LOSs of ICU patients. Our investigation demon-
strates the effectiveness of combining extractive and abstractive summarization techniques with a
concept-based method combined with a text-to-text transfer transformer (T5), which shows the most
promising results. By integrating the generated summaries and diagnoses with other features, our
study contributes to the accurate prediction of LOSs, with a support vector machine emerging as our
best-performing classifier with an accuracy of 77.5%, surpassing existing systems and highlighting
the potential for optimal allocation of resources within ICUs.

Keywords: natural language processing (NLP); text summarization; electronic health records (EHR);
intensive care unit (ICU); length of stay (LOS); MIMIC-III; classification

1. Introduction

The length of stay (LOS) for a hospitalized patient refers to the duration of their single
admission measured in days. Besides serving as a key metric for assessing hospital resource
utilization and the operational efficiency of healthcare systems, the LOS offers valuable
insights into patient flow within care units [1].

In recent decades, hospitals worldwide have seen a notable decline in the average
LOS, with the United States experiencing a reduction from approximately 20.5 days in
1960 to merely 6.5 days in 2021, making it among the shortest LOS globally [2]. However,
despite this reduction, the cost of inpatient care remains exceedingly high. For instance, the
average total ICU cost in the United States was USD 13,443 in 2021 [3].

While reducing the LOS may not always be feasible as a cost-saving measure, hospitals
can still make savings by optimizing the allocation of personnel and resources. Accurately
predicting the LOS can facilitate this optimization and serves as an effective strategy for
healthcare services to implement preventative measures aimed at avoiding LOS exten-
sions [1]. This is beneficial from different aspects, including the patient’s condition and
medical plan, family, the hospital, and the insurance company [4]. Additionally, the average
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expenses associated with patients who experience a prolonged stay in the ICU are seven
times higher compared to those who have a regular LOS [5], with a prolonged LOS being
more than a week. Comorbidities, patient-specific factors such as age and frailty, and
logistical challenges like delayed admissions and bed shortages all contribute to prolonged
stays [6,7].

Furthermore, in the ICU, healthcare providers face the challenge of dealing with a
huge amount of information and cognitive demands, leading to potential information
overload and difficulties with processing critical patient details, which increases the risk of
missed diagnoses and medical errors, impacting patient outcomes significantly [8].

To address these issues, our proposed solution is to automatically generate diagnoses
and problems from progress notes, which, along with other clinical and demographic
features, will predict ICU patients’ LOSs. This automation helps reduce information
overload and cognitive biases that may arise during the interpretation of complex patient
data, aiding with understanding patient conditions accurately. In addition to that, by
accurately predicting ICU patients’ LOSs, resource allocation and management can be
optimized through proactive planning of patient transfers and discharges.

Accordingly, our approach begins by tackling a challenge proposed by Physionet (Phy-
sioNet: The Research Resource for Complex Physiologic Signals, 2024, https://physionet.org
(accessed 10 June 2024)) (“BioNLP Workshop 2023 Shared Task 1A: Problem List Summariza-
tion”, 2023, https://physionet.org/content/bionlp-workshop-2023-task-1a/2.0.0 (accessed
10 June 2024)), which is a renowned platform supporting physiological signal research that is
managed by MIT’s Computational Physiology laboratory and backed by the National Institute
of Biomedical Imaging and Bioengineering [9]. The challenge is entitled: “BioNLP Workshop
2023: Problem List Summarization” [10], and the main task is to generate a list of diagnoses
and problems in a patient’s daily care plan using input from the provider’s progress notes
during hospitalization in the ICU. The method then focuses on the extraction of additional
features from the dataset that will contribute to a comprehensive understanding of each
patient’s medical profile. Finally, the generated problems and diagnoses and the extracted
variables are used as features to predict the patient’s LOS in the ICU.

We propose the first hybrid summarization approach that incorporates vital signs
and laboratory results, with the goal of predicting the ICU LOS. While our summarization
models do not outperform existing methods, our proposed ICU LOS classifier sets a new
benchmark on the MIMIC-III dataset with an accuracy of 77.5%, significantly improving
over previous methods and demonstrating the efficacy of our approach.

2. Background

This section provides an overview of both clinical text summarization and ICU LOS pre-
diction; we outline the state-of-the-art methods and review published works in both domains.

2.1. Clinical Text Summarization

Text summarization is a process that produces a concise, fluent, and short summary of
a longer document. Automatic text summarization systems are designed by applying one
of the following general text summarization approaches [11].

