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ABSTRACT  
Preference-based decisions often need to combine multiple pieces of information. This study 
investigated how the number of information sources and information congruency affect 
decision performance. Participants made preference-based choices between two groups of food 
items. Increasing the number of items in each option led to slower and less accurate decisions. 
Drift-diffusion modelling showed that more information sources relate to a slower rate of 
evidence accumulation. Therefore, the additional information impeded rather than improved 
the decision accuracy. In Experiment 2, each choice option contained either fully congruent 
information or one piece of incongruent information. Decisions with incongruent information is 
associated with a lower drift rate than that with congruent information, leading to inferior 
behaviorual performance. Further model simulations support that the change in attention 
weighting over information sources leads to the observed effects of item numbers and item 
congruency. Our results suggest a bounded combination of information sources during 
preference-based decisions.
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1. Introduction

Rational decision-making depends on evaluating mul-
tiple options to determine the optimal outcome with 
the highest gain relative to potential costs. From ordin-
ary decisions in everyday life to complex policymaking, 
choices are made by integrating pieces of information 
available to the decision-maker. Previous research has 
examined how people integrate different sources of 
information in various types of decisions (Noguchi & 
Stewart, 2018; Trueblood et al., 2013; Tsetsos et al., 
2010; Usher & McClelland, 2004).

In simple and rapid perceptual decisions, sequential 
sampling models postulate that the evidence support-
ing each alternative is integrated over time until 
sufficient evidence in support of one alternative 
reaches a response threshold (Ratcliff et al., 2016; 
Ratcliff & McKoon, 2008; Smith & Ratcliff, 2004). This inte-
gration process provides an optimal strategy for fast and 
accurate decisions by reducing the noise in the accumu-
lated evidence (Bogacz, 2007; Zhang & Bogacz, 2010). 

A large family of sequential sampling models have 
been proposed (Bogacz et al., 2006; Ratcliff et al., 
2016). These models differed in their levels of complex-
ity, the number of evidence accumulators, decision rules, 
stochastic versus deterministic evidence accumulation, 
and continuous versus discrete time or evidence rep-
resentations. One common feature of most sequential 
sampling models is that they can, or at least attempt 
to, account for choices as well as the response time of 
decisions, because response time has been a key depen-
dent variable of interest in perceptual decision research 
in psychology (Ratcliff, 2006) and neuroscience (Gold & 
Shadlen, 2007). Most literature on perceptual decisions 
considers the decision process involving a single 
source of information, although some have examined 
how multiple sources of information can influence 
behaviour (Krzemiński & Zhang, 2022; Palmer, 1995; 
Shaw, 1982).

Another equally fruitful line of research in psychol-
ogy, marketing, political science, and behavioural 
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economics is focused on value-based decision-making. 
Here, we consider a specific type of value-based 
decision-making: preference-based decisions (also 
termed as preferential decisions, for reviews see 
Spektor et al., 2021; Yoon & Hwang, 1995). Unlike per-
ceptual decisions, in which an objectively correct 
choice often exists, preference-based decisions are com-
monly based on subjective preference towards multiple 
options, where the relevant preference information 
comprises multiple attributes (Busemeyer et al., 2019; 
Slovic, 1995). For example, when renting a house, one 
may consider several attributes such as preferences for 
room size, price, and location. This raises the issue of 
how multiple sources of information can be integrated 
during preference-based decisions. Traditional decision 
theories suggest that multi-attribute choices are 
weighted and combined in a way that reaches the 
maximum utility (Dawes & Corrigan, 1974; Doyle, 1997; 
Lee & Cummins, 2004). Others have proposed alternative 
heuristic models, such as the take-the-best model, 
assuming that decision-makers focus on a few key attri-
butes while disregarding others (Gigerenzer & Gaissma-
ier, 2010; Gigerenzer & Goldstein, 2011; Gigezenger & 
Goldstain, 1999).

Empirical studies on multi-attribute preference-based 
decisions have paid special attention to the contextual 
influence on choice. That is, when choosing between com-
petitive options, introducing new options to the decision 
problem can bias the choice if the new options have 
similar (the similarity effect, Tversky, 1972), inferior (the 
attraction effect, Huber et al., 1982) or more extreme 
(the compromise effect, Simonson, 1989) attribute values 
compared with the original options. These choice 
context effects are crucial to our understanding of prefer-
ence-based decisions because they challenge the prin-
ciples underpin many normative economic choice 
theories such as the independence axiom (Ray, 1973).

Converging research in perceptual and value-based 
decision-making promotes the use of sequential 
sampling models to explain the choice context effects 
(Busemeyer et al., 2019), which has led to several 
model extensions specifically for preference-based 
decisions, including the multi-alternative decision field 
theory (Roe et al., 2001), the multi-alternative leaky com-
peting accumulator model (Bogacz et al., 2007; Tsetsos 
et al., 2010; Usher & McClelland, 2004), the multi-attri-
bute linear ballistic accumulator model (MLBA, True-
blood et al., 2014), the associative accumulation model 
(Bhatia, 2013), and the model of multialternative 
decision (Noguchi & Stewart, 2018). These extended 
models predict both choice and response time of prefer-
ence-based decisions (Evans et al., 2019), providing 
additional insights into the experimental data (Clithero, 

2018; Konovalov & Krajbich, 2019; Webb, 2019). Further-
more, these models open possibilities to using eye 
movement data (Krajbich et al., 2012; Krajbich & 
Rangel, 2011) or brain imaging (Mohr et al., 2017) to 
examine the evidence accumulation process during pre-
ference-based decisions.

In multi-attribute decisions, the attributes of each 
option commonly represent different types of infor-
mation (e.g. room sizes, prices, and locations in the 
house renting scenario above). The current study con-
siders a different paradigm, in which all attributes of a 
choice option contain the same type of information 
(Krzemiński & Zhang, 2022). For example, considering a 
chocolate assortment box, individual chocolate items 
in the box convey the same type of information: the sub-
jective preference of individual items. To choose the box 
with the highest overall preference, the decision-maker 
needs to combine their preference towards the collec-
tion of items in the box. Interestingly, a recent study 
suggested that, in such a scenario, the decision-maker 
establishes the group of items as a set, and their prefer-
ence-based decision can be influenced by the similarity 
of items within the group (i.e. the set-fit effect, Evers 
et al., 2014).

The current study builds on the existing literature. In 
two internet-based experiments, we examined (1) how 
preference-based decision is affected by the number of 
items of each option; and (2) whether a decision- 
maker is sensitive to incongruent information between 
items. In both experiments, human participants were 
instructed to make binary choices based on their prefer-
ences, whereby each choice option consisted of multiple 
food items (Figure 1).

