
A fuzzy computational framework for dynamic multibody system considering 1 

structure damage based on information entropy 2 

Yingying Zeng 1,2, Han Zhao1, Huifang Hu1, Peng Zhang1, A. S. Ademiloye3,*, Ping Xiang 1,2,* 3 

1 School of Civil Engineering, Central South University, Changsha, China 4 

2 National Engineering Research Center of High-speed Railway Construction Technology, Changsha, China 5 

3 Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea 6 

University, Swansea, United Kingdom 7 

* Corresponding author email addresses: a.s.ademiloye@Swansea.ac.uk;  pxiang2-c@my.cityu.edu.hk 8 

   9 

Abstract 10 

The present study proposes a new fuzzy finite element method for dynamic multibody 11 

interaction with consideration for structural damage. Here, fuzzy parameters are equivalently 12 

transformed into stochastic parameters using information entropy, and the fuzzy response of the 13 

structure is obtained by fuzzy calculation combined with the new point estimation method. 14 

Numerical examples are used to illustrate the accuracy and efficiency of the presented methods 15 

and scanning method simulations are implemented to validate the computational results. 16 

Considering that the damage degree of the pier is uncertain, namely fuzzy uncertainty, stiffness 17 

reduction is used to simulate the damage of the pier. The fuzzy dynamic response of the train-18 

bridge system is investigated when the pier structure and the mass of the train are fuzzy 19 

parameters. The response of the train-bridge interaction considering damage far exceeds that 20 

obtained from conventional deterministic parameter calculations. To ensure running safety, 21 

studying the response of the vehicle-system coupled vibration with fuzzy parameters is of great 22 

significance. 23 

Keywords: Fuzzy; Information entropy; Multibody system; Damage 24 

 25 

1. Introduction 26 

In recent decades, the coupled vibration caused by high-speed trains passing through 27 

bridges has been extensively studied [1]. Over the years, both the train and bridge models have 28 

been well-refined [2]. The research on numerical algorithms and other aspects of train-bridge 29 

system research are also constantly evolving [3], however, the uncertainty of train and bridge 30 

parameters is not considered much, the values of train and bridge are usually regarded as exact 31 

values [4]. In reality, the uncertainty of structural parameters will inevitably occur during the 32 

construction and service of bridges, and the mass of train also presents uncertainty during 33 

running [5]. Obviously, the traditional dynamic analysis of the train-bridge coupled system, 34 

which considers structural parameters as exact values, is not applicable to the real complex 35 

situation [6]. 36 



Various stochastic finite element methods have been proposed and applied to train-bridge 37 

coupled systems [7], such as Monte Carlo method [8], stochastic perturbation method [9], 38 

orthogonal expansion theory [10], point estimation method [11] and probability density 39 

evolution theory [12]. These methods are used for dynamic analysis of train-bridge coupled 40 

systems with uncertain parameters. In reality, certain structural parameters, like the extent of 41 

damage to piers, exhibit uncertainty that cannot be adequately explained by randomness. 42 

Analyzing these parameters through probability is inconvenient and inaccurate due to their 43 

varying magnitudes. The uncertainty of damage belongs to another kind of uncertainty different 44 

from randomness-fuzziness. Fuzziness refers to the objective attribute of things in the 45 

intermediate transition process, which is the result of the actual intermediate transition process 46 

between things [13]. Fuzziness is very suitable for explaining the uncertainty of parameters 47 

such as damage. 48 

Despite Professor Zadeh [14] introducing the concept of fuzzy sets in the 1960s, many 49 

fuzzy finite element methods have been proposed [15]. However, It still cannot effectively 50 

address the challenges posed by fuzzy parameters in solving fuzzy dynamics problems [16]. 51 

The scanning method is generally used to calculate fuzzy response [17], due to its large 52 

computational complexity, scholars have begun to study for fuzzy methods to reduce 53 

computational complexity. Rao et al. [18] proposed a fuzzy finite element method that considers 54 

the geometric shape, material properties, external loads, and boundary conditions of the 55 

structure as fuzzy parameters for static analysis. Massa et al. [19] proposed a new and effective 56 

method to improve the predictive ability of numerical models in static analysis situations. Yang 57 

et al. [20] proposed the fuzzy variational principle, which is also used for static analysis of 58 

structural systems with fuzzy parameters. Wasfy et al. [21] proposed a computational method 59 

for predicting the dynamic response of flexible multibody systems and evaluating their 60 

sensitivity coefficients containing fuzzy parameters. Möller B et al. [22] developed and 61 

formulated an α-generalized method for fuzzy structural analysis using an improved 62 

evolutionary strategy. It should be noted that when the fuzzy output is non monotonic and the 63 

evaluation cost is high, the cost of solving these optimization problems may be high [23]. Pham 64 

et al. [24] proposed an improved optimization method based on Jaya, which can save a lot of 65 

computation while ensuring sufficient accuracy. Some scholars try to reduce the calculation 66 

cost of fuzzy analysis by response surface method [25], the reliability of fuzzy analysis depends 67 

entirely on the accuracy of approximate model [26]. 68 

Some scholars reduce the computational complexity of fuzzy analysis from the perspective 69 

of entropy. Cherki A et al. [27] adopted λ-level cutting method to transform the fuzzy 70 

equilibrium equation into interval equilibrium equation, which was used to analyze the fuzzy 71 



structure. However, this method requires a large amount of computation and is complicated. 72 

Lei et al. [28] proposed a new finite element analysis method of fuzzy structure by using the 73 

concept of information entropy. The fuzzy variables are transformed into random variables, and 74 

the mean and variance of structural response are obtained. However, the upper and lower limits 75 

of the response are not obtained, and this method is not complete enough. The majority of the 76 

aforementioned methods focus on straightforward static problems. When applied to dynamic 77 

problems, they either involve complex and extensive calculations or are embedded, limiting 78 

their applicability to broader dynamic analyses. In this paper, the mean and variance of the 79 

obtained structural response are further calculated based on the previous work by Lei et al. [28] 80 

and combined with the new point estimation method to obtain the upper and lower limits of the 81 

response of the train and the bridge, that is, the fuzzy response of the train-and the bridge.  The 82 

proposed fuzzy finite element method is non embedded and can be applied to other dynamics 83 

problems. 84 

This paper is organized as follows: Section 2 introduces the model of train-bridge coupled 85 

system, Section 3 briefly introduces information entropy method and fuzzy calculation 86 

processing, Section 4 verifies the reliability of the proposed method, considers whether the 87 

degree of pier damage is fuzzy, and uses stiffness reduction to simulate pier damage. The fuzzy 88 

dynamic response of train and bridge is studied when the pier structure and train mass are fuzzy 89 

parameters, and the conclusion is presented in the last section. 90 

2. The motion equation of train-track-bridge systems 91 

The train model is constructed with multiple rigid bodies, and each car is composed of a 92 

car body, two bogies, four wheelsets and linear spring dampers connected between them [29]. 93 