2.1.1. Extractive Text Summarization

Extractive text summarization involves selecting a few relevant sentences from the
original document to create a concise summary based on their relevance, importance, or
saliency to the overall meaning of the text. Extractive summarization methods can be
categorized into various approaches, each with distinct techniques and objectives [11,12].
Concept-based extractive summarization methods focus on extracting concepts from the
text using external knowledge bases to calculate the importance of the sentence. Graph-
based methods use sentence-based graphs for document representation and to rank sen-
tences. Topic-based summarization methods identify the main subject of the document
using techniques like TF-IDF. Clustering-based extractive summarization methods aim to
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identify the most central and important sentences in a cluster, as they include the important
information related to the main subject; one well-known summarizer based on this method
is BERTSummarizer, which employs the BERT (bidirectional-encoder transformer) [13]
model to encode the input text and generate sentence embeddings. Despite offering speed
and simplicity, extractive summarization can lead to redundancies and longer sentences,
underscoring the necessity to refine the summaries.

2.1.2. Abstractive Text Summarization

Abstractive text summarization aims to generate a summary that contains words and
phrases that may not necessarily be present in the source document. It involves reinter-
preting the ideas or concepts from the original text and presenting them in a condensed
and rephrased form, capturing the essential information while using different wording and
structures. Transformer-based models have significantly advanced the field of abstractive
text summarization and offer impressive capabilities when generating concise and coherent
summaries [14]. A notable transformer-based model for abstractive text summarization is
the text-to-text transfer transformer (T5) [15] model, which involves encoding the input
text, including the extracted sentences, into a dense vector representation that captures
the semantic meaning of the text; then, the decoder part of the T5 model generates a
summary by decoding this representation into coherent and concise text. Unlike extractive
methods, abstractive approaches deeply analyze the input document to comprehend its
main concepts, allowing them to generate new sentences that encapsulate the document’s
core content.

2.1.3. Hybrid Text Summarization

Hybrid text summarization combines both abstractive and extractive methods, with
the aim of combining the strengths of each [16]. Initially, the extractive phase selects key
sentences from the input text that are deemed essential to convey its overall meaning.
Following this, the abstractive phase uses these extracted sentences to generate a concise
and coherent summary using abstractive techniques.

2.1.4. Existing Approaches for Clinical Text Summarization

Electronic health records (EHRs) serve as a comprehensive and ongoing record of
a patient’s health information. EHR daily progress notes are written by the healthcare
providers in order to track the ongoing progress of the patient on a daily basis; they serve
as a chronological record of the patient’s health status and play a crucial role in facilitat-
ing communication among healthcare providers and monitoring the patient’s progress
throughout their healthcare journey [17].

EHR daily progress notes typically follow the SOAP structure, which stands for
subjective, objective, assessment, and plan. It is a documentation method designed by
Larry Weed [18] to present patient’s problems in a highly structured way. Within each
section, there are multiple components that focus on different aspects of the patient’s case
and present relevant information. The Subjective section records subjective information
obtained from the patient or caregiver, such as chief complaints, symptoms, and relevant
medical history. The Objective section contains measurable data like vital signs, examination
findings, and test results. The Assessment section summarizes the healthcare provider’s
diagnosis, evaluation of symptoms, and overall clinical impressions. Finally, the Plan
outlines the proposed treatment plan, including medications, procedures, referrals, follow-
up appointments, and patient education [19].

Recent research on EHR text summarization can be classified by the approach used.
For the extractive summarization techniques, Liang et al. [20] propose a disease-specific
summarization task that extracts sentences from progress notes, focusing primarily on
progress notes by physicians and nurse practitioners; the pipeline includes a basic natural
language processing (NLP) layer along with additional EHR-specific components such as
note section classification, disease context identification, and adverse drug event detection.
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HARVEST [21], an EHR summarizer deployed in a New York hospital, incorporates a
Markov chain named-entity tagger to identify diseases that are explicitly mentioned in
clinical notes as well as a TF-IDF scorer, which assesses the importance of these disease
mentions by considering their frequency in the document and their rarity across the
entire dataset.

For the abstractive summarization techniques, several works focus on summarizing
radiology reports into an impression, which is a short piece of text that states the find-
ings from the source image [22,23]. Yim and Yetisgen-Yildiz [24] present a technique for
generating snippets, which are concise summaries extracted from aligned sentences. The
snippets are designed to capture the essential information from the clinic visit and provide
a condensed representation for easier reference and understanding.

Gao et al. [19] introduce a novel approach to automatically summarize patients’
medical problems from hospital progress notes. Their experiments involved fine-tuning
two pre-trained sequence-to-sequence models: T5 and BART. The study demonstrates
promising results, highlighting the potential of fine-tuning the pre-trained T5 model for
accurate and efficient problem summarization in the healthcare domain. It also discusses
future research directions to improve the generalizability of the approach and improve the
quality of generated summaries, and it proposes a manually annotated dataset based on a
subset of the large and publicly available MIMIC-III database [25].

Based on these findings, the BioNLP Workshop 2023 launched a shared task on
problem list summarization in January 2023 [26]. This task aimed to foster research on
building NLP models for real-world diagnostic decision support in order to enhance
healthcare providers’ decision-making and patient care quality. Participants were tasked
with developing models to generate lists of diagnoses and problems from the EHR daily
progress notes of critically ill patients. Eight teams submitted their systems for evaluation,
including us. The best-performing system, CUED [27], achieved an F-score of 32.77% by
using an ensembled clinical T5 model.

