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Estimating the Monkman−Grant relation in the presence of errors in 
measurement of times to failure and minimum creep rates: with application to 
some high temperature materials
Mark Evans

Institute of Structural Materials, Swansea University, Bay Campus, Swansea, UK

ABSTRACT
The Monkman−Grant relation has the potential to reduce the development cycle for new 
materials, as it provides a means of lifting based on minimum creep rates that are typically 
observed early on. This paper outlines problems in estimating the nature of this relation using 
the least squares technique that stems from errors made in measuring failure times and 
minimum creep rates. The paper outlines some solutions to this problem that have been 
proposed within the scientific literature – such as reverse regression and the Deming regres
sion. The evidence from the materials studied in this paper, suggest that the use of least 
squares results in overly conservative lifetime predictions when using the Monkman-Grant 
relation. It was found that for 2.25Cr-1Mo steel, the life expected for a minimum creep rate of 
3.67E-12s−1 was 57 years when the least squares technique was used, but this increased to  
78 years when using the Deming regression.
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Introduction

For materials operating at high temperatures, the 
understanding of creep and its interaction with other 
damage mechanism such as fatigue and oxidation are of 
great importance. Indeed, creep is the dominant failure 
mechanism for pipework that is used to transport steam 
from boilers to turbines in power plants. Currently, 
expensive testing programmes lasting 12–15 years are 
required to determine the long-term strengths and 
lives. A reduction in this ‘materials development cycle’ 
was therefore defined as the No.1 priority in the 2007 
UK Energy Materials – Strategic Research [1]. For 
materials where the Monkman−Grant [2] relation is 
stable over time, a lifetime prediction can be made 
using measured minimum creep rates. As the mini
mum creep rate is reached well before rupture, this 
approach also offers the potential to reduce the length 
and cost of these testing programmes. When using this 
approach, the unknown parameters of the Monkman 
−Grant relation are typically estimated from a direct 
application of the least squares technique to data col
lected on time to failure and minimum creep rates. But 
as this paper illustrates, this approach will produce 
reliable estimates only when the minimum creep rate 
is measured without error.

In practice, the variables measured during creep are all 
subject to measurement error. For example, Foster [3] in 
an SM&T Project paper (No. SMT4-CT97-2165) con
cluded that when measuring creep failure time, the 

major sources of error in its measurement were due to 
limitations in controlling the ambient temperature, errors 
in measuring stress (in a constant stress test) and the data 
logger time interval. Minor contributions to the measure
ment error associated with failure times include errors in 
measuring load (in a constant load creep test), the initial 
dimensions of the specimen and specimen temperature. 
All the above sources also contribute to the errors in 
measuring the minimum creep rate, with additional 
major contributions stemming from measurement errors 
associated with the extensometer, errors in measuring the 
time to minimum creep rate and errors associated with 
the graphical or statistical methods used to identify the 
minimum slope from the experimental creep curve (for 
example the standard errors of the theta parameters used 
to describe a creep curve using the theta methodology 
and the scatter around such a fitted curve [4]).

The error in measuring the creep load is derived 
from the calibration certificate of the load cell or lever 
system and weights. Assuming a rectangular distribu
tion, the standard uncertainty in this load is given by ± 
s/√3, where ±s is the certified maximum error. 
Temperature (T) uncertainty is found by combining 
the maximum errors made by the thermocouple 
em(T), errors made in measuring the along-specimen 
uniformity eu(T) and the errors made by the measuring 
system itself ec(T) – all of which change with the mag
nitude of temperature. The standard uncertainty in 
temperature is then
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Uncertainty in measuring the time to failure tF is 
due to the length of the data logging time period 
∆t – or ∆t/(2√3) assuming a rectangular distribu
tion. This uncertainty also depends on the errors in 
measuring stress and the errors in measuring tem
perature. The contribution of these last two errors 
to the error in measuring tF is determined by the 
values for Norton’s n and the activation energy Qc. 
Similarly, n and Qc will determine the contribution 
of stress and temperature error measurements to 
errors in the measurement of the minimum creep 
rate. These can then be combined with the statis
tical methods errors described above.

Foster [3] found in his study on 2.25Cr-1Mo weld 
metal at 565 °C, the thermocouple error was around 2 °C, 
the specimen uniformity error around 1.5 °C and the 
measuring system error around 2 °C. The error in mea
suring the load was ± 1%. At 565 °C and 170 MPa, the 
measurement errors on tF were ± 1482 h (with 2.3 h of 
this due to the data logging time, 71 h due to errors in 
measuring stress and the rest due to temperature mea
surement errors). At the same test condition, the mea
surement error on the minimum creep rate was 
estimated at ±2.2E-6 h−1 (with 3.1E-07 h−1 of this due 
to stress measurement errors and the rest due to tem
perature errors). That due to statistical methods was not 
quantified, so the overall measurement error is likely to 
be much higher.

Therefore, this paper aims to review the statistical 
literature on errors in variables to bring to the attention 
of the materials research community, how and in what 
ways the direct application of least squares to the 
Monkman−Grant relation produces unreliable para
meter estimates. It then presents some solutions to 
this problem. Finally, the paper applies these solutions 
to several different materials to assess the severity of the 
parameter unreliability in the face of measurement 
errors. To achieve these aims, the paper is structured 
as follows. The next section summarises the three data 
sets used to illustrate the consequences of measurement 
error. The method section then describes the desirable 
properties of the least squares estimators, how measure
ment errors lead to a breakdown of these properties, 
and what solutions to this issue exist. The results sec
tion applies the reviewed alternative estimation techni
ques to data on a low Chrome Steel, a Nickel based 
super alloy and a 403-B Stainless Steel. Suggestions for 
future research are given in the conclusions section.

The data

This paper makes use of the information in Creep Data 
Sheets 3B, 15B, 34B published by the Japanese National 
Institute for Materials Science (NIMS) [5–7]. Data sheet 
3B has extensive data on 12 batches of 2.25Cr-1Mo 

(according to ASTM A 387, Grade 22) steel where each 
batch has a different chemical composition that under
went one of four different heat treatments – details of 
which are given in [5]. This paper makes use of just one 
of these batches, the MAF batch, which was in tube form 
that had an outside diameter of 50.8 mm, a wall thickness 
of 8 mm and a length of 5000 mm with a chemical com
position of: Fe − 2.46 Cr − 0.94 Mo − 0.1 C − 0.23 Si −  
0.43 Mn − 0.011 P − 0.009 S − 0.043 Ni − 0.07 Cu − 0.005 
Al. Specimens for creep testing were taken longitudinally 
from this material. Each test specimen had a diameter of 
6 mm with a gauge length of 30 mm. The creep tests were 
obtained over a wide range of test conditions: 333−22 
MPa and 723−923 K. The MAF batch was the only one 
for which both failure times and minimum creep rate 
measurements were made.