Experiment 1 investigated the effect of the number of 
items per option on behavioural performance. Partici-
pants chose between two options at different levels of 
difficulty, with each containing two or four food items. 
Importantly, all food items assembled in each choice 
option were at the same level of preference rating. We 
hypothesised that such within-option consistency may 
promote two possible types of behaviour. First, as the 
number of items per option increases, participants may 
simply accumulate their preferences for all additional 
items to build a collective preference for each option. 
In this case, more items per option will lead to better 
behavioural performance, i.e. higher accuracy and 
shorter response time (RT). Alternatively, although pre-
vious research suggests that humans do combine mul-
tiple sources of information (Krajbich et al., 2012, 
2010), such processes are inevitably constrained by 
limited attentional capacity (Reynolds & Chelazzi, 
2004). As a result, more items per option introduce an 
attentional cost and lead to inferior behavioural 
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performance, i.e. lower accuracy and prolonged RT. In 
both predictions, the statistical null hypothesis is the 
lack of behavioural change between the choices with 
two or four items, implying that participants ignore or 
are insensitive to the additional (but redundant) 
information.

Experiment 2 examined the effect of information con-
gruency among items of each choice option. Participants 
performed preference-based decisions between two 
options, each with a collection of four food items. In con-
gruent trials, all food items in each option had the same 
level of preference rating (same as in Experiment 1). In 
incongruent trials, an incongruent pair was created by 
swapping the locations of two food items between the 
two options. This design creates a scenario in which 
the number of items per option is the same between 
congruent and incongruent trials, while the summed 
or averaged value difference was lower in incongruent 
than that in congruent trials. Since the presence of the 
incongruent information should make the decision 
task more difficult, we expect incongruent trials to 
have inferior behavioural performance (i.e. lower accu-
racy and longer RT) than congruent trials.

In both experiments, we fitted a sequential sampling 
model, the drift-diffusion model (DDM) (Ratcliff & 
McKoon, 2008), to the behavioural data and inferred 
the effects of information sources, information con-
gruency, and task difficulty on model parameters. Fur-
thermore, we examined how our results can be 
interpreted in the context of a multi-attribute choice 
model, the MLBA (Trueblood et al., 2014).

2. Experiment 1: preference-based decisions 
with variable item counts

2.1. Participants

A total of 52 participants were recruited from an online 
recruitment portal Prolific (prolific.co) and took part in 
the experiment online. Participants’ ages ranged from 
19–56 years, with a median age of 24, and 16 were 
females. Supplementary Table 1 shows demographic 
information about the participants. Prolific users are 
aware that they participate in research studies and are 
compensated for their participation based on 
minimum payment rates (Palan & Schitter, 2018). All 

Figure 1. Experimental paradigms. A. The rating task. Participants were instructed to provide a preference rating for each food item, 
indicating their level of desire to consume each item. In this example, it shows that participants strongly like pasta. B. The main 
decision-making task in Experiment 1. In two-item trials (left), participants were asked to make a binary choice between two alterna-
tives, each containing two food items. In four-item trials (right), each choice alternative contained four food items. All food items in 
each option had the same preference rating. C. The main decision-making task in Experiment 2. Participants were instructed to make a 
binary choice between two options, each consisting of four food items. In congruent trials, all food items in each option had the same 
preference rating. In incongruent trials, one pair of food items was swapped between the two choice options, introducing incongruent 
preference information among the items of an option.
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participants received monetary payments for their par-
ticipation. Participants were not paid additional incen-
tives based on their performance. Consent was 
obtained from all participants. The study was approved 
by the Cardiff University School of Psychology Research 
Ethics Committee.

2.2. Apparatus

The experiment was carried out online. Experimental 
scripts for stimulus presentation and response collection 
are written in HTML with a JavaScript library jsPsych 6.1.0 
(de Leeuw, 2015). The online experiment was run on the 
Pavlovia web server (pavlovia.org), and participants used 
web browsers on their computers to complete the 
experiment. It has been shown that online studies 
using modern web browsers can be employed as an 
efficient tool to accurately measure behavioural 
responses and reaction times (Anwyl-Irvine et al., 2021; 
de Leeuw & Motz, 2016; Semmelmann & Weigelt, 2017).

2.3. Experimental design

All participants completed two separate experimental 
sessions spread over two weeks. In each session, 
choice options were comprised of either two or four 
food items. Half of the participants completed the 
session with two-item options first, whereas the other 
half completed the four-item session first. Each session 
included a rating part and a decision-making part.

In the rating part, A total of 100 food pictures were 
chosen from an online food database (Blechert et al., 
2019) (See Supplementary Figure 1). Participants were 
asked to give a preference rating for each food item (i.e. 
how much they would like to consume the food item). 
The preference rating was on a Likert-type scale, with 
five discrete values from –2 to 2, representing five prefer-
ence levels: “strongly dislike” (−2), “dislike” (−1), “neutral” 
(0), “like” (1) and “strongly like” (2). Participants were 
informed that they needed to rate the food items as 
evenly spread as possible. After the rating part, if there 
were fewer than 8 items at any preference level, the exper-
iment was terminated without progressing to the main 
decision-making part, and the participant’s data was dis-
carded without further analysis. A total of 59 participants 
were rejected on the recruitment platform after the 
rating part because of their biased ratings. Hereafter, we 
reported results from the 52 remaining participants.

In the decision-making part, participants were asked 
to make preference-based decisions between two 
options, each containing a combination of food items. 
They were instructed with the following phrases: 
“Please determine which one of the two/four item 

combinations you prefer more”. In each trial, two 
groups of food stimuli were presented vertically on the 
left and right sides of the screen (Figure 1(B): two-item 
trial; Figure 1(C): four-item trial). In both two-item and 
four-item trials, all food items of each option have the 
same level of preference rating (i.e. from –2 to 2).

For two- and four-item trials, there were four prefer-
ence difference levels from 1 to 4, determined by the 
absolute difference in the preference ratings between 
the items of the two options. That is, for the preference 
difference of 1, the two choice options contain items 
rated at 0 vs. 1, 0 vs. –1, 1 vs. 2, or –1 vs. –2. For the pre-
ference difference of 4, the two choice options contain 
items rated at –2 vs. 2. Note that the task difficulty 
decreases as the preference difference between the 
two options increases.

2.4. Procedure

Each experimental session comprised 450 trials, which 
were divided into 15 blocks of 30 trials. Participants 
took short breaks between blocks. In each block, for 
each of the preference differences from 1 to 4, there 
were 12, 9, 6, and 3 trials, respectively. At each prefer-
ence difference level, each possible pair of preference 
ratings was presented in an equal number of trials. The 
order of the task difficulty (i.e. preference difference) 
was randomised across blocks.