The car body contains six degrees of freedom (vertical, longitudinal, lateral, yaw, roll, pitch), 94 

each wheelset contains five degrees of freedom (vertical, longitudinal, lateral, yaw, roll), and 95 

each bogie contains six degrees of freedom (vertical, longitudinal, lateral, yaw, roll, pitch), so 96 

this paper establishes a fine train model with 38 degrees of freedom [30]. The track structure is 97 

mainly composed of base, CA mortar layer, track plate, elastic fasteners, rails, and other 98 

components [31]. The rail is modeled as a beam element, and the track plate and the base are 99 

modeled as plate elements, which are connected by linear spring dampers [32]. Taking a three-100 

span simply supported concrete bridge as an example, the bridge model is established based on 101 

the finite element method, and the pier and beam are simulated as Euler-Bernoulli beam 102 

elements. The train-track-bridge coupled system model is shown in Figure 1，the 103 

corresponding parameters are detailed in Ref. [33].  104 

According to the mass matrix, stiffness matrix and damping matrix obtained by the finite 105 

element method, multi rigid body dynamics and other processing methods, based on the energy 106 



principle, the train track bridge coupled vibration equation can be derived, as shown below: 107 
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 (1) 108 

where, 
cc

X  ,
rr

X   and 
bb

X   represent the displacement vectors of the train, rail and bridge, 109 

respectively. 
cc

Q and 
rr

Q  denote the load train vectors of the train and rail respectively. 110 

In this paper, Eq (1) is solved based on the Wilson-θ method in the prepared MATLAB 111 

program, when θ>1.37, this algorithm is unconditionally stable. The value for θ is taken as 1.4 112 

in our calculations [34]. 113 

Figure 1 Train-track-bridge coupled system 114 

3. Information entropy 115 

3.1. Equivalent transformation of entropy 116 

Shannon [35], the father of information theory, believed that information is random in 117 

nature. He borrowed the term "entropy" from statistical mechanics, and proposed information 118 

entropy to measure probabilistic information, called probabilistic entropy. The greater the 119 

uncertainty, the greater the entropy. 120 

For a continuous random variable X, its probability entropy is defined as follows: 121 

 ( ) ln ( )
x

H p x p x dx= −  (2) 122 

where ( )p x  is the probability density function of the random variable X. 123 

When random variable is obeyed Gaussian distribution, probability entropy can be 124 

expressed as[36] 125 

 ln( 2 )H e =  (3) 126 

As understanding deepens, researchers have come to recognize that information carries 127 



non-probabilistic uncertainty, specifically in the form of fuzziness. Fuzzy information can also 128 

be measured using information entropy, called fuzzy entropy. Aldo De Luca 129 

and  Settimo Termini [37] first defined fuzzy entropy as follows, where ( )f y   is the 130 

membership function of fuzzy variable Y, 131 

    ( ) ln ( ) 1 ( ) ln 1 ( ) d
y

G f y f y f y f y y= − + − − . (4) 132 

Achintya Haldar and Rajasekhar K. Reddy [38] also proposed a simple computational form of 133 

fuzzy entropy, as shown below, 134 

 ( ) ln ( )d
y

G f y f y y  = −  (5) 135 

 ( ) ( ) / ( ))d
y

f y f y f y y =   (6) 136 

The definition equation of fuzzy entropy makes the membership function ( )f y137 

normalized as well as the probability density function ( )p x . 138 

 ( )d 1
y

f y y =  (7) 139 

Entropy is a measure of information uncertainty, and there is essentially no difference 140 

between probabilistic entropy and fuzzy entropy. Fuzzy variables can be transformed into 141 

random variables by retaining the invariability of the measure of uncertainty. The principle of 142 

this transformation is that the equivalent probabilistic entropy equals to the fuzzy entropy [28]. 143 

In this paper, the total entropy is converted into the equivalent stochastic entropy 
eq

H , and the 144 

structural parameters are converted into stochastic parameters for calculation, as shown in 145 

Eq.(8): 146 

 
eq

G H=  (8) 147 

To convert the uncertain variables into equivalent normal random variables, obtain the 148 

mean   and standard deviation   of random variables, we assume that the mean   of the 149 

equivalent normal random variable is the value of the fuzzy variable at the membership degree 150 

of 1. 151 

The standard deviation   of the equivalent normal random variable can be obtained from 152 

Eq. (3)and (8), as follows: 153 

 
0.51

2

G
e



−
=  (9) 154 

3.2. New point estimation method (NPEM) 155 

Zhao et al [39] proposed a new point estimation of probability moments, which greatly 156 

improves the practicability and accuracy of point estimation. Jiang et al [7] used NPEM based 157 

on adaptive dimensionality reduction to study the stochastic dynamic response of the axle 158 



system, and the results are verified to be accurate and efficient. The specific solution steps for 159 

the vibration response of the stochastic axle system are as follows: 160 

(1) Determine the distribution state of the random parameters, and transform the original 161 

relevant random parameters into mutually independent standard normal random parameters. 162 

The random parameters in this paper all obey normal distribution, therefore, they can be 163 

standardized as: 164 

 )( ()X u ii  = +  (10) 165 

where ( )X i  denotes the value of the random parameter corresponding to the ith estimation 166 

point,   and   denote the mean and standard deviation of the random parameter, respectively, 167 

and ( )u i  denotes the ith estimation point. 168 

(2) Choose a suitable reference point 
c

u  , and determine the number of Gaussian 169 

integration points r (r is usually an odd number, usually taken as 5 or 7). In this paper, we take 170 

