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It is shown that weighted linear combinations of the generalised-𝛼 method and certain related 
higher order schemes allow for the formulation of unconditionally stable single step time 
integration methods with improved second order accuracy and more targeted high-frequency 
damping. It is also shown that, if the user controlled high frequency damping parameter 𝜌∞ is 
set to zero, the new schemes can be expressed as linear multistep backward difference formulae 
and, in a particular case, recover Park’s method. The performance of the proposed methods is 
illustrated in terms of mathematical analysis and a number of linear and nonlinear numerical 
examples including finite element based solutions of the incompressible Navier-Stokes equations.

1. Introduction

Implicit unconditionally stable time integration schemes are a crucial ingredient to the computer simulation of any dynamic 
physical process unless it is suitable for the employment of an explicit strategy. They are extensively used in computational fluid and 
solid dynamics. Presuming unconditional stability, which is a fundamental requirement for an implicit time integration scheme, the 
criteria for the assessment of the performance of a particular scheme are the approximation accuracy and the numerical damping 
characteristics. Due to the second Dahlquist barrier, see for instance [13], the methods can be only of first or second order accuracy 
and cannot exceed the accuracy of the trapezoidal rule. Yet, the trapezoidal rule does not feature any numerical damping and is 
therefore not suitable for many problems in fluid or solid dynamics, where unresolved high frequency responses must be suppressed.

An optimal implicit time integration scheme features second order accuracy with small absolute error values and a noticeable or 
even substantial amount of numerical damping in the high frequency regime. This behaviour is largely offered by the generalised-𝛼

method, which is available for applications in solid and fluid mechanics, as described in [7,14,16]. It provides user controlled high 
frequency damping combined with second order accuracy. Therefore, it has been successfully used in computational fluid dynamics 
(see [3,4,8,9,14,18,20] and many others), computational solid dynamics (see [7] and the vast number of citing articles), fluid-structure 
interaction ([5,10,11,15,17,22] and others), but also in phase field modelling [1,12,19], biomechanics [21], thermomechanics [27]

and other application areas. For the limit values, zero and one, of the user controlled high frequency damping parameter 𝜌∞, the 
generalised-𝛼 method as described in [14] coincides with a number of other schemes, including the Wilson/Houboldt scheme and 
the second order backward difference formula (BDF-2), as well as the trapezoidal rule (TR) and the Crank Nicolson scheme. Hence, 
the parameter 𝜌∞ provides a mechanism to interpolate between the less accurate, dissipative BDF-2 method and the more accurate, 
but non-dissipative TR scheme. This is illustrated in Fig. 1.
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Fig. 1. Schematic overview of unconditionally stable implicit time integration schemes considered in this article; GA-23, GA-234, BDF-23 and BDF-234 are proposed 
in Sections 3 and 5; GM, GA-2, GA-23 and GA-234 can be regarded as interpolations between BDF methods and the trapezoidal rule. They require that the user sets 
the value of 𝜌∞ ; 𝜌∞ = 0 → strong high frequency damping, 𝜌∞ = 1 → no high frequency damping. BDF-23 is equivalent to Park’s method, see for instance [13,23].

In this work, new numerical time integration schemes are developed based on the generalised-𝛼 method, which maintain second 
order accuracy, unconditional stability and user controlled high frequency damping, but offer improved accuracy and more targeted 
high frequency damping, i.e. the onset of numerical damping is shifted more towards the regime of large time steps. For 𝜌∞ = 0, the 
new schemes give rise to backward difference formulae, which, for a particular case, recover one of the BDF2OPT methods presented 
in [26]. This scheme is referred to as Park’s method in [13], and it is particularly well suited for stiff problems in mechanics as 
argued in [23]. The relationship between the new methods, the generalised-𝛼 method and the BDF-2 and TR schemes is illustrated 
qualitatively in Fig. 1, in terms of accuracy and high frequency damping. As shown, the key contribution of the proposed methods 
is that they almost achieve the best possible second order accuracy, i.e. the accuracy of the trapezoidal rule, while still offering user 
controlled high frequency damping. The new methods are derived from weighted linear combinations of the original generalised-𝛼

method presented in [14] with generalised higher order schemes. The advantages offered by the new schemes are associated with 
negligible additional computational cost. The computer implementation in existing code is straightforward and only requires one or 
two more current state or history arrays.

For clarity, it is noted that the methods presented in this work require the solution of a single set of solution variables only. In 
this way they differ from those implicit schemes which are based on an augmented set of solution variables or require a sequence of 
system solutions. Such methods include the linear discontinuous finite element method in time, see [9] and references therein, implicit 
Runge-Kutta schemes or the composite scheme presented in [2]. Recently, a higher order generalised-𝛼 method has been proposed in 
[6] which maintains the desirable stability and damping properties but requires the computation of several sets of solution variables.

