
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

RPSC: Regulatable Privacy-Preserving Smart
Contracts on Account-based Blockchain

Zoe L. Jiang, Member, IEEE, Min Xie, Hanlin Chen, Yijian Pan, Jiazhuo Lyu, Man Ho Au, Member, IEEE,
Junbin Fang, Yang Liu and Xuan Wang

Abstract—Smart contracts have been widely used to develop
decentralized applications on account-based blockchain. The
privacy issues of smart contracts have also received attention
from researchers, and many privacy-preserving schemes and
applications have been proposed. However, most existing schemes
cannot achieve flexible conversion between private and public
data. And the overly secure privacy-preserving scheme directly
makes the regulation impossible. To mitigate these limitations,
we propose a flexible privacy-preserving smart contracts with
regulation (RPSC) system over the account-based blockchain.
We first design a two-layer commitment structure that enables
the fine-grained privacy protection (identity anonymity and data
confidentiality) and flexible data state transitions. Then we com-
bine a public-key encryption scheme with a zk-SNARKs scheme
to achieve regulation property while keeping user‘s identity from
others. Moreover, we prove that our scheme is secure, including
privacy, soundness and traceability. Finally, we integrate RPSC
into an account-based blockchain and implement two applications
to evaluate the system performance. The evaluation results show
our system performs effectively in practical settings.

Index Terms—regulatable smart contracts, account-based
blockchain, identity anonymity, data privacy, zk-SNARKs.

I. INTRODUCTION

CRYPTOCURRENCY, which is based on public-key
cryptography, is considered one of the most promising

digital currencies. Cryptocurrency enables parties to conduct
transactions and verify them directly in a decentralized net-
work via the well-known blockchain technology [1]. Ideally,
users expect that (1) their transactions can be processed
efficiently; (2) their private information can be protected;
and (3) malicious behaviors (e.g., double spending attacks

Manuscript received 17 September, 2023; revised 14 May, 2024; accepted
26 June 2024. This work was supported in part by the Shenzhen Science and
Technology Major Project under Grant KJZD20230923114908017, in part
by the Guangdong Provincial Key Laboratory of Novel Security Intelligence
Technologies under Grant 2022B1212010005, in part by the PolyU SHS
under Grant P0046340 and in part by the RGC under Grant C1029-22GF.
Recommended for acceptance by Dr. Y. Wu.(Corresponding author: Junbin
Fang.)

Zoe L. Jiang and Xuan Wang are with Harbin Institute of Technol-
ogy, Shenzhen, Shenzhen 518055, and Guangdong Provincial Key Labora-
tory of Novel Security Intelligence Technologies, Shenzhen, China.(E-mail:
zoeljiang@hit.edu.cn, wangxuan@cs.hitsz.edu.cn.)

Min Xie, Hanlin Chen, Yijian Pan are with Harbin Institute of Tech-
nology, Shenzhen, Shenzhen 518055, China.(E-mail: minxie@stu.hit.edu.cn,
19S051042@stu.hit.edu.cn, panyijian@stu.hit.edu.cn.)

Man Ho Au and Jiazhuo Lyu are with The Hong Kong Poly-
technic University, Hong Kong, China.(E-mail: mhaau@polyu.edu.hk, jia-
zhuo.lyu@connect.polyu.hk.)

Junbin Fang is with the School of Science and Technology, Jinan University,
Guangzhou 510632, China.(E-mail: tjunbinfang@jnu.edu.cn.)

Yang Liu is with the Department of Computer Science, Swansea University,
Swansea SA2 8PP, UK.(E-mail: liu.yang@hit.edu.cn.)

and forging extra currency) can be detected and prohibited.
Cryptocurrencies have attracted the attention of many scholars,
focusing on the confidentiality of (transaction) data and the
anonymity of user identities.

Bitcoin [2], one of the most representative cryptocurrencies,
protects user identity through the pseudonym mechanism.
However, it is easy for attackers to trace transactions and
deanonymise users [3] [4]. Zerocash [5] and Zerocoin [6]
solve the problem of privacy disclosure by replacing actual
information of transaction with commitment and utilise zero-
knowledge proof to ensure transaction correctness at the
expense of efficiency. Hawk [7], which is based on a cryptocur-
rency similar to ZeroCash, effectively addresses the privacy
disclosure issue and provides a prototype for the design
of blockchain privacy protection solutions. Nonetheless, this
design loses the flexibility to disclose private data. It forces
all data in a transaction to be either public or private, with no
flexibility to reveal some private data.

In addition, while anonymity is a desirable requirement
for user privacy protection in cryptocurrencies [8] [9], it
also poses a great risk that malicious users will abuse the
blockchain to escape punishment, or even commit crimes such
as money laundering, drug trafficking, and extortion. As a
result, accountability measures are considered acceptable to
protect the rights and interests of users when private data
is at stake. However, most of the previous schemes lack
accountability, making it vulnerable to abuse, using it in
illegal transaction. Furthermore, attacker may launch attack
on blockchain without the fear of being caught (e.g., DDoS
attacks in Bitcoin [10] and Ethereum [11]).

There are two popular types of blockchains: UTXO-based
and account-based. In UTXO-based blockchains, transaction
outputs are directly referenced as inputs in subsequent trans-
actions. Conversely, in account-based blockchains, coins are
represented as balances within accounts, rather than uniquely
referenced transactions. This structure makes account-based
blockchains inherently more adaptable to smart contracts,
which are crucial for tailoring blockchain applications to
diverse scenarios, and even the core of Web3.01. For instance,
Ethereum, the leading account-based blockchain, dominates
the smart contract platform market, hosting the majority of
decentralized applications (DApps) and managing billions in
transaction value annually2, and gradually replacing Bitcoin
to capture more market share [12]. However, many existing

1https://eduhubcommunity.hashnode.dev/smart-contracts-the-core-of-web3
2https://www.prudentmarkets.com/report/ethereum-market/152880/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

TABLE I: Functional comparison of different frameworks

Scheme Anonymity Transaction
Privacy Programmability Fine Grained

Privacy Protection Regulatory blockchain type

Zerocoin [6] yes no no no no UTXO
Zerocash [5] yes yes no no no UTXO

Hawk [7] yes yes yes no no account
zkay [13] no yes yes no no account

Zether [14] no yes yes no no account
Zexe [15] yes yes no no no account
DSC [16] no yes yes no no account

VeriZexe [17] yes yes yes no no account
This paper yes yes yes yes yes account

privacy-preserving techniques are designed to work on UTXO-
based blockchains.

A. Our contribution

This paper aims to provide a fine-grained privacy-preserving
smart contract with regulatory measures. Specifically, we de-
sign a Regulatable Privacy-Preserving Smart Contracts (RPSC)
system with identity anonymity and fine-grained data confi-
dentiality. In addition, the system supports built-in regulatory
measures, i.e., users can be deanonymised and the confidential
data can be revealed by regulators if needed. Finally, we im-
plement the system on account-based blockchain (with smart
contracts) with performance evaluation. The contributions of
this paper are summarized as follows.

Identity anonymity. RPSC implements its own identity
mechanism inside smart contract. The identity anonymity in
RPSC is guaranteed by its own zero-knowledge proof protocol.

Fine-grained data confidentiality. RPSC ensures the cor-
rect execution of a transaction without disclosing the knowl-
edge about the private data and provides a flexible method for
the data owner to selectively disclose some private data in the
transaction to the public.

Regulatory mechanism. RPSC enables the regulators to
disclose user identity or reveal private data involved in trans-
actions if needed, e.g., under court order or during dispute
handling.

Account-based blockchain platform compatibility. RPSC
is designed and implemented on Ethereum smart contract,
meaning that it can be deployed to all account-based
blockchain platforms supporting Ethereum Virtual Machine
(EVM). More importantly, we implement two applications
using RPSC for blockchain-based blind auctions and electronic
voting, supporting on-chain verification on smart contract. This
evaluation demonstrates that RPSC is practical for account-
based blockchains.

B. Related Work

Cryptocurrency transaction privacy. Cryptocurrency
transaction privacy, which is normally considered as the
anonymity of user identities and the confidentiality of data,
has attracted a lot of attention [5], [6], [18]–[24]. For most
cryptocurrencies like Bitcoin, coin mixing [18] [19] is always
recommended or forced before a transaction. CryptoNote is a
protocol for the implementation of untraceable and unlinkable
cryptocurrencies using ring signatures. The Ring Confidential

Transactions (RingCT) was first proposed in [20], then im-
proved in [21]. Monero [23] [24] combines one-time address
with the confidential transactions protocol [22] to achieve both
identity anonymity and data confidentiality. Zerocoin [6] is an
extension of bitcoin which applies zero-knowledge arguments
to achieve identity anonymity. Zerocash [5] is a cryptocurrency
protocol implementing fully identity anonymous based on
SNARKs, which not only protects the identity of users, but
also hides the transaction relationships and amounts between
them. However, these privacy-preserving mechanisms in these
schemes are mainly for UTXO blockchains and cannot be
adapted to account-based blockchains. To achieve transaction
privacy, RPSC implements its own privacy preserving mech-
anism at the smart contract layer, making it possible to work
on account-based blockchain with smart contract.

