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ABSTRACT

In the realm of Computer-Aided Engineering applied to fast solid dynamics, the intricate
mechanical behaviours exhibited by materials when subjected to strong dynamic forces,
high speed impacts and complex interactions are modelled efficiently and with high fidelity.
Employed in diverse fields such as aerospace, automotive, defence and more, the principal
interest is to simulate and comprehend the responses of solids, providing insights into
stress propagation and deformation patterns. However, the pursuit of such ambitious goals
faces inherent limitations: the accurate representation of material behaviours is an ongoing
challenge, and the intricate interplay between simulation accuracy and computational
efficiency demands thoughtful insights. More specifically, the chosen kinematics paradigm
and the discretisation of the continuum often restrict numerical frameworks in the array
of problems they can simulate. Simulations in fast solid dynamics may feature locking,
numerical instabilities, checker-boarding, or other difficulties related to the nonlinear nature
of the equations of state.
In the objective to address the aforementioned shortcomings, this thesis will build on
the set of equations introduced in [1, 2] by developing a new mixed formulation based
on first-order hyperbolic equations and written with the Arbitrary Lagrangian-Eulerian
viewpoint. That approach, used here to describe solid bodies and studied by [3–6], aims
at circumventing bottlenecks of Lagrangian and Eulerian methods by distinguishing the
behaviour of the mesh from the evolution of the continuum. The ALE formulation introduces
a referential (fixed) domain separate from the spatial and material domains and used for
motion description. The computational mesh partially follows the material points to reduce
element distortion. A key aspect of this work is to adapt the mesh via solving dedicated
conservation laws incorporated in a general mixed formulation, removing the need of an ad
hoc procedure. The ALE methodology shows promise in addressing challenges in large strain
solid dynamics, including hyper-velocity dynamic impact/contact and crack propagation.
An acoustic Riemann solver based on upwinding stabilisation, as well as a linear gradient
reconstruction, will be used to counteract instabilities brought by the Vertex-Centred
Finite Volume Method employed in the framework, and to enhance the overall accuracy.
The nonlinear hardening laws will be solved using a Newton-Raphson algorithm. The new
framework introduced in this work will be implemented from scratch on the open-source
platform OpenFOAM, a tool of choice in industrial and academic environments. The time
integration will be tackled by the multi-stage Total Variation Diminishing Runge-Kutta
method. Eventually, the robustness and accuracy of the novel computational framework
will be examined through a series of challenging numerical examples involving complex
body deformations, as well as plastic and thermal considerations.
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CHAPTER 1

INTRODUCTION

“Tant que vous ne savez pas décrire correctement un problème, ce
que vous croyez être une solution, en fait sera tiré au hasard; et

quand vous tirez au hasard, la probabilité que vous atteignez votre
cible est extrêmement faible. ”

— Jean-Marc Jancovici, 2019

1



1.1. MOTIVATION 2

1.1 Motivation

High-energy impact or stretching problems are dynamic events involving large deformations
where a high amount of energy is imparted onto a structure in a very short period of time
[7–11]. They are encountered in a broad array of areas including aerospace, defence, metal
forming and transportation. These events can occur in various situations, such as explosions,
collisions, or the penetration of a projectile. In the context of large deformations, the
material response can exhibit a variety of physical phenomena such as a large accumulation
of plastic deformation[12, 13], shear banding [14–16], fragmentation [17, 18], and failure [18–
20]. Additionally, important fluctuations of the temperature magnitude can also affect the
material response [21–23], leading to thermal softening [15, 24–26] or even melting [27, 28].
A careful study of these events is crucial to better understand the behaviour of materials
under extreme loading conditions, and for the development of improved structures.

Another challenge in simulating high-energy impact problems is to obtain the solution of
the nonlinear equations of primary variables. These problems require advanced numerical
methods that are able to accurately capture complex dynamics at stake such as the
propagation of shock waves [29–32]. Shock waves are intense compression waves that
can cause significant deformation and damage in a material. In commercial software, the
simulation of problems involving shocks is traditionally based on the finite element method
and the governing equations are expressed in Lagrangian form. Extensive research [33, 34]
is dedicated to better comprehend the underlying mechanisms behind wave propagations in
solid dynamics, to improve the computational technologies. Our research group contributed
to this endeavour with, for instance, the works of Lee et al. [2], Aguirre et al. [35], Haider
et al. [36], Campos et al. [37], by notably using Riemann-based stabilisation technology
borrowed from CFD.

However, commercial actors propose turnkey software solutions whose technology can be
limited in complex situations such as large deformations and thermal phenomena. Since
industries rely on this practice, denoted as Computer-Aided Engineering (CAE), to analyse
and optimise their activity, it is crucial to propose enhanced techniques. Software in CAE

is typically composed of a wide range of tools (e.g. 3D geometry tool sets, mesh generators
[38, 39]) and numerical frameworks to solve complex engineering problems [40]. Concretely,
these programs can be utilised to identify potential design flaws early in the development
process, to check that products meet specific reliability and performance requirements,
or as a common working platform for which no laboratory testing is conceivable. They
can also be used as a mean of comparison in lieu of analytical solutions [20, 36, 41, 42].
Commercial solutions (ABAQUS [43], ANSYS [44], ALTAIR RADIOSS [45], COMSOL
[46], PAM-CRASH [47]) are versatile development platforms widely used in industries,
but can be rather limited in the development of new features because of their inflexible
implementation. On the other hand, open-source software (OpenFOAM [48–50], SALOME
[51], FREEFEM [52]) offers great extensibility capacities when used and improved by a
large community. OpenFOAM has originally been developed as an explicit CFD package
based on the cell-centred finite volume method. However, it offers limited solutions for
solid mechanics and for using the Vertex-Centred Finite Volume Method, which motivated
its use in this work.

1.2 State of the art in solid dynamics

A myriad of real-life applications involving structural bodies have been computationally
simulated in the past years by academic and industrial actors. Novel numerical strategies
play a crucial role in the industrial and academic progress. In the field of biomedical
engineering, the study of blood vessels [53], shock-wave therapy [20]. heart valves [54] and
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stent-like structure [55, 56] are of growing interest. Additionally, the numerical simulations
of implosions [23, 57], blast propagation [29] collapse of a beryllium shell [58], and fast
projectile impacts [59] are of concern in defence. In the context of FSI, it is common to
use visual frameworks on notorious problems such as water slamming in a hull [60] and
tank sloshing [61], free oscillating cantilevers [62, 63], spacecraft parachutes [64, 65], or
turbomachinery [66]. Visual examples of various applications can be viewed on Figure 1.1.

(a) Spacecraft atmospheric entry. (b) Penetration of a projectile.

(c) Car crash testing. (d) Friction Stir Welding.

Figure 1.1: Applications of high-strain CSM: (a) Aerospace1, (b) Defence2, (c) Automotive
industry3, and (d) Metallurgy4.

1.2.1 Tetrahedral meshes

Tetrahedral meshes are made of polyhedral elements enclosed by four triangular faces. In
Computational Solid Mechanics (CSM), and more especially in commercial software, the
use of linear tetrahedral elements has grown in popularity in the past years due to their
ability to accurately represent complex geometries with mature widespread technologies
such as automated Delaunay and advancing front algorithms [39, 67].
Tetrahedral meshes have the ability to provide high-quality elements, which leads to more
accurate solutions and reduced computational time (see for instance the work of Schneider
et al. [68]). They are robust and typically allow for more accurate representation of curved
surfaces and better modelling of complex geometries [69]. However, the evaluation and
storage of unknown variables is substantially costly in the case of elaborate constitution
laws such as inelastic materials due to their high order. This motivates the use of simpler
linear tetrahedra. Nevertheless, they present a number of other shortcomings. First,
tetrahedral-based finite element methods are typically not easy to implement, and may
suffer from a lack of robustness and accuracy [69]. Second, tetrahedra can perform poorly in
some situations (such as bending) due to spurious pressure oscillations [70], and volumetric

1Credits: https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/

Aerothermodynamics_of_aerocapture_and_high_speed_Earth_re-entry.
2Credits: https://commons.wikimedia.org/wiki/File:Challenger_2_Tank_Firing_a_Shell_at_Night_MOD_

45157416.jpg.
3Credits: https://www.globalncap.org/news/car-to-car-test-demonstrates-zero-star-double-standard.
4Credits: https://www.globalncap.org/news/car-to-car-test-demonstrates-zero-star-double-standard.

https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/Aerothermodynamics_of_aerocapture_and_high_speed_Earth_re-entry
https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/Aerothermodynamics_of_aerocapture_and_high_speed_Earth_re-entry
https://commons.wikimedia.org/wiki/File:Challenger_2_Tank_Firing_a_Shell_at_Night_MOD_45157416.jpg
https://commons.wikimedia.org/wiki/File:Challenger_2_Tank_Firing_a_Shell_at_Night_MOD_45157416.jpg
https://www.globalncap.org/news/car-to-car-test-demonstrates-zero-star-double-standard
https://www.globalncap.org/news/car-to-car-test-demonstrates-zero-star-double-standard
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[71] and shear locking [72]. This is especially witnessed in near incompressibility scenarios
(where the Poisson’s ratio is close to 0.5) [73]. Third, the order or convergence for stresses
is usually reduced in comparison with the displacements [74], (this is not only the case for
tetrahedra) . Eventually, high frequency noise can be witnessed in the vicinity of shocks
and sharp gradients [75] when using Newmark-type schemes [76].

Recent works have addressed some of the aforementioned issues. Gil et al. [76–78] and Lee
et al. [2, 79, 80] paved the way for a new mixed formulation that was used in conjunction
with a tetrahedral mesh to recover equal order of convergence for stresses and displacements.
That investigation was further continued in the research group by Aguirre [81], Hassan
et al. [82], and in this work. Alternatively, Abboud et al. [83] was able to recover the
convergence of stresses by means of a variational multiscale method. Moreover, the use
of tetrehadral elements [24, 83, 84] can be compared to using hexahedra [85–88] in the
context of plasticity. Rectangular elements usually allow for deformations of better quality,
and tetrahedra may struggle in near-incompressibility scenarios but they usually require a
significantly smaller amount of computational resource and storage [89, 90].

The progress in mesh generation techniques has led to the development of new algorithms
for higher-quality tetrahedral meshes [91]. The use of parallel computing has made it
possible to solve large-scale problems using tetrahedral meshes, which was previously
hindered by the high computational cost. The reader is invited to refer to [68, 83, 92, 93]
for a more exhaustive insight on tetrahedral meshes.

1.2.2 Finite Volume Methods

The Finite Volume Method (FVM) consists in the partition of a continuous domain into
a set of discrete volumes, or cells, and uses the conservation laws to relate the flux of a
quantity across the boundaries of each cell. There are numerous extensive studies on this
class of methods (the reader could refer to Eymard et al. [94] for a recent study of the
convergence of Finite Volume Methods). Its main advantages reside in the conservation of
primary variables over distorted geometries at the discrete level, and in its easy application
on unstructured grids.

The Cell-Centred Finite Volume Method (CCFVM) is a type of Finite Volume Method
traditionally used in Computational Solid Mechanics. It is based on the idea of dividing the
continuous domain into a collection of small, discrete control volumes or cells [36, 93, 95].
In the CCFVM, the primary variables are defined at the centroid of cells, and constitute the
approximation of the solution throughout the entire cell. One of the main advantages of
the CCFVM is its ease of implementation. Material properties are assumed to be constant
within each control volume and the integration of the PDE is performed over the control
volume.

The Vertex-Centred Finite Volume Method (VCFVM) is a numerical method used to solve
a set of PDE that constitute the behaviour of materials, and where unknown variables are
located at mesh vertices, or nodes [56, 58, 81, 82, 96]. One of the main advantages of the
VCFVM is its flexibility in mesh use. It can be applied to unstructured meshes, which
allows for more freedom in the geometry of the domain being modelled. This can make it
easier to handle complex boundaries and shapes, such as those found in engineering and
geophysical applications. Additionally, the VCFVM is robust with respect to the choice
of mesh, meaning that the solution will not change significantly if the mesh is refined or
coarsened. Moreover the use of high order interpolation and reconstruction techniques
allows for more accurate solutions and faster convergence. Furthermore, the VCFVM is
relatively easy to implement compared to other methods, as it does not require the use
of a matrix solver or the solution of a system of equations, with regards to the node per
element ratio [69]. Nonetheless, it can be difficult to parallelize the VCFV method [97] in
comparison to the other methods because of the difficulty to reconstruct fluxes at a given
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interface [98].

1.2.3 Mixed methodologies

Mixed formulations originate from the Hu-Washizu variational principle [99] and initially
relied on the simultaneous use of displacement-based and stress-based variables to describe
deformation of a continuum. Mixed formulation address numerical issues traditionally
encountered in problem featuring nearly incompressible materials, where the volumetric
strains accumulate numerical errors and result in an unstable representation of stresses,
by introducing dependent/coupled variables solved in a system of equations. They are
particularly useful when dealing with non-linear materials and with hyperelastic and
viscoelastic materials, and more generally in problems involving large deformations and
nonlinearities. The mixed formulations in solid mechanics require the solution of both
kinematic and equilibrium equations, which can be challenging to implement. However,
they can handle large deformations and nonlinearity more effectively than other traditional
methods, which can lead to more accurate and reliable solutions. An early mixed formulation
was used on a system of two dimensional first-order conservation laws in Wilkins [100]
with a staggered approach. Later, a {p,F } mixed system [101–104] was introduced for
two dimensional CCFVM small strain problems in the linear elastic regime. In the past few
years, extended research has been produced on a new type of mixed methodology for solid
dynamics:

1. 2D HDG [105],

2. 2D upwind CCFVM [2],

3. 2D 2TG FEM [106],

4. 3D JST VCFVM [81],

5. 3D stabilised PG FEM [79],

6. 3D upwind VCFVM [58]

7. 3D upwind CCFVM [36, 75, 97, 107],

8. 3D JST SPH [80],

9. 3D SUPG SPH [108],

10. 3D JST VCFVM [56, 82, 108],

11. 3D upwind-SPH [109],

12. 3D VMS PG [23],

13. 3D URL SPH [20, 37],

14. 3D explicit VCFVM [110].

This methodology consists in a system of first-order nonlinear conservation laws, including
balance laws and geometric conservation equations. Initially, the linear momentum-
deformation gradient {p,F } mixed formulation [2] showcased the same order of accuracy
for velocities and stresses, which permitted the use of low order elements without exhibit-
ing volumetric locking in nearly incompressible scenarios. It was supplemented by the
conservation of the Jacobian J [111], the cofactor H [78], uncoupled energy E [81] and
coupled entropy η [23]. In the work of [112], a mixed {p,F , E} formulation of hyperbolic
conservation was presented for thermo-visco-plastic applications.

1.2.4 Arbitrary Lagrangian Eulerian formulations

Arbitrary Lagrangian-Eulerian (ALE) methods are a class of numerical methods that are
widely used in solid mechanics. These methods provide a way to model the motion of
a solid body by describing it in an Eulerian frame of reference while using Lagrangian
coordinates to describe the internal deformation of the body [113, 114]. The ALE method
is particularly useful in the simulation of problems that involve large deformations such as
those encountered in elastodynamics [4], when plasticity is involved [6, 83]. The principle
of the ALE method is to introduce a referential domain that is fixed, used for motion
description, and separate from the material and spatial domains. The computational
mesh neither attaches to the material (Lagrangian description) nor remains fixed in
space (Eulerian description), but it partially follows the material points to reduce element
distortion
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One of the main advantages of the ALE method is its ability to handle large deformations
and topological changes. Because the method uses a fixed background grid, it is suitable
for problems where the geometry of the domain changes dramatically over time, such
as transient multiphysics or Fluid-Structure Interactions [115]. Additionally, the ALE

method can be used in problems with strong shocks and high-speed impacts, where large
deformations and topological changes may occur. ALE algorithms are also known to be
compatible with non-conforming meshes, which are seen in problems involving contact,
friction, free surfaces or moving boundaries. The mesh regularization is a key element of
the ALE method, and the prohibitive cost of some methods (e.g. Laplacian Smoothing) or
the introduction of new restrictions (e.g. Transfinite Mapping Methods [113]) may become
an important setback in the setup of the numerical problem. Moreover, the ALE method is
notoriously sensitive to the choice of the background grid and the mesh quality, and may
require additional techniques (e.g. topological changes, mesh adaptation).

A relatively recent and thorough meta-analysis of the ALE method in Computational
Solid Dynamics (CSD), Computational Fluid Dynamics (CFD) [116] and Fluid-Structure
Interactions (FSI) [115], is done in Donea et al. [113]. ALE methods most prominently
consist in giving an expression to a material velocity W so that it can be combined
with a physical velocity v or a spatial velocity v̂. The most cost-effective method is to
prescribe the mesh motion by means of an analytical function, or to compute it with
user-defined strategies [117]. However, complex and more versatile approaches rely on mesh
regularisation, which is done in two phases. First, the position of nodes belonging to the
material boundaries has to be determined. The material boundary surfaces can be known
a priori [118, 119] via the velocity by using a Lagrangian approach. This methodology
was used by Kohl et al. [18, 120] and applied to crack propagation problems where the
crack path is known in advance. Otherwise, boundaries with unknown motion need to be
tracked. In the works of Haber et al. [121–123], the initial configuration was treated as
an unknown in the same way as the current deformed state, and mixed-like formulation
was implemented on a Finite Element solver. In the work of Hughes et al. [117]), the same
idea that initial and current configurations are solved separately is taken to a transient
Finite Element solver. Moreover, important numerical considerations must be enforced for
stability, such as the symmetry condition W ·NX = 0 along the material surface brought
to light by Huerta et al. [124]. After boundaries are characterised, the second phase is
dedicated to the interior mesh motion and is denoted as interior mesh rezoning. Transfinite
mapping methods [125–127], originally used for mesh generation, can describe also simple
surfaces at a low computational cost, but are highly restricted on mesh topologies [128–132].

Throughout the development of ALE frameworks [133], several mesh motion techniques
with roots in physical considerations emerged. Laplacian Smoothing6, used for the first
time by Winslow et al. [134, 135] and Hansbo [136], consists in solving a Poisson equation
for the nodal mesh velocity field, resulting in lines of equal potential. That can lead to poor
performance in nonconvex domains and a high computational cost. Hermansson et al. [137]
proposed a similar approach focused on avoiding element folding. On the other hand, the
Laplacian smoothing technique with variable diffusivity was applied to mesh velocity on
unstructured grids in Löhner et al. [138] in the context of Fluid-Structure interactions.
In Masud et al. [139] and Kanchi et al. [140], constraints were added to improve element
quality in boundary layers. Further works such as Brackbill et al. [141] were dedicated to
improve Winslow’s stencil but little benefits were obtained, and problems such as mesh
overlapping were not completely addressed. A mesh deformation technique based on the
biharmonic operator was presented in Helenbrook [142], and showed great interest as the
motion was not relying on a second-order operator and had a better tolerance to large

6Also referred to as elliptic mesh generation, or equipotential relaxation, the technique of Winslow is
among the oldest mesh motion technique and originally sed for mesh generation.



1.2. STATE OF THE ART IN SOLID DYNAMICS 7

deformations despite a higher computational cost. The use of explicit-implicit mesh update
technique is reportedly used by Hughes et al. [143] and Belytschko et al. [144] in an attempt
to reduce the computational cost, but it has received little success to the difference of
behaviour concerning the advection of material points across the domain regarding time
integration. Alternatively, in the works of Ghosh et al. [145], Hughes et al. [146], Argyris
et al. [147], and Ortiz et al. [148], the use of unconditionally stable implicit methods
yielded second-order accuracy and uniformity of the mesh motion over the entire domain
but was extremely costly. Mesh motion based on a fractional-step method were used in
explicit quadrilateral Finite Element formulations in Benson et al. [149–151] and Liu et
al. [152, 153] for elasto-plastic applications. An interior mesh smoothing approach relies
on geometric quality measures, such as iterative averaging procedures [154–158] or on the
local minimisation of element squeezing and distortions. Ahn et al. [159] uses weighted
residuals between element shapes and desired size. The advantage of this rezoning lies in
its simplicity and its general character. Mesh adaptation is another type of strategy used in
ALE frameworks during the mesh correction step [31, 160]. Notably, Askes et al. [161] used
r-adaptive spatial mesh relocation where the mesh motion is controlled by local plasticity
indicators. that technique was later coupled with h-adaptive mesh refinement in [162, 163].
In the work of Cescutti et al. [164], an adaptive mesh refinement based on the minimisation
of a functional of the mesh distortion is used. Knupp et al. [165] proposes the Reference
Jacobian method [166] as a rezoning strategy to improve the mesh quality, resulting in
an accurate, robust and flexible ALE framework. More recently, the local mesh rezoning
was employed by Shashkov [167] with Voronoi tessellation. The methodology of Barlow
et al. [116] is to further extend the inverse harmonic operator of Winslow [168].
Due to the presence of permanent and complex deformations, the ALE has seen an interest
in plasticity applications. Among the numerous examples, one can cite the simulation of
forming processes [119, 128, 131, 158, 169–172] and impacts [6, 173]. In the relatively recent
works of [6, 174], a conservative approach is employed on a Finite Element framework to
solve the convection of mesh particles where the conservation law of the material velocities
depend on an associated material stress field. As it is the case for physical balance laws in
Lagrangian approaches, the new material equations of motion can be numerically treated
in the following distinct ways [151]:

� unsplit method (also denoted as direct ALE, particle tracking or particle-based
method), where the evolution equation for stresses is integrated in time and imple-
mented in the weak form of the balance of momentum [175, 176]. This approach
is utilised by Liu et al. [118] in an explicit time-stepping algorithm, and by Ghosh
et al. [145] who used an implicit unsplit formulation.

� split method (fractional-step/mesh-based method/indirect ALE [116]), which consists
in resolving the ALE equations in two different phases: a material (Lagrangian) phase
followed by a convection (Eulerian/transport) phase. This method is suitable for
upgrading Lagrangian formulation to ALE as only the addition of the convection
step is required. A non-exhaustive list of examples includes the works of Huétink
et al. [119] (implicit split formulation for metal-forming processes), Huerta et al. [177]
(fast-transient explicit split formulation), Rodŕıguez-Ferran et al. [178] (hyperelastic
split), and [174] (ALE operator split applied to thermomechanical inelastic materials).

� Hybrid methods. For instance in [6], an advection problem is solved exactly (unsplit)
whereas plastic internal variables are split. Alternatively, In [179], the remap stage
consists in a hybrid approach that combines the approximate (swept) flux approach
in single-material regions and the intersection approach in multi-material regions.

One can also mention [180], where three FE-based methods were tested in geotechnical
engineering: Remeshing and Interpolation Technique by Small Strain (RITSS) [181, 182],
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Efficient ALE (termed EALE) [149, 183–185] and Coupled Eulerian–Lagrangian (CEL)
[186–189]. This mixed methodology motives the use of mixed formulations. The CFD

community mainly uses Eulerian frameworks, but ALE methods have also been used in
complex problems [190] and in the study of FSI [115], and since it is beyond the scope of
this work, the reader is directed to [113] as well as [191, 192].

1.3 Scope and outline of the thesis

This thesis delves into the fundamental principles of ALE conservation laws in Compu-
tational Solid Mechanics (CSM). Different inelastic models will be examined, and the
hyperbolicity of the system will be studied. A mesh motion solver, based on the con-
servation of the material linear momentum, will be presented and different models for
solving mesh equilibrium will be proposed. Then, numerical methods used to solve the
ALE equations will be discussed. They have two facets: the VCFVM will be applied to ALE

equations in the context of solid mechanics, together with the use of an acoustic Riemann
solver; the multi-stage Total Variation Diminishing Runge-Kutta (TVD-RK) method will
be used as time integrator of the scheme. The open-source platform OpenFOAM was chosen
for the implementation of the novel set of ALE conservation laws. The challenges that arise
in their implementation will be addressed. By the end of this thesis, the reader will have
an understanding of the fundamental principles of the ALE method, their application in
various problems, and the numerical methods used to solve the governing equations. This
knowledge will provide a strong foundation for further research and practical applications
in the field of solid mechanics.

Outline of the thesis

□ Chapter 2: Arbitrary Lagrangian Eulerian Formulation for Isothermal Hyperelasticity
This chapter introduces ALE conservation laws and how they can be derived from a
Total Lagrangian formulation, together with their jump conditions.

□ Chapter 3: Isothermal Inelasticity
For closure of the ALE problem, polyconvex hyperelastic and elasto-plastic constitutive
models are presented. Hyperbolicity is also discussed via the ALE eigenproblem.

□ Chapter 4: Extension to thermal inelasticity
This chapter presents how the framework can be adapted to include the laws of
thermodynamics. This includes the conservation of energy in the ALE framework, con-
stitutive thermo-mechanical volumetric coupling, and isotropic strain-rate hardening
with thermal softening.

□ Chapter 5: Material motion
This chapter presents the conservation law governing the mesh motion.

□ Chapter 6: Numerical discretisation
In this chapter, the vertex-centred finite volume method is applied to discretise the
ALE conservation law. The time integration by means of a multi-stage Runge-Kutta
method is also presented.

□ Chapter 7: OpenFOAM implementation
This chapter presents the implementation of the ALE mixed formulation on the
open-source platform OpenFOAM.
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□ Chapter 8: Numerical simulations: Isothermal Cases
The ALE formulation is used in this chapter to solve numerical cases in an isothermal
elasticity and elasto-plasticity context.

□ Chapter 9: Numerical simulations: Thermoelasticity and thermoplasticity
In this chapter, the ALE formulation is used to solve numerical cases where thermal
effects are considered.

□ Chapter 10: Concluding remarks
The novelties and the future research opened-up by this work are presented in this
chapter.

□ Appendix A: Mathematical foundations
This appendix contains a recollection of the main definition and properties useful for
the understanding of the ALE formulation.

□ Appendix B: Fundamentals of solid mechanics
A brief summary of the basic concepts of solid mechanics, and some additional results
are presented in this appendix.

□ Appendix C: Second law of Thermodynamics
This appendix is dedicated to the study of the Ballistic energy to prove the second
law of thermodynamics for an ALE system.

□ Appendix D: OpenFOAM components
This appendix contains additional information about the numerical framework.



CHAPTER 2

ARBITRARY LAGRANGIAN EULERIAN FORMULATION FOR
ISOTHERMAL HYPERELASTICITY

“We have to remember that what we observe is not nature herself,
but nature exposed to our method of questioning.”

— Werner Heisenberg, Physics and Philosophy

10
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2.1 Introduction

In the field of solid mechanics, the study of conservation laws is an essential aspect for
the understanding of the behaviour of structures under various loads and conditions.
Specifically, the study of conservation laws in the context of the Arbitrary Lagrangian-
Eulerian framework is crucial for modelling problems involving large deformations and/or
moving boundaries [113]. This chapter delves into the fundamental ALE conservation
laws, including the balance of mass and the geometric mappings, and the balance of linear
momentum.

The ALE method is a powerful tool for modelling problems involving large deformations
and/or moving boundaries, and consists in the following: a referential (fixed) domain is
introduced and used for the description of the motion, separate from the material domain
(Lagrangian description) and the spatial domain (Eulerian description), and so that the
computational mesh is neither attached to the material nor kept fixed in space. This
approach aims at combining the advantages of both Lagrangian and Eulerian approaches.
The ALE method for computational dynamics was extensively studied for CFD and CSM

problems [113], and its theoretical description is elegantly and thoroughly presented in [4,
5]. The Lagrangian description is used to track the motion of individual particles within
the solid, while the Eulerian description is used to describe the deformation of the solid as
a whole.

This chapter first provides an overview of the tools needed to understand the ALE method-
ology, including the quantities used to describe the continuum and the kinematics of a
deforming solid. The balances quantities and the geometric mappings will be presented and
provided with a conservation equation. The main objective of this chapter is to provide a
comprehensive understanding of the inner mechanism of the ALE framework, including the
continuum description and kinematics, as well as giving the set of basic conservation laws
to be used in the context of solid mechanics.

2.1.1 Notation and useful properties

The notation used in this thesis plays an important role in the attempt to convey the key
concept of the ALE formulation in a clear manner. This work stems from the works of
Armero [6, 193], Steinmann [3–5], Huerta and Donea [113, 177], Rodriguez and Ferran
[178], Lee [21, 79, 80, 108, 109], Gil [76–78, 194] and Bonet [10, 195–198], and the concepts
borrowed from these previous works will be combined under the notation of this work.

First and second order tensors will be respectively written in lower case and upper case
bold font (i.e. v, P ). Scalar quantities will be written in normal weight font (e.g. k). The
mathematical operators and properties used in this thesis are shown in the Appendix A.
The reader is invited to refer to the literature (e.g. [199]) for a more exhaustive list of
properties, as well as the previous publications of the group [2, 20, 75, 81, 82]. In particular,
the tensorial cross product [196] and the thermodynamics in [22, 110] are utilised in this
work.

2.2 Continuum description and kinematics

The description of particle motion and kinematics in solid mechanics typically resorts to
using a material and a spatial domain that interact with each other using deformation
mappings. The Figure 2.1 depicts a) a sketch of the geometric mappings that will be
introduced in this chapter as well as b) a visual description based on a numerical example.
The two classical approaches [3, 6] to describe a particle’s motion are: a) the Lagrangian
framework, where fixed material positions X are followed through the ambient space as
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(a) Sketch of the three geometric mappings.

(b) Example of a numerical example with complementary information.

Figure 2.1: ALE kinematics description.
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the solid deforms in the spatial domain and, b) the Eulerian framework, where material
positions X are followed through the ambient material at fixed spatial positions x.
Particles in the material domain are mapped to the spatial domain by the mapping φ,
denoted as natural, and defined as

φ : ΩX → Ωx

X 7→ x = φ(X, t).

(2.1)

Its corresponding velocity v7, and deformation gradient F are defined as

v =
∂φ

∂t

∣∣∣∣
X

; F =
∂φ

∂X
. (2.2a,b)

The deformation gradient F , or fibre map, is a two-point tensor mapping line quantities
and the Jacobian is used to map volumes. Areas can be mapped with the cofactor tensor H ,
defined using the tensorial cross product (see the works of Boer [200] and Bonet et al. [196])
as

H =
1

2
F F , (2.3)

Alternatively, the cofactor can be defined as

H = JF−T . (2.4)

As for volumes, the geometric map that relates a material volume with a spatial volume is
the Jacobian J , expressed as

J = detF . (2.5)

The ALE formulation is characterised by the consideration of an additional independent
and fixed reference domain [3], where objects can be bijectively mapped to the material
and spatial domains. Particles are mapped from the referential domain to the material
domain by means of the mapping Ψ defined as

Ψ : Ωχ → ΩX

χ 7→ X = Ψ(χ, t).

(2.6)

Its corresponding material velocity W , and material deformation gradient FΨ are defined
as

W =
∂Ψ

∂t

∣∣∣∣
χ

; FΨ =
∂Ψ

∂χ
. (2.7a,b)

Particles can also be mapped onto the spatial domain with the mapping Φ defined as

Φ : Ωχ → Ωx

χ 7→ x = Φ(χ, t).

(2.8)

Its corresponding spatial velocity v̂, and spatial deformation gradient FΦ are defined as

v̂ =
∂Φ

∂t

∣∣∣∣
χ

; FΦ =
∂Φ

∂χ
. (2.9a,b,c)

7The material time derivative is a differential notation widely used in solid mechanics and corresponds
to the time derivative with fixed material coordinates. It is denoted as [113]

v̇ =
dv

dt
=

∂v

∂t

∣∣∣∣
X

.

Using the above notation, the time rate of the natural deformation gradient can be written as Ḟ = ∇Xv.
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The material and spatial cofactors are defined as

HΨ =
1

2
FΨ FΨ, HΦ =

1

2
FΦ FΦ. (2.10a,b)

They can alternatively be defined as

HΨ = JΨF−T
Ψ , HΦ = JΦF

−T
Φ . (2.11a,b)

The material JΨ and spatial JΦ Jacobians are respectively defined as [196]

JΨ =
1

3
HΨ : FΨ; JΦ =

1

3
HΦ : FΦ, (2.12a,b)

and can be alternatively expressed as

JΨ = detFΨ; JΦ = detFΦ. (2.13a,b)

Both Jacobians ensure JΨ, JΦ > 0, hence the existence of an inverse for their respective
deformation gradient. It is important to emphasize that the natural mapping φ can be
defined as a composition of the material and spatial mappings as

φ = Φ ◦Ψ−1. (2.14)

Following Equation (2.14), similar relations can be outlined for the natural velocities,
gradients and Jacobians as

v̂ = v + FW ; F = FΦF
−1
Ψ ; H = HΨH−1

Ψ ; J = JΦJ
−1
Ψ . (2.15a,b,c,d)

Tensorial objects are mapped from one configuration to the other due to the geometric
mappings (Refer to Figure 2.1 for a visual representation). The deformation gradients (or
fibre maps) are two-point geometric tensors that map edges/vector elements. Consider dχ,
dX and dx, respectively elemental vectors in the referential, material and spatial domains,
are therefore linked as

dX = FΨdχ; dx = FΦdχ; dx = F dX. (2.16a,b,c)

Similarly, the Jacobians, or volume maps, are linked as

dV = JJΨdVχ; dv = JΦdVχ; dv = JdV. (2.17a,b,c)

Area maps are the cofactor of their respective deformation gradients, and are responsible
for mapping geometric surfaces from one domain to another. For the three mappings, they
state

NXdA = HΨNχdAχ, (2.18a)

ndAx = HΦNχdAχ, (2.18b)

ndAx = HNXdA. (2.18c)

Additional quantities such as the right Cauchy-Green tensor C = F TF , as well as their
useful properties, are discussed in Appendix A.
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Remark 2.2.1 The mixed formulation that is presented in this work includes geometric
conservations laws that are represented by the deformation gradient and its minors (the
area map H and the volume map J), for the three mappings. As a consequence, these
geometric mappings are considered independent from each other. Nonetheless, they are
related through geometric compatibility conditions [196] that are strongly satisfied in the
continuum and that can be expressed for the three mappings as

F = ∇
X
φ; H = [det (∇

X
φ)] (∇

X
φ)−T ; J = det (∇

X
φ) , (2.19a,b,c)

FΨ = ∇χΨ; HΨ =
[
det
(
∇χΨ

)] (
∇χΨ

)−T
; JΨ = det

(
∇χΨ

)
, (2.20a,b,c)

FΦ = ∇χΦ; HΦ =
[
det
(
∇χΦ

)] (
∇χΦ

)−T
; JΦ = det

(
∇χΦ

)
. (2.21a,b,c)

2.3 ALE transformations

This section presents the steps to transform a conservation law from a Total Lagrangian
viewpoint to an Arbitrary Lagrangian Eulerian viewpoint, in global and local form. The
transformation will be shown for a scalar and a tensorial generic quantity. It consists
of the following steps: a) the re-parametrisation of the right-hand side, composed of
time-independent quantities, from the material to the referential domain, b) the use of
Reynold’s transport theorem on the left hand side to convert the time derivative with
respect to material coordinates to a time derivative with respect to referential coordinates,
and c) the presentation of the corresponding local forms.

In the following section, it is practical to define the change in a differential operator between
a material and a referential configuration. For a vector v, and using the Nanson’s rule and
the divergence theorem8, it gives∫

ΩX

∇
X
· v dV =

∫
∂ΩX

v ·NX dA =

∫
∂Ωχ

v ·HΨNχ dAχ =

∫
Ωχ

∇χ ·
(
HT

Ψv
)
dVχ. (2.22)

2.3.1 Total Lagrangian Scalar Conservation law

Considering a scalar primary variable UR, a flux vector FR, a source term SR, and a fixed
control volume ΩX measured with an infinitesimal volume quantity dV and a material
surface vector NXdA. A generic conservation law in global form is defined as

∂

∂t

∣∣∣∣
X

∫
ΩX

UR dV +

∫
ΩX

FR ·NXdA =

∫
ΩX

SR dV. (2.23)

For a smooth solution, the divergence theorem can be applied to Equation (2.23) to obtain∫
ΩX

(
∂UR

∂t

∣∣∣∣
X

+ ∇
X
·FR − SR

)
dV = 0, (2.24)

8The divergence theorem is presented in Appendix A.4.1.
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where ∇
X
· is a divergence operator with respect to the material coordinates. That equation

holds for every enclosed and fixed material control volume ΩX . By considering the boundary
of ΩX as an interface (with other control volumes or with the exterior), it is customary to
define the corresponding local form stated for ΩX as

∂UR

∂t

∣∣∣∣
X

+ ∇
X
·FR = SR, (2.25)

paired with the jump condition

cJURK = JFRK ·NX . (2.26)

Note that Equation (2.26) features the speed c at which the interface (or discontinuity
surface), represented by its normal vector NX , is propagating in the medium. Also, the
jump operator J·K represents the difference between the two states of the primary variable
on either side of the interface and will be discussed in Chapter 6. That jump equality is
denoted as the Rankine-Hugoniot condition for the primary variable UR, expressed here in
the Lagrangian form.

2.3.2 Total Lagrangian Tensorial Conservation law

Considering a tensor variable UR, a flux tensor FR, a source term SR, and a fixed control
volume ΩX measured with an infinitesimal volume quantity ΩX and surface vector NXdA.
A generic conservation law in global, or integral form, is defined as

∂

∂t

∣∣∣∣
X

∫
ΩX

UR dV +

∫
ΩX

FRNXdA =

∫
ΩX

SR dV. (2.27)

For a smooth solution, the divergence theorem can be applied (see Section A.4.1) to
Equation (2.27) to obtain∫

ΩX

(
∂UR

∂t

∣∣∣∣
X

+ ∇
X
· FR − SR

)
dV = 0, (2.28)

where ∇
X
· is a divergence operator with respect to the aforementioned system of coordinates.

As for the scalar case, the global form leads to an equivalent local form, for the volume
ΩX stated as

∂UR

∂t

∣∣∣∣
X

+ ∇
X
· FR = SR, (2.29)

with which the Rankine-Hugoniot condition reads

cJURK = JFRKNX . (2.30)

2.3.3 Arbitrary Lagrangian Eulerian Scalar Conservation law

A generic Total Lagrangian global scalar conservation equation can be stated as

∂

∂t

∣∣∣∣
X

∫
ΩX

UR dV = −
∫
∂ΩX

FR ·NXdA +

∫
ΩX

SR dV. (2.31)

In the generic Equation (2.31) of a conservation law expressed in the Lagrangian form,
fluxes and source terms (featured in the right hand side) can be re-parametrised9 in terms
of referential coordinates, using the definition of the material mapping X = Ψ(χ, t), as

∂

∂t

∣∣∣∣
X

∫
ΩX

UR dV = −
∫
∂Ωχ

(
HT

ΨF⋆
R

)
·NχdAχ +

∫
Ωχ

(JΨS⋆
R) dVχ, (2.32)

9Note that for a scalar conservation law, the Nanson’s integration rule (2.18a) can be rewritten as shown,
making use of the scalar product transpose property.
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where the notation [·]R (X, t) = [·]⋆R (Ψ(χ, t), t) is used to emphasise the change from
material to the referential coordinates. Using Reynold’s transport theorem10 on the
material time derivative, the left hand side of Equation (2.31) can now be expressed in
terms of referential coordinates as

∂

∂t

∣∣∣∣
X

∫
ΩX

UR dV =
∂

∂t

∣∣∣∣
χ

∫
Ωχ

(JΨU⋆
R) dVχ −

∫
∂Ωχ

U⋆
R

(
HT

ΨW
)
·NχdAχ. (2.33)

Equations (2.32) and (2.33) can now be used to express the generic Total Lagrangian
conservation law (2.31) in the referential domain, as

∂

∂t

∣∣∣∣
χ

∫
Ωχ

(JΨU⋆
R) dVχ +

∫
∂Ωχ

[
HT

Ψ (F⋆
R − U⋆

RW )
]
·NχdAχ =

∫
Ωχ

(JΨS⋆
R) dVχ. (2.34)

The above equation represents the Arbitrary Lagrangian Eulerian (denoted as ALE)
equivalent of said generic Equation (2.31). The equivalent Arbitrary Lagrangian Eulerian
local conservation law, associated to the global law (2.34), is

∂ (JΨU⋆
R)

∂t

∣∣∣∣
χ

+ ∇χ ·
[
HT

Ψ (F⋆
R − U⋆

RW )
]

= JΨS⋆
R, (2.35)

and because the magnitude remains constant when the configuration is changed, the
notation [·]R (X, t) = [·]⋆R (Ψ(χ, t), t) can be dropped to yield

∂ (JΨUR)

∂t

∣∣∣∣
χ

+ ∇χ ·
[
HT

Ψ (FR − URW )
]

= JΨSR. (2.36)

The associated jump condition is

cχJJΨURK = −JFR − URW K ·HΨNχ. (2.37)

2.3.4 Arbitrary Lagrangian Eulerian Tensorial Conservation law

In this section, the previous development is generalised to second and third order tensors.
The variables UR,SR can either be first- or second-order tensor fields, and FR are conse-
quently either second- or third-order tensor fields. The notation UR (X, t) = U⋆ (Ψ(χ, t), t)
is used to specify a change of variable from the material to the referential configurations.
A generic Total Lagrangian global tensorial conservation equation can be stated as

∂

∂t

∣∣∣∣
X

∫
ΩX

UR dVX = −
∫
∂ΩX

FR NχdAX +

∫
ΩX

SR dVX . (2.38)

The Equation (2.38) is then re-parametrised using referential coordinates, as

∂

∂t

∣∣∣∣
X

∫
ΩX

UR dVX = −
∫
∂Ωχ

(F⋆
RHΨ)NχdAχ +

∫
Ωχ

(JΨS⋆
R) dVχ. (2.39)

Making use of the Reynolds’ transport theorem, the left hand side is re-written as

∂

∂t

∣∣∣∣
X

∫
ΩX

UR dVX =
∂

∂t

∣∣∣∣
χ

∫
Ωχ

(JΨU⋆
R) dVχ −

∫
∂Ωχ

(U⋆
R ⊗W )HΨNχdAχ. (2.40)

The generic Total Lagrangian vectorial conservation law 2.38 is now expressed in the
referential domain, as

∂

∂t

∣∣∣∣
χ

∫
Ωχ

(JΨU⋆
R) dVχ −

∫
∂Ωχ

[F⋆
R − (U⋆

R ⊗W )]HΨNχdAχ =

∫
Ωχ

(JΨS⋆
R) dVχ. (2.41)

10See Appendix A.4.2 for development of Reynold’s transport theorem (RTT).
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By dropping the notation [·]R (X, t) = [·]⋆R (Ψ(χ, t), t) as done for the scalar variable in
the previous section, the equivalent Arbitrary Lagrangian Eulerian local conservation law,
associated to the global law (2.41), is given as

∂ (JΨUR)

∂t

∣∣∣∣
χ

+ ∇χ · ([FR − (UR ⊗W )]HΨ) = JΨSR, (2.42)

and the associated jump condition is defined as

cχJJΨURK = −JFR − (UR ⊗W )KHΨNχ. (2.43)

2.3.5 Non-conservative ALE transformations

The transformations used in the above help to obtain an ALE equation from its Total
Lagrangian form. Using the same algebra, it is possible to obtain ALE equations in a
non-conservative form11[3–5]. For a scalar quantity U , the relationship between the material
and the referential time derivatives can then be written as

∂UR

∂t

∣∣∣∣
X

=
∂UR

∂t

∣∣∣∣
χ

−
(
∇χUR

)
·
(
F−1
Ψ W

)
. (2.44)

For completeness, the same development can be followed for a tensorial quantity, and it
gives that

∂UR

∂t

∣∣∣∣
X

=
∂UR

∂t

∣∣∣∣
χ

−
(
∇χUR

) (
F−1
Ψ W

)
. (2.45)

In this case, note that the conserved variable obtained is not scaled by the material Jacobian,
and is equivalent to the conserved variable of the associated Lagrangian conservation law.
When solving for a set of ALE conservation laws, it is practical to also compute all the
intermediate quantities such as volume sizes, gradients or the mapping velocities on the
referential Ωχ. That being said, it is possible to solve material variables, that is to say UR

instead of U . Using Equations (2.22), (2.44) and (2.45), conservation laws can be written
in a non-conservative form.

2.4 ALE conservation laws

Using Total Lagrangian to Arbitrary Lagrangian Eulerian transformations established
in the previous section, the typical conservation laws used in solid mechanics and based
on material coordinates can be transformed and be expressed in referential coordinates,

11Considering the RTT form stated in Equation (A.19), and the following development:

∂

∂t

∣∣∣∣
X

∫
ΩX

UR dV =
∂

∂t

∣∣∣∣
χ

∫
ΩX

UR dV −
∫
∂ΩX

URW ·NX dA

=
∂

∂t

∣∣∣∣
χ

∫
Ωχ

JΨUR dVχ −
∫
∂Ωχ

UR

(
HT

ΨW
)
·Nχ dAχ

=

∫
Ωχ

[
JΨ

∂UR

∂t

∣∣∣∣
χ

+ UR
∂JΨ

∂t

∣∣∣∣
χ

−∇χ ·
(
URH

T
ΨW

)]
dVχ

=

∫
Ωχ

[
JΨ

∂UR

∂t

∣∣∣∣
χ

−∇χ(UR) ·
(
HT

ΨW
)]

dVχ

=

∫
ΩX

[
∂UR

∂t

∣∣∣∣
χ

−∇χ(UR) ·
(
F−1

Ψ W
)]

dV,

In the above development, the conservation law on the material Jacobian is used to go from the third to
the fourth line. It will be defined in the next Section in Equation (2.50).
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thence constituting a set of equations expressed in the ALE viewpoint. The global form
will be presented, as well as the local form and its associated jump condition. The
equations will all be combined in a mixed system of conservation laws. The involutions,
or compatibility conditions, will also be presented. They are mathematical constraints [2,
55] inherited from the extensions of elasticity theory into the realm of thermodynamics
and electrodynamics [201], ensuring deformations are smooth and free of discontinuities12.
The compatibility condition for the deformation gradient is based on the fact that in a
body, the deformation is determined by the displacement field, and states that F must
be a gradient field13. Mathematically, it means that the curl of the deformation gradient
must be zero. Furthermore, the cofactor is the gradient of the determinant and thence
is divergence-free. Naturally, these involutions are valid for tensors along the referential,
material and spatial mappings. Their satisfaction is not necessary to close the system but
they are crucial for the robustness of the numerical framework, as they let oscillations in
certain directions be suppressed and they regulate wave amplitudes [201].

2.4.1 Material Geometric Conservation Law

The principle of mass conservation in a material configuration states that the total time
derivative of the density of a system must remain constant, and can be formulated in
Lagrangian description as

∂

∂t

∣∣∣∣
X

∫
Ω
ρR dV = 0, (2.46)

where ρR is the material density of the body. In this work, the density ρR will be considered
uniformly constant in time and space. This conservation law is generally omitted in solid
mechanics single-material frameworks. It can however be used to yield conservation of
alternative variables in this Arbitrary Lagrangian Eulerian framework. The Geometric
Conservation Law (denoted as GCL, and discussed in [113, 202–205]) is crucial for the
stability and accuracy of the ALE framework and can be obtain directly from the above
conservation equation (2.46). Using the ALE transformation technique, a scaling is operated
from the material domain to the referential domain as

∂

∂t

∣∣∣∣
χ

∫
Ωχ

JΨρR dVχ −
∫
∂Ωχ

(
ρRH

T
ΨW

)
·NχdAχ = 0. (2.47)

Remark 2.4.1 In the general case of a multi-material domain, Equation (2.47) can be
used as a continuity equation for an non-uniform density distribution. The corresponding
local form is

∂JΨρR
∂t

∣∣∣∣
χ

−∇χ ·
(
ρRH

T
ΨW

)
= 0, (2.48)

and its associated jump condition is defined as

cχJJΨρRK = JρRW K ·HΨNχ. (2.49)

12The compatibility conditions are important in computational mechanics because they ensure that
geometrical tensors are smooth and free of singularities or discontinuities. This is important for the accurate
modelling and simulation of complex systems, such as materials under different loading conditions.