0
c

u = , and use 7 Gaussian integration points, corresponding to the integration points 
,GH i

x  and 171 

weights 
,GH i

w  of the Gauss-Hermite product formula as shown: 172 

Table 1 The integral points and weights for Gauss-Hermite quadrature with r = 7 173 

i 1 2 3 4 5 6 7 

,GH i
x  −2.65196 −1.67355 −0.81629 0 0.81629 1.67355 2.65196 

,GH i
w  9.71781×10−4 5.45156×10−2 0.425607 0.810265 0.425607 5.45156×10−2 9.71781×10−4 

 174 

(3) Based on the data in Table 1, substitute ,
2

GH i
x  as ( )u i  in Eq. (10), and the weight 175 

coefficients 
i

P  are calculated , and the estimated points and corresponding weight coefficients 176 

in the standard normal space are shown in Table 2: 177 

 
,GH i

i

w
P


=  (11) 178 

Table 2 The estimating points and corresponding weights 179 

i 1 2 3 4 5 6 7 

( )u i  −3.75044 −2.36676 −1.15441 0 1.15441 2.36676 3.75044 

i
P  5.48269×10−4 3.07571×10−2 0.24012 0.45714 0.24012 3.07571×10−2 5.48269×10−4 

 180 

Calculate the time-range dynamic responses ( ( ), )
l

X i th  and ( ( ), ( ), )
l m

X i X j th  of the axle 181 

coupled system with different random variables and different estimation points respectively, 182 

where l and m denote the lth and mth random parameters, and i and j denote the ith and jth 183 

estimation points, respectively. 184 

(4) Substitute the values of the dynamic responses, h, into Eq. (12) and Eq. (13), and 185 

calculate the mean value of the time-range response and the central moments of each order 186 



 

( )

( ) ( )
1

( ) , , , ( 2)

( 1)( 2)
  , , ,

2

l m c
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n

k c c

k

t E X X u t n

n n
E X u t u t




=

 − −  

− −
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



h

h h

 (12) 187 

 

( )( )

( )( ) ( )( )
1

( ) , , , ( ) ( 2)

( 1)( 2)
  , , ( ) , ( )

2

q

q l m c

l m
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q q

k c c

k
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
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

=
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 

− − − + −
 





M h

h h

 (13) 188 

where ( )t   denotes the time-response mean, ( )
q

tM   denotes the time-response qth 189 

(q=2,3,4) order center distance, n denotes the number of random parameters, and ( ),
c

u th  190 

denotes the time-response at ( )
c

u i u= . The expressions for E in Eq. (11) and (12) above can be 191 

rewritten as: 192 

 ( )( ) ( )( ),

1

, , ( ) , , ( )
r qq

l c i l i c

i

E X u t t X uP t t 
=

 − = −
  h h  (14) 193 

 ( )( ) ( )( ), ,

1 1

, , , ( ) , , , ( )
r r qq

l m c i j l i m j c

i j

E X X u t t X X u t tPP 
= =

 − = −
  h h  (15) 194 

When there is only one random parameter, Eq.(12) and Eq.(13) here can be simply 195 

expressed as: 196 

 ( )( ) , ,
l c

t E X u t   μ h  (16) 197 

 ( )( )( ) , , ( )
q

q cl
t E X u t t  −

 
M h  (17) 198 

(5) Transform the first four central moments of the time-range response into the 199 

corresponding mean 
z

  , standard deviation 
2

  , skewness coefficient 
3

  , and kurtosis 200 

coefficient 
4

  according to Eq. (18). 201 

 2

3 3

4

4

2

3

4

/

/

z

z

z
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

 

 

=

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 (18) 202 

3.3. Fuzzy response 203 

After obtaining the mean and standard deviation of the response volume Y, we use 204 

( )
y y

k    to approximate the range of variation of the response volume Y. ( )k   is a function 205 

of  -cut level that varies with  -cut level. In this paper, we consider the membership function 206 

of fuzzy variable as normal membership function and transformed the fuzzy variables into 207 

equivalent normal random variable. The normal membership function [40] is as follows, such 208 

fuzzy variables can be denoted as 2
( , )A a =  209 



 

2

2

( )

( )

x a

f x e 

−
−

=  (19) 210 

Referring to a random normal distribution, the fuzzy coefficient of variation (COV) is 211 

defined in Eq. (19). Obviously, the larger the COV, the greater the ambiguity of the fuzzy 212 

parameters. 213 

 COV
a


=  (20) 214 

From Eq. (5) and Eq. (9), we can obtain the mean   and the standard deviation   of the 215 

equivalent random variable, as follows: 216 

 ,
2

a


 = =  (21) 217 

For each  -cut level, the upper and lower bounds of the fuzzy variable X will be obtained, 218 

denoted by the interval  ,xl xr , as shown in Figure 2(a). From Eq. (19) and Eq. (21), we can 219 

obtain the following equation. 220 

 
  l, [ ]

[ 2 ln , 2 ln

ln

]

, nxl xr a   

  

−= +

= + − −

−−

−
 (22) 221 

After the interval  ,xl xr   is obtained by   -cut set, according to the interval analysis 222 

method [41], the interval midpoint C
X  and the interval radius R

X  are defined as 223 

 
( )

( )

/ 2

/ 2

C

R

X xl xr

X xr xl

= +

= −
 (23) 224 

The uncertainty level of the interval is defined as 225 

 100%
R

C

X

X
 =   (24) 226 

In this paper, the normal fuzzy membership degree is adopted, so the interval midpoint 227 

here is a. The uncertainty level of the interval can be obtained as shown in Eq. (25). 228 

 
2 ln

ln
2 2

xr xl
COV

a a

 
 

− −
= = = −  (25) 229 

(a) (b) 



  
Figure 2 Normal fuzzy membership degree : (a) Upper and lower bounds of the fuzzy 230 

variable X; (b) Relationship between fuzzy membership degree and uncertainty level 231 
 232 