Smart contract privacy. Kosba et al. proposed Hawk [7],
a system that achieves both transaction privacy and low com-
putational complexity on blockchain by introducing manager
roles and zero knowledge proof protocols. Zkay [13] is a lan-
guage for implementing smart contracts, which introduces pri-
vacy types defining owners of private values. Zero-Knowledge
EXEcution (ZEXE) [15] is an account-based system support-
ing private smart contract on a distributed ledger. In ZEXE,
a user conducts offline computation and uploading a proof
of correct execution to the ledger (which hides additionally
which smart contract has been executed). However, stateful
computations are not supported in ZEXE, meaning that only
partial smart contract functionality is provided. VeriZexe [17]
is introduced to provide a decentralized private computation
with a universal setup, implying supporting general com-
putations. DSC [16] applied homomorphic encryption and
zero-knowledge arguments to protect balance and transaction
amounts with a mechanism for programmability. Eagle [25]
focuses on token amounts and auxiliary data private in smart
contract by using multi-party computation (MPC). To address
the expressive limitations of existing privacy smart contracts,
ZeeStar [26] is a smart contract compiler that supports op-
erations on private foreign data and integrates homomorphic
encryption, making it suitable for applications that require
computations on encrypted values. However, most of these
schemes are for account-based blockchains and do not support
identity anonymity due to the relative ease of linking accounts
in the account-based blockchain. Recently, Zapper [27] is
introduced to hide not only the identity of its users but also
the objects they access to prevent deanonymization attacks

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

by using oblivious Merkle tree construction. Unfortunately,
account balances, private data, and identity anonymity are
defined separately, making providing transaction privacy even
more complicated if smart contract transactions involve simul-
taneous modifications of these state values.

Regulatable and privacy-preserving blockchains. Decen-
tralized auditing schemes like zkLedger [28], Solidus [29],
etc [30]–[32] consider auditing in distributed ledger applica-
tions. In these schemes, financial institutions, such as banks,
act as regulators and are responsible for managing contingen-
cies in the audit process. However, the regulation of these
schemes is conducted mainly for the audit of payment trans-
actions and is not fully suitable for other types of applications.
Garman et al. proposed Decentralized Anonymous Payment
(DAP) systems [33], an extension of Zerocash supporting
regulatory measures. Similar to DAP, RPSC combines encryp-
tion and zero-knowledge arguments to implement a regulatory
mechanism for smart contract functions besides payment, such
as e-auction or e-voting.

In Table I we compare the related work with the work in
this paper functionally. RPSC realizes anonymity, transaction
confidentiality and programmability, and fine-grained privacy
preserving.

Organization. Section 2 reviews cryptographic primitives
in the system. The RPSC system model is introduced in
Section 3. In Section 4 we present the construction of the
RPSC system including user algorithms, regulator algorithms
and the smart contract, followed by presenting its comparison
with prior works. Security analysis and system implementation
with performance evaluation are illustrated in Section 5 and
6, respectively. Finally, we draw a conclusion of this paper in
Section 7.

II. PRELIMINARIES

In this section, we describe the cryptography primitives
employed in the system.

A. Zk-SNARKs

The acronym zk-SNARKs [34] stands for “Zero-Knowledge
Succinct Non-Interactive Argument of Knowledge”, which
allows someone to prove possession of certain information,
e.g., a secret key, without revealing that information, and
without interacting with the verifier. We describe the Zk-
SNARKs using the following algorithms:

• (pk, vk)← KeyGen(1λ, C). On input a security param-
eter λ and an arithmetic circuit C, the algorithm outputs
the proving key pk and the verification key vk.

• π ← Prove(pk, x, a). On input a proving key pk, a
statement x and a witness w, where x and w satisfied
the relationship RC and RC is the set of (x, a) such that
C(x, a) = 1. The algorithm outputs the proof π for the
statement x.

• 1/0 ← V erify(vk, x, π). On input a verification key
vk, a statement x and the corresponding proof π. the
algorithm outputs 1 or 0 to indicate whether the statement
x is true or not.

ZK-SNARKs should satisfy the following properties:

Header

Block 19

Header

Block 20

Header

Block 21

…

…

Regulator

User

Blockchain

on-chain

off-chain

User

Fig. 1: The system model of the RPSC system

• Completeness. For all security parameter λ, any arith-
metic circuit C, and any (x, a) ∈ RC , an honest prover
who holds the witness a always convinces an honest
verifier that the statement x is true.

• Succinctness. An prover generates a proof π has Oλ(1)
bits and Verifier run V erify(vk, x, π) in time Oλ(|x|).

• Proof of knowledge (and soundness). For all poly(λ)-size
adversary A, if A can output a′ with a non-negligible
probability and convince the verifier, there is a poly(λ)-
size extractor E can extract a′ with a non-negligible
probability, satisfying (x, a′) ∈ RC .

• Perfect zero knowledge. There is a polynomial-time sim-
ulator Sim such that for all distinguishers D, the prob-
ability of distinguishing whether a proof π is generated
by the simulator Sim or an honest prover is negligible.

B. Commitment

A commitment scheme [35] allows someone to commit
to a chosen value while keeping it hidden to others, with
the ability to reveal the committed value later. Generally, the
commitment scheme is composed of a pair of PPT algorithms
(Gen, Com) with binding and hiding properties which are
defined as follows.

• pp ← Gen(1λ). On input a security parameter 1λ, the
algorithm outputs public parameters pp.

• commit ← Com(pp,m, r). On input public parameters
pp, a message m and a random number r, the algorithm
outputs the commitment commit for the message m.

The binding and hiding properties are described as follows.
• Binding. Given parameter pp, for all PPT adversaries
A, Pr[(m0, r0,m1.r1) ← A(pp)|Com(pp,m0, r0) =
Com(pp,m1, r1) ∧m0 ̸= m1] ≤ negl(λ).

• Hiding. For any two messages m and m′, for all ad-
versaries A , Com(pp,m, r) and Com(pp,m′, r′) with
uniformly random r, r′ are indistinguishable.

III. SYSTEM ARCHITECTURE

A. System Model

In the RPSC system model (Fig. 1), there are three entities
(“User”, “Regulator” and “Blockchain”), together with two

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

communication methods (“off-chain” and “on-chain”). The
“Off-chain” communications will be conducted over channels
secured by cryptographic protocols, such as Transport Layer
Security (TLS), and the “on-chain” is achieved by publishing
a transaction using Peer-To-Peer (P2P) communication.

• User: Users in the system are the main participants, who
own their respective key pairs (each key pair comprises
a public key and a private key). The public keys are
users’ identifications and the private keys are used to
generate privacy transactions. Users mainly use smart
contracts on the blockchain, and their capabilities depend
on the role in the specific application. For example in
voting scenarios, there are two types of users, voters and
vote-counters. Voters cannot perform counting operations
while vote-counters can.

• Regulator: Regulators, typically government departments,
can view data on the blockchain, more specifically private
data within contracts, and track privacy transactions on
the chain. The regulator holds a pair of public and private
keys. However, regulators cannot manage the data on the
blockchain. This entity can only check the legitimacy of
transactions on the blockchain.

• Blockchain: Blockchain is regarded as a transparent and
append-only public distributed ledger maintained by all
nodes named miners. In the system, any blockchain
system supporting the functionality of smart contract can
be adopted. A smart contract is deployed in blockchain
and then automatically executed once being triggered by
users.

B. Syntax

RPSC is composed of user algorithms, regulator algorithms
and the smart contract. The user algorithms and regulator
algorithms are executed locally by users and the regulator,
respectively. The algorithms in the smart contract are triggered
to automatically execute on chain. In particular, RPSC takes
{P, C,U} as the application parameters ap, where sets P, C,U
are used to store private data records, public data records and
registered users, respectively.
Regulator algorithms

• (PKreg, SKreg, pp) ← regulatorSetup(λ). The algo-
rithm takes the security parameter λ as input and outputs
the regulator’s public-private key pair (PKreg, SKreg)
and public parameters pp. Moreover, pp will be provided
as an implicit input to the remaining algorithms.

• (cmrprev , PKuser) ← revealRecord (r,SKreg). The
algorithm is run by regulator that can trace the current
owner of a record and disclose the commitment of the
previous record. On input a record r and the regulator’s
private key SKreg, this algorithm outputs the commit-
ment for the previous record cmrprev and the owner
PKuser of the record r.

User algorithms
• (PKuser, SKuser) ← userSetup(λ). The algorithm

takes the security parameter λ as input and generates a
key pair PKuser, SKuser. Note that PKuser is recorded
in application parameters ap and published in blockchain.