Each trial began with the presentation of a fixation 
point at the centre of the screen, with a uniformly distrib-
uted latency between 250 and 1500 ms. After the fixation, 
two choice options (each with two or four food items) 
appeared on the left and right sides of the screen. For 
each choice option, its associated food items were ran-
domly drawn from the list that satisfies the preference 
rating required in that trial. Each trial was presented for 
a maximum of 3000 ms, during which time participants 
were instructed to click on one option using a mouse to 
indicate their decision. Immediately after each choice 
action, the colour of the rectangular border of the 
chosen option changed colour to indicate the registration 
of a response and the choice stimulus disappeared after 
the response. If participants did not respond within 
3000 ms, a warning message was given, and the next 
trial began. The mouse position was reset to the centre 
of the screen after each trial.

2.5. Data analysis

As highlighted in the introduction, preference-based 
decisions do not always have an objectively correct 
choice. This applies to the current study, because the 
same food item may be evaluated differently between 
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participants. Here, we use the conventional term accu-
racy to quantify, for each participant, the proportion of 
trials in which they chose the option with the higher 
subjective preference rating. Hence, this accuracy 
measure reflects to what extent participants’ choices 
are consistent with their initial ratings.

We quantified the response time (RT) of each trial as 
the time between the onset of the food stimulus and 
the time of the behavioural response. Trials with RTs 
faster than 300 ms were removed to exclude fast 
guesses. Furthermore, we removed trials in which par-
ticipants did not respond before the deadline. Together, 
0.91% of all trials were discarded after pre-processing. To 
make group inferences on mean decision accuracy and 
RT, we used JASP (jasp-stats.org) to perform both fre-
quentist and Bayesian ANOVA (Wagenmakers et al., 
2018), with the difficulty level and the number of infor-
mation sources as within-subject factors. In addition to 
the conventional frequentist ANOVA statistics, we 
reported the inclusion Bayes factor (BFincl) for each 
effect, which quantifies the evidence in the data for 
including the effect (Van Den Bergh et al., 2020).

2.6. Cognitive modelling of behavioural data

We used the hierarchical drift-diffusion model (HDDM) 
toolbox (version 0.9.8) in dockerHDDM (Pan et al., 
2022) with Python version 3.8.13 to fit the DDM to 
each participant’s response time distribution and accu-
racy. HDDM is a hierarchical extension of the DDM 
(Wiecki et al., 2013). It assumes that model parameters 
for individual participants are random examples drawn 
from group-level distributions and uses the Bayesian 
approach to estimate the posterior distributions of all 
model parameters at both individual and group levels 
(Wiecki et al., 2013). DDM assumes that a binary choice 
is made by a noisy process that accumulates information 
over time from a starting point until the accumulated 
information reaches one of two decision boundaries, 
corresponding to the two choice options (Ratcliff et al., 
2016; Ratcliff & McKoon, 2008). When one of the bound-
aries is reached, a motor response is executed. The 
model decomposes behavioural data into four 
components: 

. The drift rate (v) refers to the average rate of infor-
mation accumulation.

. The decision threshold (a) refers to the distance 
between two response boundaries.

. The non-decision time (Ter) refers to the latencies of 
stimulus encoding and response execution.

. The starting point (z) refers to a priory bias toward 
one of the two options.

The model predicts choice probabilities and RTs (as 
the sum of the non-decision time and the duration of 
the accumulation process). The two decision boundaries 
correspond to the correct (i.e. consistent with preference 
rating) and incorrect decisions. Because we presented 
the position of the correct option (either left or right) 
randomly across trials, the starting point was fixed at 
0.5 during model fitting. In addition, we included trial- 
by-trial variability in non-decision time st as a group- 
level parameter, which has been shown to improve the 
model fit to the data (Ratcliff & McKoon, 2008).

To accommodate changes in behavioural perform-
ance, one or more model parameters need to vary 
between conditions. We evaluated 16 variants of the 
DDM model with different parameter constraints 
(Figure 3(A)). In all model variants, we allow the drift 
rate v to vary between preference difference levels, as 
based on existing literature, the drift rate is sensitive to 
the task difficulty (Ratcliff & McKoon, 2008). The 
additional constraints of the 16 DDM variants include: 
(1) the drift rate v is variable or fixed between 4-item 
and 2-item trials; (2) the decision boundary a is variable 
or fixed between 4-item and 2-item trials; and (3) the 
non-decision time Ter is variable between set size (4- 
item vs. 2-item) and/or preference difference levels, or 
the non-decision time is fixed in all conditions.

To account for contaminant response, we used the 
mixture model, in which 5% of observations were 
assumed to be outliers and were not generated from 
the drift-diffusion process. The initial values of the 
sampling process were set to the maximum a-posterior 
value using a gradient ascent optimisation (Wiecki 
et al., 2013). We used the default option of informative 
priors in the HDDM toolbox, constraining parameter esti-
mates within a range of plausible values.

For each model variant, we generated five indepen-
dent chains of 20,000 samples from the joint posterior 
distribution of model parameters using Markov chain 
Monte Carlo (MCMC) sampling. The initial 5000 
samples of each chain were discarded as burn-in to 
provide the stability of posterior estimates (Wiecki 
et al., 2013). To assess the convergence of the MCMC 
sampling, for each model variant, we calculated the 
Gelman-Rubin convergence diagnostic R̂ (Gelman & 
Rubin, 1992) from the five MCMC chains, and used 
R̂ , 1.1 as a criterion of convergence.

We used two complementary metrics for model com-
parison. First, from all MCMC samples, we calculate the 
deviance information criterion (DIC) value (Spiegelhalter 
et al., 2002) of each model variant. The DIC value com-
bines a measure of goodness-of-fit and a measure of 
model complexity (effective number of parameters), 
where lower values indicate a better model fit. 
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However, although the DIC is easy to calculate, it may 
favour more complex models because of its inaccuracy 
in estimating the number of parameters (Spiegelhalter 
et al., 2014). Second, we calculate the Pareto-smoothed 
importance sampling leave-one-out cross-validation 
(LOO-CV) deviance for each model variant. The LOO-CV 
is a more robust measure than DIC, with lower LOO-CV 
values indicating better out-of-sample predictive 
quality of the model (Vehtari et al., 2022, 2017). The cal-
culation of LOO-CV requires the pointwise log-likelihood 
of each MCMC sample and each piece of observed data, 
which has high computational demands. To address this 
issue, we calculated the LOO-CV scores from the last 
1000 samples of all MCMC chains.