The remainder of this article is organised as follows: In Section 2, a family of higher order methods is presented which recovers 
the generalised-𝛼 method for the special case of second order accuracy. Unconditionally stable weighted linear combinations of the 
second, third and fourth order accurate schemes are proposed in Section 3, resulting in two new single step time integration methods. 
The properties of the new schemes are analysed in Section 4. In Section 5, it is shown that the new schemes give rise to backward 
difference formulae with higher accuracy than the standard second order formula. In Sections 6 to 8, the linear scalar oscillator and 
two finite element models of unsteady incompressible fluid flow are used to illustrate the performance of the proposed schemes. 
Conclusions are presented in Section 9.

2. A family of time integration schemes of order 𝒑

Consider the first order initial value problem

�̇�(𝑡) − 𝑓
(
𝑢(𝑡), 𝑡

)
= 0 with 𝑢(0) = 𝑢0 , (1)

where 𝑢 is the solution variable, 𝑡 denotes time and �̇� = d𝑢∕d𝑡. For the discussion of numerical time integration schemes, it is common 
practice to consider the special case of the scalar linear problem

�̇�(𝑡) − 𝜆𝑢(𝑡) = 0 with 𝑢(0) = 𝑢0 , (2)

where 𝜆 = −𝜉 + 𝑖 𝜔. The exact solution can be expressed as

𝑢(𝑡) = 𝑢0 𝑒
𝜆 𝑡 . (3)

Introducing the sequence of discrete time instants 𝑡𝑛 with 𝑛 = 0, 1, 2, ... and the step size Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛 gives rise to the exact amplifi-

cation factor

𝜁exact = 𝑒𝜆Δ𝑡 with 𝑢𝑛+1 = 𝜁exact 𝑢𝑛 . (4)

The set of equations
2

�̇�𝑛+𝛽 − 𝜆𝑢𝑛+𝛼 = 0 (5)
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Table 1

Coefficients 𝛽𝑖 for the family of time integration schemes GA-𝑝.

𝑝 𝛽0 𝛽1 𝛽2 𝛽3

2
−𝜌∞+3
2(𝜌∞+1)

3𝜌∞−1
2(𝜌∞+1)

3
2𝜌2∞−5𝜌∞+11

6(𝜌∞+1)
−2𝜌2∞+11𝜌∞−5

6(𝜌∞+1)
−𝜌2∞+𝜌∞−1
3(𝜌∞+1)

4
−3𝜌3∞+7𝜌2∞−13𝜌∞+25

12(𝜌∞+1)
3𝜌3∞−7𝜌2∞+25𝜌∞−13

12(𝜌∞+1)
3𝜌3∞−7𝜌2∞+7𝜌∞−7

12(𝜌∞+1)
𝜌3∞−𝜌2∞+𝜌∞−1

4(𝜌∞+1)2

𝑢𝑛+𝛼 = 𝛼 𝑢𝑛+1 + (1 − 𝛼)𝑢𝑛 (6)

�̇�𝑛+𝛽 = 𝛽0 �̇�𝑛+1 +
𝑝−1∑
𝑖=1

𝛽𝑖 𝑢
(𝑖)′
𝑛

Δ𝑡𝑖−1 (7)

𝑢
(𝑖)′
𝑛+1 = 𝑢(𝑖)

′
𝑛

+ Δ𝑡
(
𝛾 𝑢

(𝑖+1)′
𝑛+1 + (1 − 𝛾)𝑢(𝑖+1)′

𝑛

)
for 𝑖 = 0,1,2, ..., 𝑝− 2 (8)

with 𝑝 ≥ 2 represents a family of implicit numerical time integration schemes. The term 𝑢(𝑖)
′

𝑛 denotes the 𝑖-th derivative of the variable 
𝑢 at the time instant 𝑡𝑛. The numerical properties of the schemes and the conditions for the scalar parameters 𝛼, 𝛽𝑖 and 𝛾 are determined 
in the remainder of this section.

First, the associated amplification matrix 𝗔(𝑝) of the schemes is considered. It is defined by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑢𝑛+1

�̇�𝑛+1 Δ𝑡

𝑢
(2)′
𝑛+1 Δ𝑡

2

𝑢
(3)′
𝑛+1 Δ𝑡

3

...

𝑢
(𝑝−1)′
𝑛+1 Δ𝑡 𝑝−1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= 𝗔(𝑝)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑢𝑛

�̇�𝑛Δ𝑡

𝑢
(2)′
𝑛 Δ𝑡2

𝑢
(3)′
𝑛 Δ𝑡3

...