• (r, cmr, π, ct)← createRecord (data, PKuser, PKreg,
ProK, flag). The algorithm is run by the user who wants
to create a record r for the data data. On input a data
data, the public key of a registered user PKuser, the reg-
ulator’s public key PKreg , the proving key ProKcreate

for zero-knowledge proof and a flag flag to indicate
whether m is private, this algorithm generates a new
record r of data, the commitment cmr for r, a ciphertext
ct by PKreg and a proof π for proving the computation
of createRecord. In particular, r is in the possession of
the owner, and cmr, π, ct are released to the blockchain
for verification by the smart contacts. For simplicity,
this procedure is treated as the default operation in the
following algorithm, which has similar output.

• (r′,cmr′ ,π,ct)← updatePrivateData(r, cmr, datanew,
PKuser, SKuser, PKreg , ProKupdate, MTree). The
algorithm is run by the owner PKuser of the record
r who updates the private data without exposing the
previous data of r. On input a record r, the corresponding
commitment cmr, the data to be updated datanew, the
key pair of the record owner (PKuser, SKuser), the reg-
ulator’s public key PKreg , the proving key ProKupdate

and the Merkle tree MT build over all records on the
blockchain. this algorithm generates a updated record r′

of datanew, the commitment cmr′ for r′, a ciphertext
ct by PKreg and a proof π for proving computation of
updatePrivateData.

• (r′, cmr′ , π, ct) ← transferDataOwnership(r, cmr,
PKuser, SKuser, PKuser′ , PKreg , ProKtransfer,
MTree). The algorithm is run by the owner PKuser

of the record r who wants to transfer ownership of r to
another user PKuser′ . On input a record r, the corre-
sponding commitment cmr, the key pair of the record
owner (PKuser, SKuser), the transferred user’s public
key PKuser′ , the regulator’s public key PKreg , the
proving key ProKtransfer for transferDataOwnership
and the Merkle tree MT build over all records on the
blockchain. This algorithm generates a transferred record
r′ for PKuser′ , the commitment cmr′ for r′, a ciphertext
ct by PKreg and a proof π for proving computation of
transferDataOwnership.

• (r′, cmr′ , π, ct) ← revealPrivateData(r, cmr,
PKuser, SKuser, PKreg, ProKreveal, MTree). The
algorithm is run by the owner PKuser of the record r
who reveal the private data in the commitment cmr. On
input a record r, the corresponding commitment cmr,
the key pair of the record owner (PKuser, SKuser),
the regulator’s public key PKreg, the proving key
ProKreveal for revealPrivateData and the Merkle tree
MT build over all records on the blockchain. This
algorithm generates a record r′, a commitment cmr′ for
public data data, a ciphertext ct by PKreg and a proof
π for proving computation of revealPrivateData.

• (Rcreate, CM, π, ct) ← compute(Rcon, COMcon, F ,
aux, PKuser, SKuser, PKreg, ProKcompute, flag).
The algorithm is run by the owner PKuser of the record
set Rcon who attempts to perform arbitrary operations
modeled as function F . On input a record set Rcon, the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

corresponding commitment set COMcon, a function F ,
the auxiliary information aux, the key pair of the owner
(PKuser, SKuser), the regulator’s public key PKreg , the
proving key ProKcompute for compute and a flag flag to
indicate whether the result of F is private. this algorithm
generates a new record set Rcreate, a commitment set
CM , a ciphertext ct by PKreg and a proof π for proving
computation of compute.

Smart contract
• 1/0 ← verify(x, π, V K). The algorithm is automat-

ically triggered by the smart contract, which takes as
input the statement x for new records, the proof π for
the statement, and the verification key V K, and outputs
1/0 to indicate whether the record is valid or not. Note
that V K is always public.

C. Security Requirements

The RPSC system needs to satisfy the following fundamen-
tal security requirements [7], [13], [17].

1) On-chain privacy. On-chain privacy includes transac-
tion privacy and identity anonymity. No one, except the
regulator, should be able to determine the user’s identity
or transaction content.

2) Off-chain soundness. Any user, even the owner of a
data record, should not falsify or tamper with the content
of the data record.

3) Data record unlinkablity. No one, except the regula-
tor, should be able to access to transaction content or
determine user’s identity.

4) Regulatory traceability. It is allowed for regulator to
track transactions of data records with regulatory private
key.

IV. SYSTEM CONSTRUCTION

A. High-level Description

Building on top of any EVM-compatible smart contract
platforms, the RPSC system enables the privacy preserving
of smart contracts and preserves the programmability of smart
contracts. The RPSC allows users to perform off-chain privacy
computation and generate a publicly verifiable transaction to
prove the correctness of the computation. In the transaction,
the user is free to choose whether to disclose privacy-protected
data and identity. Further, the system provides a regulatory
mechanism that allows the regulator to track the link of private
transactions and trace the detailed transaction data and identity
information.

Similar to ZEXE, we use Record structure to generalise the
idea of Zerocash to support general data. We implemented this
structure of Record on the smart contract, and the user per-
forms data computation by consuming and generating Records.
The advantage of implementing the Record structure on the
smart contract is clear: (1) it does not require the underlying
blockchain to support functional privacy; and (2) we retain the
full programmability of the smart contracts.

We further design a mechanism to give regulator access to
private data and identity of sender. The basic idea is using

Commit

Commit Commit Commit

 !"! #$$

%&Record record commitment

PRF ! PRF

 !

serial

number

 !"#
 !$%&%

 !'(($

)*

Fig. 2: Construction of multi-layer record

the regulator’s public key to encrypt a copy of the private
transaction data, so that the regulator can use the private key
to decrypt and get the detailed data to regulate the content of
the transaction.

B. Fine-grained Data Record Structure
Generally, in the existing privacy-preserving blockchain,

private data is represented as a specific data structure and
public data is shown directly. Therefore, in some application
scenarios, it needs to be pre-determined whether the data is
public or not. When private data needs to be made public
due to changing requirements, the application system may
need to be redesigned or a revealing transaction with proof
will be published. The main reason is the lack of consistent
representation of public and private data, i.e. the privacy-
preserving scheme only provides coarse-grained protection.

The RPSC system uses a similar data structure, i.e. Record
structure, as ZEXE [15] to represent private data and extends
it to represent both private and public data. The extended
data structure is summarized in Fig. 2. Specifically, a record
without privacy protection consists of three parts: the public
key of the data owner, the data, and a serial number seed,
where the seed is used to identify the record. Compared to
the ZEXE’s Record structure, the most significant change in
the RPSC is to turn a single-layer structure into a multi-layer
one. In a single-layer record, only the record commitment
cm is stored in the contract, while in a multi-layer one
(cmpk, cmdata, cmseed, cm) are sent to the contract. If the
user wants to disclose private data, cmdata could be replaced
with data, then the smart contract verification only needs to
compute cmdata = Com(pp, data) firstly, and continue to
verify the record commitment.

In RPSC, a user can easily implement fine-grained
disclosure of private data by calling compute or
revealPrivateData. By setting the computation function
F , compute can equivalently split the original private data
record. The user can selectively reveal the private data in the
split data record, thus achieving fine-grained data privacy.

C. Concrete construction
Users in RPSC are assumed to be stateful, who record their

transaction scripts for subsequent use. Additionally, the main

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

cryptographic building blocks used in RPSC include com-
mitment protocols (C.Gen, C.Com, C.V er), zk-SNARKS
protocols (ZK.Gen, ZK.Pro, ZK.V er), pseudo-random
functions (PRF), symmetric encryption schemes (Sym.Gen,
Sym.Enc, Sym.Dec), random generation function (Ran) and
public key encryption scheme(PK.Gen, PK.Enc, PK.Dec).
Furthermore, we assume that PRF is collision resistant, in
the sense that it is infeasible to find x ̸= x

′
, such that

PRF (x) = PRF (x
′
).

