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Abstract
The goal of this thesis is to verify smart contracts in Blockchain. In particular, we focus on

smart contracts in Bitcoin and Solidity. In order to specify the correctness of smart contracts,

we use weakest preconditions. For this, we develop a model of smart contracts in the interactive

theorem prover and dependent type programming language Agda and prove the correctness of

smart contracts in it. In the context of Bitcoin, our verification of Bitcoin scripts consists

of non-conditional and conditional scripts. For Solidity, we refer to programs using object-

oriented features of Solidity, such as calling of other contracts, full recursion, and the use

of gas in order to guarantee termination while having a Turing-complete language. We have

developed a simulator for Solidity-style smart contracts. As a main example, we executed a

reentrancy attack in our model. We have verified smart contracts in Bitcoin and Solidity using

weakest precondition in Agda.

Furthermore, Agda, combined with the fact that it is a theorem prover and programming

language, allows the writing of verified programs, where the verification takes place in the

same language in which the program is written, avoiding the problem of translation from one

language to another (with possible translation mistakes).
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Introduction
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1.3.4 Talks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Git Repository and Agda Version . . . . . . . . . . . . . . . . . . . . . . 9

1.5.1 Safe Version of the Code . . . . . . . . . . . . . . . . . . . . . . 10

1.5.2 Unit testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Motivation

Work on this project began when Anton Setzer created two models of the Bitcoin blockchain

in the theorem prover Agda [5]. The first of these was based on a simple bank account, while

the second focused on transactions that refer to unspent transaction outputs rather than user

accounts. Afterwards, Setzer extended the model to include smart contracts written in Bitcoin’s

byte code language, Script, in order to verify smart contracts in Agda [6]. Building from that

work, the project’s primary objective is to build a more realistic model in Agda to verify the
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1. Introduction

correctness of smart contracts for both Bitcoin and Solidity and close the gap between the user

requirements and formal specifications of smart contracts. In this thesis, we verified and proved

Bitcoin and Solidity smart contracts using weakest precondition. This thesis is considered the

first of its kind because no previous studies have used weakest preconditions to specify and

prove the correctness of smart contracts for both Bitcoin and Solidity in Agda. The reason

to verify the correctness of smart contracts is that smart contract codes are immutable [7]

when deployed on the blockchain network. The only way to amend the clauses of an ongoing

smart contract or to withdraw it is by using functions already provided by the original contract.

Developers must therefore ensure and verify the security of the code before publishing it on

the blockchain in order to avoid errors, which in smart contract programs can result in massive

losses. This is exemplified by the case of the DAO, a decentralised autonomous organisation

whose contracts were manipulated by cyber criminals once the fund’s market value had reached

US$ 150 million [8]. A further reason for the verification is that Agda is utilised as a proof

assistant and programming language to avoid errors when translating from one language to

another.

1.2 Main Contributions

We aim to implement and verify the correctness of smart contracts in Blockchain, specifically

Bitcoin and Solidity (which is part of the Ethereum Blockchain, where the currency is called

ether; see more details later in Subsubsect. 2.3.2.2). To develop a model of smart contracts,

we use Agda as a theorem prover and programming language in order to avoid any translation

errors. In particular, we have accomplished the following:

• Weakest precondition semantics for access control. This is a way of specifying the

correctness of smart contracts. The meaning of the weakest precondition in Bitcoin

is that bitcoins protected by a script can only be retrieved if one provides a script that

provides data that fulfils the weakest precondition. Since the person retrieving the money

can execute that script, the person retrieving the money needs to know the data that fulfils

the weakest precondition. For instance, in the case of Pay to Public Key Hash (P2PKH),

the weakest preconditions require a stack consisting of a public key that hashes to the

hash provided in that script and a signature for the transaction corresponding to that

public key. So, to retrieve the Bitcoin, one needs to know these two pieces of data (the

public key and the signature). For Solidity, the semantic of weakest precondition could
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1.2. Main Contributions

express that an increased amount of ether in an account using a specific function is only

possible if the weakest precondition is fulfilled.

• Developing two methods to read off weakest precondition. We developed two meth-

ods for obtaining the weakest human-readable preconditions to fill the validation gap be-

tween user requirements and formal specifications: (1) a step-by-step approach, which

works through a script in reverse, instruction by instruction, sometimes in one step deal-

ing with several instructions at a time, and (2) the symbolic execution of the code and

translation into a nested case distinction, which allows for reading off weakest precondi-

tions as the disjunction of accepting paths.

• Verifying Bitcoin Script with local instructions. We focused on two standard scripts,

Pay to Public Key Hash (P2PKH) and Pay to Multisig (P2MS), written in Bitcoin’s low-

level language script, and created the operational semantics for these standard scripts. To

verify the Bitcoin scripts using Hoare triples and the weakest preconditions in Agda, we

developed a library in Agda for equational reasoning with Hoare triples, before using our

methods, the step-by-step approach and symbolic execution, to verify the correctness of

P2PKH and P2MS, the two most common Bitcoin scripts.

• Verifying Bitcoin Script with conditional instructions. We extended our state in the

Bitcoin scripts for local instructions by adding an additional stack (IfStack) to deal

with non-local instructions (conditional instructions) such as OP_IF, OP_ELSE, and

OP_ENDIF, and expanded the operational semantics for local instructions to include

non-local instructions. We then developed ifthenelse-theorems, which were used to

prove the correctness of the P2PKH scripts by referencing conditions for the if-case

and the else-case.

• Developing three models of Solidity-style smart contracts We translated our work in

Bitcoin Script (local and non-local instructions) into Solidity-style smart contracts of

Ethereum. This model of smart contracts is more complicated than Bitcoin’s due to the

object-orientation of Ethereum’s contracts. We developed three models of Solidity-style

smart contracts, which we call simple, complex, and complex models version 2. The

simple model supported only simple executions, such as calling other contracts, updat-

ing specific contracts, checking the amount in each address, and transferring money. It

did not support gas costs involving money and the state. The complex model extended

the simple model to include all of its features of the simple model as well as gas cost,
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complex instruction, and view function. The operational semantics for each model were

created accordingly. In both models, we created error types: if someone calls the wrong

address, for example, they will see a message informing them of this. The complex

model contained many such messages, including stating if there is not enough gas for

transferring money, flagging an invalid transaction, or debugging information, including

the last call address, calling address, amount of gas, and the function name. The com-

plex model version 2 extended the complex model, adding the possibility of using the

fallback function, sending funds when making a function call, and using the debugging

information, including emitting events to display all events in the reentrancy attack.

• Simulating three models of Solidity-style smart contracts. After finalising the simple,

complex, and complex models version 2, we implemented IO programs for these models

in Agda. We subsequently developed an interface to deal with programs by creating

commands and responses that ensure the programs are correct, and tested many examples

with an interface using the simple, complex, complex models version 2.

• Verification of two simple Solidity-style smart contracts in simple and complex

models. We verified the two contracts using the weakest precondition semantics in Agda.

• Implementing the reentrancy attack in the complex model version 2 in Agda. We

developed and simulated the reentrancy attack in Agda, which is a type of attack that may

happen on the Ethereum network. This is a first step towards verifying the correctness

of the corrected version of this contract.

1.3 Publication Papers and Talks

The papers below are published versions of some of the material presented in this thesis. They

may also include extra information pertaining to this research.

1.3.1 Refereed Publications

Verification of Bitcoin Script in Agda using Weakest Preconditions for Access Control [9].

This paper contributes to the verification of programs written in Bitcoin’s smart contract lan-

guage SCRIPT in the interactive theorem prover Agda. It focuses on the security property of

access control for SCRIPT programs that govern the distribution of Bitcoins, and advocates that

weakest preconditions in the context of Hoare triples are the appropriate notion for verifying
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access control. It aims to obtain human-readable descriptions of weakest preconditions in or-

der to close the validation gap between user requirements and formal specification of smart

contracts.

As examples of the proposed approach, the paper focuses on two standard SCRIPT pro-

grams that govern the distribution of Bitcoins, Pay to Public Key Hash (P2PKH) and Pay to

Multisig (P2MS). The paper introduces an operational semantics of the SCRIPT commands

used in P2PKH and P2MS, which is formalised in the Agda proof assistant and reasoned about

using Hoare triples. Two methodologies for obtaining human-readable descriptions of weakest

preconditions are discussed: (1) a step-by-step approach, which works backwards, instruction-

by-instruction, through a script, sometimes grouping several instructions together; (2) symbolic

execution of the code and translation into a nested case distinction, which allows reading off of

weakest preconditions as the disjunction of conjunctions of conditions along accepting paths.

A syntax for equational reasoning with Hoare Triples is defined in order to formalise those

approaches in Agda.

Verifying Correctness of Smart Contracts with Conditionals [10]. In this paper, we

specify and verify the correctness of programs written in Bitcoin’s smart contract SCRIPT in

the interactive theorem prover Agda. As in the previous article [9], we use weakest precondi-

tions of Hoare logic to specify the security property of access control, and show how to develop

human-readable specifications. We include conditionals into the language: for the operational

semantics, we use an additional stack, the ifstack, to deal with nested conditionals. This avoids

the addition of extra jump instructions, which are usually employed for the operational seman-

tics of conditionals in Forth-style stack languages. The ifstack preserves the original nesting

of conditionals, and we determine an ifthenselse-theorem which allows the derivation of veri-

fication conditions of conditionals by referring to conditions for the if- and else-case.

A model of Solidity-style smart contracts in the theorem prover Agda [11]. This pa-

per introduces two models of smart contracts – one simple and one more complex – using the

interactive theorem prover Agda. This is a step towards converting the previous work of veri-

fying Bitcoin smart contracts using weakest preconditions [9, 10] to Ethereum’s Solidity-style

(see Solidity Community [12]) smart contracts. Since Ethereum’s contracts are object-oriented,

this model is substantially more complex than Bitcoin’s. We provide models supporting simple

and complex executions, the calling of other contracts, and functions referring to addresses and

messages. Furthermore, these models also support transferring money to other contracts and

updating specific contracts, and the more complex model includes gas cost and view functions.
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A simulator of Solidity-style smart contracts in the theorem prover Agda [13]. This

paper presents the implementation and design of interfaces that enable users to participate

in interactions with both simple and complex models. This makes use of the advantage of

using Agda, which is that it can be used in addition to a functional programming language

based on dependent types. Agda allows the development of programs, reasoning about them,

and verifying them using the same language, avoiding translation errors from one language to

another. These interfaces support all features in the simple and complex models.

1.3.2 Refereed Short Papers

Verification Techniques for Smart Contracts in Agda [14]. In the previous paper [9], we

developed two ways of establishing human-readable weakest preconditions: (1) A step-by-step

approach of working backwards in the program and (2) symbolic execution of the program and

determining the accepting paths. In this short paper, we investigate how these two approaches

can be extended to Bitcoin scripts that use non-local instructions such as OP_IF, OP_ELSE,

and OP_ENDIF. Our approach is based on a basic operational semantics [6], which added an

additional stack called IfStack to the standard stack.

A simple model of smart contracts in Agda [15]. The aim of this paper is the first step

towards transferring this work to the Solidity-style (Solidity Community [16]) smart contracts

of Ethereum in order to develop a model much more complex than that used for Bitcoin because

contracts in Ethereum are object-oriented. We build a simple model which supports simple

execution, calling of other contracts and functions, and which refers to addresses and messages.

Termination-checked Solidity-style smart contracts in Agda in the presence of Turing

completeness. This paper is a further step in extending the verification of Bitcoin Script using

weakest precondition semantics in our articles [9, 10, 14] to Solidity-style smart contracts. The

first step is to develop a model, which is substantially more complex than that of Bitcoin Script

because smart contracts in Solidity are object-oriented. This paper extends the simple model

of Solidity-style smart contracts in Agda in our article [15] to a complex model. The main

addition in the complex model is that it deals with the termination problem by adding a cost

per instruction (gas cost) as implemented in Ethereum, therefore execution of smart contracts

passes the termination checker of Agda.
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1.3.3 Paper in Preparation

Verification of Solidity-style Smart Contracts in Agda using Weakest Precondition. This

paper presents verification of two Solidity-style smart contracts, which are the simple and

complex models [11]. In this paper, we verify these models using weakest precondition. This

ensures the security of the blockchain even in the absence of possible attack paths. Further-

more, we create and simulate the third model of Solidity-style smart contract, which is the

complex model version 2 in order to implement the reentrancy attack.

1.3.4 Talks

Talk given at the PhD Day of British Logic Colloquium (BLC), 2-3 September 2021, hosted

by Durham University [online conference], titled: Verification of smart contracts.

Talk given at the 38th British Colloquium for Theoretical Computer Science, hosted by

Swansea University, on April 11-13th 2022, titled: Verification of Bitcoin’s smart contracts

in Agda using weakest preconditions for access control.

Talk given at the 28th International Conference on Types for Proofs and Programs, Types 2022,

20-25 June, titled: Verification Techniques for Smart Contracts in Agda.