We used the Bayesian hypothesis testing (Gelman 
et al., 2013) to make inferences between posterior par-
ameters. Similar to previous studies (Szul et al., 2020; 
Zhang et al., 2016; Zhang & Rowe, 2014), we used the 
notion Pp|D (stands for the posterior probability given 
observed data) to refer to the proportion of posteriors 
supporting the testing hypothesis at the group level 
from the Bayesian hypothesis testing. For example, to 
test if the DDM drift rate v in condition A is larger 
than that in condition B (i.e. vA > vB), we calculate the 
probability that the difference between the par-
ameter’s posterior distributions larger than zero (Pp| 

D = P(vA  – vB > 0)). A high posterior probability indicates 
strong evidence in favour of the testing hypothesis. 
Note that Pp|D is a continuous measure between 0 
and 1. To facilitate discussion and follow the conven-
tion (Kelter, 2020), if Pp|D > 0.95, we consider that 
there is strong evidence to support the hypothesis of 
the statistical test.

2.7. Behavioural results

Participants performed binary preference-based choices 
between options incorporating two or four items in 
different sessions. Behavioural performance was 

quantified by accuracy (choice consistency based on 
participants’ preference ratings) and RT.

Preference-based decisions between options with 
two items had significantly higher accuracy (Figure 2
(A)) and faster RT (Figure 2(B)) than options with four 
items (accuracy: F(1,50) = 8.340, p = 0.006, ηp

2 = 0.143, 
BFincl = 7.981; RT: F(1,50) = 22.468, p < 0.001, ηp

2 =  
0.310, BFincl = 388.032, repeated measures ANOVA).

As expected, there was a significant main effect of 
task difficulty (i.e. preference difference between 
options) in accuracy (accuracy: F(3,150) = 217.232, p <  
0.001, ηp

2 = 0.813, BFincl = 7.612 × 1050) and RT (RT: F 
(3,150) = 162.672, p < 0.001, ηp

2 = 0.765, BFincl =  
3.836 × 1043), with larger preference difference leading 
to better performance. Furthermore, the behavioural 
performance difference between two-item and four- 
item decisions became smaller as the task difficulty 
decreased, as indicated by a significant interaction 
between item numbers per option and task difficulty 
(accuracy: F(3,150) = 3.226, p = 0.024, ηp

2 = 0.061, BFincl  
= 0.899, RT: F(3,150) = 2.940, p = 0.035, ηp

2 = 0.056, 
BFincl = 0.944). It is worth noting that the interaction in 
accuracy is mainly driven by the ceiling effects in 
easier conditions, as there was no significant interaction 
in accuracy if the easiest condition (i.e. the condition 
with the largest preference difference) is removed in 
the ANVOA.

In an additional analysis, we explored whether choos-
ing between positively rated items differed from 
choosing between negatively rated items. In a 
repeated-measures ANOVA, we included a within- 
subject factor, separating trials with positively rated 
items (also including neutral, i.e. items rated at 1/0, 2/0, 
and 1/2) from those with negatively rated items (−1/0, 
–2/0, and –1/−2). Making choices involving positively 
rated items was significantly faster across all difficulty 
levels (F(1, 50) = 79.446, p < 0.001, ηp

2 = 0.614, BFincl =  
2.055 × 109). No difference was observed in decision accu-
racy (F(1, 50) = 0.279, p = 0.6, ηp

2 < 0.006, BFincl = 0.207).

Figure 2. Behavioural results of Experiment 1. A. Mean decision accuracy (choice consistency) between the two-item and four-item 
conditions at each preference difference level. B. Mean RTs of the two types of choices at each preference difference level. Data points 
represent individual participants.
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2.8. Cognitive modelling results

We used a hierarchical Bayesian version (Cavanagh et al., 
2011; Vandekerckhove et al., 2011) of the DDM (Bogacz 
et al., 2006; Ratcliff & Tuerlinckx, 2002) to decompose 
individual participants’ behavioural data into model par-
ameters to infer their latent cognitive processes. We con-
sidered 16 model variants (see Figure 3(A) and Cognitive 
Modelling of Behavioural Data section for all model var-
iants). The model variants systematically allowed 
model parameters (i.e. the drift-rate v, the decision 
threshold a, and the non-decision time Ter) to vary 
between preference difference levels (v and Ter), set 
size (v, a, and Ter), or both (v and Ter). After completing 
5 chains of 20,000 samples, the Gelman-Rubin conver-
gence diagnostic (Gelman & Rubin, 1992) is smaller 
than 1.1 for all parameters in all model variants, support-
ing that parameter estimates reached convergence.

The model variant that described the data best (i.e. 
the one with the lowest DIC value and the lowest 

LOO-CV deviance score) allows all three parameters (v, 
Ter, and a) to vary between two-item and four-item 
choices, and v and Ter to further vary between the prefer-
ence difference levels (Figure 3(A) and Supplementary 
Figure 2A). To assess the model’s fit, we simulated the 
model with its posterior parameter estimates. In all con-
ditions, the observed data and model simulations were 
in good agreement (Figure 4).

Supplementary Table 2 reports the posterior esti-
mates of all parameters of the best-fitted model. We 
used Bayesian statistics to quantify the proportion of 
non-overlaps between the posterior distributions of par-
ameters (Gelman et al., 2013; Kruschke, 2011). For the 
drift rate, there was strong evidence to support that, at 
each preference difference level, the drift rate in 4-item 
choices was lower than that in 2-item choices (Pp|D >  
0.991 in all preference difference levels, Figure 3(B) 
and Supplementary Table 4). In both 4-item and 2-item 
choices, the drift rate increases as the preference 

Figure 3. Model comparison and model parameters of Experiment 1. A. The deviance information criterion (DIC) value differences 
between model variants. The 16 models differ on whether the drift rate v, decision boundary a, and non-decision time Ter can 
vary between 4-item vs 2-item trials and between preference difference levels. The model structures are shown below the bar 
plot. The value under each bar indicates the DIC value difference between the model variant and the best model. The best model 
variant was highlighted with a red box and a black arrow. The best model with the minimum DIC value had variable drift rate 
and non-decision time between set size conditions and preference difference levels, as well as variable decision boundaries 
between set size conditions. B-D. Posterior group-level parameter estimates from the best-fitted model (B: decision boundary; C: 
drift rate; D: non-decision time). In each posterior estimate, the solid black line indicates the full posterior distribution. The coloured 
area represents 94% highest density interval. The markers indicate the 0.25, 0.5 and 0.75 quartiles.
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difference between the two options becomes larger (Pp| 

D > 0.995 in all pairwise comparisons, Supplementary 
Table 4).

For the non-decision time, we did not observe strong 
evidence supporting a difference between 4-item and 
2-item choices at each level of preference difference (Pp| 

D < 0.937 in all comparisons, Figure 3(C) and Supplemen-
tary Table 4), nor between preference difference levels 
within each type of choice (Pp|D < 0.908 in all comparisons, 
Supplementary Table 4). For the decision boundary, there 
was no evidence supporting that it differs between 4-item 
and 2-item choices (Pp|D = 0.771 for 4-item vs 2-item com-
parison, Figure 3(D) and Supplementary Table 4).