13In other words, F = ∇Xx. The deformation gradient must be a single-valued tensor field, which means
that it must be defined at every point in the body without any discontinuities
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For a constant density ρR, Equation (2.47) can be expressed as a conservation equation in
global form for the material Jacobian with an Arbitrary Lagrangian Eulerian viewpoint.
That equation reads

∂

∂t

∣∣∣∣
χ

∫
Ωχ

JΨ dVχ −
∫
Ωχ

∇χ ·
(
HT

ΨW
)
dVχ = 0, (2.50)

and the equivalent local conservation law is

∂JΨ
∂t

∣∣∣∣
χ

= ∇χ ·
(
HT

ΨW
)
. (2.51)

The associated jump condition is

cχJJΨK = −JHT
ΨW K ·Nχ. (2.52)

2.4.2 Conservation of Linear Momentum

The balance of linear momentum per unit of undeformed volume in Lagrangian description
can be expressed in integral form as

d

dt

∫
Ω
p dV =

∫
∂Ω

PN dA +

∫
Ω
fR dV, (2.53)

where p = ρRv is the linear momentum per unit of undeformed volume ΩX in the material
configuration, fR are the body forces in the material configuration, P is the natural first
Piola Kirchhoff stress tensor, N is the unit material outward normal and dA is the surface
area of the boundary ∂ΩX in the material configuration. By using the ALE transformation
technique, the equivalent Arbitrary Lagrangian Eulerian global conservation equation for
(2.53) is thence

∂

∂t

∣∣∣∣
χ

∫
Ωχ

pχ dVχ −
∫
∂Ωχ

[P + (p⊗W )]HΨNχdAχ =

∫
Ωχ

f dVχ, (2.54)

where the notation pχ = JΨp denotes the linear momentum scaled by the material Jacobian
JΨ and that is now expressed in referential coordinates. The body forces f = JΨfR have
also been scaled by the material Jacobian. An equivalent stress tensor Pχ is defined as

Pχ = [P + (p⊗W )]HΨ, (2.55)

and the corresponding local form of Equation (2.54) is

∂pχ

∂t

∣∣∣∣
χ

= ∇χ · Pχ + f , (2.56)

Its associated jump condition can be expressed as

cχJpχK = −JPχKNχ. (2.57)

2.4.3 Geometric conservation laws

As presented in [198, 206, 207], the deformation gradient can be treated as an independent
variable (as opposed to the classical displacement-based formulations). The conservation of
the natural deformation gradient F was studied in [2, 56, 75, 81]. In low order discretisation,
the conservation of the deformation gradient aims at avoiding locking (especially in a
nearly-incompressible scenario). This work uses a multiplicative decomposition of F into a
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material and spatial components, as presented in Equation (2.15b). The spatial deformation
gradient FΦ relates vector quantities from the referential domain to the spatial domain.
The time rate of FΦ can be obtained from its definition in Equation (2.9b), as

∂FΦ

∂t

∣∣∣∣
χ

= ∇χ · (v̂ ⊗ I) , (2.58)

and it can be provided with an appropriate jump condition

cχJFΦK = −Jv̂K ⊗Nχ, (2.59)

to yield a corresponding global form

∂

∂t

∣∣∣∣
χ

∫
Ωχ

FΦ dVχ −
∫
∂Ωχ

v̂ ⊗NχdAχ = 0. (2.60)

On the other hand, the material deformation gradient FΨ, which corresponds to the
deformation gradient of the material motion (see Equation (2.7b)), can also be regarded as
a conserved quantity, whose time rate is expressed as

∂FΨ

∂t

∣∣∣∣
χ

= ∇χ · (W ⊗ I) , (2.61)

its associated jump condition is

cχJFΨK = −JW K ⊗Nχ, (2.62)

and the corresponding global form reads

∂

∂t

∣∣∣∣
χ

∫
Ωχ

FΨ dVχ −
∫
∂Ωχ

W ⊗NχdAχ = 0. (2.63)

Remark 2.4.2 The compatibility constrains associated to the geometric deformation gra-
dients are stated as

∇χ×FΦ = () = 0; ∇χ×FΨ = 0; , (2.64a,b)

with the CURL operator defined using the Levi-Civita alternating tensor ε as[
∇χ F

]
iI

= εIJK
∂FiK

∂χJ
. (2.65)

2.4.4 Conservation of other geometric mappings

Although this work makes use of a restricted set of conservation laws, it is possible to extend
that set to comprise all material {FΨ,HΨ, JΨ} and spatial {FΦ,HΦ, JΨ} geometrical
mappings. As material and spatial deformation gradients are already stated in Equations
(2.63), it is possible to bring out conservation equations for the material and spatial
cofactors stated in global form. They can be respectively stated as

∂

∂t

∣∣∣∣
χ

∫
Ωχ

HΨ dVχ −
∫
∂Ωχ

FΨ (W ⊗Nχ) dAχ = 0, (2.66)



2.5. ALE MIXED FORMULATION 22

and
∂

∂t

∣∣∣∣
χ

∫
Ωχ

HΦ dVχ −
∫
∂Ωχ

FΦ (v̂ ⊗Nχ) dAχ = 0. (2.67)

The local forms are

∂HΨ

∂t

∣∣∣∣
χ

− FΨ ∇χW = 0;
∂HΦ

∂t

∣∣∣∣
χ

− FΦ ∇χv̂ = 0, (2.68a,b)

and the corresponding jump conditions are

cχJHΨK = −FΨ JW ⊗NχK; cχJHΦK = −FΦ Jv̂ ⊗NχK. (2.69a,b)

Additionally, the spatial Jacobian can also be treated as an variable [198, 207, 208] inde-
pendent from the displacements, to provide extra flexibility. This Geometric Conservation
Law (GCL) [54, 76] was introduced to improve the quality of the solution. An analogous
law is yielded for the spatial mapping from the continuity Equation (2.47) as

∂JΦ
∂t

∣∣∣∣
χ

= ∇χ ·
(
HT

Φv̂
)
, (2.70)

and its associated jump condition is

cχJJΦK = −JHT
Φv̂K ·Nχ. (2.71)

The corresponding global conservation equation is

∂

∂t

∣∣∣∣
χ

∫
Ωχ

JΦ dVχ −
∫
∂Ωχ

(
HT

Φv̂
)
·NχdAχ = 0. (2.72)

2.5 ALE Mixed Formulation

A general system in global form can now be given for the ALE conservation laws, where
the global conservation Equations (2.50), (2.54), (2.60) and (2.63) are assembled into a
system of first-order equations defined as

∂

∂t

∣∣∣∣
χ

∫
Ωχ

U dVχ +

∫
∂Ωχ

FNχ dAχ =

∫
Ωχ

Sχ dVχ, (2.73)

where U is the vector of conserved variables, FNχ is the vector of corresponding fluxes,
and Sχ is the vector of corresponding source terms. A general local form can also be
provided for the conservation laws in ALE form. Noticing that the system of Equations
(2.73) in global form can be written as∫

Ωχ

[
∂U
∂t

∣∣∣∣
χ

+

3∑
i=1

∂FI

∂χI
− Sχ

]
dVχ = 0, (2.74)

where FI is the vector of corresponding fluxes in the I-th direction, represented by
the Cartesian vector EI (defined in Equations A.1), and verifying FNχ = FINχI with

Nχ = (Nχ1 , Nχ2 , Nχ3)T . The set of first-order local equations that is obtained corresponds
to the assembly of local forms (2.51), (2.56), (2.58) and (2.61), written as

∂U
∂t

∣∣∣∣
χ

+
3∑

i=1

∂FI

∂χI
= S, (2.75)
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The terms featured in the ALE mixed formulation (2.75) can be expressed as

U =


pχ

FΦ

FΨ

JΨ

 ; FI = −


PχEI

v̂ ⊗EI

W ⊗EI

HT
ΨW ·EI

 ; S =


f

0

0

0

 , (2.76a,b,c)

with the spatial velocity vector v̂ defined in Equation (2.9a), the stress Pχ defined in
Equation (2.55). The associated jump conditions, defined in Equations (2.52), (2.57), (2.59)
and (2.62), can be written in the compact form cχJUK = JFNχK [2, 27, 56, 75, 209] as

cχJpχK = −JPχKNχ, (2.77a)

cχJFΨK = −JW K ⊗Nχ, (2.77b)

cχJFΦK = −Jv̂K ⊗Nχ, (2.77c)

cχJJΨK = −JHT
ΨW K ·Nχ. (2.77d)

The ALE formulation is a generalisation of the Total Lagrangian and the Eulerian formula-
tions. It is shown in Appendix B.5 how ALE equations can degenerate to their Lagrangian
and Eulerian counterparts.

Remark 2.5.1 The Equation (2.76) represents the simplest generic ALE mixed formulation
for a hyperelastic material in non-linear solid dynamics. Depending on the physical nature
of the problems, it is possible to include additional conservation laws (e.g. the spatial
Jacobian JΦ for locking or incompressible scenarios, an energy-related variable when
thermal processes are considered). The numerical setup of the problem may also induce the
use of additional conservation laws related to the ALE mappings. These ideas are further
discussed for the continuum in Section 5.3 and for the discrete domain in Section 6.6

2.6 Conclusion

This chapter introduced in Section 2.2 the concept of referential domain and the consequent
new mappings and quantities to relate that domain to the classical material and spatial
domains, and all this constitutes the based of the ALE method that will be applied in this
work. Using the aforementioned notation, Section 2.3 presented how to transform a generic
conservation law based on the Lagrangian approach to a conservation law involving scaled
variables, new advection terms, and expressed on the referential domain. In Section 2.4,
the ALE transformation has then been applied on conservation laws of quantities of interest,
namely the balance principles and the geometric mappings. This new set of conservation
laws constitute the basis of an ALE framework and is summarised in Section 2.5. To close
the system, a constitutive model has to be defined, which is the purpose of Chapter 3.



CHAPTER 3

ISOTHERMAL INELASTICITY

“Le savant doit ordonner ; on fait la science avec des faits comme
une maison avec des pierres ; mais une accumulation de faits n’est

pas plus une science qu’un tas de pierres n’est une maison.”

— Henri Poincaré, La science et l’hypothèse, 1902

24
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3.1 Introduction

For closure of system (2.75), conservation laws must be supplemented by a constitutive
material law for stresses, that satisfy the objectivity requirements14 and the law of thermo-
dynamics [2, 75, 81]. This work utilises hyperelastic models, which are used to describe
elastic materials experiencing large deformations [199, 211–217], where the first Piola
Kirchhoff stress P must verify a distortional-volumetric decomposition. The polyconvexity
condition will also be discussed for the ALE mixed system, and will be used to determine
strain energy potentials [22, 75]. Then the constitutive equation is presented using work
conjugacy [218], and examples of general material models are provided. The general ALE

mixed system will eventually be extended to isotropic von-Mises plasticity [2, 113, 172,
195, 219].

3.2 Polyconvex elastic models

In hyperelastic materials, different constitutive restrictions on the strain energy potential
were established for well-posedness15 in the sense of Hadamard of the Cauchy problem
(2.76). Rank-one convexity (equivalent, for twice differentiable fields, to strong Legendre-
Hadamard ellipticity [75, 81, 221–223]) leads to material stability. Moreover, the existence
and propagation of real wave speeds in the material (or Hyperbolicity [224]) is an useful
condition for the stability of the formulation. The condition of polyconvexity16 is also
crucial as it facilitates the transformation of the mixed formulation into a symmetric system
of conservation laws via the introduction of a convex entropy function [23]. Polyconvexity
of the constitutive model results in local stability of the system [228]. Ellipticity difficulty
holds after the onset of localized deformations, such as in the presence of high plastic strains
[221, 229, 230], and this is the reason why the satisfaction of the stronger requirement of
polyconvexity is clearly important.

It has been extensively mathematically studied in [8, 199, 213, 214, 231–233]. Previous
works also emphasised the importance for the material model to be thermodynamically
consistent (see for instance [22, 23, 58, 214, 224, 234, 235]), that is to say to establish the
second law of Thermodynamics ensuring the production of entropy.

As it is well-known, the satisfaction of polyconvexity guarantees a) Rank-one convexity17

and b) Hyperbolicity in the dynamic regime [23].

To guarantee the principle of Hyperbolicity, which is equivalent to the existence of real
wave speeds for any deformation, the constitutive laws to close the mixed formulations will
need to satisfy the principle of tensor objectivity, and the second law of Thermodynamics
will have to be established. In this context and if polyconvexity is also required, the strain
energy potential can be formulated as a function of the geometric mapping denoted as
X = {F ,H, J} via a (non strictly) convex18 multivariate functional E [216]. As a result,

E (∇
X
φ) = E(X ), (3.1)

14Also called frame-indifference, it states that stress components do not fundamentally change due to
rigid body motions including rotations and translations (see [8, 81, 195, 210]).

15See Equivalence theorem of Lax [220]: For a well-posed linear initial value problem, stability is the only
necessary condition for convergence provided that the numerical method is consistent.

16For an extensive study of the concept of polyconvexity, the reader is invited to refer to [210, 213,
225–227].

17Also denoted as the condition of ellipticity: A strong elliptic system ensures a strict continuous solution
well-suited for describing equilibrium states.

18The strain energy density is convex with respect to its 19 variables.
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Remark 3.2.1 Isotropic hyperelasticity describes the behaviour of isotropic materials
exhibiting large deformations. In this theory, the material is modelled as a continuum and
the strain energy is a function of the stretches, or equivalently of the stress invariants,
which can be stated as

E = Ê(λ1, λ2, λ3) = Ẽ(IC , IIC , IIIC), (3.2)

where the invariants are defined as

IC = trC; IIC = C : C; IIIC = detC. (3.3a,b,c)

Consequently P is a function of the natural deformation gradient F 19 that derives from a
strain energy potential, describing the amount of energy required to deform the material,
as

P (∇
X
φ) =

∂E

∂∇
X
φ
. (3.4)

Work conjugate stresses ΣF ,ΣH ,ΣJ , defined for the three strain measures used to describe
the energy potential in Equation (3.1) as

ΣF (X ) =
∂E
∂F

; ΣH(X ) =
∂E
∂H

; ΣJ(X ) =
∂E
∂J

, (3.5a,b,c)

can be used to express P , the work conjugate [10, 75, 78, 196, 197] of the rate of the
deformation gradient, as

P : Ḟ = Ė(X ) = (ΣF + ΣH F + ΣJH) : Ḟ , (3.6)

where the term P : Ḟ refers to the total amount of mechanical work, and the expression of
P naturally emerges as

P (X ) = ΣF + ΣH F + ΣJH (3.7)

3.3 Nearly incompressible constitutive models

Nearly incompressible materials are defined by a Poisson’s ratio ν > 0 → 0.5 or a bulk to
the shear modulus20 ratio κ/µ → ∞, and therefore experience little volume change under
significant load. They constitute a fundamental device to numerically model materials
that are notably resistant to compression (e.g. rubbers, soft tissues), and consist in
complementing the distortional strain energy with a penalty volumetric potential. This
deviatoric-volumetric additive decomposition21 [75, 78, 197, 232, 236, 237] of the total
strain energy functional is denoted as

E(X ) = E ′(X ) + U(J), (3.8)

19By extension, P may also depend on temperature, plastic internal variables and other state variables
(See Section 3.5 and Chapter 4)

20The Lamé coefficients comprise the shear modulus and the bulk modulus, are expressed in [Pa] or
[N/m2] and are respectively defined as

µ =
E

1 + ν
; λ =

Ē

3(1− 2ν)
=

Ēν

(1 + ν)(1− 2ν)
,

where Ē is the Young’s modulus and ν is the Poisson’s ratio.
21For hyperelastic models, P can also be expressed in terms of the invariants of C.
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where E ′ is the distortional/deviatoric component and U(J) is the volumetric component.

The decomposition of the first Piola-Kirchhoff tensor

P (X ) = Pdev(X ) + Pvol(J) (3.9)

is then obtained, using Equation (3.7), as

Pdev = ΣF + ΣH F + Σ̂JH; Pvol = pH; ΣJ = Σ̂J + p, (3.10a,b,c)

where the hydrostatic pressure p and Σ̂J being defined as

Σ̂J =
∂E ′

∂J
; p =

∂U

∂J
. (3.11a,b)

For instance, a quadratic volumetric energy potential is defined as

U(J) =
κ

2
(J − 1)2, (3.12)

where κ = λ+ 2µ/3 is the bulk modulus of the material. Further eligible volumetric energy
potentials are presented in Appendix B.3.2.

3.3.1 Isochoric Mooney Rivlin model

The nearly incompressible polyconvex Mooney-Rivlin strain energy potential is defined as
[75]

E ′(X ) = ζJ−2/3 (F : F ) + ξJ−2 (H : H)
3/2 − 3ζ − 3

3/2ξ. (3.13)

where ζ, ξ are positive material parameters defined in terms of the shear modulus as
2ζ + 3

√
3ξ = µ [232]. The conjugate stresses are

ΣF = 2ζJ−2/3F ; ΣH = 3ξJ−2 (H : H)
1/2 H, (3.14a,b)

and

Σ̂J = −2

3
ζJ−5/3 (F : F ) − 2ξJ−2 (H : H)

3/2 . (3.15)

More specifically, the neo-Hookean model can be obtained by choosing ζ = µ/2 and ξ = 0
[1, 7, 56, 75, 234], and represents the hyperelastic model of choice for non thermally-coupled
materials in this work. In this case, the strain energy potential is expressed as

E ′(X ) =
µ

2

(
J−2/3F : F − 3

)
, (3.16)

the expression of the conjugate stresses becomes

ΣF = µJ−2/3F ; ΣH = 0; Σ̂J = −µ

3
J−5/3 (F : F ) , (3.17a,b,c)

and consequently the deviatoric stress is

Pdev = µJ−2/3F − µ

3
J−5/3 (F : F )H. (3.18)



3.4. HYPERBOLICITY 28

3.3.2 Nearly incompressible Hencky model

The Hencky model [234, 238] is a hyperelastic model based on logarithmic strains and
constitutes the basis to the plasticity algorithm presented in 1. The strain energy in
Equation (3.1) is defined in terms of the distortional elastic principal stretches λ̂e,α =
J−1/3λe,α, as

Ê ′
(
λ̂e,1, λ̂e,2, λ̂e,3

)
= µ

(
3∑

α=1

[
ln λ̂e,α

]2)

= µ

(
3∑

α=1

[lnλα]2
)

+
1

3
µ (ln J)2 − 2

3
µ (ln J)

(
3∑

α=1

lnλe,α

)
. (3.19a)

The first Piola-Kirchhoff stress tensor P can finally be reconstructed22 as

P = τF−T , (3.20)

and the decomposition in principal components of the symmetric Kirchhoff stress is given
as

τ =

3∑
α=1

τ′ααnα ⊗ nα; τ′αα = τ′αα + Jp. (3.21a,b)

For hyperelastic materials, the Hencky-based internal energy consists defined in Equation
(3.8) in the sum of the deviatoric potential in Equation (3.19) and a volumetric potential.
For a logarithmic volumetric energy potential (used in [239] and listed in Table B.1), it
reads

E(X ) =

[
µ

(
3∑

α=1

[
ln λ̂e,α

]2)]
+

[
1

2
κ (ln J)2

]

= µ

(
3∑

α=1

[lnλα]2
)

+
1

3
µ (ln J)2 − 2

3
µ (ln J)

(
3∑

α=1

lnλe,α

)

= µ

(
3∑

α=1

[lnλα]2
)

+
1

2
λ (ln J)2 , (3.22a)

by noticing that in Equation (3.22), the Jacobian can be expressed in terms of the
logarithmic elastic principal stretches λe,α, and that the bulk modulus κ can be expressed
in terms of Lamé ’s parameters as

ln J =

3∑
α=1

lnλα; κ = λ +
2

3
µ. (3.23a,b)

3.4 Hyperbolicity

A system of conservation laws is hyperbolic if its Cauchy problem23 is well-posed. In
numerical analysis, a set of hyperbolic conservation laws can be represented by a mixed
formulation, as in Equations (2.75) and (2.76), where the Jacobian matrix is diagonalisable

22Note the relations between stress tensors:

τ = PF T ; ταα = Jσαα = τ′αα + Jp.

23In particular, an Initial Value Problems (IVP), as found in the literature [2, 240, 241].
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with real eigenvalues24 and independent eigenvectors. It is also worth mentioning that
hyperbolicity is preserved under a change of gauge, which is analogous to considering a
constant energy under orthogonal transformations. It suffices to consider the homogenous
variant of the system of conservation laws to prove hyperbolicity [30, 241, 242]. The
following will thence briefly remind hyperbolicity for the Total Lagrangian formulation,
and present it for the Arbitrary Lagrangian Eulerian mixed formulation.

3.4.1 Hyperbolicity of the ALE system

In this section, the system (2.75) and (2.76) is considered in the context of a prescribed
material motion, where the geometric material subset XΨ = {FΨ,HΨ, JΨ} is assumed to
be given. Consequently, the system (2.76) can be reduced to

U =

pχ

FΦ

 ; FI = −

 PχEI

v̂ ⊗EI

 ; S =

f
0

 , (3.24a,b,c)

and using the characteristic equation25

DF [UR
α ] = cχ,αUR

α , (3.25)

the ALE right eigenproblem is stated as

cχ,α

pR
χ,α

FR
Φ,α

 = −

 D (PχNχ)
[
pR
χ,α,F

R
Φ,α

]
D (v̂ ⊗Nχ)

[
pR
χ,α,F

R
Φ,α

]
 . (3.26)

The second line of Equation (3.26) is then post-multiplied by F−1
Ψ

−cχ,αF
R
α =

(
D (v̂)

[
pR
χ,α,F

R
Φ,α

]
⊗Nχ

)
F−1
Ψ ; FR

α = F α
Φ,αF

−1
Ψ . (3.27a,b)

Using the coefficient ΛHΨ
defined as

ΛHΨ
NX = HΨNχ; ΛHΨ

=
√
HΨNχ ·HΨNχ, (3.28a,b)

and some algebra on Equation (3.27a), the decomposition of v̂ = v + FW yields, for the
first term, (

D(v)
[
pR
χ,α

]
⊗Nχ

)
F−1
Ψ =

(
J−1
Ψ ρ−1

R pR
χ,α ⊗Nχ

)
F−1
Ψ

=
(
vR
α ⊗Nχ

)
F−1
Ψ

=
(
vR
α ⊗HΨNχ

)
J−1
Ψ

=
ΛHΨ

JΨ
vR
α ⊗NX , (3.29)

and for the second term(
D(FW )

[
FR
Φ,α

]
⊗Nχ

)
F−1
Ψ =

(
FR
α W ⊗Nχ

)
F−1
Ψ

=
(
FR
α W ⊗HΨNχ

)
J−1
Ψ

=
ΛHΨ

JΨ
FR
α W ⊗NX . (3.30)

24When the eigenvalues are also distinct, the hyperbolicity is said to be strong or strict. When the flux
matrix is symmetric, the hyperbolicity is symmetric.

25To obtain eigenvectors, the characteristic equation can be solely used instead of the flux Jacobian
matrix [2, 199] which depends on the orthogonality condition RT

αLβ = δβα.
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Combining Equations (3.29) and (3.30) gives

−cχ,αF
R
α =

ΛHΨ

JΨ
v̂R
α ⊗NX . (3.31)

By using the characteristic equation of the corresponding system in the Total Lagrangian
formulation

cαF
R
α = −vR

α ⊗NX , (3.32)

and by pre-multiplying Equation (3.31) by the inverse of FR
α , followed by multiplying by

and pre-multiplying by NX , an ALE characteristic relationship can finally be drawn, as

cχ,α =
ΛHΨ

JΨ

(
cα −W ·NX

)
. (3.33)

Using Equation (3.32) in conjunction with the definitions introduced in Equation (3.28),
Equation (3.26) is written as

−cχ,αp
R
χ,α = ΛHΨ

D
(
PχNχ

) [
pR
χ,α,F

R
Φ,α

]
. (3.34)

Due to Equation (3.32), the fourth-order constitutive material tensor C [2, 35, 75, 199]
emerges as

ρRcχ,α

ΛHΨ

vR
χ,α =

1

cα
C : (vα ⊗NX)NX − ρR

JΨ
vR
χ,α (W ·NX) ; C =

∂2E
∂F ∂F

. (3.35a,b)

Rearranging Equation (3.35a) and multiplying it by a generic virtual velocity δv gives

ρR

(
cχ,α

ΛHΨ

+
1

JΨ
W ·NX

)
JΨ
(
vR
α · δv

)
=

1

cα
(δv ⊗NX) : C :

(
vR
α ⊗NX

)
, (3.36)

and, by choosing δv, using the newly obtained characteristic relationship (3.33), and
because Equation (3.36) holds for any δv and in particular δv = vR

α , the ALE eigenproblem
(3.26) can be reduced26 to the notorious generic symmetric eigenvalue problem [2, 22, 75]
that reads

ρRc
2
α = vR

α ·
(
CNXNX

vR
α

)
> 0; [CNXNX

]ij = CiIjJNχ,INχ,J , (3.37a,b)

where the symmetric second-order tensor CNXNX
is the so-called acoustic tensor. A brief

development on the relationship between Lagrangian and ALE eigenvalues is presented in
Appendix B.4.1. The six non-zero real eigenvalues are organised in two pressure/volumetric
waves (also denoted as p-waves) cp. For nearly incompressible materials, they take the
following values [81]

c1,2 = ±cp; cp =

√
αpΛ

−2
p + βp + 2γp

ρR
, (3.38a,b)

and four shear/longitudinal waves cs

c3,4 = c5,6 = ±cs; cs =

√
βp
ρR

. (3.39a,b)

26It is worth noting the following algebraic properties of the 4th-order tensor C:

(δv ⊗NX) : C :
(
vR
α ⊗NX

)
= δv ·

(
CNXNXvR

α

)
=

(
δv ⊗ vR

α

)
: CNXNX .
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with Λ−1 = ||F−TNX || and

αp =
5

9
µJ−2/3 (F : F ) + κJ2; βp = µJ− 2

3 ; γp = −2

3
µJ−2/3. (3.40a,b,c)

The corresponding eigenvectors are

UR
1,2 =

 n

±ρ−1
R c−1

p n⊗NX

 , (3.41a)

UR
3,4 =

 t1

±ρ−1
R c−1

s t1 ⊗NX

 , (3.41b)

UR
5,6 =

 t2

±ρ−1
R c−1

s t2 ⊗NX

 , (3.41c)

where NX is assumed to be a principal direction of deformation, so that m = FNX and
n are colinear and therefore ti ·m = 0, with ti arbitrary tangential vectors orthogonal to
N . Moreover, the left eigenvectors are given as

UL
1,2 =

 n

±c−1
p C : (n⊗NX)

 , (3.42a)

UL
3,4 =

 t1

±c−1
s C : (t1 ⊗NX)

 , (3.42b)

UL
5,6 =

 t2

±c−1
s C : (t2 ⊗NX)

 . (3.42c)

3.5 Multiplicative plasticity

Elasto-plasticity is a widely used theory to model a variety of metals, metal powders
and other plastic bodies. This section presents the main components of the isotropic
von-Mises plasticity used in this work. Then, the necessary considerations to integrate
plasticity yielding in the ALE framework will be shown. Permanent deformations occur
when energy is locally dissipated, and constitute a plasticity phenomenon. In the following,
isothermal plastic materials [75, 217, 219] is considered. Moreover, this work utilises
multiplicative plasticity, a common assumption in hyperelastoplastic materials [113, 172,
195] which assumes that the natural deformation gradient F can be decomposed into an
elastic and a plastic components in a multiplicative [2, 58, 75, 219] manner, as

F = FeFp. (3.43)

For a more exhaustive insight on the plasticity theory in solid mechanics, the reader is
invited to refer to the work of Oñate et al. [12] and Zienkiewicz et al. [243], as well as [1,
234, 244–249]. Additionally, the works of [113, 154] are of great interest by their use of the
ALE approach in the concept of plasticity.
The stress-strain relationship is altered when a body undergoes plastic deformation, usually
after significant loading. The present plasticity theory is used to predict these permanent
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deformations, and in particular, hardening laws models the new stress-strain curve therefrom
after plasticity is yielded, and give an expression for the inherent stress τy yielded due to
plastic deformation. There are several types of hardening laws. An isotropic isothermal
hardening law is generally defined as

τy(ε̄p) = τ0y + Hf̄(ε̄p), (3.44)

where f̄(ε̄p) is a function of the equivalent plastic strain ε̄p that is defined, respectively for
linear [250] and nonlinear [251] hardening, as

f̄(ε̄p) =


f̄linear(ε̄p) = ε̄p

f̄nonlinear(ε̄p) = ε̄p +
τ∞ − τ0y

H

(
1 − exp−δε̄p

) , (3.45)

where the initial yield stress τ
y
0, the hardening modulus H, the limit stress τ∞ and the

exponent δ are parameters of the material. Note that in Equation (3.45), the nonlinear
hardening function f̄nonlinear can degenerate to the linear hardening function f̄linear when
the τ∞ = τ0y. Beyond the scope of this work, kinematic hardening (where the yield surface
shifts in the stress space), and mixed hardening can also be considered. Plastic behaviour
is yielded after satisfaction of the loading condition

0 < ϕf (τ, ε̄p) = τ̄(τ′) − τy(ε̄p), (3.46)

where the ϕf is the yield criterion function, and the non-hydrostatic von Mises yield
criterion is defined as

τ̄(τ′) =

√
3

2
τ′ : τ′. (3.47)

In particular, the plasticity yield criterion is determined by a change of sign of the yield
function ϕf (τ, ε̄p) in Equation (3.46), which is numerically carried on by a Newton-Raphson
iterative method (described in Section 3.5.3).

3.5.1 Work conjugacy in traditional work-hardening approach

The total rate of work per unit initial volume ẇ can be decomposed into elastic and inelastic
components27 as [217]

ẇ = ẇe + ẇp. (3.48)

Moreover, using the principle of virtual work, it is shown that the Kirchhoff stress τ and
the velocity gradient l = Ḟ F−1 are conjugate with respect to ẇ as

ẇ = τ : l; ẇe = τ : le; ẇp = τ : lp = τ : (l− le) . (3.49a,b,c)

The evolution of τ is described in closed form as [113]

τ = 2
∂w

∂be
be, (3.50)

which, combined with Equation (3.49a) relates28 the total rate of work ẇ to the time
derivative of the left Cauchy Green tensor be

l =
1

2

∂be
∂t

∣∣∣∣
X,Cp=const

b−1
e . (3.51)

27The elastic component is sometimes denoted as recoverable, and the inelastic component can be referred
to as the plastic component.

28The proof is discussed in [195].
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The plastic flow is given by the flow rule, which relates the Lie derivative29 Lv(be) of be
with respect to v to the flow direction

∂ϕf

∂τ as [113]

Lv(be) =
∂be
∂t

∣∣∣∣
X

− (∇
X
v) be − be (∇

X
v)T = −2γ̇

∂ϕf (τ, ε̄p)

∂τ
be. (3.52)

Moreover, the constitutive behaviour of isotropic inelastic materials in the spatial domain
can be expressed by means of the left be and right Cp Cauchy-Green tensors as

be = FeF
T
e

= FF−1
p F−T

p F T

= FC−1
p F T , (3.53)

or

C−1
p = F−1beF

−T . (3.54)

The rate of the right Cauchy-Green stress tensor is characterised by the flow rule, which will
be shown in Equation (3.58a). Solving that rate is the purpose of the plasticity Algorithm
1 presented in the next section.

More specifically, with regards to Equations (3.50) and (3.51), the Hencky constitutive
model will be conveniently expressed in terms of the invariants of be as seen in Equation
(3.19). It follows that the velocity gradient, that is related to the elastic finger tensor, can
also be related to the flow direction as [113, 217]

lp = −1

2

dbe
dt

∣∣∣∣
F=const

b−1
e = γ̇

∂ϕf (τ, ε̄p)

∂τ
. (3.55)

In the above equation, the rate of be with constant deformation gradient F is considered.

The plastic strain rate ˙̄εp is conjugate to the von Mises equivalent stress τ̄(τ′) with respect
to the plastic work rate wp, which gives

ẇp = τ̄ ˙̄εp; ˙̄εp = γ̇, (3.56a,b)

as a result, the plastic dissipation wp can be computed via the increment ∆wp, using the
equivalent von Mises stress (3.47) based on the deviatoric Kirchhoff stress, defined as

∆wp = τ̄(τ′)∆γ; τ′ = τ− pJI. (3.57a,b)

The internal plastic variables will be updated via an implicit Euler time integrator as
discussed in Chapter 6. Their time integration relies on a return mapping class of procedure,
which is featured in the plasticity algorithm 1. This algorithm makes use of a) an elastic
prediction step (lines 2-4), b) a check for plasticity loading via the threshold condition at
line 5, and c) a plasticity correction based on the so-called radial return method [95, 100,
195, 239, 244] at lines 6-10. The terms accompanied with their equation (at lines 1, 5, 7
and 19) are model-dependent.

A situation in which plasticity develops is characterised by an evolution of the plastic
internal variables, consisting in a strictly positive infinitesimal plastic increment, and non
trivial plastic stresses. The von-Mises plasticity theory relies on the evolution of two plastic
internal variables: the plastic multiplier ∆ε̄− p = ∆γ and the inverse of the plastic right

29This is possible due to the contravariant nature of the left Cauchy Green tensor be [252–254]. A brief
introduction to the Lie derivative for covariant and contravariant tensors is shown in Appendix B.3.3.
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Cauchy-Green stress C−1
p . The conservation of C−1

p follows from Equation (3.55) and the
evolution of ∆ε̄ is obtained via a Backward-Euler integration of the flow rule (3.56b), as

∂C−1
p

∂t

∣∣∣∣∣
X

= −2γ̇F−1∂ϕf

∂τ
beF

−T , (3.58a)

∂ε̄p
∂t

∣∣∣∣
X

= γ̇. (3.58b)

Algorithm 1: Hencky-based von Mises plasticity with isothermal hardening.

Data: Fn+1, Jn+1,C
−1
p,n, ε̄p,n, wp,n

1 Pressure Correction pn+1 (Equation (3.11b));

2 Elastic finger tensor btriale,n+1 = Fn+1C
−1
p,nF

T
n+1;

3 Principal components decomposition btriale,n+1 =
∑3

i=1(λ
trial
e,i )2ntrial

i ⊗ ntrial
i ;

4 Trial deviatoric Kirchhoff τ′trialn+1 = 2µ ln
∑3

i=1

(
J−1/3λtrial

e,i ntrial
i ⊗ ntrial

i

)
;

5 if ϕf (τ′trialn+1 , ε̄p,n) > 0 (Loading Condition (3.46))

6 Derivative of yield function νn+1 =
τ′trialn+1√

2/3τ′trialn+1 :τ′trialn+1

;

7 Plastic Multiplier ∆γn+1 (linear or nonlinear (3.45) hardening rule);

8 Logarithmic Elastic stretches λe,i,n+1 = exp
(

ln(λtrial
e,i ) − ∆γνi,n+1

)
;

9 Deviatoric Kirchhoff τ′i,n+1 = τ′triali,n+1 − 2µ∆γn+1νi,n+1;

10 Reconstruction of elastic finger be,n+1 =
∑3

i=1 λ
2
e,n+1n

trial
i ⊗ ntrial

i ;

11 else

12 τ′n+1 = τ′trialn+1 ;

13 be,n+1 = btriale,n+1;

14 Plastic strain update ε̄p,n+1 = ε̄p,n + ∆γn+1;

15 Inverse of plastic right Cauchy C−1
p,n+1 = F−1

n+1be,n+1F
−T
n+1;

16 Kirchhoff update τn+1 =
3∑

i=1

(
τ′ii,n+1 + Jn+1pn+1

)
ntrial
i ⊗ ntrial

i ;

17 Piola Kirchhoff update Pn+1 = τn+1F
−T
n+1;

18 von-Mises equivalent stress τ̄n+1 = τ̄(τ′n+1) =
√

3
2τ

′
n+1 : τ′n+1;

19 Plastic dissipation wp,n+1 = wp,n + τ̄n+1∆γn+1 (Equation (3.57b)).

Result: Pn+1,C
−1
p,n+1, ε̄p,n+1, τ̄n+1, wp,n+1

3.5.2 ALE framework for plasticity

By using the non-conservative ALE transformations established in Equations (2.44) and (2.45),
the governing Equations (3.58a) and (3.58b) in Lagrangian form can be expressed on a
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referential domain as

∂C−1
p

∂t

∣∣∣∣∣
χ

−
(
∇χC

−1
p

) (
F−1
Ψ W

)
= −2γ̇F−1∂ϕf

∂τ
beF

−T , (3.59a)

∂ε̄p
∂t

∣∣∣∣
χ

−
(
∇χε̄p

)
·
(
F−1
Ψ W

)
= γ̇, (3.59b)

These equations can be incorporated to the ALE mixed formulation by considering their
respective right hand side terms as source terms solved in an implicit manner. This will be
discussed in Section 6.7 dedicated to the time integration.

3.5.3 Newton-Raphson iterative procedure

Consider Equation (3.46) in Section 3.5, that can be rewritten as

ϕf (τ′, ε̄p + ∆ε̄p) = τ̄(τ′) − τy(ϵ̄p + ∆ϵ̄p) = 0. (3.60)

In order to update the plastic strain to the new value ε̄n+1
p , a Newton-Raphson procedure

is utilised. It is described in Algorithm 2 and serves the purpose of finding the root ∆ε̄n+1
p

of the following

ϕf (τ′, ε̄np + ∆ε̄n+1
p ) = 0; ε̄n+1

p = ε̄np + ∆ε̄n+1
p . (3.61a,b)

With the use of some algebra, the von Mises stress τ̄ featured in Equation (3.60) can be
re-expressed as

τ̄(τ′) = τ̄(τ′trial) − 3µ∆γ, (3.62)

The Newton-Raphson iterative process is initialised using a linearised hardening function
(see Equation (3.45)) f̄linear(ε̄p) = ε̄p, and using the fact that the plastic multiplier ∆γ
equates to the work-hardening variable ε̄p,

τ̄(τ′) −
[
τ0y + H(ε̄np + ∆ε̄0p)

]
= 0 (3.63)

so that Equation (3.60) can be rewritten as

∆ε̄0p =
ϕf (τ′,trial, ε̄np )

3µ + H
, (3.64)

For every other iteration, the algorithm’s objective is to solve

∆ε̄k+1
p = ∆ε̄kp −

Res(∆ε̄kp)

Res′(∆ε̄k)
(3.65)

with

T (∆ε̄kp) = 3µ∆ε̄kp + τ0y + H(ε̄np + ∆ε̄kp) + (τ∞ − τ0y)
[
1 − exp−δ(ε̄np+∆ε̄kp)

]
(3.66a)

F = ϕf
trial
n+1 + τ̄0y + Hε̄p +

(
τ∞ − τ0y

) [
1 − e−δε̄p

]
(3.66b)

Res(∆ε̄kp) = T (∆ε̄kp) − F (3.66c)

Res′(∆ε̄kp) = 3µ + H + δ
(
τ∞ − τ0y

) [
1 − exp−δ(ε̄p+∆ε̄kp)

]
(3.66d)

As featured in Algorithm 2, it is common to use an error tolerance TOL parameter, as
well as a maximum number of iterations.
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Algorithm 2: Newton-Raphson procedure.

Data: ϕf (τ′,trial, ε̄np ), ε̄np

1 Compute F (Equation (3.66b));

2 Compute ∆ε̄0p (Equation (3.63));

3 while Err > TOL do

4 Compute R = Res
Res′

(Equation (3.66d));

5 Update ∆ε̄k+1
p = ∆ε̄kp − R;

6 Compute Err = ||R||;

7 Set ∆ε̄n+1
p = ∆ε̄k+1

p

Result: ∆ε̄n+1
p

3.6 Conclusion

In this chapter, the concept of polyconvexity was introduced in Section 3.2 as a constitutive
restriction implying the Legendre-Hadamard condition (existence of travelling waves in the
material in the vicinity of a stationary point). It is of paramount importance because it
is strongly related to material stability and to the development of areas where ellipticity,
and therefore well-posedness of the governing equations, no longer hold. Large strain
elastic and inelastic isotropic materials are described by means of a hyperelastic model, and
characterised by a stored energy functional which depends on the deformation gradient of
the natural mapping. In Section 3.3, nearly incompressible nonlinear constitutive models are
presented for modelling deformations with very little to no change in the volume of a body.
They are characterised by a Poisson’s ratio close or equal to 0.5. Nearly incompressible
models offer the possibility to decompose the energy potential and stresses within a body
into distortional and volumetric components. In Section 3.4, an eigenvalue analysis is
performed on the mixed system of the ALE formulation to demonstrate hyperbolicity of the
problem. It is an important property that is necessary before any discretisation method is
applied. Eventually, the general ALE formulation presented in Chapter 2 has been extended
to plasticity in Section 3.5 with the integration of two additional conservation laws on
internal plastic variables. In the next Chapter, the ALE mixed system will be further
enhanced with the introduction of thermal considerations.



CHAPTER 4

EXTENSION TO THERMAL INELASTICITY

“Rien ne se crée, ni dans les opérations de l’art, ni dans celles de la
nature, et l’on peut poser en principe que, dans toute opération, il y a

une égale quantité de matière avant et après l’opération; que la
qualité et la quantité des principes est la même, et qu’il n’y a que des

changements, des modifications.”

— Antoine Lavoisier, Traité élémentaire de chimie, 1789

37
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4.1 Introduction

Materials subjected to high temperatures and high loads (e.g. in aerospace, automotive,
welding or casting processes), or materials sensitive to temperature-based fluctuations can
experience thermal-based deformations, such as thermal expansion. Thermal expansion can
cause internal stress, generated within the material by temperature gradients, which may
eventually lead to significant additional large deformations. Moreover, plastic properties of
the material can also be affected by internal temperature fluctuations. (e.g. temperature
annealing). This section extends the present ALE formulation to thermal considerations
with the introduction of the laws of thermodynamics. The conservation of energy is
presented, and with the use of Calorimetry relationships, the link between the entropy,
the temperature and the energy is outlined. Then, the Mie-Grüneisen equation of state is
introduced and the implications on energy and stress components are discussed, as well as
additional requirements for polyconvexity. Eventually, the considerations for visco-plasticity,
including a thermally-coupled volumetric energy potential and a Johnson-Cook hardening
law, are presented.

4.2 First Law of thermodynamics

In an irreversible process, a thermal coupling is considered where the mixed system (2.75)
must include a conservation law of a new thermal variable. This work is dedicated to
solving the conservation of the total energy of the system, which is represented by the
first law of thermodynamics [8, 30, 241, 255]. The global form of the conservation of total
energy E(X, t) using a Lagrangian framework is given by

∂

∂t

∣∣∣∣
X

∫
Ω
E dV −

∫
∂Ω

P Tv ·N dA = −
∫
∂Ω

Q ·N dA +

∫
Ω

(s + fR · v) dV, (4.1)

with body forces fR, external heat source s, and the material heat flux30 Q defined in
terms of thermal conductivity h and temperature θ as

Q = −K∇
X
θ; K = J−1HTkH; k = hI, (4.2a,b,c)

where k is the isotropic thermal conductivity tensor, based on the scalar conductivity h.
Locally, the conservation of the total energy is expressed, in Total Lagrangian form, as

∂E

∂t

∣∣∣∣
X

−∇
X
·
(
P Tv

)
+ ∇

X
·Q = s + fR · v. (4.3)

The first law of thermodynamics, in global form, can be expressed on the referential domain
by using ALE transformations on Equation (4.1), which yields

∂

∂t

∣∣∣∣
χ

∫
Ωχ

EχdVχ −
∫
∂Ωχ

[
(PHΨ)T v + EHT

ΨW −Qχ

]
·NχdAχ

=

∫
Ωχ

(f · v + sχ) dVχ, (4.4)

where Eχ = JΨE is the referential energy, f = JΨfR is the referential body forces

30The expression of the heat flux is obtained via Fourier’s law [22, 23].
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sχ = JΨs is the referential heat source and Qχ is the referential heat flux obtained as∫
∂ΩX

Q ·N dA =

∫
∂Ωχ

(HT
ΨQ) ·Nχ dAχ

= −
∫
∂Ωχ

(HT
Ψκ∇

X
θ) ·Nχ dAχ

= −
∫
∂Ωχ

(HT
ΨκF−T

Ψ ∇χθ) ·Nχ dAχ

=

∫
∂Ωχ

Qχ ·Nχ dAχ, (4.5)

with ∇
X

= F−T
Ψ ∇χθ, and consequently

Qχ = −κχ∇χθ; κχ = J−1
Ψ HT

ΨκHΨ = hJΦC
−1
Φ , (4.6a,b)

where CΦ = F T
ΦFΦ is the right Cauchy-Green tensor related to the spatial deformation

gradient. The local form of Equation (4.4) is

∂Eχ

∂t

∣∣∣∣
χ

−∇χ ·
[
(PHΨ)Tv + EHT

ΨW −Qχ

]
= f · v + sχ, (4.7)

together with the jump conditions

cχJEχK =
(
HT

ΨJP Tv + EW K − JQχK
)
·Nχ. (4.8)

4.3 Thermo-elasticity

The strain energy, originally expressed for an isothermal hyperelastic model in Equation
(3.1), is postulated here as a quantity that depends on thermal variables, and potentially
additional state variables that are represented by α. This is denoted as

E (∇
X
φ, η,α) = E(Xηα); Xηα = {X , η,α}, (4.9a,b)

As the first Piola Kirchhoff tensor is work conjugate with the deformation gradient, the
time rate of the energy potential can be analysed using the mechanical conjugates stresses31

ΣF ,ΣH ,ΣJ defined as

ΣF (Xηα) =
∂E(Xηα)

∂F
; ΣH(Xηα) =

∂E(Xηα)

∂H
; ΣJ(Xηα) =

∂E(Xηα)

∂J
.

(4.10a,b,c)
Moreover, the temperature is introduced by means of an energy dual conjugacy established
between the entropy density as

θ(X, t) =
∂E(Xηα)

∂η(X, t)
= Θ(Xηα), (4.11)

where θ and Θ both denote the temperature magnitude expressed with different variables.
By taking advantage of Calorimetry relationships 32, the specific heat33 at constant volume
cv > 0 is a coefficient that can be defined as

cv =
∂Ẽ(Xθα)

∂θ(X, t)
, (4.12)

31Conjugate stresses are defined in Equation (3.5) for an isothermal framework, and the corresponding
analysis of the time rate of the energy potential is shown in Equation (3.6).

32Extensive development of the results obtained with the Calorimetry relationships can be found in [2, 8,
10, 22, 23, 37, 249].