𝑢
(𝑝−1)′
𝑛 Δ𝑡 𝑝−1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
. (9)

The matrix 𝗔(𝑝) is of dimension 𝑝 × 𝑝 and can be obtained from symbolic mathematical software. For 𝑝 = 4, it can be written as

𝗔(4) = 1
𝛿

⎡⎢⎢⎢⎣
𝛿 + 𝛾𝜆Δ𝑡 𝛽0𝜂 − 𝛽1𝛾 −𝛽2𝛾 −𝛽3𝛾
𝜆Δ𝑡 𝛼𝜂𝜆Δ𝑡− 𝛽1 −𝛽2 −𝛽3
𝜆Δ𝑡∕𝛾 (𝛼𝜆Δ𝑡− 𝛽0 − 𝛽1)∕𝛾 −(𝛿𝜂 + 𝛽2)∕𝛾 −𝛽3∕𝛾
𝜆Δ𝑡∕𝛾2 (𝛼𝜆Δ𝑡− 𝛽0 − 𝛽1)∕𝛾2 −(𝛿 + 𝛽2)∕𝛾2 −(𝛾𝛿𝜂 + 𝛽3)∕𝛾2

⎤⎥⎥⎥⎦ (10)

where 𝛿 = 𝛽0 − 𝛼 𝛾 𝜆Δ𝑡 and 𝜂 = 1 − 𝛾 . The amplification matrices 𝗔(2) and 𝗔(3) are equal to the two and three dimensional top left 
submatrices of 𝗔(4), respectively.

Before the investigation of numerical accuracy, it is convenient to consider the high frequency damping behaviour of the schemes. 
The spectral radius of matrix 𝗔(𝑝) is

𝜌
(
𝗔(𝑝)) =max

(|𝜁𝑖|) , (11)

where 𝜁𝑖 with 𝑖 = 1, 2, ..., 𝑝 are the eigenvalues of 𝗔(𝑝). Introducing the spectral radius 𝜌∞ for an infinite time step, symbolic mathe-

matical software renders

𝜌∞ = lim
Δ𝑡→∞

𝜌
(
𝗔(𝑝)) = max

(||||− 1 − 𝛼

𝛼

|||| , ||||− 1 − 𝛾

𝛾

||||
)
. (12)

Setting

𝛼 = 𝛾 = 1
1 + 𝜌∞

(13)

ensures that the absolute values of all eigenvalues converge to 𝜌∞ as Δ𝑡 tends to infinity. By keeping 𝜌∞ as a free parameter, user 
controlled high frequency damping is enabled.

In order to assess the accuracy of the family of schemes defined by Equations (5) to (8), the amplification factor 𝜁exact is inserted 
into the characteristic polynomial of 𝗔(𝑝) and the resulting expression expanded as a series of powers of Δ𝑡. Equating the first 𝑝 terms to 
zero ensures the order of accuracy of 𝑝 and renders a set of equations which can be solved for the coefficients 𝛽𝑖 with 𝑖 = 0, 1, 2, ..., 𝑝 −1. 
This procedure is implemented in symbolic mathematical software and results in the expressions for 𝛽𝑖 summarised in Table 1.

Hence, by using Equation (13) and Table 1, the parameters 𝛼, 𝛽𝑖 and 𝛾 can be expressed exclusively in terms of 𝜌∞, such that the 
order of accuracy of the scheme is equal to 𝑝 and user controlled high frequency damping is enabled. The parameter 𝜌∞ remains as 
3

the only free parameter. In anticipation of Remark 2.2 below, the family of time integration schemes given by Equations (5) to (8)
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Fig. 2. Spectral radii of GM, GA-2, GA-3 and GA-4 for 𝜉 = 0; for 𝜌∞ = 1, GM and GA-3 coincide with, respectively, GA-2 and GA-4. (For interpretation of the colours 
in the figure(s), the reader is referred to the web version of this article.)

is termed generalised-𝛼 method of order 𝑝, or briefly, GA-𝑝. The variation of the spectral radius 𝜌(𝗔(𝑝)) with the time step size Δ𝑡 is 
visualised in Fig. 2. It illustrates that the scheme is unconditionally stable only for 𝑝 = 2.

Remark 2.1. As presented by Equations (5) to (8), the scheme is not suitable for 𝑝 = 1. An unconditionally stable first order scheme, 
namely the generalised midpoint rule GM, is obtained by setting 𝑝 = 1 and 𝛾 = 1, see for instance [9]. With 𝜌∞ = 0 and 𝜌∞ = 1, 
respectively, the backward Euler and the trapezoidal rule methods are recovered. For convenience, the scheme GM is summarised in 
Box 1.

Remark 2.2. For 𝑝 = 2, the scheme coincides with the popular generalised-𝛼 method proposed in [14]. If 𝛼, 𝛽0 and 𝛽1 are replaced, 
respectively, by 𝛼𝑓 , 𝛼𝑚 and 1 − 𝛼𝑚, the notation from [14] is recovered. For convenience, the scheme GA-2 is summarised in Box 2.

Remark 2.3. For 𝜌∞ = 0, the proposed family of schemes is identical to the well-known backward difference formulae of order 𝑝. 
This is further elaborated in Section 5.