Our work is based on the findings of Gao et al. [19]. We attempt to leverage the
baseline results by experimenting with both extractive and abstractive summarization
methods in a hybrid technique. Additionally, we explore the use of structured features
within the Objective section from the same dataset. Ultimately, the main goal is to predict
the ICU patients’ LOSs.

2.2. ICU Length of Stay Prediction

ICUs play a critical role in the healthcare system by providing specialized care to
patients with severe or life-threatening conditions. One key aspect of managing ICU
resources and ensuring optimal patient care is predicting the LOSs in the ICU. Accurate
prediction of discharge dates improves bed hour estimation, resulting in higher average
occupancy and reduced waste of hospital resources [28].

Prior studies have investigated LOS prediction in disease-specific or population-
specific groups such as patients with heart failure [29] or thermal burns [30] and cardiac
surgery patients [31], as well as those admitted to neonatal care units [32] or ICUs [33].
While previous work has aimed to group patients based on their medical conditions,
assuming each has a predefined, recommended LOS, the LOS is influenced by multiple
factors beyond medical conditions. These factors include patient characteristics, presenting
complaints, complications, discharge planning, and treatment complexity, all of which can
extend the original target LOS. Hence, a model capable of reliably predicting patient LOS
during a single visit event could help healthcare services implement preventive measures
to avoid LOS extension [34], especially in a critical and costly environment such as the ICU.
Few studies have used the MIMIC-III dataset for classifying ICU patient LOSs.

Wang et al. [35] introduce an open-source pipeline, MIMIC-Extract, that facilitates
cohort selection and pre-processing in clinical prediction tasks using the MIMIC-III dataset.
The pipeline generates a versatile cohort with diverse demographic and admission coverage,
enabling various prediction tasks. It employs fixed input windows and dynamic targets to
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prevent temporal label leakage in classification tasks such as mortality and length-of-stay
prediction. Benchmark tasks are profiled using different machine learning (ML) models
and demonstrate high performance, with the best-performing models reaching an accuracy
of 69.5% for “LOS > 3 days”.

Pellegrini et al. [36] present an innovative method for patient-level predictions using
graph-based unsupervised pre-training, where patients are represented as nodes in a graph,
with edges indicating similarities in clinical features and histories. The model undergoes
unsupervised pre-training on the patient population graph, enhancing its generalization
capabilities without labeled outcomes. Fine-tuning for specific prediction tasks such as
patient mortality or disease progression and LOS further improves the accuracy and
robustness, and an evaluation on clinical datasets demonstrated significant enhancements in
prediction accuracy over baseline models, with an accuracy of 71.44% for the “LOS > 3 days”
classification task on the MIMIC-III dataset.

Classification models predict the probability of a patient staying in the ICU for a
specific duration, often categorized as a “short stay” if less than 3 days and a “long stay”
otherwise, and the widely used metrics for evaluating the performance of a classification
model are accuracy, precision, recall, F1-score, and the area under the receiver operating
characteristics curve (AUROC) [37].

For classification tasks, three prominent ML methods stand out. The MLPClassifier, a
neural-network-based classification algorithm, consists of interconnected layers of neurons
that apply non-linear activation functions to model complex relationships between features
and target variables. Trained through back propagation, it adjusts weights to minimize
the difference between predicted and actual outputs, making it popular for classification
tasks [38].

Support vector machines (SVMs) aim to find an optimal hyperplane that maximizes
the margin between data points of different classes and handle both linear and non-linear
problems through various kernel functions [39].

Random forest, an ensemble method, combines multiple decision trees to achieve
accurate classification by independently predicting class labels and aggregating results
through majority voting or averaging. Known for its robustness and performance, it
handles high-dimensional datasets effectively, making it less prone to overfitting while
accommodating missing values and outliers [40].

This work aims to leverage the accuracy of ML classification models for the “LOS > 3 days”
classification task by using the main problems and diagnoses of patients admitted to the ICU
along with other structured clinical and demographic data, such as the patients’ genders,
insurance details, discharge location, etc.

3. Materials and Methods

This section outlines the architecture of the proposed method and presents the materi-
als and individual tools and techniques used in this work, including the used dataset. The
overall experiment setup and exact experiments performed are presented in Section 4.

3.1. The Proposed Approach

The aim of this study is to predict ICU patients’ LOSs using as input their main
diagnoses and problems along with structured demographic and clinical data such as age,
gender, vital signs, etc. These diagnoses are extracted from the patients’ EHR daily progress
notes through summarization.

In pursuit of this objective, and as shown in Figure 1, our approach begins with sum-
marizing EHR progress notes using NLP methods, focusing on extracting main problems
and diagnoses; this method was submitted to the “BioNLP Workshop 2023: Problem List
Summarization” challenge [10]. This task involves identifying and generating patient
problems and diagnoses from the progress notes that are taken daily during the patient’s
stay in the ICU by doctors, nurses, etc, and is known as problem list summarization.
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Figure 1. Architecture of the proposed method.