Talk given at the IEEE 1st Global Emerging Technology Blockchain Forum 2022 (Hybrid

conference), Southern California, USA, on 7-11 November 2022, titled: Verifying Correctness

of Smart Contracts with Conditionals.

Talk given a seminar at Swansea University’s theory group titled: Verification of Bitcoin Script

in Agda Using Weakest Preconditions for Access Control, 8th December 2022.

Talk given at the IEEE International Conference on Artificial Intelligence, Blockchain, and

Internet of Things (AIBThings), Central Michigan University, USA, on September 16-17th,

2023 [Hybrid conference], titled: A model of Solidity-style smart contracts in the theorem

prover Agda.

Talk given at a seminar at Swansea University’s theory group titled: A model of Solidity-style

Smart Contracts in the Theorem Prover Agda, 6th November 2023.

Talk given at the 6th International Conference on Blockchain Technology and Applications

(ICBTA 2023) on December 15-17th 2023 [Hybrid conference], titled: A simulator of Solidity-

style Smart Contracts in the Theorem Prover Agda.
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1.4 Structure of the Thesis

This thesis is divided into nine chapters.

Chapter 2 describes the theoretical and historical context for the provided research. We

start by introducing theorem provers, giving an overview of the proof assistant Agda and dis-

cussing the differences between Agda and other theorem provers. We also provide an overview

of integrating automated theorem provers into theorem provers. Then, we briefly introduce

Blockchain, including two examples of Blockchain technology: cryptocurrency and smart con-

tracts. In the cryptocurrencies, we provide two prominent examples, which are Bitcoin and

Ethereum. An introduction to the second application on blockchain, that of smart contracts, is

provided. Then, we give a summary of the chapter.

Chapter 3 provides the background research that is relevant to our work. This chapter first

discusses two papers that introduce Hoare logic, predicate transformer semantics and weakest

preconditions. We then focus on verifying smart contracts in Bitcoin script, Ethereum, or

another platform that uses Agda, other theorem provers, model checking, symbolic execution,

tools, and developing novel languages. The chapter discusses further articles that translate code

from one language to another in order to verify smart contracts, and cites work that develops

a framework to verify smart contracts. Furthermore, we present attempts to interact with user

and mutation testing in order to verify smart contracts. Then, we give a summary of the chapter.

Chapter 4 provides the first publication (Alhabardi et al. [9]). In this chapter, we define the

operational semantics of Bitcoin scripts for local instructions (unconditional instructions). We

then propose to aim for human-readable descriptions of weakest preconditions to support judg-

ing whether the security property of access control is satisfied. In addition, We describe two

methods for achieving human-readable descriptions of weakest preconditions: a step-by-step

approach, and a symbolic-execution-and-translation approach. This proposed methodology is

then applied to two standard Bitcoin scripts (Pay to Public Key Hash (P2PKH) and the Pay to

Multisig (P2MS)), providing fully formalised arguments in Agda. Then, we give a summary of

the chapter.

Chapter 5 provides the second publication in [10]. This is an extended chapter 4 incorpo-

rating conditionals script into the language. In this chapter, we add an additional stack called

IfStack to deal with conditional instructions to avoid extra jump instructions, and define the op-

erational semantics for the conditional instructions. Furthermore, we generate an ifthenselse-

theorem and other theorems that allow construction of verification conditions for conditionals
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by referencing conditions for the if-case and the else-case. Then, we give a summary of the

chapter.

Chapter 6 provides the third publication in [11]. This chapter describes the development

of two models of Solidity-style smart contracts, which we call simple and complex models,

explains the structures of these models and provides features for each model. The chapter

further discusses the termination problem for each model. Then, we give a summary of the

chapter.

Chapter 7 provides the fourth publication in [17]. This chapter extends chapter 6, in

which we create and build interfaces that enable users to interact with both simple and complex

models. We explain the translation of Solidity code into Agda for both the simple and complex

models, with examples. Then, we give a summary of the chapter.

Chapter 8 provides verification of the simple and complex models in chapter 6 using

the weakest precondition developed in chapter 4. In this chapter, we provide and prove two

examples of each model. Then, we give a summary of the chapter.

Chapter 9 implements and simulates a first step toward the type of attack that may happen

on the Ethereum smart contract, which is the reentrancy attack, and provides an example of

this attack in Agda. This is a new model, which we call the complex model version 2; this is a

more complicated model because it deals with a fallback function. Then, we give a summary

of the chapter.

Chapter 10 provides a summary of the thesis, evaluates the thesis, and gives future works.

1.5 Git Repository and Agda Version

We have created repositories for our Agda code regarding our publications. All shown proofs

in this thesis have been automatically extracted from the Agda code, which in some cases were

formatted by hand based on LATEX code generated by Agda to improve the presentation. All

Agda codes can be found in these repositories [18, 19, 20]. As shown in table 1.1, the Agda

and standard library versions are used in this thesis.

Name Version
Agda 2.6.4.1
Agda standard library 2.0

Table 1.1: Agda and Agda standard library versions
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Remark 1.1 Repository [20] includes the Agda code for Chapters [6, 7, 8, 9]

1.5.1 Safe Version of the Code

More generally, to be sure, we created a copy of our code in which we deleted any unsafe

features of Agda: postulate, non-terminating codes (flagged by {-# NON_TERMINATING #-}),

and size types. We checked that code in [20] under this file: ‘Safe_Version_of_the_code‘. We

type-checked it in Agda, which proved all the theorems in our code and checked (flagged by

{-# OPTIONS --no-sized-types --safe #-}) that there were no occurrences of the unsafe features

in the code. Therefore, the unsafe features are only used when using Agda as a dependently

typed programming language, not when using it as an interactive theorem prover.

1.5.2 Unit testing

In chapter 6 in particular Subsubsect. 6.2.2.2, when using {-# NON_TERMINATING #-}), Agda

blocks evaluation. We define the function evaluateNonTerminatingAux, which is actually non-

terminating. However, the instances we use in an example counter are terminating in the simple

model. Therefore, we created two Agda files (Uinttest.agda and examplecounterproof.agd)

to conduct the unit testing under this file ‘Developing_Two_Models_of_the_Solidity-

style_Smart_Contracts‘ in [20], where we replaced {-# NON_TERMINATING #-} by

{-# TERMINATING #-}, and therefore evaluation is not blocked. Note that: {-#

NON_TERMINATING #-} is the correct flag because this function is indeed non-terminating

(when executing a smart contract function which loops).

A simple example of unit testing would be that we have created an expression 3 + 2 and

want to show that it evaluates to 5:

B : N

B = 3 + 2

A : B ≡ 5

A = refl

10
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2.1 Introduction

This chapter presents an overview in four parts. First, Sect. 2.2 reviews theorem provers, espe-

cially Agda (Agda Community [21]) in Subsect. 2.2.1 and presents some works that integrate

automated theorem proving tools into interactive theorem provers in Sucsect. 2.2.2. Sect. 2.3

goes on to provide an overview of Blockchain technology, which includes cryptocurrency in

Subsect. 2.3.1 and smart contracts in Subsect. 2.3.2. In this chapter, we provide two exam-

ples of cryptocurrencies, which are Bitcoin in Subsubsect. 2.3.1.1 and Ethereum in Subsub-

sect. 2.3.1.2. Finally, this chapter is summarised in Sect. 2.4.

2.2 Theorem Provers (TPs)

Theorem provers play an essential role in modelling and reasoning with regard to complicated

and large-scale systems, particularly those that are mission-critical [22]. Theorem proving is

a technique that may also be used to handle infinite systems, in which users create and spec-

ify systems in an appropriate mathematical logic. Theorem proving is an extremely flexible

method which can be used for a diversity of systems as long as they can be described math-

ematically [23]. TPs are increasingly being utilised to verify the mechanical characteristics

of hardware and software designs where safety is critical (Clarke and Wing [23]). They often

contain a few well-known axioms and simple inference procedures [24].

Theorem proving is separated into two categories: interactive and automated [25]. Inter-

active theorem proving (ITP) may require some human input, which means that the computer

and a human user collaborate to generate a formal proof [26]. Harrison et al. [26] considered

ITP to be the best technique to formalise the majority of non-trivial theorems in mathematics or

the correctness of computer systems. This contrasts with automated theorem proving (ATP),

which is concerned with developing and applying computer programs that automate logical

deduction—the process through which facts eventually lead to conclusions. The research area
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of automated model discovery is concerned with developing computer algorithms that check

the consistency of a collection of statements [27].

The use of proof assistants is becoming increasingly more effective. When demonstrat-

ing the correctness of large software systems, particularly in concurrent scenarios, proofs are

difficult to check manually, and, therefore, the process requires software tools for assistance.

Utilising a theorem prover, users may ensure that their reasoning is accurate as proofs are writ-

ten in a precise syntax, and the tool verifies their correctness, ensuring that the reasoning is

valid.

Martin-Löf Type Theory (see Martin-Löf articles [28, 29]) is meant to provide a compre-

hensive method for formalising intuitionistic mathematics. The theory’s language differs from

that of classical logic and result in a completely constructive system in which propositions are

represented by types and their proofs are given as programs inhabiting these types.

There are several types of proof assistants, such as Agda (see Bove et al. article [30], Agda

Community [21], Stump Book [31]), Coq (see Coq Community [32], Paulin-Mohring arti-

cle [33]), Isabelle (see Paulson article [34]), Epigram (see McBride and McKinna article [35]),

Lean (see Lean Community [36]), and Minlog (see Mathematisches Institut Webpage [37]).

In the following Subsect. 2.2.1, we provide an overview of the basic features of the interactive

theorem prover Agda, and compare it with other proof assistants in order to justify the selection

of Agda in this thesis. We then provide automated tools that can be used in theorem provers in

Sect 2.2.1.8.

2.2.1 Introduction to the Proof Assistant Agda

The most recent version of Agda is Agda2, the version designed and introduced in a 2007

doctoral thesis by Ulf Norell [38], and further developed by a group known as the Agda devel-

opment team [21]. Agda (Agda Community [21], Danielsson and Norell [39]) is a dependently-

typed functional programming language and theorem prover based on intensional Martin-Löf

type theory (see Martin-Löf and Sambin [40]). Agda is very similar to Haskell in both spirit

and syntax (see Abel et al. article [41]); programmers familiar with Haskell should find Agda

easy to learn, as its main difference with Haskell is that Agda is based on dependent types, and

is also an interactive theorem prover. The Integrated Development Environment (IDE) for edit-

ing Agda programs is based on Emacs, mostly used for interactive editing and ratifying proofs

(see description in Bove et al. [42]). Without this interface, coding with dependent types would

be complicated. Agda simplifies this process with a specialised goal menu, enabling goals to
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identify required types, evaluate terms in their context, automatically solve them, refine goals,

and offer additional features.

In addition, Agda has coverage and termination checkers (see descriptions in Bove et

al. [30], Danielsson and Norell [39]), making it a consistent, complete programming language.

Without a termination and coverage checker, Agda is inconsistent. In Agda, program code can

be written gradually, meaning some parts of the program can remain unfinished, and program-

mers are able to obtain helpful information from Agda on filling in the parts of the code left

open step by step, supported by the type-checking tool. Another function of the type checker

is to detect incorrect proofs by detecting type errors, is used to display the current goals and

environment information associated with those goals. A tool called a coverage checker is used

to prove that the initial code of a defined function includes all possible existing cases in a

particular program, and the termination checker checks that all programs terminate.

Agda has inductive, coinductive types, and dependent function types.

This subsection presents the fundamental characteristics of Agda with examples and com-

pares Agda with other theorem provers.

2.2.1.1 Types and Pattern Matching

Types in Agda are defined using a variety of approaches, such as inductive types, coinductive

types, dependent function types, and record types, and there are also generalised definitions of

inductive–recursive and inductive–inductive. Pattern matching over algebraic data types is a

key idea in Agda, as it is in languages such as Haskell and ML (see Curry article [43]).

An illustrative example can taken from our defining of a data type called Compare, an

inductive type for classifying other types into three classes (less, equal, or greater). When

comparing two natural numbers, we use a compare function (compare : (n m : N) → Compare).

The definition of the Compare data type is as follows:

data Compare : Set where

less equal greater : Compare

The three constructors of this datatype correspond to the following three cases:

• If (n < m), ‘compare n m’ returns less;

• If (n ≡ m), ‘compare n m’ returns equal;

• If (n > m), ‘compare n m’ returns greater.
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The function compare is defined as follows:

compare : (n m : N) → Compare

compare zero zero = equal

compare zero (suc n) = less

compare (suc n) zero = greater

compare (suc n) (suc m) = compare n m

The compare function computes for two natural numbers n m whether one is equal, less, or

greater than. The function is defined by recursion on n and m, in which pattern matching,

another feature in Agda, is used to decide in which of the 4 cases we are, where the last one

is a recursive call. The termination checker checks that compare terminates. In this case, it

translates directly to extended (dependently typed and higher type) primitive recursion.