33The specific heat can also be expressed per unit undeformed volume cv can be expressed in terms of
the material density ρR and the specific heat per unit mass Cv as cv = ρRCv.
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where the internal energy density Ẽ and the entropy density η̃ are expressed as

Ẽ(Xθα) = E(X , η̃(Xθα),α); η̃(Xθα) = η(X, t), (4.13a,b)

and where the system of coordinates Xθα = {X , θ,α} now involves the temperature θ.
Equation (4.12) can be integrated, with respect to the temperature and between a reference
temperature θR and a current temperature θ (see the Appendix Section B.3.1 for more
detailed development), to yield a relationship between the entropy at current temperature
η̃ and the entropy η̃R at reference temperature, stating

η̃(Xθα) = η̃R(X ,α) + cv ln

(
θ(X, t)

θR

)
; η̃R(X ,α) = η̃(X , θ = θR,α). (4.14a,b)

A direct consequence of Equation (4.14a) is to outline an expression for the current
temperature magnitude, involving the difference between the entropy density η and the
entropy at constant temperature η̃R, as

Θ(Xηα) = θR exp
η−η̃R(X ,α)

cv . (4.15)

In a similar fashion, Equation (4.11) is integrated between temperatures θR and Θ(X ,α)
[22], and after a development detailed in Appendix Section B.3.1, a relationship for the
internal energy E expressed with respect to the triplet X , the entropy density η(X, t), and
the internal variable α, is obtained as

E(Xηα) = ẼR(X ,α) + cvθR

(
exp

η̃(X ,θ,α)−η̃R(X ,α)

cv −1

)
(4.16a)

= ẼR(X ,α) + cv (Θ(Xηα) − θR) , (4.16b)

where the change of entropy in Equation (4.14a) was used to obtain the explicit expression of
thermal contributions in the internal energy potential [22]. In Equation (4.16b), the internal
energy ẼR(X ) represents the energy caused by the deformation after the temperature
θ returned to the reference value θR. In this thermo-mechanical framework, the fact
that the Cauchy problem is well-posed [22, 23] results that both ẼR(X ) and −η̃R(X ) are
polyconvex34. Using the chain rule, the time rate of the energy is expressed as [21, 22]

∂E(Xηα)

∂t

∣∣∣∣
X

=
∂E
∂F

:
∂F

∂t
+

∂E
∂H

:
∂H

∂t
+

∂E
∂J

∂J

∂t
+

∂E
∂η

∂η

∂t
+

∂E
∂α

:
∂α

∂t

= ΣF : ∇
X
v + ΣH : (F ∇

X
v) + ΣJH : ∇

X
v + θ

∂η

∂t

∣∣∣∣
X

+
∂E
∂α

:
∂α

∂t

= [ΣF + ΣH F + ΣJH]︸ ︷︷ ︸
P

: Ḟ + θ
∂η

∂t

∣∣∣∣
X

+
∂E
∂α

:
∂α

∂t
. (4.17)

Since the thermal coupling is exclusively featured in the volumetric stress contributions,
the first term of Equation (4.17) corresponds to a mechanical work P : Ḟ .

4.3.1 The Ballistic energy

The total energy E of a system is obtained as the sum of the kinetic energy, the internal
energy E , the force resulting of an external work, to which is subtracted energy related to
thermal dissipation. Considering a body under an adiabatic process and not subjected to
external work, the expression of the total energy can be stated as

E(X, t) = K + E(Xηα), (4.18)

34That is, convex with respect to their geometric variables X = {F ,H, J}.
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where the kinetic energy is defined in terms of the linear momentum as

K =
p · p
2ρR

. (4.19)

Substituting Equation (4.16b) in the definition of the total energy (4.18) gives

θ(X, t) = θR +
1

cv

[
E(X, t) −K − ẼR(X ,α)

]
. (4.20)

Furthermore and as in CFD [256], the so-called Ballistic free energy B [21, 257] (also denoted
as the Lyapunov function of the thermo-mechanical process), defined as a generalised
convex entropy function35 [23] and whose expression is

B (X, t) = B̃ (p,Xη) = K(p) + E(Xη) − ηθR, (4.21)

where B̃ is another expression of the Ballistic energy with the same magnitude. It can
be regarded as a minimum stable quantity constituted of the total energy (the kinetic
energy K and the internal energy density ẼR) and thermal contributions (or thermal heat
component) θRη per unit undeformed volume. In Appendix (C), it is shown how the
Ballistic energy is utilised to obtain an expression of the second law of thermodynamics.

4.3.2 Second Law of thermodynamics

The total energy is related to the other thermal variables (entropy, temperature) with
closed-form relationships. The irreversibility of the process can be characterised by the
production of entropy, according to the second law of thermodynamics. This law, sometimes
referred to as Clausius-Duhem inequality, states that the rate of the total entropy of a
system must be greater than or equal to the transfer of entropy into the system. For a
plastic internal variable α, the rate of physical dissipation Dint introduced by the physical
model due to plasticity is defined as [10, 21]

Ḋint =
∂wp

∂t

∣∣∣∣
X

= −∂E(Xηα)

∂α
:
∂α

∂t

∣∣∣∣
X

, (4.22)

where wp is defined in Equation (3.57). Under the simple assumption that heat flows from
hot to cold regions of a continuum, it is stated by convention that

Dint −
1

θ
Q ·∇

X
θ ≥ 0; Dint = P : Ḟ + θη̇ − Ė . (4.23a,b)

where Dint is denoted as the internal dissipation. Further independent conditions can also
be stated as

Dint ≥ 0;
1

θ
Q ·∇

X
θ ≤ 0. (4.24a,b)

Additional contribution to the dissipation may be taken into account by further expressing
the energy with other state variables α, for which the Equation (4.23b) becomes

Dint = P : Ḟ + θη̇ − Ė(Xηα)

= P : Ḟ + θη̇ − [ΣF + ΣH F + ΣJH] : Ḟ − θη̇ − ∂E(Xηα)

∂α
: α̇

= −∂E(Xηα)

∂α
: α̇. (4.25)

For instance, in the context of thermoplasticity, the internal energy can also be expressed
in terms a plastic stress with α = C−1

p . Note that the term P − ∂E
∂F in Equation (4.25)

vanishes in a thermoelastic regime, where no internal variable is considered.

35Hence enabling the use of the total energy density as the thermal unknown.
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4.3.3 Conservation of internal energy and entropy

With the definition (4.18) of the total energy, the conservation law of E in Equation (4.7)
can be subtracted with the linear momentum balance principle that is multiplied by v to
yield

∂E(Xηα)

∂t

∣∣∣∣
X

+ ∇
X
·Q = P : ∇

X
v + s. (4.26)

The above equation corresponds to the conservation law of the internal energy. As shown
in [21], the first law of thermodynamics can also be expressed in terms of the entropy per
unit undeformed volume η(X, t), by combining Equation (4.17) and (4.26), as

θ(X, t)
∂η(X, t)

∂t

∣∣∣∣
X

+ ∇
X
·Q = s + Ḋint, (4.27)

where the rate of physical dissipation Ḋint is defined in Equation (4.22). After dividing
Equation (4.27) by θ and applying a conservative ALE transformation, the conservation of
scaled entropy in conservative form is expressed as

∂ηχ
∂t

∣∣∣∣
χ

= JΨ

(
s + Ḋint

)
−∇χ ·

(
Qχ

θ
− ηHT

ΨW

)
, (4.28)

with ηχ = JΨη. Alternatively it is interesting to consider a non-conservative ALE transfor-
mation, which leads to the following ALE form

∂η

∂t

∣∣∣∣
χ

+
1

θ

(
∇χ ·Qχ

)
=
(
∇χη

)
·
(
F−1
Ψ W

)
+

s + Ḋint

θ
. (4.29)

The above equation will be used in the numerical framework presented in Chapter 6.

4.4 Nearly-incompressible thermo-mechanical constitutive
models

The near-incompressibility assumption (as they were established in the isothermal case in
Section 3.3) lets the internal strain energy potential at reference temperature be expressed
as an additive distortional-volumetric decomposition, which can be stated as

ẼR(X ,α) = Ẽ ′
R(X ,α) + ŨR(J). (4.30)

In Equation (4.30), Ẽ ′
R is the distortional or deviatoric component and ŨR is the volumetric

component of the strain energy, and both only depend on deformation measures. For
hyperelastic materials with thermal-volumetric coupling, a pure volumetric entropy density
η̃R(X ,α) ≈ η̃R(J,α = 0) is considered. This is motivated by the intuitive expectation
that changes of temperature will only lead to changes in volume. Mathematically, this
corresponds to a decomposition of the internal energy E in an entropy-dependent volumetric
component U and model-dependent isothermal deviatoric component Ẽ ′

R that is analogous
to its isothermal counterpart. Using the aforementioned decomposition and the expression
in Equation (4.30), the Equation (4.16a) is then rewritten as

E(Xηα) = ẼR(X ,α) + cvθR

(
exp

η(X,t)−η̃R(J)

cv −1

)
= Ẽ ′

R(X ) + U(J, η)

= Ẽ ′
R(X ,α) + ŨR(J) + cvθR

(
exp

η(X,t)−η̃R(J)

cv

)
, (4.31)
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where the volumetric potential U is itself defined as the sum of a non-thermally coupled
volumetric component ŨR and a thermal contribution, stated as

U(J, η) = ŨR (J) + cv(θ − θR); ŨR (J) = U (J, η = η̃R(J)) . (4.32a,b)

The first line of Equation (4.31) corresponds to the isothermal-thermal decomposition of
E , and the second line corresponds to the deviatoric and (thermally-coupled) volumetric
decomposition of E . Equation (4.31) gives the expression of E in terms of model-dependent
potentials.

Remark 4.4.1 The work conjugates featured in Equation (4.17) are then expressed as

ΣF =
∂Ẽ ′

R

∂F
; ΣH =

∂Ẽ ′
R

∂H
; ΣJ = Σ̂′

J + p. (4.33a,b,c)

As Ẽ ′
R corresponds to the isothermal distortional energy potential, these work conjugates

correspond to those of the isothermal case.

It follows from Equation (4.31) that the volumetric contribution is decomposed in a
isothermal mechanical part Σ̂′

J and a thermally coupled hydrostatic pressure p as

Σ̂′
J =

∂Ẽ ′
R

∂J
; p(J, η) =

∂U

∂J
= p̃R + pη, (4.34a,b,c)

with

p̃R(J) =
∂ŨR (J)

∂J
; pη(J, η) =

∂Uη (J, η)

∂J
. (4.35a,b)

With this notation at hand, similar derivations can be done to obtain the components of
the first Piola Kirchhoff stress tensor as for isothermal considerations in Equation (3.7).
It can be seen that the first Piola Kirchhoff stress receives a thermal contribution via its
volumetric component, while the conjugate stress Σ′

J featured in the deviatoric component
is equivalent to that of the isothermal case.

4.4.1 Mie-Grüneisen Equation of state

The Mie-Grüneisen hydrodynamic equation of state [8, 10, 23] provides an expression for
volumetric thermal coupling. It relates pressure and thermal internal energy as

∂p

∂E

∣∣∣∣
J=const

= −Γ0J
q−1, (4.36)

where 0 ≤ q ≤ 1 is a dimensionless positive parameter (for solid materials, q = 1), and
Γ0 > 0 is a positive material constant. This model can also be stated using the thermal
expansion coefficient α = cvΓ0/3κ. Using the definition of the pressure (4.35), the relative
entropy η̃R is given an expression depending on the geometric volume map defined as

η̃R(J) = cvΓ0
Jq − 1

q
, (4.37)

whose convexity can be proven analytically by noticing that

−d2η̃R(J)

dJ2
= (1 − q)cvΓ0J

q−2 ≥ 0. (4.38)
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This relation completes an appropriate polyconvex isothermal deviatoric potential (defined
in Section 3.2; see for instance Mooney-Rivlin material 3.3.1), and an appropriate volumetric
potential (based, for instance, on a potential listed in Appendix B.3.2)

ŨR(J) =
κ

2
(J − 1)2 + cvΓ0θR (J − 1) . (4.39)

The Mie-Grüneisen model is provided by an universally polyconvex strain energy potential
Ẽ ′(X ) that is defined, for a general Mooney-Rivlin material (as presented in Section 3.3.1
for a non-thermally coupled material), as

Ẽ ′
R(X ) = ζ

(
J−2/3IIF − 3

)
+ ξ

(
J−2II

3/2
H − 3

√
3
)
. (4.40)

For a general hyperelastic deviatoric potential, material parameters can be formulated as

µ = 2ζ + 3
√

3γ; κ = ξ + cvθRΓ0(1 − q); α =
cvΓ0

3κ
. (4.41a,b,c)

In the case of solid materials, the thermal coefficient q is equal to 1. Moreover, a neo-
Hookean model type is recovered by setting γ = 0. The strain energy potential (4.40) for a
Mie-Grüneisen model can then be expressed as

Ẽ ′
R(X ) =

µ

2

(
J−2/3IIF − 3

)
+ κ

(
J−2II

3/2
H − 3

√
3
)
. (4.42)

If Γ0 = 0, it results that κ = 0 and Equation (4.42) degenerates to the neo-Hookean model
for non-thermally coupled material, defined in Equation (3.16).

4.5 Thermal visco-plasticity

In high-energy impact or penetration problems, large deformations are not only induced
by the material’s plasticity, but also by viscous effects and temperature fluctuations.
Numerically, it means that plastic deformations depend on strains, strain rates and thermal
softening. In addition to this, the generated heat also has effects on the hyperelastic
behaviour. In this work, a thermo-hyperelastic-viscoplastic solid material, as presented in
[11], is considered. It is characterised by a volumetric hyperelastic energy potential coupled
with thermal effects (4.37), and by a rheological rate-dependent Johnson-Cook hardening
law [26].

4.5.1 Extension to thermo-plasticity

There is a wide variety of complex models to describe the plastic deformation and failure of
metals under dynamic loading conditions (e.g. Zerilli-Armstrong model, Gurson-Tvergaard-
Needleman Model [25]). In this work, the isotropic nonlinear Johnson-Cook hardening law
[26, 258] is considered, and can be expressed as

τy(ε̄p, ˙̄εp, θ) =
(
τ0y + Hε̄q

′
p

)(
1 + C ln

(
˙̄εp
˙̄ε0p

))(
1 − θ̂m

)
, (4.43)

which accounts for isotropic hardening (for an initial yield stress τ0y, a hardening modulus
H, and a power exponent q′), strain rate ˙̄εp dependency (for an initial strain rate ˙̄ε0p), a
material parameter C, and thermal softening (for a material-dependent exponent m)

θ̂ =


0 if θ < θtransition,
θ−θtransition
θmelting−θR

if θtransition ≤ θ ≤ θmelting,

1 θ > θmelting

(4.44)
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as three independent phenomena. In Equation (4.44), the transition temperature θtransition,
and the melting temperature θmelting are material parameters. Accordingly, the loading
condition for plasticity is

0 < ϕf (τ, ε̄p, ˙̄εp, θ) = τ̄(τ′) − τy(ε̄p, ˙̄εp, θ). (4.45)

As for isothermal plasticity, the internal plastic variables are updated with an implicit Euler
time integrator. The algorithmic procedure for stress evaluation of the present ALE vertex-
based finite volume framework for non-linear solid dynamics in irreversible processes with
thermal coupling is described in Algorithm 3. This algorithm is based on Algorithm 1 for

Algorithm 3: Hencky elasticity model with von-Mises plasticity and Johnson-

Cook hardening.

Data: Fn+1,C
−1
p,n, ε̄p,n, θn

1 Pressure Correction pn+1 (Equation (4.34c));

2 Elastic finger tensor btriale,n+1 = Fn+1C
−1
p,nF

T ;

3 Principal components decomposition btriale,n+1 =
∑3

i=1(λ
trial
e,i )2ntrial

i ⊗ ntrial
i ;

4 Trial deviatoric Kirchhoff τ′trialn+1 = 2µ ln
∑3

i=1

(
J−1/3λtrial

e,i ntrial
i ⊗ ntrial

i

)
;

5 if ϕf (τ′trialn+1 , ε̄p,n, ˙̄εp,n, θn) > 0 (Loading Condition (4.45))

6 Derivative of yield function νn+1 =
τ′trialn+1√

2
3
τ′trialn+1 :τ′trialn+1

;

7 Plastic Multiplier ∆γ (Johnson-Cook hardening (4.43));

8 Logarithmic Elastic stretches λe,n+1 = exp
(
ln(λtrial

e ) − ∆γνn+1

)
;

9 Deviatoric Kirchhoff τ′n+1 = τ′trialn+1 − 2µ∆γνn+1;

10 Reconstruction of elastic finger be,n+1 =
∑3

i=1 λ
2
en

trial
i ⊗ ntrial

i ;

11 else

12 τ′n+1 = τ′trialn+1 ;

13 be,n+1 = btriale,n+1;

14 Plastic strain update ε̄p,n+1 = ε̄p,n + ∆γ;

15 Inverse of plastic right Cauchy C−1
p,n+1 = F−1

n+1be,n+1F
−T
n+1;

16 Kirchhoff update τn+1 = τ′n+1 + JpI;

17 Piola update Pn+1 = τn+1F
−T
n+1;

18 von-Mises equivalent stress τ̄(τ′)

Result: Pn+1,C
−1
p,n+1, ε̄p,n+1, τ̄n+1

isothermal plasticity, and allows for thermo-volumetric coupling (via the thermally coupled
hydrostatic pressure update) and for thermal hardening/softening. As it will be presented
in Algorithm 5, it was chosen that the temperature remains unchanged throughout the
plasticity update to preserve the simple structure of the algorithm. In absence of thermal
expansion (Γ0 = 0), the reference entropy is null. Additionally, a constant temperature
θ = θR implies that the entropy (4.15) is also constant, the volumetric potential U in
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Equation (4.37) degenerates to its pure isothermal counterpart, and the thermal softening
in Equation (4.43) vanishes.

4.6 Conclusion

In this Chapter, the two laws of thermodynamics were introduced and incorporated in
the numerical framework; firstly, the first law of thermodynamics, featured in Section
4.2, provided a conservation law on the total energy that can be used to measure the
evolution of the energy distribution of a system, whether the considered body account for
thermal effects or not. In Section 4.3, the Calorimetry relationships were used to outline
relations between the energy, the temperature and the entropy, and the second law of
thermodynamics provided an expression for the evolution of the numerical dissipation under
the Clausius-Duhem inequality. Nearly incompressible models are established for thermo-
mechanical models, and more especially the volumetric coupling is presented therein, and
the Mie-Grüneisen Equation of state was described in Section 4.4. Eventually, and following
the development of Chapter 3, the extension of the present ALE formulation to thermo-
visco-plasticity is conducted in Section 4.5 with the association of the energy conservation
equation, the thermo-mechanical volumetric coupling and the Johnson-Cook rate-dependent
visco-plastic hardening law.
So far, the ALE formulation has been extended to a mixed system incorporating the
equations of thermo-visco-plasticity. The scope of this present work is restricted to using
the energy equation, a volumetric coupling and a Johnson-Cook hardening law, but the
numerical framework can be easily adapted to different considerations in many aspects.
For instance more complex kinematic hardening law, thermo-mechanical coupling or the
entropy equation could be taken into account without real implementation issue, due to
the clear modularity of the pieces constituting this ALE framework. In fact, those are
physical considerations that will not any impact on the mesh motion technique presented
in the following Chapter.



CHAPTER 5

MATERIAL MOTION

“A mathematician who is not somewhat of a poet, will never be a
perfect mathematician.”

— Karl Weierstrass, 1883

47
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5.1 Introduction

The choice of the kinematical description of the continuum is crucial in numerical simulations
where the mesh plays a major role36. In an attempt to handle greater distortions than with
a Lagrangian method and with more resolution than with an Eulerian method, those two
approaches are generalised as the ALE method where the mesh displacements are solved as
an independent quantity. Inherently, the re-meshing technique is the main determinant of
the success of the ALE framework. A thorough review of ALE mesh-update techniques in
Computational Mechanics was done by [113]. Implicit methods are traditionally used to
update the mesh: Mesh refinement trade coarse mesh granularity for higher local resolution
and higher computational cost [163, 167], while Lagrangian smoothing [149] or mid-area
averaging [259] is a simple technique that may fail on complex geometries. The mesh-update
technique presented in this work is based on an explicit unsplit approach. This present
method circumvents the need to split the solution process into material and convection
stages, and relies on the introduction of suitable mappings between the new referential
domain and the respective material and spatial domains. As presented in Chapter 2, the
natural deformation gradient is obtained via a multiplicative decomposition F = FΦF

−1
Ψ ,

and the material gradient FΨ will be solved from the referential domain together with
the material velocity W using a conservation law closed with a hyperelastic constitutive
model [6]. The aim of this technique is to better accept mesh distortions, thence focusing
on the quality of the spatial mesh [178], and propose mesh motion equations that can be
integrated into the mixed formulation (2.75).

5.1.1 Geometrical requirements

A first series of geometrical requirements was developed in Chapter 2, taking the form
of a rate-form conservation equation for the material deformation gradient FΨ and the
material Jacobian JΨ. Note that as it was done in Lagrangian in [56, 75, 111], it is also
possible to derive a conservation law for the material area map HΨ, leading to a potentially
more accurate compressible mesh motion [78, 111]. In this work, the material mesh
motion will be assumed constitutively hyperelastic and solved in an advection problem.
Henceforth, a conservation law will govern the evolution of the material linear momentum
pW = ρRW using a material stress PW deriving from a hyperelastic potential [3–6]. The
new conservation law will be presented in Section 5.2, and appropriate constitutive models
will be presented in Section 5.2.1

5.2 Material Balance law

Following the constitutive approach in [6], the mesh motion can be solved via a conservation
law on the material linear momentum pW . The local form and the associated jump condition
are expressed as

∂pW

∂t

∣∣∣∣
χ

−∇χ · PW = 0, (5.1)

with the jump condition

cχJpW K = −JPW KNχ. (5.2)

Artificial damping is a technique often used [43, 260–262] to reduce high-frequencies
oscillations and improve stability of the computation in the context of explicit dynamic
frameworks. The conservation of the material linear momentum (5.1) can be provided with

36For instance, large mesh distortions, material interface tracking and mobile boundaries.
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artificial damping coefficient as

∂pW

∂t

∣∣∣∣
χ

−∇χ · PW = −νΨpW , (5.3)

where 0 ≤ νΨ[s−1] < 1 is a viscosity-like coefficient controlling the amount of numerical
damping for the conservation of pW . This conservation law can be stated in global form as

∂

∂t

∣∣∣∣
χ

∫
Ωχ

pW dVχ −
∫
∂Ωχ

tW dAχ = −
∫
Ωχ

νΨpW dVχ, (5.4)

and can be incorporated to the mixed system (2.75).

To ensure accurate tracking of the body’s moving boundaries, they are necessarily treated
as Lagrangian surfaces [113]. Consequently boundary nodes have to physically remain on
these boundaries and are only allowed to move tangentially which leads to the boundary
condition W ·NX for the mesh velocity. To alleviate spatial mesh distortions, the mesh
motion machinery must take into account spatial geometric variables XΦ. The keystone of
the ALE methodology in this work is to use an energy potential Wsm defined as a convex
sum of a material and a scalar potential

Wsm(XΨ, X̃Φ) = (1 − αALE)W (XΨ) + αALEW (X̃Φ), (5.5)

with 0 ≤ αALE ≤ 1 the averaging parameter, W a hyperelastic strain energy potential, F̃
a linear function of the natural deformation gradient F , and with the material and spatial
triplets respectively defined as

XΨ = {FΨ,HΨ, JΨ}; X̃Φ = {F̃Φ, H̃Φ, J̃Φ}. (5.6a,b)

The spatial mappings are reconstructed from the natural deformation gradient F and the
material mappings as

F̃Φ = F̃ (F )FΨ; J̃Φ = det
(
F̃ FΨ

)
; H̃Φ = H̃HΨ. (5.7a,b,c)

The time derivative of Equation (5.5) enables the definition of a specific material stress
tensor that, using the general relationships of a hyperelastic model presented in Equation
(3.6), reads

PW : ∇χW =
∂Wsm

∂t

∣∣∣∣
X

=
[
(1 − αALE)P (XΨ) + αALEF̃

TP (X̃Φ)
]

: ∇χW , (5.8)

which yields an expression for the material first Piola-Kirchhoff stress tensor

PW = (1 − αALE)P (XΨ) + αALEF̃
TP (X̃Φ)

= (1 − αALE)
(
ΣFΨ

+ ΣHΨ
FΨ + ΣJΨHΨ

)
+ αALEF̃

T
(
ΣF̃Φ

+ ΣH̃Φ
F̃Φ + ΣJ̃Φ

H̃Φ

)
. (5.9)

An appropriate constitutive model for the deviatoric stress Pdev is presented in Section
5.2.1. The volumetric stress component Pvol can be modelled by one of the potentials
shown in Appendix B.3.2.
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Algorithm 4: Update of PW

1 Construction of natural deformation gradient F̃ (F )

2 Reconstruction of the spatial deformation gradient F̃Φ = F̃ (F )FΨ (Equation (5.7a))

3 Choice of material potential Wsm (Equation (5.5)) and computation to the

corresponding stress PW (Equation (5.9))

5.2.1 Neo-Hookean mesh model

The nearly incompressible neo-Hookean energy potential presented in Section 3.3.1 is used
for the modelling the material first Piola Kirchhoff stresses in the material balance law.
The strain energy potential W (XΨ) = W (FΨ) for the material deformation, and the strain
energy potential W (XΦ) = W (FΦ) for the spatial deformation are defined as

W (FΨ) =
µ

2

[(
J−2/3(FΨ : FΨ)

)
− 3
]

; W (FΦ) =
µ

2

[(
J−2/3(FΦ : FΦ)

)
− 3
]
.

(5.10a,b)
The stress tensors respectively associated to W (XΦ) and W (XΨ) are defined as

Pdev(FΨ) = µJ−2/3FΨ − µ

3
J−5/3 (FΨ : FΨ)FΨ (5.11a)

Pdev(FΦ) = µJ−2/3FΦ − µ

3
J−5/3 (FΦ : FΦ)FΦ. (5.11b)

Note that the stress tensors defined in Equations (5.11a) and (5.11b) are purely deviatoric.
If the mesh motion is considered hyperelastic, a volumetric potential can be used to
complete the model as for the first Piola Kirchhoff stress P applied to the physical body.
Candidates for volumetric potential are shown in Appendix B.3.2. In the case where the
potential W is neo-Hookean , the conjugate stresses required for the expression of the first
Piola Kirchhoff stress defined in Equation (5.9) are expressed as

ΣFΨ
= 2ζJ−2/3FΨ, (5.12a)

ΣHΨ
= 3ξJ−2 (HΨ : HΨ)

1/2 FΨ, (5.12b)

Σ̂JΨ = −2

3
ζJ−5/3 (FΨ : FΨ) , (5.12c)

and

ΣFΦ
= 2ζJ−2/3FΦ, (5.12d)

ΣHΦ
= 3ξJ−2 (HΦ : HΦ)

1/2 FΦ, (5.12e)

Σ̂JΦ = −2

3
ζJ−5/3 (FΦ : FΦ) . (5.12f)

5.3 Conclusion

The core of the ALE numerical framework resides in the mesh motion technique, as it is
built around the conservation law of the material linear momentum pW . The most common
difficulties usually encountered when using a Lagrangian formulation and a static mesh are
outstanding distortions. The conservation law of pW , or material balance law, presented
in Section 5.2 of this Chapter, resorts to a material stress tensor PW that is computed
via a conservative law and expressed in terms of the material deformation gradient FΨ.
The new material balance law is hyperbolic and can be integrated to the ALE mixed
system. Additionally, artificial damping can be added to the mesh motion to alleviate
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potential spurious oscillations in the material motion. The magnitude of the mesh motion
is characterised by the coefficient 0 ≤ αALE ≤ 1. If αALE = 0, the material momentum
becomes null, the material geometric mappings verify {FΨ,HΨ, JΨ} = {I, I, 1}. In the case
of αALE always equal to 0, the ALE mixed formulation degenerates to its Total Lagrangian
equivalent. Recalling the form (2.75), the balance laws, geometrical conservation laws,
conservation laws for plastic internal variables, the conservation of the spatial volume map
and the entropy-related equation are all combined into the set of ALE conservation laws
defined in the following:

U=



pχ

FΦ

FΨ

JΨ

C−1
p

ε̄p

η

JΦ

pW



; FI=−



PχEI

v̂ ⊗EI

W ⊗EI

HT
ΨW ·EI

C−1
p

[
J−1
Ψ HT

ΨW ·EI

]
ε̄p
[
J−1
Ψ HT

ΨW ·EI

]
0

HT
Φv̂ ·EI

PWEI



; S=



f

0

0

0

−2γ̇F−1∂ϕf

∂τ beF
−T

γ̇

−1
θ

(
∇χ ·Qχ

)
+
(
∇χη

)
·
(
F−1
Ψ W

)
+ s+Ḋint

θ

0

0



.

(5.13a,b,c)
Alternatively, the energy-based ALE mixed formulation is defined as

U=



pχ

FΦ

FΨ

JΨ

C−1
p

ε̄p

Eχ

JΦ

pW



; FI=−



PχEI

v̂ ⊗EI

W ⊗EI

HT
ΨW ·EI

C−1
p

[
J−1
Ψ HT

ΨW ·EI

]
ε̄p
[
J−1
Ψ HT

ΨW ·EI

][
P T
χ v+ERH

T
ΨW−Qχ

]
·EI

HT
Φv̂ ·EI

PWEI



; S=



f

0

0

0

−2γ̇F−1∂ϕf

∂τ beF
−T

γ̇

f · v + sχ

0

0



.

(5.14a,b,c)

5.3.1 Different ALE frameworks

The enforcement of suitable kinematic restrictions enables the above ALE system (5.13) to
degenerate into three alternative systems of first-order conservation equations for fast solid
dynamics:

� The Total Lagrangian approach can be recovered by ensuring that both referential
and material domains overlap. It corresponds to enforcing W = 0 and FΨ = I,
which in turn yields χ = X, v̂ = v and FΦ = F .

� The respective Eulerian system is obtained when the referential domain coincides
with with the spatial domain. This is achieved by setting v̂ = 0, and FΦ = I, leading
to χ = x,W = −F−1v and FΨ = F−1.
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� A proposed Updated Reference Lagrangian formulation [20, 37], based on incremental
kinematics, can be obtained via the introduction of a intermediate configuration for
the multiplicative decomposition of the conservation variables. By setting W = 0,
and with given (or prescribed) material mapping functions such as FΨ = F̄Ψ (which

implies χ = χ̄, v̂ = v and F = FΦ

(
F̄Ψ

)−1
, the so-called corresponding Updated

Lagrangian system is obtained.

Alternatively, the ALE system (5.13) can be modified by simplifying the complexity of the
numerical problem. On one hand, a mixed formulation based on different physics can be
obtained by considering the adequate equations (e.g. a simple hyperelastic problem can be
modelled with a p−F formulation). On the other hand, the same choices can be made for
the mesh motion model.

U FI S

p-F formulationpχ

FΦ

 −

 PχEI

v̂ ⊗EI

 f
0


p-F formulation with material F -J formulation

pχ

FΦ

FΨ

JΨ

 −


PχEI

v̂ ⊗EI

W ⊗EI

HT
ΨW ·EI




f

0

0

0


p-F formulation with von-Mises plasticity and material F -J formulation

pχ

FΦ

FΨ

JΨ

C−1
p

ε̄p

JΦ


−



PχEI

v̂ ⊗EI

W ⊗EI

HT
ΨW ·EI

0

0

HT
Φv̂ ·EI





f

0

0

0(
∇χC

−1
p

)(
F−1
Ψ W

)
− 2γ̇F−1 ∂ϕf

∂τ
beF−T(

∇χε̄p
)
·
(
F−1
Ψ W

)
+ γ̇

0


p-F -η formulation with material F -J formulation

pχ

FΦ

FΨ

JΨ

η

JΦ


−



PχEI

v̂ ⊗EI

W ⊗EI

HT
ΨW ·EI

0

HT
Φv̂ ·EI





f

0

0

0

1
θ

(
∇χ ·Qχ

)
+

(
∇χη

)
·
(
F−1
Ψ W

)
+ JΨ

s+Ḋint
θ

0



Table 5.1: Examples of ALE mixed formulations with a prescribed material motion.

The components of the alternative systems are shown in Tables tables 5.1 and 5.2 (The
velocity-deformation gradient formulation is abbreviated p-F ). The motivation to use
non-conservative forms is discussed in Section 6.6 of Chapter 6.
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U FI S

p-F formulation
pχ

FΦ

pW

 −


PχEI

v̂ ⊗EI

PWNχ



f

0

0


p-F formulation with material p-F -J formulation

pχ

FΦ

FΨ

JΨ

pW


−



PχEI

v̂ ⊗EI

W ⊗EI

HT
ΨW ·EI

PWNχ





f

0

0

0

0


p-F formulation with von-Mises plasticity and material p-F -J formulation

pχ

FΦ

FΨ

JΨ

C−1
p

ε̄p

JΦ

pW



−



PχEI

v̂ ⊗EI

W ⊗EI

HT
ΨW ·EI

0

0

HT
Φv̂ ·EI

PWEI





f

0

0

0(
∇χC

−1
p

)(
F−1
Ψ W

)
− 2γ̇F−1 ∂ϕf

∂τ
beF−T(

∇χε̄p
)
·
(
F−1
Ψ W

)
+ γ̇

0

0


p-F -η formulation with material F -J formulation

pχ

FΦ

FΨ

JΨ

η

JΦ

pW


−



PχEI

v̂ ⊗EI

W ⊗EI

HT
ΨW ·EI

0

HT
Φv̂ ·EI

PWEI





f

0

0

0

1
θ

(
∇χ ·Qχ

)
+

(
∇χη

)
·
(
F−1
Ψ W

)
+ JΨ

s+Ḋint
θ

0

0


p-F -η formulation with material F -J formulation

pχ

FΦ

FΨ

JΨ

C−1
p

ε̄p

η

JΦ

pW



−



PχEI

v̂ ⊗EI

W ⊗EI

HT
ΨW ·EI

0

0

0

HT
Φv̂ ·EI

PWEI





f

0

0

0(
∇χC

−1
p

)(
F−1
Ψ W

)
− 2γ̇F−1 ∂ϕf

∂τ
beF−T(

∇χε̄p
)
·
(
F−1
Ψ W

)
+ γ̇

1
θ

(
∇χ ·Qχ

)
+

(
∇χη

)
·
(
F−1
Ψ W

)
+ JΨ

s+Ḋint
θ

0

0


Table 5.2: Examples of ALE mixed formulations with solved material mesh motion.



CHAPTER 6

NUMERICAL DISCRETISATION

“In mathematics as in other fields, to find one self lost in wonder at
some manifestation is frequently the half of a new discovery.”

— Johann Peter Gustav Lejeune Dirichlet, Werke, 1897
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6.1 Introduction

In Chapter 5, the complete set of first order hyperbolic equations that constitute the ALE

formulation was introduced in the continuum, including the conservation of the internal
plastic variables and of the energy, and the conservation and model of the mesh motion.
The work makes use of the Vertex Centred Finite Volume Method (VCFVM) which gives a
methodology to spatially discretise the equations for the numerical solver. This chapter
will introduce the main concepts utilised in VCFVM, including the use of a dual mesh (see
Section 6.2), the general finite volume method (see Section 6.3), the Riemann solver based
on a Godunov-type upwinding stabilisation technique (see Section 6.4), and the linear
reconstruction procedure [75, 263] used in the gradient operator (see Section 6.5).
Furthermore, the set of semi-discretised equations will be presented in Section 6.6, together
with the different boundary conditions [56, 81] in Section6.6.1. Eventually, this chapter
will also shed light on the time integrator in Section 6.7.

6.2 Dual mesh

In this work, the (overlapping-free) median dual tessellation [81, 264–266] will be used on a
tetrahedral mesh. Edge midpoints are connected to face centroids and elements centroids.
This work will use the notation featured in [35, 264]. For a given node a, the set of nodes
connected to it through an edge is denoted by Λa, and the subset of nodes connected to a
through a boundary edge is denoted by ΛB

a . The mean area vector Cab associated to the
edge ab connecting a and b is defined as

Cab
χ =

∑
k∈Γab

AkN
k
χ = −Cba

χ , (6.1)

where Γab is the set of facets belonging to edge ab, Ak is the area of facet k and Nk the
normal vector of k.

a

b1

b2

b3

b4

b5

b6

N i
χN j

χ

Cab3
χ

Ωχ,a

b1, b2, b3, b4, b5, b6 ∈ Λa

∂Ωχ

(a) Interior nodes.

N i
χ

N j
χ

Cab2
χ

a

b1

b2

b3

b4

Ωχ,a

b1, b2, b3, b4 ∈ Λa

b1, b4 ∈ ΛB
a

∂Ωχ

(b) Boundary nodes.

Figure 6.1: Control volumes for (a) an interior node and (b) a boundary node for a median dual
tessellation visualised in 2D.

A two dimensional depiction of the construction of the dual mesh is shown in Figures 6.1,
where both the case of an interior node and a boundary node a (red) is considered. The
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a

b

a

b2

Cab2
χ

Nk
χ

Ak

Figure 6.2: Area vector and its local contribution, for an edge ab2 of a three dimensional
tetrahedral mesh.

interior nodes associated to a, or in the first layer of the vicinity Λa of a, are shown in blue
while the boundary nodes associated to a are shown in red. Note that the neighbours of a
are nodes in the first layer of the vicinity of a (i.e. connected to a by one edge) regardless
of their position in the interior of on the boundary. As a consequence, nodes b1 and b4
in Figure 6.1b belong to the set of boundary nodes λB

a of a and to the set of interior
neighbours Λa of a, and they will be used to compute boundary face values as well as the
interior face values.
It can be seen on Figure 6.1a that control volumes associated to node a and b2 are connected
via a face whose area vector Cab2

χ is reconstructed using Equation (6.1). A three dimensional
visualisation of the reconstructed area vector is shown in Figure 6.2.

6.3 Finite Volume Method

In the Finite Volume Method (FVM), a set of conservation law is integrated on a continuum
partitioned in arbitrary control volumes [265, 267] and is often the method of choice in CFD

due to its flexibility (it can be applied to many types of complex structured/unstructured
grids) and easiness of implementation, and its local discrete conservation properties [30]. It
is based on conservative discretisation of conservation laws in integral forms, which ensures
the local conservation of solved variables at discrete level.
A set of conservation laws (2.73) is integrated onto an arbitrary volume Ωχ,a as

∂

∂t

∣∣∣∣
χ

∫
Ωχ,a

U dVχ = −
∫
∂Ωχ,a

FNχ dAχ +

∫
Ωχ,a

S dVχ, (6.2)

where ∂Ωχ,a is the boundary of Ωχ,a. The combination of all non-overlapping control
volumes recover the integral form (2.73) on the whole domain as∑

a

∂

∂t

∣∣∣∣
χ

∫
Ωχ,a

U dVχ = −
∑
a

∫
∂Ωχ,a

FNχ dAχ +
∑
a

∫
Ωχ,a

S dVχ, (6.3)

and the conservative property requires FNχ = −F−Nχ . The average value of U and S at
Ωχ,a is given by

Ua =
1

Ωχ,a

∫
Ωχ,a

U dV ; Sa =
1

Ωχ,a

∫
Ωχ,a

S dV. (6.4a,b)
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6.3.1 Godunov-type approach

Godunov-type methods are used to give an expression to numerical fluxes and are stated
on a Riemann problem, which is composed on a system form (2.73) with discontinuities.
These problems are linearised and solved by means of approximate Riemann solvers (e.g.
Roe [268–270], Osher [271]) using the eigenstructure of the system (2.73) and designed for
less diffusive solutions in the context of discontinuity/wave propagation phenomena. In the

discretised form (6.3), the flux term
(
FC

Nχ

)
k

passing through facet k can be expressed,

using dual control volumes, as a summation over interior edges together with a sum over
boundary faces, as

Ωχ,a
∂Ua

∂t

∣∣∣∣
χ

= −

∑
b∈Λa

∑
k∈Γb

a

(
FC

Nχ

)
k
Ak +

∑
γ∈ΛB

a

Fγ
aN

γ
χ

Aγ

3

+ Ωχ,aSa, (6.5)

with
(
FC

Nχ

)
k

= FC
Nχ

(U−
k ,U+

k ,Nk
χ) represents the numerical flux at facet k and based

on reconstructed left and right values/states of U . Mean area vectors (6.1) emerge in
Equation (6.5) as

Ωχ,a
∂Ua

∂t

∣∣∣∣
χ

= −

∑
b∈Λa

(
FC

Nχ

)
ab
||Cab

χ || +
∑
γ∈ΛB

a

Fγ
aC

γ
χ

+ Ωχ,a

∑
b∈Λa

Sa, (6.6)

with Cγ
χ = Nγ

χ
Aγ

3 the area vector at the boundary face γ, and where
(
FC

Nχ

)
ab

=

FC
Nχ

(
U−
ab,U

+
ab,N

ab
χ

)
is the numerical flux at midpoint of edge ab, expressed in terms of

the normal Nab
χ associated to this flux, and U−

ab,U
+
ab the reconstructed left and right values

of U at edge ab (discussed in the next section). Moreover, the contribution of node a for
the flux over the three-dimensional surface γ (composed of three nodes a, b, c) will be given
by a weighted average stencil [272]

Fγ
a =

6Fa + Fb + Fc

8
. (6.7)

To avoid checker-boarding errors37, the expression of flux terms can be obtained through
several methodologies. For instance, the Jameson-Schmidt-Turkel (JST) scheme is very
popular in CFD and was also implemented for solid mechanics [81, 82]. Moreover, Rhie-
Chow [13, 273–275] stabilisation provides a way to detect high-frequency oscillations by
adding a term to the divergence of stresses.

The framework presented in this work makes use of a central difference scheme [276],
together with numerical dissipation. This artificial dissipation is required to circumvent
numerical instabilities and in particular the appearance of numerical modes [267]. In the
conservation of linear momentum pχ and of the material linear momentum pW , traction
terms emerge in the right hand side as the product of a stress-like tensor with a surface
norm vector, and are defined as

tχ =

(
P + (

pχ

JΨ
⊗W )

)
HΨNχ; tW = PWNχ. (6.8a,b)

The contact fluxes of the discretised Riemann problem (6.6) can be generalised to the case
where elastic, thermo-mechanical and plastic variables are considered together with the

37Also referred to as zero-energy modes or hour-glassing.
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conservation of the mesh motion (presented in Equation (5.3)), as

FC
Nχ,ab = −



tCχ,ab

v̂ave
ab ⊗Nab

χ

W ave
ab ⊗Nab

χ

W ave
ab ·Have

Ψ,abN
ab
χ

C−1,ave
p,ab

(
J−1
FΨ,aH

T
Ψ,aWaN

ab
χ

)
ε̄avep,ab

(
J−1
FΨ,aH

T
Ψ,aWaN

ab
χ

)
0

Have
Φ,av̂

C
ab ⊗Nab

χ

tCW ,ab



, (6.9)

where the average operator is defined as [•]aveab = 1
2 ([•]a + [•]b) and corresponds to a central

difference scheme. Contact fluxes components in the above equation will therefore be
composed of an unstable (average) term and a stabilisation term. It has to be noted that
due to the satisfaction of involutions, the fluxes corresponding to the deformation gradients
FΨ and FΦ (second and third components) do not include stabilisation. Moreover, as
remarked in [24], the use of a mixed formulation outperforms any stabilisation technique,
and thence no stabilisation is required for the plastic internal variables, which is the reason
why the 5th and 6th component of the contact flux in Equation (6.9) does only feature
averaging38.

6.4 Godunov upwinding stabilisation

Solutions of hyperbolic equations39 can be visualised as propagating waves. Hence in
nonlinear systems, discontinuities are generated and/or propagated, and uniqueness of the
solution is lost. This corresponds to a violation of the entropy condition presented in Section
4.3.2 and studied in Appendix C.. It is therefore necessary for the numerical framework to
include a dissipation term40 to single out admissible weak solutions. Upwinding stabilisation
(also known as high order correction) has extensively been used with the Godunov approach
(see for instance [20, 75]) and will be used in this work. Using this technique enables the
numerical framework to recover second-order accuracy, ipso facto circumventing the inf-sup
Ladyzhenskaya-Babuška-Brezzi (LBB) condition [84, 283], and it motivates the use of linear
tetrahedral elements.

6.4.1 Contact scenario

In this section, the impact between two bodies is considered, where two types of elastic shock
waves originate from the contact point and propagate through both bodies. More especially,
a frictionless impact will result in a surface traction with no tangential component, and
the corresponding wave speeds will travel with a volumetric speed cχ,p. In addition, under
infinite friction contact, shock waves will propagate with a shear wave speed cχ,s. In this

38Upwinding stabilisation could be considered also in this case but it is not in the scope of this work.
39Hyperbolic conservation laws are denoted as quasilinear hyperbolic systems in divergence forms (see

the work of [30, 214, 277–279] for extended studies). Conservative symmetric hyperbolic equations (in the
sense of Einstein-Friedrich [280–282]) describe wave propagation phenomena.

40Incorporating the second law of Thermodynamics, or an artificial numerical dissipation, are a classical
technique hitherto.
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work, normal vectors will be assumed collinear on either surfaces of the interface, as well as
tangential vectors. Following the development in the works of Kluth et al. [284] and Maire
et al. [95], the normal and tangential operators are applied to the jump of linear momentum
(2.57) which, at the interface edge ab, yields, in linear elasticity (cχ,p = c+χ,p = c−χ,p and
cχ,s = c+χ,s = c−χ,s)

cχ,pρχ (nab ⊗ nab) JvKab = − (nab ⊗ nab) Jtχ,abK, (6.10a)

cχ,sρχ (I − nab ⊗ nab) JvKab = − (I − nab ⊗ nab) Jtχ,abK, (6.10b)

where ρχ = ρRJΨ is the density projected to the material domain, and where the normals
n are simply a push-forward mapping of the referential normal vectors as

nab =
F−T,ave
Φ,ab Nab

χ

||F−T,ave
Φ,ab Nab

χ ||
. (6.11)

Following the work of [2, 75, 82], linear momentum and traction contact fluxes are expressed
as

vC
ab = vave

ab + vstab
ab ; tCχ,ab = taveχ,ab + tstabχ,ab. (6.12a,b)

The first term on the right hand side in Equations (6.12b) and (6.12a) constitute an
unstable flux41 whose expression is given by a simple central difference scheme as

vave
ab =

1

2
(va + vb) ; taveχ,ab =

1

2
(tχ,a + tχ,b) . (6.13a,b)

On the other hand, the second term on the right hand side of Equations (6.12b) and (6.12a)
constitute the upwinding stabilisation terms and, in the context of a homogeneous material
where properties are uniform across the continuum, are defined as

vstab
ab =

1

2ρaveχ

Sab
v

(
p+ab − p−ab

)
(HΨ)aveab Nab

χ , (6.14a)

tstabχ,ab =
1

2
ρaveχ,abS

ab
t

(
v+
ab − v−

ab

)
, (6.14b)

and with (positive definite) stabilisation matrices defined as

Sab
v =

1

cχ,p
(nab ⊗ nab) +

1

cχ,s
(I − nab ⊗ nab) , (6.15a)

Sab
t = cχ,p (nab ⊗ nab) + cχ,s (I − nab ⊗ nab) . (6.15b)

Equation (6.12b) represents the stabilised flux term in the conservation of linear mo-
mentum, and Equation (6.12a) represents the stabilised flux term in the conservation of
the deformation gradient. Under the same considerations as in the previous section, the
Rankine-Hugoniot condition (5.2) for the conservation of pW is projected normally and
tangentially. The contact flux is then proposed to be built following the same structure as
Equation (6.12b) as

tCW ,ab = taveW ,ab + tstabW ,ab, (6.16)

where the taveW ,ab is an average value corresponding to the central difference scheme, and

where tstabW ,ab is a stabilisation term sharing its structure with the contact flux in Equation
(6.15b), which yields

taveW ,ab =
1

2
(PW ,a + PW ,b)N

ab
χ ; tstabW ,ab =

1

2
(ρR)aveab Sab

W

(
W+

ab −W−
ab

)
, (6.17a,b)

41The referred terms can be seen as a FE discretisation of a linear tetrahedral mesh [75, 93].
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based on the stabilisation term

Sab
W = cχ,p

(
Nab

χ ⊗Nab
χ

)
+ cχ,s

(
I −Nab

χ ⊗Nab
χ

)
. (6.18)

A stabilisation procedure is also proposed for the spatial velocity v̂ based on the stabilisation
term (6.12a) as

v̂C
ab = v̂ave

ab + v̂stab
ab , (6.19)

where each term is defined as

v̂ave
ab =

1

2
(v̂a + v̂b) ; v̂stab

ab =
1

2ρaveχ

Sab
v

(
p+ab − p−ab

)
Have

Φ,abN
ab
χ . (6.20a,b)

In the context of homogenous linear elasticity, and taking into consideration the expression
of the linear momenta pχ = JΨρRv and pW = ρRW and the contact fluxes tχ =
(P + pR ⊗W )HΨ and tW = PWNχ, the contact fluxes can be stated in the following
compact forms

pC
χ =

1

2

(
p+
χ + p−

χ

)
+

1

2JΨ
Save
v

(
p+ − p−

)
(H)aveNX , (6.21a)

v̂C = v̂ave +
1

2ρaveχ

Sv

(
p+ − p−

)
Have

Φ Nχ, (6.21b)

tCχ = [(P + pR ⊗W )HΨ]ave +
1

2
ρaveχ St

(
v+ − v−) , (6.21c)

tCW =
1

2
P ave
W Nχ +

1

2
ρaveR SW

(
W+ −W−) . (6.21d)

Equations (6.21a–6.21d) can be integrated in the discretised ALE formulation, and can
degenerate to TLF contact fluxes already presented in [2, 75].