Data sheet 15B has extensive data on 6 batches of 
18Cr-12Ni-Mo Stainless Steel bars where each batch 
has a different chemical composition that underwent 
one of three different heat treatments – details of 
which are given in [6]. This paper makes use of all 
these batches, which were in bar form. Specimens for 
creep testing were taken longitudinally from these 
square bars. The test specimens had a diameter of 10  
mm in diameter and a gauge length of 50 mm. The 
creep tests were conducted over a wide range of test 
conditions: 265−20 MPa and 873−1073K.

Data sheet 34B has extensive data on 6 batches of 
Nickel based 19Cr-18Co-4Mo-3Ti super alloy castings 
that underwent one of three different heat treatments. 
It also had 3 batches of Nickel based 19Cr-18Co-4Mo- 
3Ti super alloy forgings that underwent one of three 
different heat treatments. Each batch had a different 
chemical composition – details of which are given in 
[7]. As both failure times and minimum creep rates 
were recorded for only the forged material, only 
forgings are used in this paper. Specimens for 
creep testing were taken longitudinally from round 
bars. The test specimens had a geometry with 6 mm 
in diameter and a 30 mm gauge length. The creep 
tests were conduced over a wide range of conditions: 
235−24 MPa and 1073−1273K.

Methodology

Properties of least squares estimators in the 
absence of measurement errors

The properties of least squares estimates are now 
discussed with reference to the Monkman−Grant 
[2] relation. Let tFi be the measured time to failure 
at test condition i and _εmi, the corresponding mea
sured minimum creep rate at this condition. 
Suppose also that the creep test matrix is made up 
of some n such test conditions, some of which may 
be repeats. The Monkman−Grant [2] relation can 
then be written as 
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where Yi = ln[tFi] and Xi = ln[_εmi�. For the moment it is 
assumed that these two variables are measured with
out error so that Y and X represent their true values. 
Tests specimens will typically be cut from different 
positions within the supplied bar, tube or plate for 
a particular material and consequently the specimens 
will all have slightly different characteristics such as 
grain size, number of inclusions and other microstruc
tural characteristics (all leading to them having differ
ent degrees of hardness). In bigger data sets, the 
specimens will all have experienced different heat 
treatments and will have different chemical composi
tions – but all within the specifications/standards 
defining a particular grade of material. The result is 
that each specimen will have a life that is slightly 
different to that expected from its minimum creep 
rate, that is, slightly different to that given by 
Equation (1a). This phenomenon is captured through 
the addition of an omission error term (ei) to 
Equation (1a) 

This error of omission is interpreted as picking up the 
above-mentioned omitted variables from the model. 
For example, the time at which a specimen fails will 
not just depend on its minimum creep rate (which in 
turn is determined by the stress and temperature the 
specimen is placed on test at), but also on other vari
ables such as the specimen’s chemical composition 
(within the materials grade specification), the heat 
treatment, grain size and other microstructural char
acteristics. ei may also contain errors in measuring 
Y without altering any of the desirable properties 
identified next.

The Monkman–Grant relation has been estimated 
for many materials, and in most of these instances the 
unknown parameters M and ρ were estimated by 
direct application of the least squares technique 
under the assumption of zero measurement errors 
on variable X. This technique aims to minimises 
Pn

i¼1
e2

i . The solution to this minimisation takes the form 

where the hat symbol indicates that these are least 
squares estimates of the parameters M and ρ made 
from the given sample of data (capitals are used 
for variable names because it is assumed there are 
no measurement errors). These least squares 
estimators are termed linear estimators as the 
parameters are linear combinations of all the 

values for Yi – for example, ρ̂ ¼
Pn

i¼1 ki Yi � �YÞð

where ki ¼ Xi� �Xð ÞPn

i¼1
Xi� �Xð Þ

2.

If the mean value for all the ei is zero, and if the ei 
are independent of Xi, then M̂ and ρ̂ will be unbiased 
(see Appendix A for proof). Further, if the ei have 
constant variance and are also independent of each 
other, then M̂ and ρ̂ will also be efficient (see 
Appendix A). Unbiasedness and efficiency are small 
sample properties.

These terms can be understood in terms of 
hypothetical repeated random sampling. In this sam
pling process, all possible samples of size n that are 
made up of observations on Yi and Xi are taken (i.e. an 
infinite number of such samples are collected), and for 
each sample the estimates M̂ and ρ̂ are computed 
using Equation (2), so that many estimates for each 
of these parameters would be obtained. If the mean 
(called the expected value or E for short) of all these 
values equals the true (i.e. population) value, then the 
estimate is said to be unbiased. Unbiasedness therefore 
requires E(M̂Þ ¼ M and E ρ̂ð Þ ¼ ρ (E is the expecta
tions operator). Appendix A proves that if the mean 
value for ei equals zero and if ei and xi are independent 
of each other, then the least squares estimate of ρ and 
ln(M) are unbiased.

The variance in all these least squares estimates for 
M and ρ are given by 

where êi ¼ Yi � M̂ þ ρ̂Xi
� �

and σ2
e is the population 

variance for e which is estimated using the average 
value for ̂e2

i (adjusting for the 2 degrees of freedom lost 
in estimating M and ρ).

If all possible samples of size n made up of observa
tions on Yi and Xi are taken, and for each sample the 
variance in the estimates of M̂ and p̂ are computed 
using Equation (3), then this estimator is said to be 
efficient if it is both unbiased and it has the smallest 
average variance amongst all other possible linear 
estimators. That is, E[M̂ � E M̂

� �
]2 < E[ �M � Eð �MÞ]2 

and E[ρ̂ � E ρ̂ð Þ]2 < E[�p � Eð�pÞ]2, where the upside 
down hat signifies any other unbiased linear estimator. 
Appendix A shows that under the assumption that all 
the ei are independent of each other and that the 
variance of ei is constant, then the least squares esti
mate of ρ and M also have minimum variance and so 
are efficient estimates. So under all the mentioned 
assumptions, the estimated values for M and ρ from 
a researchers sample could differ from the true values – 
but on average they won’t – and further, the chances of 
them being different from their true values is as small 
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as it possibly can be because the variance is minimised. 
This is true no matter how small the sample size is.

Consistency is a large sample property and 
describes what happens to the estimator when it is 
calculated from a larger and larger sample of data. 
An estimator is consistent if as the sample size 
increases the probability of the estimator differing 
from its true value gets smaller, and in the limit, 
becomes zero. Assuming independence between ei 
and Xi, that the mean of ei is zero, and that ei is 
independent of Xi, Appendix B proves the least 
squares estimators are consistent estimators. What all 
this means is that as researchers work with larger and 
larger samples, the probability of their least squares 
estimators of M̂ and ρ̂ differing from the true values 
M and ρ, tends to zero. It is these properties of unbia
sedness, efficiency and consistency that makes the 
ordinary least squares technique so popular amongst 
practitioners.