3. Experiment 2: preference-based decisions 
with information congruency

3.1. Participants

We recruited another 52 participants from the Prolific 
online recruitment portal (prolific.co). Participants’ ages 
ranged from 19 to 56 years, with a median age of 23.5 
years, and 17 participants were female (Supplementary 
Table 1). Informed consent was obtained from all partici-
pants. The study was approved by the Cardiff University 
School of Psychology Research Ethics Committee.

3.2. Experimental design

Similar to Experiment 1, Experiment 2 comprised two 
parts: an initial rating part and a main decision-making 
part. The rating part was the same as in Experiment 1.

In the decision-making part, two groups of food items 
were presented on the left and right sides of the screen 
in each trial. Each group consisted of four food items 
(Figure 1(C)). Participants were asked to choose their 
preferred group of food items with the following instruc-
tion: “Please determine which one of the four food item 
combinations you prefer more”.

Half of the decision-making trials followed a similar 
design as in Experiment 1: all food items in a group 
had the same level of preference rating (hereinafter 
referred to as “congruent trials”). Different from Exper-
iment 1, Experiment 2 had three preference differences 
levels from 1 to 3.

In the other half of the trials, we first generated two 
groups of food items in the same way as the congruent 
trial. We then swapped the position of food items in a 
random row, hereafter referred to as “incongruent 
trials”. As a result, the swapped row contains incongru-
ent value information compared with the other rows. 
Participants were not informed that the food items 
may contain congruent and incongruent information.

Figure 4. Posterior predictive RT distributions for 4-item (A) and 2-item (B) choices in Experiment 1. Each panel shows the normalized 
histograms of the observed RT distributions and the model predictions (black lines) across participants. The RT distribution plots are 
proportional to decision accuracy: the distribution along the positive x-axis indicates RTs of correct responses, and the distribution 
along the negative x-axis indicates RTs of incorrect responses. Posterior predictive were generated from the best-fit model (model 
1 in Figure 3). For each participant, we drew 500 samples of all model parameters from the participant’s joint posterior parameter 
distribution. Each parameter set of the 500 samples was used to simulate the same amount of model-predicted data as observed 
in the experiment. The simulated RT distributions were then used to calculate posterior model predictions across all parameter sets.
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3.3. Procedure

The decision-making task comprised 576 trials, including 
288 congruent and 288 incongruent trials in a random-
ised order. The task was divided into 15 blocks of 48 
trials. After each block of trials, the decision accuracy 
(choice consistency based on the initial preference 
rating) was provided on the screen. We included this 
feedback between blocks to help participants maintain 
focus on the experiment.

Each trial began with the presentation of a fixation 
point at the centre of the screen with a uniformly distrib-
uted latency between 250 and 1500 ms. After the fixation, 
two groups of food items appeared on the left and right 
sides of the screen until a response was received. 
Different from Experiment 1, participants used a keyboard 
(left and right arrow keys) to register their decisions, and 
there was no time limit for responses. The choice stimulus 
disappeared after the response.

3.4. Data analysis and cognitive modelling

As in Experiment 1, statistical analyses were performed 
on RT and accuracy (choice consistency based on partici-
pants’ preference ratings). Trials with RTs faster than 300 
ms were removed to exclude fast guesses. Because there 
was no response deadline in Experiment 2, we further 
removed trials with RTs longer than 10,000 ms. Together, 
1.69% of all trials were discarded after pre-processing.

We fitted 8 variants of the DDM to behavioural data in 
Experiment 2 (Figure 6(A)). In all model variants, the drift 
rate can vary between preference difference levels. The 
additional constraints of the 8 DDM variants include: (1) 
the drift rate v is variable or fixed between congruent 
and incongruent trials; (2) the non-decision time Ter is 
variable between congruency conditions (congruent vs. 
incongruent) and/or preference difference levels, or the 
non-decision time is fixed in all conditions. We used the 
same mode fitting procedure, convergence check, and 
model comparison methods as in Experiment 1.

3.5. Behavioural results

Participants made binary preference-based choices 
between two groups of food items. In half of the trials, 
incongruent information was introduced by swapping 
a pair of items between the two groups (i.e. incongruent 
trials). Compared with congruent trials, incongruent 
trials had lower accuracy (F(1,51) = 365.036, p < 0.001, 
ηp

2 = 0.877, BFincl = 8.385 × 1021, repeated-measures 
ANOVA) and slower RT (F(1,51) = 163.222, p < 0.001, 
ηp

2 = 0.762, BFincl = 4.481 × 1014). Hence, the presence 
of incongruent information hinders behavioural per-
formance (Figure 5).

We further replicated the effect of task difficulty 
observed in Experiment 1. Across incongruent and con-
gruent conditions, a larger value difference was associ-
ated with higher accuracy (F(2,102) = 281.650, p <  
0.001, ηp

2 = 0.847, BFincl = 4.332 × 1038) and faster RT 
(F(2,102) = 156.963, p < 0.001, ηp

2 = 0.755, BFincl =  
6.205 × 1028). There were significant interactions 
between congruency and task difficulty. These results 
suggest that, as the task difficulty decreases, the con-
gruency effect becomes smaller for accuracy (F(2,102)  
= 4.625, p = 0.012, ηp

2 = 0.083, BFincl = 3.824) but larger 
for RT (F(2,102) = 35.399, p < 0.001, ηp

2 = 0.410, BFincl =  
1.482 × 109). Similar to the Results of Experiment 1, 
there was no significant interaction in accuracy if the 
easiest condition is removed in the ANVOA. Hence, the 
interaction in accuracy is mainly driven by the ceiling 
effects in conditions with larger value differences.

Same as in Experiment 1, we explored whether choos-
ing between positively rated items differed from choos-
ing between negatively rated items across congruency 
and difficulty conditions. Making choices involving posi-
tively rated items was significantly faster (F(1, 51) =  
20.983, p < 0.001, ηp

2 = 0.292, BFincl = 615.513). No 
difference was observed in decision accuracy (F(1, 51)  
= 0.147, p = 0.703, ηp

2 < 0.003, BFincl = 0.212). Therefore, 
we replicated the facilitation effect in RT with positive 
options observed in Experiment 1.

Figure 5. Behavioural results of Experiment 2. A. Mean decision accuracy (choice consistency) between the congruent and incongru-
ent conditions at each preference difference level. B. Mean RTs of congruent and incongruent conditions at each preference difference 
level. Data points represent individual participants.
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3.6. Cognitive modelling results

Similar to Experiment 1, the HDDM model was used to 
decompose each participant’s behavioural data into 
internal components of cognitive processing. We 
allowed two model parameters (i.e. the drift-rate v and 
the non-decision time Ter) to be fixed or vary between 
preference difference levels, congruency type (incongru-
ent or congruent options), or both. All parameters in all 
models converged after 5 MCMC chains of 20,000 
samples (Gelman-Rubin convergence diagnostic 
R̂ , 1.1).