Another example is our defining of the inductive type of InstructionAll as follows:

data InstructionAll : Set where

opEqual opAdd opSub : InstructionAll

opVerify opCheckSig : InstructionAll

The definition above includes a new type called InstructionAll with 16 constructors, opEqual,

opAdd, opSub . . ., of which we show only the first 5. The elements of (InstructionAll) are used

in order to develop Bitcoin programs in Agda.

It is possible to define elements of Set directly:

BitcoinScript : Set

BitcoinScript = List InstructionAll

BitcoinScript defines the type of a Set as a list of instructions of type InstructionAll.

Agda is based on dependent types; (x : A) → B is the type of function which takes an

element x : A and maps it to an element of B, where B may depend on x. For instance, we

define the LookupResult data type, the dependent type containing three constructors: just a,

remove a and undefined. Here, just a denotes the assertion that a is a defined element of A,

remove a denotes the assertion that an element has been removed from the dictionary, and

undefined denotes the assertion that key being looked up is not assigned to an element. The

definition of LookupResult is as follows:

data LookupResult (A : Set) : Set where

just : A → LookupResult A
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deleted : A → LookupResult A

undefined : LookupResult A

After this, we define the delLookupResult function, which is the dependent function type and

use it to remove all elements from the dictionary:

delLookupResult : {A : Set} → LookupResult A → LookupResult A

delLookupResult (just x) = deleted x

delLookupResult (deleted x) = deleted x

delLookupResult undefined = undefined

An additional instance of a notable indexed data type is propositional equality, denoted

as x ≡ y (for x,y : A) and constructed with a proof of reflexivity (see description in Agda

Community [21]).

data _≡_ {a} {A : Set a} (x : A) : A → Set a where

refl : x ≡ x

The definition above implies that propositional equality is the least reflexive relation (reflexivity

is inherent in the definition of equality through the built-in constructor, refl).

Further, Agda supports the use of Arabic numbers. If we add the syntax ({-#

BUILTIN NATURAL N #-}), then we can define the following example using pattern matching:

a : N → N

a zero = 356

a 1 = 255

a (suc (suc x)) = 148

Record types can refer directly or indirectly to themselves via other types. If we add the

word coinductive, then an element of it can be defined using copattern matching by using full

recursion referring to itself, as long as in the chain from one element to itself, there is at

least one observation. This allows defining of coalgebras in Agda, infinite structures which do

not break normalisation in Agda (which means every term in Agda has finite normal formal),

because in order to unfold a term one needs to apply one of the observations (fields) of the

record type. For more details, see Abel et al. article [44]. In the following example, the record

type IO using coinductive. Note that we will explain the IO and IO’ record types in more detail

in Subsubsect. 2.2.1.7. The definition of the record type IO as follows [44]:
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record IO (i : Size) (A : Set) : Set where

coinductive

constructor delay

field

force : {j : Size< i} → IO’ j A

From the above definition, we have the name of constructor, which is delay to create IO values,

and use field, which contains the component of a record; in this case, we have one field: force,

which returns an element of type IO’.

Agda employs different levels of types, with the smallest level being called Set for his-

torical reasons [45, 46]. Apart from Set, we use the next higher type level Set1. Set1, which

encompasses all sets (via an explicit embedding), but as well as Set itself and types formed

from it, such as Set → Set. As an example, we define the dictionary structure (DictStruct),

which has a number of fields such as a dictionary (Dict), an empty dictionary (empty), an up-

date dictionary operation (update), a new dictionary operation (new), and a lookup function of

a specific element in the dictionary (lookup):

record DictStruct (A : Set) : Set1 where

constructor dictionaryStructure

field

Dict : Set

empty : Dict

update : (d : Dict)(i : N) (a : Maybe A) → Dict

new : Dict → N

lookup : (d : Dict)(i : N) → LookupResult A

open DictStruct public

From the above, we can define an element a : DictStruct by defining its fields, for example,

by determining its five components a .Dict, a .empty, a .update, a .new d, and a .lookup:

emptyDict1 : (A : Set) → DictStruct A

emptyDict1 A .Dict = Dict1 A

emptyDict1 A .empty = emptyDictVers1

emptyDict1 A .update = updateDictVers1
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emptyDict1 A .new d = d .length

emptyDict1 A .lookup = lookupDict1

Furthermore, the name of the constructor dictionaryStructure is optional. The constructor

allows us to define an element of a record type by applying it to its fields. For example, in the

case of the dictionaryStructure, we can define the empty dictionary as well as follows:

emptyDict2 : (A : Set) → DictStruct A

emptyDict2 A =

dictionaryStructure (Dict1 A) emptyDictVers1 updateDictVers1 length lookupDict1

2.2.1.2 Module System

The Agda module system (Agda Community [21]) functions as a mechanism designed to or-

ganise Agda code by partitioning it into distinct modules, potentially residing in separate files.

This feature supports independent type checking and facilitates the incorporation of param-

eterised modules. Moreover, it proves beneficial for structuring extensive software develop-

ments. In Agda, we use the keyword module followed by the module name and the keyword

where to introduce modules. It is crucial that the file name exactly matches the module name to

ensure proper functionality. To import another module, one can use the keyword open import,

which imports all elements from the module into the current scope. An illustration of this is:

module natCompare where

open import Data.Bool

open import Data.Empty

open import Data.Unit

open import Agda.Builtin.Nat using (_-_)

open import Data.Maybe hiding (_>>=_)

open import Data.Nat renaming (_≤_ to _≤’_)

atom : Bool → Set

atom true = >

atom false = ⊥

From this example, Agda also provides the capability to precisely manage the names in-

troduced into the scope. This can be achieved explicitly by specifying which names to open
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using the using keyword. For instance, one can employ syntax as ‘open import Agda.Builtin.Nat

using (_-_)’. Alternatively, names can be concealed using the hiding keyword, as demonstrated

in ‘open import Data.Maybe hiding (_>>=_)’. Moreover, renaming of names is possible using

the renaming keyword, as illustrated in ‘open import Data.Nat renaming (_≤_ to _≤’_)’.

2.2.1.3 Mix-fix Operations and Unicode

Agda supports both mix-fix and infix operations using (_) underscore to display the arguments

(see Danielsson and Norell article [39], Stump book [31], Agda Community [21]). The follow-

ing example defines the mix-fix with a constructor name:

record StateIO : Set where

constructor 〈_ledger,_initialAddr,_gas〉

field

ledger : Ledger

initialAddr : Address

gas : N

This has a constructor 〈_ledger,_initialAddr,_gas〉 which is a mix-fix (_ denotes the argument

positions of this function), and constructs from elements of Ledger, Address, N an element of

StateIO. The projection of a record type to its field (also called observation) is defined using

the dot notation, for instance if x : StateIO, then x .ledger : Ledger.

A further example is our defining of the mix-fix operation with a function name as follows:

if_then_else_ : {A : Set }→ Bool → A → A → A

if true then n else m = n

if false then n else m = m

Furthermore, Agda supports reserved keywords such as infixr and infixl (see Danielsson and

Norell article [39]), employed to specify operator precedence. For example:

infixl 6 _+_

infixl 7 _∗_
The line infixl 6 _+_ defines the ‘_+_’ as a left-associative operation with a precedence of 6.

For example, if we define this equation (a + b + c), it will be evaluated as ((a + b) + c). Line

infixl 7 _∗_ declares ‘∗’ as a left-associative operation with a precedence of 7. If we define

this equation (a ∗ b ∗ c), it will be parsed as ((a ∗ b) ∗ c)). Using left or right associative
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operations is essential to avoid ambiguities in complex expressions. Additionally, operators

with high numbers contain higher precedence, which will be evaluated before operators with

lower numbers. For example, if we define this equation (a ∗ b + c), it is evaluated as ((a ∗ b)

+ c).

Agda additionally supports Unicode symbols (see Stump book [31], Agda Commu-

nity [21]); for instance, the type of natural numbers is written as N.

2.2.1.4 Hidden Argument

Agda supports hidden arguments with syntax {x : A} → B – in this case, we can omit the

application of the function to its argument, if it can be inferred uniquely by the compiler.

If it cannot be inferred, one can provide the hidden argument explicitly, writing f {a} for the

application of f to hidden argument a. Nondependent function types are instances of dependent

types with no dependency, and we write A → B for the type of functions from A to B. In Agda

one writes ∀x → B f or (x : A)→ B and ∀{x} → B for {x : A}→ B, if A can be inferred uniquely

by Agda. Furthermore, _ denotes arguments which are not used, or can be inferred uniquely.

For example, we can define the identity function as follows:

id : {A : Set} → A → A

id x = x

In the above function, the argument A : Set is a hidden argument. Furthermore, we provide the

same definition as above, where the argument (A : Set) is explicit:

id : (A : Set) → A → A

id A x = x

2.2.1.5 Postulates

In Agda, it is possible to postulate a type or function by using the term postulate (Agda Commu-

nity [21]). In this case, the constant of the type is introduced without the use of any reduction

rule. The following postulation of a type and function represents an example of this:

postulate CompareTwoNumber : Set

postulate less equal greater : CompareTwoNumber

postulate _<_ : CompareTwoNumber → CompareTwoNumber → Set
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Here, we define CompareTwoNumbers of type Set and introduce three elements less, equal,

and greater of type CompareTwoNumbers. In addition, we introduce a binary relation _<_, and

assume the proof is correct for the binary relation. Note that in the presence of postulated types

Agda is inconsistent. The example is postulate myproof : ⊥. See the discussion in Subsect. 1.5.1

for more details.

2.2.1.6 Expressions (let, where, and with), and Mutual Definitions

In Agda, local definitions can be declared using let and where. The difference between these

is that let-expressions do not allow pattern matching or recursive functions, while where-

expressions do (Agda Community [21]). As an example for let-expression, we define the

computetwonumbers function, which computes two numbers, then returns the result, which

is 5. The definition is as follows:

computetwonumbers : N

computetwonumbers =

let

a : N

a = 2

b : N

b = 3

in a + b

We also define an example that uses where-expression as follows:

incresedBytwo : N → N

incresedBytwo n = incresedBytwoAux n

where

incresedBytwoAux : N → N

incresedBytwoAux zero = 2

incresedBytwoAux n = (n + 2)

Here, the result of incresedBytwo depends on the incresedBytwoAux function, so we use pattern

matching on the second function (incresedBytwoAux).

McBride and McKinna introduced the with-constructor [35] used in Agda. The constructor

with makes a case distinction on the result of an intermediate auxiliary expression by adding
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an additional argument to the left side of a function. For example, we define the compareN

function as follows:

compareN : N → N → N

compareN n m with (n > m)

... | false = m

... | true = n

The compareN function uses the with constructor and makes a case distinction on the con-

dition (n > m). Instead of repeating the left side of the function (compareN n m) , Agda allows

the use of ...|. The above function is an abbreviation for

compareN : N → N → N

compareN n m with (n > m)

compareN n m | false = m

compareN n m | true = n

Agda further allows for nested patterns and mutual definitions to specify multiple data

types or functions that depend on each other. For example, we define two mutually dependent

data types as follows:

mutual

data TypesOfError : Set where

strErr : String → TypesOfError

numErr : N → TypesOfError

data Error : Set where

error : TypesOfError → Error

The TypesOfError data type defines four constructors for different types of error messages in

the complex model. The strErr returns an error as a string message, and numErr returns an error

as a natural number. The Error data type has one constructor, which is an error (error). The

result of the error constructor depends on the TypesOfError data type.

We also define the predecessor function, which depends on the result of predecessorAux as

follows:

mutual

predecessor : N → N
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predecessor n = predecessorAux n

predecessorAux : N → N

predecessorAux zero = 0

predecessorAux (suc n) = n

2.2.1.7 Interface Library in Agda

The representation of interactive programs as the IO monad (see Moggi article [47]) in depen-

dent type theory was developed by Anton Setzer and Peter Hancock in a sequence of articles

[48, 49, 50, 51, 52] (see also Abel et al. article [44, Sect. 4]). All the Agda code in this section

was taken from Abel et al. [44, Sect. 4], which we adapted to the current version of Agda. An

interaction between a program and, for example, an operating system dealing with IO can be

created as a series of commands (elements of Command) issued by the program to the operating

system. For each of these commands, the operating system returns a response (an element of

Response). The type of Response depends on the command issued. As shown in Figure 2.1,

the interactive program gives a question to the world using a command, and the world answers

with a response. Then, the next command is issued depending on that response, and so on.

Program

World

CommandResponse

Figure 2.1: Interactive program (Setzer [1]).