Algorithm 1: revealRecord

Input: r, skreg
Output: the commitment cmrprev of the previous

record rprev , the owner PKuser of the
current record r

1 let Txall be the set of all transactions
2 sksym = PK.Dec(skreg, keyCt)
3 plaintext = SymDec(sksym, dataCt)
4 Parse plaintext as PKuser, seedprev
5 if seedprev = null then
6 cmrprev = null
7 else
8 cmseed = C.Com(pp, seedprev)
9 Find cmrprev by traversing Txall with cmseed

10 end
11 return (cmrprev , PKuser)

Algorithm 2: createRecord

Input: data, PKuser, PKreg, ProKcreate, flag
Output: Newly created record r, record commitment

cmr, and proof π, cipher text ct
1 seed = Ran(pp)
2 r = (PKuser, data, seed)
3 cmseed = C.Com(pp, seed)
4 cmpk = C.Com(pp, Pkuser)
5 cmdata = C.Com(pp, data)
6 if flag = private then
7 cm = C.Com(pp, cmpk||cmdata||cmseed)
8 cmr = (cmpk, cmdata, cmseed, cm, flag)
9 else

10 cm = C.Com(pp, cmpk||data||cmseed)
11 cmr = (cmpk, data, cmseed, cm, flag)
12 end
13 sksym = Sym.Gen(pp)
14 seedprev = null
15 dataCt = Sym.Enc(sksym, PKuser||seedprev)
16 keyCt = PK.Enc(PKreg, sksym)
17 ct = keyCt||dataCt
18 x = (cm, ct, PKreg, pp)
19 a = (r, sksym)
20 π = ZK.Pro(ProKcreate, x, a)
21 return (r, cmr, π, ct)

Regulator algorithms. Regulator algorithms are specifi-
cally how the regulator tracks the valid records, including

regulatorSetup and revealRecord. regulatorSetup algo-
rithm takes the security parameter λ as input and generates
(PKreg, SKreg) by running public key encryption scheme
PK.Gen(λ). revealRecord algorithm is detailed in Algo-
rithm 1.

User algorithms. User algorithms are always used for users
to handle their own records and generate the new records with
corresponding proofs, which are released to the blockchain.
Specifically, users can flexibly disclose the private data of
valid records, or use valid records as input to compute any
function without disclosing private records. Remarkably, a
record is allowed to be handed over to another user in
RPSC, whereas a record can only be held by one user at a
time. The user algorithms are detailed in Algorithm 2,3,4,6,5.
As for the userSetup algorithm, it generates a private key
SKuser ← Ran(pp) by running a random generation function
Ran with public parameters pp as input. Subsequently, the
user obtains the public key PKuser ← PRF (λ, SKuser) by
using PRF to input the security parameters λ and the private
key SKuser.

Algorithm 3: updatePrivateData

Input: r.seed, cmr , datanew, PKuser, SKuser,
ProKupdate, PKreg , MT

Output: Created record r′ and its commitment cm′
r, a

proof π, and regulatory ciphertext ct
1 let branchr be the branch of cmr.cm in MT
2 snr = PRF (SKuser, r.seed)
3 seed′ = Ran(pp)
4 r′ = (PKuser, datanew, seed

′)
5 cmseed′ = C.Com(pp, seed′)
6 cmdatanew = C.Com(pp, datanew)
7 cm′ = C.Com(pp, cmr.cmpk||cmdatanew

||cmseed′)
8 let flag be private
9 cmr′ = (cmr.cmpk, cmdatanew

, cmseed′ , cm′, f lag)
10 plaintext = PKuser||r.seed
11 sksym = Sym.Gen(pp)
12 dataCt = Sym.Enc(sksym, plaintext)
13 keyCt = PK.Enc(PKreg, sksym)
14 ct = keyCt||dataCt
15 x = (MT.root, snr, cmr′ , ct, pp, PKreg)
16 a = (r, r′, sksym, SKuser, setbranch)
17 π = NIZK.Proof(ProKupdate, x, a)
18 return (r′, cmr′ , π, ct, snr)

To protect user anonymity and data confidentiality, zero-
knowledge proof is involved in RPSC. In particular, the
statement of zero-knowledge proof in user algorithms are
described as follows.

Let r is a newly generated record, which contains plaintext
data data, user identity Pkuser and private seed seed for r. cm
is considered as the commitment of r, dataCT and keyCT
are encryption under symmetric key sksym with Pkuser and
the private seed of the previous record seedprev as input, and
encryption under the public key of the regulator PKreg with
sksym as input. In Algorithm 2, if a user attempts to convince
others that the new record r is valid without revealing it, he

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

must provide a proof that: 1) cm is indeed the commitment
of r; 2) the user identity Pkuser in the ciphertext dataCT
and contained in r are the same; 3) The sksym encrypted
in keyCTby PKreg is indeed the private key of dataCT .
Formally, a statement for Algorithm 2 is proved as follows, in
which the data is private:

(
data, PKuser, seed, sksym

)
:

r = (Pkuser, data, seed) ∧ cmseed = C.Com(pp, seed)
∧cmpk = C.Com(pp, Pkuser)∧
cmdata = C.Com(pp, data)∧
cm = C.Com(pp, cmpk||cmdata||cmseed)∧
dataCt = Sym.Enc(sksym, PKuser||seedprev)∧
keyCt = PK.Enc(PKreg, sksym)
∧ct = keyCt||dataCt

Algorithm 4: revealPrivateData

Input: r, cmr, PKuser, SKuser, P roKreveal, PKreg,
MT

Output: Public data record r′, cm′
r, a proof π and

regulatory ciphertext ct
1 let branchr be the branch of cmr.cm in MT
2 snr = PRF (SKuser, r.seed)
3 seed′ = Ran(pp)
4 r′ = (PKuser, r.data, seed

′)
5 cmseed′ = C.Com(pp, seed′)
6 cm′ = C.Com(pp, cmr.cmpk||r.data||cmseed′)
7 let flag be public
8 cmr′ = (cmr.cmpk, r.data, cmseed′ , cm′, f lag)
9 plaintext = PKuser||r.seed

10 sksym = Sym.Gen(pp)
11 dataCt = Sym.Enc(sksym, plaintext)
12 keyCt = PK.Enc(PKreg, sksym)
13 ct = keyCt||dataCt
14 x = (MT.root, snr, cmr′ , ct, pp, PKreg)
15 a = (r, r′, sksym, SKuser, setbranch)
16 π = NIZK.Proof(ProK − reveal, x, a)
17 return (r, cmr′ , snr, π, ct)

The following statement is used in Algorithms 3,4,6,5. The
statements of these algorithms are similar to the described
above, and Algorithm 6 is considered as a generalization. For
brevity, we state the statement of Algorithm 6. In Algorithm
6, the user is asked to provide a proof, which is the same
as Algorithm 3 except that the user has to disclose the
unique record serial numbers SN to consume the set Rcon of
valid records {r1, ..., rk} he holds. Note that the commitment
CMcon of Rcon is contained in the Merkle tree consisting of
all records whose root is Mroot. Here we set the function F
as an arbitrary computation that consumes the record set Rcon

and outputs a new record set Rcreate = {r1′, . . . , rk′ ′}, which
is generated by Rcon. Hence, he has to provide an additional
proof: 4) The new set Rcreate of records {r1′, . . . , rk′ ′} is
computed using the records Rcon by the function F ; 5) All
records {r1, ..., rk} contained in Rcon have a path branchi to
Mroot ;6) the private record serial numbers SN for Rcon are

held. A formal statement is provided below, where the data is
kept private:

(
Rcon, Rcreate, {branchi}1,...,k, SKuser, seed, sksym,

)
:

∀ri ∈ Rcon, sni ∈ SN

sni = PRF (SKuser, ri.seed)

∧cmri
seed = C.Com(pp, ri.seed)

∧cmri
pk = C.Com(pp, ri.Pkuser)

∧cmri
data = C.Com(pp, ri.data)

∧cmri = C.Com(pp, cmri
seed||cm

ri
pk||cm

ri
data)∧

True = MerkleBrranch(Mroot, cmri , branchi)

∧{r1′, . . . , rk′ ′} = F (r1, . . . , rk, aux)∧

∀ri′ ∈ Rcreatecm
ri

′

seed = C.Com(pp, ri
′.seed)

∧cmri
′

pk = C.Com(pp, ri
′.Pkuser)

∧cmri
′

data = C.Com(pp, ri
′.data)

∧plaintext = plaintext||(ri′.PKuser, plaintextpr)

∧CM = CM ||cmri′

∧dataCt = Sym.Enc(sksym, plaintext)
∧keyCt = PK.Enc(PKreg, sksym)

∧ct = keyCt||dataCt

Algorithm 5: transferDataOwnership
Input: r.seed, cmr , PKuser, SKuser , PKuser′ ,

ProKtransfer, PKreg, MT
Output: Created data record r′, cmr′d, a proof π, the

series number snr and regulatory ciphertext
ct

1 let branchr be the branch of cmr.cm in MT
2 snr = PRF (SKuser, r.seed)
3 seed′ = Ran(pp)
4 r′ = (PKuser′ , r.data, seed

′)
5 cmseed′ = C.Com(pp, seed′)
6 cmpk′ = C.Com(pp, PKuser′)
7 cm′ = C.Com(pp, cmpk′ ||cmr.cmdata||cmseed′)
8 cmr′ = (cmpk′ , cmr.cmdata, cmseed′ , cm′, cmr.f lag)
9 plaintext = PKuser||r.seed

10 sksym = Sym.Gen(pp)
11 dataCt = Sym.Enc(sksym, plaintext)
12 keyCt = PK.Enc(PKreg, sksym)
13 ct = keyCt||dataCt
14 x = (MT.root, snr, cmr′ , ct, pp, PKreg)
15 a = (r, r′, sksym, SKuser, setbranch, PKuser′)
16 π = NIZK.Proof(ProKtransfer, x, a)
17 return (r′, cmr′ , π, ct, snr)