Representing measurement errors statistically

Unfortunately, these desirable properties of the least 
squares estimator disappear when the variable X is 
measured with error – which is the realistic situation 
when it comes to creep testing. This can be demon
strated as follows. On top of these omission errors, 
there are potentially the errors in measuring X and 
Y. Let these errors be represented by the variables 
ui and v, respectively. 

where yi is the measured value for ln(tF) for specimen 
i and so ui is the error made in measuring ln(tF) for 
this specimen. xi is the measured value for ln _εmð Þ and 
so vi is the error made in measuring ln _εmð Þ for this 
specimen. In reality, only y and x are observed in any 
collected sample of data. The sample moments are 
therefore given by:

1st order sample moments are denoted by: 

2nd order moments are denoted by: 

Provided that variables x and y follow a skewed dis
tribution there are also some important 3rd order 
moments that can be quantified 

but these do require a substantial sample size to quan
tify reliably (~50+).

The Monkman–Grant model states that the rela
tionship between the true variables Yi and Xi is given 
by Equation (1b). Substituting Equations (4) into 
Equation (1b) gives 

or 

where wi = ei þ ui � ρvið Þ. Now notice that an 
increase in vi will increase wi from Equation (6b), 
but from Equation (4b) it will also increase xi and so 
wi and xi are no longer independent of each other 
when applying the least squares formulas to 
Equation (6b). This will result in the values for bM 
and bρ obtained from Equation (2) no longer being 
unbiased or consistent – they will therefore be biased 
in both small and large samples – see Appendix C. In 
Appendix C, the nature of this inconsistency is further 
revealed to be given by 

which does not equal ρ as σ2
x ≠ 0 when X is measured 

with error. In Equation (7a), σ2
x is the population 

variance for the measured values of X (i.e. of x), σ2
v is 

the population variance of the errors in measuring X, 
σε v the population covariance between the errors in 
measuring X and the combined measurement and 
omission errors for Y, where εi = ei + ui. σxε is the 
population covariance between x and ε, σyv is the 
population covariance between y and v and 2σxv is 
twice the population covariance between x and 
v. Whether the least squares technique produces esti
mates with an upward or downward bias depends on 
the relative sizes of all these terms. To explore this 
further, consider some assumptions for possible 
simplification:

(i) The measurement/omission errors are inde
pendent of the true values of these variables, 
or σYε ¼ σxv ¼ 0. This seems reasonable, espe
cially as vi and εi represent the size of the errors 
made in measuring log failure times and log 
minimum creep rates. So, even if the error in 
measuring failure times and creep rates does 
change with their magnitudes (which is likely 
given the discussion in the introduction on 
errors in measuring temperature), provided 
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the percentage error is unchanged, 
σyε ¼ σxv ¼ 0. This is because ε and 
v measure percentage errors as they represent 
the error in measuring the natural logs of fail
ure times and minimum creep rates.

(ii) The error in measuring ln(tF) is independent 
from the true value for ln[_εm� or σxε = 0 and the 
error in measuring ln[_εm� is independent from 
the true value for ln(tF) or σyv = 0. Given the 
percentage error argument above, this also 
seems a reasonable assumption.

Under these two reasonable assumptions, Equation 
(7a) simplifies to 

Equation (7b) shows that the least squares estimate 
of ρ will be biased downwards if the measurement 
errors are positively correlated and if σε v > σ2

v. An 
upward bias occurs when these measurement errors 
are negatively correlated. Given the most likely 
scenario is that σε v >0, as measurement errors for 
X and Y come from the same sources as discussed 
in the introduction section, the least squares tech
nique is most likely to produce a downward bias. 
For further clarity, assume that:

(iii) The measurement errors are unrelated 
(σεv ¼ 0Þ. This third assumption may or 
may not be realistic because as seen in the 
introduction section, some of the errors in 
measuring tF and _εm are from the same 
source – namely errors in measuring stress 
and temperature. This may result in ε and 
v being correlated. But this is not guaran
teed because each of these variables also 
have their own unique sources of measure
ment error. For example, errors stemming 
from the accuracy of the extensometer will 
determine the value for v but not ε. 
Similarly, errors stemming from the mea
surement of time to various strains will 
determine the values for v but not for 
u and the same is true for the errors stem
ming from statistical and graphical techni
ques – which given the scatter typical 
observed in measured strain rates is likely 
to be a very big source of measurement 
error. Consequently, assumption iii could 
well be satisfied in practice, in which case 
Equation (7b) would further simplify to 

Given that σ
2
v

σ2
x
> 0, it follows that under the above three 

assumptions, bρ has a definite downward bias in small 
and large samples. In what follows let’s further assume 
that:

(iv) The measurement errors have a zero mean and 
a constant variances so that E[ε] = E[v] = 0 and 
E[ε2] = σ2

ε and E[v2] = σ2
v.

(v) Both sources of measurement error are serially 
independent so E[εiεj] = E[vivj] = 0 (for i ≠ j).

Solutions to the presence of measurement errors

Reverse least squares
Reverse least squares [8] involves the regression of 
x on y 

where w�i ¼ ðvi �
1
ρ ei þ uið Þ

and this will produce consistent estimates of ρ and 
M only when variable Yi is measured without error. If 
not, an increase in ui will increase both yi and w*i 
which leads to biased and inconsistent estimates of 
1/ρ and thus of ρ. But this time the bias is in the 
opposite direction to least squares – see Appendix 
C for proof. Thus, a normal and reverse regression 
can be used to get upper and lower bounds on ρ – at 
least in large samples, i.e. to obtain consistent bounds 

Total least squares
Total least squares (TLS) or perpendicular least 
squares [9] is another potential solution to errors in 
variables. The idea behind TLS is illustrated in 
Figure 1. The shown line with positive slope shows 
the true relationship between variables X and Y. That 
is, if X and Y were both measured without errors all 
the observed pairings on (yi, xi) would fall on this line. 
The working assumption behind least squares is that 
the observed pairings are pushed off this line because 
of errors in omission (ei) and errors in measuring 
variable Y (i.e. ui). X is measured without error so 
X = x. This is illustrated in scenario 1 of Figure 1, 
where the circular data point is pushed vertically 
above the line at X = X1 by the size of ei + ui. The 
shown distribution encompasses all the possible values 
that y could take when X = X1. So, in least squares 
estimation, we would find the values for ln(M) and ρ 
that minimise the sum of the squares of the vertical 
distance between the fitted line and the data. That is, 
minimising the sum of the squared omission errors 
plus the squared errors in measuring variable Y.