As can be seen from Eq. (25) and Figure 2(b), the uncertainty level of the interval increases 233 

significantly with the increase of COV. When the COV is determined, the uncertainty level of 234 

the interval increases significantly with the increase of   .This means that the smaller the 235 

membership degree, the fuzzier the interval obtained after the   -cut and the higher the 236 

uncertainty level of the interval. 237 

Whether triangular fuzzy membership, normal fuzzy membership or other fuzzy 238 

membership functions are used to describe the fuzziness of fuzzy parameters,  - cut are finally 239 

carried out to get the corresponding interval, and the uncertainty level of the corresponding 240 

interval is calculated. The smaller   is, the greater the uncertainty level of the interval is. In 241 

order to fully consider the large uncertainty of parameters, this paper takes   as 0.01. 242 

The upper and lower intervals of the fuzzy variable X can also be represented by the mean 243 

and standard deviation of the equivalent random variable and ( )k  . We make an approximate 244 

assumption that the ( )k   part of the response quantity Y is equivalent to the ( )k   of the upper 245 

and lower bound intervals of the fuzzy variable X. We demonstrate in section 4.1 that the 246 

assumption is reliable. 247 

 
 

:

, [ 2 ln , 2 ln ]
y y

f

yl

y

y

x
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→

+ − − −=
 (26) 248 

where 
y

   and 
y

   denote the mean and standard deviation of the response volume Y, 249 

respectively. In the actual problem-solving process, there may be more than one fuzzy variable. 250 

Therefore, for the applicable range of n fuzzy variables, Eq. (22) can be rewritten as: 251 
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 (27) 252 

where 
yi

  denotes the standard deviation of the ith response volume 
i

Y  obtained by the ith 253 

fuzzy variable 
i

X  acting alone, 
y

  denotes the standard deviation of the response volume Y  254 

obtained by the interaction of all fuzzy variables. 255 

Certainly, fuzzy membership functions can also be other types of functions, such as 256 

triangular membership function, with a similar processing process and unchanged core ideas. 257 

Calculate the upper and lower limit intervals through the membership function, expressed in 258 

the form of ( )
x x

k    . We use ( )
y y

k     to approximate the range of variation of the 259 

response volume Y, and make an approximate assumption that the ( )k   part of the response 260 

quantity Y is equivalent to the ( )k   of the upper and lower bound intervals of the fuzzy variable 261 

X. The specific verification is shown in Figure 3 and Table 5. 262 

Obviously, when 1 = , the fuzzy variables are transformed into deterministic values, and 263 

the response volume is exactly the result obtained by conventional calculations ignoring 264 

parameter uncertainty (fuzziness). 265 

4. Fuzzy response of train-bridge coupled vibration with pier damage 266 

Bridges that have been in operation for an extended period inevitably undergo damage due 267 

to various factors, and the extent of this damage is uncertain, varying from significant to minor. 268 

Simulating the uncertainty of bridge damage solely through randomness is not accurate enough. 269 

The uncertainty of damage is consistent with the definition of fuzziness, which refers to the 270 

objective attributes that things exhibit during the intermediate transition process. Fuzziness is 271 

very suitable for explaining the uncertainty of parameters such as damage.  272 

Given that the pier constitutes a crucial component of a bridge structure, this article 273 

addresses the uncertainty associated with pier damage to investigate the fuzzy response in the 274 

coupled vibration of trains and bridges. Pier stiffness reduction is used to simulate bridge pier 275 

damage. In the construction and manufacturing of concrete bridges, discrepancies between 276 

structural parameters and calibration data are inevitable, introducing uncertainty. Similarly, 277 

during train operation, encountering uncertainty in the mass of the train is also unavoidable. 278 

The uncertainty arising from both situations can be effectively simulated using the concept of 279 

fuzziness. Therefore, the fuzzy variables considered in this paper are the elastic modulus of pier, 280 

the concrete density of pier and the mass of locomotive.  281 



As shown in Table 3, the fuzzy distribution of each parameter obeys the normal fuzzy 282 

distribution. The speed of the train passing through the bridge is 250 km/h, and the train 283 

grouping is: locomotive+ trailer × 2+ locomotive. The detailed parameters of the train can be 284 

found in Ref. [42]. 285 

Table 3 Fuzzy parameters distribution 286 

Parameters Unit a 

E (Elastic modulus of pier concrete) N/m2 3.451010 

Eb (Elastic modulus of bridge concrete) N/m2 3.451010 

D (Pier concrete density) kg/m3 2.5103 

Mc (Mass of locomotive) kg 48000 

 287 

In order to verify the influence of different fuzzy parameters and different fuzzy 288 

distributions on the fuzzy response of train-bridge. The fuzzy coefficient of variation (COV) of 289 

the studied fuzzy parameters are 0.10, 0.15, 0.20, 0.25, and 0.30. Five working conditions are 290 

studied, as shown in Table 4. The symbol '√' denotes the consideration of a fuzzy parameter, 291 

while a blank indicates the exclusion of a parameter from being treated as fuzzy.  292 

 293 

Table 4 Fuzzy parameters under different working conditions 294 

Working Condition Type 

Fuzzy parameter 

Elastic modulus and density of pier Mass of 

locomotive 1st pier 2nd pier 3rd pier 4th pier 

Total damage √ √ √ √ √ 

1st Pier damage √    √ 

2nd Pier damage  √   √ 

3rd Pier damage   √  √ 

4th Pier damage    √ √ 

 295 

4.1. Comparison of the fuzzy method with the other researcher’s work 296 

Most dynamic problems are extremely complex and lack analytical solutions. Currently, 297 

many researchers use scanning methods to solve fuzzy dynamics problems [17]. After λ is taken, 298 

the fuzzy parameter will become an interval number, and the scanning method uniformly takes 299 

a large number of values within the interval and substitutes them into the dynamic equation, 300 

taking their maximum and minimum values as the fuzzy result. However, the scanning method 301 

is evidently characterized by extremely low efficiency.  302 

In order to verify the feasibility of applying the method proposed in this paper to train-303 

bridge problems, the fuzzy vertical displacement of the bridge midspan with fuzzy parameter 304 