Consequently, the interface (IOInterface) for the interaction consists of a set of commands

(Command) and a set of responses (Response), depending on the commands. The type of

interface (IOInterface) is defined in Agda as a record type. Since its fields include the type Set,

the type IOInterface of interfaces resides in the type level Set1 above Set. IOInterface has two

fields: Command of type Set and a field Response, which, depending on a command, returns

the set of responses [44]:

record IOInterface : Set1 where

field
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Command : Set

Response : Command → Set

In this thesis, the interactive programs will be console programs, which means the user’s input

is given by strings, and outputs are strings given as outputs on the screen. The interface Con-

soleCommand is used to deal with the console interface, which has two commands: getLine and

putStrLn. The command getLine : ConsoleCommand has no argument and reads a user input

line. The response returned by the system is the string typed in by the user; the definition is as

follows: ConsoleResponse getLine = String.

The command putStrLn has one argument of type String, namely the string to be printed, so the

definition is as follows: putStrLn : String → ConsoleCommand.

The response is just the information that the string has been printed (assume this command

always succeeds, so there is no error message). Thus, the information is the void information

provided by one element type Unit, defined in Agda as putStrLn s = Unit.

The complete definition is as follows [44]:

data ConsoleCommand : Set where

putStrLn : String → ConsoleCommand

getLine : ConsoleCommand

ConsoleResponse : ConsoleCommand → Set

ConsoleResponse (putStrLn s) = Unit

ConsoleResponse getLine = String

The console interface consoleI is the interface consisting of ConsoleCommand and ConsoleRe-

sponse [44]:

consoleI : IOInterface

consoleI .Command = ConsoleCommand

consoleI .Response = ConsoleResponse

Remark 2.1 (General idea of interfaces) In this thesis, we only use the console interface, but

the idea of the interface can be applied to other settings as well. For instance, we can have a

sensor and an activator in which we have a command that reads something from a sensor and a

command that activates. For example, in a railway system, a sensor could ask, ‘Is there a train
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in this section?’ An activator would say, ‘Put a barrier down’ or ‘Put a single to green.’ In the

case of checking for whether a train is there, the answer would be a boolean. In case of doing

something, it’s an element of Unit as before for the putStrLn command.

The set of interactive programs is defined generically for any IOInterface. One abstracts

from it, which was written in Agda by using the lines [44]:

module _

(I : IOInterface ) (let C = I .Command) (let R = I .Response)

This line unpacks the interface into its two commands: the set of commands (the set C) and the

response set R of the abstracted interface I.

One now defines the IO type of the interactive programs mutually recursively as a coinduc-

tive record IO together with the data type IO’. This definition is coinductive since interactive

programs can run infinite non-terminating sequences of interactions in principle. In accor-

dance with Moggi’s IO monad [47], interactive programs may as well terminate, returning an

element of type A. Here, one uses sized types, which allows defining elements of coalgebras in

a more generic way. Without sized types, the program would be rejected by Agda’s termination

checker even though they are productive (see Abel et al. article [44, Sect. 6] for a detailed ex-

planation of sized types). As a first approximation, the user may ignore all arguments referring

to the type Size in the following (most elements of type Size will be inferred automatically by

Agda when writing Agda code). One could view sized types as a form of gas, where a program

of size n is allowed to be unfolded at most n times; see remark 2.2 below regarding the fact that

this is an unsafe feature but does not affect any proofs.

Remark 2.2 (The issue of size types in Agda) For IO programs, we use size types. There

were problems in previous versions of Agda regarding size types that allowed to prove an

inconsistency. This has been fixed, but we are not aware of a theoretical analysis that proves

that, with the restrictions applied now by Agda, size types are consistent. Andreas Abel has,

in various presentations, talked about his project to develop a more formal semantics of sized

types, including at the Agda Implementors’ Meeting XXXVIII, Swansea, 16 May 2024 [53].

Size types only occur in our code in connection with creating simulators and do not affect any

proofs of our theorems. See as well the discussion in Subsect. 1.5.1.

IO has a field (or observation) force, which returns an element of type IO’. For convenience,

it also has a lazy constructor delay, which takes an element of IO’ j A for any j < i and constructs
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and element of IO i A, where the quantifier j is a hidden argument. Usually, when using it, one

just needs an element of IO’ j A and construct an element of IO i A and the solver for sized

types built into Agda will take care of the hidden sizes. More formally, the type of delay is

{i : Size}{A : Set} → (force : {j : Size< i} → IO’ j A) → IO i A

so it takes an element p into an element q of IO i A s.t. force q = p.

Elements of IO’ are either terminating programs return’ a, returning an element of type A, or

are of the form exec’ c p, which means they execute command c : C and continue if a response

r : R c is returned, executing program p r.

The full definition is as follows [44]:

record IO (i : Size) (A : Set) : Set where

coinductive

constructor delay

field

force : {j : Size< i} → IO’ j A

data IO’ (i : Size) (A : Set) : Set where

exec’ : (c : C) ( f : R c → IO i A) → IO’ i A

return’ : (a : A) → IO’ i A

Note that the elements of IO are not directly of the form (return’ a) nor (exec’ c p); instead, one

needs to apply observation .force to it to unfold it into one of these two choices. Otherwise,

an element of IO, representing an infinite sequence of interactions, will reduce to an infinite

term. In contrast, Agda requires each correctly typed term to reduce to a finite normal form.

To unfold an IO’ once, one needs to pay the price of applying .force once to it, breaking a

potentially infinite reduction sequence.

The monad operation bind (see Moggi article [47]) for the IO monad in order to combine

programs is defined as follows [44]:

_>>=’_ : ∀{i}{A B : Set}(m : IO’ I i A) (k : A → IO I (↑ i) B) → IO’ I i B

exec’ c f >>=’ k = exec’ c λ x → f x >>= k

return’ a >>=’ k = (k a) .force

_>>=_ : ∀{i}{A B : Set}(m : IO I i A) (k : A → IO I i B) → IO I i B

(m >>= k) .force = m .force >>=’ k
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The program p >>=’ q first executes program p. If it terminates, returning a : A, then it

continues executing q a. If that program terminates the overall program terminates as well,

returning the response returned when executing q a.

2.2.1.8 Comparing Agda with Other Theorem Provers

Agda (see Agda Community [21]) is designed to be both an interactive theorem prover and

a dependently typed programming language [39], as discussed in Sect. 2.2.1, therefore Agda

allows us to define programs and reason about them in the same system. This reduces the dan-

ger of producing errors when translating programs from a programming language to a theorem

prover, and allows execution of smart contracts in Agda directly, and provides the advantage

of proofs that are checkable by hand.

A framework that is comparable with Agda is the theorem-proving language Coq (see

Paulin-Mohring article [33]), which extends the calculus of constructions. However, there are

some key distinctions between Agda and Coq that suggest a different applicability for Agda.

For example, Agda supports inductive-recursive types, whereas Coq does not (see Bove et al.

article [30], Setzer article [5]). Agda also has a more flexible pattern matching system than

Coq, including support for copattern matching (see Bove et al. article [30]).

Another proof assistant to examine is Lean (see Lean Community [36]), introduced by

Leonardo de Moura in 2013. The main difference between Agda and Lean is that Lean fo-

cuses on formalising normal mathematics, emphasising computable mathematics rather than

constructive mathematics; according to the discussion in [54] “Lean 4 is designed for classical

mathematics in mind, and the developers don’t have any current plans to support constructive

mathematics”.

Isabelle is another proof assistant (see Paulson article [34]), initially developed at the Uni-

versities of Cambridge and Munich and considered a generic theorem prover that enables the

formalisation of mathematical formulae, offering tools for their proof in a logical calculus.

The final tools comparable to Agda are Epigram (McBride and Mckinna [35]) and

Idris [55]. Idris (see Brady article [55]) is not a proof assistant but a programming language

based on dependent types, introduced by Edwin Brady, and it has been developed for general-

purpose programming rather than theorem proving [55]. Epigram [35], which was developed

by McBride and Mckinna, is as well a dependently typed programming language.
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2.2.2 Integration of Automated Theorem Proving Tools into Interactive
Theorem Provers

Having identified the most relevant theorem provers as outlined in the current literature, it is

important to discuss the particular tools that have subsequently been developed to interact with

those specific theorems in order to facilitate their application. This section first examines what

has been attempted with respect to Agda, before making reference to tools primarily used with

Coq (see Paulin-Mohring article [33]) and Isabelle (see Paulson article [34]).

Lindblad et al. [56] developed a tool for automated theorem proving in Agda which was an

implementation of Martin-Löf’s intuitionistic type theory. They named the tool AgSy, which

is an abbreviation of Agda Synthesiser. The aim was to make interactive proving easier by

removing the need for the user to fill in tedious parts of a proof. The tool does not depend

on an external solver for the proof search, as both the problem and the partial solution are

expressed as Agda terms. It is integrated with the Agda proof assistant, which operates in the

Emacs environment. The user invokes the tool by placing the cursor on a metavariable and

typing (C-c C-a); in response AgSy inserts either a valid proof term or indicates that a solution

cannot be found. If the search space is exhausted or a specific number of steps have been

completed without finding a solution, the user is notified of failure. Lindblad et al. [56] have

tested AgSy on various examples, primarily in the domain of (functional) program verification.

Most of the cases they examined included induction, while some also included generalisation.

AgSy is written in Haskell and is distributed as part of the Agda system [57, 56].

AgSy has a number of limitations. Users have minimal options for customisation, AgSy

operates on the basis of estimation control, so it lacks the ability to prioritise specific hints, and

there is only one predefined search technique [56]. The Agda community [21] has identified

these and several other limitations, such as the fact that AgSy has universe subtyping, which

sometimes recommends solutions that Agda does not accept, and that primitive functions are

incompatible and copatterns are not permitted.

Agda has a reflection mechanism (Agda community [21]), which refers to the capacity to

translate program code into abstract syntax that can be processed in the same way as any other

data. The reflection library that exists in Agda is used for example by Kokke et al. [57] and

Van der Walt [58]. These authors describe how the reflection mechanism can be used to encode

non-trivial proof automation directly into the Agda language. They contend that their approach

has several key advantages, notably that this proof automation is carried out within Agda itself.

However, the principal limitation of these experimental approaches is that both systems need
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to repeat information about the types of values that Agda already has in its global context.

Furthermore, these systems need to reimplement many of the infrastructural parts of the Agda

implementation, such as unification. This limitation is described by Christiansen et al. [59].

Other attempts have been made to integrate Agda with automated theorem provers. The

first was presented by Foster et al. [60] with Waldmeister, an automated theorem prover that

was integrated into Agda. The work describes proof reconstruction in Agda for Waldmeister’s

pure equational logic derivations. The second attempt was by Sicard-Ramet al. [2]. They built

an Apia program for first-order logic written in Haskell. The example given in [2], as shown

in Figure 2.2, shows that first, the Agda code is created, which includes postulated proofs of

theorems, in this case, the commutativity of or, and then Agda comments are added instructing

the Apia tool to prove the postulated theorems. The code is then checked in Agda, which does

not verify the postulates.

Figure 2.2: Agda code for the Apia tool. Source [2]

Finally, the Apia tool is run as shown in Figure2.3, which then checks whether the proof

obligations added are provable (in this example, it is proved). The tool allows online ATP tool

use.

Figure 2.3: Commands to run the Apia tool. Source [2]

Kanso and Setzer [61] introduced a different method, which works only for theorems in a

language with a decidable decision procedure, such as SAT solving. First, a data type repre-

senting the formulas in question is defined (e.g. satisfiability problem) along with a decision
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procedure (|= : Formula → Bool), which decides whether a formula φ is valid. This decision

problem is not expected to be efficient, so it is not feasible to run in Agda in most cases. It

can then be proven that if the decision procedure returns true, the formula φ is valid. Kanso

and Setzer [61] extended the theorem prover Agda to have a flexible BUILTIN mechanism.

This BUILTIN mechanism which replaces the execution of a given function by a function

implemented natively in Haskell, provided the arguments are closed terms. Such BUILTIN

mechanisms exist already, for instance, for natural numbers, where multiplication and addition

are replaced by executing the standard implementation of those operations in Haskell. Kanso

and Setzer [61] now added such a BUILTIN mechanism for the decision procedure (check φ ),

replacing a call to the decision procedure for a closed argument by a call to a SAT solver. This

is consistent, provided the SAT solver is sound

soundness : (φ → Formula) → check φ == true → |= φ

because it will return the same answer as the Agda implementation. Assume now a formula φ

represented as an element of the data type formulas φ , (φ̂ ), and assume it is valid. Then (check

φ == true) therefore,

reflexivity : check φ == true

therefore,

soundness (φ reflexivity) : |= φ

Prieto-Cubides et al. [62] introduced another approach for which Athena was used as a tool

for reconstructing Haskell proofs. They first converted TSTP derivations that are produced by

Metis (automated theorem prover) and then used Athena to translate these derivations into

proof terms in Agda. Finally, they used type-checking in Agda to check proof-terms that were

created by Athena.

There are other methods that use mathematical systems, such as the Interactive Mathe-

matical Proof System (IMPS) developed by Farmer et al. [63]. Betzendahl et al. [64] have

used IMPS by translating into Open Mathematical Documents/Modular Mathematical Theo-

ries (OMDoc/MMT) and verifying the output by type-checking with their implementation of

LUTINS (stand for Logic of Undefined Terms for Inference in a Natural Style).