The proposed summarization method consists of a hybrid technique wherein the
extractive summarization step aims to extract the most important sentences from the
EHR daily progress notes using several tools and techniques that will be introduced in
this section, and a pre-trained T5 model that has been fine-tuned using concept masking
performs the abstractive summarization.

Following completion of the summary of the problem list, we proceed with the
extraction of additional features from the dataset: the demographic data and the LOSs of
the ICU patients are mapped to the EHR daily progress notes dataset. These features, such
as gender, discharge location, and other relevant factors, contribute to a comprehensive
understanding of the medical profile of each patient.

Finally, the generated diagnoses and the extracted variables are used as features
to predict the patients’ LOSs in the ICU. Our method represents a novel approach by
integrating vital signs and laboratory results into the first hybrid summarization technique
proposed in this context and aimed at predicting ICU LOSs.

3.2. The Dataset

The dataset we used was sourced from MIMIC-III, which is a publicly available
database of de-identified EHR data from approximately 60,000 hospital ICU admissions
at Beth Israel Deaconess Medical Center in Boston, MA, USA, collected over an 11-year
period from 2001 to 2012 [25]. This database consists of several tables containing a wide
range of patient care data. These tables include Patients, which stores demographic infor-
mation such as gender, age, and admission dates; Admissions, which provides details about
patient admissions to the ICU, including admission and discharge diagnoses, admission
types, and insurance information; and NoteEvents, which contains textual documentation
including progress notes and discharge summaries. The training set used in this work is
a sampled subset of 768 progress notes and manually annotated text spans for the SOAP
components [18] from the NoteEvents table. The goal of the annotation was to obtain lists of
problems from the Plan subsection. The reference summary is a list of problems mentioned
in each Plan section that are relevant to the reasons for hospitalization. The testing set that
was used to test all of the models in this work is an additional 237 annotated daily progress
notes sourced from the MIMIC-III database.

3.3. QuickUMLS

QuickUMLS [41] is a state-of-the-art open-source system for extracting medical con-
cepts from clinical texts and leverages the Unified Medical Language System (UMLS)
through a combination of rule-based and machine learning methods. Developed by the
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National Library of Medicine, UMLS provides a vast repository of medical terminology
and knowledge, which QuickUMLS utilizes for accurate concept recognition. When given
a text, it returns a list of UMLS concepts found in the text, including their similarities to a
query string and/or other associated information.

3.4. TF-IDF

TF-IDF is a widely used technique in information retrieval and text mining for extrac-
tive summarization. It assigns weights to words in a document based on their frequency
in the document and their rarity in the corpus. The TF-IDF score for a word is calculated,
as shown in Equation (1), by multiplying its term frequency (TF) in the document by the
inverse document frequency (IDF) across the corpus [42]. The TF represents the frequency
of a term in a document and measures the importance of a term within a document, and
the IDF measures the rarity of a term across the corpus.

TF − IDF = TF ∗ IDF (1)

3.5. Cosine Similarity

Cosine similarity is a metric that is commonly used in text mining, natural language
processing, and information retrieval and quantifies the similarity between two vectors in
a multi-dimensional space. By measuring the cosine of the angle between the vectors, it
produces a value ranging from 0 to 1, where a value closer to 1 signifies higher similarity,
whereas values closer to 0 indicate dissimilarity. As shown in Equation (2), the calculation
of cosine similarity sim(a, b) between two vectors a and b is the dot product of the two
vectors divided by the product of their magnitudes [43].

sim(⃗a, b⃗) =
a⃗ ∗ b⃗

∥⃗a∥∥⃗b∥
(2)

3.6. Page Rank

Originally designed for ranking web pages, PageRank can also effectively rank sen-
tences or paragraphs in extractive summarization tasks [44]. PageRank uses a sentence
graph to evaluate the significance of sentences for summarization, where each sentence
serves as a node, with their connections determining their importance. Edges between
sentences are obtained based on criteria like semantic similarity, co-occurrence, or cosine
similarity. Sentences with higher PageRank scores, indicating greater influence within
the graph, are prioritized during summary generation and contribute significantly to the
overall content.

3.7. T5 Fine-Tuning

Pre-trained models like T5 serve as a foundation for various NLP tasks but require
fine-tuning to adapt them to specific domains. Fine-tuning involves training the pre-trained
T5 model on task-specific data to enhance its performance for the target task [15].

To begin the fine-tuning process, the pre-trained model, which has learned general
language patterns from a large text corpus, undergoes parameter adjustment using a
smaller dataset specific to the task. This dataset contains input examples and corresponding
outputs relevant to the target task, such as text classification, named entity recognition, or
machine translation.