(Elastic modulus of bridge concrete Eb) and the fuzzy vertical acceleration of the 1st train with 305 

fuzzy parameters (Mass of locomotive Mc) were solved, and the results were compared with 306 

those calculated by the scanning method. The corresponding parameters are shown in Table 3 307 

and the value of  is taken as 0.01. From Figure 3, IE represents the fuzzy method based on 308 



information entropy (proposed method), and SM represents the fuzzy method based on 309 

scanning method. It can be seen that the results obtained by the fuzzy method in this paper are 310 

very close to those obtained by the scanning method. 311 

 312 
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
Figure 3 Fuzzy response with different COVs (0.15 0.20 0.25 0.30): (a-d) Vertical 313 

displacement of bridge midspan with fuzzy parameter Eb; (e-f) Vertical acceleration of 314 

the 1st train with fuzzy parameter Mc 315 

 316 

As shown in Table 5, the calculation efficiency of this method is much higher than that of 317 

the scanning method. It should be noted that when    is taken as 0.01, the corresponding 318 

uncertainty level for the interval with COV of 0.10, 0.15, 0.20, 0.25 and 0.30 are 21.46%, 319 

32.19%, 42.92%, 53.65% and 64.38%. Many articles believe that when the uncertain level is 320 

greater than 20% [43], the problem studied is a large-range uncertainty problem [44]. Therefore, 321 

the results in the table are acceptable. For a fuzzy parameter, it only needs to calculate the train-322 

bridge model 7 times, which takes much less time and has good results. Therefore, it is reliable 323 

to apply this method to the train-bridge problems.  324 

Table 5 Comparison of the fuzzy method with scanning method 325 

Method Calculation time (s) 
Maximum relative error (COVs) 

0.10 0.15 0.20 0.25 0.30 

IE-7 528 

Vertical displacement of bridge midspan 

1.93% 2.47% 4.81% 7.70% 13.68% 

Vertical acceleration of the 1st train 

3.74% 4.24% 3.89% 3.05% 2.30% 

SM-1000 75876 - 

 326 

4.2. Total damage 327 

Considering the elastic modulus and density of four piers and the mass of locomotive as 328 

fuzzy parameters. 329 

4.2.1. Fuzzy response and standard deviation at the top of pier 330 

Taking the fuzzy coefficient of variation COV 0.3=  , Figure 4 shows the vertical 331 



displacement and standard deviation at the top of pier with different fuzzy parameters. From 332 

our computed results, we observed that the maximum amplitude of the fuzzy vertical 333 

displacement at the top of the four piers exceeds the conventional vertical response by 37.13%, 334 

36.57%, 35.68%, and 35.96%, respectively. 335 

  
(a) Vertical displacement of 1st pier with 

fuzzy parameter: , ,
c

E M D  
(b) Standard deviation of 1st pier 

  
(c) Vertical displacement of 2nd pier with 

fuzzy parameter: , ,
c

E M D  
(d) Standard deviation of 2nd pier 

  
(e) Vertical displacement of 3rd pier with 

fuzzy parameter: , ,
c

E M D  
(f) Standard deviation of 3rd pier 

  
(g) Vertical displacement of 4th pier with 

fuzzy parameter: , ,
c

E M D  
(h) Standard deviation of 4th pier 

Figure 4 Vertical displacement and standard deviation at the top of pierwith different 336 

fuzzy parameters 337 



 338 

Figure 5 demonstrates the standard deviation of the response corresponding to the 339 

maximum mean vertical displacement at the top of pier. It can be observed that the fuzziness of 340 

the elastic modulus of the pier has the greatest influence on the response at the top of pier, and 341 

the pier density has a similar influence as the mass of the locomotive. The standard deviation 342 

of the response is approximately linear with the fuzzy coefficient of variation. 343 

  
(a) Standard deviation of 1st pier (b) Standard deviation of 2nd pier  

  
(c) Standard deviation of 3rd pier (d) Standard deviation of 4th pier 

Figure 5 The standard deviation of the response corresponding to the maximum mean 344 

vertical displacement at the top of pier with different COVs 345 

 346 

4.2.2. Fuzzy response and standard deviation of bridge and locomotive 347 

Figure 6 shows the vertical response and standard deviation of bridge midspan and 348 

locomotive with different fuzzy parameters. From our calculation results, we observed that the 349 

maximum amplitudes of the fuzzy vertical displacement at the midspan of three spans bridge 350 

and the fuzzy vertical acceleration of locomotive exceed the conventional vertical response by 351 

1.77%, 1.74%, 1.43%, and 78.62%, respectively. This also reflects that the elastic modulus of 352 

the pier, the density of the pier, and the mass of locomotive have less influence on the vertical 353 

displacement of the bridge midspan, and the mass of locomotive has a significant influence on 354 

the vertical acceleration of locomotive. 355 



  
(a) Vertical displacement of 1st midspan 

with fuzzy parameter: , ,
c

E M D  
(b) Standard deviation of 1st midspan 

  
(c) Vertical displacement of 2nd midspan 

with fuzzy parameter: , ,
c

E M D  
(d) Standard deviation of 2nd midspan 

  
(e) Vertical displacement of 3rd midspan 

with fuzzy parameter: , ,
c

E M D  
(f) Standard deviation of 3rd midspan 

  
(g) Vertical acceleration of locomotive 

with fuzzy parameter: , ,
c

E M D  
(h) Standard deviation of locomotive 

Figure 6 Vertical response and standard deviation of bridge midspan and locomotive 356 

with different fuzzy parameters 357 

Figure 7 demonstrates the standard deviation of the response corresponding to the 358 

maximum mean vertical response at the bridge midspan and locomotive. It can be observed that 359 

the fuzziness of the elastic modulus of pier has the greatest influence on the vertical response 360 

of the bridge midspan, and the pier density has a similar influence as the mass of locomotive. 361 



The fuzziness of the mass of locomotive has the greatest influence on the vertical acceleration 362 

of locomotive, and the elastic modulus of pier has a similar influence as the pier density. The 363 

standard deviation of the response is approximately linear with the fuzzy coefficient of variation. 364 