This completely ignores the measurement 
errors associated with variable X, which leads to 
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a downward bias in the resulting estimate of ρ 
(and a corresponding upward bias in M). The 
working assumption behind reverse regression is 
that the observed pairings are pushed off the true 
line because of errors in measuring variable X (i.e. 
vi). Y is measured without error so Y = y. This is 
illustrated in scenario 2 of Figure 1, where the 
circular data point is pushed horizontally to the 
right of the true line at Y = Y1 by the size of the 
error in measuring X, or by vi. The shown dis
tribution encompasses all the possible values that 
x could take when Y = Y1. So in reverse regression, 
we would find the values for ln(M) and ρ that 
minimise the sum of the squares of the horizontal 
distance between the fitted line and the data. That 
is, minimising the sum of the squared errors in 
measuring variable X.

Total least squares on the other hand, has the 
working assumption that the observed data point is 
pushed off the true line because of errors in mea
suring X and Y (including omission errors). TLS 
further assumes that the errors associated with 
X and Y are equal in value and independent of 
each other. This is illustrated in scenario 3 of 
Figure 1, where the circular data point is pushed 
below the true line because of errors in measuring 
X and Y. The perpendicular distance di is 
a combination of vi and ei + ui The distribution of 
(yi, xi) pairings seen in scenario 3 encompasses all 
possible values these observed pairings could take 

when the true values for X and Y are X = X2 and Y  
= Y2. TLS finds the values for ln(M) and ρ that 
minimise the sum of the perpendicular distance 
between the fitted line and the data points. 
Because the line di is perpendicular to the true 
line, d2 = v2+(e + u)2 and so TLS places equal 
weighting on the errors in measuring X and 
Y when positioning the best fit line.

Scenario 4 places more weighting on the errors 
in measuring Y when positioning the best fit line. 
In Figure 2, the light dotted line is positioned to 
minimise the distance (ui + ei)2 over all observa
tions. As seen above, this results in too flat a line if 
there are also errors in measuring variable xi (if vi 
≠ 0). Reverse regression assumes that deviations in 
the observed pairings (yi, xi) are just the result of 
errors in measuring xi (or vi). Thus, in Figure 2, 
the solid line is positioned to minimise the dis
tances (vi)2 over all observations. As seen above, 
this results in too steep a line if there are also 
omission errors and errors in measuring variable 
yi - if ui + ei ≠ 0. The scenario in between these 
two limits is to position a line (the long-dashed 
line) so as to minimise the square of the perpendi
cular distance di over all observations – so taking 
into account errors in measuring both yi and xi. In 
Figure 2 the arrowed line di is drawn to form 
a right angle where it intersects the fitted dashed 
line and so gives the errors ui + ei and vi equal 
weighting.

Figure 1. Visualisation of the various estimation procedures summarised as scenarios 1–4.
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In Figure 2 cosθ = d/Δx or d = cosθΔx. From trigo
nometric relations, it is known that (1/cos2θ) = sec2θ  
= 1+ tan2θ. Further, the slope of the fitted dashed line 
is given by ρ = Δy / xi � bxið Þ = tanθ. Consequently, TLS 
positions the best fit line so as to minimise 

The solution to this problem has the form 

where the tilde hat denotes a TLS estimator.

The Deming regression
When the errors in measuring X and Y are different in 
size, this can be accounted for through the addition of 
a further parameter, λ, with the resulting estimation 
procedure known as a Deming regression [10]. 
A Deming regression positions the best fit line so as 
to minimise 

When λ = 1 this simplifies to the objective function 
given by Equation (9a). The solution to this problem 
has the form 

and again when λ = 1 this simplifies to Equation (9b). 
The double tilde denotes these are Deming estimators. 
λ measures the relative size of the measurement errors 
in X and the omission/measurement errors in Y or 

and so the larger is λ, the more weighting is given to 
the errors associated with yi when estimating value for 
M and ρ. In Figure 2, a value for λ different from 1 
changes the value for the shown right angle. This 
technique assumes that λ is a constant over all test 
conditions and that the measurement errors in x and 
y are uncorrelated.

Method of moments (MoM)
The Deming regression therefore requires a value for 
λ before it can be implemented. Often there is 
a prior or exogenous information on the value for 
λ (perhaps through repeat testing at the same test 
conditions), but when this is not the case one possi
ble approach is to combine the method of moments 
approach with the Deming regression. Provided 
there is a significant level of skew present in the 
data on x and y, and ideally that the sample size is 

Figure 2. The di distances used in total least squares illustrated using hypothetical data.
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at least 50, a reliable Method of Moments estimator 
of ρ is given by [11] 

where the double dot denotes the MoM estimator for 
ρ. From the definition of the Pearson correlation coef
ficient, the population covariance between the true 
values Y and X equals 

where σ2
X is the population variance for the true 

value of X. A sample estimate of this covariance is 
given by sxy and so a sample estimate of σ2

X (or 
s2

X) is found by also using the method of moments 
estimator of ρ 

From Equation (4b) and assumption i above, the 
population variance for the measured value of x is 

and a sample estimate of σ2
x is given by sxx and so 

a MoM estimate for σ2
v (or s2

v) is given by 

Combining Equation (1b) with Equation (4a) gives 

where εi = ei + ui. It follows from this that 

and a sample estimate of σ2
y is given by syy. Thus, the 

MoM estimate of σ2
ε (or s2

ε) is given by 

Consequently, the MoM estimator of λ is 

An iterative procedure can then be used, whereby 
the λ value given by Equation (14c) is used in 
Equation (10b) to update the estimate for ρ to eeρ. 
If this value is used in Equations (12b–14c) the 
value for λ can be updated and reinserted into 
Equation (10b) for a new value of ρ. This can 
continue until convergence is achieved. Estimates 

for the standard errors of eeρ and ln eeM
� �

need to be 
obtained via the Jackknife [12] procedure. Here the 
following steps are required:

For each pair (yi, xi) in the sample, calculate eeρ and 

ln eeM
� �

using Equation (10b) with the additional 
exception that the pair (yi, xi) is left out of the 
calculation. Repeating this process for each pairing 

will yield n estimates of eeρ and ln eeM
� �

, and the 
standard error for each of these parameters is esti
mated using the standard formula for a standard 
deviation of the mean 

where 

Instrumental Variables (IV)
In this technique, a variable is sought that is highly 
correlated with x but is independent of w in 
Equation. (6b). In this way the problem of mea
surement errors are removed. The problem is find
ing suitable instrumental variables, zj. At first sight, 
stress and/or temperature could be used as instru
ments because they are obviously highly correlated 
with x. But given measurements errors in stress 
and temperature cause errors in measuring failure 
times and minimum creep rates, these instruments 
will also likely be correlated with w. Kendall [13] 
and Durbin [14] have suggested several possible 
instruments which whilst still being biased in 
small samples, are according to the authors, fairly 
consistent estimators. Kendall defines z1 as equal to 
1 whenever x is above its median value and −1 
when it is below its median value (and zero when 
equal to the median). This is therefore a type of 
group estimation procedure. Durbin suggested 
a more continuous instrument whereby z2 equals 
the rank of the value given by the deviation in 
x from its mean (i.e. z2 = 1 when this deviation is 
smallest and z2 = n when it is largest). The IV 
estimates for M and ρ are then given by 

where bψi ¼ yi �
�Mþ�ρxi
� �

and z is the instrument for 
x (i.e. either z1 or z2).