6.5 Linear reconstruction

The Godunov method is a monotone linear scheme where the unknown variables are
reconstructed as a piecewise constant at the grid elements, and can only be first-order
accurate in that regard. Indeed, the diffusivity of the truncation error leads to a downgrade
of the spatial and time accuracy to first-order. To overcome these drawbacks, several
modifications and extensions to the Godunov method have been developed. One approach
is to use adaptive mesh refinement techniques, which can dynamically adjust the grid
resolution to focus computational effort where it is most needed. On the other hand,
computational effort can be made in the expression of contact fluxes by using higher-order
numerical schemes. One can cite the WENO scheme and the MUSCL-Hancock scheme [2,
55], which can reduce numerical oscillations and improve the accuracy of the solution.
In this work, a local piecewise linear reconstruction procedure is performed to obtain the
values of the solution at either side of a discontinuity or interface, thereby leading to a
second-order accurate solution. Mathematically, it reads [107, 285]

U+
ab = Ua + Ga · dea; U−

ab = Ub + Gb · deb (6.22a,b)

where Ga is the gradient of U at node a, and dea = χe − χa. corresponds, for an edge e
composed of noes a an b, to the distance between the midpoint and the node a.
An advantage of this method is that gradients can all be computed together, prior to the
update of primary variables, and used in the expression of the right hand sides. Using the
Green-Gauss procedure [266]

Ga =
1

Ωχ,a

∑
b∈Λa

Uave
ab Cab

χ +
∑
γ∈ΛB

a

Uγ
aC

γ
χ

 , (6.23)
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where Uγ
a is obtained via the weighted average stencil defined in Equation (6.7).

It is important to note that the above procedure constitutes the prediction step of the
Total Variation Diminishing Monotone Upstream Scheme for Conservation Laws technique,
or TVD-MUSCL, as originally presented in Sweby [286] and Leer et al. [287], and used in the
works of Lee et al. [285]. Because of the potential presence of overshoots and undershoots in
the computation of fluxes [2, 30, 263], the predicted gradient operator has to be corrected
by employing a slope limiter to respect the maximum principle.

Remark 6.5.1 In the present work, only minor discontinuities are present, thereby pre-
serving the quality of the reconstituted gradient is good enough and no filter is needed.
Nevertheless, the reader is invited to refer to the previous publication of our group [2, 75]
for an implementation of the Barth et al. [263] limiter.

6.6 Discretisation of the mixed formulation

The ALE mixed formulation, stated in Equation (5.13), can now be stated in their semi-
discretised form, featuring the unstable and stabilised fluxes. The main equations of the
set are spatially discretised as

Ωχ,a
∂pχ,a

∂t

∣∣∣∣
χ

−

∑
b∈Λa

tCχ,ab||Cab
χ || +

∑
γ∈ΛB

a

tCχ ||Cγ
χ|| + Ωχ,afa

 = 0 (6.24a)

Ωχ,a
∂FΦ,a

∂t

∣∣∣∣
χ

−

∑
b∈Λa

v̂ave
ab ⊗Cab

χ +
∑
γ∈ΛB

a

v̂γ ⊗Cγ
χ

 = 0 (6.24b)

Ωχ,a
∂FΨ,a

∂t

∣∣∣∣
χ

−

∑
b∈Λa

W ave
ab ⊗Cab

χ +
∑
γ∈ΛB

a

W γ ⊗Cγ
χ

 = 0 (6.24c)

Ωχ,a
∂JΨ,a

∂t

∣∣∣∣
χ

−

∑
b∈Λa

(
HT

ΨW
)ave
ab

·Cab
χ

 = 0 (6.24d)

Ωχ,a

∂C−1
p,a

∂t

∣∣∣∣∣
χ

=
∑
b∈Λa

(
C−1

p

)ave
ab

[
F−1
Ψ,aWa

]
·Cab

χ + Ωχ,a

(
−2γ̇F−1∂ϕf

∂τ
beF

−T

)
a

(6.24e)

Ωχ,a
∂ε̄p,a
∂t

∣∣∣∣
χ

=
∑
b∈Λa

(ε̄p)
ave
ab

[
F−1
Ψ,aWa

]
·Cab

χ + Ωχ,aγ̇a (6.24f)

Ωχ,a
∂ηa
∂t

∣∣∣∣
χ

+
∑
b∈Λa

[
Qave

χ,ab

θa
·Cave

χ

]
=
∑
b∈Λa

ηaveab

[
F−1
Ψ,aWa

]
·Cab

χ +
Ḋint,a

θa
(6.24g)

Ωχ,a
∂JΦ,a

∂t

∣∣∣∣
χ

−

HΦ,a :

∑
b∈Λa

v̂ave
ab ⊗Cab

χ +
∑
γ∈ΛB

a

v̂γ ⊗Cγ
χ

+
∑
b∈Λa

v̂stab
ab ·Cab

x

 = 0

(6.24h)

Ωχ,a
∂pW ,a

∂t

∣∣∣∣
χ

−

∑
b∈Λa

tCW ,ab||Cab
χ || +

∑
γ∈Λγ

a

tγW ||Cγ
χ|| − νΨ,apW ,a

 = 0. (6.24i)
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As is was shown in this section, the selected approach for solving the mixed formulation
is to correct the interface numerical fluxes to ensure non-negative numerical entropy
production. In plasticity equations, the dominance in magnitude of the plasticity term over
the ALE correction term motivated the use of a non-conservative form (see transformation
in Equation (2.44)). Furthermore, the plasticity equations mentioned earlier are solved
implicitly. This choice was made for ease of integration within the proposed ALE framework,
which has the capability to degenerate into a Total Lagrangian approach. Different
implementations for these equations can be considered; the use of an explicit integration
is possible but led to substantial numerical instabilities in this work. Additionally, it is
important to mention that while the plasticity equations in the mixed formulation (6.24)
are presented in non-conservative form, it is crucial that their structure is coherent with the
conservation of material Jacobian (6.24d). That is to say, they must be all implemented in
either a conservative or a non-conservative form in the framework.

Together with the above discretised system, the conservation equation for the plastic
dissipation, stated in Equation (4.22), is also required in the context of plasticity. Its
spatially discretised form is

Ωχ,a
∂wp,a

∂t

∣∣∣∣
χ

=
∑
b∈Λa

(wp)
ave
ab

[
J−1
FΨ,aH

T
Ψ,aWa

]
·Cab

χ + Ωχ,aḊint,a. (6.25)

In the above equation, the second term of the right-hand side is computed within the
Lagrangian plasticity update, and the first term on the right-hand side corresponds to
the ALE component responsible for adjusting the value after mesh motion. In a Total
Lagrangian context, the latter term vanishes and the update of the plastic dissipation
is fully conducted in the plasticity update. It must be emphasised that Equation (6.25)
is redundant and is exclusively used for plotting purposes. In thermo-mechanics, and to
account for possibly strong thermally-coupled scenarios, the spatially discretised system
(6.24) was provided with the first law of thermodynamics written in terms of the entropy
η. Alternatively, that system can instead be supplemented with the conservation of the
scaled total energy Eχ [21, 22]. In discretised form, it reads

Ωχ,a
∂Eχ,a

∂t

∣∣∣∣
χ

=
∑
b∈Λa

[
vC
ab · taveχ,ab||Cab

χ || +
([

ERH
T
ΨW

]ave
ab

−Qave
χ,ab

)
·Cab

χ

]
+
∑
b∈ΛB

a

vγ · tγχ||Cγ
χ|| + Ωχ,a (fa · va + sχ,a) . (6.26)

The discretisation of the flux term in the balance of linear momentum (2.54) is given
in Equation (6.24a) using the linear momentum contact flux (6.12b). While upwinding
stabilisation can be inserted in the discrete conservation of geometric mappings42 [56], this
work will only make use of upwinding stabilisation for the spatial volume map JΦ. No
numerical stabilisation in introduced in the discretisation of the material (6.24c) and spatial
(6.24b) deformation gradients. The discretisation of the conservation of η [22] is given
in Equation (6.24g). The discretisation of the material velocity W is given in Equation
(6.24i). Following the semi-discrete version of the classical Coleman-Noll 43 procedure [212,
224], the stabilisation terms in Equations (6.15a), (6.15b) and (6.18) ensure the production
of numerical entropy.

42Although upwinding stabilisation can be given to the conservation equation of the deformation gradient
and its cofactor, those mappings are naturally curl-free and do not require stabilisation [56, 75].

43The Coleman-Noll procedure is presented for the system at a continuum level in Appendix C.
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6.6.1 Boundary conditions

It is clear from Equations (6.12) that expressions need to be provided for the linear
momentum and the traction on the boundaries44. Moreover, the importance of a symmetric
boundary condition for the material velocity W was highlighted in Chapter 5. Flux terms
require enforcement of their value on boundary faces (see Table 6.1), whereas spatial and
material linear momenta can be prescribed on the boundary faces or boundary nodes (see
Tables 6.1 and 6.2). This is due to the fact that pχ and W are both appearing in a flux
term, and are conserved quantities.
The interface along the boundary is such that the value in the interior corresponds to
the negative superscript value and the value in the outer domain corresponds to the
positive superscript. Consequently, the different boundary conditions can be brought out
by applying proper values in the outer domain for contact fluxes (6.21a–6.21d).

Moving surface

A boundary that is considered moving at a velocity vB can be mathematically stated, for
a face γ, as

v+
γ = vB. (6.27)

Note that in the case of a fixed boundary, also denoted as sticking surface (wall or no-slip
condition in CFD), the velocity at the boundary is restricted to 0 and the above Equation
becomes pχ,γ = 0. As a consequence, no local deformation is allowed in any direction and
the wave speeds tend to infinity as

c+p,χ = c+s,χ = ∞. (6.28)

Substituting above equations in Equations (6.21a) and (6.21c), it yields

vC = vB; tCχ = t−χ + ρχSv

(
vB − v−) . (6.29a,b)

Traction on a free surface

When a traction tB is applied on a surface, it can be expressed as

t+χ,γ = tB, (6.30)

and the wave speeds can be expressed as [2]

c+p,χ = c+s,χ = 0. (6.31)

Using the same substitution process, the contact fluxes are

vC = v− +
1

ρχ,γ
St

(
tB − t−

)
; tCχ = tB. (6.32a,b)

Symmetric surface

When a surface (denoted as sliding or symmetric) is considered a roller support, the velocity
is only allowed ot slide along the boundary and is therefore restricted to its tangential
component, which can be stated as

v+
γ · n = 0. (6.33)

44Boundary conditions can be denoted as weak and strong when they are respectively applied on fluxes
and on nodes). The traction is only weakly imposed while the linear momenta is weakly and/or strongly
imposed.
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tγχ,a vγ
a W γ

a

Traction tγB vγ
a

(I −Nγ
χ ⊗Nγ

χ)W γ
a

Moving tγχ,a vγ
B

Symmetric (Nγ
χ ⊗Nγ

χ) tγχ,a (I −Nγ
χ ⊗Nγ

χ)va

Anti-symmetric (I −Nγ
χ ⊗Nγ

χ) tγχ,a (Nγ
χ ⊗Nγ

χ)va

Table 6.1: Facial contribution to a boundary node a for a boundary condition on spatial and
material quantities.

va Wa

Traction va

(I −Nχ ⊗Nχ)Wa

Moving vB

Symmetric (I −Nχ ⊗Nχ)va

Anti-symmetric (Nχ ⊗Nχ)va

Table 6.2: Nodal contribution to a boundary node a for a boundary condition on spatial and
material velocities.

and consequently,
c+p,χ ≡ ∞; c+s,∞ = 0. (6.34a,b)

Moreover, if a traction tB is applied on that boundary, Equation (6.30) holds and contact
fluxes become

vC = (I −Nχ ⊗Nχ)

[
v− +

1

ρχ,γc
−
s,χ

(
tB − t−χ

)]
; (6.35a)

tCχ = (Nχ ⊗Nχ)
[
t− − u−p,χp

−
χ

]
+ (I −Nχ ⊗Nχ) tB. (6.35b)

Skew-symmetric surface

In the case of a skew-symmetric surface, the velocity is restricted to its normal component

v+
γ = p+

γ · n, (6.36)

and as a result
c+p,χ = 0; c+s,∞ ≡ ∞. (6.37a,b)

Contact fluxes are defined as

vC = (Nχ ⊗Nχ)

[
v− +

1

ρχ,γc
−
s,χ

(
tB − t−χ

)]
(6.38a)

tCχ = (I −Nχ ⊗Nχ)
[
t− − u−p,χp

−
χ

]
+ (Nχ ⊗Nχ) tB. (6.38b)

Note that in Table 6.1, the velocity v is unaltered along free boundaries while the traction is
unaltered along fixed (or clamped) boundaries. Moreover, the value of those two quantities
is only partially altered on symmetric and anti-symmetric by the appropriate normal or
tangential operator. The base value of those two quantities, at face γ, is given by the



6.7. TIME-MARCHING SCHEME 65

weighted average stencil defined in Equation (6.12). A free boundary is a boundary where
the prescribed traction tBχ = 0. A fixed boundary is a moving boundary with velocity

vB = 0. Boundary conditions can be strongly applied at boundary nodes, as presented in
Table 6.2.

6.7 Time-marching scheme

To preserve second-order accuracy offered by the upwinding stabilisation, the time-marching
scheme in this work will rely on an high-order explicit time integrator. This Section presents
the Total Variation Diminishing one step multistage Runge-Kutta method (TVD-RK) [288,
289] used in this work for the conservation variables U stated in Equation (5.13) and
the geometric material xΨ and spatial xΦ positions vector, which is very well suited for
fast-transient problems where small time increments may have to be used to accurately
capture physical phenomena such as plasticity yielding and nearly incompressible materials
undergoing important load. This method has already been explored in [2, 35, 56, 75, 81,
107, 290, 291] and is overall a popular choice due to its high accuracy and implementation.
The 2-stage Runge-Kutta time integration for a variable U is defined as

U⋆
a = Un

a + ∆t U̇n
a (Un

a ), (6.39a)

Un+1
a =

1

2
Un
a +

1

2

(
U⋆
a + ∆t U̇⋆

a (U⋆
a )
)
, (6.39b)

where U⋆ represents an intermediate state, or stage, computed from the solution Un at
timestep n, used to obtain the result at timestep n + 1. Note that in the case of the
2-stage Runge-Kutta method, Equation (6.39a) corresponds to a classical forward Euler
time integration. Additionally, the 3-stage Runge-Kutta time integration reads

U⋆
a = Un

a + ∆t U̇n
a (Un

a ), (6.40a)

U⋆⋆
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)
, (6.40b)
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1

3
Un
a +

2

3

(
U⋆⋆
a + ∆t U̇⋆⋆

a (U⋆⋆
a )
)
, (6.40c)

where U⋆
a and U⋆⋆

a are two intermediate stages to advance from timestep n to timestep
n + 1. For a given stage, These integration procedures involve a weighted average both the
solution Un at original timestep n, and the sum of the solution at the previous stage45 and
their corresponding right hand side. Note that this RK integrator can easily reduce to the
forward Euler method consisting of only one stage, expressed as

Un+1
a = Un

a + ∆t U̇n
a (Un

a ). (6.41)

The computation of the time increment ∆t is based on a CFL number 0 < αCFL < 1 and is
defined as

∆t = αCFL min

(
hλΦ

cχ,p

)
, (6.42)

where h is the minimum edge length in the reference mesh, cχ,p is the p-wave speed, and λΦ

is the spatial stretch obtained as the minimum eigenvalue of the spatial right Cauchy-Green
tensor CΦ at node a. This condition, whose bounded values are found in the Von-Neumann
stability analysis, is crucial for explicit time integrators as it is designed to ensure numerical
stability, henceforth avoiding the appearance and propagation of spurious oscillations.
Eventually, the update of the non-linear ALE wave speeds cχ,p and cχ,s is established in
Equation (3.33).

45Stage 0 corresponds to the solution at timestep n.
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6.7.1 Implicit source terms

In the discrete set of ALE equations in Section 6.6, the terms were arranged so that the left
hand side is composed of the conserved variable and the term that is explicitly computed in
every RK iteration. That term corresponds to the convective component of each equation,
which is represented by the divergence operator in the continuum. On the other hand,
the right hand side is composed of the terms that are treated as source for each equation.
There are source terms for the plastic internal variables, the entropy equation and the
evolution of the plastic dissipation. They are treated as implicit terms in the algorithm.
For example, the conservation of plastic internal variables can be fully discretised as(
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p
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]
. (6.43b)

For post-processing purposes, the material Ψ and spatial Φ mappings can be obtained by
integrating their respective momenta, whose balance is solved explicitly in this framework.
That integration is herein performed by means of a backward Euler method. In the case
of a Total Lagrangian framework (that is, W = 0), the time update of the plasticity
model exclusively relies on the predictor step (which corresponds to the Lagrangian phase).
This update for plastic variables follows the implicit Backward Euler method, a technique
well-established in earlier works [2, 81, 217].

6.8 Conclusion

This Chapter introduced the spatial and time discretisation methodologies used in this work
for the implementation of the numerical framework. The domain is discretised following the
Vertex-Centred Finite Volume Method (VCFVM). It is primarily characterised by a dual
mesh obtained via median tessellation, as described in Section 6.2. Then, the notation and
the discretised ALE equation were presented in 6.3. Contact fluxes were conferred therein,
and in the context of this work, the Godunov method with upwind stabilisation was used in
Chapter 6.4 to compute those fluxes and recover second-order accuracy. This methodology
requires the reconstruction of left and right values of quantities at the interface between two
cells, which is taken care of by a linear reconstruction procedure based on the nodal gradient
operator and shown in Section 6.5. All the previous considerations were incorporated in
the ALE framework in Section 6.6, where the semi-discretised form of every conservation
law of the ALE mixed system is presented. The boundary values require special treatment
that is featured in Section 6.6.1. Eventually, Section 6.7 presents the methodology used
to integrate the equations in time, using the TVD-RK schemes. In the next Chapter, the
implementation of the present ALE framework in a dedicated OpenFOAM package will be
presented.



CHAPTER 7

OPENFOAM IMPLEMENTATION

“Theory and practice sometimes clash. And when that happens,
theory loses. Every single time.”

— Linus Torvald, 2009

67
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7.1 Introduction

OpenFOAM46 (Open-source Field Operation And Manipulation) [39, 75, 292] is an open-
source software C++ package originally designed for computational fluid dynamics (CFD)
that is widely used in a variety of industries. It is commonly used in

� aerospace engineering, for the simulation of aircraft and rocket propulsion systems,
as well as for the design of aircraft and spacecraft components,

� the automotive industry, for the simulation of internal combustion engines, exhaust
systems, and cooling systems,

� in chemical engineering, for the simulation of chemical reactions, mixing, and heat
transfer in industrial processes,

� biomedical engineering, for simulation blood flows in the human cardiovascular
system,

� civil and marine engineering, electrical engineering, mechanical engineering and more.

OpenFOAM is mainly based on the Cell-Centred Finite Volume Method (CCFVM) and
provides a wide range of solvers (e.g. PISO, SIMPLE, PIMPLE) for simulating different types
of fluid flows, combustion, heat transfers including laminar, turbulent, and multiphase
flows, and many more. Its parallel computing component is based on the Message Passing
Interface (MPI). The software also includes a wide range of utility programs for pre-
and post-processing, including data visualization, mesh generation, and data conversion.
OpenFOAM software also comes with a extensive list of quality requirements47 such as
modularity, design patterns [293], maintainability and easy deployment.

The selection of the OpenFOAM platform as the primary tool for generating results in this
work is well-founded, owing to its myriad advantages in CFD. An essential strength of
OpenFOAM lies in its status as an open-source solution,which enables the scientific commu-
nity to scrutinize, modify, and enhance the underlying algorithms and numerical schemes,
thus fostering a collaborative and transparent research environment. OpenFOAM’s active
and extensive user community contributes to its continual development and enhancement.
Frequent updates and improvements ensure that the software remains at the forefront of
computational dynamics research.

Moreover, OpenFOAM exhibits inherent flexibility and adaptability, rooted in its object-
oriented architecture. This feature facilitates seamless customization and extensibility,
enabling researchers to tailor the software to their specific research requirements. Conse-
quently, complex and novel CFD simulations are regularly implemented, while maintaining
a high degree of numerical accuracy and reliability. The software’s underlying numerical
methods and solvers are well-vetted, demonstrating robustness and accuracy across a
diverse range of fluid dynamics problems. Its support for various turbulence models,
discretization schemes, and boundary conditions further accentuates its proficiency in
capturing intricate flow phenomena encountered in practical engineering applications.
Its validation against benchmark experiments and industrial data instils confidence in
its applicability to real-world engineering challenges. Additionally, OpenFOAM boasts a
comprehensive suite of pre-processing and post-processing utilities, facilitating the efficient
setup of simulation cases and the subsequent analysis and visualization of results. For all
these aforementioned reasons, OpenFOAM appeared as a tool of choice48 to implement
the ALE formulation.

This chapter will present the solver made from scratch that implements the novel ALE

formulation for fast solid dynamics, as well as the code workflow.

46Further information about the OpenFOAM platform can be viewed in [48, 66, 97, 292].
47See OpenFOAM Foundation’s Code quality guide at https://openfoam.org/dev/code-quality/.
48The benefits of using OpenFOAM are in [75].

https://openfoam.org/dev/code-quality/
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7.1.1 OpenFOAM versions

It is important to keep in mind that OpenFOAM is a trademark related to an open-
source initiative. It has therefore underwent many forks in its extensive lifetime. In
other words, several projects have been releasing their own version of the OpenFOAM
code package. At the time of this work, the most outstanding contributors are ESI’s
OpenCFD49, the OpenFOAM Foundation50, and the foam-extend project. This work is
based on OpenFOAM-6, the version of the OpenFOAM Foundation that came out in
August 2018, and is compatible with OpenFOAM v1806, the version of OpenCFD that
was released in June 2018.

7.2 Simulation workflow

In the following section, the code structure is presented, as well as the setup of a numerical
experiment and the simulation workflow. A focus will be put on the algorithmic description
of the solver, and specifically how the different numerical considerations mentioned in the
previous chapter are used.

7.2.1 Code structure

The solver files are organised following OpenFOAM’s standards with the use of header files
(.H files), and is represented in Figure 7.1. The structure comes with 3 main elements:
python scripts to manipulate data (in scripts folder), initialConditions (in utility folder)
to set up simple or complex initial distributions, and the solver’s binary file (vcALEFoam,
in the eponym folder). The latter contains files representing all the necessary steps for the
algorithm51. The content of the solver’s main file can be viewed in Listing 7.1. The

1 /*---------------------------------------------------------------------------*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration | Website: https :// openfoam.org

5 \\ / A nd | Copyright (C) 2011-2018 OpenFOAM Foundation

6 \\/ M anipulation |

7 -------------------------------------------------------------------------------

8
9 License

10 This file is part of OpenFOAM.

11
12 OpenFOAM is free software: you can redistribute it and/or modify it

13 under the terms of the GNU General Public License as published by

14 the Free Software Foundation , either version 3 of the License , or

15 (at your option) any later version.

16
17 OpenFOAM is distributed in the hope that it will be useful , but WITHOUT

18 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

20 for more details.

21
22 You should have received a copy of the GNU General Public License

23 along with OpenFOAM. If not , see <http ://www.gnu.org/licenses/>.

24
25 Application

26 vcALEFoam

27
28 Description

29 Main Algorithm

30
31 \*---------------------------------------------------------------------------*/

32
33 #include "fvCFD.H"

34 #include "solidModel.H"

35 #include "mechanics.H"

36 #include "operations.H"

37 #include "aleModel.H"

38
39 #include <chrono >

40 #include "side.H"

41 #include "labelListIOList.H"

42 #include "vectorListIOList.H"

49OpenCFD’s version is also denoted as openfoam.com.
50The OpenFOAM Foundation’s version is also denoted as openfoam.org.
51The header files included before the main function are necessary for the solver to recognise OpenFOAM

objects as well as the custom libraries.

openfoam.com
openfoam.org
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 vcALE

 applications

 scripts

 plot functions.py

 launcher.py

 solvers

 vcALEFoam

 Make

 checks.H

 createFields.H

 rhs.H
 postPro.H

 readControl.H
 strongBCs.H

 updateVariables.H

 updateStress.H

 vcALEFoam.C

 weakBCs.H

 utilities

 initialConditions

Figure 7.1: Solver structure: files related to the main solver; files related to the compilation are
omitted.

43 #include "gradientSchemes.H"

44
45 //#include "primitivePatchInterpolation.H"

46 //#include "symmetricPatchPointPatchField.H"

47
48 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

49 int main(int argc , char *argv []){

50 #include "setRootCase.H"

51 #include "createTime.H"

52 #include "createMesh.H"

53 #include "readControls.H"

54 #include "createFields.H"

55
56 while (runTime.loop()) { // time loop

57 /* Compute time values * * * * * * * * * * * * * * * * * * * * * * * * * */

58 stretch = mech.stretch(spatF); minStretch = gMin(stretch);

59 if (timeStepping == "variable") {

60 deltaT = mech.getNewDT(stretch , x, spatF , model.Up().value (), cfl);

61 runTime.setDeltaT(deltaT);

62 }

63 Up = model.Up().value()/minStretch; Us = model.Us().value ()/minStretch;

64 t += deltaT; tstep ++;

65 Info << nl << "Time␣Step␣=" << tstep << nl

66 << "deltaT␣=␣" << deltaT.value() << "␣s" << nl

67 << "Time␣=␣" << t.value () << "␣s" << nl;

68
69 /* check for mesh motion (isALE) * * * * * * * * * * * * * * * * * * * * */

70 meshUpdate = meshUpdateCheck(model , aleModel_ , minStretch);

71
72 #include "saveOldTime.H" /* save old variables * * * * * * * * * * * * * */

73
74 for(RKstage =0; RKstage <nbRKstages; RKstage ++) { /* RK loop * * * * * * * */

75 isLastStage = (RKstage ==( nbRKstages-1));

76 #include "gradients.H" // Compute gradients

77 #include "rhs.H" // Compute interior of RHS

78
79 #include "calculFlux.H"

80
81 #include "weakBCs.H" // Compute boundary of RHS

82
83 #include "integrator.H" // Advance conserved vars

84
85 #include "updateVariables.H" // correct ALE and F,H,J,v,vHat

86 #include "strongBCs.H" // applys BCs

87 #include "updateStress.H" // compute Piola tensors

88 } /* end RK loop * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

89
90 if ((not usePstar) and meshUpdate) aleModel_.correct ();

91 W = aleModel_.wDot_noref ();

92 #include "backwardEuler.H" // only for source terms
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93
94 sprintf(percentageCompleted , "%.3f", (t.value()/endTime)*100.);

95 Info << "Simulation␣completed␣=␣" << percentageCompleted << "%"

96 << "␣-␣Clock␣=␣" << runTime.elapsedClockTime () << "s" << nl;

97
98 //if (FSI){

99 //u = x - X;

100 // updateCellDisp(cellDisp , u);

101 //}

102
103 if (runTime.writeTime ()) {

104 #include "postPro.H"

105 }

106
107 } // end time loop

108
109 std:: time_t end_time = getDatetime ();

110 Info << "\nExecutionTime␣=␣" << runTime.elapsedCpuTime () << "␣s"

111 << "␣␣ClockTime␣=␣" << runTime.elapsedClockTime () << "␣s"

112 << "\nEnd␣\t␣datetime:␣" << std::ctime(& end_time) ;

113 return EXIT_SUCCESS;

114 } /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

Listing 7.1: vcALEFoam.C

1 //if (isThermo ()) p_ -= (cv_ * Gamma0_) * (theta - thetaR_psf ());//

2 if (isThermo ()) basicThermo.correctPressure(p_ , theta);

3 P_ = (mu_ * op.pow(J_, -2./3.) * F_) // SigmaF

4 - ( ((mu_ /3.)*op.pow(J_,-5./3.)) * ((F_&&F_) * H_) ) // SigmaJ ’ H

5 + (p_*H_);

6
7 } else if ( elasticityModel.Deviatoric ().getName () == "linearelastic" ){ //(model_ == "linearelastic ") {

8 p_ = kappa_ * (J_ - op.ID()); // wrong but unused (1/3 of cauchy)

9 P_ = (mu_*(F_ + F_.T() - 2*op.IDtensor ()))

10 + (lambda_ * ((tr(F_) - 3*op.ID()) * op.IDtensor ()))

11 ;

12 } else

13 */

14 FatalErrorInFunction << "error␣solidModel :: correct ()" << abort(FatalError);

15 }

16
17 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

18
19 void solidModel :: correct4(

20 pointTensorField& P, // Piola tensor

21 pointScalarField& p, // pressure

22 const pointTensorField& F_ , // natural F

23 const pointScalarField& newJ_ , // natural J

24 pointTensorField& CpInv , // inverse of plastic right Cauchy

25 pointScalarField& strain_p , // plastic strain

26 const pointScalarField& T, // temperature

27 pointScalarField& eps_dot , // time rate of platic strain

28 pointScalarField& coeffTau , // coeff to scale tauDev

29 pointScalarField& vMises_ , // von Mises stress

30 pointScalarField& intDEV ,

31 pointScalarField& intVOL ,

32 bool isLastStage , // is it the last RK stage?

33 const scalar& dt

34 ){

35 const scalar sqrt15 = Foam::sqrt (1.5);

36 const scalar mu = mu_.value();

37 const pointScalarField JF = Foam::det(F_);

38 const pointTensorField Finv_ = Foam::inv(F_).ref();

39 p = elasticityModel.Volumetric ().p(newJ_);

40 if (isThermo ()) basicThermo.correctPressure(p, T); //p-=cvGamma0(T-TR);

41
42 forAll(mesh_.points (), n){

43 /* Jacobi Spectral decomposition * * * * * * * * * * * * * * * * * * * * */

44 tensor be = (F_[n] & CpInv[n]) & F_[n].T();

45 tensor eVec = op.eigenS_sqrt(be , eStretch[n]); // eigenvect and sqrteigenval

46 const tensor n0xn0 = (vector (1,0,0) & eVec) * (vector (1,0,0) & eVec); //n0*n0;

47 const tensor n1xn1 = (vector (0,1,0) & eVec) * (vector (0,1,0) & eVec); //n1*n1;

48 const tensor n2xn2 = (vector (0,0,1) & eVec) * (vector (0,0,1) & eVec); //n2*n2;

49
50 /* Trial Deviatoric Kirchoff Stress Vector * * * * * * * * * * * * * * * */

51 vector tauDev = 2.* mu * op.log(Foam::pow(JF[n],-1./3.) * eStretch[n]);

52 const scalar normTauDev = Foam::sqrt(tauDev & tauDev);

53
54 /* Yield Criterion * * * * * * * * * * * * * * * * * * * * * * * * * * * */

55 scalar plasticM_ ;

56 scalar tauY = 0;

57 // compute f and tauY

58 scalar f = plasticityModel.phi2(tauY , tauDev , strain_p[n], eps_dot[n], T[n]);

59 if ( (f > 0.0) and isLastStage ){ /* von-Mises plasticity yield * * * * * * * * * * * * * */

60 const vector directionV = tauDev * sqrt15 / normTauDev;

61
62 // Compute Plastic Multiplier

63 plasticM_ = plasticityModel.Newton3(f,mu ,strain_p[n],T[n],eps_dot[n],tauY/* sigmaY */);

64
65 // Correct elastic stretches

66 eStretch[n][0] /= Foam::exp( plasticM_*directionV [0] );

67 eStretch[n][1] /= Foam::exp( plasticM_*directionV [1] );

68 eStretch[n][2] /= Foam::exp( plasticM_*directionV [2] );

69
70 // Principle Deviatoric Kirchoff Stress Tensor

71 coeffTau[n] = 1. - ( Foam::sqrt (6.) * mu*plasticM_ / normTauDev );

72 tauDev *= coeffTau[n];

73 } else {/* end von-Mises plasticity yield * * * * * * * * * * * * * * * */
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74 coeffTau[n] = 1.; plasticM_ = 0;

75 }

76 /* Update Kirchhoff and Piola Stresses * * * * * * * * * * * * * * * * * */

77 const scalar JFp_n = JF[n] * p[n];

78 const tensor Kirch = (( tauDev [0] + JFp_n) * n0xn0)

79 + (( tauDev [1] + JFp_n) * n1xn1)

80 + (( tauDev [2] + JFp_n) * n2xn2) ;

81 P[n] = Kirch & Finv_[n].T();

82
83 /* Compute von-Mises * * * * * * * * * * * * * * * * * * * * * * * * * * */

84 const tensor devK = Kirch - (JFp_n * tensor ::I);

85 vMises_[n] = sqrt15 * Foam::sqrt( devK && devK );

86 if ( (f > 0.0) and isLastStage ) { /* Compute be , and CpInv , eps , epsdot * * * * * * * * * */

87 be = (( eStretch[n][0]* eStretch[n][0]) * n0xn0)

Listing 7.2: solidModel.C

Furthermore, the solver is accompanied by a set of libraries: the solidModels library, which
implements the necessary routines to update the physical stress. The aleModels library,
which is in charge of computing or updating all the quantities impacted by mesh motion in
the ALE formulation. The volumetricEnergy and deviatoricEnergy libraries, which entail
models of volumetric and deviatoric energy potentials together with their derived stress
tensors. The libraries implementing energy potentials are used both for the solid model
and for the ALE model due to the complex expression of the considered Piola-Kirchhoff
stress P .

 vcALE

 src

 schemes

 gradientSchemes

 interpolationSchemes

 mathematics

 mechanics

 dualMesh

 operations

 models

 solid

 Make

 thermoModel

 EOS

 thermoModel.H

 thermoModel.C
 plasticModel

 elasticModel

 solidModel.H

 solidModel.C

 ale

 deviatoric

 volumetric

 tutorials

Figure 7.2: Solver structure: library sources; files related to the compilation are omitted.

7.2.2 Setup of the numerical simulation

The description of the simulation workflow respected by the author is described in the
following and summarised in Figure 7.3. Before conducting a numerical simulation with
OpenFOAM, a comprehensive pre-processing step involving geometry design is required.
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This stage encompasses the use of various tools and software to create a suitable geometry
for analysis. For instance, CAD software, such as SolidWorks, Autodesk Inventor, CATIA,
Salome or FreeCAD, can be employed to design the initial 3D geometry and generally offer
user-friendly interfaces for creating complex shapes and structures, as well as to perform
geometry clean-ups. Alternatively, GMSH is a mesh generation software extensively used
within the OpenFOAM community, which enables the generation of structured or unstruc-
tured meshes, and which relies on scripts and parameters like cell size, boundary layers,
and refinement zones to accurately represent the geometry. Furthermore, the OpenFOAM

suite comes with in-house tools such as blockMesh to create structured geometries, and
snappyHexMesh to refine and capture intricate geometry design.

The obtained geometry serves as the foundation for the subsequent numerical setup in
OpenFOAM and therefore requires careful attention. The boundaries will be associated
with boundary conditions for the spatial and material linear momenta and/or velocities, as
well as for the spatial and material tractions.

For commercial software, the attribution of boundary conditions is done together with the
geometry design. When both are ready, the mesh can be generated.

Accurately defining the physical model and material properties is a critical step for
conducting the numerical simulation. It involves specifying the governing equations, and
material properties that govern the behaviour of the system under analysis. The choice
of governing equations depends on the specific physics being simulated, and properties
such as density, viscosity, thermal conductivity, and specific heat capacity must be defined
based on the physical properties of the materials involved.

The numerical scheme plays a vital role in achieving accurate and stable results, and
governs how the governing equations are discretised and solved numerically. For instance,
OpenFOAM natively proposes common discretisation schemes such as first-order upwind,
second-order central differencing, third-order QUICK, and higher-order schemes like MUSCL.
OpenFOAM also employs various gradient calculation schemes such as the least squares
method, and linear or cubic Gauss methods. OpenFOAM supports different time integration
schemes, such as explicit methods (Euler and Runge-Kutta methods), and implicit methods
(Crank-Nicolson).

After the solver has finished the simulation, effective visualization techniques enable the
extraction of meaningful insights. For instance, post-processing tools such as Paraview can
be used to visualize simulation results. Also, time-varying plots of quantitative data such
as averages can also be conducted with the use of custom-made Python scripts.

The structure of a numerical experiment is presented in Figure 7.4. Generically, a clean
and run scripts are present to clean the folder, and prepare and run the numerical solver.
The empty file case.foam is a mock up for Paraview to be able to read mesh information,
and the specimen.msh file is a GMSH generated mesh file that can be converted to OF

format. The mesh information, after being generated, is located in the constant/polyMesh
folder and usually comprises the files boundary, pointZones, cellZones, owner, faceZones,
faces, neighbour, points, sets, volume (refer to [50] for further explanation). The file
constant/mechanicalProperties contains the selected models and relevant parameters used
in the simulation, and the file constant/runParameters contains technical information such
as the name of meshfiles. In 0.orig, the user includes the initial conditions and boundary
types for all relevant fields (usually pχ denoted as lm and θ denoted as theta). Eventually,
the directory system contains the file controlDict that is a file dictionary containing data
such as start and end times of the simulation, number of timesteps or the value of the
CFL number. In classical OF solvers, that folder also contains the files fvSchemes and
fvSolution that are used to set which numerical solver will be used for divergence and
gradient computation.
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Geometry design Initial and Boundary conditions

Mesh generationPhysical model and parameters

Opt for a numerical scheme Run the solver

Data visualisationData plots

Figure 7.3: Workflow of an OpenFOAM simulation. The pre-processing steps are represented in
blue, the post-processing steps are represented in red and the solving step is represented in grey.

 case

 clean

 run

 case.foam
 specimen.msh

 0.orig

 lm

 theta

 constant

 mechanicalProperties

 runParameters
 polyMesh

 system

 controlDict

 log.vcALEFoam

 log.initialConditions vcALEFoam

Figure 7.4: Case directory structure.

7.2.3 Algorithm workflow

The workflow is presented in Algorithm 5. The term RHS refers to the right hand side
expression of any solved conservation law. The algorithm is followed regardless of the time
integrator. The spatial λΦ and material λΦ stretches, as well as the plasticity algorithm,
features the computation of eigenstructures taken care of by the Jacobi iterative algorithm
[294].
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Algorithm 5: Workflow of the visco-plasticity algorithm, featuring the multi-stage

Runge-Kutta time integrator.

1 Compute spatial stretch λΦ;

2 Compute timestep increment ∆t;

3 Save values of previous timestep;

4 for Runge-Kutta stage k {
5 Obtain integration coefficients;

6 Compute gradients ∇χv,∇χW ,∇χp ;

7 Compute RHS interior and boundary;

8 Update displacements Ψ,Φ and conserved variables U ;

9 Compute intermediate variables F ,H, J,v, v̂;

10 Apply strong boundary corrections for pχ,W , v̂;

11 Update stresses P ,PW and temperature θ;

12 Compute plastic dissipation wp;

13 Compute implicit convective term for plastic internal variables;

Remark 7.2.1 Generic OpenFOAM solvers usually make use of a list of commands each
performing an action on an entire field; for instance, pointTensorField invF = Foam::inv(F)
computes the inverse of the deformation gradient tensor tensor F at every node, and stores
the variable in invF. The author opted for a different approach that is more optimised in
the case of the ALE solver because it results in minimising the loops over edges, faces and
nodes.

7.3 Conclusion

This chapter presented how the numerical schemes and the set of conservations laws are
put together in a framework for further use in numerical experiments. It encompasses the
resolution of the ALE equations presented in the previous chapters, as well as numerical
techniques adapted for fast solid dynamics, for the first time on the OpenFOAM platform.
The power of the C language together with the flexibility of the formulation and an optimised
implementation, makes this framework a serious alternative in fast solid dynamics, as
demonstrated by the numerical examples in the next chapters.



CHAPTER 8

NUMERICAL SIMULATIONS: ISOTHERMAL CASES

“Qui dit préjugé dit une opinion qu’on a reçue sans examen; parce
qu’elle ne se soutiendrait pas.”

— Emilie du Châtelet, Discours sur le bonheur, 1779
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8.1 Introduction

The objective of this Chapter is to present a series of numerical examples in order to show
the applicability of the ALE computational framework as well as to prove its robustness,
its accuracy and its capability to preserve momentum. Scenarii involving polyconvex
hyperelastic isothermal constitutive models for nearly incompressible materials will be
considered. The mixed system considered in this Chapter comprises the general ALE

equations presented in Equations (2.76), and are supplemented by the plasticity equation
in the context of isothermal plasticity. The resulting framework used in this chapter hence
relies on the (isothermal) elastoplastic mixed systems reported in Section (5.3.1) (that
is, the first and second mixed formulations presented in Tables ??). All examples are
simulated in a three dimensional space using the proposed ALE solid mechanics solver
vcALEFoam whose structure is presented in Chapter 7. The ALE numerical framework
can be referred to as vc-ALE.
The body forces are considered to be neglected, unless stated otherwise. The energy
components may be reported but the energy remains uncoupled from the mixed system.
In the case of material undergoing reversible (elastic) deformation, the prescription of a
mesh motion is applied unless stated otherwise. On the other hand, situation involving
permanent (plastic) deformations will demonstrate the potential of the ALE framework by
solving the material motion based on the conservation law introduced in Chapter 5.
For several numerical cases, an analytically prescribed motion is used to benchmark the ALE

formulation. That prescribed motion is composed of sinusoidal function and can be viewed
in Section 8.1.1. Moreover, the ALE formulation is sometimes compared with its equivalent
Total Lagrangian form. Such TLF equivalent is obtained by means of degenerating the ALE

equations, and is discussed in Appendix B.5. In the following, the material and spatial
cofactor will always be treated as intermediate variables, while the importance to solving
the other geometric mappings will be assessed in Section 8.2.

8.1.1 Analytical prescription of ALE motion

The material motion can be artificially prescribed by an analytical expression, provided
geometrical requirements mentioned in Section 5.1.1 are satisfied. In the following, an
example of prescribed material mapping is represented by a plane sinusoidal-type function
defined for a rectangular domain of dimensions χ1,R and χ2,R and of centre (χC

1 , χ
C
2 ) as

Ψβ = χ +
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(
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(
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 , (8.1)

where χ̃1 =
χ1+χC

1
2π and χ̃2 =

χ2+χC
2

2π are coordinates shifted with respect to the centre of
the domain, βx, β and β[m/s] > 0 are parameters determining the magnitude of the mesh
motion, and Tx, Ty and T are the periods52 of the sinusoid functions. Due to the sinusoidal
structure of the motion (8.1), nodes oscillate either vertically or horizontally. Note that the
symmetry condition W ·NX is always fulfilled. Moreover, the conservation of geometrical
mappings XΨ is satisfied by construction. This material motion is depicted in Figure 8.1
on an unit cube for a magnitude β = 10−2m, where a selection of nodes is highlighted in
red colour so their displacements can be followed. Note that in addition to the nature of
the prescribed mesh mapping, the quality of the mesh is further impacted by the use of
tetrahedral elements, and in particular their orientation.

52Most of the numerical cases imply βy =
χR
2

χR
1
βx =

χR
2

χR
1
β, and Tx = Ty/2 = T .
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0T 0.15T 0.25T

0.50T 0.60T 0.90T

Figure 8.1: Visualisation of the analytical material motion (8.1) on a unit cube with a magnitude
β = 10−2m. A range of 8 nodes is highlighted in red so their displacements can be followed.

8.2 Satisfaction of geometric conservation laws: Patch test

X

Y

Z

(-0.5,0,0.5)

(0.5,6,-0.5)

H = 6m

L = 1m

v0

Figure 8.2: Translation: Problem setup.

all faces free boundary
(6.32)

Table 8.1: Summary of boundary conditions.

This first numerical example consists of a three-dimensional patch test in order to assess
the correctness of the computational implementation, and the importance of fulfilling the
discrete geometric conservation laws. This problem was already presented in [195, 199,
219, 232, 295]. The considered specimen is a 1 × 6 × 1m square column presented in
Figure 8.2. The polyconvex hyperelastic constitutive model considered is the neo-Hookean
model together with the volumetric potential presented in [239] and featured in Table
B.1. The material parameters are listed in Table 8.2. Velocities are uniformly initialised
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(a) Mesh S1 (b) Mesh U1

Figure 8.3: Translation:(a) Structured (S1) and (b) unstructured (U1) meshes. An overview of
the mesh is presented on the left and a crinkle clip of half of the column is presented on the right.

to v0 = [3, 1, 0]Tm/s in the body and the boundaries are all left free (see Table 8.1) so a
straight uniform displacement is expected across the whole specimen. In addition, the
natural deformation gradient F is expected to remain the identity mapping, the first
Piola-Kirchhoff stress tensor P is expected to remain equal to 0 and the natural Jacobian
J is expected to remain equal to 1 throughout the numerical simulation. The volumetric
potential is based on the [239] model defined in Appendix B.3.2.

Young’s modulus E [MPa] 17

density ρR [kg/m3] 1100

Poisson’s ratio ν 0.45

Table 8.2: Translation: Table of physical parameters.

period T [s] 0.5

magnitude β [m/s] 0.02

Table 8.3: Translation: Table of parameters for the prescribed mesh motion in Equation (8.1).