 365 

  
(a) Standard deviation of 1st midspan (b) Standard deviation of 2nd midspan 

  
(c) Standard deviation of 3rd midspan (d) Standard deviation of locomotive 

Figure 7 The standard deviation of the response corresponding to the maximum mean 366 

vertical response at the bridge midspan and locomotive with different COVs 367 

 368 

4.3. 1st Pier damage 369 

Consider the elastic modulus and density of 1st pier and the mass of the locomotive as 370 

fuzzy parameters. 371 

4.3.1. Fuzzy response and standard deviation at the top of pier 372 

Taking the fuzzy coefficient of variation COV 0.3= . Figure 8 demonstrates the vertical 373 

displacement and standard deviation at the top of pier with different fuzzy parameters. From 374 

our calculation results, we observed that the maximum amplitude of the fuzzy vertical 375 

displacement at the top of the four piers exceeds the conventional vertical response by 35.94%, 376 

0.17%, 0.08%, and 0.05%, respectively. 377 

 378 



  
(a) Vertical displacement of 1st pier with 

fuzzy parameter: , ,
c

E M D  
(b) Standard deviation of 1st pier 

  
(c) Vertical displacement of 2nd pier with 

fuzzy parameter: , ,
c

E M D  
(d) Standard deviation of 2nd pier 

  
(e) Vertical displacement of 3rd pier with 

fuzzy parameter: , ,
c

E M D  
(f) Standard deviation of 3rd pier 

  
(g) Vertical displacement of 4th pier with 

fuzzy parameter: , ,
c

E M D  
(h) Standard deviation of 4th pier 

Figure 8 Vertical displacement and standard deviation of piers  379 

with different fuzzy parameters 380 

 381 

Figure 9 demonstrates the standard deviation of the response corresponding to the 382 

maximum mean vertical displacement at the top of the pier. It can be observed that the fuzziness 383 



of the elastic modulus of piers has the greatest influence on the response at the top of the 1st 384 

and 2nd piers, and the fuzziness of the three parameters has a similar influence on the response 385 

at the top of 3rd and 4th piers. The standard deviation of the response is approximately linear 386 

with the fuzzy coefficient of variation. 387 

  
(a) Standard deviation of 1st pier (b) Standard deviation of 2nd pier 

  
(c) Standard deviation of 3rd pier (d) Standard deviation of 4th pier 

Figure 9 The standard deviation of the response corresponding to the maximum mean 388 

vertical displacement at the pier top with different COVs 389 

 390 

4.3.2. Fuzzy response and standard deviation of bridge and locomotive 391 

Figure 10 demonstrates the vertical response and standard deviation of bridge midspan and 392 

locomotive with different fuzzy parameters. From the calculation results, it can be observed 393 

that the maximum amplitudes of the fuzzy vertical displacement at the midspan of the three 394 

spans bridge and the fuzzy vertical acceleration of locomotive exceed the conventional vertical 395 

response by 0.7%, 0.1%, 0.07%, and 76.96%, respectively. 396 

  
(a) Vertical displacement of 1st midspan 

with fuzzy parameter: , ,
c

E M D  
(b) Standard deviation of 1st midspan 



  
(c) Vertical displacement of 2nd 

midspan with fuzzy parameter: 

, ,
c

E M D  

(d) Standard deviation of 2nd midspan 

  
(e) Vertical displacement of 3rd midspan 

with fuzzy parameter: , ,
c

E M D  
(f) Standard deviation of 3rd midspan 

  
(g) Vertical acceleration of locomotive 

with fuzzy parameter: , ,
c

E M D  
(h) Standard deviation of locomotive 

Figure 10 Vertical response and standard deviation of bridge midspan and locomotive 397 

with different fuzzy parameters 398 

 399 

Figure 11 demonstrates the standard deviation of the response corresponding to the 400 

maximum mean vertical response at the bridge midspan and locomotive. It can be observed that 401 

the fuzziness of the elastic modulus of piers has the greatest influence on the response of the 402 

1st midspan, the pier density has a similar influence as the mass of locomotive. The influence 403 

of locomotive, the elastic modulus of pier and the density of pier on the response of the 2nd and 404 

3rd midspan decreases in turn, but they belong to the same order of magnitude. The standard 405 

deviation of the response is approximately linear with the fuzzy coefficient of variation. 406 

 407 



  
(a) Standard deviation of 1st midspan (b) Standard deviation of 2nd midspan 

  
(c) Standard deviation of 3rd midspan (d) Standard deviation of locomotive 

Figure 11 The standard deviation of the response corresponding to the maximum mean 408 

vertical response at the bridge midspan and locomotive with different COVs 409 

 410 

4.4. 2nd Pier damage 411 

Consider the elastic modulus and density of 2nd pier and the mass of the locomotive as 412 

fuzzy parameters. 413 

4.4.1. Fuzzy response and standard deviation at the top of pier 414 

Taking the fuzzy coefficient of variation COV 0.3= . Figure 12 demonstrates the vertical 415 

displacement and standard deviation at the top of pier with different fuzzy parameters. From 416 

the calculation results, it can be observed that the maximum amplitude of the fuzzy vertical 417 

displacement at the top of the four piers exceeds the conventional vertical response by 0.58%, 418 

36.24%, 0.08%, and 0.07%, respectively. 419 

 420 

  
(a) Vertical displacement of 1st pier with 

fuzzy parameter: , ,
c

E M D  
(b) Standard deviation of 1st pier 



  
(c) Vertical displacement of 2nd pier with 

fuzzy parameter: , ,
c

E M D  
(d) Standard deviation of 2nd pier 

  
(e) Vertical displacement of 3rd pier with 

fuzzy parameter: , ,
c

E M D  
(f) Standard deviation of 3rd pier 

  
(g) Vertical displacement of 4th pier with 

fuzzy parameter: , ,
c

E M D  
(h) Standard deviation of 4th pier 

Figure 12 Vertical displacement and standard deviation of piers  421 

with different fuzzy parameters 422 

 423 

Figure 13 shows the standard deviation of the response corresponding to the maximum 424 

mean vertical displacement at the top of the pier. It can be observed that the fuzziness of the 425 

elastic modulus of piers has the greatest influence on the response at the top of the 1st, 2nd and 426 