A common method of automation in theorem provers involves the use of hammers to prove

lemmas. According to Czajka et al. [65], hammers are tools that are used in a proof assistant

which can be utilised with external ATP to find proofs of conjectures that are provided by the

user. Blanchette et al. [66] describe the application of such hammers and claim that they can
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automatically discover proofs for 70% of the Isabelle Judgment Day objectives and 40% of the

Mizar and Flyspeck lemmas.

Bonichon et al. [67] introduced Zenon, an ATP based on the tableau technique capable of

producing OCaml code for execution as well as Coq code for verification and certification. In

Zenon, proofs may be generated directly, which can then be reinserted into the Coq specifica-

tions created by Focal. Fleury et al. [68] enhanced the efficiency of Sledgehammer, which is a

part of Isabelle utilised to prove the theorems automatically. They added to the Sledgehammer

by integrating Zipperposition, an automated theorem for the first order, and then reconstructed

Leo-II and Satallax, which are higher-order automated theorems, before adding an SMT solver

veriT. This method can help the Sledgehammer tool find the proof.

Benzmüller et al. [69] used the Leo-II tool, which is an ATP for classical higher-order

logic that can save on user effort in finding proofs, but is an external tool the researchers use

with the Isabelle/HOL system. The major contribution of Böhme [70] was both the transla-

tion of Isabelle’s higher-order logic to SMT Solver’s first-order logic and an efficient checker

for proofs discovered by the solver Z3. Böhme discovered that many theorems can now be

proven automatically and quickly, and developed a new tool and technique for ensuring the

functional correctness of C code when used in combination with the VCC automated program

verifier. Böhme also showed the applicability for the implementation of real-world tree and

graph algorithms.

2.3 Blockchain Technology

Blockchain is a decentralised and distributed ledger of transactions used to maintain an ex-

panding set of records [71, 72]. The decentralisation of blockchain technology means it en-

ables interactions between users in a trustworthy environment without the need for a third

party. In addition, blockchain operates through immutable peer-to-peer technology in a trust-

less environment, which means information recorded in blockchain is secured and can not be

modified or destroyed [73]. This improved security is possible because blockchain uses public

key architecture to guard against malicious attempts to modify information. The transparency

feature of blockchain [74] ensures a high level of openness by sharing subtleties between all

members and clients engaged with those exchanges, which means each transaction is recorded

on the blockchain, and the data from these records is available to all the participants in this

blockchain, enabling them to track their transactions.
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Blockchain is not limited to financial sectors and may be applied to advantage in areas

such as health care and the Internet of Things (IoT), as it allows for data to be shared glob-

ally and with a high level of trust [71, 75, 72]. Blockchain technology can help businesses,

governments, and logistic systems to be more reliable, trustworthy, and safe.

There are three types of blockchain: public, private, and consortium (see Viriyasitavat et

al. article [76], McBee et al. article [77]). A public blockchain enables anyone to participate in

validating transactions and mining [78]. There are many examples of cryptocurrencies that use

a public blockchain, such as Bitcoin and Ethereum (see Gad et al. article [79]). By contrast,

a private blockchain is not open to everybody; only a specific group has the authority to join

it. This means the consensus algorithm controlled on a private blockchain is controlled by a

single entity [80]. An example of a private blockchain is Hyperledger Fabric (see Yang et al.

article [81]). A consortium blockchain is managed by a group of organisations that are accepted

via rules and permits for access, so the consensus algorithm in a consortium blockchain is

controlled by a single entity or multiple entities in order to verify transactions [82]. Examples

of this are Ripple, Corda, and R3 (see Gad et al. article [79]).

A blockchain consists of blocks, and each block contains a block header and block

body [83]. According to Zheng et al. [83] and Gad et al. [79], the block header of Bitcoin

consists of the following:

• The “version of block” is used to track any update or modification in the Blockchain

protocol.

• The “hash of Merkle tree root”, which consists of all transaction hashes in this block.

• “Timestamp”, which contains the time of the block’s creation.

• “nBits” represents the difficulty target for miners to solve the mathematical puzzle for a

block.

• “Nonce”, which is a counter, and the size of this field is four bytes. This field starts from

0 and increases with each hash computation.

• The hash of the “parent block” is used to link the hash of a current block with the previous

hash block.

Transactions and transactions counter are the components that form the block body [83].
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According to Mingxiao et al. [84], in the blockchain, there are a variety of algorithms for

reaching consensus, such as Proof of Work (PoW) and Proof of Stake (PoS). PoW is used in

Bitcoin, and PoS is used in Ethereum; we will explain PoW in Subsubsect. 2.3.1.1 and PoS

in Subsubsect. 2.3.1.2. According to Aggarwal et al. [85], the consensus mechanisms are de-

fined as a fault-tolerant way for dispersed nodes to agree on a network state. These protocols

ensure that all nodes are in synchronisation and agree on valid and added transactions to the

blockchain. Their role is to guarantee the validity and authenticity of transactions. Mingxiao et

al. [84] explained that the aim of using the consensus algorithms is to solve the issue of double-

spending and the Byzantine Generals Problem in blockchain. The term double-spending refers

to the attempt to use the same amount of a currency simultaneously in two different transac-

tions. The Byzantine Generals Problem is a distributed system issue. Peer-to-peer connections

can be used to deliver data between various nodes, but some nodes may be deliberately tar-

geted, resulting in alterations to the content of the communication. Therefore, normal nodes

must be able to distinguish manipulated information and produce consistent results with other

normal nodes. This necessitates the development of a consensus algorithm, which has been the

subject of investigations in distributed systems for many years.

In the following subsection, we provide two examples of applications on the blockchain,

namely cryptocurrencies in Subsect. 2.3.1 and smart contracts in Subsect. 2.3.2.

2.3.1 Cryptocurrency

Cryptocurrency is a major application of blockchain technology. It is a form of digital currency

designed to enable transactions via a decentralised computer network, distinct from centralised

organisations such as banks and governments. This decentralised system verifies the financial

assertions of transaction participants, eliminating the need for traditional intermediaries such

as banks in the process of transferring money between two participants [86, 87].

The two most prominent examples of cryptocurrencies by Market Capitalisation at the time

of writing [88] are Bitcoin and Ethereum.

This section presents an overview of these cryptocurrencies in two parts; in Subsub-

sect. 2.3.1.1, we will present a brief overview of Bitcoin. Then, in Subsubsect. 2.3.1.2, we

will introduce a short overview of Ethereum.
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2.3.1.1 Bitcoin

With one of the primary applications for blockchain technology residing in the field of cryp-

tocurrency, it is necessary to provide a brief overview of the development and main features of

the most widely used and well-known of these currencies, Bitcoin. Cryptocurrencies such as

Bitcoin are decentralised digital assets that are protected by encryption. Until now, they have

all been founded by private individuals, groups, or businesses [89].

Bitcoin is a decentralised cryptocurrency proposed by Satoshi Nakamoto in 2008 [3]. Bit-

coin has experienced a huge increase in popularity and has generated significant profits for

its early adopters [90]. Bitcoin is a platform based on advanced encryption and is backed by a

peer-to-peer global network. It permits two individuals to carry out a financial transaction with-

out the involvement of a third party and without the mediation costs of internet commerce [3].

Bitcoin is based on public-key cryptography [91]. Anyone may establish a public key and an

associated private key using standard public-private key cryptography, which is widely used.

Public keys are intended for widespread distribution, and messages encrypted in this way may

be decrypted solely by someone who has the matching private key, allowing anybody to en-

crypt a message that is only accessible to the designated recipient. Likewise, communications

encrypted with a private key may only be decrypted with the matching public key, allowing a

designated sender to generate a simple message [91]. Public and private keys are discussed in

Subsubsect. 2.3.1.1.1.

In this section, we provide a brief introduction to a transaction in Bitcoin in Subsubsub-

sect. 2.3.1.1.1 and a type of consensus mechanism used in Bitcoin in Subsubsubsect. 2.3.1.1.2.

Subsubsubsect. 2.3.1.1.3 illustrates a hash function in Bitcoin, explains a Merkle tree in Sub-

subsubsect. 2.3.1.1.4, and types of vulnerabilities and attacks that may happen in Bitcoin are

described in Subsubsubsect. 2.3.1.1.5.

2.3.1.1.1 Transactions in Bitcoin

Each transaction in Bitcoin is identified by its hash value signed from a prior transaction,

containing at least one input and output and the public key is used for the new holder [92, 3, 93].

Each transaction contains private and public keys. The transaction is signed with the private

key, while the public key is used to verify the transaction [94], as is displayed in Figure 2.4. The

public key is held within the wallet. It is for digital use online, in software, or hardware. The

output of each transaction can be utilised only once as an input in the whole blockchain. For

example, when a user wishes to send Bitcoins, they specify a recipient address and the quantity
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to be sent to that address in the output to prevent double-spending [94, 3]. In order to lock a

coin, the locking script is provided by the sender of a transaction to lock the transaction, and

this is called scriptPubKey. To unlock coins, the unlocking script is provided by the recipient,

and this is known as scriptSig.
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Figure 2.4: Bitcoin transaction structure in blockchain. Source [3]

Bitcoin uses an unspent transaction output (UTXO) model to keep records within the

blockchain sphere. This model shows how transactions are tracked and verified. In the UTXO

model, each transaction consumes previous UTXOs as inputs and creates new outputs that can

be spent in future transactions. When a user makes a Bitcoin transaction, their wallet col-

lects the necessary UTXOs to cover the transaction amount, including fees. The wallet holds

a record of the transactions that still need to be spent, along with the relevant addresses held

by the wallet holder. The sum of these unspent transactions constitutes the wallet’s balance,

providing a clear and transparent accounting method. Therefore, if the transaction’s output has

yet to be spent, it is referred to as a UTXO, and if it has been used in a later transaction, it is

referred to as a spent transaction output (STXO)(see Vujičić et al. article [95], Delgado-Segura

article [96]). For example, as Figure 2.5 show first, Transaction 1 occurred with UTXOs, 1

BTC, 5.9 BTC, and 4 BTC. Then, Transaction 2 occurred, which used the second transaction

output of Transaction 1 and had two outputs 1 BTC and 4.8 BTC. Next, Transaction 3 followed

the same structure as Transaction 2. Transaction 3 used the third transaction output of Trans-

action 1. Finally, the outputs of Transactions 2 and 3 then become the inputs for Transaction 4.

Transaction 4 had two inputs, 4.8 BTC and 1 BTC, and three UTXOs, 2 BTC, 2.8 BTC, and 1

BTC. Overall, we have a transaction sequence of four transactions with six UTXOs: 1 BTC, 1

BTC, 2 BTC, 2.8 BTC, 1 BTC, and 2.9 BTC.
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Figure 2.5: Example of the unspent transaction outputs (UTXO) model.

2.3.1.1.2 Proof of Work in Bitcoin

Mingxiao et al. article [84] stated that the consensus mechanism employed in Bitcoin is known

as PoW. The central concept of this is to distribute accounting rights and rewards among the

nodes based on competition for hashing power. The individual nodes determine the specific

answer to a mathematical problem based on the input from the previous block. The first node to

answer constructs the next block and is awarded a specified number of Bitcoin as a reward. For

the Bitcoin blockchain, Nakamoto used HashCash to create this mathematical problem. Nick

et al. [97] stated that there is a block reward for agents who solve these mathematical puzzles,

at the time of writing 6.25 BTC, and the block reward halves approximately every 4 years [98]

(see the remark in 2.3). The process of searching for and finding solutions is called mining,

and those who carry out this process are called miners. Users can pay a fee to the miner whose

block approves their transaction.

The calculating stages for the Bitcoin mining algorithm are multiple [84]. The first step is to

determine the level of difficulty, an amount which the system constantly changes depending on

the network’s overall hash function when each 2016 block is created, explained in more detail

in Subsubsubsect. 2.3.1.1.3. The second step is to select from the pool of pending transactions

a set of transactions consistent with the previous blocks to be included in the current block.

In this phase, as well, the coinbase transaction is included. The third step is to calculate the

Merkle root for these transactions, and extra information like the block version number, the

preceding block’s 256-bit hash, current target hash value, nonce, and other important data are

included. We will explain the structure of the Merkle tree in Subsubsubsect. 2.3.1.1.4. The
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fourth step is to solve the mining problem. In this phase, one tries different nonces (the nonce

iterated between 0 and 232) until one finds one that hashes to a value (the double SHA256 hash

value mentioned in the third step) below the difficulty target. If one finds one, then one can

publish the block (provided nobody else has done it already), and the process restarts from the

first step. The last step is if one has tried all nonces and not found a hash, then one can change

“the extra nonce in the coinbase transaction by incrementing by one” (see Narayanan et al.

book [99, Sect. 5.1]) and try again (it returns to the third step).