8 M. EVANS



Results

Cr-1Mo steel

The results from applying the various estimation tech
niques described in the previous sub section to 2.25Cr- 
1Mo steel are shown in Table 1 and Figure 3. The 
consistent upper and lower bounds for the 
Monkman-Grant exponent (ρ) comes out at −0.73 to 
−0.83. The lower and upper bounds are produced by 
the reverse regression and least squares technique 
respectively. Likewise, the bounds for the Monkman 
Grant constant (M) are 1.07−8.32. Under the assump
tion that the errors in measuring minimum creep rates 
and failure times are the same, then TLS becomes the 
appropriate estimation method, leading to an estimate 

for ρ equal to −0.76 and an estimate for M equal to 
3.98. Application of Equation (11), yields €ρ = −0.89, 
and when this is inserted into Equations (12–14), the 
value for λ comes out at 0.88. When this value for λ is 
then used in the Deming regression, and then iterating 
to convergence yields λ = 2.41. On this final iteration 
of the Deming regression, s2

v = 0.44 and s2
ε = 1.05 

suggesting that the combination of omission and mea
surement errors for y are over twice as large as the 
measurement errors on x (this is to be expected as ε 
amalgamates omission and measurement errors). On 
the final iteration of the Deming regression, the 
Monkman-Grant exponent (ρ) was estimated at 
−0.79 and the constant M at 2.52.

Abe [15] has found that the creep rupture data on 
2.25Cr-1Mo steel exhibits a change in slope of the 
stress versus time to rupture curves that was attrib
uted to the oxidation in air during the creep tests that 
had lives of between 15,000–40,000 h and 2000 – 
3500 h at high temperatures of 873K and 923K 
respectively. This systematic change in slope as 
a result of oxidation causes the value for ρ to deviate 
upwards from a value of −1 – e.g. if the filled squared 
data points encircled in Figure 3 are not included in 
the estimation procedures the resulting best fit line 
would be steeper and ρ closer to −1 (it should also be 
noted at this point that the two open squared points 
are censored failure times so that these two speci
mens are yet to fail). Consequently, the shown failure 
times are the lengths of time they have so far been on 

Figure 3. Predicted failure times obtained by the least squares, reverse and Deming regressions, together with all the experimental 
data on 2.25Cr-1Mo steel from Ref [5].

Table 1. Estimates of the Monkman−Grant relation for 2.25Cr- 
1Mo steel using various estimation techniques.

Estimation Technique Estimate Standard Error

Least Squares ln(M) 2.12 1.08
ρ −0.73 0.052

Reverse Regression ln(M) 0.06 1.80
ρ −0.83 0.052

Total Least Squares ln(M) 1.38 1.10
ρ −0.76 0.053

Deming Regression ln(M) 0.92 0.95
ρ −0.79 0.049
λ 2.41 -

σ2
v 1.05 -

σ2
ε 0.44 -

M is the constant of the Monkman−Grant relation and ρ the exponent. 
Formulas for the estimated values of these parameters and their stan
dard errors are given in the methods section.
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test for. So these points are not the cause of the 
estimated values for ρ seen in Table 1 differing 
from −1 as they are not used in any of the estimation 
procedures shown in Table 1.

Although the measurement errors are random in 
nature and so are not the cause for ρ differing from −1 
in Table 1, the presence of such errors does cause the 
least squares procedure to estimate the value for ρ with 
systematic downward bias because the random scatter 
around the Monkman -Grant relation then becomes 
correlated with the minimum creep rate. The least 
squares and reverse regression estimates provide the 
bounds within which the true value for ρ lies for this 
material and so its value could be anywhere between 
−0.73 and −0.83 if the oxidised results are included in 
the analysis. So the effect of the measurement errors is 
for the least squares procedure to underestimate the 
true value for ρ. Say the true value for ρ is −0.79 (which 
seems reasonable as it is the Deming regression esti
mate that removes this problem of measurement 
errors), then with measurement errors the estimate 
of this value using a randomly collected sample of 
data will be systematically biased away from −0.79 
(i.e. will be less negative in value). That is, if ρ was 
estimated from many different samples of size n, the 
average of all the least squares estimated for ρ made 
from these samples will differ from the true value of 
−0.79 even though measurement errors are random in 
nature. That is why in Table 1 the least squares esti
mate of ρ is below (ignoring the sign) that obtained 
from the Deming regression that adjusts for this bias. 
So using least squares can result in the estimated value 
for ρ being even further from −1 than that that would 
be expected from the effects of oxidation alone.

Figure 3 shows the predicted failure times obtained 
by the least squares, reverse and Deming regressions, 
together with all the experimental data from Ref [5]. 
As expected, the Deming regression line is in between 
the regression lines obtained using least squares and 
reverse regression – pulled more towards the reverse 
regression line as λ > 1. Also, shown in the Figure 3 are 
two test results (shown as open squares) where the 
minimum creep rate is known, but the specimens had 
not yet failed, so that the shown times are censored 
times. The three regression lines have been extrapo
lated out to these smaller minimum creep rates in 
Figure 3 to give an estimate of when these specimens 
will fail. So, at a minimum creep rate of 3.67E-12s−1, 
the least squares parameter estimates produce 
a predicted failure time of some 57 years. However, 
this prediction changes to 98 years when using the 
reverse regression estimation technique, and 78 years 
when using the Deming regression. So, whilst the 
regression lines in Figure 3 do not look that different, 
they produce very different lives at minimum creep 
rates close to those associated with normal operating 
conditions for this material. These differences 

therefore illustrate the importance of trying to account 
for the measurement errors made in recording creep 
rates and failure times.