�̇�𝑛+𝛼 − 𝑓
(
𝑢𝑛+𝛼, 𝑡𝑛+𝛼

)
= 0

𝑢𝑛+𝛼 = 𝛼 𝑢𝑛+1 + (1 − 𝛼)𝑢𝑛
�̇�𝑛+𝛼 =

𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
𝛼 = 1

1 + 𝜌∞
4

Box 1: Summary of the generalised midpoint rule method GM.
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�̇�𝑛+𝛽 − 𝑓
(
𝑢𝑛+𝛼, 𝑡𝑛+𝛼

)
= 0

𝑢𝑛+𝛼 = 𝛼 𝑢𝑛+1 + (1 − 𝛼)𝑢𝑛
�̇�𝑛+𝛽 = 𝛽 �̇�𝑛+1 + (1 − 𝛽) �̇�𝑛
𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡

(
𝛾 �̇�𝑛+1 + (1 − 𝛾) �̇�𝑛

)
𝛼 = 𝛾 = 1

1 + 𝜌∞
, 𝛽 =

3 − 𝜌∞
2(1 + 𝜌∞)

Box 2: Summary of method GA-2 (equivalent to the generalised-𝛼 method).

3. Ensuring unconditional stability

The method GA-𝑝 described in Section 2 is unconditionally stable only for 𝑝 = 2. Yet, in order to improve the accuracy while 
maintaining unconditional stability the following variation of Equation (5) is considered

𝛿3 �̇�
(3)
𝑛+𝛽 + (1 − 𝛿3) �̇�

(2)
𝑛+𝛽 − 𝜆𝑢𝑛+𝛼 = 0 , (14)

where �̇�(𝑗)
𝑛+𝛽 is defined by Equation (7) with 𝑝 = 𝑗. The coefficients 𝛽𝑖 in Equation (7) are given in Table 1 and also need to be selected 

for 𝑝 = 𝑗. Equation (14) represents the linear combination of the GA-2 and GA-3 schemes: For 𝛿3 = 0 the scheme reduces to GA-2 and 
is unconditionally stable, while for 𝛿3 = 1 it recovers GA-3 and is more accurate but only conditionally stable. Clearly, it is desirable 
to find the largest possible value for 𝛿3 ≥ 0 that still ensures unconditional stability.

The Jury Table, see for instance [25], offers a suitable tool for this investigation. The analysis is tedious and results in long 
expressions. It is therefore most easily done using symbolic mathematical software and omitted here for the sake of brevity. The 
critical value of 𝛿3 is obtained as a function of 𝜌∞, i.e.

𝛿3 =
(1 − 𝜌∞)2

2 (1 − 𝜌∞ + 𝜌2∞)
. (15)

For 𝜌∞ = 0, one obtains 𝛿3 =
1
2 which corresponds to an equal weighting of the second and third order accurate terms. As 𝜌∞ is 

increased and approaches the value of 1, the weighting of GA-3 decreases and the method eventually recovers the trapezoidal rule. 
In the remainder of this work, the time integration scheme described by Equations (14), (6), (7), (8), (13) and (15), together with 
the relevant expressions from Table 1, is referred to as GA-23. The full set of equations describing GA-23 is summarised in Box 3.

�̇�𝑛+𝛽 − 𝑓
(
𝑢𝑛+𝛼, 𝑡𝑛+𝛼

)
= 0

𝑢𝑛+𝛼 = 𝛼 𝑢𝑛+1 + (1 − 𝛼)𝑢𝑛
�̇�𝑛+𝛽 = 𝛽0 �̇�𝑛+1 + 𝛽1 �̇�𝑛 + 𝛽2 �̈�𝑛Δ𝑡

𝑢
(𝑖)′
𝑛+1 = 𝑢(𝑖)

′
𝑛

+ Δ𝑡
(
𝛾 𝑢

(𝑖+1)′
𝑛+1 + (1 − 𝛾)𝑢(𝑖+1)′

𝑛

)
for 𝑖 = 0,1

𝛼 = 𝛾 = 1
1 + 𝜌∞

, 𝛽0 =
10 − 5𝜌∞ + 𝜌2∞

6(1 + 𝜌∞)

𝛽1 = 1 − 𝛽0 , 𝛽2 = −
(1 − 𝜌∞)2

6(1 + 𝜌∞)

Box 3: Summary of method GA-23. The coefficients 𝛽𝑖 have been redefined for brevity of presentation.