During fine-tuning, the pre-trained model is exposed to the task-specific dataset, and
its parameters are updated using optimization techniques like gradient descent. The goal
is to minimize a task-specific loss function that measures the discrepancy between the
model’s predictions and the true outputs in the dataset. Through fine-tuning, the model
learns task-specific patterns and relationships to make accurate predictions or generate
appropriate outputs.
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Concept masking is a technique employed during T5 fine-tuning and is particularly
useful for tasks involving generating outputs based on specific concepts or entities. Instead
of traditional token replacement, concept tokens (e.g., “CONCEPT-1”, “CONCEPT-2”, etc.)
are used as placeholders for desired concepts or entities. During fine-tuning, these concept
tokens are replaced with the corresponding concepts from the training data, enabling the
model to learn accurate concept generation based on the given inputs.

Concept masking empowers the T5 model to be trained to generate outputs condi-
tioned on specific concepts or entities. This technique proves beneficial for tasks like text
summarization, question answering, and text generation where precise control over the
generated content is essential. By incorporating concept masking during fine-tuning, the
model can learn to generate accurate outputs based on the provided concepts or entities.

3.8. Text Summarization Evaluation Metrics

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is a metric set that is
used to assess the quality of text summarization systems’ outputs. It counts overlapping
units like n-grams and word sequences between the generated summary and a reference
summary. ROUGE-L, a ROUGE variant, employs the longest common subsequence (LCS),
which is the longest word sequence appearing in both summaries, regardless of consecu-
tiveness but keeping the order. Based on LCS, Equations (3)–(5) define Flcs, the LCS-based
F-measure, which can be used to estimate the similarity between two translations, X of
length m and Y of length n, where β = Plcs/Rlcs [45].

Rlcs =
LCS(X, Y)

m
(3)

Plcs =
LCS(X, Y)

n
(4)

Flcs =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs
(5)

4. Experiments and Results

This section discusses the experiments conducted as part of this work, along with their
corresponding results.

4.1. Data Preparation

In this work, the three sections of the progress notes Subjective, Objective and Assessment
were included. To prepare the raw dataset for analysis, several pre-processing techniques
were applied in this step. Lowercasing ensured consistent casing throughout the document.
Censored pattern removal addressed personally identifiable information by replacing
identifiers with empty spaces to avoid interference with processing tasks. Time format
removal eliminated irrelevant expressions like “HH:MM AM/PM” in order to focus on
essential information. Float number representation standardization ensured uniformity
by standardizing numeric formats. Text replacements improved expressions like age,
medical history, and gender to enhance readability. Line break and punctuation removal
maintained text coherence and reduced noise, while stemming with the Lancaster stemmer
normalized words to their base form to aid with vocabulary reduction and improve text
processing efficiency.

Vital signs are essential indicators of a patient’s physiological status and play a key
role in diagnosing medical conditions. Unlike previous systems, this work includes vital
sign measurements such as “TCO2”, which measures dissolved carbon dioxide in the blood,
“glucose”, which indicates blood sugar levels, and “PLT” for assessing platelet count, among
others. Each vital sign was extracted from the Objective section of the progress notes and
was categorized based on specific thresholds according to multiple studies [46–48] to aid
with interpretation and decision-making. Each category represents a range of values that
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are considered “normal”, “low”, or “high” or other specific conditions depending on the
laboratory result.

4.2. Extractive Summarization

In the extractive summarization phase, six methods were employed to summarize the
daily progress notes, including two methods that we proposed based on the combination
of existing approaches.

The concept-based approach involved identifying relevant medical concepts using
the QuickUMLS library and constructing a similarity matrix on concept overlap between
sentences to create a graph representation with sentences as nodes and edges reflecting
concept similarity and selecting the seven top-ranked sentences to form the summary using
PageRank. On the other hand, the graph-based methods utilized TF-IDF vectorization and
cosine similarity to construct a graph representation of the sentences, and PageRank was
used to select the top seven sentences. Based on these two methods, we developed a third
one whereby the graph is formed from the cosine similarity matrix of the sentences, the
nodes are sentences, and the edges are the cosine similarity of the sentences based on the
concepts’ similarity scores; these concepts were extracted using QuickUMLS.

In the topic-based technique, sentences were tokenized and transformed into numeri-
cal vectors using TF-IDF values, and cosine similarity was employed to select the seven
top-ranked sentences. we proposed another technique that combined concept extraction
with TF-IDF, whereby concepts were extracted using QuickUMLS, and TF-IDF scores were
calculated alongside concept frequencies to determine sentence importance; the model
ultimately selected the seven top-ranked sentences.

Lastly, the clustering-based method employed BERT, which is a transformer-based
model: specifically, the “distilbert-base-uncased” variant, with the “hidden” parameter set
to “[−1, −2]”. The number of sentences to be present in the summary was set to seven.