19Cr-18Co-4Mo-3Ti-3Al-B nickel-based super alloy
The results from applying the various estimation tech
niques described above to 19Cr-18Co-4Mo-3Ti-3Al-B 
Nickel based super alloy, together with the experimen
tal data are shown in Table 2 and Figure 4. The 
consistent upper and lower bounds for the 
Monkman-Grant exponent (ρ) is −0.63 to −0.82 - as 
produced by the least squares and reverse regression 
techniques respectively. Likewise, the bounds for the 
Monkman Grant constant (M) are 23.57 to 0.44. 
Under the assumption that the errors in measuring 
minimum creep rates and failure times are the same, 
then TLS is the appropriate estimation method, lead
ing to an estimate of ρ equal to −0.69 and an estimate 
of M equal to 7.03. Application of Equation (11), yields 
€ρ = −0., and when this is inserted into Equations (12– 
14), the value for λ comes out at 2.15. When this value 
for λ is used in the Deming regression, and then 
iterating to convergence yielded λ = 2.7. On this final 
iteration of the Deming regression s2

v = 0.41 and s2
ε =  

1.11 suggesting that the combination of omission and 
measurement errors for y are over twice as large as the 
measurement errors on x (this is to be expected as ε 
amalgamates omission and measurement errors). On 
the final iteration of the Deming regression, the 
Monkman-Grant exponent (ρ) was estimated at 
−0.74 and the constant M at 2.55.

Dong et al. [16] reported that both large blocky AlN 
and needle TiN phases precipitated at the expense of 
the dissolution of fine Ni3(Al,Ti) γ' phase in a Ni- 
based 19Cr-18Co-4Mo-3Ti-3Al-B superalloy 
(Udimet 500). They observed the microstructure of 
the heats iDG and iDJ of Ni-based 19Cr-18Co-4Mo- 
3Ti-3Al-B superalloy in the NIMS Creep Data Sheet 
No.34B after creep rupture testing at 1073K and 
1173K for up to 29,085.3 h. The dissolution of fine 
Ni3(Al,Ti) γ' phase by the formation of AlN and TiN 

Table 2. Estimates of the monkman-grant relation for 19Cr- 
18Co-4Mo-3Ti-3Al-B nickel based super alloy using various 
estimation techniques.

Estimation technique Estimate Standard Error

Least Squares ln(M) 3.16 1.63
ρ −0.63 0.078

Reverse Regression ln(M) −0.81 2.97
ρ −0.82 0.089

Total Least Squares ln(M) 1.95 1.68
ρ −0.69 0.080

Deming Regression ln(M) 0.94 1.98
ρ −0.74 0.090
λ 2.70 -

σ2
v 0.41 -

σ2
ε 1.11 -

M is the constant of the Monkman−Grant relation and ρ the exponent. 
Formulas for the estimated values of these parameters and their stan
dard errors are given in the methods section.
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degrades the creep strength of the Ni-based superalloy. 
The degradation becomes more significant with 
increasing test duration. As seen in Table 2 all the 
estimate value for ρ are greater than −1, and Dong 
et al. attribute this to the dissolution of fine Ni3(Al,Ti) 
γ' phase.

Although the measurement errors are random in 
nature and so are not the cause for ρ differing from −1 
in Table 2, the presence of such errors does cause the 
least squares procedure to estimate the value for ρ with 
systematic downward bias. The least squares and 
reverse regression estimates provide the bounds 
within which the true value for ρ lies for this material 
and so its value could be anywhere between −0.63 and 
−0.82 So the effect of the measurement errors is for the 
least squares procedure to underestimate the true 
value for ρ. Say the true value for ρ is −0.74 (which 
seems reasonable as it is the Deming regression esti
mate that removes this problem of measurement 
errors), then with measurement errors the estimate 
of this value using a randomly collected sample of 
data will be systematically biased away from −0.74 
(i.e. will be less negative in value). That is, if ρ was 
estimated from many different samples of size n, the 
average of all the least squares estimated for ρ made 
from these samples will differ from the true value of 
−0.74) even though measurement errors are random 
in nature. That is why in Table 2 the least squares 
estimate of ρ is below (ignoring the sign) that obtained 

from the Deming regression that adjusts for this bias. 
So using least squares can result in the estimated value 
for ρ being even further from −1 than would be 
expected from just the dissolution of the fine Ni3(Al, 
Ti) γ' phase.

Figure 4 shows the predicted failure times obtained 
by the least squares, reverse and Deming regressions. 
As expected, the Deming regression line is between the 
regression lines produced by the least squares and 
reverse regression techniques – pulled more towards 
the reverse regression line as λ > 1. The three regres
sion lines have been extrapolated out to the smaller 
minimum creep rate of 2.5E-11s−1, to give an estimate 
of when these specimens will fail if this is the measured 
minimum creep rate for the test specimen. So, at this 
minimum creep, the least squares parameter estimates 
produce a predicted failure time of some 4.4 years. 
However, this prediction changes to 5.5 years when 
using the reverse regression estimation technique, 
and 5.1 years when using the Deming regression. So, 
whilst the regression lines in Figure 4 do not look that 
different, they produce very different lives at mini
mum creep rates not too far away from the smallest 
recorded value in the data set.

18Cr-12Ni-Mo stainless steel bars
The results from applying the various estimation tech
niques described above to 18Cr-12Ni-Mo stainless 
steel bars, together with the experimental data are 

Figure 4. Predicted failure times obtained by the least squares, reverse and Deming regressions, together with all the experimental 
data on for 19Cr-18Co-4Mo-3Ti-3Al-B nickel based super alloy from Ref [7].
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shown in Table 3 and Figure 5. The consistent upper 
and lower bounds for the Monkman-Grant exponent 
(ρ) is −0.56 to −0.62 - as produced by the least squares 
and reverse regression techniques respectively. 
Likewise, the bounds for the Monkman Grant con
stant (M) are 316.36 to 82.83. Under the assumption 
that the errors in measuring minimum creep rates and 
failure times are the same, then TLS is the appropriate 
estimation method, leading to an estimate of ρ equal to 
−0.57 and an estimate of M equal to 229. The final 
iteration of the Deming regression yielded λ = 4.11. 
On this final iteration of the Deming regression s2

v =  
0.26 and s2

ε = 1.05 suggesting that the combination of 
omission and measurement errors for y are over four 

times as large as the measurement errors on x. On the 
final iteration of the Deming regression, the 
Monkman-Grant exponent (ρ) is estimated at −0.59 
and the constant M at 146.07.

Figure 5 shows the predicted failure times obtained 
by the least squares, reverse and Deming regressions. 
As expected, the Deming regression line is between the 
regression lines obtained using the least squares and 
reverse regression techniques – pulled more towards 
the reverse regression line as λ > 1. The three regres
sion lines have been extrapolated out to the smaller 
minimum creep rate of 2.5E-11s−1 to give an estimate 
of when these specimens will fail. So, at this minimum 
creep rate, the least squares parameter estimates pro
duce a predicted failure time of some 7.8 years. 
However, this prediction changes to 10.7 years when 
using the reverse regression estimation technique, and 
9.4 years when using the Deming regression. So, 
while the regression lines in Figure 5 do not look 
that different, they produce very different lives at 
minimum creep rates not too far away from the smal
lest recorded value in the data set.