Linear combinations of further higher order terms can also be investigated. Consider

𝛿4 �̇�
(4)
𝑛+𝛽 + (1 − 𝛿4)

(
𝛿3 �̇�

(3)
𝑛+𝛽 + (1 − 𝛿3) �̇�

(2)
𝑛+𝛽

)
− 𝜆𝑢𝑛+𝛼 = 0 , (16)

which is the linear combination of GA-23 and GA-4. Again, the Jury Table is used to find the critical value for 𝛿4 . The investigation 
renders

𝛿4 =
(1 − 𝜌∞)2

5 (1 + 𝜌2∞)
. (17)

For 𝜌∞ = 1, one obtains 𝛿4 = 𝛿3 = 0 and the scheme reduces to the trapezoidal rule. For 𝜌∞ = 0, the weighting factors for GA-2, GA-3 
and GA-4 are, respectively, 25 , 25 and 15 . Hence, the contribution of GA-4 is significant, but smaller than that of GA-3. The scheme 
5

based on Equation (16) is referred to as GA-234. The full set of equations describing GA-234 is summarised in Box 4.
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�̇�𝑛+𝛽 − 𝑓
(
𝑢𝑛+𝛼, 𝑡𝑛+𝛼

)
= 0

𝑢𝑛+𝛼 = 𝛼 𝑢𝑛+1 + (1 − 𝛼)𝑢𝑛
�̇�𝑛+𝛽 = 𝛽0 �̇�𝑛+1 + 𝛽1 �̇�𝑛 + 𝛽2 �̈�𝑛Δ𝑡+ 𝛽3𝑢𝑛Δ𝑡2

𝑢
(𝑖)′
𝑛+1 = 𝑢(𝑖)

′
𝑛

+ Δ𝑡
(
𝛾 𝑢

(𝑖+1)′
𝑛+1 + (1 − 𝛾)𝑢(𝑖+1)′

𝑛

)
for 𝑖 = 0,1,2

𝛼 = 𝛾 = 1
1 + 𝜌∞

, 𝛽0 =
35 − 21𝜌∞ + 7𝜌2∞ − 𝜌3∞

20(1 + 𝜌∞)

𝛽1 = 1 − 𝛽0 , 𝛽2 = −
(1 − 𝜌∞)2(5 − 𝜌∞)

20(1 + 𝜌∞)
, 𝛽3 = −

(1 − 𝜌∞)3

20(1 + 𝜌∞)2

Box 4: Summary of method GA-234. The coefficients 𝛽𝑖 have been redefined for brevity of presentation.

The investigation of unconditionally stable linear combinations of schemes GA-𝑝 including those with 𝑝 > 4 is omitted. If they 
exist, they will provide little benefit due to very small weighting factors of the higher order schemes. The remainder of this article is 
therefore restricted to the consideration of the schemes GA-23 and GA-234.

4. Analysis of the methods GA-23 and GA-234

4.1. Stability

As described in Section 3, the schemes GA-23 and GA-234 have been derived on the basis of the Jury table and are provably 
unconditionally stable. The stability regions are shown in Fig. 3 and illustrate the unconditional stability. The figures show how the 
stability regions evolve as 𝜌∞ changes from zero to one. In anticipation of Section 5, it is noted that, for 𝜌∞ = 0, the schemes GA-𝑝

coincide with the BDF-𝑝 methods and therefore render the well-known stability regions shown in the first row of the figure for GA-2, 
GA-3 and GA-4. The eigenvalues of the amplification matrices of the schemes are shown in the complex plane in Fig. 4. The figure 
illustrates how the methods evolve as higher order terms are included or 𝜌∞ is changed.

4.2. High frequency damping

Fig. 5 shows the spectral radius of the amplification matrices displayed against the time step size. Clearly, in comparison to 
the original generalised-𝛼 method GA-2, the proposed schemes GA-23 and GA-234 shift the onset of noticeable numerical damping 
to larger time steps where Δ𝑡∕𝑇 ≈ 0.1. It is observed that the shift from GA-2 to GA-234 is almost as significant as the shift from 
the generalised midpoint rule GM to the generalised-𝛼 method GA-2. Hence, GA-23 and GA-234 exhibit noticeably less numerical 
damping than GA-2 in the regime of large time steps that are still small enough to resolve the temporal features of the solution.

4.3. Accuracy

In order to assess the accuracy of GA-23 and GA-234 in terms of dispersion and damping, the numerical counterparts 𝜔ℎ and 𝜉ℎ
of, respectively, 𝜔 and 𝜉 are considered. They can be obtained from

𝜔ℎ = 1
Δ𝑡

arg(𝜁max) and 𝜉ℎ = − 1
Δ𝑡

ln
(|𝜁max|) , (18)

where 𝜁max is the maximum eigenvalue of the amplification matrix. Figs. 6 and 7 show how 𝜔ℎ and 𝜉ℎ evolve with the time step size 
Δ𝑡. It is observed that, as expected, GA-23 exhibits smaller approximation errors than GA-2, but is less accurate than GA-234. The 
good performance of GA-234 is particularly noticeable when comparing the damping behaviour against the schemes GA-2 and TR.