Smart contract. The smart contract is triggered to record
the user’s registration and verify that the record is valid,
which consists of the verify algorithms. Roughly speaking,
the verify algorithm is viewed as a universal verification of
all involved zero-knowledge proofs, and we believe that all
involved proofs can be covered in the statement of Algorithm
6. The algorithm is detailed in Algorithm 7.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Algorithm 6: compute

Input: Rcon = {r1, . . . , rk},
CMcon = {cmr1 , . . . , cmrk}, F , aux,
PKuser,SKuser, PKcompute,PKreg , flag

Output: set of commitment of created records, a
proof, , and regulatory ciphertext ct

1 let MT be a Merkle tree build over all records
2 setbranch = null
3 SN = null
4 CM = null
5 plaintextpr, plaintext = null
6 for ri ∈ Rcon do
7 let branchri be the branch of cmri .cm in MT
8 setbranch = setbranch||branchri

9 SN = SN ||PRF (SKuser, ri.seed)
10 plaintextpr = plaintextpr||ri.seed
11 end
12 Rcreate = {r1′, . . . , rk′ ′} = F (r1, . . . , rk, aux)
13 for ri

′ ∈ Rcreate do
14 cmri

′

seed = C.Com(pp, ri
′.seed)

15 cmri
′

pk = C.Com(pp, ri
′.Pkuser)

16 cmri
′

data = C.Com(pp, ri
′.data)

17 if flag = private then
18 cm′ = C.Com(pp, cmri

′

pk ||cm
ri

′

data||cm
ri

′

seed)

19 cmri′ = (cmri
′

pk , cm
ri

′

data, cm
ri

′

seed, cm
′, f lag)

20 else
21 cm′ = C.Com(pp, cmri

′

pk ||ri′.data||cm
ri

′

seed)

22 cmri′ = (cmri
′

pk , ri
′.data, cmri

′

seed, cm
′, f lag)

23 end
24 plaintext = plaintext||(ri′.PKuser, plaintextpr)
25 CM = CM ||cmri′

26 end
27 sksym = Sym.Gen(pp)
28 dataCt = Sym.Enc(sksym, plaintext)
29 keyCt = PK.Enc(PKreg, sksym)
30 x = (MT.root, SN,CM, keyCt||dataCt, pp, PKreg)
31 a = (Rcon, Rcreate, sksym, SKuser, setbranch)
32 π = NIZK.Proof(PKcompute, x, a)
33 ct = keyCt||dataCt
34 return (Rcreate, SN,CM, π, ct)

Algorithm 7: verify
Input: x , π ,V K

1 parse x as (MT.root, SN,CM, ct, pp, PKreg)
2 if ZK.V er(V K, x, π) = 1 then
3 C.append(CM)
4 P.append(SN)
5 return 1
6 else
7 return 0
8 end

D. Workflow

The RPSC system consists of three phases, namely: Initial-
ization, Register, and Computation.

We give a use case of RPSC to illustrate how the algorithm
described above realizes the properties of RPSC.

Voting Example: Suppose there are n voters denote Pi(i =
1, 2, ..., n) and a voting manager. data = 0 means voter votes
against and 1 for agreement. The voting is divided into 3
stages: Initialization, Register, and Computation. We suppose
the public key of the regulator (Pkreg) is published.

• Initialization

1) All voters Pi(i = 1, 2, ..., n) call userSetup to get
(PKi, SKi), the voting manager call userSetup to get
(PKv, SKv).

2) The voting manager calls ZK.Gen(1λ, C) to get
(ProK, V erK) where C is related to RL.

3) The voting manager sets the voting smart contract to the
blockchain.

• Registration

1) For each voter Pi(i = 1, 2, ..., n), Pi sends public key
PKi to the smart contract.

2) The voting manager sends PKv to the smart contract.

• Computation

1) The Voting manager calls createRecord(null, PKv,
PKreg, P roK, private) to get (ri, cmi, πi, cti) for each voter
Pi.

2) The voting manager sends the content of (rt, null,
cmi, πi, cti) to the smart contract on the blockchain. The smart
contract calls verify to verify each transaction.

3) The voting manager calls transferDataOwnership
(r.seedi, cmi, PKv, SKv, PKi, P roK,PKreg,MT) and get
(rn+i, cmn+i, πn+i, ctn+i, sni) for each voter Pi.

4) The voting manager sends the transaction of content
(rt, sni, cmn+i, πn+i, ctn+i) to the smart contract. In addi-
tion, the voting manager sends rn+i to voter Pi privately.

5) Each Voter Pi calls updatePrivateData(rn+i.seed,
cmn+i, datanewi

, PKi, SKi, P roK, PKreg,MT) to get
(r2n+i, cm2n+i, π2n+i, ct2n+i, snn+i).

6) Each voter sends the transaction of content (rt,
snn+i, cm2n+i, π2n+i, ct2n+i) to the smart contract.

7) Each voter Pi calls transferDataOwnership
(r2n+i.seed, cm2n+i, PK + i,
SKi, PKv, P rok, PKreg,MT) to get
(r3n+i, cm3n+i, π3n+i, ct3n+i, sn3n+i).

8) Each Voter Pi sends the transaction of content
(rt, sn3n+i, cm3n+i, π3n+i, ct3n+i) to the smart contract. In
addition, Pi sends record r3n+i to the voting manager pri-
vately.

9) The voting manager checks whether the record r3n+i

is corresponding to the cm3n+i on the blockchain. The
Voting manager set F (r1, r2, ..., rn, aux) = r1.data +
r2.data + ... + rm.data. After that, the voting manager
calls compute(Rcon = {r3n+1, r3n+2, ..., r3n+n}, CMcon =
{cm3n+1 , cm3n+2, ..., cm3n+n}, F, aux, PKv, SKv, P roK ,
PKreg, public) to get (rres, snres, cmres, πres, ctres).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

 !"#, � , !"$ %&#, � , %&'() %)

Merkle

Tree root
Serial number of

old records

Commitment of

new records Proof
Regulatory

ciphertext

…

all record

commitments

 !" !# … !$ … !%

&'(
)*+ ,-.-(

)*+ /(
)*+ &'(

%01 ,-.-(
%01 /(

%01

Two-layer

Commit

PRF

Two-layer

Commit

 !"
#$%

&'"
#$%

(

)*+*,
-./ = 012&3)*+*"

#$%4

Encryption

Fig. 3: Construction of a transaction Txi

10) The voting manager sends the transaction of content
(rt, snres, cmres, πres, ctres) to the smart contract. In addi-
tion, the voting manager sends rn+i to voter Pi privately.

11) At the time of revealing the voting result, the voting
manager calls reavelPrivateData(rres, cmres, PKv, SKv,
P rok, PKreg,MT) to get (rres, snres′ , cmres′ , πres′ , ctres′).

12) The voting manager sends the transaction of content
(rt, snres′ , cmres′ , πres′ , ctres′) to the smart contract.

E. Transaction Construction with accountability

Each two-layer record is associated with a public key
pk, which implies consuming a record requires knowing the
corresponding secret key sk. A record consists of a public key,
data and a serial number seed. Unlike the ZEXE system, these
records lack birth and death predictions due to challenges in
function privacy within the account-based blockchain, which
avoids increasing system complexity. The record serial number
will appear on the smart contract when the record is consumed.
Notably, the serial number, generated using a pseudorandom
function PRF , combines the serial number seed and the secret
key of the owner. This ensures determinism for the serial
number when the record is created, but the secret key of the
owner prevents unauthorized computation.

Records are consumed through transactions that replace
old ones with new ones in a smart contract. As shown in
Fig. 3, each transaction contains the consumed record’s serial
number, commitments of the new record, and a proof attesting
to the correctness of the transaction. Record commitments
form a Merkle tree in the contract, facilitating efficient zero-
knowledge proofs of record commitment existence with a
suitable authentication path, which indicates that each serial
number can only appear once in a contract, preventing double
consumption.

For security, the system’s transaction regulation meets regu-
latory traceability requirements. Similar to [33], the basic idea

 !", � , !# $%", � , $%& '

()
*+-

PRF

 !
"#$%&'&!

"#$()!
*+,

Two-layer

Commit

Hybrid

Encryption
 !"#$ %!&'()*+,-&

./

zk-SNARKs

 !"!