First of all, a structured mesh53 S1 of 4 × 24 × 4 tetrahedral elements (2304 elements, 625
nodes) is compared to an unstructured mesh U1 (1864 elements, 551 nodes). The objective
is to demonstrate that the same result is obtained in both cases using the Total Lagrangian
Formulation, and therefore that the implementation of the numerical framework does not
depend on the structure of the mesh. In Figure 8.4, the error in J is and the error in the
first and second velocity components are presented for the L2 norm. As expected the two
meshes provide very similar results that only differ due to machine accuracy.
Secondly, the mesh motion presented in Equation (8.1) is prescribed to the numerical
simulation with parameters listed in the Table 8.3, and the results are compared when using
a different number of geometric conservation laws, on the S1 mesh. The objective is to
demonstrate that when introducing a non negligible mesh motion, the numerical framework
must account for additional (geometric) conservation laws to recover the accuracy of the
Total Lagrangian simulation. A collection of snapshots can be viewed in Figure 8.7 at

53Note that results of this numerical example are shown with the present mesh because it is reused
throughout this chapter. For this patch test, similar results can be obtained with a coarser mesh.
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Figure 8.4: Translation: Time evolution of the L2 error in Jacobian and velocity components when
using a Total Lagrangian Formulation and solving for {pχ,FΦ} on a structured (blue) and on an
unstructured (green) mesh. Results obtained with velocity v0 = [3, 1, 0]T m/s using a discretisation
of 4 × 24 × 4 elements across on a tetrahedral mesh. A neo-Hookean model is used with parameters
listed in Table 8.2.

time t = 0, 0.8, 1.6, 2.4, 3.2, 4.0, 4.8s for 3 cases: a) The formulation pχ,FΦ is used and no
geometric conservation laws are solved, b) the formulation pχ,FΦ is solved, including the
material deformation gradient, and c) the formulation pχ,FΦ,FΨ, JΨ is solved, including
the material deformation gradient FΨ and material Jacobian JΨ. It can be seen in the
first scenario that the straight trajectory of the body is lost, and strong instabilities in the
Jacobian appeared. In the second scenario, the addition of the conservation law on the
material deformation gradient lets the body keep its original straight trajectory but it is
still smeared with consequent Jacobian instabilities. In the third and final scenario, the
addition of the conservation law on the material Jacobian lets the body keep its straight
line and addresses the instabilities in the natural Jacobian. Those visual observations are
accompanied by a study of the L2-error in the natural Jacobian 8.6 and velocity components
in Figure 8.6. The first scenario where no geometric conservation law is solved corresponds
to the blue curve and it is clear that the error in Jacobian and in the velocity components
is of a too great factor. In the second scenario, which corresponds to the introduction of
the conservation law of the material deformation gradient FΨ and that is represented by
the green curve, both errors decrease and the deviation of the column is no longer visible
(as noted in Figure 8.7). However, the best quality results are obtained when solving for
the two geometric conservation laws (scenario 3) and are represented by the red curve. In
this last example, the errors are comparable to those reported for the Total Lagrangian
case (see Figure 8.4).
As a conclusion, the implementation of the numerical framework was proven to be adapted
to structured and unstructured meshes for simple geometries. The accuracy obtained via
a simulation based on the Total Lagrangian formulation can be obtained when using the
Arbitrary Lagrangian Eulerian method, provided the two geometric conservation laws are
solved. If the conservation of the material Jacobian is not solved, the results can still
be accepted but a significant loss of accuracy is observed. However, the conservation of
the material deformation gradient must be solved when using the Arbitrary Lagrangian
Eulerian method to avoid important accuracy losses that are very likely to affect the
stability of the numerical framework.
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Figure 8.5: Translation: Time evolution of the L2-error in Jacobian ||J − 1||L2 when solving for
{pχ,FΦ} (blue), {pχ,FΦ,FΨ} (green) and {pχ,FΦ,FΨ, JΦ} (red). Results obtained with velocity
v0 = [3, 1, 0]T m/s using mesh S1. A neo-Hookean model is used with parameters listed in Table 8.2.
The prescribed mesh motion is presented in Equation (8.1) with parameters listed in Table 8.3.
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Figure 8.6: Translation: Time evolution of the L2-error in velocity components ||vi−v0,i||L2 when
solving for {pχ,FΦ} (blue), {pχ,FΦ,FΨ} (green) and {pχ,FΦ,FΨ, JΦ} (red). Results obtained
with velocity v0 = [3, 1, 0]T m/s using mesh S1. A neo-Hookean model is used with parameters
listed in Table 8.2. The prescribed mesh motion is presented in Equation (8.1) with parameters
listed in Table 8.3.
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(a) {pχ,FΦ} formulation.

(b) {pχ,FΦ,FΨ} formulation.

(c) {pχ,FΦ,FΨ, JΨ} formulation.

Magnitude ||J − 1||L2

Figure 8.7: Translation: Snapshots of the deformation at time t = 0, 0.8, 1.6, 2.4, 3.2, 4.0, 4.8s,
along with distribution ||J − 1||L2 when solving for different conservation laws. Results obtained
with velocity v0 = [3, 1, 0]T m/s using mesh S1. A neo-Hookean model is used with parameters
listed in Table 8.2. The prescribed mesh motion is presented in Equation (8.1) with parameters
listed in Table 8.3.
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8.3 Mesh convergence: Low dispersion swinging cube

χ1

χ2

χ3

Figure 8.8: Swinging cube: Geometry.

faces χ1 = 0, χ2 = 0
and χ3 = 0

symmetric boundary
(6.35)

faces χ1 = 1, χ2 = 1
and χ3 = 1

anti-symmetric
boundary (6.38)

Table 8.4: Summary of boundary conditions.

The objective of this numerical experiment is to assess the spatial convergence of the
proposed numerical framework, based on the Vertex-Centred Finite Volume Methodology
(VCFVM) and on the implementation of the general ALE mixed system (2.76), including
the linear momentum pχ, the spatial deformation gradient FΦ and the two material
mappings JΨ and FΨ. This numerical example was introduced for a two-dimensional
geometry in [296], and further studied in [285]. More recently, it has been studied for a
three-dimensional geometry using a cell-centred [75] and a vertex-centred [56] approach, as
well as for a SPH [109] approach. The considered geometry consists in a three-dimensional
unit cube (see Figure 8.8) with symmetric boundary conditions at faces χ1 = 0, χ2 = 0
and χ3 = 0, and skew-symmetric boundary conditions at faces χ1 = 1, χ2 = 1 and χ3 = 1
(which is summarised in Table 8.4). The constitutive model used for the simulations is
a hyperelastic neo-Hookean deviatoric model paired with a quadratic potential (see the
Table B.1 of volumetric potentials). For small deformations, the constitutive behaviour of
the material can be approximated by the linear elasticity theory, and the problem has a
closed-form solution characterised by displacements defined as [58, 75, 76, 78–81, 107, 108,
197, 285]

u(χ, t) = U0 cos

(√
3

2
cdt

)
A sin(πχ1

2 ) cos(πχ2

2 ) cos(πχ3

2 )

B cos(πχ1

2 ) sin(πχ2

2 ) cos(πχ3

2 )

C cos(πχ1

2 ) cos(πχ2

2 ) sin(πχ3

2 )

 ; cd =

√
λ + 2µ

ρR
. (8.2a,b)

In the closed-form solution (8.2), the arbitrary parameters A,B,C verify A = B = C to
ensure the existence of a non-zero54 pressure field. Moreover, the magnitude U0 must
be small enough for the solution to be considered linear and the closed-form solution to
hold. Consequently, in this convergence study, the initialisation of the numerical example
is based on the closed-form (8.2), which can then be used to obtain the initial geometric
mappings

F0 = I + ∇χu0; H0 =
1

2
F0 F0; J0 =

1

6
(F0 F0) : F0, (8.3a,b,c)

54Alternatively, this numerical example was studied in [35, 58, 76, 78, 197] with parameters verifying

A+B + C = 0 and cd =
√

µ
ρR

, which leads to a non-volumetric deformation field.
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and the initial displacement field

u0 ≡ u(χ, 0). (8.4)

Young’s modulus E [MPa] 17

Density ρ [kg/m3] 1100

Poisson’s ratio ν 0.45

Table 8.5: Swinging cube: Table of parameters for the physical model and for the closed-form
solution.

Period T [s] 1 × 10−3

Magnitude β [m/s] 1 × 10−4

Table 8.6: Swinging cube: Table of parameters for the prescribed mesh motion in Equation (8.1).

The values of the parameters for the closed-form solution, as well as the values of the
physical parameters, are summarised in Table 8.5. The convergence study is performed
with the general ALE mixed system (2.76) with a mesh motion prescribed by Equation (8.1)
and parameters defined in Table 8.6. The results are obtained at the time t = 1ms and the
time is integrated by a 2-stage Runge-Kutta scheme to aim at second-order accuracy.

A convergence study is carried out for the general ALE mixed formulation (2.76), when
the material mesh motion is prescribed via the displacement in Equation (8.1) and with
the parameters in Table 8.6, and based on the L1 and L2 norm of the error for the velocity
components and the diagonal components of the first Piola Kirchhoff stress. It is performed
on four meshes: S1 (343 nodes, 1296 tetrahedra, 6 elements across each edge), S2 (2197
nodes, 10368 tetrahedra, 12 elements across each edge), S3 (15625 nodes, 82944 tetrahedra,
24 elements across each edge), and S4 (117649 nodes, 663552 tetrahedra, 48 elements
across each edge). First of all, Tables 8.7 and 8.8 list the error figures using the L1 norm,
respectively for the three components of v and the diagonal components of P . Then,
Tables 8.9 and 8.10 show the error figures using the L2 norm, respectively for the three
components of v and the diagonal components of P . Eventually, the convergence rates of
the aforementioned errors are depicted, using both the L1 and the L2 norms, on Figures

L1 error vx vy vz

1/6 3.189 × 10−2 3.177 × 10−2 3.059 × 10−2

1/12 7.718 × 10−3 7.876 × 10−3 7.578 × 10−3

1/24 1.902 × 10−3 1.934 × 10−3 1.880 × 10−3

1/48 4.641 × 10−4 4.641 × 10−4 4.627 × 10−4

conv. rate 2.035 2.059 2.023

Table 8.7: Swinging cube: numerical values for the L1-error of the velocity components, based
on the closed-form (8.2) and the ALE mixed formulation (2.76). Convergence rates are calculated
using meshes S3 and S4. A neo-Hookean model is used with parameters listed in Table 8.5. The
prescribed mesh motion is presented in Equation (8.1) with parameters listed in Table 8.6.
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L1 error Pxx Pyy Pzz

1/6 1.881 × 10−2 1.881 × 10−2 1.881 × 10−2

1/12 4.928 × 10−3 4.928 × 10−3 4.926 × 10−3

1/24 1.252 × 10−3 1.252 × 10−3 1.252 × 10−3

1/48 3.163 × 10−4 3.163 × 10−4 3.163 × 10−4

conv. rate 1.985 1.985 1.985

Table 8.8: Swinging cube: numerical values for the L1-error of the diagonal components of P ,
based on the closed-form (8.2) and the ALE mixed formulation (2.76). Convergence rates are
calculated using meshes S3 and S4. A neo-Hookean model is used with parameters listed in Table
8.5. The prescribed mesh motion is presented in Equation (8.1) with parameters listed in Table 8.6.

L2 error vx vy vz

1/6 2.716 × 10−2 2.709 × 10−2 2.645 × 10−2

1/12 6.678 × 10−3 6.769 × 10−3 6.569 × 10−3

1/24 1.654 × 10−3 1.676 × 10−3 1.641 × 10−3

1/48 4.065 × 10−4 4.064 × 10−4 4.042 × 10−4

conv. rate 2.025 2.044 2.021

Table 8.9: Swinging cube: numerical values for the L2-error of the velocity components, based
on the closed-form (8.2) and the ALE mixed formulation (2.76). Convergence rates are calculated
using meshes S3 and S4. A neo-Hookean model is used with parameters listed in Table 8.5. The
prescribed mesh motion is presented in Equation (8.1) with parameters listed in Table 8.6.

L2 error Pxx Pyy Pzz

1/6 1.798 × 10−2 1.798 × 10−2 1.797 × 10−2

1/12 4.661 × 10−3 4.661 × 10−3 4.660 × 10−3

1/24 1.171 × 10−3 1.171 × 10−3 1.171 × 10−3

1/48 2.932 × 10−4 2.932 × 10−4 2.932 × 10−4

conv. rate 1.997 1.997 1.997

Table 8.10: Swinging cube: numerical values for the L2-error of the diagonal components of
P , based on the closed-form (8.2) and the ALE mixed formulation (2.76). Convergence rates are
calculated using meshes S3 and S4. A neo-Hookean model is used with parameters listed in Table
8.5. The prescribed mesh motion is presented in Equation (8.1) with parameters listed in Table 8.6.
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Figure 8.9: Swinging cube: L1 and L2 global convergence analysis at time t = 1ms for the
components of the velocity, based on the closed-form (8.2) and the ALE mixed formulation (2.76).
A neo-Hookean model is used with parameters listed in Table 8.5. The prescribed mesh motion is
presented in Equation (8.1) with parameters listed in Table 8.6.
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Figure 8.10: Swinging cube: L1 and L2 global convergence analysis at time t = 1ms for the
components of the first Piola Kirchhoff stress tensor, based on the closed-form (8.2) and the ALE
mixed formulation (2.76). A neo-Hookean model is used with parameters listed in Table 8.5. The
prescribed mesh motion is presented in Equation (8.1) with parameters listed in Table 8.6.

8.9 and 8.10, for respectively the velocity components and the diagonal components of P .
This convergence study clearly shows the capability of the vc-ALE numerical framework
to perform a second-order spatial convergence for both velocities and stresses, as compared
to the analytical closed-form solution described in Equation (8.2).
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8.4 L-shaped block

χ1

χ2

χ3

F1(t)

F2(t)

(6,0,0)

(0,10,0)

(3,3,3)

Figure 8.11: L-shaped block: Problem setup.

face χ2 = 10 traction bound-
ary (6.32)

face χ1 = 6 traction bound-
ary (6.32)

all remaining
faces

free boundary
(6.32)

Table 8.11: Summary of boundary conditions.

As studied in [58, 75, 108], the objective of this classical benchmark problem is to measure
the capability of the proposed method to preserve both linear and angular momenta, as
well as total energy over a long term response. A L-shaped specimen (see Figure 8.11)
is subjected to an external torque consisting of time-varying tractions applied on two
boundary faces, and described as

F1(t) = −F2(t) =


150

300

450

 f(t), f(t) =


t if 0 ≤ t < 2.5

t− 5 if 2.5 ≤ t < t

0 else

. (8.5a,b)

The time span of 5s at the beginning of the simulation hence corresponds to a loading
phase where energy is introduced in the system. After t = 5s, the specimen is left tumbling
in space with free boundary conditions (see Table) 8.11 and suffers from finite deformations
and large rotations. A hyperelastic neo-Hookean model is considered with parameters
summarised in Table 8.12.

Young’s modulus E [kPa] 50.05

density ρR [kg/m3] 1000

Poisson’s ratio ν 0.3

Table 8.12: L-shaped block: Table of parameters.

In this numerical example, the results will be compared for the Total Lagrangian {pχ,FΦ}
formulation, and for the ALE {pχ,FΦ,FΨ, JΨ} formulation. In the case of the ALE

formulation, the mesh motion is prescribed with Equation (8.1), where parameters are
listed in Table 8.13. The mesh motion is concealed to a rectangular area delimited by the
points (0, 10, 0) and (1, 0, 1), and can be viewed in Figure 8.14. The volumetric potential is
based on the [239] model defined in Appendix B.3.2.
Several meshes will be considered: {S1, S2, S3} comprises respectively {5616, 18954, 44928}
cells and {1323, 4000, 8957} particles. Those meshes are reported in Figure 8.12. The
simulations are conducted with a 2-stage RK integrator, and a fixed CFL number αCFL = 0.3
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Period T [s] 1

Magnitude β [m/s] 2 × 10−2

Table 8.13: L-shaped block: Table of parameters for the mesh motion.

(a) S1 ALE (b) S2 ALE (c) S3 ALE

Figure 8.12: L-shaped block: Presentation of the S1, S2 and S3 meshes.

was used. A refinement analysis is shown in Figure 8.13 for the 3 meshes using the ALE

formulation and the Total Lagrangian formulation (TLF) at time 24s. The deformation
pattern as well as the pressure distribution for a small number of particles agree very well
with the results obtained using finer discretisations. Results when using the ALE mixed
formulation and when using TLF are also in very good agreement. As compared with
previous results (SPH [37], CCFVM [75] and Petrov-Galerkin [78]), the deformation as
well as the pressure field are visually matching with those reported using the ALE mixed
formulation.

(a) S1 ALE (b) S2 ALE (c) S3 ALE (d) S3 TLF

Figure 8.13: L-shaped block: Pressure distribution at time t = 24s using, from the left to
the right, the S1, S2 and S3 meshes together with the proposed ALE method and the S3 mesh
together with the TLF method. Results are obtained with the impulse boundary condition (8.5). A
neo-Hookean model is used with parameters in Table 8.12. The prescribed mesh motion is presented
in Equation (8.1) with parameters listed in Table 8.13.

In Figure 8.15, snapshots of deformations are shown together with the pressure distribution.
The three components of the global linear and angular momenta are shown respectively
in Figures 8.16 and 8.16 to study the ability of the proposed ALE mixed formulation
to preserve them. The global linear momentum closely oscillates around zero machine
accuracy as the specimen spins around its motionless centre of mass, and is conserved
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0s 0.1s 0.2s 0.3s

0.4s 0.5s 0.6s 0.7s

0.8s 0.9s 1s 1.1s

Figure 8.14: L-shaped block: Time evolution of the mesh deformation at time t =
0.1, 0.2, 0.3, ..., 1.0, 1.1s (left to right, top to bottom), along with contours of ||uΨ||, when solving for
the ALE {pχ,FΦ,FΨ, JΨ} formulation. Results are obtained with the impulse boundary condition
(8.5), and using mesh S2. A neo-Hookean model is used with parameters in Table 8.12. The
prescribed mesh motion is presented in Equation (8.1) with parameters listed in Table 8.13.
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Figure 8.15: L-shaped block: Time evolution of the deformation at time t = 0, 1, 2, 3, ..., 19s
(left to right, top to bottom), along with pressure contours, when solving for the {pχ,FΦ,FΨ, JΨ}
formulation. Results are obtained with the impulse boundary condition (8.5), and using mesh
S3. A neo-Hookean model is used with parameters in Table 8.12. The prescribed mesh motion is
presented in Equation (8.1) with parameters listed in Table 8.13.
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Figure 8.16: L-shaped block: Time evolution of the global linear momentum for the ALE
{pχ,FΦ,FΨ, JΨ} formulation. Results are obtained with the impulse boundary condition (8.5),
and using mesh S3. A neo-Hookean model is used with parameters in Table 8.12. The prescribed
mesh motion is presented in Equation (8.1) with parameters listed in Table 8.13.
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Figure 8.17: L-shaped block: Time evolution of the global angular momentum for the ALE
{pχ,FΦ,FΨ, JΨ} formulation. Results are obtained with the impulse boundary condition (8.5),
and using mesh S3. A neo-Hookean model is used with parameters in Table 8.12. The prescribed
mesh motion is presented in Equation (8.1) with parameters listed in Table 8.13.

after the loading phase. On these diagrams, Lglobal
x , Lglobal

y and Lglobal
z refer respectively to

the first, second and third component of the global linear momentum. Moreover, Aglobal
x ,

Aglobal
y and Aglobal

z refer respectively to the first, second and third component of the global
angular momentum.
On the other hand, it can be seen that the global angular momentum is building during
the loading phase and preserved then very accurately. In Figure 8.18a, the energy
components are compared for mesh S3 when using the ALE mixed formulation, and the
Total Lagrangian formulation. The dissipation is shown for several discretisations in Figure
8.18b. The kinetic energy, the internal energy and their summation, obtained using the
Total Lagrangian and the ALE formulations are featured for mesh S3. The stability of the
ALE method can be appreciated by how similar the evolution of the energy components are.
Moreover, in both cases a slight decrease in the total energy, due to the use of upwinding
stabilisation, is observed after the loading phase. This can be related to the numerical
dissipation that is reported in Figure 8.18b, where the quality of the result is proportional
to the level of discretisation. Third, and for qualitative comparison purposes, the velocity
components at points A = (0, 10, 0)T , B = (6, 0, 0)T , and C = (3, 3, 3)T (see Figure 8.11)
is reported in Figure 8.19 for the ALE method using different meshes and for the Total
Lagrangian formulation. It is clear that the solution converges with a progressive level of
refinement.
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Figure 8.18: L-shaped block: Time evolution of a) the global energy components for mesh S3,
and b) the dissipation for meshes S1, S2 and S3, and the ALE {pχ,FΦ,FΨ, JΨ} formulation.
Results are obtained with the impulse boundary condition 8.5. A neo-Hookean model is used
with parameters in Table 8.12. The prescribed mesh motion is presented in Equation (8.1) with
parameters listed in Table 8.13.
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Figure 8.19: L-shaped block: Time evolution of the velocity components at a) point A = (0, 10, 0)T ,
b) point B = (6, 0, 0)T , and c) point C = (3, 3, 3)T for the ALE {pχ,FΦ,FΨ, JΨ} formulation.
Results are obtained with the impulse boundary condition 8.5, and using meshes S1, S2 and S3. A
neo-Hookean model is used with parameters in Table 8.12. The prescribed mesh motion is presented
in Equation (8.1) with parameters listed in Table 8.13.
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8.5 Nearly incompressible bending column

χ1

χ2

χ3

v 0
=
V

[Y
/H

, 0
, 0

]T

(-0.5,0,0.5)

(0.5,-6,-0.5)

Figure 8.20: Bending column: Problem setup.

face χ2 = 0 Moving boundary
(6.29)

all remain-
ing faces

free boundary
(6.32)

Table 8.14: Summary of boundary conditions.

The main objective of this example is to demonstrate the performance of the proposed
scheme in nearly incompressible bending dominated scenarios. A 1 m squared cross section
column (see Figure 8.20) clamped at the bottom and free on all other sides is presented.
The column is subjected to a bending deformation by means of an initial linearly varying
profile in the X-Y plane given by v0 = V [Y/H, 0, 0]T m/s, where V = 10 m/s and H = 6 m
is the height of the column. A polyconvex hyperelastic neo-Hookean model is considered
with parameters summarised in Table 8.15. The volumetric potential is based on [239]
defined in Appendix B.3.2.

Young’s modulus E [MPa] 17

density ρR [kg/m3] 1100

Poisson’s ratio ν 0.45

Table 8.15: Bending column: Table of parameters.

The results will be compared for the Total Lagrangian {pχ,FΦ} formulation, and for the
ALE {pχ,FΦ,FΨ, JΨ} formulation. In the case of the ALE formulation, the mesh motion
is prescribed with Equation (8.1), where parameters are listed in Table 8.16.

period T [s] 1

magnitude β [m/s] 1 × 10−2

Table 8.16: Translation: Table of parameters for the prescribed mesh motion in Equation (8.1).
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(a) β = 0 (b) β = 1 (c) β = 1.5 (d) β = 2

Figure 8.21: Bending column: Snapshots of the mesh deformation at time t = 0.25s for different
values of the parameter β = 0, 1, 1.5, 2 (left to right, top to bottom) along with contours of the
mesh motion magnitude when solving for the {pχ,FΦ,FΨ, JΨ} formulation. Results are obtained
with the impulse boundary condition (8.5), and using mesh S3. A neo-Hookean model is used
with parameters in Table 8.12. The prescribed mesh motion is presented in Equation (8.1) with
parameters listed in Table 8.13.

Figure 8.21 shows the spatial deformation of the bending column at time t = 0.25s with
different magnitude of mesh motion. Due to the mesh motion contour plot, it can clearly
be seen that increasing the value of the β coefficient to 2 leads to a situation where the
mesh motion is non null almost everywhere. In Figure 8.15, snapshots of deformations are
shown together with the pressure distribution. In Figure 8.23a, the total energy E, kinetic
energy K and internal energy E are compared using mesh S3 for the ALE formulation and
the equivalent Total Lagrangian formulation. It can be seen that the numerical dissipation
is comparable in both cases, despite the introduction of mesh motion. In Figure 8.23b, the
evolution of the total energy is compared for the three meshing using the ALE formulation,
and for the third mesh using the equivalent Total Lagrangian formulation. The numerical
dissipation in the ALE scenarios converge to what is obtained in the Total Lagrangian
scenario. For comparison purposes, the spatial velocity and displacement x component at
points A = (0.5, 5, 0.5)T (see Figure 8.20) is reported in Figure 8.24 for the ALE method
using different meshes and for the Total Lagrangian formulation.
In this example, it was shown that in the presence of a mesh motion, results are satisfyingly
converging to what can be obtained with a Total Lagrangian formulation. In particular,
the energy is conserved and measured quantities such as local velocities converge when the
mesh is refined.
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Figure 8.22: Bending column: Time evolution of the deformation at time t = 0, 0.1, 0.2, ..., 1.9s (left
to right, top to bottom) along with the pressure distribution when solving for the {pχ,FΦ,FΨ, JΨ}
formulation. Results are obtained with the impulse boundary condition (8.5), and using mesh
S3. A neo-Hookean model is used with parameters in Table 8.12. The prescribed mesh motion is
presented in Equation (8.1) with parameters listed in Table 8.13.
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Figure 8.23: Bending column: Time evolution of a) the global energy components on mesh S3,
and b) the total energy on meshes S1, S2 and S3, for the Total Lagrangian formulation and the
ALE {pχ,FΦ,FΨ, JΨ} formulation. A neo-Hookean model and the volumetric potential in [239] is
used with parameters in Table 8.15. The prescribed mesh motion is presented in Equation (8.1)
with parameters listed in Table 8.16.
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Figure 8.24: Bending column: Time evolution of the spatial a) velocity x component and b)
the displacement x component at point A = (0.5, 6, 0.5)T for the Total Lagrangian formulation
and for the ALE {pχ,FΦ,FΨ, JΨ} formulation. Results are obtained on meshes S2, S2 and S3. A
neo-Hookean model and the volumetric potential in [239] is used with parameters in Table 8.15.
The prescribed mesh motion is presented in Equation (8.1) with parameters listed in Table 8.16.
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8.6 Frictionless impact of a copper bar on a rigid wall.

χ1

χ2

χ3

v0

(−0.0032, 0.0324, 0)

(0, 0, 0)

r0

l0

(a) Setup of the problem.

χ1

χ2

χ3

v0

(−0.0032, 0.0324, 0)

(0, 0, 0)

r0

l0

(b) Quarter of the domain.

Figure 8.25: Taylor impact bar: Sketch of the problem.

face χ1 = 0 and χ3 = 0 symmetric boundary (6.35)

all remaining faces free boundary (6.32)

Table 8.17: Summary of boundary conditions.

The Taylor impact is a classical benchmark inspired from pioneering works [297] in the
study of yield stress of materials. It has been numerically studied [79, 85, 152, 193, 248,
298] extensively, especially on the context of the Finite Volume Method (FVM) [35, 42,
75, 95, 299] and elasto-plasticity [6, 300]. This problem is also featured in some industrial
codes benchmark tests [301, 302]. A cylindrical copper bar of radius r0 = 3.2mm and
height l0 = 32.4mm is impacted to a frictionless wall at time t = 0s with an initial high
velocity v0 = [0,−227, 0]T m/s, as depicted in Figure 8.25a. The material is modelled
by von-Mises plasticity, based on the Hencky logarithmic strains, a quadratic volumetric
potential (see Table B.1) and isotropic linear hardening. All the parameters are listed in
Table 8.18.
By making use of the various axis of symmetry of the problem, only one quarter of
the domain is considered and appropriate symmetric boundary conditions are applied
accordingly, while the remaining boundary is left free (see Figure 8.25b and Table 8.17).
There are three meshes used in this case (see Figure 8.26): U1 (1887 nodes and 8100
elements), U2 (3721 nodes and 17280 elements) and U3 (6461 nodes and 31500 elements). A
2-stage Runge-Kutta time integrator and a CFL number of 0.4 were used in the simulations.
In this example, the mesh motion is driven by a pure deviatoric P ⋆ tensor (originally
defined in Equation (5.9)), and can be expressed as

PW = F̃ TPdev(F̃Φ); F̃Φ = F̃ FΨ, (8.6a,b)
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Young’s modulus E [MPa] 117

Material density ρ [kg/m3] 8930

Poisson’s ratio ν 0.35

Initial Yield Stress τ̄0y [GPa] 0.4

Hardening Modulus H [GPa] 0.1

Table 8.18: Taylor impact bar: Table of parameters.

where Pdev is governed by a deviatoric neo-Hookean constitutive law using the physical
parameters listed in table 8.19, and where a vertical axial restriction is applied in the
natural deformation gradient as

F̃ = I + (Fyy − 1)E2 ⊗E2 =


1 0 0

0 Fyy 0

0 0 1

 . (8.7)

ALE parameter 1 αALE 1

ALE parameter 2 µALE 0.02µ

ALE parameter 3 ϵALE 0.001

Table 8.19: Taylor bar impact: Table of parameters for the mesh motion.

The conservation of the material velocity W featured in Equation (5.3) is exploited here
in order to minimise spatial mesh distortion. The computation of the stresses is balanced
between the (solved) material FΨ and spatial FΦ deformation gradients to aim at an
improved solution accuracy at a potentially lower cost. In Figure 8.27, the spatial and
the material deformation of mesh U1 is reported for several values of the ALE parameter
αALE. The case where αALE = 1 has the most amount of mesh motion and will be the case
studied in this example, as stated in Table 8.19.

A refinement study is done in Figure 8.28, where a snapshot of the deformation at the final
time t = 80 µs is shown for the ALE formulation using meshes U1, U2 and U3.

final ∆t speed-up ratio

TLF U1 5.822×10−10

TLF U2 3.267×10−10

TLF U3 2.031×10−10

ALE U1 3.407×10−9 5.851

ALE U2 1.895×10−9 5.802

ALE U3 1.078×10−9 5.308

Table 8.21: Taylor bar impact: speed-up chart comparing the values of time increments for the
Total Lagrangian and the ALE formulation. Figures are rounded to the third decimal. Results
obtained using Hencky logarithmic strain, nonlinear hardening and von-Mises plasticity with
material parameters summarised in Table 8.18.
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(a) Mesh U1. (b) Mesh U2. (c) Mesh U3.

Figure 8.26: Taylor impact bar: Meshes U1, U2, and U3.

Results are very sensitive to the efficiency of the formulations in recovering the high amount
of plasticity in the vicinity of the impact plane. In this experiment, the deformation of the
specimen is based on linear hardening and can be observed through the evolution of plastic
internal variables such as the equivalent plastic strain, as well as load measures such as the
von-Mises stress and the hydrostatic pressure. These measures are crucial to assess the
accuracy and robustness of the ALE formulation and the numerical stabilisation. Figure
fig. 8.30 show the evolution of the von-Mises stress for several time snapshots, comparing
the Total Lagrangian formulation (right side) with the ALE formulation (left side) for
meshes U1, U2 and U3. Figure fig. 8.29 show the evolution of the equivalent plastic strain
for several time snapshots, comparing the Total Lagrangian formulation (right side) with
the ALE formulation (left side) for meshes U1, U2 and U3. The evolution of the pressure
field can be viewed via the snapshots reported in Figure fig. 8.31 for the three respective
meshes. The results using the Total Lagrangian formulation (right side) are compared
to those using the ALE formulation (left side). For the different meshes of the quarter
cylinder, and using both the Total Lagrangian formulation and the ALE formulation, the
total energy is featured in Figure 8.32a, and a breakdown of its components, namely the
kinetic energy K, the elastic strain potential E and the plastic dissipation wp, is shown in
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Standard FEM [206] 4-node tetrahedra 5.5

Standard FEM [206] 8-node tetrahedra 6.95

Average nodal pressure FEM [206] 4-node tetrahedra 6.99

Newark FEM [303] hexahedra (972) ≈ 7

Split FEM [304] tetrahedra 7.07-7.33

Mixed FEM [304] hexahedra 7.11

Mixed JST VCFVM [35] 4-node tetrahedra 6.98

Mixed PG-FEM [79] 4-node tetrahedra 7.00

Mixed CCFVM [107] hexahedra (480) 6.88-7.11

SPH Reference Updated Lagrangian [37] SPH 1560 particles 6.75

SPH Reference Updated Lagrangian [37] SPH 3744 particles 6.84

SPH Reference Updated Lagrangian [37] SPH 7280 particles 6.89

VCFVM ALE tetrahedra mesh U1 6.720

VCFVM ALE tetrahedra mesh U2 6.797

VCFVM ALE tetrahedra mesh U3 6.824

Table 8.20: Taylor bar impact: final bottom radii chart for the Total Lagrangian and the ALE
formulation using different meshes. Results obtained using Hencky logarithmic strain, nonlinear
hardening and von-Mises plasticity with material parameters summarised in Table 8.18.

Figure 8.32b. The kinetic energy decreases upon impact because it first transforms into
elastic strain energy, and is rapidly converted into plastic dissipation when plasticity is
yielded. Naturally, a minor amount of kinetic energy is also dissipated due to the proposed
numerical algorithm. An important parameter to measure the deformation of the bar after
impact is the radius of the bar throughout the simulation. It is measured with tracking
the displacement magnitude at the same bottom extremity node for all meshes and using
both simulation. The evolution of that bottom radius is reported in Figure 8.33a and
the final value of that radius can be compared with other published results in Table 8.20.
The results, obtained with both formulations using the solver presented in this work, are
exempt of volumetric locking that can sometimes be present in standard and/or commercial
solutions. Additionally, the evolution of the time increment featured in Figure 8.33b can
be used to appreciate the gain in temporal resources offered by the ALE formulation. The
time speed-up is reported in Table 8.21.
The ALE formulation was shown to capture the high plastic strain in the impact region as
well as the Total Lagrangian formulation. This shows that the numerical discretisation
is perfectly capable of dealing with problems with high plasticity without numerical
instabilities or volumetric locking. In fact, the use of the ALE formulation leads to
smoother deformation patterns, and if the control of mesh deformations can be left to
the user’s appreciation via the ALE parameters, it detects in the areas with high plastic
loads and performs the mesh motion automatically. As the geometry is refined, the results
converge to values coherent with the those reported in the literature and the numerical
dissipation is reduced. This validates the efficiency and consistency of the stabilisation
technique implemented in the algorithm.
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(a) αALE = 0 (b) αALE = 0.75 (c) αALE = 1

Figure 8.27: Taylor bar impact: Snapshots of the material deformation (top row) and spatial
deformation (bottom row, zoomed view of the lower section) using the ALE formulation for
αALE = 0, 0.5, 0.75, 1 on mesh U1. Results obtained using Hencky logarithmic strain, nonlinear
hardening and von-Mises plasticity with material parameters summarised in Table 8.18.
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(a) Mesh U1. (b) Mesh U2. (c) Mesh U3.

Figure 8.28: Taylor bar impact: Refinement analysis at time t = 80 µs using the ALE formulation
on meshes (a) U1, (b) U2, and (c) U3. Results obtained using Hencky logarithmic strain, nonlinear
hardening and von-Mises plasticity with material parameters summarised in Table 8.18.
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20 µs 40 µs 60 µs 80 µs

Figure 8.29: Taylor bar impact: Snapshots of the equivalent plastic strain at times t =
20, 40, 60, 80 µs, using the ALE formulation formulation (left side) and the Total Lagrangian
formulation (right side) on mesh U1 (first row), U2 (second row) and U3 (third row). Results ob-
tained using Hencky logarithmic strain, nonlinear hardening and von-Mises plasticity with material
parameters summarised in Table 8.18.
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20 µs 40 µs 60 µs 80 µs

Figure 8.30: Taylor bar impact: Snapshots of the von-Mises stress at times t = 20, 40, 60, 80 µs,
using the ALE formulation formulation (left side) and the Total Lagrangian formulation (right
side) on mesh U1 (first row), U2 (second row) and U3 (third row). Results obtained using
Hencky logarithmic strain, nonlinear hardening and von-Mises plasticity with material parameters
summarised in Table 8.18.
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20 µs 40 µs 60 µs 80 µs

Figure 8.31: Taylor bar impact: Snapshots of the deformation with pressure contours at times
t = 20, 40, 60, 80 µs, using the Total Lagrangian formulation (right side) and the ALE formulation
(left side) on mesh U1 (first row), U2 (second row) and U3 (third row). Results obtained using
Hencky logarithmic strain, nonlinear hardening and von-Mises plasticity with material parameters
summarised in Table 8.18.
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Figure 8.32: Taylor bar impact: (a) Total energy E = Eχ/JΨ, and (b) energy components, for the
Total Lagrangian and the ALE formulation and on meshes U1, U2 and U3. Results obtained using
Hencky logarithmic strain, nonlinear hardening and von-Mises plasticity with material parameters
summarised in Table 8.18.
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Figure 8.33: Taylor bar impact: Time evolution of (a) bottom radius, and (b) ∆t, for the Total
Lagrangian and the ALE formulation and on meshes U1, U2 and U3. Results obtained using Hencky
logarithmic strain and von-Mises plasticity with material parameters summarised in Table 8.18.
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Figure 8.34: Taylor bar impact: Comparison of spatial deformation together with von-Mises con-
tour plot at time t = 0, 10, 20, 30, 40 µs (first column, top to bottom) and t = 50, 60, 70, 75, 80µs
(second column, from top to bottom) using the ALE formulation on mesh U3. Results obtained using
Hencky logarithmic strain, nonlinear hardening and von-Mises plasticity with material parameters
summarised in Table 8.18.
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8.7 Necking of a circular copper bar

X
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Z

−v0
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l0

(a) Setup of the problem.

X

Y
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(−0.0032, 0.0324, 0)

(0, 0, 0)

r0

l0

(b) Necking bar: Quarter of the domain.

Figure 8.35: Necking bar: Sketch of the problem.

faces χ1 = 0 and χ3 = 0 symmetric boundary (6.35)

all remaining faces free boundary (6.32)

Table 8.22: Summary of boundary conditions.

In this example, a cylindrical bar is pulled from the top to induce necking in the bottom area,
denoted as the neck. In this setup, the necking is created by a fast dynamic pull of the top
surface, initialised with a horizontal velocity −v0 = −V [0, 1, 0]T with −V = 227m/s. The
Hencky-based von-Mises plasticity is used to model the body, with parameters equivalent
to the impact case summarised in Table 8.18. The volumetric potential is based on the
[239] model defined in Appendix B.3.2. As only a quarter of the domain is considered for
obvious symmetry reasons, the boundary conditions are equivalent to those used for the
dynamic impact problem, and are shown in Table 8.22.

The mesh motion, whose parameters are listed in Table 8.23, is governed by a deviatoric
neo-Hookean incompressible potential, and the function F̃ presented in Equation (8.7) is
used. The simulations are conducted with a 2-stage RK integrator, and a fixed CFL

ALE parameter 1 αALE 1

ALE parameter 2 µALE 0.02µ

ALE parameter 3 ϵALE 0.001

Table 8.23: Necking bar: Table of parameters for the mesh motion in Equation (8.1).
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number αCFL = 0.4 was used.

αALE = 0 αALE = 0.5 αALE = 0.75 αALE = 1

Figure 8.36: Dynamic axisymmetric necking: Spatial (right side) and material (left) deformation
at final time t = 25 µs, using the ALE formulation with an ALE parameter αALE = 0, 0.5, 0.75, 1 and
µALE = 1, on mesh U1. Results obtained using Hencky logarithmic strain and von-Mises plasticity
with material parameters summarised in Table 8.18.

First of all, the mesh deformation is studied for several values of the parameter αALE in
Figure 8.36. As that coefficient grows, it can clearly be seen that elements are pulled
back to the necking region. Moreover, the neck profile improves with higher values of
that coefficient, and more plastic strain is recovered in the vicinity of the neck. These
observations motivated the use of the value αALE = 1 for the rest of the study. In Figure
8.37, the deformation along with the plastic strain and von-Mises contours can be observed
on mesh U1. Snapshots are shown for the Total Lagrangian formulation (top row) and for
the ALE formulation (bottom row). There is a significant difference in the deformation
pattern because of the presence of more elements in the neck region. Moreover, the
distribution of plastic variables is different. The same observations can be made for both
mesh U2 and mesh U3. Figure 8.38 and on Figure 8.39. Note that when using the Total
Lagrangian formulation, elements are distorted and lose quality in the neck region. By
using the ALE formulation, the elements keep a higher quality for a longer time, and the
results can be exploited for a longer physical time. The presence of numerous elements in
the neck region results in a finer integration of the energy in that area, as if the mesh was
locally refined. The evolution of the energy components is shown in Figure 8.41a, and the
evolution of the total energy is shown in Figure 8.41b. It can be seen that the conservation
of energy is of better quality when using the ALE formulation. The components of the
energy, namely the kinetic energy, the internal energy, and the plastic dissipation, are
conserved in a good manner for both formulations. The deformation around the neck
region, and more especially the shape of the boundary, is clearly improved with the ALE
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TLF 15 µs TLF 20 µs TLF 25 µs

ALE 15 µs ALE 20 µs ALE 25 µs

Figure 8.37: Dynamic axisymmetric necking: Snapshots of von-Mises stress (left side) and
equivalent plastic strain (right side) contours at times 15, 20, 25µs, using the Total Lagrangian
formulation (top row) and the ALE formulation (bottom row) on mesh U1. Results obtained using
Hencky logarithmic strain and von-Mises plasticity with material parameters summarised in Table
8.18.
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TLF 15 µs TLF 20 µs TLF 25 µs

ALE 15 µs ALE 20 µs ALE 25 µs

Figure 8.38: Dynamic axisymmetric necking: Snapshots of von-Mises stress (left side) and
equivalent plastic strain (right side) contours at times 15, 20, 25µs, using the Total Lagrangian
formulation (top row) and the ALE formulation (bottom row) on mesh U2. Results obtained using
Hencky logarithmic strain and von-Mises plasticity with material parameters summarised in Table
8.18.
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TLF 15 µs TLF 20 µs TLF 25 µs

ALE 15 µs ALE 20 µs ALE 25 µs

Figure 8.39: Dynamic axisymmetric necking: Snapshots of von-Mises stress (left side) and
equivalent plastic strain (right side) contours at times 15, 20, 25µs, using the Total Lagrangian
formulation (top row) and the ALE formulation (bottom row) on mesh U3. Results obtained using
Hencky logarithmic strain and von-Mises plasticity with material parameters summarised in Table
8.18.
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αALE = 0 αALE = 0.5 αALE = 0.75 αALE = 1

Figure 8.40: Dynamic axisymmetric necking: Spatial (right side) and material (left) deformation
at final time t = 25 µs, using the ALE formulation with an ALE parameter αALE = 0, 0.5, 0.75, 1 and
µALE = 0.02, on mesh U1. Results obtained using Hencky logarithmic strain and von-Mises plasticity
with material parameters summarised in Table 8.18.
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Figure 8.41: Dynamic axisymmetric necking: (a) energy components, for the Total Lagrangian
and the ALE formulation on mesh U3, and (b) Total energy E = Eχ/JΨ on meshes U1, U2 and U3.
Results obtained using Hencky logarithmic strain and von-Mises plasticity with material parameters
summarised in Table 8.18.
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Figure 8.42: Dynamic axisymmetric necking: Time evolution of a) bottom radius, and b) ∆t, for
the Total Lagrangian and the ALE formulation and on meshes U1, U2 and U3. Results obtained
using Hencky logarithmic strain and von-Mises plasticity with material parameters summarised in
Table 8.18.

formulation. On Figure 8.42a, the radius is shown to keep decreasing in a linear manner as
the bar is pulled. Naturally, if more elements are kept in the neck region, they are smaller
than in the Total Lagrangian scenario. As a consequence, the time increment is expected
to be smaller than for a Total Lagrangian simulation, as observed on Figure 8.42b.
To conclude the observations on this dynamic necking case, it was observed that the
behaviour of the ALE formulation is the opposite behaviour as what was observed in the
impact case for the same ALE parameters. The elements are pulled downward to the neck
region. As a consequence, the boundary has a better shape but the computational time will
suffer from smaller elements that will be linked to smaller time increments. Nevertheless,
the ALE formulation was shown to convergence in this necking scenario, and to agree well
with the results obtained with the Total Lagrangian equivalent formulation. The advantage
of using ALE here resides in the possibility to get the advantage of a local refinement
dynamically.



CHAPTER 9

NUMERICAL SIMULATIONS: THERMOELASTICITY AND
THERMOPLASTICITY

“Mi verdad básica es que todo tiempo es un ahora en expansión”

— Severo Ochoa
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9.1 Introduction

In the following, thermo-mechanical numerical examples are simulated. Isothermal cases
presented in Chapter 8 are converted to scenarios with thermal effects. The thermo-elastic
cases are based on the Mie-Grüneisen equation of state, and make use of a neo-Hookean
model for the non thermally-coupled deviatoric stress. The volumetric potentials are
thermally coupled. For plastic materials, a thermal visco-plastic Johnson-Cook model is
also used.

9.2 Translation column

This translation problem is adapted from the isothermal case: the mechanical parameters
are the same as in isothermal and a uniform temperature, equal to a reference temperature,
is considered in the specimen. The parameters are summarised in the table 9.1. The
value of the coefficient Γ0, equal to 0.0255, is taken from the L-Shaped block problem
in Bonet et al. [23]. The thermal expansion coefficient is obtained as α = cvΓ0/3κ. The
thermally-coupled volumetric potential is based on the [239] model defined in Appendix
B.3.2.

Young’s modulus E [MPa] 17

density ρR [kg/m3] 1100

Poisson’s ratio ν 0.45

thermal conductivity h [W.m−1K−1] 10

specific heat capacity Cv [J kg−1K−1 ] 1

thermal expansion coefficient α [K−1] 4.95 × 10−7

reference temperature θR [K] 293.15

Table 9.1: Translation with heat: Table of physical parameters.

This example is the thermo-mechanical equivalent of the Case 8.2. The objective of this
example is to demonstrate the importance of the solving the discrete geometric conservation
laws in the context of a thermo-mechanical deformation. Henceforth, the specimen geometry
is presented in Figure 8.2, the constitutive model considered is a polyconvex hyperelastic
neo-Hookean model with the volumetric potential presented in [239] and featured in Table
B.1 Mie-Grüneisen Equation of state. The required physical parameters are presented
in Table 9.1. Velocities are uniformly initialised to v0 = [3, 1, 0]Tm/s and the boundary
surfaces are all left free. The structured mesh S1 presented in Figure 8.3 is used in the
numerical simulations. The mesh motion is prescribed according to Equation (8.1), together
with the parameters in Table 8.3. A comparison of the results is made when solving for
a different number of geometric conservation laws. The objective is to demonstrate that
in the context of a non-zero material mesh motion, the numerical framework must solve
additional geometric conservation laws to recover the accuracy of the equivalent simulation
using a Total Lagrangian formulation (i.e. without mesh motion).
In Figures 9.1 and 9.2, snapshots of the simulation at time t = 0, 0.8, 1.6, 2.4, 3.2, 4.0, 4.8s
can be viewed based on a) the formulation {pχ,FΦ,FΨ, JΨ} and b) {pχ,FΦ,FΨ, JΨ, JΦ}.
This case is similar the translation test done in Chapter 8.2, and is conducted with a
framework that now includes thermal effects. The results are reported for a scenario where
the spatial Jacobian JΦ is solved, so the natural Jacobian is reconstructed as J = JΦJ

−1
Ψ .

However, the incorporation of the conservation law on the spatial Jacobian is not important
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(a) {pχ,FΦ,FΨ, JΨ} formulation.

(b) {pχ,FΦ,FΨ, JΨ, JΦ} formulation.

Magnitude ||J − 1||L2(Ωχ)

Figure 9.1: Translation with heat: Snapshots of the deformation at time t = 0, 0.8, ..., 4.8s, along
with distribution ||J − 1||L2(Ωχ) when solving for different conservation laws. Results obtained with

velocity v0 = [3, 1, 0]T m/s using mesh S1. A neo-Hookean model with a Mie-Grüneisen equation of
state are used with parameters listed in Table 9.1. The prescribed mesh motion is presented in
Equation (8.1) with parameters listed in Table 8.3.
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(a) {pχ,FΦ,FΨ, JΨ} formulation.

(b) {pχ,FΦ,FΨ, JΨ, JΦ} formulation.

Magnitude ||θ − θR||L2(Ωχ)

Figure 9.2: Translation with heat: Snapshots of the deformation at time t = 0, 0.8, ..., 4.8s, along
with distribution ||θ−θR||L2(Ωχ) when solving for different conservation laws. Results obtained with

velocity v0 = [3, 1, 0]T m/s using mesh S1. A neo-Hookean model with a Mie-Grüneisen equation of
state are used with parameters listed in Table 9.1. The prescribed mesh motion is presented in
Equation (8.1) with parameters listed in Table 8.3.
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Figure 9.3: Translation with heat: Time evolution of the L2-error in Jacobian and temperature
when using (red) the complete ALE system, (green) a reduced system without solving variable
JΨ and (blue) a further reduced system without solving variables FΨ, JΨ. Results obtained with
velocity v0 = [3, 1, 0]T m/s using mesh S1. A neo-Hookean model and a Mie-Grüneisen equation of
state are used with parameters listed in Table 9.1. The prescribed mesh motion is presented in
Equation (8.1) with parameters listed in Table 8.3.
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Figure 9.4: Translation with heat: Time evolution of the L2 error in velocity components when
using (red) the complete ALE system, (green) a reduced system without solving variable JΨ and
(blue) a further reduced system without solving variables FΨ, JΨ. Results obtained with velocity
v0 = [3, 1, 0]T m/s using mesh S1. A neo-Hookean model and a Mie-Grüneisen equation of state are
used with parameters listed in Table 9.1. The prescribed mesh motion is presented in Equation
(8.1) with parameters listed in Table 8.3.
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(a) 0s (b) 0.02s (c) 0.04s (d) 0.06s (e) 0.08s (f) 0.0885s

Figure 9.5: Translation with heat: Snapshots of the deformation at time t =
0, 0.02, 0.04, 0.06, 0.08, 0.0885s, along with distribution ||J − 1||L2(Ωχ) when solving for {pχFΦJΦ}.