These models were trained on a “Google Colab” notebook for approximately
3 h. We then submitted them for testing to a CodaLab competition (CodaLab Compe-
tition for the BioNLP Workshop 2023 Shared Task 1A: Problem List Summarization, 2023,
https://codalab.lisn.upsaclay.fr/competitions/12388 (accessed 27 June 2024)) that was
created for the “BioNLP Workshop 2023 Shared Task 1A: Problem List Summarization”
challenge in order to manage system submissions and show the leaderboard. The CodaLab
was configured to receive system prediction outputs in a text file format, and it ran a
ROUGE-L evaluation script to produce scores. Our results are summarized in Table 1. The
concept-based approach achieved a relatively high precision of 1.35%, indicating that the
selected summary sentences closely matched the reference summaries. However, its recall
of 41.87% suggests that it may have missed some important information, resulting in a
lower F-score of 2.56%. The graph-based method, on the other hand, performed poorly in
terms of precision (0.0006%) and F-score (0.001%). This suggests that the selected summary
sentences may not be relevant to the reference summaries. Although it exhibited a higher
recall of 0.08%, it failed to produce meaningful summaries overall. Combining the concept
and graph approaches in the concept + graph-based method showed a slight improvement
in precision (1.36%) and F-score (2.59%) compared to concept-based alone. However, its
recall remained similar to concept-based, indicating that the addition of graph-based did
not significantly enhance the quality of the summaries.

Table 1. ROUGE scores in percentage (%) for proposed extractive summarization methods.

Method PLCS RLCS FLCS

Concept-based 1.35 41.87 2.56
Graph-based 0.0006 0.08 0.001
Concept + Graph-based 1.36 41.74 2.59
Topic-based 1.29 42.89 2.47
Topic + Concept-based 0.64 10.73 1.19
Clustering-based 1.69 38.91 3.17

https://codalab.lisn.upsaclay.fr/competitions/12388
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The topic-based method achieved a relatively high recall of 42.89%, suggesting that
it successfully captured most of the important information from the reference summaries.
However, its precision of 1.29% and F-score of 2.47% were comparatively lower, indicating
that it may have generated some irrelevant sentences in the summary. When topic and con-
cept approaches were combined in the topic + concept-based method, precision decreased
significantly to 0.64%, indicating a decrease in the quality of selected summary sentences.
The recall (10.73%) and F-score (1.19%) also dropped, indicating that the combination did
not effectively improve the performance compared to topic-based alone.

Lastly, the clustering-based method achieved the highest precision (1.69%) and F-score
(3.17%) among the evaluated methods. This indicates that it selected summary sentences
that closely matched the reference summaries, resulting in higher-quality summaries.
However, its recall (38.91%) was relatively low, suggesting it may have missed some
relevant information from the source document.

It is observed that the overall performance of these models is very low; this is due
to the fact that the summaries generated by these models were tested against the ground
truth as annotated in [19]. The diagnoses and problems presented in the ground truth
do not appear explicitly in the notes because they were manually extracted [19]. For this
reason, the ROUGE scores, which test the similarity of the generated summaries and the
ground truth by counting the overlapping words and concepts in both sequences, were very
low for the extractive summarization models. This highlights the need for the abstractive
summarization step. The goal of this step was to shorten the text and keep only the most
important sentences.

4.3. Abstractive Summarization

For this step, we used the outputs of the three best extractive summarization methods,
based on their ROUGE-L F-scores, as input to the T5-base model. We worked on fine-
tuning the pre-trained model using the concept masking technique. The hyperparameters
of the T5-base model included an “AdamW” optimizer and a learning rate of 1 × 10−4.
The number of training epochs was only two, and the “max input size” was set to “512”.
We ran the models locally for two epochs on a NVIDIA GeForce GTX Ti GPU with Max-
Q Design for a total of about 8 h. Similarly to the extractive summarization step, we
submitted the models for testing to the CodaLab competition, with our best-performing
hybrid summarizer displayed on the leaderboard: (CodaLab leaderboard of the BioNLP
Workshop 2023 Shared Task 1A: Problem List Summarization, 2023, https://codalab.lisn.
upsaclay.fr/competitions/12388#results (accessed 27 June 2024)) . The results are shown in
Table 2.

Table 2. ROUGE scores in percentage (%) for proposed hybrid summarization methods in comparison
with baseline and benchmark methods.

Method PLCS RLCS FLCS

Baseline [19] - - 15

Graph + Concept + T5 39.44 15.18 19.66
BERT + T5 40.19 15.41 20.30
Concept + T5 43.83 14.99 20.32

CUED [27] 41.69 30.51 32.77

All of the methods performed better than the baseline [19], with the combination of
concept-based summarization and T5 summarization being our best proposed method:
achieving a precision of 43.83%, a recall of 14.99%, and an F-score of 20.32%. Its generated
summaries are to be used as features for LOS prediction. While the benchmark method [27]
is still at the top of existing methods with an F-score of 32.77%, our best method surpasses
its precision of 41.69%.

https://codalab.lisn.upsaclay.fr/competitions/12388#results
https://codalab.lisn.upsaclay.fr/competitions/12388#results
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It was observed that the precision values were higher than the recall values. This sug-
gests that the model was better at avoiding false positives, which means that it accurately
identified instances that were not relevant. However, it may have missed a significant num-
ber of true positive instances, indicating that some relevant information was not captured.