Fig. 4: Overview of transaction regulation

of the RPSC for achieving traceability is that regulators can
collects blockchain data for tracking (See Fig. 4). Transaction
details are encrypted using regulatory keys and proofs from
zk-SNARKs protocol ensure encrypted data consistency. The
smart contract checks the encryption’s correctness. To enhance
efficiency, transaction details use a symmetric key encrypted
under the regulatory public key. In details, Algorithm 1 im-
plements transaction supervision. It generates a zk-SNARKs
proof and verifies regulatory ciphertext correctness. The con-
sumed record’s serial number seed is encrypted for transaction
traceability. The created record’s data and public key are
encrypted for data and identity traceability. Transaction links
are recoverable through serial number seed commitments,
allowing extraction of predecessor transaction data and identity
for the current transaction.

V. SECURITY ANALYSIS

The proposed RPSC system can satisfy all the security
requirements described in Section III-C.

1) On-chain privacy: On-chain privacy is composed of
transaction privacy and identity anonymity: (1) For
transaction privacy, it is required to protect input record,
output record, transaction information. The basic idea
of the RPSC system comes from that of Zerocash and
ZEXE. In brief, the Merkle tree and pseudo-random
function hide the details information of input records in
the transaction. There is no PPT adversary that can get
the input records information from the Merkle tree root
and the serial number of the records. The commitment
protocol hides the privacy of the output records. The se-
mantic security of the encryption algorithm protects the
transaction information. And the zero-knowledge proof
guarantees the correctness of the overall transaction in-
formation without revealing any additional information.
(2) For identity anonymity, it should not determine user’s
identity from public key and serial number. In brief,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

the hiding property of the commitment protocol ensures
that no additional information about the public key of
a transaction can be recovered from the commitment
in the transaction. The security of the pseudo-random
function also ensures that a serial number does not reveal
any information about the corresponding private key.
Therefore, no attacker can obtain any new information
about user’s identity and thus identity anonymity holds.

2) Off-chain soundness: All the operations to generate
new data records except createRecord need to spend
some existing data records. On one hand, it is required
to guarantee the relationship between the new generated
data records and the existing ones. The zero-knowledge
proof generated by the off-chain computation can pro-
vide the proof since no PPT adversary that can forge a
ZK-SNARKs proof with malicious data. On the other
hand, it should guarantee the identity of the decrypted
message and the original if the key is correct. Perfectly
correct encryption algorithm can guarantee it as the
decrypted message and the plaintext are identical if the
key is correct. Therefore, the off-chain soundness of the
system holds.

3) Data record unlinkablity: For any blockchain node, the
only data recorded on the blockchain is the committed
value cmr of the record. When a data record transaction
occurs, the user generates a zero-knowledge proof of a
Merkle tree to prove that he owns some record in the
set of the previous data records. Even if an adversary
knows the set of previous data records, he cannot tell
which one the current data record actually is. In addition,
only the data record serial number sn is appended to
the used data record list after each transaction. Due to
the properties of the random function PRF , no PPT
adversary can link the data record commitment to the
corresponding data record serial number. Therefore, the
property of data record unlinkablity holds.

4) Regulatory traceablity: On one hand, as the commit-
ment scheme is computationally binding, the probability
for a PPT adversary to discover another m

′
satisfying

Com(pp,m) = Com(pp,m
′
) negligible. The knowl-

edge soundness of zk-SNARKs ensures that for a false
statement, no PPT adversary can convince a verifier with
a non-negligible probability. Hence, adversary cannot
generate an incorrect or meaningless ciphertext. On the
other hand, a regulator can always decrypt the regulatory
ciphertext by his private key and get enough information
to trace data. In details, the random seed of records
used in transaction can be decrypted from the ciphertext.
The commitment scheme ensures Com(pp, seed) cannot
be changed, and thus the regulator can always find the
previous transactions.

VI. IMPLEMENTATION AND EVALUATION

This section presents a performance analysis and evaluation
where we implement and evaluate our system alongside repli-
cates of Hawk [7] and zkay [13] to compare their performance
metrics directly. In particular, we present two applications with

RPSC to improve the accountability of privacy preserving auc-
tion and e-voting. The integration of our RPSC into account-
based blockchain applications will result in great performance
and fine-grained privacy.

A. Performance Analysis and System Implementation

We first present the efficiency analysis of the RPSC, and
then provide our implementation. For clarity, we analyzed the
compute function and verify function (on-chain) for general
computation f , and Table II summarizes their communication
and time complexity. The parameters in Table II are defined
as follows: k represents the number of consumed records; k′

represents the number of generated records ; exp1 represents
exponentiation operations in the group G1; P represents
bilinear mapping operations; sym represents to symmetric
operations; |C| represents the circuit size of an arbitrary
function f .

TABLE II: Performance Analysis of RPSC

compute verify communication

1 sym + (O(|C|) +
4k′ + 2) exp1

4P +O(k′) exp1
k Zp+(5k′+4)G1+
1G2

In Table II, we only focus on the expensive operations in
the scheme, including symmetric operations, exponentiation,
and bilinear pairing, which mainly involve encryption and zk-
SNARKs, while ignoring the cost of other light computations.
For the compute function along with the proofs, ct requires
symmetric encryption instantiated by AES encryption, and
public key encryption using ElGamal encryption, costing
1 sym+2 exp1. Furthermore, CM demands commitments in-
stantiated by Pedersen commitment, incurring 4k′exp1. More-
over, π is used by zk-SNARKs, leading to a complexity of
O(|C|)exp1. The verify algorithm merely utilizes verification
in the zk-SNARKs [34], costing 4P +O(k′)exp1.

Regarding communication overhead, we have k elements of
ZP and k′ elements of G1 from dataCT , 2 G1 elements from
keyCT , 4k′ G1 elements from the commitment set CM , and
2 G1 elements and 1 G2 element from the proof π based on
the zk-SNARKs [34].

We implement RPSC on the Ubuntu 20.04 LTS system with
Intel(R) Xeon(R) Platinum 8369HB CPU of 3.30GHz and 256-
GB RAM. Note that to highlight the efficiency of the system,
we implement the prototype of RPSC in two parts, an on-
chain implementation and an off-chain implementation. Off-
chain operations are implemented in Java to test the cost of
local computation, while on-chain operations are implemented
in Solidity to test the cost of blockchain involvement.

For off-chain operations, we use the jsnark3 library to design
the arithmetic circuits for the smart contracts, and use the
libsnark4 library to generate zero-knowledge proofs. Here, we
implement zk-SNARKs [34] using the pairing-friendly Type-3
alt bn128, which is also used to implement bilinear maps in
Ethereum pre-compiled contracts5. For on-chain operations,

3https://github.com/akosba/jsnark
4https://github.com/scipr-lab/libsnark
5https://github.com/ethereum/EIPs/blob/master/EIPS/eip-197.md

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE III: Performance for different scenarios

Register Auction Electronic voting
createRecord bidding finalization voting counting

Parties - - 10 50 10 50 10 50
Constraints(104) 32.75 117.41 542.16 2670.08 547.45 2697.67 316.84 1442.08

KeyGen(s) 6.93 20.11 207.92 900.25 207.65 908.30 114.85 520.89
Prove(s) 60.21 192.23 993.22 4832.71 983.33 4831.47 587.37 2661.33

Verify(ms) 30.6 37.6 60.0 183.1 60.7 182.5 51.0 121.4
ProveKey(MB) 82.18 274.82 1274.50 6333.15 1285.09 6388.18 767.34 3406.46
VerifyKey(KB) 14.81 26.14 87.40 386.46 85.96 385.02 59.79 209.31

Proof(KB) 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38
Stmt(KB) 22.82 40.87 138.10 614.35 136.11 612.36 94.44 332.57

Fig. 5: Time cost of zk-SNARK for different sizes of the
finalization circuit in the auction application

we configure the private network on Ethereum6 and deploy
verification contract written in solidity.

To demonstrate the practicality of RPSC, we implement
a blockchain-based privacy preserving e-voting and auction
application by integrating RPSC into blockchain, which is
one of the most representative applications atop blockchain.
Moreover, we replicate Hawk [7] and zkay [13] for auction
application in the same experimental configuration and jsnark
library, and performe a comparative analysis of the time cost to
establish a general benchmark. In short, the e-voting scenario
is divided into three main phases, namely the issuance, voting
and counting phases. Similar to voting, the auction scenario
consists of the issuance of signage, bidding, and finalization
phases. Note that the issuance in e-voting and auction are
consistent in RPSC by calling the createRecord algorithm.
In addition, voting and counting are affected by the size of
the application participants in the voting application, similar
to the finalization in auctions.

B. Performance Evaluation

Off-chain Evaluation. We evaluate off-chain operations for
both e-voting and auction applications, and the results are
illustrated in Table III .We focus on evaluating the zk-SNARKs
performance since all other computation time is negligible in
comparison.