Results obtained with velocity v0 = [3, 1, 0]T m/s using mesh S1. A neo-Hookean model and a
Mie-Grüneisen equation of state are used with parameters listed in Table 9.1. The prescribed mesh
motion is presented in Equation (8.1) with parameters listed in Table 8.3.

(a) 0s (b) 0.02s (c) 0.04s (d) 0.06s (e) 0.08s (f) 0.0885s

Figure 9.6: Translation with heat: Snapshots of the deformation at time t =
0, 0.02, 0.04, 0.06, 0.08, 0.0885s, along with distribution ||θ − θ0||L2(Ωχ) when solving for {pχFΦJΦ}.

Results obtained with velocity v0 = [3, 1, 0]T m/s using mesh S1. A neo-Hookean model and a
Mie-Grüneisen equation of state are used with parameters listed in Table 9.1. The prescribed mesh
motion is presented in Equation (8.1) with parameters listed in Table 8.3.
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and does not alter this test. In the second scenario, it is clear that solving for the material
deformation gradient lets the numerical simulation perform until the end, with notable
instabilities in the pressure distribution and the velocity components. In the third scenario,
solving for both the material deformation gradient and the material Jacobian lets the
body keep its initial straight trajectory as well as minimum instabilities in the Jacobian
distribution. Those visual observations are accompanied by a study of the L2-error in the
natural Jacobian, the distribution of temperature magnitude in Figure 9.3 and the velocity
components in Figure 9.4. The first scenario where no geometric conservation law is solved
corresponds to the blue curve, the second scenario where the material deformation gradient
is solved corresponds to the green curve, and the third scenario where both the material
deformation gradient and the material Jacobian are solved corresponds to the red curve.
As it is the case in the isothermal problem (see Case 8.2), the best quality results are
obtained in the third scenario. When only solving for the {pχ,FΦ} formulation, it is clear
that the accuracy and the stability are greatly reduced, and the numerical framework is
unable to further compute the results in a quick manner. The Figures 9.5 and 9.6 shows
the snapshots of the simulation in this case. As it can be seen, instabilities instantly occur
throughout the body and the simulation cannot continue.
As a conclusion, the addition of a thermo-mechanical coupling does not alter the requirement
to solve for the geometric conservation laws to recover the accuracy proposed by a Total
Lagrangian simulation. Moreover, in this thermo-mechanical context, the numerical
framework is more sensitive to the inclusion of the Discrete Geometric Conservation Law
(DGCL). Indeed, if the simulation could still complete in the isothermal Case 8.2 while
still being of bad quality when the material Jacobian is not solved, a setting involving the
present thermo-mechanical coupling requires the use of a formulation incorporating the
conservation laws for both FΨ JΨ. It is clear that the discrete geometric conservation law
is required for the ALE framework to be stable, as reported in Farhat et al. [205].
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9.3 Swinging cube with heat

This example is a reproduction of the isothermal Swinging Cube problem 8.3, with the
additional consideration of thermal effects. This numerical scenario was previously studied
in [22]. The objective of this example is to assert the second-order spatial convergence
of this ALE framework for thermo-elastic problems. The geometry is a unit length cube
presented in Figure 8.8 with the same symmetric and anti-symmetric boundary conditions.
However, the polyconvex hyperelastic neo-Hookean model used here is accompanied by a
Mie-Grüneisen equation of state, and the volumetric coupling presented in Equation (4.32)
is considered. Therefore, the present configuration of the ALE framework accounts for
solving the energy conservation law (4.7). This thermoelastic body is subjected to a swing
motion identical to that of the isothermal case and that is repeated for convenience as

u(χ, t) = U0 cos(ξt)


A sin(πχ1

2 ) cos(πχ2

2 ) cos(πχ3

2 )

B cos(πχ1

2 ) sin(πχ2

2 ) cos(πχ3

2 )

C cos(πχ1

2 ) cos(πχ2

2 ) sin(πχ3

2 )

 ; ξ =

√
3

2

√
2µ + λ

ρR
+

θRΓ2
0cv

ρR
.

(9.1a,b)
Note that the wave speed defined in Equation (9.1b) is different than the wave speed used
in the isothermal case, defined in Equation (8.2b), in that an additional term appears
because of thermal considerations; if there is no thermal expansion, α = Γ0 = 0. The exact
temperature profile is then defined as

θexact(χ, t) = θR

(
1 − 3π

2
U0 cos(ξπt) cos

(πχ1

2

)
cos
(πχ2

2

)
cos
(πχ3

2

))
, (9.2)

and other necessary quantities are computed from the two Equations (9.1) and (9.2). The
condition U0 < 10−3m must be still satisfied for the problem to be considered linear, and
for the closed-form solution (9.1) and (9.2) to be a valid approximation of the solution. The
parameters used in the physical model are summarised in table 9.2. The thermally-coupled
volumetric potential is based on the quadratic model defined in Appendix B.3.2.

Young’s modulus E [MPa] 17

density ρ [kg/m3] 1100

Poisson’s ratio ν 0.45

thermal conductivity h [W/m−1K−1] 10

specific heat capacity Cv [J kg−1K−1] 1

thermal expansion coefficient α [K−1] 4.95 × 10−7

reference temperature θR [K] 293.15

Magnitude U0 [m] 5 × 10−4

Lame first parameter λ [MPa] 9.8077

Lame shear modulus µ [MPa] 6.5385

Mie-Grüneisen coefficient 8.5889

Table 9.2: Swinging cube with heat: Table of parameters for the physical model and for the
closed-form solution.

The convergence study is performed with the general ALE mixed formulation (2.76) with
a mesh motion prescribed by Equation (8.1) and parameters defined in Table 9.3. The
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Figure 9.7: Swinging cube with heat: L1 and L2 global convergence analysis at time t = 1ms
for the components of the velocity, based on the closed-form (8.2) and the generic ALE mixed
formulation (2.76). Convergence rates are calculated using the results of the two finest meshes. A
neo-Hookean model with a Mie-Grüneisen equation of state is used with parameters listed in Table
9.2. The prescribed mesh motion is presented in Equation (8.1) with parameters listed in Table 9.3.

results are obtained at the time t = 1ms and the time is integrated by a 2-stage RK scheme,
thence enabling a second-order temporal accuracy.

Period T [s] 1 × 10−3

Magnitude β [m/s] 1 × 10−4

Table 9.3: Swinging cube: Table of parameters for the prescribed mesh motion in Equation (8.1).

In this numerical example, the total energy is used as the conserved thermal variable. The
ALE formulation will be compared to its Total Lagrangian formulation.
The convergence rates are reported in Tables tables 9.4 to 9.7 an show the errors between
the results and the analytical closed-form (9.1) and (9.2) for the L1 and the L2 norms. As
for the isothermal case 8.3, the proposed computational framework achieves equal second
order convergence for the velocity, the stress tensor, and additionally the temperature.
Also, the meshes S1, S2, S3 and S4 presented in the isothermal case 8.3 are also used in this
example. This equal order convergence for all derived variables is one of the advantages of
the proposed framework. Using the ALE formulation, the convergence figures using the
L1 norm are reported for the three velocity components and for the temperature in Table
9.4 and for the diagonal components of the first Piola Kirchhoff stress tensor in Table 9.5.
Under the same setting, the convergence figures using the L2 norm are reported for the
velocity components and the temperature in Table 9.6 and for the diagonal components of
the Piola Kirchhoff stress tensor is shown in Table 9.7. The convergence analysis is plotted
in Figure 9.7 for the velocity components, in Figure 9.8 for the diagonal components of
P , and in Figure 9.9 for the temperature. To conclude, the second order in spatial and
temporal discretisation is achieved in this thermo-mechanical example, for all the solved
variables {pχ,FΦ,FΨ, JΨ, E}, namely the velocity, stresses, and energy. It can be also be
noted that similar results are obtained when JΦ is solved. These results agree well with the
literature [22, 23]. The equal order of convergence for all derived variables was an objective
of this thesis and motivated the development of the discrete ALE mixed formulation. This
is a clear advantage of the proposed framework.
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L1 error vx vy vz θ

1/6 3.184 × 10−2 3.171 × 10−2 3.053 × 10−2 8.211 × 10−5

1/12 7.692 × 10−3 7.851 × 10−3 7.550 × 10−3 2.134 × 10−5

1/24 1.886 × 10−3 1.916 × 10−3 1.863 × 10−3 5.276 × 10−6

1/48 4.492 × 10−4 4.491 × 10−4 4.487 × 10−4 1.197 × 10−6

conv. rate 2.070 2.093 2.054 2.141

Table 9.4: Swinging cube with heat: numerical values for the dimensionless L1-error of the
velocity components and the temperature, based on the closed-form (8.2) and the generic ALE
mixed formulation (2.76). Convergence rates are calculated using the results of the two finest
meshes. A neo-Hookean model with a Mie-Grüneisen equation of state is used with parameters
listed in Table 9.2. The prescribed mesh motion is presented in Equation (8.1) with parameters
listed in Table 9.3.

L1 error Pxx Pyy Pzz

1/6 1.861 × 10−2 1.861 × 10−2 1.860 × 10−2

1/12 4.847 × 10−3 4.847 × 10−3 4.845 × 10−3

1/24 1.206 × 10−3 1.207 × 10−3 1.206 × 10−3

1/48 2.817 × 10−4 2.817 × 10−4 2.816 × 10−4

conv. rate 2.098 2.098 2.098

Table 9.5: Swinging cube with heat: numerical values for the dimensionless L1-error of the diagonal
components of P , based on the closed-form (8.2) and the generic ALE mixed formulation (2.76).
Convergence rates are calculated using the results of the two finest meshes. A neo-Hookean model
with a Mie-Grüneisen equation of state is used with parameters listed in Table 9.2. The prescribed
mesh motion is presented in Equation (8.1) with parameters listed in Table 9.3.

L2 error v1 v2 v3 θ

1/6 2.711 × 10−2 2.704 × 10−2 2.640 × 10−2 1.071 × 10−4

1/12 6.654 × 10−3 6.746 × 10−3 6.544 × 10−3 2.755 × 10−5

1/24 1.638 × 10−3 1.660 × 10−3 1.625 × 10−3 6.683 × 10−6

1/48 3.917 × 10−4 3.916 × 10−4 3.909 × 10−4 1.465 × 10−6

conv. rate 2.064 2.084 2.056 2.189

Table 9.6: Swinging cube with heat: numerical values for the dimensionless L2-error of the
velocity components and the temperature, based on the closed-form (8.2) and the generic ALE
mixed formulation (2.76). Convergence rates are calculated using the results of the two finest
meshes. A neo-Hookean model with a Mie-Grüneisen equation of state is used with parameters
listed in Table 9.2. The prescribed mesh motion is presented in Equation (8.1) with parameters
listed in Table 9.3.
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L2 error Pxx Pyy Pzz

1/6 1.777 × 10−2 1.777 × 10−2 1.776 × 10−2

1/12 4.574 × 10−3 4.574 × 10−3 4.574 × 10−3

1/24 1.119 × 10−3 1.119 × 10−3 1.119 × 10−3

1/48 2.536 × 10−4 2.536 × 10−4 2.536 × 10−4

conv. rate 2.141 2.141 2.141

Table 9.7: Swinging cube with heat: numerical values for the dimensionless L2-error of the diagonal
components of P , based on the closed-form (8.2) and the generic ALE mixed formulation (2.76).
Convergence rates are calculated using the results of the two finest meshes. A neo-Hookean model
with a Mie-Grüneisen equation of state is used with parameters listed in Table 9.2. The prescribed
mesh motion is presented in Equation (8.1) with parameters listed in Table 9.3.
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Figure 9.8: Swinging cube: L1 and L2 global convergence analysis at time t = 1ms for the
components of the first Piola Kirchhoff stress tensor, based on the closed-form (8.2) and the generic
ALE mixed formulation (2.76). Convergence rates are calculated using the results of the two finest
meshes. A neo-Hookean model with a Mie-Grüneisen equation of state is used with parameters
listed in Table 9.2. The prescribed mesh motion is presented in Equation (8.1) with parameters
listed in Table 9.3.
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Figure 9.9: Swinging cube: L1 and L2 global convergence analysis at time t = 1ms for the
temperature, based on the closed-form (8.2) and the generic ALE mixed formulation (2.76).
Convergence rates are calculated using the results of the two finest meshes. A neo-Hookean model
with a Mie-Grüneisen equation of state is used with parameters listed in Table 9.2. The prescribed
mesh motion is presented in Equation (8.1) with parameters listed in Table 9.3.
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9.4 L-Shaped block (heat)

This case was previously studied in an isothermal context in [58, 75, 108] and in the present
work in Case 8.4, and is now studied in the context of a thermo-mechanical deformation [7,
22, 23, 37, 233, 305, 306]. The main objective of this benchmark example is to demonstrate
the capability of the ALE method to preserve linear and angular momenta of a system,
as well as total energy over a long term response and in a thermo-mechanical context.
An L-shaped specimen (see Figure 8.11) is subjected to an external torque consisting of
time-varying tractions applied on two boundary faces, that are recalled for convenience as

F1(t) = −F2(t) =


150

300

450

 f(t), f(t) =


t if 0 ≤ t < 2.5

t− 5 if 2.5 ≤ t < t

0 else

. (9.3a,b)

This problem will be studied along with two different types of temperature distribution: a
discontinuous distribution and a linear distribution. As for the isothermal scenario, the
block is loaded during 5 seconds, and then left tumbling in space with free boundaries. A
polyconvex hyperelastic neo-Hookean model is considered with parameters summarised in
Table 9.8. The thermally-coupled volumetric potential is based on the [239] model defined
in Appendix B.3.2.

Young’s modulus E [kPa] 50.05

density ρR [kg/m3] 1000

Poisson’s ratio ν 0.3

thermal conductivity h [W/m−1K−1] 10

specific heat capacity Cv [J kg−1K−1] 1

thermal expansion coefficient α [K−1] 2.223 × 10−4

reference temperature θR [K] 293.15

Table 9.8: L-shaped block (heat): Table of parameters.

As done in the isothermal study, the results will be compared between the Total Lagrangian
formulation and the ALE formulation. The mesh motion is the one presented in Equation
(8.1) and can be visualised on Figure 9.10. The parameters of the prescribed ALE motion
are presented in Table 9.9. The meshes S1, S2, and S3 of the isothermal Case 8.4 presented
in Figure 8.12 will be also used in this example. The simulations are conducted with a
2-stage RK integrator, and a fixed CFL number αCFL = 0.3 was used.

period T [s] 1

magnitude β [m/s] 0.002

Table 9.9: L-shaped block (heat): Table of parameters for the prescribed mesh motion in Equation
(8.1).
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t = 0s t = 0.1s t = 0.2s t = 0.3s

t = 0.4s t = 0.5s t = 0.6s t = 0.7s

t = 0.8s t = 0.9s t = 1s t = 1.1s

Figure 9.10: L-shaped block (heat): Snapshots of mesh deformation at time t = 0, 0.1, ...1, 1.1s
(left to right, top to bottom) the ALE formulation with a prescribed mesh motion is presented in
Equation (8.1) with parameters listed in Table 9.9 and using mesh S1. A neo-Hookean model with
a Mie-Grüneisen equation of state and a quadratic volumetric potential is used with parameters
listed in Table 9.8.
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9.4.1 Discontinuous temperature distribution

In this case, the initial temperature profile is initialised as

θ|t=0 =


300 K if Y = 10 m,

250 K if X = 6 m,

θR elsewhere.

(9.4)

In the following, the ALE formulation {pχ,FΦ,FΨ, JΨ, η, JΦ} (with prescribed motion) is
compared to the equivalent Total Lagrangian formulation {p,F , η, J}.

ALE mesh S1 ALE mesh S2 ALE mesh S3 TLF mesh S3

Figure 9.11: L-shaped block (heat): Refinement analysis at time t = 23s for the ALE formulation
using meshes S1, S2 and S3, and for the Total Lagrangian formulation using mesh S3 (from left
to right). Representation of the temperature contours (top half) and pressure contours (bottom
half). Results are obtained with the impulse boundary condition (9.3), and the discontinuous
temperature profile (9.4). A neo-Hookean model with a Mie-Grüneisen equation of state and a
quadratic volumetric potential is used with parameters listed in Table 9.8. The prescribed mesh
motion is presented in Equation (8.1) with parameters listed in Table 9.9.

A refinement study is shown in Figure 9.11, where the results using the ALE formulation are
reported for the meshes S1, S2 and S3 at time t = 23s, and compared to the Total Lagrangian
formulation for mesh S3. The results using the ALE formulation seem to converge to the
results obtained with the equivalent Total Lagrangian simulation. Additionally, snapshots
of the deformation at times t = 0, 10, 20, 25, 30s together with pressure contours are reported
in Figure 9.12 for the Total Lagrangian formulation (top row) and for the ALE formulation
(bottom row) for mesh S3. The evolution of the deformation, as well as the evolution of
the pressure profile, are very similar for both cases and compares well with reported results
in the literature. Same observation can be made in the case of the temperature contours
presented in Figure 9.13. The evolution of various energy components are presented in
Figure 9.14a for mesh S3. Among the reported results, the total energy E, the kinetic
energy K, the mechanical component of the internal energy and the heat component of the
internal energy, and the Ballistic energy B are similar for both the Total Lagrangian and
the ALE formulation. Nevertheless, a coarse mesh will result in a temperature profile that
is not smooth enough. That numerical experiment is performed using the conservation
of entropy. The total energy is measured as the summation of the kinetic energy and
the internal energy. The latter is composed of a thermoelastic distribution (especially
yielding an Equation of State) summed to a plastic (stored) contribution. The total energy
undergoes an unavoidable slight decrease due to the use of upwinding-based stabilisation
dissipation. The global total energy of the system is reported for the three meshes
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TLF

ALE

t = 0s t = 10s t = 20s t = 25s t = 30s

Figure 9.12: L-shaped block (heat): Sequence of deformation with pressure contours at times
t = 0, 20, 20, 25, 30s for the Total Lagrangian formulation (top row) and for the ALE formulation
(bottom row) using mesh S3. Results are obtained with the impulse boundary condition (9.3), the
discontinuous temperature profile (9.4). A neo-Hookean model with a Mie-Grüneisen equation
of state and a quadratic volumetric potential is used with parameters listed in Table 9.8. The
prescribed mesh motion is presented in Equation (8.1) with parameters listed in Table 9.9.

using ALE and for mesh S3 using the Total Lagrangian formulation on Figure 9.14b. In
addition, The evolution of the global linear and angular momenta are respectively reported
in Figure figs. 9.15 and 9.16. As for the isothermal case, Lglobal

x , Lglobal
y and Lglobal

z refer
respectively to the first, second and third component of the global linear momentum on
these diagrams. Moreover, Aglobal

x , Aglobal
y and Aglobal

z refer respectively to the first, second
and third component of the global angular momentum. It is worth mentioning that like in
the isothermal experiment, the global linear momentum is still equal to 0 and the global
angular momentum is preserved after the forces F1 and F2 stopped acting (these forces
are equal to 0 past 5s). This is obviously due to the fact that only torque type work is
practised on the block, and the temperature has no impact on the conservation of momenta.
The evolution of the velocity components at point A = (0, 10, 0)T , B = (6, 0, 0)T and
C = (3, 3, 3)T are displayed in Figure 9.17, and the evolution of the temperature at these
points is shown in Figure 9.18.
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TLF
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t = 0s t = 10s t = 20s t = 25s t = 30s

Figure 9.13: L-shaped block (heat): Sequence of deformation with temperature contours at times
t = 0, 20, 20, 25, 30s for the Total Lagrangian formulation (top row) and for the ALE formulation
(bottom row) using mesh S3. Results are obtained with the impulse boundary condition (9.3), and
the discontinuous temperature profile (9.4). A neo-Hookean model with a Mie-Grüneisen equation
of state and a quadratic volumetric potential is used with parameters listed in Table 9.8. The
prescribed mesh motion is presented in Equation (8.1) with parameters listed in Table 9.9.
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Figure 9.14: L-shaped block (heat): Time evolution of the (a) energy components on mesh S3
using the Total Lagrangian formulation and the ALE formulation, and (b) the total energy on
meshes S1, S2 and S3 using the Total Lagrangian formulation and the ALE formulation. Results
are obtained with the impulse boundary condition (9.3), and the discontinuous temperature profile
(9.4), and using mesh S3. A neo-Hookean model with a Mie-Grüneisen equation of state and a
quadratic volumetric potential is used with parameters listed in Table 9.8. The prescribed mesh
motion is presented in Equation (8.1) with parameters listed in Table 8.13.
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Figure 9.15: L-shaped block (heat): Time evolution of the components of the global linear
momentum for the ALE formulation on meshes S1, S2 and S3. Results are obtained with the
impulse boundary condition (9.3), and the discontinuous temperature profile (9.4), and using mesh
S3. A neo-Hookean model and a quadratic volumetric potential is used with parameters in Table
8.12. The prescribed mesh motion is presented in Equation (8.1) with parameters listed in Table
8.13.
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Figure 9.16: L-shaped block (heat): Time evolution of the components of the global angular
momentum for the ALE formulation on meshes S1, S2 and S3. Results are obtained with the
impulse boundary condition (9.3), and the discontinuous temperature profile (9.4), and using mesh
S3. A neo-Hookean model and a quadratic volumetric potential is used with parameters in Table
8.12. The prescribed mesh motion is presented in Equation (8.1) with parameters listed in Table
8.13.
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Figure 9.17: L-shaped block: Time evolution of the velocity components at point (a) A =
(0, 10, 0)T , (b) B = (6, 0, 0)T , and (c) C = (3, 3, 3)T for the Total Lagrangian formulation and
the ALE formulation. Results are obtained with the impulse boundary condition 9.3, and the
discontinuous temperature profile (9.4), and using meshes S1, S2, and S3. A neo-Hookean model is
used with parameters in Table 8.12. The prescribed mesh motion is presented in Equation (8.1)
with parameters listed in Table 8.13.
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Figure 9.18: L-shaped block: Time evolution of the temperature at point (a) point A = (0, 10, 0)T ,
(b) point B = (6, 0, 0)T , and (c) point C = (3, 3, 3)T for the Total Lagrangian formulation and
the ALE formulation. Results are obtained with the impulse boundary condition 9.3, and the
discontinuous temperature profile (9.4), and using meshes S2, S2, and S3. A neo-Hookean model is
used with parameters in Table 8.12. The prescribed mesh motion is presented in Equation (8.1)
with parameters listed in Table 8.13.
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9.4.2 Linear temperature distribution

The same studies are now realised for a linear temperature profile expressed as

θ|t=0 =

{
−(43.15/3.0)X + 336.3 if X ≤ 6, X > 3

(6.85/7.0)Y + 290.214286 if Y ≤ 10, Y > 3.
(9.5)

Hereafter, results obtained with the linear temperature profile in Equation (9.5) can be
compared with the case of a discontinuous profile in Equation (9.5). The refinement study
is presented in Figure 9.19 and snapshots of the evolution of the deformation together with
the pressure and the temperature contours are respectively presented in Figures figs. 9.20
and 9.21.

ALE mesh S1 ALE mesh S2 ALE mesh S3 TLF mesh S3

Figure 9.19: L-shaped block (heat): Refinement analysis at time t = 23s for the ALE formulation
using meshes S1, S2 and S3, and for the Total Lagrangian formulation using mesh S3 (from left to
right). Representation of the temperature contours (top half) and pressure contours (bottom half).
Results are obtained with the impulse boundary condition (9.3), the linear temperature profile
(9.5). A neo-Hookean model with a Mie-Grüneisen equation of state and a quadratic volumetric
potential is used with parameters listed in Table 9.8. The prescribed mesh motion is presented in
Equation (8.1) with parameters listed in Table 9.9.

In this scenario, the convergence of the total energy is affected by the initial temperature
profile. On Figure 9.22a, it can be seen that the energy components for both formulation
agree very well. On Figure 9.22b, it can be seen that the total energy converges in a
very similar way for both formulation, and less energy is dissipation due to the absence
of sharp temperature gradients. The linear and angular momenta, reported in Figure
figs. 9.23 and 9.24, are unaffected by the change of temperature profile as expected. The
deformation is also hardly change, as it can be seen with the evolution of the three velocity
components at points A, B and C in Figure 9.25. However, since there is no more sharp
gradients of temperature in the body, it can be seen in Figure 9.26 that the evolution of
the temperature is significantly more linear than in the previous scenario.
The robustness of the ALE formulation was put at test through the use of a prescribed
mesh motion, and with several profiles of initial temperature. No spurious mechanism
was introduced. The results are as good as the ones obtained with the Total Lagrangian
formulation for the variables studied. The Ballistic energy is smooth and decreasing with
the two temperature profile. Moreover, the conservation of angular and linear momenta is
ensured with both formulations: the linear momentum is close to zero machine and the
angular momentum is preserved. Considering the non natural aspect of the mesh motion



9.4. L-SHAPED BLOCK (HEAT) 135

TLF

ALE

0s 10s 20s 25s 30s

Figure 9.20: L-shaped block (heat): Time evolution of the deformation with pressure contours at
time t = 23s for the Total Lagrangian formulation (top row) and for the ALE formulation (bottom
row) using mesh S3. Results are obtained with the impulse boundary condition (9.3), the linear
temperature profile (9.5). A neo-Hookean model with a Mie-Grüneisen equation of state and a
quadratic volumetric potential is used with parameters listed in Table 9.8. The prescribed mesh
motion is presented in Equation (8.1) with parameters listed in Table 9.9.

introduced in this example, it is remarkable that the kinematics and the behaviour of the
studied primary variables are well computed for the considered array of meshes.
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Figure 9.21: L-shaped block (heat): Time evolution of the deformation with temperature contours
at time t = 23s for the Total Lagrangian formulation (top row) and for the ALE formulation
(bottom row) using mesh S3. Results are obtained with the impulse boundary condition (9.3), the
linear temperature profile (9.5). A neo-Hookean model with a Mie-Grüneisen equation of state and
a quadratic volumetric potential is used with parameters listed in Table 9.8. The prescribed mesh
motion is presented in Equation (8.1) with parameters listed in Table 9.9.
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Figure 9.22: L-shaped block (heat): Time evolution of the (a) energy components on mesh S3
using the Total Lagrangian formulation and the ALE formulation, and (b) the total energy on
meshes S1, S2 and S3 using the Total Lagrangian formulation and the ALE formulation. Results
are obtained with the impulse boundary condition (9.3), the linear temperature profile (9.4), and
using mesh S3. A neo-Hookean model with a Mie-Grüneisen equation of state and a quadratic
volumetric potential is used with parameters listed in Table 9.8. The prescribed mesh motion is
presented in Equation (8.1) with parameters listed in Table 8.13.
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Figure 9.23: L-shaped block (heat): Time evolution of the components of the global linear
momentum for the ALE formulation on meshes S1, S2 and S3. Results are obtained with the
impulse boundary condition (9.3), the linear temperature profile (9.5), and using mesh S3. A
neo-Hookean model and a quadratic volumetric potential is used with parameters in Table 8.12.
The prescribed mesh motion is presented in Equation (8.1) with parameters listed in Table 8.13.
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Figure 9.24: L-shaped block (heat): Time evolution of the components of the global angular
momentum for the ALE formulation on meshes S1, S2 and S3. Results are obtained with the
impulse boundary condition (9.3), the linear temperature profile (9.4), and using mesh S3. A
neo-Hookean model and a quadratic volumetric potential is used with parameters in Table 8.12.
The prescribed mesh motion is presented in Equation (8.1) with parameters listed in Table 8.13.
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Figure 9.25: L-shaped block: Time evolution of the velocity components at point (a) A =
(0, 10, 0)T , (b) B = (6, 0, 0)T , and (c) C = (3, 3, 3)T for the Total Lagrangian formulation and
the ALE formulation. Results are obtained with the impulse boundary condition 9.3, the linear
temperature profile (9.4), and using meshes S2, S2, and S3. A neo-Hookean model is used with
parameters in Table 8.12. The prescribed mesh motion is presented in Equation (8.1) with
parameters listed in Table 8.13.
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Figure 9.26: L-shaped block: Time evolution of the temperature at point (a) point A = (0, 10, 0)T ,
(b) point B = (6, 0, 0)T , and (c) point C = (3, 3, 3)T for the Total Lagrangian formulation and
the ALE formulation. Results are obtained with the impulse boundary condition 9.3, the linear
temperature profile (9.4), and using meshes S2, S2, and S3. A neo-Hookean model is used with
parameters in Table 8.12. The prescribed mesh motion is presented in Equation (8.1) with
parameters listed in Table 8.13.
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9.5 Taylor impact with thermal coupling

Young’s modulus E [MPa] 124

Material density ρ [kg/m3] 8960

Poisson’s ratio ν 0.34

Yield stress A [MPa] 90

Hardening modulus B [MPa] 292

Hardening exponent q 0.31

Melting temperature θmelt [K] 1356

Transition temperature θtransition [K] 298.15

Strain rate coefficient C 0.025

Initial strain rate ˙̄ϵp,0 [s−1] 1

Temperature exponent m 1.09

Reference temperature θref [K] 298.15

Thermal conductivity h [W m−1K−1] 286

Specific heat capacity Cv [J kg−1 K−1] 383

Thermal expansion rate α [K−1] 5 × 10−5

Table 9.10: Taylor impact with thermal coupling: Table of parameters.

The Taylor bar problem 8.6 is now investigated in an adiabatic thermal-stress analysis; In
this context, temperature changes are induced by mechanical deformations, and heat has
time to diffuse through the material. The geometry considered in this model is equivalent
to the isothermal scenario presented in Section 8.6, and is depicted in Figure 8.25. The
Hencky-based von-Mises plasticity model is accompanied by a rate- and thermal-dependent
Johnson-Cook hardening. The temperature is initialised uniformly across the specimen as
θ0 = 298.15K. The material constants are given for a reference temperature θR = 298.15K.
The parameters are summarised in Table 9.10. The boundary conditions are equivalent
to those presented in the Section 8.6. The mesh motion setup is exactly the same as the
one used in the isothermal in Section 8.6 including the F̃ function defined in Equation
(8.7), and the parameters can thence be consulted in Table 8.19. The thermally-coupled
volumetric potential is based on the [239] model defined in Appendix B.3.2. The simulations
are conducted with a 3-stage RK integrator, and a fixed CFL number αCFL = 0.4 was used.

9.5.1 Case 1

The specimen is initialised with a uniform temperature profile of θ0 = 298.15 K, so that no
important variations should be observed in the mechanical properties or in the deformation
due to thermal-coupling. A refinement study is done in Figure 9.27, where a snapshot of
the deformation at the final time t = 80 µs is shown for the ALE formulation using meshes
U1, U2 and U3.

Figure fig. 9.30 show the evolution of the von-Mises stress for several time snapshots,
comparing the Total Lagrangian formulation (right side) with the ALE formulation (left
side) for meshes U1, U2 and U3. Figure fig. 9.29 show the evolution of the equivalent
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(a) Mesh U1. (b) Mesh U2. (c) Mesh U3.

Figure 9.27: Taylor bar impact with thermal coupling: Refinement analysis at time t = 80 µs with
contour plots of von-Mises stress magnitude (left) and equivalent plastic strain (right), using the
ALE formulation on meshes (a) U1, (b) U2, and (c) U3. Results obtained using Hencky logarithmic
strain, Johnson-Cook hardening and von-Mises plasticity with material parameters summarised in
Table 9.10.

plastic strain for several time snapshots, comparing the Total Lagrangian formulation
(right side) with the ALE formulation (left side) for meshes U1, U2 and U3. The evolution
of the pressure field can be viewed via the snapshots reported in Figure fig. 9.31 for the
three respective meshes. The results using the Total Lagrangian formulation (right side)
are compared to those using the ALE formulation (left side). Similarly, the evolution of
the temperature profile can be viewed in Figure fig. 9.32.
Figure 9.28 shows the evolution of the material mesh motion for different snapshots.
For the different meshes of the quarter cylinder, and using both the Total Lagrangian
formulation and the ALE formulation, the total energy is featured in Figure 9.33a, and a
breakdown of its components, namely the kinetic energy K, the elastic strain potential
E and the plastic dissipation wp, is shown in Figure 9.33b. The kinetic energy decreases
upon impact because it first transforms into elastic strain energy, and is rapidly converted
into plastic dissipation when plasticity is yielded. Naturally, a minor amount of kinetic
energy is also dissipated due to the proposed numerical algorithm.
On Figure 9.35, the deformation is shown for different snapshots together with the temper-
ature contour plot.
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(a) t = 0µs (b) t = 20µs (c) t = 40µs (d) t = 80µs

Figure 9.28: Taylor bar impact with thermal coupling: Comparison of material deformation
together at time t = 0, 20, 40, 80 µs using the ALE formulation on mesh U3. Results obtained
using Hencky logarithmic strain, Johnson-Cook hardening and von-Mises plasticity with material
parameters summarised in Table 9.10.

final ∆t speedup ratio

TLF U1 8.665×10−10

TLF U2 5.080×10−10

TLF U3 3.328×10−10

ALE U1 3.550×10−9 4.097

ALE U2 1.988×10−9 3.913

ALE U3 1.208×10−9 3.630

Table 9.11: Taylor bar impact with thermal coupling: speed-up chart comparing the values of
time increments for the Total Lagrangian and the ALE formulation. Figures are rounded to the
third decimal. Results obtained using Hencky logarithmic strain, Johnson-Cook hardening and
von-Mises plasticity with material parameters summarised in Table 9.10.
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20 µs 40 µs 60 µs 80 µs

Figure 9.29: Taylor bar impact with thermal coupling: Snapshots of the equivalent plastic strain
at times t = 20, 40, 60, 80 µs, using the ALE formulation formulation (left side) and the Total
Lagrangian formulation (right side) on mesh U1 (first row), U2 (second row) and U3 (third row).
Results obtained using Hencky logarithmic strain, Johnson-Cook hardening and von-Mises plasticity
with material parameters summarised in Table 9.10.
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20 µs 40 µs 60 µs 80 µs

Figure 9.30: Taylor bar impact with thermal coupling: Snapshots of the von-Mises stress at times
t = 20, 40, 60, 80 µs, using the ALE formulation formulation (left side) and the Total Lagrangian
formulation (right side) on mesh U1 (first row), U2 (second row) and U3 (third row). Results
obtained using Hencky logarithmic strain, Johnson-Cook hardening and von-Mises plasticity with
material parameters summarised in Table 9.10.
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20 µs 40 µs 60 µs 80 µs

Figure 9.31: Taylor bar impact with thermal coupling: Snapshots of the deformation with pressure
contours at times t = 20, 40, 60, 80 µs, using the Total Lagrangian formulation (right side) and the
ALE formulation (left side) on mesh U1 (first row), U2 (second row) and U3 (third row). Results
obtained using Hencky logarithmic strain, Johnson-Cook hardening and von-Mises plasticity with
material parameters summarised in Table 9.10.
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20 µs 40 µs 60 µs 80 µs

Figure 9.32: Taylor bar impact with thermal coupling: Snapshots of the deformation with
temperature contours at times t = 20, 40, 60, 80 µs, using the Total Lagrangian formulation (right
side) and the ALE formulation (left side) on mesh U1 (first row), U2 (second row) and U3 (third row).
Results obtained using Hencky logarithmic strain, Johnson-Cook hardening and von-Mises plasticity
with material parameters summarised in Table 9.10.



9.5. TAYLOR IMPACT WITH THERMAL COUPLING 146

0 2 4 6

Time (s) ×10−5

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

G
lo

b
al

to
ta

l
en

er
gy

(J
)

×101

ALE U1

ALE U2

ALE U3

TLF U1

TLF U2

TLF U3

(a)

0 2 4 6

Time (s) ×10−5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

G
lo

b
al

to
ta

l
en

er
gy

(J
)

×102

ALE K + E
ALE K

ALE E (Mech.)

ALE E (Heat)

ALE B

TLF K + E
TLF K

TLF E (Mech.)

TLF E (Heat)

TLF B

(b)

Figure 9.33: Taylor bar impact with thermal coupling: (a) Total energy E = Eχ/JΨ, and
(b) energy components, for the Total Lagrangian and the ALE formulation and on meshes U1,
U2 and U3. Results obtained using Hencky logarithmic strain, Johnson-Cook hardening and
von-Mises plasticity with material parameters summarised in Table 8.18.
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Figure 9.34: Taylor bar impact with thermal coupling: Time evolution of (a) bottom radius, and
(b) ∆t, for the Total Lagrangian and the ALE formulation and on meshes U1, U2 and U3. Results
obtained using Hencky logarithmic strain, Johnson-Cook hardening and von-Mises plasticity with
material parameters summarised in Table 9.10.
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Figure 9.35: Taylor bar impact with thermal coupling: Comparison of spatial deformation together
with temperature contour plot at time t = 0, 10, 20, 30, 40 µs (first column, top to bottom) and
t = 50, 60, 70, 75, 80µs (second column, from top to bottom) using the ALE formulation on mesh U3.
Results obtained using Hencky logarithmic strain, Johnson-Cook hardening and von-Mises plasticity
with material parameters summarised in Table 9.10.
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9.5.2 Case 2

In this section, the specimen is initialised with a uniform temperature profile θ0 = 573.15
K. This will enable thermal softening, thence leading to new contours and deformation
because of the high temperature. This phenomenon can be observed in metal forming and
tempering processes, wielding, glass manufacturing and other thermoplastic experiments.
Apart from the change of initial temperature, the rest of the physical parameters remain
identical to those reported in Table 9.10. The final deformation for meshes U1, U2 and U3
is shown in Figure 9.27, together with von-Mises contour plot on the left hand side and
temperature contours on the right hand side.

(a) Mesh U1. (b) Mesh U2. (c) Mesh U3.

Figure 9.36: Taylor bar impact with thermal coupling (θ0 = 573.15K): Refinement analysis at
time t = 80 µs with contour plots of von-Mises stress magnitude (left) and temperature (right),
using the ALE formulation on meshes (a) U1, (b) U2, and (c) U3. Results obtained using Hencky
logarithmic strain, Johnson-Cook hardening and von-Mises plasticity with material parameters
summarised in Table 9.10.

The evolution of the deformation together with the von-Mises contours and with the
temperature contours is respectively shown in Figures 9.37 and 9.38. On Figure 9.39a,
the total energy is compared for ALE formulation and for the equivalent Total Lagrangian
formulation on the three meshes. Energy components are shown on Figure 9.39b, including
the kinetic energy KE, the mechanical and heat-related contributions of the internal
energy, and the so-called Ballistic energy. Note that the energy relative to external work is
equal to zero and therefore not shown. As it was done in case 1, the convergence of the
radius for the ALE formulation on the different meshes is shown on Figure 9.40a, and the
evolution of the time increment ∆t is shown on Figure 9.40b. A sequence of snapshots
of the deformation, together with temperature contours, is shown in Figure 9.41 for a
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extensive selection of time slots.
To conclude, this case has shown that during impact, a large amount of the kinetic energy
is converted to irrecoverable heat dissipation and plastic dissipation, and a small amount
is converted to elastic strain energy. As the global energy decreases over time, the global
entropy will increase, hence ensuring long time stability. The radius of the specimen on the
impact plane does converge when using the ALE simulation. The results agree very well
with what is reported in the literature [6, 20, 75]. This is remarkable as the mesh motion
does not depend on an ad hoc technique. It has also been seen that the deformation pattern
and the contours of temperature, von-Mises stresses and plastic strain agree extremely
well as the mesh is refined. When the numerical experiment is reproduced with a higher
initial temperature, thermal softening occurs as expected and identical remarks can be
made: results agree extremely well as the mesh refines, and contours plots of temperature,
pressure and plastic variables are smooth. The similarity between the evolution of the
plastic strain and the temperature is also observed with the ALE formulation.
Moreover, as it was observed for the isothermal scenario, the effects of using the ALE

formulation are especially visibl in this example. First, it is noted that the mesh motion
patterns of Armero [6] were replicated. Second, more elements are pulled away from the
bottom of the specimen throughout the simulation. As a consequence, the contours are
of better quality and converge faster than with the Total Lagrangian formulation in that
area. Third, the elements around the impact plane have a better shape overall, and the
time increment is directly impacted: ∆t is generally 4× as high as in the Total Lagrangian
scenario.
A clear advantage of using the ALE formulation in this impact case is that for the cost
of solving extra variables, the mesh quality is automatically improved in area with high
plasticity, and time increments are increased for a faster simulation.
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20 µs 40 µs 60 µs 80 µs

Figure 9.37: Taylor bar impact with thermal coupling (θ0 = 573.15K): Snapshots of the von-
Mises stress at times t = 20, 40, 60, 80 µs, using the ALE formulation formulation (left side) and
the Total Lagrangian formulation (right side) on mesh U1 (first row), U2 (second row) and U3
(third row). Results obtained using Hencky logarithmic strain, Johnson-Cook hardening and
von-Mises plasticity with material parameters summarised in Table 9.10.
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20 µs 40 µs 60 µs 80 µs

Figure 9.38: Taylor bar impact with thermal coupling (θ0 = 573.15K): Snapshots of the
deformation with temperature contours at times t = 20, 40, 60, 80 µs, using the Total Lagrangian
formulation (right side) and the ALE formulation (left side) on mesh U1 (first row), U2 (second row)
and U3 (third row). Results obtained using Hencky logarithmic strain, Johnson-Cook hardening
and von-Mises plasticity with material parameters summarised in Table 9.10.
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Figure 9.39: Taylor bar impact with thermal coupling (θ0 = 573.15K): (a) Total energy
E = Eχ/JΨ, and (b) energy components, for the Total Lagrangian and the ALE formulation and on
meshes U1, U2 and U3. Results obtained using Hencky logarithmic strain, Johnson-Cook hardening
and von-Mises plasticity with material parameters summarised in Table 8.18.
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Figure 9.40: Taylor bar impact with thermal coupling (θ0 = 573.15K): Time evolution of (a)
bottom radius, and (b) ∆t, for the Total Lagrangian and the ALE formulation and on meshes
U1, U2 and U3. Results obtained using Hencky logarithmic strain, Johnson-Cook hardening and
von-Mises plasticity with material parameters summarised in Table 9.10.
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Figure 9.41: Taylor bar impact with thermal coupling (θ0 = 573.15K): Comparison of spatial
deformation together with temperature contour plot at time t = 0, 10, 20, 30, 40 µs (first column,
top to bottom) and t = 50, 60, 70, 75, 80µs (second column, from top to bottom) using the ALE
formulation on mesh U3. Results obtained using Hencky logarithmic strain, Johnson-Cook hardening
and von-Mises plasticity with material parameters summarised in Table 9.10.
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9.6 Necking with thermal effects

The setup of the Taylor impact with thermal coupling 9.5 is reproduced identically with the
exception of a reversed initial velocity, as in [21]. The objective of this numerical example
is to demonstrate the capacity of the proposed ALE framework to alleviate spurious mode
in the presence of massive stretching and thermal softening. As seen in the isothermal case
8.7, the use of the ALE method is expected to improve the shape of the neck region, and
help recover stronger plasticity values. By the several physical phenomena at stake and by
the characteristic mesh distortion that happens in this scenario, the ALE framework is an
interesting candidate for the simulation. A Hencky-based von-Mises plasticity model is
used in conjunction with a rate- and thermal-dependent Johnson-Cook hardening law. The
material properties are those of the impact bar case with heat, and are presented in Table
9.10. To account for thermal effects, the temperature will be initialised as θ0 = 593.15K.
The thermally-coupled volumetric potential is based on the [239] model defined in Appendix
B.3.2. The mesh motion is taken from Cases sections 8.6 and 9.5, including the F̃ function
defined in Equation (8.7) and αALE = 1. The simulations are conducted with a 3-stage RK

integrator, and a fixed CFL number αCFL = 0.4 was used. As for the Taylor impact, the
three meshes U1, U2 and U3 represents one eighte of the physical bar structure.
A refinement analysis of the necking using the ALE formulation is shown in Figure 9.42. It
is clear that the stress and temperature contours are converging. note that the deformation
and the number of elements in the neck region are comparable with the isothermal case. In
Figure 9.43, the deformation can be observed for snapshots at time t = 15, 20, 25, 30ms for
meshes U1 (first row), U2 (second row) and U3 (third row). The contours von-Mises stress
magnitude are compared between the ALE formulation (left side) and the equivalent Total
Lagrangian formulation (right side). It can be seen despite the different nature of the
two methods and of the deformation at the neck region, the contours are remarkably
comparable. Moreover, the mesh motion seems to alleviate spurious modes in the coarse
mesh. Exact same observations can be made about the pressure contours in Figure 9.44,
the contour of equivalent plastic strain in Figure 9.45, and the temperature contours in
Figure 9.46. As it is the case in the isothermal scenario, the ALE formulation recovers more
plasticity in the necking area. Consequently, more temperature is also observed in that
region. The evolution of the total energy is shown in Figure 9.47a for the two formulations
using the three meshes, and the energy components are plotted for the finest meshes in
Figure 9.47b. The evolution of components, including the Ballistic energy B, for both
formulations agree very well. For comparison purposes, the evolution of the radius of the
neck is reported in Figure 9.48a. The evolution of the time increment in Figure 9.48b
shows that, like it is the case in the equivalent isothermal process, the presence of more
elements in the neck leads to smaller time increments. For comparison purposes, a series of
snapshots are presented in Figure 9.49, where the plastic strain contour is shown together
with the temperature contour.
To conclude, this simulation of a bar necking with thermal softening is the continuity of the
isothermal necking presented in Case 8.7. The ALE formulation shows the same advantage
in pulling the elements in the neck region. This results in a automatic and dynamic mesh
motion that mimics a local refinement. Additionally, it is shown that elastic, plastic and
thermal variables are exempt of spurious instabilities.
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(a) Mesh U1. (b) Mesh U2. (c) Mesh U3.