Abe [17] demonstrated that the degradation in 
creep life is more significant in high-Al heats com
pared to low-Al heats. Abe indicated this heat-to- 
heat variation in time to rupture is caused by the 
reduction of dissolved nitrogen concentration due to 
the formation of AlN, and leads to the value for ρ 
being greater than −1. This helps explain why all the 
estimated values for ρ seen in Table 3 are greater 

Figure 5. Predicted failure times obtained by the least squares, reverse and Deming regressions, together with all the experimental 
data 18Cr-12Ni-Mo stainless steel (403B) bars from Ref [6].

Table 3. Estimates of the monkman-grant relation for 18Cr- 
12Ni-Mo stainless steel bars using various estimation 
techniques.

Estimation Technique Estimate Standard Error

Bar
Least Squares ln(M) 5.76 0.47

ρ −0.56 0.024
Reverse Regression ln(M) 4.42 1.90

ρ −0.62 0.055
Total Least Squares ln(M) 5.43 0.48

ρ −0.57 0.024
Deming Regression ln(M) 4.98 0.49

ρ −0.59 0.025
λ 4.11 -

σ2
v 0.26 -

σ2
ε 1.05 -

M is the constant of the Monkman-Grant relation and ρ the exponent. 
Formulas for the estimated values of these parameters and their stan
dard errors are given in the methods section.
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than −1. Although the measurement errors are ran
dom in nature and so are not the cause for ρ differ
ing from −1 in Table 3, the presence of such errors 
does cause the least squares procedure to estimate 
the value for ρ with systematic downward bias. The 
least squares and reverse regression estimates pro
vide the bounds within which the true value for ρ 
lies for this material and so its value could be any
where between −0.56 and −0.62 So the effect of the 
measurement errors is for the least squares proce
dure to underestimate the true value for ρ. Say the 
true value for ρ is −0.59 (which seems reasonable as 
it is the Deming regression estimate that removes 
this problem of measurement errors), then with 
measurement errors the estimate of this value 
using a randomly collected sample of data will be 
systematically biased away from −0.59 (i.e. will be 
less negative in value). So using least squares can 
result in the estimated value for ρ being even further 
from −1 than would be expected from just the effects 
of dissolved nitrogen concentration due to the for
mation of AlN.

Comparisons
The values for s2

v for these three materials indicate that 
the minimum creep rate was measured with greater 
error in the data set on 2.25Cr-1Mo steel and with 
least error in the 403B Stainless Steel data set. This is 
consistent then with there being little difference 
between the least squares and Deming estimates for ρ 
and M in the 403B Stainless Steel data set. On the other 
hand, times to failure (including errors in omission) 
were measured with the smallest error in the 2.25Cr- 
1Mo steel data set, with similar or higher errors for the 
other two materials. This shows up in the smaller scatter 
in the failure times seen in Figure 3 compared to Figures 
4 and Figures 5. In all materials, the Monkman-Grant 
exponent is considerably larger than −1 - especially so 
in the 403B Stainless Steel material. But it is noticeable 
that considering measurement errors helps move this 
exponent towards a value of −1.

In terms of accuracies in predicted failure times, 
Holdsworth et al. [18] proposed using the Z value to 
compare predictions which they defined as Z = e2:58se , 
where se is the standard deviation in the prediction 
errors from each Monkman Grant relation estimate. 
For 19Cr-18Co-4Mo-3Ti-3Al-B Nickel based super 
alloy this comes out as 3.68 and 3.34 for the least 
squares and Deming predictions. Ideally, for multiple 
batches of material, these authors suggested Z should 
not exceed 5.

Conclusion

This article has highlighted the consequences of esti
mating the unknown parameters of the Monkman- 
Grant relation using the technique of ordinary least 

squares when times to failure and minimum creep 
rates are measured with error. The presented review 
showed that the estimates became both biased in small 
samples and inconsistent in large samples. Reverse 
regression in combination with least squares was 
shown to give consistent estimates for the upper and 
lower bounds associated with the true value for the 
Monkman-Grant parameters. The instrumental vari
able solution to this problem was considered unsuita
ble because possible instruments such as stress and 
temperature (as they are correlated with the minimum 
creep rate) are likely to be correlated with errors in 
measuring minimum creep rates (as the sources of 
error in measuring temperature are the same as in 
measuring creep rates). An iterative version of the 
Deming regression that made used of 3rd moments 
in the data was suggested as a suitable solution pro
vided λ is constant and the measurement errors are 
uncorrelated (and provided the data has an element of 
skew).

Application of these estimation techniques to var
ious materials used in high temperature applications 
showed considerable variation in the estimated values 
for M and ρ. As expected, least squares lead to 
a considerable downward bias in the value for ρ, and 
reverse regression an upward bias. The Deming 
regression produced an estimate in between these 
limits but with a tendency to edge towards the reverse 
regression estimates because the estimated values for λ 
in each material studied was substantially greater than 
1. That is, the combination of omission errors and 
errors in measuring y exceeded the errors made in 
measuring x. These results have important implica
tions for using the Monkman−Grant relation to esti
mate creep life at the low minimum creep rates that 
would be observed at tests conditions close to operat
ing conditions. The evidence from the materials stu
died in this paper suggest that the use of least squares 
results in overly conservative lifetime predictions. For 
example, for 2.25Cr-1Mo steel the life expected for 
a minimum creep rate of 3.67E-12s−1 was estimated 
at 57 years when the least squares technique was used, 
but this increased to 78 years when using the Deming 
regression.

Areas for future work include the application of 
Deming type regressions on other high temperature 
materials and the carrying out of repeat creep tests to 
get a direct estimate of the measurement errors that 
would allow more refined Deming type regression to 
be carried out – such as the York regression [19]. This 
would enable more precise estimates of the 
Monkman-Grant relation to be made.
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Appendix

A. The Best Linear Unbiased properties of least squares estimators (BLU)

From Equation (4) the least squares estimator of ρ was a linear combination of the Yi values when there are no measurement 
errors 

bρ ¼
Xn

i¼1
ki Yi � �Yð Þ where ki ¼

ðXi � �XÞ
Pn

i¼1ðXi � �XÞ2
(A1) 

and so bρ is a linear estimator. But 
Pn

1¼1 ki ¼ 0 and so 

bρ ¼
Xn

i¼1
ki Yið Þ � �Y

Xn

1¼1
ki ¼

Xn

1¼1
ki Yið Þ (A2) 

From Equation (1b) this can be re-written as 

bρ ¼
Xn

i¼1
ki Yið Þ ¼ ln M½ �

Xn

i¼1
ki þ ρ

Xn

i¼1
kiXi þ

Xn

i¼1
kiei (A3) 

But 
Pn

1¼1 kiXi ¼ 1, and so 

bρ ¼ ρþ
Xn

i¼1
kiei ¼ ρþ

Xi � �Xð Þei
Pn

i¼1 Xi � �Xð Þ
2 (A4) 

The rules of expected values state that the expected value of a constant like ρ is the constant itself and a constant can be taken 
outside the expectations operator. So, assuming that X are a set of fixed values (i.e. are independent of the errors ei) gives 

E bρð Þ ¼ E ρð Þ þ
Xi � �Xð ÞEðeiÞ
Pn

i¼1 Xi � �Xð Þ
2 (A5) 

Then assuming the expected value of the errors ei are zero gives 

E bρð Þ ¼ ρ (A6) 
so that in repeated hypothetical sampling the mean value for all the estimated values for ρ equals the true value of ρ. This is 
true for any sample size and so this property is usually referred to as a small sample property.