3rd piers, and the fuzziness of the three parameters has a similar influence on the response at 427 

the top of 4th pier. The standard deviation of the response is approximately linear with the fuzzy 428 

coefficient of variation. 429 

 430 



  
(a) Standard deviation of 1st pier (b) Standard deviation of 2nd pier 

  
(c) Standard deviation of 3rd pier (d) Standard deviation of 4th pier 

Figure 13 The standard deviation of the response corresponding to the maximum mean 431 

vertical displacement at the pier top with different COVs 432 

 433 

4.4.2. Fuzzy response and standard deviation of bridge and locomotive 434 

Figure 14 demonstrates the vertical response and standard deviation of bridge midspan and 435 

locomotive with different fuzzy parameters. From the calculation results, it can be observed 436 

that the maximum amplitudes of the fuzzy vertical displacement at the midspan of the three 437 

spans bridge and the fuzzy vertical acceleration of locomotive exceed the conventional vertical 438 

response by 0.77%, 0.88%, 0.08%, and 77.78%, respectively. 439 

 440 

  
(a) Vertical displacement of 1st midspan 

with fuzzy parameter: , ,
c

E M D  
(b) Standard deviation of 1st midspan 



  
(c) Vertical displacement of 2nd 

midspan with fuzzy parameter: 

, ,
c

E M D  

(d) Standard deviation of 2nd midspan 

  
(e) Vertical displacement of 3rd midspan 

with fuzzy parameter: , ,
c

E M D  
(f) Standard deviation of 3rd midspan 

  
(g) Vertical acceleration of locomotive 

with fuzzy parameter: , ,
c

E M D  
(h) Standard deviation of locomotive 

Figure 14 Vertical response and  standard deviation of bridge midspan and locomotive 441 

with different fuzzy parameters 442 

 443 

Figure 15 demonstrates the standard deviation of the response corresponding to the 444 

maximum mean vertical response at the bridge midspan and locomotive. It can be observed that 445 

the fuzziness of the elastic modulus of piers has the greatest influence on the response of the 446 

1st and 2nd midspan, the pier density has a similar influence as the mass of locomotive. The 447 

influence of locomotive, the elastic modulus of pier and the density of pier on the response of 448 

the 3rd midspan decreases in turn, but they belong to the same order of magnitude. The standard 449 

deviation of the response is approximately linear with the fuzzy coefficient of variation. 450 

 451 



  
(a) Standard deviation of 1st midspan (b) Standard deviation of 2nd midspan 

  
(c) Standard deviation of 3rd midspan (d) Standard deviation of locomotive 

Figure 15 The standard deviation of the response corresponding to the maximum mean 452 

vertical response at the bridge midspan and locomotive with different COVs 453 

 454 

4.5. 3rd Pier damage 455 

Consider the elastic modulus and density of 3rd pier and the mass of the locomotive as 456 

fuzzy parameters. 457 

4.5.1. Fuzzy response and standard deviation at the top of pier 458 

Taking the fuzzy coefficient of variation COV 0.3= . Figure 16 demonstrates the vertical 459 

displacement and standard deviation at the top of pier with different fuzzy parameters. From 460 

the calculation results, it can be observed that the maximum amplitude of the fuzzy vertical 461 

displacement at the top of the four piers exceeds the conventional vertical response by 0.23%, 462 

0.23%, 35.66%, and 0.13%, respectively. 463 

 464 

  
(a) Vertical displacement of 1st pier with 

fuzzy parameter: , ,
c

E M D  
(b) Standard deviation of 1st pier 



  
(c) Vertical displacement of 2nd pier with 

fuzzy parameter: , ,
c

E M D  
(d) Standard deviation of 2nd pier 

  
(e) Vertical displacement of 3rd pier with 

fuzzy parameter: , ,
c

E M D  
(f) Standard deviation of 3rd pier 

  
(g) Vertical displacement of 4th pier with 

fuzzy parameter: , ,
c

E M D  
(h) Standard deviation of 4th pier 

Figure 16 Vertical displacement and standard deviation of piers  465 

with different fuzzy parameters 466 

 467 

Figure 17 demonstrates the standard deviation of the response corresponding to the 468 

maximum mean vertical displacement at the top of the pier. It can be observed that the fuzziness 469 

of the elastic modulus of piers has the greatest influence on the response at the top of the 2nd, 470 

3rd and 4th piers, and the fuzziness of the three parameters has a similar influence on the 471 

response at the top of 1st pier. The standard deviation of the response is approximately linear 472 

with the fuzzy coefficient of variation. 473 

 474 



  
(a) Standard deviation of 1st pier (b) Standard deviation of 2nd pier 

  
(c) Standard deviation of 3rd pier (d) Standard deviation of 4th pier 

Figure 17 The standard deviation of the response corresponding to the maximum mean 475 

vertical displacement at the pier top with different COVs 476 

 477 

4.5.2. Fuzzy response and standard deviation of bridge and locomotive 478 

Figure 18 demonstrates the vertical response and standard deviation of bridge midspan and 479 

locomotive with different fuzzy parameters. From the calculation results, it can be observed 480 

that the maximum amplitudes of the fuzzy vertical displacement at the midspan of the three 481 

spans bridge and the fuzzy vertical acceleration of locomotive exceed the conventional vertical 482 

response by 0.19%, 0.92%, 0.88%, and 76.61%, respectively. 483 

 484 

  
(a) Vertical displacement of 1st midspan 

with fuzzy parameter: , ,
c

E M D  
(b) Standard deviation of 1st midspan 



  
(c) Vertical displacement of 2nd 

midspan with fuzzy parameter: 

, ,
c

E M D  

(d) Standard deviation of 2nd midspan 

  
(e) Vertical displacement of 3rd midspan 

with fuzzy parameter: , ,
c

E M D  
(f) Standard deviation of 3rd midspan 

  
(g) Vertical acceleration of locomotive 

with fuzzy parameter: c
、 、E M D  

(h) Standard deviation of locomotive 

Figure 18 Vertical response and  standard deviation of bridge midspan and locomotive 485 

with different fuzzy parameters 486 

 487 

Figure 19 demonstrates the standard deviation of the response corresponding to the 488 

maximum mean vertical response at the bridge midspan and locomotive. It can be observed that 489 

the fuzziness of the elastic modulus of piers has the greatest influence on the response of the 490 