Figure 9.42: Bar necking with thermal coupling: Refinement analysis at time t = 30 ms
with contour plots of von-Mises stress magnitude (left) and temperature (right), using the ALE
formulation on meshes (a) U1, (b) U2, and (c) U3. Results obtained using Hencky logarithmic
strain, Johnson-Cook hardening and von-Mises plasticity with material parameters summarised in
Table 9.10.
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15 ms 20 ms 25 ms 30 ms

Figure 9.43: Bar necking impact with thermal coupling: Snapshots of the von-Mises contours
at times t = 15, 20, 25, 30 ms, using the ALE formulation formulation (left side) and the Total
Lagrangian formulation (right side) on mesh U1 (first row), U2 (second row) and U3 (third row).
Results obtained using Hencky logarithmic strain, Johnson-Cook hardening and von-Mises plasticity
with material parameters summarised in Table 9.10.
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15 ms 20 ms 25 ms 30 ms

Figure 9.44: Bar necking impact with thermal coupling: Snapshots of the pressure contours
at times t = 15, 20, 25, 30 ms, using the ALE formulation formulation (left side) and the Total
Lagrangian formulation (right side) on mesh U1 (first row), U2 (second row) and U3 (third row).
Results obtained using Hencky logarithmic strain, Johnson-Cook hardening and von-Mises plasticity
with material parameters summarised in Table 9.10.
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15 ms 20 ms 25 ms 30 ms

Figure 9.45: Bar necking impact with thermal coupling: Snapshots of the equivalent plastic strain
at times t = 15, 20, 25, 30 ms, using the ALE formulation formulation (left side) and the Total
Lagrangian formulation (right side) on mesh U1 (first row), U2 (second row) and U3 (third row).
Results obtained using Hencky logarithmic strain, Johnson-Cook hardening and von-Mises plasticity
with material parameters summarised in Table 9.10.
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15 ms 20 ms 25 ms 30 ms

Figure 9.46: Bar necking impact with thermal coupling: Snapshots of the temperature contours
at times t = 15, 20, 25, 30 ms, using the ALE formulation formulation (left side) and the Total
Lagrangian formulation (right side) on mesh U1 (first row), U2 (second row) and U3 (third row).
Results obtained using Hencky logarithmic strain, Johnson-Cook hardening and von-Mises plasticity
with material parameters summarised in Table 9.10.
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Figure 9.47: Bar necking with thermal coupling: (a) Total energy, and (b) energy components,
for the Total Lagrangian and the ALE formulation and on meshes U1, U2 and U3. Results obtained
using Hencky logarithmic strain, Johnson-Cook hardening and von-Mises plasticity with material
parameters summarised in Table 8.18.
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Figure 9.48: Bar necking with thermal coupling: Time evolution of (a) bottom radius, and (b)
∆t, for the Total Lagrangian and the ALE formulation and on meshes U1, U2 and U3. Results
obtained using Hencky logarithmic strain, Johnson-Cook hardening and von-Mises plasticity with
material parameters summarised in Table 9.10.
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Figure 9.49: Bar necking with thermal coupling: Snapshots spatial deformation together with
temperature and plastic strain contours at time t = 0, 5, 10, 15 ms (first column, top to bottom) and
t = 20, 25, 28, 30ms (second column, from top to bottom) using the ALE formulation on mesh U3.
Results obtained using Hencky logarithmic strain, Johnson-Cook hardening and von-Mises plasticity
with material parameters summarised in Table 9.10.



CHAPTER 10

CONCLUDING REMARKS

“The time is always ripe for the re-interpretation of theories in the
light of new vision and of new facts. This is the very province of

science.”

— Charles Darwin, The Life and Letters of Charles Darwin, 1887
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10.1 General conclusions

A novel Arbitrary Lagrangian-Eulerian framework for large strain solid dynamics was
presented in this work. In particular, the cases of elasticity and plasticity were considered
in isothermal scenarios, and with thermal-coupling. The objective of this framework is
to be a robust alternative to the existing technology for simulating fast solid dynamics
problems.

To begin with, the motivation for developing the ALE formulation came from the observation
that challenging problems in Computational Structural Dynamics often display heavily
distorted mesh, due to the presence of strong plastic deformations. Methodologies to
alleviate numerical instabilities coming from heavy mesh distortions are plethora, as these
phenomena are observed in a large quantity of real-life applications. The approach used
herein consists in embedding the balance of material linear momentum in a variational
framework [3–5]. That conservation law is closed by means of a hyperelastic constitutive
model on the material stresses [6]. Moreover, the natural (or physical) deformation gradient
F is recovered as a multiplicative decomposition of the spatial deformation gradient
and the inverse of the material deformation gradient. The geometric mappings between
the referential domain and the two other domains are also provided with a conservative
equation that can be integrated in the variational formulation. These equations are all
encompassed into the mixed-based methodology developed by our group [2, 22, 55, 58, 77]
to yield a system of first order hyperbolic conservation laws expressed on the referential
domain. Insomuch as the velocities and stresses, both material and spatial, are governed
by balance laws integrated in the mixed formulation, the convergence rate of all these
primary variables is equivalent. The primary unknown variables that are considered include
the linear momentum pχ, the spatial deformation gradient FΦ, the material deformation
gradient FΨ, and the material Jacobian JΨ. In addition to that, ALE conservation equations
were also given for the entropy η and the spatial deformation gradient JΦ; conservative
forms can also be considered for the material cofactor HΨ, the spatial cofactor HΦ and
for the total Energy55 E.

In the viewpoint of this new ALE formulation for solids, the balance of the linear momentum
pχ depends on a measure of stress, as it is the case for the equivalent Lagrangian form
of the mixed formulation. Therefore, constitutive law are also required for closure of the
system. In this work, the polyconvex Mooney-Rivlin model is introduced to provide a
closed-form relation between the first Piola Kirchhoff stress tensor P and the triplet of
deformation measure X . Additionally, an isotropic von-Mises plasticity model is also
presented. For completeness, an analysis of the eigenproblem is also performed to ensure
the existence of real wave speeds, and consequently material stability and the satisfaction
of the rank one convexity condition. The relationship between ALE wave speeds and wave
speeds obtained in Lagrangian form are highlighted.

For closure of a thermo-mechanical system, the equations have also been provided with a
Mie-Grüneisen equation of state. In the case of visco-plasticity, the Johnson-Cook hardening
law is provided. The thermal considerations are possible due to the incorporation in the
mixed system of the conservation of entropy. Alternatively, the conservation of energy
is also provided. As for the other primary variables, the conserved thermal variables are
provided with a new ALE convection term, and a modified heat flux.

The resolution of the mesh motion is the cornerstone of the ALE machinery presented in
this work. The mesh motion is obtained via a conservation law for the material linear
momentum, where stresses are obtained by making use of a constitutive closed form for

55These additional conservation laws are shown in Appendix C. More particularly, the conservation law
for the total energy is given in terms of the scaled energy Eχ = JΨE.
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hyperelastic materials. In as much that the local distortions of the spatial mesh are
captured, the ALE approach aims at distributing the deformation via the computation of
the material stress. Typically, the mesh motion will pull elements in a direction that is
opposed to that of the spatial mesh. As the quality of elements in the current configuration
is improved, better physical responses are recovered for quantities such as the pressure and
plastic internal variables. That approach also limits the need for local geometric rezoning,
and gives access to the material mapping at no extra cost. The latter is useful to study
the caveats of the mesh motion, as material deformation gradients may still suffer from
excessive local distortion. The flexibility of the proposed ALE methodology, combined
with the riddance of an ad hoc procedure for determining the mesh motion, makes it
a competitive alternative for problems with strong and permanent distortions such as
plasticity.

The ALE formulation is spatially discretised using the Vertex-Centred Finite Volume Method
with linear tetrahedra. The solution of the present ALE framework is dramatically improved
in the vicinity of sharp gradients by taking advantage of shock capturing techniques: suitable
numerical interface fluxes are obtained via an upwinding stabilisation technique based
on an acoustic Riemann solver, a methodology borrowed from the CFD community as
for the Lagrangian frameworks previously developed in the research group [2, 37, 75].
In order to achieve second order spatial accuracy, a local piecewise linear reconstruction
procedure is carried out to compute slopes within elements. The conserved material and
spatial momenta, as well as their fluxes and the thermal variables, are provided with
boundary conditions expressed in the referential domain. In addition to this, the temporal
discretisation is handled by a monolithic multi-stage Total Variation Diminishing Runge-
Kutta scheme. The CFL condition and the spatial stretch are used to compute the time
increments. The staggered approach is another advantage of that framework: it is easy to
implement and the ALE framework can degenerate to a Total Lagrangian framework in a
simple manner by deactivating the advection step.

The implementation of that ALE framework was carried out on the open-source package
OpenFOAM under the name vcALEFoam. The main objective was to further continue the
endeavour of [75] to improve the capabilities of solid solvers on the platform. As OpenFOAM
is originally a Cell-Centred Finite Volume based environment for Computational Fluid
Dynamics, the implementation was made from scratch. However, an effort was put in
using as much of the already existing OpenFOAM machinery as possible. This, combined
with the fact that the set of first-order hyperbolic ALE equations are stabilised with an
acoustic Riemann solver, aims to bridge the gap between Computational Fluid Dynamics
and Computational Solid Dynamics.
Numerical examples were used to assess the ALE framework. It has been showed that in
the context of elasticity, plasticity, thermo-elasticity with volumetric thermal coupling and
thermo visco-plasticity, the ALE framework was proven to verify a series of properties, and
showed an array of advantages. For stability of the material motion, the resolution of the
DGCL was shown to be of paramount importance. One clear advantage of the proposed
ALE framework is the equal second-order of convergence for all derived variables, in the
context of elasticity and thermoelasticity. The robustness was proven in an isothermal
and a thermally-coupled scenario with a tumbling L-shaped block after external work was
applied. Also, the linear momentum is successfully preserved, and the angular momenta
shows little numerical dissipation despite the absence of solving the respective conservation
law. The bending of near incompressible materials was also proven to be possible. In
impact problems, the ALE formulation was shown to produce a deformation pattern and
contours plots that are coherent with the literature and with the results using the Total
Lagrangian formulation. Additionally, it was observed that the method was capable of
automatically moving the mesh to improve its quality in crucial high-plasticity areas. In
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� Mixed formulation of first-order conservation laws in
ALE form for thermal visco-plasticity, including balance
laws and geometric conservation equations for the spatial
and material quantities.

Chapters chap-
ters 2 to 5

� Explicit numerical framework based on Vertex-centred
Finite Volume discretisation and multistage Runge Kutta
time integrator, making use of tailor-made upwind stabil-
isation.

Chapter chap-
ter 6

� Demonstration of Hyperbolicity and of the fulfilment
of the second law of thermodynamics in an ALE setting.

Chapter 3, Ap-
pendix C

� Full OpenFOAM implementation. Chapter 7

Table 10.1: Novelties of this thesis

these scenarios, an added benefit is that the time increments are higher due to the better
overall shape of elements. For necking scenarios, the use of ALE offers the possibility of a
trade off between smaller time increments and a finer definition of the specimen in the neck
region, and more especially regarding the shape of the boundary. By activating the mesh
motion, the ALE framework was able to pull the elements down as if a local refinement
was applied dynamically. These novelties are summarised in Table 10.1.

10.2 Future works

Following on what has been established the research group [2, 20, 56, 58, 75, 199, 307], this
author of this thesis also reckons the outstanding science contributions of Huerta [113, 124,
160, 161, 177, 255, 308] and Bonet [10, 195–197, 206, 207, 232], as well as many others
[3–5, 13, 42, 49, 66, 93, 292, 309]. Furthermore, future research lines have emerged and
pointed out in the following:

� Alternative ALE motion and mesh adaptivity:
The ALE motion used in this work relies on a constitutive neo-Hookean model. In
Appendix C, other techniques to determine material stresses were presented: a
generalised neo-Hookean model, a constitutive law based on linear elasticity, and a
plasticity-based stress model. Also, the deformation of the material mesh can be
considered in specific areas of the body. The current ALE method can be compared
with already existing ALE technology: Radial based functions, Laplacian smoothing,
or analytically prescribed mesh motion. Eventually, and by exploiting the structure
of the mesh motion machinery in this work, the material stresses could theoretically
be computed with any relevant measure (e.g. equivalent plastic strain in the context
of inelastic deformations).

� Extension to Fluid-Structure Interactions:
Further physical considerations can make use of the present ALE approach. The
capability of the ALE numerical framework to allow for sliding nodes on the boundary
can be exploited in Fluid-Structures Interactions problems. In popular approaches
such as preCICE [63, 310–312], a fixed-point problem is solved for an array of variables
at the interface between two (fluid and/or structural) bodies. Hessenthaler et al. [313]
is resorting to a monolithic ALE FSI solver for non-conforming interfaces. In FSI
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problems, the complex nature of boundaries implies that the meshes are the interface
are highly non-conforming. This makes the ALE framework easily compatible with
the aforementioned interface solver.

� Exploitation of advanced interface solvers:
In this work, an acoustic Riemann solver was implemented in the ALE framework,
for the evaluation of contact fluxes. This technology is borrowed from CFD and
has recently been applied to solid dynamics [20, 37, 75, 110]. More advanced
alternatives such as Roe’s [268] or Osher’s [271] Riemann solvers can be integrated
to the framework for better shock capturing capabilities.

� Parallelisation and optimisation:
The ALE framework in this work is implemented in the OpenFOAM software. In
the endeavour to better comply with OpenFOAM’s community requirements, The
code could make more use of design patterns [314] such templates and observers.
Further optimisation of the present code, through the parallelisation of loops like the
construction of the right hand sides, would be a welcome improvement. As another
option, the exploration of an implementation using different programming languages
could be interesting from the pure computational point of view. While C++ is
fast and object-oriented, the use of Fortran in specific parts of the codes with high
computational cost could potentially make the code faster. The languages Julia (used
in data science and scientific computing) and Rust (which prioritise performance and
safety) is also an appealing idea.
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MATHEMATICAL FOUNDATIONS

“Number is the ruler of forms and ideas.”

— Pythagoras
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A.1 Introduction

This appendix ratifies the nomenclature used in this thesis, and summarises the useful
general mathematical concepts. Further developments can be found in [1, 2, 10, 195, 224,
315]. First, generic objects and useful results of linear algebra will be recalled in Section
A.2. Then, Section A.3 will present the differential operators that are essential to derive
conservation laws in solid mechanics. Throughout this chapter, the results may be either
expressed in the referential configuration Ωχ by means of the referential position notation χ
(e.g. the gradient ∇χ), the spatial configuration Ωx by means of the spatial position x (e.g.
the scalar function f(x, t) ), or the material configuration ΩX by means of the material
position X (e.g. the scalar function f⋆⋆(X, t)). The choice of a specific configuration to
express a property is made for convenience, and since it is crucial to understand how each
configuration is linked to one another, the reader may refer to the introduction of those
configurations and the three mappings in Chapter 2. Also, the focus is on properties that
are useful in the developments in this thesis, and that are non-trivial.

A.2 Useful Linear Algebra

Let I be the second-order identity tensor and A,B,C be second-order tensors. Let u,v,w
be first-order tensors defined, with a Cartesian base EI , as

u =


u1

u2

u3

 = uIEI ; E1 =


1

0

0

 ; E2 =


0

1

0

 ; E3 =


0

0

1

 . (A.1a,b,c,d)

A.2.1 Useful Algebraic properties

Using Einstein’s notation, the scalar product ·, the cross product ×, the dyadic product ⊗
and the norm are respectively defined for first-order tensors as

u · v = uivi; u× v = ϵijkujvk; (u⊗ v)ij = uivj ; ||u|| =
√
u · u; (A.2a,b)

with ϵijk the Levi-Civita permutation tensor. By introducing the double dot contraction
operator :, it is possible to define the Euclidean norm as

A : B = AijBij ; ||A|| =
√
A : A. (A.3a,b)

Some properties of the contraction operator · (or dot product) and of the double contraction
operator are presented in the following set of equations:

u · (Av) = v ·
(
ATu

)
, (A.4a)

tr (u⊗ v) = u · v, (A.4b)

A : (u⊗ v) = u · (Av) , (A.4c)

A : B = tr
(
ATB

)
= tr

(
BAT

)
= tr

(
BTA

)
= tr

(
ABT

)
. (A.4d)

This thesis makes use of the tensorial cross product introduced in [111, 196, 197, 200,
232] and further used in [20, 75]. Some useful properties are

(A B)ij = ϵiklϵjmnAkmBln; (A u)ij = ϵjklAikul; (u A)ij = ϵiklukAlj .
(A.5a,b,c)

In the following, v,w, are first-order tensors from one configuration Ω and V ,W are
first-order tensors from another configuration ΩX ; a, b, c are scalars. The operator × refers
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to the classical vectorial cross product. The symbol δ represents the Kronecker delta
operator, det represents the determinant and tr represents the trace of a second-order
tensor.

A B = B A, (A.6a)

A B = AT BT , (A.6b)

aA (bB + cC) = ab (A B) + ac (A C) , (A.6c)

(v ⊗ V ) (w ⊗W ) = (v ×w) ⊗ (V ×W ) , (A.6d)

v (A V ) = (v A) V = v A V = −A (v ⊗ V ) , (A.6e)

(A B) : C = (B C) : A = (A C) : B, (A.6f)

(A B) (V ×W ) = (AV ) × (BW ) + (BW ) × (AW ) , (A.6g)

A I = (trI)A−AT , (A.6h)

(A A) : A = 6 detA, (A.6i)

(AC) (BC) =
1

2
(A B) (C C) . (A.6j)

A.3 Differential calculus

In the following, a succinct presentation of the operators generally found in partial differ-
ential equations will be presented. Further discussion can be found for instance in [8, 10,
196, 316]. In the following, tensors are considered differentiable enough for the application
of the differential operators, and are expressed at the position χ ∈ Ωχ. The notation
introduces in the previous section is also used here: f be a zero-order tensor (a scalar field
Ωχ), v a first-order tensor (a vector field in Ωχ) and A a second-order tensor (a matrix
field in Ωχ). The notation of this section applies directly to the referential domain Ωχ of
the ALE formulation, and can nonetheless be applied to other domain, particularly those
mappable to theΩχ.

A.3.1 Differential operators

The gradient ∇χf(χ0) · u of f at the point χ0 for in arbitrary incremental vector u is
defined as the directional derivative of f at χ0 in the direction u

∇χf(χ0) · u = Df(χ0)[u] =
d

dϵ

∣∣∣∣
ϵ=0

f(χ0 + ϵu) =
3∑

i=1

ui
∂f

∂χi

∣∣∣∣
χi=χ0,i

, (A.7)

which can also be written for i ∈ {1, 2, 3} as

∇χf =

3∑
i=1

∂f

∂χi
Ei =

∂f

∂χ
;

(
∇χf

)
i

=
∂f

∂χi.
. (A.8a,b)

Similarly, the gradient of the first-order tensor v verifies

∇χv(χ0)u = Dv(χ0)[u];
(
∇χv

)
ij

=
∂fi
∂χj

, (A.9a,b)

and the gradient of the second-order tensor A verifies

∇χA(χ0)u = DA(χ0)[u];
(
∇χA

)
ijk

=
∂Fij

∂χk
, (A.10a,b)
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The divergence operator can then be derived, for first-order tensors, as

∇χ · v = ∇χv : I = tr∇χv;
(
∇χ · v

)
=

∂vi
∂χi

, (A.11a,b)

and for second-order tensors as

∇χ ·A = ∇χA : I;
(
∇χ ·A

)
i

=
∂Aij

∂χj
, (A.12a,b)

The rotational operator, or curl operator, can eventually be defined for a first- and
second-order tensor as(

∇χ×v
)
i

= ϵijk
∂vj
∂χk

;
(
∇χ×A

)
ij

= ϵjkl
∂Ail

∂χk
. (A.13a,b)

As a general rule of thumb, it is useful to remember that for a (n)-order tensor, the gradient
operator corresponds to a (n+1)-order tensor, while the divergence operator corresponds to
a (n− 1)-order tensor and the curl operator (of a first- or second-order tensor) corresponds
to a tensor of the same order. The following properties of the differential operators are
used throughout this work:

∇χ(fv) = f∇χv + v ⊗∇χf ; (A.14a)

∇χ · (fv) = f∇v · +v ·∇χf ; (A.14b)

∇χ(v ·w) = (∇χv)Tw + (∇χw)Tv; (A.14c)

∇χ · (v ⊗w) = v∇χ ·w + (∇χw); (A.14d)

∇χ · (ATv) = A : ∇χv + v ·∇χ ·A; (A.14e)

∇χ · (fA) = f∇χ ·A + A∇χf ; (A.14f)

∇χ(fA) = f∇χA + A⊗∇χf. (A.14g)

A.4 Transformation of equations in the continuum

Considering the mapping56 relations between the different referential, material and spatial
domains, there exist a relationship57 between scalar functions defined as

f(x, t) = f⋆(χ, t) = f⋆⋆(X, t), (A.15)

Such functions, as all the conserved quantities utilised in this work, are assumed to satisfy
the requirement of being twice continuously differentiable for the Schwarz symmetry
theorem.

A.4.1 On Green-Ostrogradsky theorem

The Green-Ostrogradksy theorem, also denoted as the divergence theorem, relates the
integral of the divergence of a first-order tensor v or a second-order tensor A on the
continuum Ωχ, with an integral on the surface ∂Ωχ of that continuum, as∫

Ωχ

∇χ · v dVχ =

∫
∂Ωχ

v ·NχdAχ;

∫
Ωχ

∇χ ·A dVχ =

∫
∂Ωχ

ANχdAχ. (A.16a,b)

56Refer to Figure 2.1 in Section 2.2 for visual support.
57See [3, 4] for further development.
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A.4.2 On Reynold’s Transport theorem

Using the notation of the previous section, the following development shows how to
transform a scalar quantity f , integrated on a spatial domain, onto a material domain:

∂

∂t

∣∣∣∣
X

∫
Ωx

f(x, t) dvx =
∂

∂t

∣∣∣∣
X

∫
ΩX

f⋆⋆(X, t)J⋆⋆(X, t) dV

=

∫
ΩX

∂

∂t

∣∣∣∣
X

(f⋆⋆(X, t)J⋆⋆(X, t)) dV

=

∫
ΩX

[
∂f⋆⋆

∂t

∣∣∣∣
X

J⋆⋆(X, t) +
∂J⋆⋆

∂t

∣∣∣∣
X

f⋆⋆(X, t)

]
dV

=

∫
ΩX

[
∂f⋆⋆

∂t
+ f⋆⋆∇x · v

]
J⋆⋆ dV

=

∫
Ωx

∂f⋆⋆

∂t
+ f⋆⋆∇x · v dv

=

∫
Ωx

∂f⋆⋆

∂t

∣∣∣∣
x

+ ∇xf · v + f∇x · v dv

=

∫
Ωx

∂f⋆⋆

∂t

∣∣∣∣
x

+ ∇x · (fv) dv

=
∂

∂t

∣∣∣∣
x

∫
Ωx

f(x, t) dv +

∫
∂Ωx

fv · n da. (A.17a)

This relation is very useful to transform equations written with an Eulerian framework to
equations written with a Lagrangian framework. Using the same algebra, it is also possible
to recover the following relation on the integral form

∂

∂t

∣∣∣∣
χ

∫
Ωx

f(x, t) dv =
∂

∂t

∣∣∣∣
x

∫
Ωx

f(x, t) dv +

∫
∂Ωx

f v̂ · n dv. (A.18)

The Reynold’s transport theorem can be usefully stated for the material time rate and the
referential time rate of a scalar variable UR as

∂

∂t

∣∣∣∣
χ

∫
ΩX

UR dV =
∂

∂t

∣∣∣∣
X

∫
ΩX

UR dV +

∫
∂ΩX

URW ·NX dA, (A.19a)

=
∂

∂t

∣∣∣∣
X

∫
ΩX

UR dV +

∫
∂Ωχ

(
URH

T
ΨW

)
·Nχ dAχ, (A.19b)

=

∫
ΩX

[
∂UR

∂t

∣∣∣∣
X

+ ∇
X
· URW

]
dV, (A.19c)

and for a tensorial variable UR as

∂

∂t

∣∣∣∣
χ

∫
ΩX

UR dV =
∂

∂t

∣∣∣∣
X

∫
ΩX

UR dV +

∫
∂ΩX

(UR ⊗W )NX dA, (A.20a)

=
∂

∂t

∣∣∣∣
X

∫
ΩX

UR dV +

∫
∂Ωχ

(UR ⊗W )HT
ΨNχ dAχ, (A.20b)

=

∫
ΩX

[
∂UR

∂t

∣∣∣∣
X

+ ∇
X
· (UR ⊗W )

]
dV. (A.20c)

Note that in Equations (A.19) and (A.20), the second line is obtained by using Nanson’s
rule on the second term of the first line, and the third line is obtained by regrouping the
terms of the first line under a single integral.
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A.4.3 On Euler’s theorem

By using algebra, the following relationships arise:

∂f⋆⋆

∂t
(X, t) =

∂f⋆

∂t
(χ = Ψ−1(X, t), t)

=
∂f⋆

∂χ
(χ, t) · ∂Ψ−1

∂t
+

∂f⋆

∂t
(χ, t) = ∇χf

⋆ ·W +
∂f⋆

∂t
. (A.21)

This transformation is very useful in solid mechanics because it enables time derivatives
in Lagrangian formulations to be rewritten in a referential domain. A similar relation can
be obtained between the spatial and the material domains as

∂f⋆⋆

∂t
(X, t) =

∂f⋆

∂t
(x = φ(X, t), t) = ∇xf · v +

∂f

∂t
, (A.22)

and between the spatial and the material domain as

∂f⋆

∂t
(χ, t) =

∂f

∂t
(x = Φ(χ, t), t) = ∇xf · v̂ +

∂f

∂t
. (A.23)

Equations section A.4.3 and (A.22) and (A.23) can alternatively be written as

∂f

∂t

∣∣∣∣
X

=
∂f

∂t

∣∣∣∣
χ

+∇χf ·W ;
∂f

∂t

∣∣∣∣
X

=
∂f

∂t

∣∣∣∣
x

+∇xf ·v;
∂f

∂t

∣∣∣∣
χ

=
∂f

∂t

∣∣∣∣
x

+∇xf ·v̂. (A.24a,b,c)

These equations can be combined to obtain

∂f

∂t

∣∣∣∣
X

=
∂f

∂t

∣∣∣∣
χ

+ ∇xf · (v − v̂) , (A.25)

and constitute Euler’s theorem. Alternatively, using Equation (A.19), Euler’s theorem can
be stated for a scalar quantity U as

∂JΨU
∂t

∣∣∣∣
χ

=
∂U
∂t

∣∣∣∣
X

+ ∇
X
· (UW ) , (A.26)
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FUNDAMENTALS OF SOLID MECHANICS

“I do not define time, space, place, and motion, as being well known
to all.”

— Isaac Newton, PhilosophiæNaturalis Principia Mathematica,
1687
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B.1 Introduction

In this appendix, the general principles of large strain, or large deformation, mechanics
applicable to deformable solid bodies are used in this work. Additionally, the considerations
that are made to utilise a thermo-mechanical framework are presented. The common
volumetric energy potentials are also presented.

B.2 Prerequisites on classical nonlinear solid mechanics

This section will go along the course of Chapter 2 and complete it with more general
notions or classical nonlinear solid mechanics. This section strongly relies on the work of
[10, 195].

B.2.1 Kinematics

Chapter 2 introduced the required kinematics notion to apprehend the ALE formulation.
In particular, the quantities associated to the natural mapping φ are those of the classical
Lagrangian formulation. More generally, when the mappings Ψ and Φ are both equal
to the identity mapping, the formulation and all the quantities boil down to the Total
Lagrangian Formulation. In that context, φ and its associated quantity, such as the natural
velocity v and the natural Jacobian J , will be referred to just as velocity and jacobian in
this section. As Equation (2.2a) presents the velocity v, the displacement vector u can
also be defined as

u(X, t) = φ(X, t) −X. (B.1)

In the context of large deformations, the displacement field is important quantity that
characterises the change of configuration of the body. As the distance between two particles
evolves throughout the deformation, that relative spatial position after deformation can be
expressed in terms of their initial material position. By noting that x+dx = φ(X +dX, t)
and for a fixed t, a Taylor’s series development of φ(X + dX, t) in the neighbourhood of
X for a small arbitrary spatial vector dX yields

u(X + dX, t) ≈ φ(X, t) +
∂φ(X, t)

∂X
dX − (X + dX), (B.2)

and it is clear that
dx = dX + u(X + dX, t) − u(X, t). (B.3)

Combining Equations (B.1) and (B.2) in (B.3), it is then possible to construct the defor-
mation gradient F , presented in Equation (2.2b), as

dx = F dX; F =
∂φ(X, t)

∂X
= ∇

X
φ; FiI =

∂xi
∂XI

. (B.4a,b,c)

In Equation (B.4c), the indexing suggests that F is a two-point tensor, that is to say it
transforms quantities from the material configuration to the spatial configuration. The
time derivative of the material and spatial deformation gradients are already used in the
ALE formulation as seen in Section 2.4. When considering the mapping φ, it can be stated
using the Schwarz theorem as

Ḟ =
d

dt

(
∂φ

∂X

)
=

∂

∂X

(
∂φ

∂t

)
= ∇

X
v = l = Ḟ F−1. (B.5)

where l is the velocity gradient. The expression of the cofactor and the Jacobian are
recalled as

J = detF =
1

6
(F F ) : F > 0; H = JF−T =

1

2
(F F ) (B.6a,b)
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Figure B.1: Local traction and normal vector.

The non-objective right Cauchy-Green tensor C characterises the deformation before any
rotation. C and the left Cauchy-Green or Finger tensor b are defined as

C = F TF = CT ; b = FF T = bT . (B.7a,b)

Since J > 0, F can be written as a multiplicative polar decomposition of a symmetric
tensor and an orthogonal tensor, and as a consequence, spectral decomposition of F and
C are related as

F =

3∑
i=1

λiNi ⊗Ni; C =

3∑
i=1

λ2
iNi ⊗Ni, (B.8a,b)

for eigenvalues λi and eigenvectors Ni.

B.2.2 Stress and equilibrium

In accordance with the infinitesimal strain theory, stress and equilibrium concepts can now
be introduced on a given configuration. For a more detailed and exhaustive presentation,
refer to the work of [195]. Consider a general body Ω illustrated in Figure B.1, upon which
forces pi are acting, and which is cut by a fictitious plane Q. As it is the case in Fluid
Mechanics, fluxes play an important role in the discretisation of conservation laws in the
Finite Volume Method. Consider therefore an infinitesimal element of area da normal to
the vector n in the neighbourhood of a point x, and undergoing a resultant force dp. The
traction vector t corresponding to the normal n at x is defined as follows

t(n) = lim
da→0

dp

da
= σn; ti = σijnj , (B.9a,b)

and constitutes the basis for assuming the existence of the symmetric second-order tensor
σ, known as the Cauchy stress tensor. The traction t verifies the principle of action and
reaction (Newton’s third law)

t(n) = −t(−n). (B.10)

By studying the expression of the t, the columns of σ can be viewed as traction vectors
acting on the normal vectors ei

σ =
3∑

i=1

t(ei) ⊗ ei; t(n) =
3∑

i,j=1

σij (ej · n) ei =
3∑

i,j=1

σij (ei ⊗ ej)n, (B.11a,b)

and it transpire that it will have three real eigenvalues, or principal stresses. Note that
the Cauchy stress is generally expressed for the (deformed) current area. It is of common
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practice in solid mechanics to re-express the previous relations with an alternative stress
representation, the Kirchhoff stresses, that are acting upon the undeformed body. Thus, it
is possible to introduce a traction force t0 per unit undeformed area such that

dp = tda = σnda = t0dA. (B.12)

Using the Nanson’s rule on the area vector nda, the above equation yields

t0 = JσF−TN = σH = PN = FSN , (B.13)

which serves as the basis to define the first and second Piola Kirchhoff stress tensor, P
and S, acting on a material normal N in the undeformed configuration

P = JσF−T ; S = F−1P = JF−1σF−T . (B.14a,b)

Note that P is asymmetric.

B.3 Large Strain thermo-elasticity

In the following, a summary of the considerations important for this work, in the context
of large strain thermo-elasticity is made. Then, the potentials and other thermal-related
quantities that are required in the derivation of the ALE formulation and for the algorithm
are presented. For a more comprehensive development, it is recommended to refer to [10,
21–23, 195]. Finally, a collection of some common volumetric potential is shown.

B.3.1 Calorimetry relationships

The derivation of Equation (4.12) with respect to the temperature between θ and θR is
done in the following [22]. First of all, notice that the following fraction can be expressed
in an alternative way by using the chain rule as

cv
θ(X, t)

=
1

θ(X, t)

∂Ẽ(Xθα)

∂θ(X, t)
=

1

θ(X, t)

∂Ẽ(Xηα)

∂η(X, t)

∂η̃(Xθα)

∂θ(X, t)
=

∂η̃(Xθα)

∂θ(X, t)
. (B.15)

Let T be a variable for integration of the entropy in terms of the temperature as∫ θ

θR

∂η̃(XTα)

∂T
= η̃(Xθα) − η̃R(X ,α);

∫ θ

θR

cv
T

= cv ln

(
θ

θR

)
. (B.16a,b)

with η̃R(X ,α) = η̃(X , θ = θR,α). It is then possible,using the notation defined in Chapter
4 to bring out two relationships involving the entropy and the temperature, stated as

η̃(Xθα) = η̃R(X ,α) + cv ln

(
θ

θR

)
; Θ(Xηα) = θRe

η̃(Xθα)−η̃R(X ,α)

cv . (B.17a,b)

Moreover, it is possible to express the temperature, using the value Θ0 in the absence of
entropy production, as

Θ(Xηα) = Θ0(X ,α)e
η̃
cv ; Θ0(X ,α) = θRe

−−η̃R(X ,α)

cv = Θ(X , η=0,α) (B.18a,b)

Then consider the integration of the temperature definition (4.11) between the absence
and the production of entropy:∫ η

0

∂E(Xnα)

∂n(X, t)
= E(Xηα) − E0(X ,α); E0(X ,α) = E(X , η = 0,α). (B.19a,b)



B.3. LARGE STRAIN THERMO-ELASTICITY 177

Using the above results, the energy potential can be written as

E(Xηα) = E0(X ,α) + cvΘ0(X ,α)

[
exp

η̃(X ,θ,α)
cv −1

]
. (B.20)

Now the integration of (4.12) for a temperature that varies between Θ0(X ) and θR gives∫ θR

Θ0(X )
cvdθ = cv (θR −Θ0(X )) , (B.21)

and ∫ θR

Θ0(X )

∂Ẽ(X , θ,α)

∂θ(X, t)
dθ = Ẽ(X , θ = θR,α) − Ẽ(X , θ = Θ0(X ,α),α), (B.22)

which eventually gives

ẼR(X ,α) = E0(X ,α) + cv (θR −Θ0(X ,α)) (B.23a)

ẼR(X ,α) = Ẽ(X , θ = θR,α) = E(X , η̃R(X ,α),α). (B.23b)

Combining Equations (B.20) and (B.23) and (B.18b) yields the following relationship

E(Xηα) = ẼR(X ,α) − cv (θR −Θ0(X ,α)) + cvΘ0(X ,α)

[
exp

η̃(X ,θ,α)
cv −1

]
= ẼR(X ,α) + cvθR

(
exp

η̃(X ,θ,α)−η̃R(X ,α)

cv −1

)
. (B.24)

B.3.2 Volumetric energies

An array of alternative volumetric potential to account for stress caused by volume
distortion, originally presented in Rossi et al. [317], is summarised in Table B.1, and
depicted in Figure B.2.
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Figure B.2: Comparison of volumetric potentials
using models presented in Table B.1.

Quadratic U = κ
2 [J − 1]2

S85 [239] U = κ
2 ln2 J

ST82 [318] U = κ
4

[
(J − 1)2 + ln2 J

]
ST91 [319] U = κ

4

[
J2 − 1 − 2 lnJ

]
M94 [320] U = κ [J − ln J − 1]

L94 [321] U = κ [J ln J − J + 1]

A00 Ansys [44] U = κ
32

[
J2 − J−2

]2
Table B.1: Volumetric energy potentials.

This is justified by the isochoric-volumetric decomposition of the energy potential, stud-
ied in [236, 237]. Volumetric potentials must verify certain requirements such as the
incompressibility condition U(1) = 0.
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B.3.3 On the Lie time derivative

The Lie time derivative of a tensor g over a mapping φ is defined as the push-forward58 of
the time derivative of the pull-back of g [217] and is noted as

Lφ (g) = φ⋆

[
d

dt

(
φ−1

⋆ g
)]

. (B.25)

The Lie derivative can easily be expressed for covariant and contravariant quantities [322].
For a covariant tensor such as the right Cauchy-Green tensor C, and for a contravariant
tensor such as the left Cauchy-Green tensor, the Lie derivative59 with regards to the
velocity vector v can be expressed as

Lv (C) =
∂C

∂t

∣∣∣∣
X

+ (∇
X
v)T C + C∇

X
, (B.26a)

Lv (b) =
∂b

∂t

∣∣∣∣
X

− (∇
X
v) b− b (∇

X
v)T (B.26b)

In particular, the Lie derivative (B.26b) of the contravariant left Cauchy-Green tensor with
respect to v is used to get an evolution equation on the internal elastic stresses, as shown
in Section 3.5.

B.4 Tools for the Arbitrary Lagrangian Eulerian approach

This section is dedicated to further discuss the ALE methodology in the context of solid
mechanics. Section B.4.1 shows a development to derive the ALE wave speeds to complement
the one presented in Chapter 5. Then, Section B.5 shows how to degenerate ALE equations
to their TLF equivalent equations.

B.4.1 Wave speeds connections

In the homogenous ALE system

∂U
∂t

∣∣∣∣
χ

+ ∇χ · [F ] = 0; U = JΨU ;
R S = JΨS; F = [FR − (UR ⊗W )]HΨ,

(B.27a,b,c,d)
normal fluxes can be expanded as

FNχ = FNχ = FRHΨNχ − UR (W ·HΨNχ) . (B.28)

The directional derivative F , in the direction of an eigenvector UR
α , is linked to that of

FR, using Equation (B.28) and change of variables JΨ = ∂U/∂UR as

DF [UR
α ] =

(
∂F
∂UR

∂UR

∂U

)
UR
α =

(
ΛHΨ

∂FR

∂UR
−W ·HΨNχ

)
UR
α

= ΛHΨ

(
DFR[UR

α ] − (W ·NX)UR
α

)
. (B.29a)

with ΛHΨ
defined in Equation (3.28). Using the ALE characteristic equation (3.32), it

yields (
cαJΨ
ΛHΨ

+ W ·NX

)
Uα
R = DFR[Uα

R]. (B.30)

58The push forward of that mapping is denoted as φ⋆ and the pull-forward is denoted as φ−1
⋆ .

59In the expressions of the Lie time derivative (B.26), the first line (B.26a) can also be denoted the
Cottler-Rivlin rate, and the second line (B.26b) can be denoted as the upper Oldroyd rate.
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By identification, the parenthesis in the left hand side of Equation (B.30) corresponds wave
speeds cα of a TLF eigenproblem and the ALE wave speed expression (3.33) is recovered.
The ALE problem is therefore also hyperbolic. This result is fortunately compatible with
degenerating a set of ALE equations into a set of TLF equations, as addressed in Section
B.5.

B.5 On the degeneration to Lagrangian and Eulerian formu-
lations

It is interesting to notice that ALE equations can degenerate to Lagrangian and Eulerian
forms. By considering

W = 0; FΨ = I. (B.31a,b)

The scaled variables and intermediate quantities are equal to

χ = X; v̂ = v; FΦ = F . (B.32a,b,c)

Doing this, enables the ALE system (2.75) to be rewritten as

∂U
∂t

∣∣∣∣
X

+

3∑
i=1

∂FI

∂XI
= S, (B.33)

with the following components

U =


ρR

p

F

E

 ; FI = −


0

PEI

v ⊗EI

P Tv ·EI

 ; S =


0

fR

0

fR · v

 . (B.34a,b,c)

This system, labelled in this work as the equivalent TLF mixed formulation. Furthermore,
the respective Eulerian equivalent system can also be obtained by enforcing the referential
domain to coincide with the spatial domain by setting

v̂ = 0; FΦ = I. (B.35a,b)

As a consequence,

χ = x; W = −F−1v; FΨ = F−1, (B.36a,b,c)

and the system (2.75) can be rewritten as

∂U
∂t

∣∣∣∣
x

+
3∑

i=1

∂FI

∂xI
= S, (B.37)

with the following components

U =


H−1ρR

J−1p

F−1

J−1E

 ; FI = −


J−1ρRv ·EI[

σ − J−1v ⊗ v
]
EI(

F−1v
)
⊗EI[

σTv −
(
J−1Ev

)]
·EI

 ; S =


0

fR

0

fR · v

 , (B.38a,b,c)

where σ = PH−1 is the Cauchy stress tensor.
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SECOND LAW OF THERMODYNAMICS

“Just as the eye was made to see colours, and the ear to hear sounds,
so the human mind was made to understand.”

— Johannes Kepler
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In order to provide a proper physical meaning to the conjugate fields of the first-order
system of primary variables {pχ,FΦ,FΨ, JΨ, η}, the Ballistic energy (also known as the
Lyapunov function of the thermo-mechanical process) is introduced. The Ballistic energy
per unit material volume, described by Ericksen [257], is expressed as

B (X, t) = B̃ (p,Xη) = K(p) + E(Xη) − θRη

= K(p) + Ψ(Xη) + ϑη, (C.1)

with the difference of temperature ϑ = θ − θR, where B and B̃ are alternative functional
of the same magnitude, and where Ψ is the Helmholtz free energy expressed as

Ψ(Xη) = E(Xη) − Θ(Xη)η, (C.2)

In the rest of this development, it is convenient to define the Ballistic energy Bχ per unit
of referential volume as

Bχ(χ, t) = B̂χ(pχ,FΦ,FΨ, JΨ, ηχ) = JΨB̃ (p,Xηα)

=
1

2ρχ
pχ · pχ + JΨE

(
F (FΦ,FΨ) , J−1

Ψ ηχ
)
− θRηχ, (C.3)

with ρχ = JΨρR and Bχ(χ, t) and B̂χ(pχ,FΦ,FΨ, JΨ, ηχ) represent alternative functional
representations of the same magnitude. In the above equation, the first term of the right
hand side represents the kinetic energy, the second term represents internal energy and
the third term represents the heat component expressed in terms of the scaled entropy
ηχ = JΨη. It is now appropriate to define energy conjugates for the two deformation
measures, the spatial and material deformation gradients {FΦ,FΨ}, that are defined as

PΦ =
∂E(F (FΦ,FΨ), J−1

Ψ ηχ)

∂FΦ
; PΨ =

∂E(F (FΦ,FΨ), J−1
Ψ ηχ)

∂FΨ
. (C.4a,b)

Moreover, the definition of the temperature in Equation (4.11) can also be seen as an
energy conjugacy relationship between the entropy η and the temperature θ, stated as

θ =
∂E(F (FΦ,FΨ), J−1

Ψ ηχ)

∂η
. (C.5)

Following Hamilton’s principle, it is now possible to obtain the set of associated work
conjugates Vχ as [2, 23]

Vχ =
∂B̂χ

∂Uχ
=



∂B̂χ

∂pχ

∂B̂χ

∂FΦ

∂B̂χ

∂FΨ

∂B̂χ

∂JΨ

∂B̂χ

∂ηχ


=



v

PΦ

PΨ

−L

ϑ


=



v

PHΨ

−F TPHΨ

−L

ϑ


. (C.6)

Here, the functional
L = K − (E(F , η) − θη) (C.7)

denotes the (thermal-mechanical based) Lagrangian function, defined as a combination of
the kinetic energy K = 1

2ρR (v · v), the internal energy E and the heat dissipative energy
θη.
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It is instructive to revisit the global version of the second law of thermodynamics when
written in terms of the Ballistic energy density B̂. The time derivative of the Ballistic
energy is obtained via the chain rule as

∂

∂t

∣∣∣∣
χ

∫
Ωχ

Bχ dVχ

=

∫
Ωχ

∂B̂χ(pχ,FΦ,FΨ, JΨ, ηχ)

∂t

∣∣∣∣
χ

dVχ

=

∫
Ωχ

(
∂B̂χ

∂pχ
· ∂pχ

∂t

∣∣∣∣
χ

+
∂B̂χ

∂FΦ
:
∂FΦ

∂t

∣∣∣∣
χ

+
∂B̂χ

∂FΨ
:
∂FΨ

∂t

∣∣∣∣
χ

+
∂B̂χ

∂JΨ

∂JΨ
∂t

∣∣∣∣
χ

+
∂B̂χ

∂ηχ

∂ηχ
∂t

∣∣∣∣
χ

)
dVχ

=

∫
Ωχ

(
v · ∂pχ

∂t

∣∣∣∣
χ

+ PΦ :
∂FΦ

∂t

∣∣∣∣
χ

+ PΨ :
∂FΨ

∂t

∣∣∣∣
χ

− L∂JΨ
∂t

∣∣∣∣
χ

+ ϑ
∂ηχ
∂t

∣∣∣∣
χ

)
dVχ

=

∫
Ωχ

(
v · ∂pχ

∂t

∣∣∣∣
χ

+ (PHΨ) :
∂FΦ

∂t

∣∣∣∣
χ

−
(
F TPHΨ

)
:
∂FΨ

∂t

∣∣∣∣
χ

− LHΨ :
∂FΨ

∂t

∣∣∣∣
χ

+ ϑ
∂ηχ
∂t

∣∣∣∣
χ

)
dVχ

=

∫
Ωχ

(
v · ∂pχ

∂t

∣∣∣∣
χ

+ (PHΨ) :
∂FΦ

∂t

∣∣∣∣
χ

+ (ΣHΨ) :
∂FΨ

∂t

∣∣∣∣
χ

+ ϑ
∂ηχ
∂t

∣∣∣∣
χ

)
dVχ, (C.8)

where, Equations (C.4–C.5) have been substituted in the third line of (C.8), respectively.
The pairs {

v,
∂pχ

∂t

∣∣∣∣
χ

}
,

{
PHΨ,

∂FΦ

∂t

∣∣∣∣
χ

}
,

{
ΣHΨ,

∂FΨ

∂t

∣∣∣∣
χ

}
,

{
ϑ,

∂ηχ
∂t

∣∣∣∣
χ

}
(C.9)

are said to be dual or work conjugate with respect to the referential volume in the sense
that their inner product yields work rate per unit of referential volume. For instance,
the energy conjugate field to the time rate of the material-based deformation gradient
is the classical (material-based) Eshelby stress tensor defined as Σ = −

(
F TP + LI

)
.