4.4. Computational cost

In comparison to the generalised-𝛼 method GA-2, the schemes GA-23 and GA-234 require that, respectively, one or two additional 
history data arrays are allocated and used to store �̈�𝑛 and 𝑢𝑛. Hence, the additional memory requirements are small, especially when 
compared to the amount of storage required by the global system solver. The additional computational time is similarly negligible 
since the additional operations are restricted to updating the global arrays �̈�𝑛 and 𝑢𝑛.

5. Backward difference formulae

For 𝜌∞ = 0, the time integration schemes GA-𝑝 described by Equations (5) to (8) are equivalent to the well-known backward 
difference formulae BDF-𝑝, described for instance in [24]. In order to show this, Equation (8) is rewritten as

′ 𝑢
(𝑖)′ − 𝑢

(𝑖)′
𝑛

6

𝑢
(𝑖+1)
𝑛+1 = 𝑛+1

Δ𝑡
, (19)
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Fig. 3. Stability regions (grey), uniform scaling, Im(𝜆Δ𝑡) displayed over Re(𝜆Δ𝑡).

Table 2

Coefficients 𝛽𝑖 for backward difference for-

mulae BDF-𝑝.

𝑝 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4

1 1 −1

2
3
2

−2 1
2

3
11
6

−3 3
2

− 1
3

4
25
12

−4 3 − 4
3

1
4

where 𝛾 = 1 due to 𝜌∞ = 0. This formula can be applied recursively to each term on its right-hand-side, thereby reducing the order 
of the derivatives and involving terms from earlier time instants. Eventually all derivatives on the right-hand-side of Equation (7)

can be expressed in terms of historic values of the primary variable 𝑢 and the backward difference formula is obtained. The BDF-𝑝

schemes can be expressed as

�̇�𝑛+1 − 𝜆𝑢𝑛+1 = 0 (20)

�̇�𝑛+1 = 1
Δ𝑡

𝑝∑
𝑖=0

𝛽𝑖 𝑢𝑛+1−𝑖 , (21)

where the coefficients 𝛽𝑖 are given in Table 2. The same procedure can be applied to the methods GA-23 and GA-234, resulting in 
linear combinations of BDF-2, BDF-3 and BDF-4. The resulting methods are denoted as BDF-23 and BDF-234 and are summarised 
in Boxes 5 and 6, respectively. Their numerical properties are identical to those of GA-23 and GA-234 for 𝜌∞ = 0 and are therefore 
represented in the respective diagrams of Figs. 3 to 7. For convenience, the stability regions of the BDF schemes are shown together 
7

in Fig. 8. For linear problems and given the correct initial conditions, they render numerical results which are exactly equal to those 
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Fig. 4. Eigenvalues of the amplification matrices for 𝜉 = 0, displayed in the complex plane for a range of time step sizes Δ𝑡.

obtained from GA-23 and GA-234 with 𝜌∞ = 0. Due to this equivalence, BDF-23 and BDF-234 are not mentioned explicitly in the 
numerical examples in Sections 6 to 8, but are represented by their counterparts GA-23 and GA-234 with 𝜌∞ = 0.

As opposed to GA-23 and GA-234, the schemes BDF-23 and BDF-234 do not allow for varying time step sizes or for user controlled 
high frequency damping. However, their implementation in any existing computer code based on BDF-1 (backward Euler) or BDF-2 
is trivial and renders an immediate benefit in terms of improved accuracy.

Remark 5.1. It is noted that BDF-23 (and therefore GA-23 for 𝜌∞ = 0) is identical to Park’s method and to the BDF2OPT(4) scheme 
described in [13] and [26], respectively. Hence, it emerges that GA-23 corresponds to an interpolation between Park’s method and 
the trapezoidal rule as illustrated in Fig. 1. Park’s method is regarded as particularly useful for stiff problems in structural dynamics 
as argued in [23].

Remark 5.2. BDF-234 exceeds the accuracy of BDF-23, while it maintains its stability properties. Similarly to BDF-234, the 
BDF2OPT(5) scheme investigated in [26] represents the linear combination of BDF-2, BDF-3 and BDF-4. However, the stability 
region of BDFOPT(5) is non-convex and touches the imaginary axis in three points. It is shown in [26] that this feature can jeopardise 
8

the long-term stability of numerical simulations. The stability region of BDF-234 touches the imaginary axis only in the origin.



Journal of Computational Physics 514 (2024) 113260W.G. Dettmer and E. Alhayki

Fig. 5. Spectral radii of GM, GA-2, GA-23 and GA-234 for 𝜔 = 1 and 𝜉 = 0.

Fig. 6. Accuracy; frequency 𝜔ℎ for 𝜔 = 1 and 𝜉 = 0.

�̇�𝑛+1 − 𝑓
(
𝑢𝑛+1, 𝑡𝑛+1

)
= 0

�̇�𝑛+1 =
10𝑢𝑛+1 − 15𝑢𝑛 + 6𝑢𝑛−1 − 𝑢𝑛−2

6Δ𝑡

Box 5: Summary of method BDF-23 (equivalent to Park’s method).