There are two possible reasons for the low recall. Firstly, the abstractive method might
have failed to generate the necessary concepts. This is logical considering the small dataset
and the absence of any data augmentation techniques, which could have limited the model’s
ability to generate comprehensive summaries. Secondly, the extractive method might have
removed sentences containing important information required for the abstractive summa-
rization step. This implies that during the extraction process, some relevant sentences were
not retained, resulting in a loss of vital information in the generated summaries.

The trade-off between precision and recall depends on the specific requirements of the
summaries. In this case, as the summaries are used for ICU LOS prediction, having high
precision is desirable. This means that the generated summaries are more likely to provide
accurate and relevant information, enabling more precise predictions. Therefore we deem
the output from the concept-based and T5 summarization combination method, which has
higher precision then the benchmark method, to be suitable as input for the next step of the
ICU LOS classification.

4.4. Length of Stay Classification

In this study, we focused on classifying ICU length of stay (LOS) into two classes:
“short” if the LOS is 3 days or less and “long” otherwise. We then compared our proposed
systems with existing methods [35,36] for the same classification task. Wang et al. [35]
achieved an accuracy of 69.50%, an F-score of 59.50%, and an AUROC of 73.60%. In
comparison, Pellegrini et al. [36] achieved a higher accuracy of 71.44% and the highest
AUROC among the benchmark methods at 77.78%. These results indicate that, while both
benchmark methods are strong, Pellegrini et al.’s model is particularly robust in terms of
overall predictive performance, as indicated by the AUROC metric.

The features we used included problem list summaries, which were the main diagnoses
relevant to the reasons for hospitalization that were present but not explicit in the Plan
section of the EHR daily progress notes; these were extracted manually for the challenge [19].
We used diagnoses we extracted as well from the other sections of the EHR daily progress
notes and other clinical demographic features from the MIMIC-III database. These features
were mapped across other tables such as Patients, ICUStays, and Admissions using the
“HADM_ID” column, which stands for each hospital admission of a patient. Included
features were LOS, our target, insurance information, gender, ethnicity, religion, admission
type, first and last care unit before ICU, and discharge location.

The features were encoded and fed into three classifiers: SVMClassifier, Random-
ForestClassifier (RF), and MLPClassifier (MLP) from the scikit-learn library [49]. Diagnoses
and problems were encoded using QuickUMLS to extract medical concepts from the dataset.
The classifiers were trained using five-fold cross-validation for hyperparameter tuning and
were tested on the challenge’s testing dataset. Four experiments were run using different
combinations of features. The results are shown in Table 3 .

When using only clinical and demographic features, our proposed models showed
varying degrees of performance. The MLP model achieved an accuracy of 63.00%, a
precision of 65.13%, a recall of 82.50%, an F-score of 72.79%, and an AUROC of 58.60%.
The RF model had a similar accuracy of 63.00% and a slightly higher precision of 65.33%
and a recall of 81.67%, resulting in an F-score of 72.59% and an AUROC of 62.50%. The
SVM model outperformed the other models in this category, achieving the highest accuracy
of 64.50%, the highest precision of 67.13%, a recall of 80.00%, an F-score of 73.00%, and
the highest AUROC of 63.30%. These results indicate that while SVM shows the best
performance among models using only clinical and demographic features, it still falls short
compared to the benchmark methods in terms of AUROC.
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Table 3. Performance comparison of proposed systems and benchmark methods in term of accuracy,
precision, recall, F1, and AUROC scores in percentages (%).

Method Accuracy Precision Recall F-Score AUROC

Benchmark Methods Wang et al. [35] 69.50 - - 59.50 73.60
Pellegrini et al. [36] 71.44 - - - 77.78

Clinical and Demographic
features only

MLP 63.00 65.13 82.50 72.79 58.6
RF 63.00 65.33 81.67 72.59 62.50

SVM 64.50 67.13 80.00 73.00 63.3

Summaries only
MLP 62.50 66.42 75.83 70.81 67.50
RF 58.50 60.11 91.67 72.61 63.80

SVM 66.00 68.57 80.00 73.84 69.30

Diagnoses only
MLP 70.00 74.59 75.83 75.21 76.80
RF 69.50 69.28 88.33 77.66 70.20

SVM 72.50 79.27 73.33 76.19 76.20

Diagnoses and summaries
MLP 72.50 74.07 83.33 78.43 79.70
RF 66.00 64.13 98.33 77.63 81.70

SVM 77.50 78.19 86.66 82.21 82.40

When using only summaries as features, the performance of the models varied sig-
nificantly. The MLP model achieved an accuracy of 62.50% and a precision of 66.42%, a
recall of 75.83%, an F-score of 70.81%, and an AUROC of 67.50%. The RF model had a
lower accuracy at 58.50% but achieved the highest recall of 91.67% among all models using
summaries, resulting in an F-score of 72.61% and an AUROC of 63.80%. The SVM model
again performed the best in this category, achieving the highest accuracy of 66.00%, the
highest precision of 68.57%, a recall of 80.00%, the highest F-score of 73.84%, and the highest
AUROC of 69.30%. These results suggest that summaries alone can be highly predictive,
with the SVM model particularly excelling using this feature set.