From Equation (5), the variance of bρ is given by 

Var bρð Þ ¼ k2
i σ2

e (A7) 
Now consider another linear estimator of ρ given by 

�ρ ¼
Xn

i¼1
ci Yi � �Yð Þ (A8) 

This differs from the least squares estimator by the amount gi = ci – ki. it can then be shown that 

Var �ρð Þ ¼ Var bρð Þ þ σ2
ε

Xn

i¼1
g2

i (A9) 
Both σ2

ε and g2
i are squared terms and so they cannot be negative. Hence, Var ρð Þ ≥ Var bρð Þ and therefore ρ̂ is the most efficient 

or best estimator of ρ.

B. Consistency of least squares estimators

Consistency is a large sample property and describes what happens to the estimator when it is calculated from a larger 
and larger sample of data. The estimators bM and bρ are said to be consistent if i. lim

n!1
E bM nð Þ

� �
¼ M and lim

n!1
E bρ nð Þ

� �
¼ ρ 

and ii. lim
n!1

Var bM nð Þ

� �
¼ 0 and lim

n!1
Var bρ nð Þ

� �
¼ 0. Here Var bM nð Þ

� �
reads the variance for bM, when each bM is 

calculated from lots of different samples of data all of size n. Likewise E bM nð Þ

� �
reads the sample average for bM, when 

each bM is calculated from lots of different samples of data all of size n. Assuming independence between ei and xi and 
that the mean of ei is zero, it was seen above that the least squares estimates are unbiased in small samples and so they 
must also remain unbiased as the sample size increases. So, the first condition required for consistency is met for the 
least squares estimator. The second condition will be met provided 

Pn
i¼1 Xi � �Xð Þ

2
!1 as n!1. Clearly, this sum 

will get bigger as the summation is done over more and more values for X – as the sample size increases. As 
Pn

i¼1
Xi � �Xð Þ

2 

is the denominator in Equation (5), which in turn gives the variance for bρ nð Þ, it is clear that as n tends to infinity the 
variance for bρ nð Þ tends to zero. Hence least squares estimators are consistent estimators under the stated assumptions.
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C. The least squares estimate of M and p are inconsistent and biased in the presence of measurement 
errors

Now when X is measured with error so that xi = Xi + vi , we can no longer treat the X values as fixed values because what we 
actually measure is xi – which is now a random variable because the error variable vi is a random variable. So in Equation 
(A5), the expectations operator cannot be taken through 

Pn
i¼1 Xi � �Xð Þ eið Þ and so 

E bρð Þ ¼ E ρð Þ þ E
Pn

i¼1 Xi � �Xð Þ eið Þ
Pn

i¼1 Xi � �Xð Þ
2

( )

�0 (C1) 

Further, this bias does not diminish with sample size as it can be shown that 

lim
n!1

bρ ¼
σxy

σy þ σv
(C2) 

and so the least squares estimates of ρ is also inconsistent. The nature of this small sample bias can be seen by combining 
Equations (2) with Equation (4) 

ρ̂ ¼
Pn

i¼1 Xi � �Xð Þ Yi � �Yð Þ
Pn

i¼1 Xi � �Xð Þ
2 

¼

Pn
i¼1½ xi � �xð Þ þ vi � vð Þ�½ yi � y

� �
þ εi � εð Þ�

Pn
i¼1 xi � �xð Þ � vi � vð ÞÞ

2�

¼

Pn
i¼1 xi � �xð Þ yi � y

� �
þ
Pn

i¼1 xi � �xð Þ εi � εð Þ þ
Pn

i¼1 vi � vð Þ yi � y
� �

þ
Pn

i¼1 vi � vð Þ εi � εð Þ
Pn

i¼1 xi � �xð Þ
2
þ
Pn

i¼1 vi � vð Þ
2
þ 2

Pn
i¼1 xi � �xð Þ vi � vð Þ

ðC3Þ

where εi is the accumulation of the errors in omission and the errors of measurement associated with Y, εi = ui + ei.
Now based on assumption i & ii of the main text, the second and third term in the numerator and the last term in 

the denominator are zero asymptotically (an n →∞). Therefore, in the limit 

lim
n!1

bρ ¼
Pn

i¼1 xi � �xð Þ yi � y
� �

þ
Pn

i¼1 vi � vð Þ εi � εð Þ
Pn

i¼1 xi � �xð Þ
2
þ
Pn

i¼1 vi � vð Þ
2 (C4) 

Upon further simplification 

lim
n!1

bρ ¼
ρþ

Pn
i¼1 vi � vð Þ εi � εð Þ=

Pn
i¼1 xi � �xð Þ

1þ σ2
v=
Pn

i¼1 xi � �xð Þ
¼ ρ

1þ σεv=σ2
x

1þ σ2
v
�
σ2

x

� �

2

4

3

5�ρ (C5) 

where σ2
x is the population variance for x and σεv is the population covariance between the measurements/omission errors ε 

and measurement errors v. If this last term is also zero, this expression simplifies to 

lim
n!1

bρ ¼ ρ
1

1þ σ2
v
�
σ2

x

� �

2

4

3

5�ρ (C6) 

Furthermore, 

σ2
v
�
σ2

x
> 0! lim

n!1
bρ< ρ 

when ε and v are independent of each other. Given such independence, there is a tendency to underestimate the Monkman- 
Grant exponent that does not disappear in large samples. When the measurement errors are dependent, there is still 
inconsistency and an asymptotic bias provided that σεv�σ2

v - which is an unlikely event. If ε< σ2
v there is upward bias, and 

when σεv > σ2
v there is downward bias. Next, consider the reverse regression 

xi ¼ �
ln½M�

ρ
þ

1
ρ

yi þ wi (C7) 

where wi = ei
ρ þ

ui
ρ � vi

� �
. So again, w is correlated with y. But this time the resulting bias is in the opposite direction 

lim
n!1

bρ ¼ ρ 1þ
σ2

e þ σ2
v

ρ2 σ2
v
�
σ2

x

� �

2

4

3

5�ρ (C8) 

Thus a normal and reverse regression can be used to get upper and lower bounds on p – at least in large samples 

lim
n!1

bρ
� �� 1

< ρ> lim
n!1

bρ (C9) 
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