Here we show the time and space cost of off-chain compu-
tation, that is, proof generation, for both e-voting and auction

6https://github.com/ethereum/go-ethereum/

10 20 30 40 50
The Number of Parties

0

1000

2000

3000

4000

5000

6000

Sp
ac
e
oc
cu
pa
nc
y

ProveKey (MB)
VerifKey (KB)
Statements (KB)
Proof (bit)

Fig. 6: Storage occupancy of zk-SNARK for different sizes
of the finalization circuit in the auction application.

applications. As shown in Table III, we set the number of
participants to 10 and 50, respectively, to indicate the effect
of the number of participants on these two applications. In
particular, we have described the workflow of e-voting by
invoking the RPSC algorithm in Section 4.4.When the number
of participants reaches 10, the time cost of the counting phase
in the e-voting is 587.37s. To further demonstrate the impact of
the number of participants on the auction, we set the number
of participants to increase from 10 to 50 in steps of 5, to test
the overhead of time and space. The results for the auction
are shown in Fig. 5 and Fig. 6, the time overhead in the
finalization phase increases significantly with respect to other
computations, as well as the required spatial storage risk.
During the computation, larger memory and CPU resources
are required, and as the number of constraints increases, the
size of the proof key increases, along with the time required
for the proof. In addition, to visually demonstrate the verify
algorithm, we test the time cost of this algorithm locally, which
is also implemented on-chain. The overhead of the verify
algorithm is considered cheap in all scenarios. The verification
time is mainly related to the size of the public statement, i.e.,
the public wire value of the circuit. However, the size of the
statement is far smaller than the size of the circuit, which
results in a small verification time.

The verification key, proof and statement will be public
transmitted in the P2P network, which has a limit on the block
size. In the implementation, the proof size is fixed at 0.38KB
due to the selected zk-SNARKs proposed by Groth [34] in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE IV: Performance comparison of different schemes for the finalization in auction scenarios with 10 and 50 bidders

Parties 10 50
Schemes Hawk [7] zkay [13] Our(Opt.) Our Hawk [7] zkay [13] Our(Opt.) Our

Constraints(104) 269.00 85.32 604.34 542.16 1343.87 426.60 2934.38 2670.08
Prove(s) 469.32 140.55 1076.70 993.22 2355.43 702.80 5270.26 4832.71

Verify(ms) 38.9 34.3 42.9 60.0 79.0 76.9 77.2 183.1
ProveKey(MB) 634.34 199.74 1395.72 1274.50 3201.35 970.83 6848.63 6333.15
VerifyKey(KB) 26.96 25.44 28.67 87.40 126.65 125.13 128.36 386.46

Proof(KB) 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38
Stmt(KB) 41.86 39.69 44.83 138.10 200.61 198.44 203.58 614.35

TABLE V: Execution gas cost in verification contract for different phases with 10 participants

application Register Auction Electronic voting
phase createRecord bidding finalization(Y) finalization(N) voting counting
Gas 279,959 356,260 426,695 1,016,972 947,495 755,749

Type-3 alt bn128 , which only consists of 2 elements in G1

and 1 element in G2 for the proof7. And the verification key
size does not exceed 500KB, which is a very small value based
on the current network bandwidth and storage capacity.

As the number of parties increases, the size of the statement
increases correspondingly, in part due to the inclusion of the
regulatory ciphertexts. To address this, we reduce the statement
size by using a hash function to generate a digital digest of the
regulatory ciphertexts, which ensures that the space occupied
by the ciphertexts within the statement remains constant,
specifically equal to the output size of the hash function.
The circuit design optimization mentioned above significantly
decreases the overhead of on-chain computation, as showed
in Table IV, which indicates a marked reduction in both
the statement size and on-chain computational costs. While
hashing the entire statement optimizes the on-chain overhead,
this approach leads to an increased off-chain cost. Therefore,
a trade-off must be struck between optimizing statement size
and managing off-chain overhead for the practically.

General benchmark. Here we present a general benchmark
by comparing our system with Hawk [7] and zkay [13],
two of the most prominent frameworks. To obtain a fair and
comprehensive comparison, we replicated both frameworks
within our experimental environment and conducted compara-
tive analyses of the time costs in the voting scenario, including
the verify function (on-chain operation).

As shown in Table IV, we focus on the comparison of our
optimized implementation with Hawk [7] and zkay [13]. No-
tably, the time required for proof generation increases due to
the increased circuit size compared to Hawk [7] and zkay [13],
which is a consequence of capturing programmable smart
contracts with fine-grained privacy and regulatory features in
RPSC. Fortunately, the time overhead for verify function (on-
chain) shows only a slight increase. Moreover, the size of
V erifyKey is only slightly increased compared to Hawk [7]
and zkay [13] since the minor expansion in the statement.
These observations indicate that our system maintains a sim-
ilar level of efficiency on-chain compared to Hawk [7] and

7Given the parameter settings for Type-3 alt bn128, each element in G1

is 96 bytes, and each element in G2 is 192 bytes.

zkay [13], which is acceptable for the blockchain. As for
the increased time cost in proving and the increased size of
ProofKey, which can be easily mitigated with solutions such
as cloud computing, they do not affect the generation and ver-
ification of privacy preserving transactions on the blockchain.
This balance ensures that while our system introduces some
additional overhead off-chain for more functionality, its on-
chain operations do not compromise blockchain efficiency.

On-chain Evaluation. Our verification contract focuses
on the verification of off-chain operations in two applications,
including createRecord, bidding, and finalization in the auction
application, and voting, counting in the e-voting application.
We set the number of participants to 10 and evaluated the
execution gas cost of verify algorithm in the above different
phases, as shown in Table V.

At the beginning of these applications, createRecord is
invoked to register participants, which costs 279,959 gas to
verify the correctness of the records. Subsequently, in the auc-
tion, the commitment and proof are uploaded to the blockchain
after the participant completes the off-chain bidding. The proof
is verified at a cost of 356,260 gas. After the finalization
result is uploaded to the blockchain, the proof of finalization is
verified, which costs 426,695 gas. Specifically, we take advan-
tage of the above optimization to greatly reduce the on-chain
computation, which only requires half. Similar to auctions,
in electronic voting, the verification of privacy-preserving
voting on the chain costs 947,495 gas. More importantly, the
verification of the voting results requires 75,5749 gas, which
is acceptable. Note that the verifier key greatly affects the
verification cost, resulting in linear field operations and storage
overhead on the chain, which is expected.

VII. CONCLUSION

In this paper, we focus on designing a regulatable privacy-
preserving smart contracts (RSPC) system for account-based
blockchain. We first present the system model of RPSC and
then provided a concrete construction of RPSC based on
the two-layer commitment structure and transaction regulation
design. Moreover, we demonstrated how the system can satisfy
the related security requirements and evaluated the perfor-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

mance of the prototype, which can meet the need for practical
application.

We have also tried to improve the security of the system
with cryptographic algorithms that are resistant to quantum
attacks, such as lattice-based zero-knowledge proofs. However,
the overall efficiency of the system is still not practically appli-
cable. Further reduction of the computation time of the proof is
achievable. Moreover, the current regulatory mechanism relies
on a trusted government agency. Multi-party computing (MPC)
can be applied to decentralize the regulatory private key into
multiple parties for joint regulation.

REFERENCES

[1] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and
Huaimin Wang. Blockchain challenges and opportunities: A survey.
International Journal of Web and Grid Services, 14(4):352–375, 2018.

[2] Jordi Herrera-Joancomartı́. Research and challenges on bitcoin
anonymity. In Data Privacy Management, Autonomous Spontaneous
Security, and Security Assurance, pages 3–16. Springer, 2014.

[3] Tiffany Hyun-Jin Kim and Joshua Lampkins. Ssp: Self-sovereign
privacy for internet of things using blockchain and mpc. In 2019 IEEE
International Conference on Blockchain (Blockchain), pages 411–418.
IEEE, 2019.

[4] Robert Werner, Sebastian Lawrenz, and Andreas Rausch. Blockchain
analysis tool of a cryptocurrency. In Proceedings of the 2020 The 2nd
International Conference on Blockchain Technology, pages 80–84, 2020.

[5] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In 2014 IEEE Symposium on
Security and Privacy, pages 459–474. IEEE, 2014.

[6] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin.
Zerocoin: Anonymous distributed e-cash from bitcoin. In 2013 IEEE
Symposium on Security and Privacy, pages 397–411. IEEE, 2013.

[7] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts. In 2016 IEEE symposium on security
and privacy (SP), pages 839–858. IEEE, 2016.

[8] Guy Zyskind, Oz Nathan, et al. Decentralizing privacy: Using
blockchain to protect personal data. In 2015 IEEE Security and Privacy
Workshops, pages 180–184. IEEE, 2015.

[9] Hisham S Galal and Amr M Youssef. Verifiable sealed-bid auction
on the ethereum blockchain. In International Conference on Financial
Cryptography and Data Security, pages 265–278. Springer, 2018.

[10] Marie Vasek, Micah Thornton, and Tyler Moore. Empirical analysis
of denial-of-service attacks in the bitcoin ecosystem. In International
conference on financial cryptography and data security, pages 57–71.
Springer, 2014.