The models using only diagnoses as features performed notably well. The MLP
model achieved an accuracy of 70.00% and a precision of 74.59%, a recall of 75.83%, an
F-score of 75.21%, and the highest AUROC in this category of 76.80%. The RF model had a
similar accuracy of 69.50% and a precision of 69.28%, the highest recall of 88.33% among
all models using diagnoses, an F-score of 77.66%, and an AUROC of 70.20%. The SVM
model outperformed both, achieving the highest accuracy of 72.50%, the highest precision
of 79.27%, a recall of 73.33%, an F-score of 76.19%, and an AUROC of 76.20%. These results
demonstrate the strong predictive performance of diagnosis features, with the SVM model
again showing superior performance.

Combining diagnoses and summaries yielded the best results among all of our pro-
posed models. The MLP model achieved an accuracy of 72.50%, a precision of 74.07%, a
recall of 83.33%, an F-score of 78.43%, and an AUROC of 79.70%. The RF model had a lower
accuracy at 66.00% and a precision of 64.13%, the highest recall of 98.33% among all models,
an F-score of 77.63%, and an AUROC of 81.70%. The SVM model performed the best
overall, achieving the highest accuracy of 77.50%, the highest precision of 78.19%, a recall
of 86.66%, the highest F-score of 82.21%, and the highest AUROC of 82.40%. These results
indicate that combining diagnoses and summaries provides the most comprehensive and
accurate predictive performance, with the SVM model being the most effective.

In summary, our proposed methods show varying degrees of success, with models
using diagnoses and summaries combined outperforming models that use other feature sets.
The SVM model consistently performed the best across different feature sets, especially
when both diagnoses and summaries were used; the best hyperparameters found for
this model were “C = 1” for the regularization parameter, “gamma = 0.01” for the the
kernel coefficient, and a “radial basis function (RBF)” as the kernel. This model, being our
best-performing classifier, has set a new benchmark for this task and showed significant
improvements and robustness over the benchmark methods (Papers With Code, Length of
Stay Prediction on MIMIC-III, 2022, https://paperswithcode.com/sota/length-of-stay-
prediction-on-mimic-iii (accessed 27 June 2024)), especially in terms of precision and recall.

https://paperswithcode.com/sota/length-of-stay-prediction-on-mimic-iii
https://paperswithcode.com/sota/length-of-stay-prediction-on-mimic-iii
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5. Conclusions and Future Work

In this work, we used NLP methods to summarize EHR progress notes from ICU
patients and to extract diagnoses and problems, with the ultimate goal of predicting ICU
patients’ lengths of stay. Our study showcased the effectiveness of combining extractive and
abstractive summarization techniques. Moreover, the generated summaries and extracted
diagnoses proved valuable for predicting ICU LOS, offering potential benefits for ICU
management, clinical decision-making, and patient care in real-world clinical settings.

Moving forward, exploring the integration of additional clinical variables and refin-
ing the summarization techniques could enhance the predictive accuracy and utility of
EHR-driven LOS predictions. While our LOS classification methods show significant im-
provements and robustness over the benchmark methods, especially in terms of precision
and recall, they still need further enhancement. Future work could focus on refining these
models, potentially through additional feature engineering and model optimization. This
could include developing temporal features that capture trends over time, such as the
progression of vital signs or lab results instead of categorizing them to “low”, “normal”,
and “high” as we did in this work. Furthermore, model optimization techniques, like imple-
menting feature selection methods, including recursive feature elimination (RFE), can help
identify the most important features from the dataset and enhance the models’ predictive
performance by reducing the dataset’s dimensionality. Additionally, gathering feedback
from healthcare professionals regarding the generated summaries and LOS predictions can
provide valuable insights into their usefulness, readability, and accuracy.

6. Limitations

The primary challenge in generating problem list summaries from this dataset was that
certain concepts present in the reference summary were not found within the other sections
of the progress notes. This occurred mainly because the dataset was manually annotated
for the challenge. Due to this limitation, the summarization process faced a hindrance,
as important medical concepts that are necessary for extracting the main diagnoses of
patients and thus generating accurate summaries were missing. As a result, the generated
summaries ended up being incomplete or inaccurate due to a lack of relevant information.
Furthermore, the relatively small number of data points available for training and eval-
uation further constrained our analysis. This limitation emphasizes the need for larger
and more diverse datasets to enhance the robustness and generalization of our models.
Conducting experiments with data augmentation techniques or annotating another EHR
daily progress note dataset can address this issue and augment the diversity and quantity
of training data, potentially improving the models’ performance and generalization.
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