We examined both DIC values and LOO-CV scores for 
model comparison (Figure 6(A) and Supplementary 
Figure 2B). The top two model variants based on DIC 
values only had a small difference of 9.1 in their DIC 
values (the 2nd and the 4th model in Figure 6(A)). The 
two model variants were also the top two based on 
the LOO-CV score (Supplementary Figure 2B), and the 
one with a slightly higher DIC value (i.e. the 2nd model 
in Figure 6(A)) had a substantially lower LOO-CV score. 
Taken together, we took the model with the lowest 
LOO-CV score as the best model and reported below 
the model fit and posterior analyses.

The best model variant allows the drift rate v and the 
non-decision time Ter to vary between incongruent and 
congruent conditions, and Ter to further vary between 
preference difference levels. Posterior predictive RT dis-
tributions from model simulation were in good agree-
ment with the observed data in all conditions (Figure 7).

Supplementary Table 3 and Figure 6 report the pos-
terior estimates of all parameters of the best-fitted 

model. For the drift rate, there was strong evidence to 
support that, at each preference difference level, the 
drift rate in incongruent choices was lower than that in 
congruent choices (Pp|D = 1 in all preference difference 
levels, Figure 6(B) and Supplementary Table 5). In both 
congruent and incongruent trials, the drift rate increases 
as the preference difference between two options 
becomes larger (Pp|D = 1 in all pairwise comparisons, 
Supplementary Table 5).

For the non-decision time, we did not observe strong 
evidence supporting a difference between preference 
difference levels (Pp|D < 0.730 in all comparisons, Figure 
6(C) and Supplementary Table 5).

4. Interpreting drift-rate changes with a 
multi-attribute choice model

Our modelling results suggested that increasing the 
number of items per option (Experiment 1), as well as 
introducing an incongruent pair of items (Experiment 
2), led to a decrease in the drift rate, which in turn 
resulted in lower decision accuracy and longer RT. 
The DDM has been used in many decision paradigms 
(Ratcliff et al., 2016), including preference-based 
decisions. Nevertheless, the standard DDM is not 
specifically designed for multi-attribute decisions (cf. 
Dai & Busemeyer, 2014; Harris et al., 2018), or more pre-
cisely for the current study, decisions with options com-
prised of multiple items. Since many combinations of 
factors can change the drift rate of the standard 
DDM, it is not straightforward to interpret the drift 

Figure 6. Model comparison and model parameters of Experiment 2. A. The deviance information criterion (DIC) value differences 
between model variants. The 8 models differ on whether the drift rate v and non-decision time Ter can vary between congruent 
vs. incongruent trials and between preference difference levels. The model structures are shown below the bar plot. The value 
under each bar indicates the DIC value difference between the model variant and the best model. We reported results from the 
model with the second lowest DIC value (the 2nd model from the left in panel A, marked with a red box and a black arrow) 
because that model also has the lowest LOO-CV score (Supplementary Figure 2B). The best model had variable drift rates 
between congruency conditions and preference difference levels, as well as variable non-decision times between preference 
levels. B-C. Posterior group-level parameter estimates from the best-fitted model (B: drift rate; D: non-decision time). In each posterior 
estimate, the solid black line indicates the full posterior distribution. The coloured area represents 94% highest posterior density inter-
val. The markers indicate the 0.25, 0.5 and 0.75 quartiles.
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rate change in relation to the current experimental 
design.

To address this issue, we attempt to interpret our 
results with a proper multi-attribute choice model, 
the MLBA (Trueblood et al., 2014). Unlike DDM, MLBA 
contains multiple independent linear accumulators, 
each representing one choice option. Each accumulator 
has a drift rate randomly sampled across trials, and the 
accumulation process is linear with no momentary 
noise (i.e. ballistic). The decision process is simulated 
as a horse race among the accumulators, from a uni-
formly sampled starting point to a common decision 
threshold (Figure 8(A)). As an extension of the original 
linear ballistic accumulator (LBA) model (Brown & 
Heathcote, 2008), MLBA in addition defines how the 
mean drift rates depend on the attributes of choice 
options.

The drift rates of DDM and LBA closely correspond to 
each other (Donkin et al., 2011). Hence, instead of fitting 
the MLBA to behavioural data, we aim to provide a 
synergy between models, by examining how the MLBA 

can reproduce the effect of item numbers and con-
gruency on drift rates. Following the definition of 
MLBA (Trueblood et al., 2014), for a binary decision, 
the mean drift rates for the two accumulators are:.

d1 = I0 + V12 ,
d2 = I0 + V21 ,



where I0 is the baseline drift rate. V12 and V21 represent 
the comparison between the two options, which is a 
weighted sum of all pairwise comparisons between the 
n attributes:.

V12 =
n

k=1
exp(− l · |P1,k − P2,k|) · (P1,k − P2,k) ,

V21 =
n

k =1
exp(− l · |P2,k − P1,k|) · (P2,k − P1,k) .

⎧
⎪⎪⎨

⎪⎪⎩

P1,k and P2,k represent the subjective preference of the k- 
th attribute in options 1 and 2. The exponential term 
refers to the weight of attention given to each attribute 
comparison, and the parameter λ is the decay constant 
for attention weights.1 More specifically, the attention 

Figure 7. Posterior predictive RT distributions for choices with congruent (A) and incongruent (B) items in Experiment 2. Posterior 
model predictions were generated in the same way as in Figure 4.

1In the full version of the MLBA, the decay constant differs between positive and negative value differences to allow for similarity asymmetry (Trueblood et al., 
2014; Tversky, 1977). Here, for simplicity, we assume a single decay constant for positive and negative value differences.
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weight is larger when the attribute values of the two 
options are more similar, and smaller when the attribute 
values are more distinct. Therefore, λ controls relative 
attention to small vs. large differences in attribute values.

Without loss of generality, assume that the first 
alternative is the correct choice (i.e. the one with 
higher rated preference d1 > d2), and denote the prefer-
ence difference between each pair of items as Pdiff = P1,k 

– P2,k (Pdiff > 0). In Experiment 1, if participants accumu-
late the preference difference from all pairs of items, 
for trials with 4 items per option, the mean drift rates 
for the correct (d1,4) and incorrect (d2,4) choices are 
given by:.

d1,4 = I0 + 4exp(− l4 · Pdiff ) · Pdiff ,
d2,4 = I0 – 4exp(− l4 · Pdiff ) · Pdiff .