�̇�𝑛+1 − 𝑓
(
𝑢𝑛+1, 𝑡𝑛+1

)
= 0

�̇�𝑛+1 =
35𝑢𝑛+1 − 56𝑢𝑛 + 28𝑢𝑛−1 − 8𝑢𝑛−2 + 𝑢𝑛−3

20Δ𝑡
9

Box 6: Summary of method BDF-234.
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Fig. 7. Accuracy; damping coefficient 𝜉ℎ for 𝜔 = 1 and different values of 𝜉.

Fig. 8. Stability regions for BDF schemes.

6. Example 1: linear model problem

The standard scalar linear initial value problem described by Equation (2) is used to compare the performance of the methods 
presented in the preceding sections. The exact solution is given in Equation (3). The frequency is set to 𝜔 = 1 and the damping factor 
is 𝜉 = 0. Hence, the oscillation period is 𝑇 = 2𝜋. The initial condition considered is 𝑢(0) = 1 + 0𝑖.

The results obtained with GA-2, GA-23 and GA-234 for different time step sizes and different values of 𝜌∞ are displayed in Fig. 9. 
The figure shows the real part of the numerical solutions. The evolution of the imaginary part is phase shifted but qualitatively and 
quantitatively similar and therefore not presented for the sake of brevity.

The following observations are made from Fig. 9:

1. The solutions deviate less for 𝜌∞ = 1∕3 than for 𝜌∞ = 0. This agrees with the fact that all schemes considered recover the 
10

trapezoidal rule for 𝜌∞ = 1.
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Fig. 9. Linear model problem; response obtained for 𝜔 = 1 and 𝜉 = 0.0.

Fig. 10. Linear model problem; convergence rates.

2. For large time steps, the methods GA-23 and GA-234 are noticeably more accurate than the generalised-𝛼 method GA-2. GA-23 
and GA-234 exhibit less numerical damping and a smaller frequency error. GA-234 is more accurate than GA-23.

Fig. 10 shows the convergence of the numerical solution as Δ𝑡 decreases for GM, GA-2, GA-23, and GA-234 for different values of 
𝜌∞. The error is computed by comparing the exact solution from Equation (3), denoted here by �̃�, to the numerical solution obtained 
from each method, i.e.

𝜖 =

√√√√ 1
𝑁

𝑁∑
𝑛=1

|𝑢𝑛 − �̃�𝑛|2 (22)

where 𝑁 is the number of time steps used in the respective computation to reach 𝑡𝑁 = 35.

The following observations are made from Fig. 10:

3. The difference between the graphs for GA-2, GA-23 and GA-234 reduces as 𝜌∞ approaches the value of one. The graphs coincide 
11

for 𝜌∞ = 1 where all schemes recover the trapezoidal rule.
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Fig. 11. Flow around cylinder; geometry and boundary conditions (a); finite element mesh (b), mesh refinement around the cylinder (c).

4. GA-23 and GA-234 render smaller approximation errors than GA-2. The accuracy level of GA-234 is closer to that of the trape-

zoidal rule TR than to GA-2.

5. For 𝜌∞ = 0, the improvement in accuracy from GA-2 to GA-234 in the regime of time steps around Δ𝑡 = 𝑇 ∕32 is similar to that 
from the first order accurate method GM to the second order accurate scheme GA-2. This is also reflected in Fig. 9 where, for 
𝜌∞ = 0, GA-234 renders significantly more accurate results than GA-2.

Importantly, Observation 5 suggests that, in the range of time steps 𝑇 ∕50 < Δ𝑡 < 𝑇 ∕25 which, in the context of implicit time inte-

gration, is highly relevant for industrial applications, the scheme GA-234 offers a substantial performance gain over the standard 
generalised-𝛼 method GA-2. Due to the equivalence between BDF-2 and GA-2 and between BDF-234 and GA-234, for 𝜌∞ = 0, this 
also proves the advantage of BDF-234 over the standard method BDF-2.

7. Example 2: flow around cylinder

This benchmark example examines the flow of an incompressible fluid around a stationary circular cylinder. The flow is governed 
by the incompressible Navier-Stokes equations. Fig. 11 shows the geometry, boundary conditions and the employed finite element 
mesh consisting of 12,258 elements. The spatial discretisation is based on P2/P1 Taylor-Hood velocity-pressure elements (quadratic 
velocity and linear pressure interpolation), see for instance [28]. The convective velocity is approximated with second order accuracy 
as described in [18], which results in a linear global equation system that is solved in every time step for the velocity and the pressure 
degrees of freedom. The total number of degrees of freedom is 55,138. The vertical velocity component 𝑣 is set to zero at the upper 
and lower boundaries, while the horizontal velocity component 𝑢 remains unconstrained. In addition, the pressure at the outlet 
boundary is set to zero and, at the inlet boundary, 𝑢 is prescribed uniformly as 𝑢∞ = 1. The cylinder diameter is 𝑑 = 1, while the 
fluid density and viscosity are given by 𝜌 = 1 and 𝜇 = 0.01, respectively. Hence, the Reynolds number is 𝑅𝑒 = 𝜌 𝑢∞ 𝑑∕𝜇 = 100. The 
Strouhal number 𝑆𝑡 is defined as

𝑆𝑡 = 𝑓𝑑

𝑢∞
(23)

where 𝑓 is the frequency of the vortex shedding, i.e. the frequency of the oscillation of the lift force on the cylinder. The flow is 
simulated with the schemes GM, GA-2, GA-23, and GA-234.