2nd and 3rd midspan, the pier density has a similar influence as the mass of locomotive. The 491 

influence of the elastic modulus of pier, the density of pier and locomotive on the response of 492 

the 1st midspan decreases in turn, but they belong to the same order of magnitude. The standard 493 

deviation of the response is approximately linear with the fuzzy coefficient of variation. 494 

 495 



  
(a) Standard deviation of 1st midspan (b) Standard deviation of 2nd midspan 

  
(c) Standard deviation of 3rd midspan (d) Standard deviation of locomotive 

Figure 19 The standard deviation of the response corresponding to the maximum mean 496 

vertical response at the bridge midspan and locomotive with different COVs 497 

 498 

4.6. 4th Pier damage 499 

Consider the elastic modulus and density of 4th pier and the mass of the locomotive as 500 

fuzzy parameters. 501 

4.6.1. Fuzzy response and standard deviation at the top of pier 502 

Taking the fuzzy coefficient of variation COV 0.3= . Figure 20 demonstrates the vertical 503 

displacement and standard deviation at the top of pier with different fuzzy parameters. From 504 

the calculation results, it can be observed that the maximum amplitude of the fuzzy vertical 505 

displacement at the top of the four piers exceeds the conventional vertical response by 0.22%, 506 

0.21%, 0.06%, and 36.09%, respectively. 507 

 508 

  
(a) Vertical displacement of 1st pier with 

fuzzy parameter: , ,
c

E M D  
(b) Standard deviation of 1st pier 



  
(c) Vertical displacement of 2nd pier with 

fuzzy parameter: , ,
c

E M D  
(d) Standard deviation of 2nd pier 

  
(e) Vertical displacement of 3rd pier with 

fuzzy parameter: , ,
c

E M D  
(f) Standard deviation of 3rd pier 

  
(g) Vertical displacement of 4th pier with 

fuzzy parameter: , ,
c

E M D  
(h) Standard deviation of 4th pier 

Figure 20 Vertical displacement and standard deviation of piers  509 

with different fuzzy parameters 510 

 511 

Figure 21 demonstrates the standard deviation of the response corresponding to the 512 

maximum mean vertical displacement at the top of the pier. It can be observed that the fuzziness 513 

of the elastic modulus of piers has the greatest influence on the response at the top of the 3rd 514 

and 4th piers, and the fuzziness of the three parameters has a similar influence on the response 515 

at the top of 1st and 2nd piers. The standard deviation of the response is approximately linear 516 

with the fuzzy coefficient of variation. 517 

 518 



  
(a) Standard deviation of 1st pier (b) Standard deviation of 2nd pier 

  
(c) Standard deviation of 3rd pier (d) Standard deviation of 4th pier 

Figure 21 The standard deviation of the response corresponding to the maximum mean 519 

vertical displacement at the pier top with different COVs 520 

 521 

4.6.2. Fuzzy response and standard deviation of bridge and locomotive 522 

Figure 22 demonstrates the vertical response and standard deviation of bridge midspan and 523 

locomotive with different fuzzy parameters. From the calculation results, it can be observed 524 

that the maximum amplitudes of the fuzzy vertical displacement at the midspan of the three 525 

spans bridge and the fuzzy vertical acceleration of locomotive exceed the conventional vertical 526 

response by 0.18%, 0.11%, 0.48%, and 76.57%, respectively. 527 

 528 

  
(a) Vertical displacement of 1st midspan 

with fuzzy parameter: , ,
c

E M D  
(b) Standard deviation of 1st midspan 



  
(c) Vertical displacement of 2nd 

midspan with fuzzy parameter: 

, ,
c

E M D  

(d) Standard deviation of 2nd midspan 

  
(e) Vertical displacement of 3rd midspan 

with fuzzy parameter: c
、 、E M D  

(f) Standard deviation of 3rd midspan 

  
(g) Vertical acceleration of locomotive 

with fuzzy parameter: , ,
c

E M D  
(h) Standard deviation of locomotive 

Figure 22 Vertical response and standard deviation of bridge midspan and locomotive 529 

with different fuzzy parameters 530 

 531 

Figure 23 demonstrates the standard deviation of the response corresponding to the 532 

maximum mean vertical response at the bridge midspan and locomotive. It can be observed that 533 

the fuzziness of the elastic modulus of piers has the greatest influence on the response of the 534 

3rd midspan, the pier density has a similar influence as the mass of locomotive. The fuzziness 535 

of the three parameters has a similar influence on the response of the 1st and 2nd midspan. The 536 

standard deviation of the response is approximately linear with the fuzzy coefficient of variation. 537 

 538 



  
(a) Standard deviation of 1st midspan (b) Standard deviation of 2nd midspan 

  
(c) Standard deviation of 3rd midspan (d) Standard deviation of locomotive 

Figure 23 The standard deviation of the response corresponding to the maximum mean 539 

vertical response at the bridge midspan and locomotive with different COVs 540 

 541 

Conclusion 542 

In this paper, we present a fuzzy computational framework utilizing the information 543 

entropy method and the new point estimation method to analyze dynamic train-bridge 544 

interactions, accounting for pier damage. The framework is applied to study the train-bridge 545 

coupled vibration system with fuzzy structural parameters. The effectiveness and accuracy of 546 

the proposed framework are validated. The following concluding remarks are drawn from our 547 

numerical studies and results: 548 

(1) The combination of information entropy method and new point estimation method 549 

effectively reduces computational complexity, improves computational efficiency, and 550 

increases efficiency by 2-3 orders of magnitude compared to scanning method. 551 

(2) The fuzziness of the mass of locomotive has the greatest influence on the vertical 552 

acceleration of locomotive, and the elastic modulus of pier has a similar influence as the pier 553 

density. The standard deviation of the response is approximately linear with the fuzzy 554 

coefficient of variation. 555 

(3) The fuzziness of the elastic modulus of piers has the greatest influence on the vertical 556 

response of the adjacent top of piers and the midspan of the bridge, and the three parameters 557 

have a similar influence on the response of non-adjacent places. 558 

(4) The response of the train-bridge, when considering damage, significantly surpasses 559 

that obtained from conventional deterministic parameter calculations. Investigating the 560 



response of the train-bridge coupled vibration system with fuzzy parameters is crucial for 561 

ensuring running safety. 562 
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