(1) 

Figure 8. MLBA model simulation. A. The LBA model. On each trial, for each accumulator, the drift rate is sampled from a normal 
distribution with mean d and standard deviation s. The starting point is sampled from a uniform distribution between 0 and A. 
The accumulation process is a linear race towards the response threshold b with no noise. The sum of the accumulation time and 
the non-decision time t0 is the predicted RT. B. MLBA model simulation comparing decision accuracy (left) and RT (right) difference 
between hypothetical 4-item and 2-item choices. The mean drift rates in 4-item and 2-item choices were set according to Equations 1 
and 2, respectively. The decay constants λ4 and λ2 varied from 0.05 to 4 with a step size of 0.05. For each pair of λ4 and λ2 values, the 
MLBA model was simulated for 1,000,000 trials, from which the difference in decision accuracy and mean RT were calculated. Other 
MLBA parameters were chosen based on a previous study (Trueblood et al., 2014) and were fixed during the simulation (b = 2, A = 1, s  
= 1, t0 = 0.3, I0 = 0.31). The value difference between items Pdiff was set to 1. Note that the simulation results largely depend on λ4 and 
λ2 and their difference. The red line on the contour plots indicates the critical threshold λ4  – λ2 =  log(2)/Pdiff. For λ4 larger than the 
critical value, MLBA yields consistent results observed in Experiment 1: 4-item choices have lower accuracy and longer RT than 2-item 
choices. The simulation results are consistent with this theoretical prediction. C. MLBA model simulation comparing decision accuracy 
(left) and RT (right) difference between hypothetical choices with congruent vs. incongruent item pairs. The decay constant λ4 varied 
from 0.05–4 with a step size of 0.05. The rest model parameters were the same as in Panel B. For each λ4 value, the mean drift rates for 
options including congruent and incongruent items were calculated according to Equation 3. The MLBA model was then simulated for 
1,000,000 trials to obtain the difference in decision accuracy and RT. Across all λ4 values, model simulations are consistent with the 
results in Experiment 2: incongruent item pairs hinder behavioural performance.
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Similarly, the mean drift rates for options with 2 items 
(d1,2 and d1,2) are given by:.

d1,2 = I0 + 2exp(− l2 · Pdiff ) · Pdiff ,
d2,2 = I0 – 2exp(− l2 · Pdiff ) · Pdiff .



(2) 

λ4 and λ2 represent the decay constants in 4-item and 2- 
item trials, respectively. Comparing Equations 1 and 2 
above, it is clear that, when λ4 – λ2 = log2 / Pdiff, 
options including 4 and 2 items have the same set of 
mean drift rates (i.e. d1,4 = d1,2 and d2,4 = d2,2). If all 
other model parameters remain unchanged between 
4-item and 2-item trials (as observed in our DDM 
results), for the MLBA to reproduce the effect of item 
numbers in decision accuracy and RT, the decay con-
stant λ needs to increase as the number of items per 
option becomes larger. In the case of options with 4  – 
vs. 2-item, the increase in λ must satisfy the minimum 
amount of λ4 – λ2 > log2/Pdiff > 0.

To validate this theoretical conclusion, we vary λ4 and 
λ2 over a range of values. For each combination of λ4 and 
λ2, we used Equations 1 and 2 to define the mean drift 
rates and simulated the MLBA for 1,000,000 trials of 4- 
item and 2-item decisions. We then identify parameter 
regimes that qualitatively satisfy the behavioural per-
formance observed in Experiment 1 (lower accuracy 
and longer RT in 4-item than 2-item trials). Model simu-
lations confirmed our prediction (Figure 8(B)): as the 
number of items per option increases, if the amount of 
attention allocated to each item is reduced below a criti-
cal value (via the increase in the decay constant), the 
decision process becomes less accurate and lasts 
longer. It has been proposed that the attention weight-
ing of value comparison is associated with visual fixation 
(Krajbich & Rangel, 2011). In the context of the current 
experiments, when the value difference between item 
pairs remains the same, increasing the set size (i.e. 4- 
item vs. 2-item per option) may constrain the frequency 
and duration of fixation on each item, which leads to 
reduced attentional weighting, and in turn, a more 
error-prone decision process.

Note that the drift rate definition in Equation 1 natu-
rally predicts the effect of information congruency 
observed in Experiment 2. For the congruent condition, 
the mean drift rates are the same as in Equation 1. For 
the incongruent condition, the presence of the incon-
gruent item pair leads to a change in the accumulated 
preference information, and the mean drift rates are 
given by:.

d1,4 = I0 + 2exp(− l4 · Pdiff ) · Pdiff ,
d2,4 = I0 – 2exp(− l4 · Pdiff ) · Pdiff .



(3) 

Compared with Equation 1, for the incongruent con-
dition, the accumulator representing the correct option 

had a lower mean drift rate (d1), and the difference 
between the two accumulators was also reduced. This 
change in the mean drift rate will lead to lower decision 
accuracy and longer RT, as observed in Experiment 2 and 
confirmed by model simulation (Figure 8(C)).

We conducted further model simulations, in which 
we varied the value difference Pdiff. Increasing Pdiff led 
to a higher decision accuracy and faster mean RT (Sup-
plementary Figure 3), in line with the observed behav-
ioural results from different difficulty conditions in 
Experiments 1 and 2.

5. Discussion

In two independent experiments, we investigated how 
the existence of multiple information sources impacts 
preference-based decisions in terms of behavioural per-
formance and its underlying cognitive mechanism. 
Experiment 1 investigated the impact of the number 
of information sources on decision-making. When the 
number of items in each choice option increased, 
human participants made slower and less accurate 
choices. Experiment 2 extended the main results of the 
first experiment. When the number of items remains 
the same, incongruent information among each option 
leads to less accurate and slower decisions. In both 
experiments, decisions were slower and less accurate 
in more difficult conditions, in which preference 
ratings between options were closer.

Our experimental design and procedure are similar to 
those used by (Philiastides & Ratcliff, 2013), who sought 
to identify how branding bias affects behavioural and 
decision processes. When making preference-based 
decisions between options associated with single 
items, they reported that behavioural performance 
varied according to the difference in the preference 
ratings of items. Instead, both experiments in the 
current study replicated the main finding of (Philiastides 
& Ratcliff, 2013), with the extension to options associ-
ated with two and four items. Taken together, these 
results suggest that the value difference influences 
both the speed and accuracy of preference-based 
decisions, which calls for the need for computational 
modelling to combine these behavioural measures.