Remark 2.3 The rewards system for Bitcoin is reduced every 4 years. The reward was 50

BTC in 2009, and after the first halving, it decreased to 25 BTC in 2012. Then, in the second

halving, it became 12.5 BTC in 2016. In the third halving, it became 6.25 in 2020. The

fourth halving happened on April 20, 2024, and was reduced to 3.125 BTC [100]. In 2032, the

Bitcoin reward will be less than 1 BTC [101, 102, 103]. By 2140, the date when mining stops,

the miner’s reward will be less than 1 Satochi1 (about 0.5 Satochis). Mining stops when the

reward is too low to account for [104].

2.3.1.1.3 Hash Function

The difficult mathematical problem solved by Bitcoin miners is known as the hash function.

Narayanan et al. [99] explained the hash function as a concept which is used to find data in

a database. Hash functions are “collision-free”, meaning finding matching hashes for two

separate messages is extremely unlikely. As a result, the blocks’ hashes are used to identify

them, which serves the purposes of identification and verification of integrity. Narayanan et

al. [99] noted that a hash function has the following properties:

1. Its input can be any length of string.

2. It generates a fixed-size output.

3. It can be computed efficiently. This means the hash function’s output can be determined

in a reasonable period of time for a given input string. In more technical terms, comput-

ing the hash of an n-bit string should have a running time that is linear, or O(n).

4. To ensure cryptographic security, a cryptographic hash function must also possess the

following three characteristics:

1Satochi is the smallest unit of Bitcoin currency.

38



2.3. Blockchain Technology

a) Collision-resistance. It is infeasible to find two different values, x and y, which

hash to the same value. The precise definition is as follows [99, Sect. 1.1]:

“Collision resistance: A hash function H is said to be collision-resistant if it is

infeasible to find two values, x and y, such that x = y, yet H(x) = H(y)”.

b) Hiding. To find an x which hashes to a given y is difficult, even if one knows part

of it. More precisely, given a small r it is infeasible to find an x such that the hash

of r++x is y [99, Sect. 1.1]:

“Hiding: A hash function H is hiding if: when a secret value r is chosen from

a probability distribution that has high min-entropy, then given H(r ++x), it is

infeasible to find x”.2

c) Puzzle-friendliness means roughly that, for given small k, it is infeasible to find an

x and y such that the hash of k++x is y. More precisely [99, Sect. 1.1]:

“Puzzle-friendliness: A hash function H is said to be puzzle-friendly if for every

possible n-bit output value y, if k is chosen from a distribution with high min-

entropy, then it is infeasible to find x that H(k++x) = y in time significantly less

than 2n”.

The cryptographic hash function is used both for mining and when certifying certain data

(such as being used in Merkle trees, for pointing to the previous block, and for putting

certificates for data on the blockchain).

The hash of each block’s parent is included in the header of each block, forming a chain that

extends back to the first block, resulting in a succession of hashes. Furthermore, a hash table

is used, a methodically structured indexing mechanism that enhances search efficiency and

stores the hash values [99]. Vujičić et al. [95] noted that the SHA-256 hash function is the one

specifically utilised in the Bitcoin protocol.

2.3.1.1.4 Merkle Tree

The Merkle tree is used to ensure that data blocks received from other participants in a peer-

to-peer network have not been tampered with or modified. Narayanan et al. [99] explained that

the block of Bitcoin that comprises a Merkle tree is a kind of binary tree that contains a number

of leaf nodes, each of which has a root that is a hash of its children. The tree is known as a

hashing process; a system in the blockchain used to obtain what is known as a hash value [105].
2Note that in [99, Sect. 1.1], we replaced ‖ by ++ to make it more readable.
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Transaction hashes are totalled to produce a Merkle tree in a single block. These blocks are

connected, as shown in Figure 2.6. The hashing process is carried out for all transactions in

order to generate a final hash figure. For example, if there are four transactions within a Bitcoin

block, termed TXA, TXB, TXC, and TXD, SHA-256 will be used to hash each in turn. This

follows a process whereby TXA and TXB are combined, as are TXC and TXD, to produce one

final hash. This is known as a fixed-length hash and is called the Merkle root.

Merkle tree

Hash AB Hash CD

Hash
A

Hash
B

Hash
C

Hash
D

TXA TXB TXC TXD

Merkle
branches

Leaf
nodes

Figure 2.6: Example of hashing Merkle tree. Source [4]

2.3.1.1.5 Types of Bitcoin Vulnerabilities and Attacks

Bitcoin is vulnerable to attack like other digital currencies. There are many types of attacks

that are prevented in Bitcoin, such as double-spending (see Conti article [106], Mingxiao et al.

article [84]) and Sybil attacks (see Conti article [106]). These types of attacks are prevented by

the PoW consensus mechanism. Table 2.1 presents more details on the nature of these attacks.

Attack
Main
Objective

Description

Double-
spending
(see Conti
article [106],
Mingxiao et
al.
article [84])

Merchants or
vendors

Using the same Bitcoin in different transactions. This can
happen when two alternative histories of the blockchain are
created. It is spent in both histories, and benefits can be
cashed in using both transactions. Ultimately only one of the
two chains will be maintained, so it is important for an at-
tacker to cash in before that other chain disappears (see Conti
article [106], Mingxiao et al. article [84]).
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Sybil attack
(see Conti
article [106],
Douceur
article [107])

Bitcoin
network, users
and miners

Sybil attack occurs when one creates lots of different virtual
entities, which is easy to do on the Internet. Therefore, voting
loses its relevance because each real entity can create as many
fake identities as wanted.

Table 2.1: Types of Attacks Prevented in Bitcoin.

Other types, which are not prevented by Bitcoin, such as Eclipse and mining attacks (see

Conti article [106], Ye et al. article [108]) (e.g a 51% attack). The following table 2.2 describes

examples of these attacks in more detail.

Attack
Main

Objective
Description

Tampering

(see Conti

article [106])

Network,

users and

miners

Miners broadcast will generate blocks after mining them in

a Bitcoin network. Then, the network broadcasts new trans-

actions and thinks all messages will reach other nodes fast.

In this case, an attacker might take advantage and cause de-

lays in broadcast packets by generating network congestion or

sending many requests to all of a victim node’s ports [106].

Eclipse

attack (see

Conti

article [106],

Heilman et

al.

article [109])

users and

miners

On the Bitcoin peer-to-peer network, where the hacker ma-

nipulates the victim by controlling a sufficient number of IP

addresses through blocking or diverting the IP address that

the victim connects with the attacker to and from the victim’s

Bitcoin node. This attack consists of two types: (1) infras-

tructure attacks that target the internet service provider and

(2) bot attacks, where the attacker can tamper with addresses

within a specific range, for example, in organisations contain-

ing a specific set of IP addresses [106, 109]).

51% attack

(see Conti

article [106],

Ye et al.

article [108],

Bradbury

article [110])

Bitcoin

network, users

and miners

A single miner (adversary) or group of miners (adversaries)

control more than 50% of the hash rate (mining power) [106,

108, 110]). This means that one can, for instance, create an

alternative history of the Blockchain and use it for double-

spending.
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Table 2.2: Potential Attacks on Bitcoin System.

2.3.1.2 Ethereum

Ethereum is the first of the second generation of cryptocurrencies and the most prominent

example of a blockchain platform which fully supports smart contracts (smart contracts are

explained in detail in Subsect. 2.3.2. Vitalik Buterin [111, 112] launched Ethereum in 2013

with the intention of overcoming several shortcomings of Bitcoin’s scripting language (Sub-

subsect. 2.3.2.1, describes the script language in more detail).

In the past, Ethereum was based on a consensus mechanism known as Proof-of-Work (see

Buterin white paper [111], but it is now built on Proof-of-Stake, which uses less energy and

is more suited for adopting new scaling solutions (Ethereum Community [113]). Validators

are compensated in cryptocurrency for their labour in processing transactions, executing smart

contracts and contributing to the creation of blocks [114].

The following section defines Proof-of-Stake, which is the consensus mechanism used in

Ethereum.

2.3.1.2.1 Proof of Stake in Ethereum

PoS is a method of proving that validators have added value to the network, which can be lost

if they behave dishonestly. In PoS, validators verify blocks by depositing some ether into an

Ethereum smart contract. This approach differs from PoW, where the validation is based on

invested computational power to vote. Meanwhile, PoS depends on staking a certain amount of

ether to vote. In PoS, validators ensure that new blocks transmitted over the network are honest

and periodically produce and propagate new blocks. If a validator tries to cheat the network,

such as by proposing many blocks when only one is required, their stake ether may be partially

or completely lost. A validator that contributes correctly to validation gets a reward [113].

To receive awards, validators must satisfy three requirements: they must vote consistently

with the majority of other validators, they must propose blocks, and they must engage in a

committee [115].

Validators must spend 32 ether in a smart contract. PoS employs epochs and slots to man-

age consensus rounds. Each epoch consists of 32 slots, with each slot lasting 12 seconds. For

each epoch, the protocol selects a set of 128 validators to form a committee. Within this com-

mittee, one validator is randomly chosen for each slot to verify and broadcast a new block to
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the Ethereum network. The remaining validators in the committee provide attestations, con-

firming that the proposed block and its transactions adhere to the consensus rules. Once this is

done, two-thirds of the validator network carefully finalises the epochs [113, 116, 117]).

2.3.2 Smart Contracts

A smart contract is an application on the blockchain initially suggested by Nick Szabo in

1990 [118]. A smart contract is a program that is automatically executed when the agreement

conditions between involved parties, as recorded on the blockchain, are fulfilled [118, 119]).

By coding their terms, smart contracts automate agreements. When all conditions are met, the

code enforces the agreement automatically, removing the need for a third party. This elimi-

nates fraud, error, and processing time. When smart contracts are kept on a blockchain, trust is

assured since the blockchain forbids any changes or tampering with the smart contract’s con-

ditions [120], provided the blockchain is not changed by e.g. a 51% attack. Smart contracts

and blockchain technology have the potential to speed up transactions while also making them

transparent and secure without third parties [121].

The simplest example of a smart contract on the blockchain decentralised network is the

buying and selling of products and services: buyers deposit money on the blockchain for sell-

ers. The funds are not paid until the buyer signs again after receiving the goods. Customers are

reimbursed if items are late [5].

Smart contracts provide a number of benefits over conventional contracts. The first advan-

tage is lower risk because blockchains are immutable, so smart contracts, once created, cannot

be changed. Moreover, all transactions are traceable and auditable across the entire distributed

system. They are traceable because they are recorded on the immutable blockchain and au-

ditable by miners (when proof of work is used) or validators (in the case of proof of stake).

Consequently, illicit activity such as financial fraud is significantly reduced [122, 120]. The

second advantage is that administrative and service expenses can be managed more efficiently

without relying on a central broker or mediator. Blockchains ensure confidence in the system

via a process of distributed consensus [120]. Additionally, blockchain-based smart contracts

provide significant levels of transparency as all participants in the blockchain have access to

the blockchain ledger and smart contract logic [123].

In the next subsections, we explain the language of smart contracts used in Bitcoin in

Subsubsect. 2.3.2.1 and Ethereum in Subsubsect. 2.3.2.2. Subsubsect. 2.3.2.3 lists common

types of smart contract vulnerabilities, and Subsubsect. 2.3.2.4 discusses two ways used to
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verify smart contracts.

2.3.2.1 Bitcoin Smart Contracts Language

The language of smart contracts in Bitcoin is SCRIPT, which is stack-based, inspired by the

programming language Forth ( see Elizabeth et al. article [124]), with the stack being the only

memory available. Elements on the stack are byte vectors, which we represent as natural num-

bers. Values on the stack are also interpreted as truth values, any value >0 will be interpreted

as true, and any other value as false. SCRIPT has its own set of commands called opcodes,

which manipulate the stack, similar to machine instructions, although some instructions have

more complex behaviour. The instructions of SCRIPT are executed in sequence. In the case of

conditionals, the execution of instructions might be ignored until the end of an if- or else-case

has been reached, otherwise the script is executed from left to right. Execution of instruc-

tions might fail, in which case the execution of the script is aborted. Turing-complete is not

achieved for Bitcoin script: it cannot execute loops, jumps, or complicated control structures to

simplify and secure the transaction verification process. [125, 126]. A full list of instructions

and their meaning can be found in Bitcoin Community [127], which is the defacto specification

of SCRIPT.

The operational semantics of local instructions are defined in chapter 4 and non-local in-

structions are defined in chapter 5. Execution of all opcodes fails if there are not sufficiently

many elements on the stack to perform the operation in question. We introduce here a number

of opcodes relevant to this thesis, in particular for chapters 4 and 5. First, we define local

instructions, which are executed independently of the context [127] as follows:

• OP_PUSH n will push the number n into the stack.

• OP_DUP duplicates the top element of the stack.

• OP_HASH takes the top item of the stack and replaces it with its hash.

• OP_EQUAL pops the top two elements in the stack and checks whether they are equal or

not, pushing the Boolean result on the stack.