Consequently, we can substitute the linear momentum balance law (2.56) and the geometric
conservation equations (2.58) and (2.61) into the fifth line of (C.8), and after some algebraic
manipulations, to give

∂

∂t

∣∣∣∣
χ

∫
Ωχ

Bχ dVχ

=

∫
Ωχ

[
DIVχ

(
(PHΨ)T v + 2KHT

ΨW
)

+ v · f −∇χK ·
(
HT

ΨW
)]

dVχ

+

∫
Ωχ

[
(PHΨ) : ∇χv + (PHΨ) : ∇χv̂ + (ΣHΨ) : ∇χW

]
dVχ +

∫
Ωχ

ϑ
∂ηχ
∂t

∣∣∣∣
χ

dVχ

=

∫
Ωχ

[
DIVχ

(
(PHΨ)T v + 2KHT

ΨW
)

+ v · f −∇χK ·
(
HT

ΨW
)]

dVχ

+

∫
Ωχ

[
∇χE ·

(
HT

ΨW
)
− LHΨ : ∇χW

]
dVχ +

∫
Ωχ

ϑ
∂ηχ
∂t

∣∣∣∣
χ

dVχ, (C.10)

It is worth pointing out that the term on the second line of the equation above can only
be obtained by strongly enforce the curl-free conditions. Further expanding the term

LHΨ : ∇χW = DIVχ

(
LHT

ΨW
)
−
(
∇χL

)
·
(
HT

ΨW
)
, (C.11)
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and some term arrangement, Equation (C.10) reduces to

∂

∂t

∣∣∣∣
χ

∫
Ωχ

Bχ dVχ

=

∫
Ωχ

[
DIVχ

(
(PHΨ)T v + (2K − L)HT

ΨW
)

+ v · f +
(
∇χθ

)
·
(
ηHT

ΨW
)]

dVχ

+

∫
Ωχ

ϑ
∂ηχ
∂t

∣∣∣∣
χ

dVχ. (C.12)

Recalling the ALE entropy density rate in conservative form, stated in Equation (4.28),
the heat component in Equation (C.10) is given as∫

Ωχ

ϑ
∂ηχ
∂t

∣∣∣∣
χ

dVχ =

∫
Ωχ

ϑDIVχ

(
ηHT

ΨW
)
dVχ −

∫
∂Vχ

ϑ

(
qB
θB

)
dAχ +

∫
Ωχ

ϑ
sχ
θ
dVχ

+

∫
Ωχ

θR
θ2

Qχ ·∇χθ dVχ. (C.13)

By noting that

ϑDIVχ

(
ηHT

ΨW
)

= DIVχ

(
ϑηHT

ΨW
)
−∇χθ

(
ηHT

ΨW
)
, (C.14)

the substitution of Equation (C.13) into the expression of the Ballistic rate in Equation
(C.12), which becomes

∂

∂t

∣∣∣∣
χ

∫
Ωχ

Bχ dVχ − Π̇ext
χ −Qext

χ =

∫
Ωχ

∇χ ·
(
BHT

ΨW
)
dVχ

=

∫
Ωχ

θR
θ2

Qχ ·∇χθ dVχ. (C.15)

The first term on the right hand side vanishes due to the enforcement of suitable boundary
condition, that is

HT
ΨW ·Nχ = W · (HΨNχ) = W ·NX = 0. (C.16)

In Equation (C.15), the term Π̇ext
χ represents the mechanical power associated with external

forces and is expressed as

Π̇ext
χ =

∫
Ωχ

v · f dVχ +

∫
∂Vχ

vB · tB dAχ, (C.17)

with tB = PHΨNχ, the term Qext
χ represents the heat source and heat flux added

(removed) to (from) the system and is expressed

Qext
χ =

∫
Ωχ

ϑ

θ
rχ dVχ −

∫
∂Vχ

ϑ

θ
qB dAχ. (C.18)

Recalling the Fourier’s law of heat conduction [21–23], the last term on the left hand side
of Equation (C.15) is non-positive, which is demonstrated as below

Qχ ·∇χθ = −
(
Kχ∇χθ

)
·∇χθ = −Kχ :

(
∇χθ ⊗∇χθ

)
≤ 0. (C.19)

With all this at hand, Equation (C.15) can finally be transformed into the following
inequality

∂

∂t

∣∣∣∣
χ

∫
Ωχ

Bχ dVχ − Π̇ext
χ −Qext

χ ≤ 0. (C.20)
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This represents a valid expression for the second law of thermodynamics of a system.
Satisfaction of inequality (C.20) is a necessary ab initio condition to ensure stability,
otherwise referred to as the classical Coleman-Noll procedure. When introducing Riemann-
based numerical dissipation to the finite volume spatial discretisation, this concept can be
further exploited, which is beyond the scope of this thesis.

Remark C.0.1 It is interesting to notice that when no thermal considerations is present
in the formulation, the Ballistic energy degenerates to the Hamiltonian functional H defined
as

H = K + E . (C.21)

Consequently, it is possible to bring out from this development the Hamiltonian equations
of continuum mechanics.

Remark C.0.2 It is shown in Expression (C.9) that the work conjugate relative to the
energy variables is represented by the rate of scaled entropy density ηχ and the difference
of temperature ϑ. It is possible to consider the alternative work pair{

ϑχ,
∂η

∂t

∣∣∣∣
χ

}
, (C.22)

that combines the scaled difference of temperature ϑχ = JΨ (θ − θR) and the rate of the
entropy.

Remark C.0.3 As said in the above development, it is possible to adapt the Coleman-
Noll procedure to the spatially-discretised mixed system in order to prove the production of
entropy, thence the presence of numerical dissipation. For the framework to preserve energy
and momentum, it is necessary that the fully-discretised ALE mixed system is qualified as
Hamiltonian [323]. This is achieved with the use of a symplectic time integrator [324, 325],
which will not be discussed in this thesis.



APPENDIXD

OPENFOAM COMPONENTS

“Ideas are cheap. It’s only what you do with them that counts.”

— Isaac Asimov, The Secrets of the Universe, 1989
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This appendix contains the list of the main files used in the vcALEFoam solver. They are
organised in the following listing. They are compatible with the version 6 of OpenFOAM.org.
That version only contains a few elements for solid dynamics. Moreover, it contains a
mesh motion motion that implement several techniques for Fluid Dynamics. They can be
used in the study of shock, or in turbomachinery. Further discussions upon the available
techniques to move the mesh can be found in [49, 66, 292, 309].

1 /*---------------------------------------------------------------------------*\

2 Description

3 Store the values of previous timestep for conserved variables

4 \*---------------------------------------------------------------------------*/

5
6 x.oldTime ();

7 lm.oldTime ();

8 spatF.oldTime ();

9 if (solveSpatH) { spatH.oldTime (); }

10 if (solveSpatJ) { spatJ.oldTime (); }

11
12 if (meshUpdate) {

13 if (solveMatF) { matF.oldTime (); }

14 //if (solveMatH) { matH.oldTime (); }

15 if (solveMatJ) { matJ.oldTime (); }

16 W.oldTime ();

17 xw.oldTime ();

18 }

19
20 if (isPlastic) {

21 CpInv.oldTime ();

22 eps.oldTime ();

23 epsDot.oldTime ();

24 wp.oldTime ();

25 coeffTau.oldTime ();

26 }

27
28 if (Emethod) { E.oldTime (); } else { eta.oldTime (); }

Listing D.1: saveOldTime.H

1 /*---------------------------------------------------------------------------*\

2 Description

3 Computes the gradients of W, v, p and T

4 \*---------------------------------------------------------------------------*/

5
6 if (meshUpdate) wGrad = tensor ::zero;

7 vGrad = tensor ::zero;

8 pGrad = vector ::zero;

9 if (isThermo) gradT = vector ::zero;

10
11 forAll(edges , edge) { /* edge loop * * * * * * * * * * * * * * * * * * * * * */

12 const label& a = edges[edge ][0];

13 const label& b = edges[edge ][1];

14 const vector& Cab = Sf[edge];

15 if (meshUpdate) {

16 const tensor wGrad_ = 0.5 * (W[a] + W[b]) * Cab;

17 wGrad[a] += wGrad_; wGrad[b] -= wGrad_; // W

18 }

19
20 const vector va = lm[a]/rhoR[a];

21 const vector vb = lm[b]/rhoR[b];

22 const tensor vGrad_ = 0.5 * (va + vb) * Cab;

23 vGrad[a] += vGrad_; vGrad[b] -= vGrad_; // v_

24
25 const vector pGrad_ = 0.5 * (p[a] + p[b]) * Cab;

26 pGrad[a] += pGrad_; pGrad[b] -= pGrad_; // p

27
28 if (isThermo) {

29 const vector tGrad_ = 0.5 * (T[a] + T[b]) * Cab;

30 gradT[a] += tGrad_; gradT[b] -= tGrad_; // T

31 }

32 } /* end of edge loop * * * * * * * * * * * * * * * * * * * * * * * * * * * */

33 forAll(mesh.boundary (), patch) { /* boundary loop * * * * * * * * * * * * * */

34 forAll(patches[patch], facei) { // face loop

35 const vector& Af = Sf_p.boundaryField ()[patch ][ facei];

36 const label& face = patches[patch ]. start() + facei;

37 const labelList& myface = faces[face];

38 const label& nodeA = myface [0], nodeB = myface [1], nodeC = myface [2];

39
40 if (meshUpdate) {

41 wGrad[nodeA] += ((6.*W[nodeA]) + W[nodeB] + W[nodeC]) * Af / 24.;

42 wGrad[nodeB] += (W[nodeA] + (6.*W[nodeB]) + W[nodeC]) * Af / 24.;

43 wGrad[nodeC] += (W[nodeA] + W[nodeB] + (6.*W[nodeC ])) * Af / 24.;

44 }

45
46 const vector va = lm[nodeA]/rhoR[nodeA ];

47 const vector vb = lm[nodeB]/rhoR[nodeB ];

48 const vector vc = lm[nodeC]/rhoR[nodeC ];

49 vGrad[nodeA] += ((6.*va) + vb + vc) * Af / 24.;

50 vGrad[nodeB] += (va + (6.*vb) + vc) * Af / 24.;

51 vGrad[nodeC] += (va + vb + (6.*vc)) * Af / 24.;

52 pGrad[nodeA] += ((6.*p[nodeA ]) + p[nodeB] + p[nodeC]) * Af / 24.;

53 pGrad[nodeB] += (p[nodeA] + (6.*p[nodeB ]) + p[nodeC]) * Af / 24.;

54 pGrad[nodeC] += (p[nodeA] + p[nodeB] + (6.*p[nodeC ])) * Af / 24.;

55
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56 if (isThermo) {

57 gradT[nodeA] += ((6.*T[nodeA ]) + T[nodeB] + T[nodeC]) * Af / 24.;

58 gradT[nodeB] += (T[nodeA] + (6.*T[nodeB ]) + T[nodeC]) * Af / 24.;

59 gradT[nodeC] += (T[nodeA] + T[nodeB] + (6.*T[nodeC ])) * Af / 24.;

60 }

61 } // end of face loop

62 } /* end of boundary loop * * * * * * * * * * * * * * * * * * * * * * * * * */

63 if (meshUpdate) wGrad = wGrad / Vol;

64 vGrad = vGrad / Vol;

65 pGrad = pGrad / Vol;

66 if (isThermo) gradT = gradT / Vol;

Listing D.2: gradients.H

1 /*---------------------------------------------------------------------------*\

2 Description

3 Compute interior contribution for the RHS

4 \*---------------------------------------------------------------------------*/

5
6 /* Reinitialise RHS * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

7 rhsLm = vector ::zero;

8 rhsSpatF = tensor ::zero;

9 if (solveSpatH) rhsSpatH = tensor ::zero;

10 if (solveSpatJ) rhsSpatJ = 0;

11 if (meshUpdate) {

12 if (solveMatF) rhsMatF = tensor ::zero;

13 if (solveMatJ) rhsMatJ = 0;

14 rhsW = vector ::zero;

15 }

16 rhsE = 0;

17 if (isThermo) rhsEthermo = 0;

18
19 forAll(edges , edge) { /* loop over edges * * * * * * * * * * * * * * * * * * */

20 const label& a = edges[edge ][0];

21 const label& b = edges[edge ][1];

22 const vector Xe_Xa = 0.5 * (meshPoints[b] - meshPoints[a]);

23 const vector Xe_Xb = -Xe_Xa;

24 const vector va = lm[a] / rhoR[a];

25 const vector vb = lm[b] / rhoR[b];

26
27 const vector vM_ = va + (vGrad[a] & (Xe_Xa)); // reconstruction velocity

28 const vector vP_ = vb + (vGrad[b] & (Xe_Xb));//,

29 const vector dV = vP_ - vM_;

30
31 // referential normals

32 const vector& Cab = Sf[edge] ; //, Nab = N[edge];

33 const scalar& normCab = magSf[edge];

34
35 /* spatial normals , referential density and wave speeds * * * * * * * * * */

36 const vector c_ave_ab = (0.5 * (spatH[a] + spatH[b])) & Cab;

37 const vector n_ab = c_ave_ab / Foam::mag(c_ave_ab);

38 const tensor nxn = n_ab * n_ab;

39 const tensor Inxn = tensor ::I - nxn;

40 const scalar rho_ave = 0.5 * (rhoR[a] + rhoR[b]);

41 const scalar Up_ave = 0.5 * (Up[a] + Up[b]);

42 const scalar Us_ave = 0.5 * (Us[a] + Us[b]);

43
44 // Stabilisation linear momentum

45 const tensor Sp_ab = 0.5 * normCab * (( Up_ave*nxn) + (Us_ave*Inxn));

46 const vector stabC = Sp_ab & dV ;

47
48 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

49 // RHS of p_{cchi}

50 const vector pR_a = lm[a] / matJ[a];

51 const vector pR_b = lm[b] / matJ[b];

52 const tensor PH_a = (P[a]+( pR_a*W[a])) & matH[a];

53 const tensor PH_b = (P[b]+( pR_b*W[b])) & matH[b];

54 const vector t_ab = (0.5 * (PH_a + PH_b)) & Cab;

55 const vector rhsLm_e = t_ab + (rho_ave * stabC);

56 rhsLm[a] += rhsLm_e; rhsLm[b] -= rhsLm_e;

57
58 // RHS of Spatial F

59 const tensor rhsSpatF_e = (0.5 * (vHat[a]+vHat[b])) * Cab;

60 rhsSpatF[a] += rhsSpatF_e;

61 rhsSpatF[b] -= rhsSpatF_e;

62
63 if (solveSpatH) { // RHS of Spatial H

64 rhsSpatH[a] += Tcross(spatF[a], rhsSpatF_e);

65 rhsSpatH[b] -= Tcross(spatF[b], rhsSpatF_e);

66 }

67
68 if (solveSpatJ){ // RHS of Spatial J

69 const scalar pM_ = p[a] + (pGrad[a] & (Xe_Xa)); // reconstruction p

70 const scalar pP_ = p[b] + (pGrad[b] & (Xe_Xb));

71 const scalar dP = pP_ - pM_;

72
73 // Stabilisation of Spatial J

74 const tensor Sj_ab = (0.5/ rho_ave) * ((nxn/Up_ave) + (Inxn/Us_ave));

75 const vector v_stab = dP * ( Sj_ab & n_ab ) ;

76 const scalar stabJC = v_stab & c_ave_ab;

77
78 rhsSpatJ[a] += (spatH[a] && rhsSpatF_e) + stabJC;

79 rhsSpatJ[b] -= (spatH[b] && rhsSpatF_e) + stabJC;

80 }

81
82 // RHS of E (Mechanical)

83 const vector v_ab = 0.5 * (va + vb);

84 scalar rhsE_ea = 0;
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85 scalar rhsE_eb = 0;

86 if (Emethod) {

87 rhsE_ea = (v_ab & t_ab) * normCab;

88 rhsE_eb = -rhsE_ea;

89 }

90
91 // RHS of E (Thermal)

92 if (isThermo) {

93 const scalar& h_ = model.getThermoModel ().h().value();

94 const tensor spatC_a = spatF[a].T() & spatF[a];

95 const tensor spatC_b = spatF[b].T() & spatF[b];

96 const vector Q_a = - h_ * spatJ[a] * (Foam::inv(spatC_a) & gradT[a]);

97 const vector Q_b = - h_ * spatJ[b] * (Foam::inv(spatC_b) & gradT[b]);

98 const vector Q_ave = 0.5 * (Q_a + Q_b);

99 rhsEthermo[a] += -Q_ave & Cab;

100 rhsEthermo[b] += Q_ave & Cab;

101 }

102
103 if (meshUpdate) {

104 const vector HTW_a = matH[a].T() & W[a];

105 const vector HTW_b = matH[b].T() & W[b];

106 const scalar HTW_ab_C_ab = (0.5*( HTW_a + HTW_b)) & Cab;

107
108 const tensor rhsMatF_e = (0.5 * (W[a]+W[b])) * Cab;

109 if (solveMatF) { // RHS of Material F

110 rhsMatF[a] += rhsMatF_e;

111 rhsMatF[b] -= rhsMatF_e;

112 }

113
114 if (solveMatJ) { // RHS of Material J

115 rhsMatJ[a] += HTW_ab_C_ab;

116 rhsMatJ[b] -= HTW_ab_C_ab;

117 }

118 /* material normals and wave speeds * * * * * * * * * * * * * * * * * * */

119 const vector c_ave_ab_X = (0.5 * (matH[a] + matH[b])) & Cab;

120 const vector n_ab_X = c_ave_ab_X / Foam::mag(c_ave_ab_X);

121 const tensor nxn_X = n_ab_X * n_ab_X;

122 const tensor Inxn_X = tensor ::I - nxn_X;

123
124 // reconstrution W

125 const vector wM_ = W[a] + (wGrad[a] & (Xe_Xa));

126 const vector wP_ = W[b] + (wGrad[b] & (Xe_Xb));

127 const vector dW = wP_ - wM_;

128
129 // Stabilisation of W

130 const tensor SpX_ab = 0.5 * normCab * (( Up_ave*nxn_X) + (Us_ave*Inxn_X));

131 const vector stabWC = 0.5 * (SpX_ab & dW) ;

132 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

133 // RHS of p_{W}

134 const vector tW_ab = (0.5 * (starP[a] + starP[b]))/rho.value() & Cab;

135 const vector rhsW_e = tW_ab + stabWC;

136 rhsW[a] += rhsW_e; rhsW[b] -= rhsW_e;

137
138 // RHS of E (Convection)

139 scalar E_a = E[a] / matJ[a];

140 scalar E_b = E[b] / matJ[b];

141 if (Emethod) {

142 scalar rhsE_e_convect = (0.5 * ((E_a*HTW_a) + (E_b*HTW_b))) & Cab;

143 rhsE_ea += rhsE_e_convect;

144 rhsE_eb -= rhsE_e_convect;

145 }

146 } // end of dynamic array update

147 rhsE[a] += rhsE_ea;

148 rhsE[b] += rhsE_eb;

149 } /* end of edge loop * * * * * * * * * * * * * * * * * * * * * * * * * * * */

150 if (meshUpdate) rhsW -= (W * Vol) * dampingCoeff / deltaT.value();

151 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

152
153 if (isThermo) {

154 if (Emethod) { rhsE = rhsE + rhsEthermo; }

155 else { rhsE = rhsEthermo/T; }

156 }

Listing D.3: rhs.H

1 /*---------------------------------------------------------------------------*\

2 Description

3 Compute boundary contributions for the RHS

4 \*---------------------------------------------------------------------------*/

5
6 forAll(mesh.boundary (), patch) { // loop over patches

7 const fvPatch& patx = mesh.boundary ()[patch ];

8 const word& PATCHNAME = patx.name();

9 forAll(patches[patch], facei) { // loop over faces

10 const label& face = patches[patch].start() + facei;

11 const vector& Sfpf = Sf_p.boundaryField ()[patch][ facei];

12 const scalar& Af = magSf_p.boundaryField ()[patch ][facei];

13 const vector& Npf = N_p.boundaryField ()[patch ][ facei];

14 const tensor NxN = Npf*Npf , INxN = tensor ::I - NxN;

15 const labelList& this_face = faces[face];

16 const label& nodeA = this_face [0], nodeB=this_face [1], nodeC=this_face [2];

17
18 // contact velocities

19 vector vC1 = lm[nodeA]/rhoR[nodeA],

20 vC2 = lm[nodeB ]/rhoR[nodeB],

21 vC3 = lm[nodeC ]/rhoR[nodeC];

22
23 vector vHC1 = vHat[nodeA], vHC2 = vHat[nodeB], vHC3 = vHat[nodeC],



189

24 wC1 = W[nodeA], wC2 = W[nodeB], wC3 = W[nodeC ];

25
26 // tractions

27 vector tC1 = (P[nodeA] & matH[nodeA ]) & Npf ,

28 tC2 = (P[nodeB] & matH[nodeB]) & Npf ,

29 tC3 = (P[nodeC] & matH[nodeC]) & Npf ,

30 tWC1 = starP[nodeA] & Npf ,

31 tWC2 = starP[nodeB] & Npf ,

32 tWC3 = starP[nodeC] & Npf;

33
34 if (isBC(PATCHNAME , "free")) {

35 tC1 = vector ::zero; tWC1 = NxN & tWC1;

36 tC2 = vector ::zero; tWC2 = NxN & tWC2;

37 tC3 = vector ::zero; tWC3 = NxN & tWC3;

38 /*vHC1 = vHC1;*/ wC1 = INxN & wC1;

39 /*vHC2 = vHC2;*/ wC2 = INxN & wC2;

40 /*vHC3 = vHC3;*/ wC3 = INxN & wC3;

41 } else if (isBC(PATCHNAME , "roller")) {

42 tC1 = NxN & tC1; tWC1 = NxN & tWC1;

43 tC2 = NxN & tC2; tWC2 = NxN & tWC2;

44 tC3 = NxN & tC3; tWC3 = NxN & tWC3;

45 vHC1 = INxN & vHC1; wC1 = INxN & wC1;

46 vHC2 = INxN & vHC2; wC2 = INxN & wC2;

47 vHC3 = INxN & vHC3; wC3 = INxN & wC3;

48 } else if (isBC(PATCHNAME , "skew")) {

49 tC1 = INxN & tC1; tWC1 = NxN & tWC1;

50 tC2 = INxN & tC2; tWC2 = NxN & tWC2;

51 tC3 = INxN & tC3; tWC3 = NxN & tWC3;

52 vHC1 = NxN & vHC1; wC1 = INxN & wC1;

53 vHC2 = NxN & vHC2; wC2 = INxN & wC2;

54 vHC3 = NxN & vHC3; wC3 = INxN & wC3;

55 } else if (isBC(PATCHNAME , "traction")) {

56 tC1 = traction; tWC1 = NxN & tWC1;

57 tC2 = traction; tWC2 = NxN & tWC2;

58 tC3 = traction; tWC3 = NxN & tWC3;

59 /*vH1 = (lm1/rhoR1) + (F1 & w1);*/ wC1 = INxN & wC1;

60 /*vH2 = (lm2/rhoR2) + (F2 & w2);*/ wC2 = INxN & wC2;

61 /*vH3 = (lm3/rhoR3) + (F3 & w3);*/ wC3 = INxN & wC3;

62 } else if (isBC(PATCHNAME , "timeTraction1")) {

63 scalar& tv = t.value();

64 vector tract =

65 vector (150 ,300 ,450) * ( tv*(tv <2.5) + (5-tv)*((tv >=2.5) &&(tv <5)) );

66 //

67 tC1 = tract; tWC1 = NxN & tWC1;

68 tC2 = tract; tWC2 = NxN & tWC2;

69 tC3 = tract; tWC3 = NxN & tWC3;

70 /*vH1 = (lm1/rhoR1) + (F1 & w1);*/ wC1 = INxN & wC1;

71 /*vH2 = (lm2/rhoR2) + (F2 & w2);*/ wC2 = INxN & wC2;

72 /*vH3 = (lm3/rhoR3) + (F3 & w3);*/ wC3 = INxN & wC3;

73 } else if (isBC(PATCHNAME , "timeTraction2")) {

74 scalar& tv = t.value();

75 vector tract =

76 -vector (150 ,300 ,450) * ( tv*(tv <2.5) + (5-tv)*((tv >=2.5) &&(tv <5)) );

77 //

78 tC1 = tract; tWC1 = NxN & tWC1;

79 tC2 = tract; tWC2 = NxN & tWC2;

80 tC3 = tract; tWC3 = NxN & tWC3;

81 /*vH1 = (lm1/rhoR1) + (F1 & w1);*/ wC1 = INxN & wC1;

82 /*vH2 = (lm2/rhoR2) + (F2 & w2);*/ wC2 = INxN & wC2;

83 /*vH3 = (lm3/rhoR3) + (F3 & w3);*/ wC3 = INxN & wC3;

84 } else if (isBC(PATCHNAME , "fixedStatic")) { // fixed

85 ///*tC1 = tC1;*/ tWC1 = /*NxN &*/ tCC1;

86 ///*tC2 = tC2;*/ tWC2 = /*NxN &*/ tWC2;

87 ///*tC3 = tC3;*/ tWC3 = /*NxN &*/ tWC3;

88 vHC1 = vector ::zero; wC1 = vector ::zero;

89 vHC2 = vector ::zero; wC2 = vector ::zero;

90 vHC3 = vector ::zero; wC3 = vector ::zero;

91 } else if (isBC(PATCHNAME , "fixed")) { // moving // to check

92 ///*tC1 = tC1;*/ tWC1 = NxN & tWC1;

93 ///*tC2 = tC2;*/ tWC2 = NxN & tWC2;

94 ///*tC3 = tC3;*/ tWC3 = NxN & tWC3;

95 vHC1 = VV; wC1 = vector ::zero; //INxN & w1;

96 vHC2 = VV; wC2 = vector ::zero; //INxN & w2;

97 vHC3 = VV; wC3 = vector ::zero; //INxN & w3;

98 }

99
100 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

101 rhsLm[nodeA] += ((6.* tC1) + tC2 + tC3) * Af / 24.; // p_{cchi}

102 rhsLm[nodeB] += ((6.* tC2) + tC3 + tC1) * Af / 24.;

103 rhsLm[nodeC] += ((6.* tC3) + tC1 + tC2) * Af / 24.;

104
105 // Spatial F

106 const tensor gVH1 = ((6.* vHC1) + vHC2 + vHC3) * Sfpf / 24.; // Spatial F

107 const tensor gVH2 = ((6.* vHC2) + vHC3 + vHC1) * Sfpf / 24.;

108 const tensor gVH3 = ((6.* vHC3) + vHC1 + vHC2) * Sfpf / 24.;

109 rhsSpatF[nodeA] += gVH1;

110 rhsSpatF[nodeB] += gVH2;

111 rhsSpatF[nodeC] += gVH3;

112
113 if (solveSpatH) { // Spatial H

114 rhsSpatH[nodeA] += Tcross( spatF[nodeA] , gVH1 );

115 rhsSpatH[nodeB] += Tcross( spatF[nodeB] , gVH2 );

116 rhsSpatH[nodeC] += Tcross( spatF[nodeC] , gVH3 );

117 }

118
119 if (solveSpatJ) { // Spatial J

120 rhsSpatJ[nodeA] += spatH[nodeA] && gVH1;

121 rhsSpatJ[nodeB] += spatH[nodeB] && gVH2;

122 rhsSpatJ[nodeC] += spatH[nodeC] && gVH3;



190

123 }

124
125 if (Emethod) { // E insulated

126 rhsE[nodeA] += ((6.* tC1&vC1) + (tC2&vC2) + (tC3&vC3)) * Af / 24.;

127 rhsE[nodeB] += ((6.* tC2&vC2) + (tC3&vC3) + (tC1&vC1)) * Af / 24.;

128 rhsE[nodeC] += ((6.* tC3&vC3) + (tC1&vC1) + (tC2&vC2)) * Af / 24.;

129 }

130
131 if (meshUpdate) {

132 const tensor gw1 = ((6.* wC1) + wC2 + wC3) * Sfpf / 24.;

133 const tensor gw2 = ((6.* wC2) + wC3 + wC1) * Sfpf / 24.;

134 const tensor gw3 = ((6.* wC3) + wC1 + wC2) * Sfpf / 24.;

135
136 if (solveMatF) { // Material F

137 rhsMatF[nodeA] += gw1;

138 rhsMatF[nodeB] += gw2;

139 rhsMatF[nodeC] += gw3;

140 }

141
142 //if (solveMatH) { // Material H

143 // rhsMatH[nodeA] += Tcross( matF[nodeA] , gw1 );

144 // rhsMatH[nodeB] += Tcross( matF[nodeB] , gw2 );

145 // rhsMatH[nodeC] += Tcross( matF[nodeC] , gw3 );

146 //}

147
148 if (usePstar and (not useFEM_RHS)) { // p_{W}

149 rhsW[nodeA] += ((6.* tWC1) + tWC2 + tWC3) * Af / (24.* rho.value());

150 rhsW[nodeB] += ((6.* tWC2) + tWC3 + tWC1) * Af / (24.* rho.value());

151 rhsW[nodeC] += ((6.* tWC3) + tWC1 + tWC2) * Af / (24.* rho.value());

152 }

153 }

154 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

155 } // end of faces loop

156 } // end of patch loop

Listing D.4: weakBCs.H

1 /*---------------------------------------------------------------------------*\

2 Description

3 Perform time update for the current RK stage

4 \*---------------------------------------------------------------------------*/

5
6 scalar a = RKcoef2[RKstage ][0],

7 b = RKcoef2[RKstage ][1],

8 c = RKcoef2[RKstage ][2] * deltaT.value();

9 // Update mesh coords and vars

10 x = (a*x.oldTime ()) + (b*x) + (c*vHat);

11 xw = (a*xw.oldTime ()) + (b*xw) + (c*W);

12 lm = (a*lm.oldTime ()) + (b*lm) + (c*rhsLm/Vol);

13 spatF = (a*spatF.oldTime ()) + (b*spatF) + (c*rhsSpatF/Vol);

14 if (meshUpdate) {

15 if (solveMatF) matF = (a*matF.oldTime ()) + (b*matF) + (c*rhsMatF/Vol);

16 //if (solveMatH) matH = (a*matH.oldTime ()) + (b*matH)+ (c*rhsMatH/Vol);

17 if (solveMatJ) matJ = (a*matJ.oldTime ()) + (b*matJ) + (c*rhsMatJ/Vol);

18 if (usePstar) W = (a*W.oldTime ()) + (b*W) + (c*rhsW/Vol);

19 }

20 if (solveSpatH) spatH = (a*spatH.oldTime ()) + (b*spatH) + (c*rhsSpatH/Vol);

21 if (solveSpatJ) spatJ = (a*spatJ.oldTime ()) + (b*spatJ) + (c*rhsSpatJ/Vol);

22
23 if (Emethod) { E = (a*E.oldTime ()) + (b*E) + (c*rhsE/Vol); }

24 else { eta = (a*eta.oldTime ()) + (b*eta) + (c*rhsE/Vol); }

25
26 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

Listing D.5: integrator.H

1 /*---------------------------------------------------------------------------*\

2 Description

3 Computes intermediate variables: mat FHJ , nat FJ , rhoR , v, vHat

4 \*---------------------------------------------------------------------------*/

5
6 if (meshUpdate){

7 // Update Material Jacobian and Deformation Gradient (if not solved)

8 if (not solveMatF) matF = aleModel_.defGrad ();

9 /*if (not solveMatH) */matH = Foam::det(matF) * Foam::inv(matF.T());

10 if (not solveMatJ) matJ = aleModel_.Jac();

11
12 //if (correctWP) // Correct Wave Speeds

13 // aleModel_.correctWaveSpeeds(Up,Us ,model.Up(), model.Us(), matH , W, matJ , N);

14 }

15 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

16 trueF = meshUpdate ? (spatF&Foam::inv(matF)).ref() : spatF; // natural F

17 trueJ = solveSpatJ ? (spatJ/matJ).ref() : Foam::det(trueF).ref(); // natural J

18 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

19 if (not solveSpatH) spatH = Foam::det(spatF) * Foam::inv(spatF.T()); // spat H

20 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

21 rhoR = rho * matJ;

22 v_ = lm / rhoR;

23 vHat = v_ + (trueF & W);

24 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

Listing D.6: updateVariables.H
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1 /*---------------------------------------------------------------------------*\

2 Description

3 Impose strong boundary conditions on W, lm and vHat

4
5 /!\’ strongBCs.H’ MUST be applied at last , because the BCs passed from the

6 file dict (e.g. ’0/lm/’) likely to be wrong (most of the time)

7 \*---------------------------------------------------------------------------*/

8
9 forAll(mesh.boundary (), patch) { /* * * * * * * * * * * * * * * * * * * * * */

10 const fvPatch& patx = mesh.boundary ()[patch ];

11 string PATCHNAME = patx.name();

12 if (0) { // mock

13 } else if (isBC(PATCHNAME , "free")) {

14 forAll(patches[patch], facei) {

15 const label& face = patches[patch]. start() + facei;

16 const vector Npf = N_p.boundaryField ()[patch ][facei];

17 const tensor INxN = tensor ::I - (Npf*Npf);

18 const labelList& this_face = faces[face];

19
20 // connectivity

21 const label& i1 = this_face [0];

22 const label& i2 = this_face [1];

23 const label& i3 = this_face [2];

24 W[i1] = INxN & W[i1];

25 W[i2] = INxN & W[i2];

26 W[i3] = INxN & W[i3];

27 }

28 } else if (isBC(PATCHNAME , "roller")) {

29 forAll(patches[patch], facei) {

30 const label& face = patches[patch]. start() + facei;

31 const vector Npf = N_p.boundaryField ()[patch ][facei];

32 const tensor INxN = tensor ::I - (Npf*Npf);

33 const labelList& this_face = faces[face];

34 // connectivity

35 const label& i1 = this_face [0];

36 const label& i2 = this_face [1];

37 const label& i3 = this_face [2];

38
39 W[i1] = INxN & W[i1];

40 W[i2] = INxN & W[i2];

41 W[i3] = INxN & W[i3];

42
43 lm[i1] = INxN & lm[i1];

44 lm[i2] = INxN & lm[i2];

45 lm[i3] = INxN & lm[i3];

46
47 vHat[i1] = INxN & vHat[i1];

48 vHat[i2] = INxN & vHat[i2];

49 vHat[i3] = INxN & vHat[i3];

50
51 }

52 } else if (isBC(PATCHNAME , "skew")) {

53 forAll(patches[patch], facei) {

54 const label& face = patches[patch]. start() + facei;

55 vector Npf = N_p.boundaryField ()[patch ][facei];

56 tensor NxN = Npf*Npf;

57 tensor INxN = tensor ::I - NxN;

58 const labelList& this_face = faces[face];

59 // connectivity

60 const label& i1 = this_face [0];

61 const label& i2 = this_face [1];

62 const label& i3 = this_face [2];

63
64 W[i1] = INxN & W[i1];

65 W[i2] = INxN & W[i2];

66 W[i3] = INxN & W[i3];

67
68 lm[i1] = NxN & lm[i1];

69 lm[i2] = NxN & lm[i2];

70 lm[i3] = NxN & lm[i3];

71
72 vHat[i1] = NxN & vHat[i1];

73 vHat[i2] = NxN & vHat[i2];

74 vHat[i3] = NxN & vHat[i3];

75 }

76 } else if (isBC(PATCHNAME , "fixedLoad_PST")) {

77 scalar t = runTime.value ();

78 scalar bV = 0, V1 = 1, t1=0.005 , t2 =0.01, xi = 0;

79 if (t <= t1) {

80 xi = t/t1;

81 bV = V1*xi*xi*xi *(10.-(15.*xi)+(6.*xi*xi));

82 } else {

83 xi = (t-t1)/(t2-t1);

84 bV = V1 - V1*(xi*xi*xi *(10.-(15.*xi)+(6.*xi*xi)));

85 }

86 forAll(patches[patch], facei) {

87 const label& face = patches[patch]. start() + facei;

88 vector Npf = N_p.boundaryField ()[patch ][facei];

89 tensor NxN = Npf*Npf;

90 tensor INxN = tensor ::I - NxN;

91 const labelList& this_face = faces[face];

92 // connectivity

93 const label& i1 = this_face [0];

94 const label& i2 = this_face [1];

95 const label& i3 = this_face [2];

96
97 W[i1] = INxN & W[i1];

98 W[i2] = INxN & W[i2];

99 W[i3] = INxN & W[i3];
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100
101 lm[i1][1] = bV * rhoR[i1];

102 lm[i2][1] = bV * rhoR[i2];

103 lm[i3][1] = bV * rhoR[i3];

104
105 vHat[i1][1] = bV + (( vector (0,1,0)&trueF[i1])&W[i1]);

106 vHat[i2][1] = bV + (( vector (0,1,0)&trueF[i2])&W[i2]);

107 vHat[i3][1] = bV + (( vector (0,1,0)&trueF[i3])&W[i3]);

108 }

109 } else if (isBC(PATCHNAME , "fixedLoad_NECKING")) {

110 scalar t = runTime.value ();

111 scalar bV = 0, V1 = 10, t1= 7e-4, t2 = 14e-4, xi = 0;

112 if (t <= t1) {

113 xi = t/t1;

114 bV = V1*xi*xi*xi *(10.-(15.*xi)+(6.*xi*xi));

115 } else if ((t <= t2) && (t > t1) ) {

116 xi = (t-t1)/(t2-t1);

117 bV = V1 - (V1*xi*xi*xi *(10.-(15.*xi)+(6.*xi*xi)));

118 } else {}

119
120 forAll(patches[patch], facei) {

121 const label& face = patches[patch ]. start() + facei;

122 const labelList& this_face = faces[face];

123 // connectivity

124 const label& i1 = this_face [0];

125 const label& i2 = this_face [1];

126 const label& i3 = this_face [2];

127
128 W[i1] = vector ::zero;

129 W[i2] = vector ::zero;

130 W[i3] = vector ::zero;

131
132 lm[i1] = vector ::zero;

133 lm[i2] = vector ::zero;

134 lm[i3] = vector ::zero;

135 vHat[i1] = vector ::zero;

136 vHat[i2] = vector ::zero;

137 vHat[i3] = vector ::zero;

138
139 label dir = 1; // y-dir

140 lm[i1][dir] = bV * rhoR[i1] ;

141 lm[i2][dir] = bV * rhoR[i2] ;

142 lm[i3][dir] = bV * rhoR[i3] ;

143
144 vHat[i1][dir] = bV;

145 vHat[i2][dir] = bV;

146 vHat[i3][dir] = bV;

147 }

148 } else if (isBC(PATCHNAME , "fixedStatic")) { // fixed

149 forAll(patches[patch], facei) {

150 const label& face = patches[patch ]. start() + facei;

151 forAll(faces[face], nodei) {

152 const label& node = faces[face][nodei];

153 lm[node] = vector ::zero;

154 W[node] = vector ::zero;

155 vHat[node] = vector ::zero;

156 }

157 }

158 } else if (isBC(PATCHNAME , "fixed")) { // moving

159 forAll(patches[patch], facei) {

160 const label& face = patches[patch ]. start() + facei;

161 forAll(faces[face], nodei) {

162 const label& node = faces[face][nodei];

163 lm[node] = VV * rhoR[node];

164 W[node] = vector ::zero ;

165 vHat[node] = VV;

166 }

167 }

168 }

169 }

170 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

171 // do we force 2d motion ?

172 if (xyMotion) lm = tensor (1,0,0,0,1,0,0,0,0) & lm;

173 if (xyMotionW) W = tensor (1,0,0,0,1,0,0,0,0) & W;

174 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

Listing D.7: strongBCs.H

1 /*---------------------------------------------------------------------------*\

2 Description

3 Update Stresses and internal variables

4 \*---------------------------------------------------------------------------*/

5
6 if (isPlastic) { /* plasticity * * * * * * * * * * * * * * * * * * * * * * * */

7 model.correct4(

8 P, p, // these are updated

9 trueF , trueJ ,

10 CpInv , eps , T, epsDot , coeffTau , vonMises , intDEV , intVOL , // these are updated

11 isLastStage , deltaT.value ()

12 );

13 //

14 if (not isLastStage) {

15 CpInv = CpInv.oldTime ();

16 eps = eps.oldTime ();

17 epsDot = epsDot.oldTime ();

18 wp = wp.oldTime ();

19 coeffTau = coeffTau.oldTime ();

20 }
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21
22 } else {

23 model.correctElastic(P, p, trueF , trueJ , T, intDEV , intVOL , isLastStage);

24 } /* * * * * * * */

25
26 if ( meshUpdate and usePstar ) { /* update Pstar * * * * * * * * * * * * * * */

27 aleModel_.computePstar(starP , trueF , matF , spatF , eps , CpInv );

28 }

29
30 /* update Temperature * * * * * * * * * * * * * * * * * * * * * * * * * * * */

31 K = 0.5* rho.value()*( (lm/rhoR) & (lm/rhoR));

32 if (Emethod) ER = E / matJ;

33
34 if (isThermo) {

35 etaR = cv * Gamma0 * (trueJ - op.ID());

36 intVOLHeat = op.dimensionedMult(TR , etaR);

37 if (Emethod) {

38 pointScalarField tildeE_R = intDEV + intVOL + intVOLHeat;

39 T = TR + ((ER - K - tildeE_R) / cv);

40 } else {

41 T = op.dimensionedMult(TR , op.exp((eta - etaR)/cv) );

42 }

43 }

Listing D.8: updateStress.H

1 /*---------------------------------------------------------------------------*\

2 Description

3 Compute source terms for internal variables , plastic dissipation

4 and energy

5 \*---------------------------------------------------------------------------*/

6
7 if (isPlastic) { /* Plasticity * * * * * * * * * * * * * * * * * * * * * * * */

8 wpdot = deltaT.value()*op.dimensionedMult(vonMises , epsDot);

9 wp += wpdot;

10
11 if (isThermo and (not Emethod)){

12 eta += (wpdot / T);

13 }

14 } // end of Plasticity * * * * * * * * * * * * * * * * * * * * * * * * * * * */

15
16
17 if (meshUpdate) { // ALE: integration of source terms for internal variables

18 rhsD = tensor ::zero; rhsA = 0; rhsWp = 0; // reset RHS

19 rhsE = 0;

20 forAll(edges , edge) { // edge loop

21 const label& a = edges[edge ][0];

22 const label& b = edges[edge ][1];

23
24 // referential normals

25 const vector& Cab = Sf[edge];

26 const vector HTW_a = matH[a].T() & W[a];

27 const vector HTW_b = matH[b].T() & W[b];

28 const scalar HTWC_Ja = (HTW_a & Cab) / Foam::det(matF[a]); //

29 const scalar HTWC_Jb = (HTW_b & Cab) / Foam::det(matF[b]); //

30
31 if (isPlastic) {

32 // RHS of CpInv

33 const tensor rhsD_ea = (0.5 * (CpInv[a] + CpInv[b])) * HTWC_Ja;

34 const tensor rhsD_eb = (0.5 * (CpInv[a] + CpInv[b])) * HTWC_Jb;

35 rhsD[a] += rhsD_ea; rhsD[b] -= rhsD_eb;

36
37 // RHS of eps_p

38 const scalar rhsA_ea = (0.5 * (eps[a] + eps[b])) * HTWC_Ja;

39 const scalar rhsA_eb = (0.5 * (eps[a] + eps[b])) * HTWC_Jb;

40 rhsA[a] += rhsA_ea; rhsA[b] -= rhsA_eb;

41
42 // RHS of wp

43 const scalar rhsWp_ea = (0.5 * (wp[a] + wp[b])) * HTWC_Ja;

44 const scalar rhsWp_eb = (0.5 * (wp[a] + wp[b])) * HTWC_Jb;

45 rhsWp[a] += rhsWp_ea; rhsWp[b] -= rhsWp_eb;

46 }

47
48 if (isThermo) {

49 // RHS of eta

50 const scalar rhsETA_ea = (0.5 * (eta[a] + eta[b])) * HTWC_Ja;

51 const scalar rhsETA_eb = (0.5 * (eta[a] + eta[b])) * HTWC_Jb;

52 rhsE[a] += rhsETA_ea; rhsE[b] -= rhsETA_eb;

53 }

54 } // end of edge loop

55
56 // get particle id to move ALE - and update position

57 forAll(meshPoints , pos) { // loop over nodes

58 if ( (1. - coeffTau[ pos ]) > tolerance ) {

59 scalar dt_over_V = deltaT.value() / Vol[pos];

60 CpInv[pos] = CpInv[pos] + (rhsD[pos] * dt_over_V);

61 eps[pos] = eps[pos] + (rhsA[pos] * dt_over_V);

62 wp[pos] = wp[pos] + (rhsWp[pos] * dt_over_V);

63 eta[pos] = eta[pos] + (rhsE[pos] * dt_over_V);

64 } else W[ pos ] = vector ::zero;

65 } // end of node loop

66 } // end of meshUpdate

67 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

Listing D.9: backwardEuler.H
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[94] R. Eymard, T. Gallouët, and R. Herbin. “Finite Volume Methods”. en. In: (2019).

[95] P. H. Maire et al. “A nominally second-order cell-centered Lagrangian scheme for simulating
elastic-plastic flows on two-dimensional unstructured grids”. In: Journal of Computational
Physics 235 (2013). Publisher: Elsevier Inc., pp. 626–665. doi: 10.1016/j.jcp.2012.10.017.

[96] Z. Tukovic et al. “Openfoam finite volume solver for fluid-solid interaction”. In: Transactions
of Famena 42.3 (2018), pp. 1–31. doi: 10.21278/TOF.42301.

[97] J. Haider et al. “Development of a high performance parallel computing toolkit for fast solid
dynamics in OpenFOAM”. In: (2018), pp. 1–26.

[98] A. Afzal et al. “Parallelization Strategies for Computational Fluid Dynamics Software: State
of the Art Review”. en. In: Archives of Computational Methods in Engineering 24.2 (Apr.
2017), pp. 337–363. doi: 10.1007/s11831-016-9165-4.

[99] R. L. Taylor. FEAP-A Finite Element Analysis Program. Tech. rep. 2007.

[100] M. L. Wilkins. Calculation of Elastic-Plastic flow distribution. Tech. rep. 1963.

[101] J. A. Trangenstein and P. Colella. “A higher-order Godunov method for modeling finite
deformation in elastic-plastic solids”. In: Communications on Pure and Applied Mathematics
44.1 (Jan. 1991), pp. 41–100. doi: 10.1002/cpa.3160440103.

[102] J. A. Trangenstein and R. B. Pember. “The Riemann Problem for Longitudinal Motion in
an Elastic-Plastic Bar”. In: SIAM Journal on Scientific and Statistical Computing 12.1 (Jan.
1991), pp. 180–207. doi: 10.1137/0912010.

[103] J. A. Trangenstein and R. B. Pember. “Numerical algorithms for strong discontinuities in
elastic—plastic solids”. In: Journal of Computational Physics 103.1 (Nov. 1992), pp. 63–89.
doi: 10.1016/0021-9991(92)90326-T.

[104] J. A. Trangenstein. “A second-order Godunov algorithm for two-dimensional solid mechanics”.
In: Computational Mechanics 13.5 (Sept. 1994), pp. 343–359. doi: 10.1007/BF00512588.

https://doi.org/10.1002/nme.869
https://doi.org/10.1016/0020-7683(95)00259-6
https://doi.org/10.1016/S0045-7825(00)00336-4
https://doi.org/10.1186/s40323-018-0101-z
https://doi.org/10.1186/s40323-018-0101-z
https://doi.org/10.1002/nme.1651
https://doi.org/10.1002/nme.1651
https://doi.org/10.1016/j.cam.2005.07.014
https://doi.org/10.1016/j.jcp.2012.10.017
https://doi.org/10.21278/TOF.42301
https://doi.org/10.1007/s11831-016-9165-4
https://doi.org/10.1002/cpa.3160440103
https://doi.org/10.1137/0912010
https://doi.org/10.1016/0021-9991(92)90326-T
https://doi.org/10.1007/BF00512588


BIBLIOGRAPHY 201

[105] N. C. Nguyen and J. Peraire. “Hybridizable discontinuous Galerkin methods for partial
differential equations in continuum mechanics”. In: Journal of Computational Physics 231.18
(July 2012). Publisher: Academic Press Inc., pp. 5955–5988. doi: 10.1016/j.jcp.2012.02.
033.

[106] I. A. Karim et al. “A two-step taylor-galerkin formulation for fast dynamics”. In: Engineering
Computations (Swansea, Wales) 31.3 (2014). Publisher: Emerald Group Publishing Ltd.,
pp. 366–387. doi: 10.1108/EC-12-2012-0319.

[107] J. Haider et al. “A first-order hyperbolic framework for large strain computational solid
dynamics: An upwind cell centred Total Lagrangian scheme”. In: International Journal for
Numerical Methods in Engineering 109.3 (2017), pp. 407–456. doi: 10.1002/nme.5293.

[108] C. H. Lee et al. “A variationally consistent Streamline Upwind Petrov–Galerkin Smooth
Particle Hydrodynamics algorithm for large strain solid dynamics”. In: Computer Methods
in Applied Mechanics and Engineering 318 (2017). Publisher: Elsevier Ltd, pp. 514–536.
doi: 10.1016/j.cma.2017.02.002.

[109] C. H. Lee et al. “A Total Lagrangian upwind Smooth Particle Hydrodynamics algorithm
for large strain explicit solid dynamics”. In: Computer Methods in Applied Mechanics and
Engineering 344 (2019). Publisher: Elsevier B.V., pp. 209–250. doi: 10.1016/j.cma.2018.
09.033.

[110] C. J. Runcie et al. “An acoustic Riemann solver for large strain computational contact
dynamics”. In: International Journal for Numerical Methods in Engineering (Sept. 2022).
Publisher: Wiley. doi: 10.1002/nme.7085.

[111] J. Bonet et al. “A first order hyperbolic framework for large strain computational solid
dynamics. Part I: Total Lagrangian isothermal elasticity”. In: Computer Methods in Applied
Mechanics and Engineering 283 (2015). Publisher: Elsevier Ltd, pp. 689–732. doi: 10.1016/
j.cma.2014.09.024.
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