[11] Xu Wang, Xuan Zha, Guangsheng Yu, Wei Ni, Ren Ping Liu, Y Jay
Guo, Xinxin Niu, and Kangfeng Zheng. Attack and defence of ethereum
remote apis. In 2018 IEEE Globecom Workshops (GC Wkshps), pages
1–6. IEEE, 2018.

[12] Kei Nakagawa and Ryuta Sakemoto. Market uncertainty and correlation
between bitcoin and ether. Finance Research Letters, 50:103216, 2022.

[13] Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior, Petar
Tsankov, and Martin Vechev. zkay: Specifying and Enforcing Data
Privacy in Smart Contracts. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 1759–
1776, London, UK, 2019. ACM.

[14] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh.
Zether: Towards privacy in a smart contract world. In International
Conference on Financial Cryptography and Data Security, pages 423–
443. Springer, 2020.

[15] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush
Mishra, and Howard Wu. Zexe: Enabling decentralized private compu-
tation. In 2020 IEEE Symposium on Security and Privacy (SP), pages
947–964. IEEE, 2020.

[16] Shunli Ma, Yi Deng, Debiao He, Jiang Zhang, and Xiang Xie. An
efficient nizk scheme for privacy-preserving transactions over account-
model blockchain. IEEE Transactions on Dependable and Secure
Computing, 18(2):641–651, 2020.

[17] Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt Bünz, Ben
Fisch, Fernando Krell, and Philippe Camacho. Verizexe: Decentralized
private computation with universal setup. In 32nd USENIX Security
Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-11,
2023, pages 4445–4462. USENIX Association, 2023.

[18] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. Coinshuffle:
Practical decentralized coin mixing for bitcoin. In European Symposium
on Research in Computer Security, pages 345–364. Springer, 2014.

[19] Sarah Meiklejohn and Claudio Orlandi. Privacy-enhancing overlays in
bitcoin. In International Conference on Financial Cryptography and
Data Security, pages 127–141. Springer, 2015.

[20] Shen Noether. Ring signature confidential transactions for monero.
Cryptology ePrint Archive, Report 2015/1098, 2015.

[21] Shi-Feng Sun, Man Ho Au, Joseph K Liu, and Tsz Hon Yuen. Ringct
2.0: A Compact Accumulator-Based (Linkable Ring Signature) Protocol
for Blockchain Cryptocurrency Monero. In Proceedings of the European
Symposium on Research in Computer Security, pages 456–474, Oslo,
Norway, 2017. Springer.

[22] Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell,
and Pieter Wuille. Confidential assets. In International Conference
on Financial Cryptography and Data Security, pages 43–63. Springer,
2018.

[23] N. van Saberhagen. CryptoNote v 2.0, 2013. [Online]. Available: https:
//cryptonote.org/.

[24] Arijit Dutta, Suyash Bagad, and Saravanan Vijayakumaran. Mprove+:
Privacy enhancing proof of reserves protocol for monero. IEEE Trans.
Inf. Forensics Secur., 16:3900–3915, 2021.

[25] Carsten Baum, James Hsin-yu Chiang, Bernardo David, and Tore Kasper
Frederiksen. Eagle: Efficient privacy preserving smart contracts. In
Financial Cryptography and Data Security - 27th International Con-
ference, FC 2023, Bol, Brač, Croatia, May 1-5, 2023, volume 13950,
pages 270–288. Springer, 2023.

[26] Samuel Steffen, Benjamin Bichsel, Roger Baumgartner, and Martin T.
Vechev. Zeestar: Private smart contracts by homomorphic encryption
and zero-knowledge proofs. In 43rd IEEE Symposium on Security and
Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022, pages
179–197. IEEE, 2022.

[27] Samuel Steffen, Benjamin Bichsel, and Martin T. Vechev. Zapper: Smart
contracts with data and identity privacy. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2022, Los Angeles, CA, USA, November 7-11, 2022, pages 2735–2749.
ACM, 2022.

[28] Neha Narula, Willy Vasquez, and Madars Virza. zkledger: Privacy-
preserving auditing for distributed ledgers. In 15th {USENIX} Sympo-
sium on Networked Systems Design and Implementation ({NSDI} 18),
pages 65–80, 2018.

[29] Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed Kosba, Ari Juels, and Elaine
Shi. Solidus: Confidential distributed ledger transactions via pvorm. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 701–717, 2017.

[30] Jiajun Zhou, Chenkai Hu, Jianlei Chi, Jiajing Wu, Meng Shen, and
Qi Xuan. Behavior-aware account de-anonymization on ethereum
interaction graph. IEEE Trans. Inf. Forensics Secur., 17:3433–3448,
2022.

[31] Huikang Cao, Ruixuan Li, Wenlong Tian, Zhiyong Xu, and Weijun Xiao.
Blockchain-based accountability for multi-party oblivious ram. Journal
of Parallel and Distributed Computing, 137:224–237, 2020.

[32] Yan Wu, Can Zhang, and Liehuang Zhu. Privacy-preserving and trace-
able blockchain-based charging payment scheme for electric vehicles.
IEEE Internet Things J., 10(24):21254–21265, 2023.

[33] Christina Garman, Matthew Green, and Ian Miers. Accountable privacy
for decentralized anonymous payments. In International Conference
on Financial Cryptography and Data Security, pages 81–98. Springer,
2016.

[34] Jens Groth. On the size of pairing-based non-interactive arguments.
In Annual international conference on the theory and applications of
cryptographic techniques, pages 305–326. Springer, 2016.

[35] Torben Pryds Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Annual international cryptology conference,
pages 129–140. Springer, 1991.

https://cryptonote.org/
https://cryptonote.org/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Zoe L. Jiang received the Ph.D. degree from The
University of Hong Kong, Hong Kong, in 2010. She
is currently a professor with School of Computer
Science and Technology, Harbin Institute of Tech-
nology, Shenzhen, China. Her research interests in-
clude information security and applied cryptography.

Min Xie is currently pursuing the Ph.D. degree
with School of Computer Science and Technology,
Harbin Institute of Technology, Shenzhen, China.
His research interests include zero-knowledge proof,
anonymous credential and blockchain technology.

Hanlin Chen received the master’s degree from
Harbin Institute of Technology in 2022. His research
interests during his master’s degree included cryp-
tography, network security and blockchain. He is
current an software engineer working in Tencent
company.

Yijian Pan received the master’s degree from Harbin
Institute of Technology in 2023. His research inter-
ests include applied cryptography, network security
and machine learning. He is current an software
engineer working in Aliyun company.

Jiazhuo Lyu received the master’s degree from
Harbin Institute of Technology in 2019. He is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Computing, The Hong Kong Polytechnic
University. His current research interests include
cryptography, secure multi-party computation, and
blockchain.

Man Ho Au is currently a full professor in the
Department of Computing, The Hong Kong Poly-
technic University. He has published over 190 refer-
eed papers in top journals and conferences, including
IEEE TDSC, TIFS, TKDE, TC and IEEE S&P, ACM
CCS, SIGMOD, SOSP, NDSS, CRYPTO, INFO-
COM, etc. His research interests include cyberse-
curity, applied cryptography, blockchain technology,
and their applications. He is a recipient of the 2009
PET runner-up award for outstanding research in
privacy enhancing technologies.

Junbin Fang is now a professor in Department
of Optoelectronic Engineering at Jinan University,
Guangzhou, China. His research interests include
artificial intelligence security, blockchain, visible
light communication and quantum information.

Yang Liu received his D.Phil (PhD) degree in
Computer Science from University of Oxford in July
2018. Prior to joining Oxford, He received an MSc in
Software Engineering from Peking University and a
B.Eng in Computer Science from Ocean University
of China. He is currently a Reader in Department
of Computer Science, Swansea University, UK. His
research interests include security and privacy prob-
lems and, in particular, the privacy issues related to
mobile and IoT devices.

Xuan Wang received his M.S. and Ph.D. degrees in
Computer Sciences from Harbin Institute of Tech-
nology in 1994 and 1997 respectively. He is a pro-
fessor in Harbin Institute of Technology, Shenzhen,
China. His research interests include information
security, artificial intelligence, and computational
linguistics.

	Introduction
	Our contribution
	Related Work

	Preliminaries
	Zk-SNARKs
	Commitment

	System Architecture
	System Model
	Syntax
	Security Requirements

	System Construction
	High-level Description
	Fine-grained Data Record Structure
	Concrete construction
	Workflow
	Transaction Construction with accountability

	Security Analysis
	Implementation and Evaluation
	Performance Analysis and System Implementation
	Performance Evaluation

	Conclusion
	References
	Biographies
	Zoe L. Jiang
	Min Xie
	Hanlin Chen
	Yijian Pan
	Jiazhuo Lyu
	Man Ho Au
	Junbin Fang
	Yang Liu
	Xuan Wang