• OP_VERIFY will, if the top element is not false, remove it; if it is false, OP_VERIFY

will abort the execution of the script. When using a locking script, abortion means that

unlocking fails.
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• OP_CHECKSIG pops two elements from the stack and checks whether they form a cor-

rect pair of a signature and a public key signing a serialised message obtained from the

selected input and all outputs of the transaction, and pushes the Boolean result on the

stack.

• OP_CHECKLOCKTIMEVERIFY will check whether the time (measured as the num- ber

of blocks since the beginning of Bitcoin) is less than the current time; if not, it will abort

execution.

• OP_CHECKMULTISIG is the multisig instruction, discussed in detail in Subsub-

sect. 4.5.2, chapter 4.

• There are a number of opcodes for pushing byte vectors of different lengths onto the

stack. We write <number> for the opcode together with arguments pushing number
onto the stack. In Agda, we will have one instruction opPush n, which pushes the number

n on the stack.

As well as local instructions, Scripts can contain control flow statements (non-local instruc-

tions). Examples of these are conditionals where the if case is executed only if the condition is

true and the else case is executed only if the if condition is not true [127], as follows:

• OP_IF will, if the condition on top of the stack is not false, remove that element and

continue execution until it reaches a matching OP_ElSE or OP_ENDIF. If the condition

on top of the stack is false, then it will skip executing all instructions until it reaches an

OP_ELSE or OP_ENDIF. OP_IF supports nested OP_IF/OP_ELSE, as follows:

OP_IF

ifcaseA

OP_ELSE

OP_IF

ifcaseB

OP_ELSE

elsecaseB

OP_ENDIF

OP_ENDIF

The script above works in this wasy as follows: The first OP_IF checks whether the

stack is non-empty and confirms that the top element is not false. If that is the case, it
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will execute ifcaseA, skip the elsecaseB, and terminate the program. If the top element is

false, it will skip to the OP_ELSE and check the OP_IF, which checks whether the stack

(with the false element removed) is non-empty and not false. If the stack is not false,

it will execute ifcaseB, then skip the else case and terminate. If it is false, it will jump

to the second OP_ELSE, execute elsecaseB, and terminate. If the stack in the above

situations was empty, execution aborts with an error.

• OP_ELSE should occur after a matching OP_IF. If the condition was true, everything

between the OP_ELSE and a matching OP_ENDIF is skipped. If it was false, everything

between the OP_ELSE and a matching OP_ENDIF is executed.

• OP_ENDIF terminates a conditional starting with OP_IF.

• OP_NOTIF operates like OP_IF but interchanges the true and false cases.

We illustrate the execution of the local instructions (non-conditionals) Bitcoin script by the

following simple example:

<2> <3> OP_ADD <5> OP_EQUAL

As shown in Figure 2.7, the stack evolves as follows:

2
2

3
5

5

5

5

5 1
or

True

Initial
state

Push (2) Push (3) OP_
ADD

Push (5) OP_
EQUAL

Push the
result

Figure 2.7: Simple example of local instructions.

In this example, we start with an empty stack. After pushing 2, 3 on the stack (instructions

<2> <3>), OP_ADD adds the two top elements together. After pushing 5 on the stack,

OP_EQUAL checks whether the two top elements are equal, and returns in this case 1 for true.

Control flow operations are executed as follows:

• If the value at the top of the stack is non-zero, after an OP_IF the set of consecutive

opcodes until the next matching OP_ELSE or OP_ENDIF will be executed; in case this

is an OP_ELSE, all the following instructions until the next matching OP_ENDIF will

be ignored.
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• In case the top element is 0, all instructions until the next matching OP_ELSE or

OP_ENDIF will be ignored; in case this is an OP_ELSE, all the following instructions

until the next matching OP_ENDIF will be executed.

• In case of nested if then else, the complete conditional from OP_IF to OP_ENDIF is

either executed or ignored depending on whether it occurred within an if-case or else-

case to be executed.

• OP_NOTIF behaves the same as OP_IF but executing the if-case in case of top element

0 and the else-case in case of top element, not 0.

Consider the following example:

OP_IF <Alice’s PubKey> OP_CHECKSIG

OP_ELSE <Bob’s PubKey> OP_CHECKSIG OP_ENDIF

Assume the stack contains [ 1, sig ]. Then the if-case will be executed, pushing Alice’s public

key on the stack. The script succeeds if sig is a signature for the transaction using Alice’s

private key. If the stack contained [ 0, sig ], the same would be done using Bob’s public key.

In Bitcoin, we consider the interplay between a locking script scriptPubKey and an unlock-

ing script scriptSig.3 The locking script is provided by the sender of a transaction to lock the

transaction, and the unlocking script is provided by the recipient to unlock it.

The unlocking script pushes the data required to unlock the transaction on the stack, and

the locking script then checks whether the stack contains the required data. Therefore, the

unlocking script is executed first, followed by the locking script. 4

The main example in this thesis is the P2PKH script consisting of the following locking
and unlocking scripts:

scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUAL OP_VERIFY OP_CHECKSIG
scriptSig: <sig> <pubKey>

The standard unlocking script scriptSig pushes a signature sig and a public key pub-
Key onto the stack. The locking script scriptPubKey checks whether pubKey provided

3We are using the terminology locking script and unlocking script from [98, Chapt 5].
4In the original version of Bitcoin, both scripts were concatenated and executed. However, because Bitcoin

script has non-local instructions (e.g. the conditionals OP_IF, OP_ELSE, OP_ENDIF), when concatenating the
two scripts, any non-local opcode occurring in the locking script (for instance as part of data) could be interpreted
when running as the counterpart of a non-local opcode in the locking script and, therefore, result in an unintended
execution of the unlocking script. As a bug fix, in a later version of Bitcoin this was modified by having a break
point in between the two, where only the stack is passed on. See Chapter 6, “Separate execution of unlocking and
locking scripts” in [98, p. 136].
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by the unlocking script hashes to the provided pubKeyHash, and whether the signature is a

signature for the message signed by the public key. Full details are discussed in Subsect. 4.4,

chapter 4.

Another example which we use in this thesis is P2MS (see Antonopoulos [98, p. 149-151]).

The P2MS scripts require N public keys to be recorded, with at least M of those providing

signatures to access the money. This can also be called an M-of-N scheme, where N is the

overall number of keys and M indicates the three sets of signatures necessary for validation.

The following is the standard syntax for a locking script that defines an M-of-N multi-signature

condition according to Antonopoulos [98, p. 149-151]:

M < pbk1 >< pbk2 > ... < pbkn > N OP_CHECKMULT ISIG

The unlocking script that can be fulfilled for the locking script is as follows:

0 < sig1 >< sig2 > ... < pbkn > CHECKMULT ISIG.5 Full details provided in Subsub-

sect. 4.5.2, chapter 4.

2.3.2.2 Ethereum Smart Contract Language

Ethereum is a kind of blockchain that includes a Turing-complete programming language as

part of its core functionality. Smart contracts in Ethereum are capable of supporting all forms

of computing, including loops and the calling of other contracts. Anybody can deploy smart

contracts, which are essentially a collection of functions which can be called together with

their arguments. Contracts have instance variables which define their state, and the writer of

the smart contract can add conditions required for the successful execution of its functions.

Smart contracts allow anybody to design their own rules for ownership, forms of transactions

and state transition mechanisms [111, 112, 128].

Every node in the Ethereum network operates under the Ethereum Virtual Machine (EVM),

a virtual distributed computer designed specifically for the Ethereum network. This machine

is responsible for carrying out the commands given by the network. The EVM executes EVM

code, which is a machine language for smart contracts. Smart contracts written in high-level

languages such as Solidity are compiled into the EVM. After being converted into EVM code,

the smart contracts are subsequently executed by the network’s nodes [111, 112, 128]. There

are many languages that are used to write smart contracts in Ethereum, including Solidity

(Solidity Community [12]), a high-level language that implements user interactions, provides

5According to [98, p. 149-151], the argument 0 is required because in the original version of CHECKMULTI-
SIG needs an additional argument on the stack in order to solve a bug in CHECKMULTISIG.
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the capability for groups that use different blockchains to share information and value, and

overcomes the limitations of the Bitcoin Scripting language (see Vujičić et al. article [95]).

The state of Ethereum comprises accounts, and each account has a 20-byte address in

addition to state transitions. The global state in Ethereum maps between addresses and account

statuses [111, 112]. There are two kinds of accounts that may be held on Ethereum [111,

112, 129]: “externally owned accounts”, which are managed by private keys, and "contract

accounts", which are managed by deployed contract code.

There are four components that compose an Ethereum account [111, 128, 95]: The first is

a nonce, which is the number of transactions dispatched from a given address, or the number

of contracts created by an account. Its purpose is to prevent replay attacks, where an adversary

would identically repeated a transaction.6 The second is the balance, which represents the

number of Wei held by the specified address. Wei is ETH’s smallest unit of currency, and 1

Ether equals 1018 wei. The balance is also used to pay transaction fees. The third one is the

contract code hash, namely the Keccak-256 hash of the EVM code associated with an account.

This code is executed whenever the account receives a message call at its address. The last is

a storage root, referred to as the 256-bit root node hash in a Merkle Patricia tree (commonly

referred to as tries), a data structure used for safe and efficient data storage and retrieval. This

tree is responsible for encoding the storage contents of an account.

The following are some of the fundamental elements that are included in every transaction

in Ethereum [111]: the field that provides the signature of the sender of the transaction, the field

that identifies the destination address of the transaction, the field that defines the bytecode of

the smart contract or the parameter that is sent in when calling the contract, startgas, gasprice

values, and data fields that are optional. Startgas and gasprice [111] restrict the amount of

computation a transaction may do. The maximum number of computing steps that a transac-

tion may perform is specified by startgas, and the transaction will fail if it exceeds its startgas

limit. This solves the problem that the EVM is Turing complete, and it is undecidable whether

a program in a Turing complete language terminates. This would cause problems since val-

idators of transactions have to execute those which includes the execution of smart contracts,

without knowing whether they terminate. By adding the limit set by startgas, termination

of execution is enforced, by stopping execution when the gas limit is exceeded, solving this

problem. Startgas and gasprice [111] additionally aid as well in preventing denial-of-service

6Note that nonce denotes a number that is only used once, so the use of nonce to distinguish transactions is
correct. In Bitcoin, the nonce field is used to solve the miner’s puzzle (i.e. that the hash of the block is small
enough). In cryptography, a nonce is often a random number that is unlikely to be used again.
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attacks. The gasprice is the charge the sender pays for each unit of gas used. The greater the

gasprice, the greater the likelihood that a transaction will be mined rapidly. The Ethereum fee

structure ensures that attackers pay for the resources they utilise. Computation, bandwidth, and

storage are all part of this. As a result, if a transaction requires more resources, the gas cost

will be greater.

A transaction modifies the Ethereum blockchain’s state using the deterministic Ethereum

state transition function [111]. The function begins by confirming the transaction’s validity,

including checking the signature and nonce. If the transaction is correct, then the function

subtracts the transaction fee from the sender’s account balance and increments the nonce. The

receiver receives the required amount of Ether after paying the transaction cost per byte, and

if their account does not exist, an account is created. The contract code is run if the recipient’s

account is a contract. The state transition function returns all state modifications except the

miners’ payment fees if the sender does not have sufficient Ether or the code execution runs

out of gas.

Vujičić [95] stated that the time it takes for a block to be generated on Ethereum is about

15 seconds. However, intermittent spikes may reach up to 30 seconds. On 27 February 2024,

the data size of the Ethereum blockchain was calculated to be 1039.71GB [130].

2.3.2.3 Types of Smart Contracts Vulnerabilities

The following table 2.3 provides an illustration of the security vulnerabilities associated with

smart contracts.

Attack Main Objective Description

Reentrancy

attacks (see

Samreen et al

article [131])

Smart contracts

(Ethereum)

This type of attack can happen when an attacker repeatedly calls

a function inside a smart contract before the preceding function

call has been executed, resulting in unexpected behaviour and

financial loss.

Integer

overflow and

underflow

(see Sun et al.

article [132])

Smart contracts

(Ethereum)

This attack happens when the number of bits available to repre-

sent an integer is insufficient (either very large or very small);

the smart contract could behave unexpectedly due to an integer

overflow or underflow.

50



2.3. Blockchain Technology

Logic errors

(see Kolluri et

al.

article [133])

Smart contracts

This type of error occurs when a smart contract’s design or

implementation has shortcomings; it might cause logic errors,

which can cause vulnerabilities or unexpected behaviour.

Table 2.3: Examples of security vulnerabilities in smart contracts.

2.3.2.4 Verification of Smart Contracts

The verification of software programs is important to ensure that they perform correctly with-

out interfering with other programs [134]. Smart contract programs require close attention to

accuracy in financial analyses and the representation of ledgers because of the potential finan-

cial consequences arising from hackers targeting vulnerable or poorly designed contracts [134].

Therefore, it is necessary that a very high level of accuracy is achieved.

Smart contracts face several challenges, however, particularly in terms of security [7, 135].