One noteworthy addition is that our research was 
carried out in an online setting, suggesting the validity 
and reproducibility of online experiments to investigate 
the integration of subjective value during decision- 
making. When compared with trials with negatively 
rated items, the presence of positively rated items with 
the same value difference facilitates RT, but not decision 
accuracy. These results are akin to the effect of reward 
magnitude, which also demonstrates a facilitating 
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effect on RT in probabilistic reward tasks (Chen & Kwak, 
2017; Schurman & Belcher, 2013) and preference-based 
decisions (Shevlin et al., 2022).

As highlighted above, in Experiment 1, the number of 
items per option affected behavioural performance, and 
the negative impact of multiple information sources on 
accuracy is more prominent in difficult trials. Since 
choices with four-item options consist of more pieces 
of information than those with two-item options, the 
prolonged RT associated with four-item options may 
reflect the additional time required to evaluate more 
information sources. However, more items per option 
also led to less accurate decisions. This may appear to 
be counterintuitive, as all items within an option had 
the same level of subjective value (i.e. preference 
rating). Previous research on consumer behaviour 
lends conceptual support to our results (Jacoby et al., 
1974a, 1974b): when consumers are provided with 
more information, such as more choice alternatives 
and attributes per choice, the increase in information 
load undermines their decision quality (Lurie, 2004).

Experiment 1 manipulated task difficulty by having 
different levels of preference difference between 
options. In Experiment 2, we examined the effect of 
task difficulty further with the additional manipulation 
of information congruency. In the incongruent con-
dition, one pair of items had their value difference oppo-
site to the rest of the item pairs, but the magnitude of 
their value difference was the same as the remaining 
pairs. As expected, in addition to the sensitivity of the 
average value difference between options, participants 
showed lower accuracy and longer RT in the incongru-
ent than the congruent trials.

Previous studies support the integration of multiple 
information sources during food choices (Krajbich 
et al., 2010; Krajbich & Rangel, 2011). Similarly, infor-
mation from different domains, such as price and prefer-
ence, can jointly guide decision-making (Krajbich et al., 
2012). Indeed, small attentional variations during the 
decision process, measured by visual fixation, impact 
the final choice, suggesting that people tend to consider 
all items when making a choice. This hypothesis is also 
closely linked to theoretical models of multi-attribute 
choice: preference formation is driven by attention 
switching between different attributes, as suggested 
by the decision field theory (Roe et al., 2001), and the 
value-based LCA model (Usher & McClelland, 2004).

Using a Bayesian hierarchical implementation of the 
DDM, our findings confirm that sequential sampling 
models provide a good fit for response accuracy and 
RT data in preference-based decisions, expanding the 
application of sequential sampling models (Bhatia, 
2013; Krajbich & Rangel, 2011; Noguchi & Stewart, 

2018; Trueblood et al., 2014; Tsetsos et al., 2010, 2012). 
Bayesian inferences from the best-fitted model support 
that the number of information sources and item con-
gruency affect the drift rate of the DDM.

First, increasing the amount of information reduces 
the drift rate across all difficulty levels. In other words, 
as the number of information sources increases, partici-
pants would, on average, accumulate evidence at a 
slower pace to reach the decision threshold, and the 
accumulation process is more susceptible to the 
influence of momentary noise. The magnitude of 
the drift rate has been associated with the allocation 
of attention (Schmiedek et al., 2007). It is possible that 
an additional cost of attention allocation is present 
with more information sources (Palmer, 1995; Reynolds 
& Chelazzi, 2004), which in turn leads to a lowered 
drift rate. Our simulation of the MLBA model provides 
additional support to this proposition: when the 
number of items per option increases, if the decay con-
stant of attention weighting in the MLBA model is 
increased over a critical value, the model consistently 
predicts hindered behavioural performance over a 
large range of parameter values.

Second, in Experiment 2, the incongruent condition 
had a lower drift rate than the congruent condition at 
all difficulty levels. In the incongruent condition, the 
four items contained conflicting information. In addition 
to decreasing the total value score, this conflict of infor-
mation may have a distracting effect on attention. 
Thereby the rate of evidence accumulation was 
adversely affected.

This would be in accordance with the findings of a 
previous multi-attribute study, which investigated how 
differential attention to positive and negative features 
of a product affects purchasing decisions (Fisher, 
2017). It was found that consumers give more weight 
to negative features than positive features in their 
choices, and attention is paid to negative features for a 
longer period during the choice process. In our case, 
the incongruent condition involved one non-preferred 
item in each choice option; hence, there may be an 
additional attentional cost associated with the incongru-
ent pair during the integration of values (Fisher, 2017).

Third, in both experiments, the drift rates vary with the 
difference in the preference level between options (i.e. 
task difficulty). The easiest task (with the highest differ-
ence in preference ratings) had the highest drift rate, 
and the drift rate decreased as task difficulty increased. 
These expected results are in line with the definition of 
the drift rate, which represents the difference in the 
average evidence in favour of two choice alternatives.

Fourth, non-decision time is considered as the delay 
period during the decision process (Ratcliff & McKoon, 
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2008). Cognitive modelling often considers non-decision 
time to be fixed between experimental conditions 
within a session. Brain imaging studies suggested that 
the non-decision time estimated from accumulation 
models represents the latencies of early sensory proces-
sing (Nunez et al., 2017) and motor preparation (Karahan 
et al., 2019), both of which are external to the evidence 
accumulation process but susceptible to value-based 
information. Hence, we considered an extended model 
space, including model variants that allow variable 
non-decision time between conditions. In both exper-
iments, the models with variable non-decision time 
produced a superior fit (as confirmed by the DIC and 
LOO-CV scores). However, there was no strong evidence 
to support that non-decision time changes between task 
difficulty levels or different information sources. Hence, 
our experimental manipulation did not influence visual 
encoding and motor preparation latencies during pre-
ference-based decisions.

One issue requires further consideration. Our two 
experiments used different response modalities and 
response deadlines (mouse with a 3000 ms deadline in 
Experiment 1, and keyboard with no response deadline 
in Experiment 2). Mouse response latencies are known 
to be longer and more variable than key presses (Gatti 
et al., 2024; Plant et al., 2003). With the presence of a 
response deadline, participants may alter their baseline 
level speed-accuracy trade-off, and the RT measures 
from mouse clicks may be further contaminated by 
mouse movements. In Experiment 1, all participants 
quickly adapted to the response deadline, because 
they only missed the deadline in a small fraction of 
trials (<1%). Nevertheless, further studies are needed 
to confirm whether the effect of item numbers is 
robust across a wide range of response deadlines, and 
whether participants’ decision strategies are altered by 
their adaptation to response deadlines.

In summary, when choosing between options com-
prised of multiple items, both the number of information 
sources and the averaged value difference influence pre-
ference-based decisions. Such behavioural change 
relates to the quality of evidence required for rational 
and speeded actions, but not to the latency of sensori-
motor encoding.
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