Fig. 12 illustrates the evolution of the drag and lift coefficients over time. Fig. 13 shows the convergence of the Strouhal number 
as the time step size Δ𝑡 is reduced. Clearly, as Δ𝑡 is reduced, all methods converge to 𝑆𝑡 = 0.1728. This value depends on the Reynolds 
number, the size of the domain and the mesh density employed. It agrees well with the results reported, for instance, in [9,18] and 
references therein. The convergence pattern is identical to that observed for the linear model problem in Section 6: The schemes 
GA-23 and GA-234 perform better than GA-2 and this is most evident for values of 𝜌∞ close to zero and in the range of physically 
relevant time step sizes. Note that the simulation fails for the TR scheme in the regime of small time steps due to the lack of numerical 
damping.

8. Example 3: pulsatile flow through a cavity

Consider a two dimensional cavity with inflow and outflow channels as shown in Fig. 14(a). The inflow velocity has a quadratic 
profile. The peak velocity �̄�in pulsates between 0 and 8 with �̄�in(𝑡) = 4 (1 − cos(2𝜋 𝑡∕5)). The fluid flow is governed by the incompress-

ible Navier-Stokes equations. The fluid density and viscosity are, respectively, 𝜌 = 1 and 𝜂 = 0.01. On the channel and cavity walls 
the non-slip boundary condition applies. The fluid domain is discretised with 7,890 P2/P1 Taylor-Hood velocity-pressure elements, 
resulting in a total number of degrees of freedom of 35,010. The finite element mesh is shown in Fig. 14(b). The simulation is per-

formed with methods GA-2, GA-23 and GA-234 for 𝜌∞ = 0 and different time step sizes. For the finite element mesh and time step 
12

sizes employed, the simulation can also be performed with the trapezoidal rule TR. All simulations are terminated at 𝑡 = 15.
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Fig. 12. Flow around cylinder; typical evolution of the lift and drag coefficients.

Fig. 13. Flow around cylinder; 𝑆𝑡 convergence.

Fig. 14. Flow through a cavity; geometry and boundary conditions (a); finite element mesh (b).

Fig. 15 shows typical velocity and vorticity distributions, illustrating the vortex that forms in the cavity. Using GA-234, a reference 
solution at 𝑡 = 15 with velocity field �̃� is generated for Δ𝑡 = 0.001. For all other solutions at 𝑡 = 15, the approximation error is estimated 
by

𝜖 =

√
∫ ‖𝒖− �̃�‖2 d𝑎 , (24)

where the integration is performed over all elements of the mesh. Fig. 16 shows the convergence of the error estimate to the mesh 
dependent reference solution. The convergence pattern confirms that GA-23 exceeds the accuracy of GA-2, while GA-234 is more 
13

accurate than GA-23 and renders errors that are almost as small as those of the TR scheme.
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Fig. 15. Flow through a cavity; typical velocity magnitude (0 [blue] to 8 [red]) and vorticity (-10 [blue] to +10 [red]) contour plots.

Fig. 16. Flow through a cavity; temporal convergence.

9. Conclusions

Two new time integration schemes, namely GA-23 and GA-234, have been presented. They are closely related to the well-known 
generalised-𝛼 method proposed in [14]. While maintaining unconditional stability and second order accuracy, they offer the same 
high-frequency damping control, but render smaller approximation errors. As illustrated in Fig. 1 and demonstrated in the numer-

ical examples, the scheme GA-234 almost achieves the approximation accuracy of the trapezoidal rule, while maintaining the high 
frequency damping needed for the simulation of real-world applications.

It has also been shown that, for 𝜌∞ = 0, GA-23 and GA-234 can be expressed as backward difference formulae, referred to, 
respectively, as BDF-23 and BDF-234. The scheme BDF-23 is equivalent to Park’s method and to the BDF2OPT(4) formula, see [13]

and [26], respectively. The stability regions are shown in Fig. 8.

The schemes have been derived from weighted linear combinations of extensions of the generalised-𝛼 method to higher approxi-

mation orders.

Compared to the original generalised-𝛼 method and BDF schemes, the additional computational cost associated with GA-23, 
GA-234, BDF-23 and BDF-234 is negligible.
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