All smart contract transactions and codes are immutable once published on the blockchain

network. The only way to amend the clauses of an ongoing smart contract or to withdraw

it is by using functions already provided by the original contract. Thus, the developers must

ensure and verify the security of the code before publishing it on the blockchain in order to

avoid any errors. Errors in smart contract programs can result in massive losses; an example

of poor design can be seen in the hacking of DAO smart contract in 2016 (see Nehaï et al.

article [136], Setzer article [5]). DAO is a contract issued on the cryptocurrency Ethereum,

and is an investor-directed venture capital fund based on smart contracts. A flaw in the smart

contract code of DAO was exploited by cyber criminals when the market value of the fund

reached US$ 150 million. Only a hard fork, which destroyed most transactions investing in

DAO, prevented the loss of the investors’ money. However, this hard fork contradicted the

notion that cryptocurrencies should have no central governing body, and should be governed

only by algorithms, with no human intervention.

Privacy is another challenge. Considering that all transactions are recorded on the

blockchain, and are accessible to anyone, it is theoretically feasible to access user-specific

information by examining transaction graphs on the blockchain [137].

In order to avoid any potential risk that may be related to the use of smart contracts such

as errors in the codes of smart contracts or vulnerability to hacking, one needs to verify the

correctness of smart contracts. This needs to be done before deploying them on the blockchain
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network. There are two ways of achieving this [134, 138]: formal verification methods and

execution of test cases. Formal verification techniques use mathematical approaches (theorem

proving) to prove program correctness. In the context of smart contracts, this can be done by

building a formal smart contract model and showing that the smart contracts in question are

correct. In contrast, the execution of test cases runs the code in order to ensure that for valid

inputs, execution terminates and produces correct outputs, while also checking for possible

weaknesses or security flaws. As an example of an erroneous code in smart contracts, consider

a smart contract which is intended to transfer money from one particular account to another,

but because of a coding error, results in the money being moved to an incorrect account. If

this code can be invoked by a transaction there might be no way to reverse it. This could have

serious consequences for the parties involved in the contract.

2.4 Chapter Summary

This chapter has provided an overview of theorem provers with a focus on Agda, and explained

the differences between Agda and other theorem provers alongside a discussion of the features

of Agda. In addition, we provided a background in blockchain technology, which includes

two applications: cryptocurrencies and smart contracts. In cryptocurrencies, we provided two

examples, Bitcoin and Ethereum, and we presented an overview of these cryptocurrencies. The

language used by Bitcoin and Ethereum were described and applied to smart contracts with an

analysis of the vulnerabilities they are subject to. The chapter ended with description of the

process of verifying smart contracts.
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3.1 Introduction

This chapter presents the background research used in our thesis, depending on our contribu-

tions and publications. First, Sect. 3.2 discusses two papers introducing Hoare logic, predicate
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transformer semantics and weakest preconditions. Sect. 3.3 then introduces work that employs

Agda to verify smart contracts, and Sect. 3.4 gives an overview over the literature on veri-

fication of Bitcoin Scripts. In Sect. 3.5, we review papers that address verification of smart

contracts in Ethereum and similar platforms using theorem provers such as Coq (see Bertot

et al [139], Coq Community [32]) and Isabelle/HOL (see Isabelle Community [140], Nipkow

et al. [141]) and describe methods that may be used to verify smart contracts, such as model

checking in Sect. 3.6 and symbolic execution in Sect. 3.7. We further present tools that can be

used to verify and analyse smart contracts in Sect. 3.8. Articles on translating smart contract

code into languages used for program verification are evaluated in Sect. 3.9, and Sect. 3.10

details projects that use a novel language to verify smart contracts, while Sect. 3.11 reviews

papers that developed a framework used to verify smart contracts. Sect. 3.12 discusses efforts

that use behaviour-based formal verification to verify smart contracts via program interaction

with users or the environment, before Sect 3.13 presents attempts that use mutation testing to

verify smart contracts. The chapter ends with a summary in Sect. 3.14.

3.2 Hoare Logic, Predicate Transformer Semantics and Weakest

Preconditions.

Hoare [142] defined a formal system using logical rules for reasoning about the correctness of

computer programs. It uses so-called Hoare triples, which combine two predicates, a pre- and

a postcondition, with a program to express that if the precondition holds for a state and the pro-

gram executes successfully, then the postcondition holds for the resulting state. Dijkstra [143]

introduced predicate transformer semantics that assign to each statement in an imperative pro-

gramming paradigm a corresponding total function between two predicates on the state space

of the statement. The predicate transformer defined by Dijkstra applied to a postcondition

returns the weakest precondition.

3.3 Agda in the Verification of Blockchains

Agda features in several papers discussing verification of blockchains. Chakravarty et al. [144]

introduced Extended UTXO (EUTXO), which extends Bitcoin’s UTXO model to enable more

expressive forms of validation scripts. These scripts can express general state machines and

reason about transaction chains: the authors introduce a new class of state machines based on
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Mealy machines which they call Constraint Emitting Machines (CEM). In addition to formal-

ising CEMs using the Agda proof assistant, they demonstrate its conversion to EUTXO, and

give a weak bisimulation between both systems. In [145] Chakravarty et al. introduced a gen-

eralisation of the EUTXO ledger model using native tokens which they denote EUTXOma for

EUTXO with multi-assets. They provide a formalisation of the multi-asset EUTXO model in

Agda. Chakravarty et al. [146] introduced a version of EUTXOma aligned to Bitcoin’s UTXO

model, hence denoted UTXOma. They present a formal specification of the UTXO ledger rules

and formalise their model in Agda.

Chapman et al. [147] formalised System Fωµ , which is polymorphic λ -calculus with

higher-kinded and arbitrary recursive types, in Agda. System Fωµ corresponds to Plutus Core,

which is the core of the smart contract language Plutus that features in the Cardano blockchain.

Melkonian [148] introduced a formal Bitcoin transaction model to simulate transactions in the

Bitcoin environment and to study their safety and correctness. The paper presented a formalisa-

tion of a process calculus for Bitcoin smart contracts, denoted BitML. The calculus can accept

different types such as basic types, contracts, or small step semantics to outline a ‘certified

compiler’ [149].

3.4 Verification of Bitcoin Scripts

A number of authors have addressed the verification of Bitcoin script. Klomp et al. [150]

proposed a symbolic verification theory, and a tool to analyse and validate Bitcoin scripts, with

a particular focus on characterising the conditions under which an output script, which controls

the successful transfer of Bitcoins, will succeed.

Bartoletti et al. [151] developed BitML, a high-level domain-specific language for design-

ing smart contracts in Bitcoin. They provided a compiler to convert smart contracts into Bitcoin

transactions and proved the correctness of their compiler w.r.t. a symbolic model for BitML

and a computational model, which has been defined by Atzei et at. in [152] for Bitcoin.

Setzer [5] developed models of the Bitcoin blockchain in the interactive theorem prover

Agda, focusing on the formalisation of basic primitives in Agda as a basis for future work on

verifying the protocols of cryptocurrencies and developing verified smart contracts.
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3.5 Verification of Smart Contracts in Ethereum and Similar

Platforms Using Theorem Provers

A number of authors have addressed the verification of smart contracts in Ethereum and similar

platforms using theorem provers such as Coq (see Bertot et al [139], Coq Community [32]) and

Isabelle/HOL (see Isabelle Community [140]).

Ayoade et al. [153] proposed and developed a framework for rewriting Ethereum bytecode

without access to the source code. Their approach enables bytecode modifications to Ethereum

without a high-level language’s source code. They used the Coq theorem prover to implement

and verify the Ethereum virtual machine code. Similarly, Zheng et al. [154] developed Lolisa,

an intermediate specification language for Ethereum smart contracts in Coq. Lolisa has a ma-

jor subset of Ethereum’s Solidity programming language in its formal syntax and semantics,

but its formal syntax uses a stronger static type system than Solidity to improve type safety,

and incorporates general-purpose programming language capabilities and a substantial fraction

of Solidity syntax components. Thus, translating Solidity programs into Lolisa are possible.

Lolisa is naturally generalisable and can express various programming languages. Addition-

ally, Coq interprets Lolisa’s syntax and semantics, it can execute and verify Lolisa’s smart

contracts symbolically.

Bernardo et al. [155] developed Mi-Cho-Coq, a Coq framework which has been used to for-

malise Tezos smart contracts written in the stack-based language Michelson. The framework

is composed of a Michelson interpreter implemented in Coq, and the weakest precondition

calculus to verify the functional correctness of Michelson smart contracts. O’Connor [156]

previously introduced Simplicity, a low-level, typed functional language, which is Turing in-

complete. Its goal is to improve on existing blockchain-based languages, like Ethereum’s EVM

and Bitcoin SCRIPT, while avoiding some of their issues. Simplicity is based on formal seman-

tics and specified in the Coq proof assistant.

Bhargavan et al. [157] provided formalisations of EVM bytecode in F*, a functional pro-

gramming language designed for program verification. They defined a smart contract verifica-

tion architecture that can compile Solidity contracts, and decompile EVM bytecode into F* us-

ing their shallow embedding, in order to express and analyse smart contracts. Directly related

to their development of Lolisa, Zheng et al. [158] developed FSPVM-E, a formal symbolic

process virtual machine that verifies smart contracts’ dependability, security, and function.

FSPVM-E comprises a broad, extendable, and reusable formal memory framework; the previ-
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ously described Lolisa, an extensible programming language which uses generalised algebraic

data types, and a formally verified interpreter of Lolisa called FEther. The self-correctness of

the components described before is certified through Coq (see Coq Community [32]). FSPVM-

E supports ERC20 and can symbolically run Ethereum-based smart contracts, scan their vul-

nerabilities, and validate their dependability and security using Hoare logic in Coq.

Annenkov et al. [159] incorporated functional languages in Coq by employing meta-

programming and subsequently developed the language’s meta-theory with deep embedding

and reasoning about concrete programs with shallow embedding. They then designed a funda-

mental smart contract language in Coq and validated a crowdfunding contract’s characteristics.

More specifically, Lamela et al. [160] developed the domain-specific language Marlowe on

the Cardano blockchain for financial contracts. Marlowe was utilised to ensure that any smart

contracts created in this language would conserve funds. This means that except for an er-

ror, the money that comes in plus the contract money before the transaction should be equal

to the money that comes out plus the contract after the transaction. Using the Isabelle theo-

rem prover, the Marlowe system has been formally proven, along with features such as money

conservation.

Sun et al. [161] presented formal verification approaches for five types of smart contract

security issues in Ethereum, namely integer overflow, the function specification issue, the in-

variant issue, the authority control issue, and the behaviour of the specific function. They also

verified the Binance Coin (BNB) contract, using the Coq proof assistant to verify and formalise

their proofs. Nielsen et al. [162] proposed a model and executable specification for the execu-

tion of smart contracts in the proof assistant Coq (see Bertot et al [139], Coq Community [32])

and used their formalisation to enable inter-contract communication and generalise existing

accomplished work by enabling the modelling of depth-first execution blockchains (such as

Ethereum) as well as breadth-first execution blockchains (such as Tezos). They represented

smart contract programs in Gallina, Coq’s functional language, from which it is possible to

derive certified programs using other languages such as Haskell (see Thompson Book [163])

or OCaml (see OCaml Community [164]). They also developed a contract for Congress that is

a simpler version of a DAO contract. There are some restrictions in their work, such as the gas

cost is not computed automatically at the moment with their shallow embedding.

Zakrzewski et al. [165] assessed the practicability of formalising the Solidity programming

language (see Solidity Community [12]) and suggested formalising a subset of Solidity that in-

cludes its core data model and specific distinctive characteristics such as function modifiers,
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contracts with storage, and inheritance hierarchy. They utilised the Coq proof assistant to pro-

vide an interpreter for Solidity that is formalised, with an emphasis on dynamic semantics.

Additionally, their work does not support C99-like block scoping for local variables. Further-

more, their focus has been on formalization and, therefore, cannot be utilised for smart contract

verification. Andrei [166] verified Findel (see Biryukov et al. article [167]) -written financial

derivatives on blockchain networks. Findel is a declarative financial domain-specific language

(DSL). They used the Coq proof assistant to define Findel’s formal semantics and test it against

the Findel test suite and enhanced its semantics with interactive ways to formalise and verify

Findel contract properties, aiming to ensure no errors exist in the Findel contracts. The lim-

itation of their work is when using Coq, the automated proof search techniques often do not

provide proof certificates automatically, even though they are correct.

Hirai [168] used Isabelle/HOL theorem prover to validate EVM bytecode by developing

a formal model for EVM using the Lem language (see Mulligan et al. article [169]). They

employed this model to prove the invariants and safety properties of Ethereum smart con-

tracts. Amani et al. [170] extended Hirai’s EVM formalisation in Isabelle/HOL by a sound

program logic at bytecode level. To this end, they stored bytecode sequences in blocks of

straight-line code, creating a program logic that could reason about these sequences. Ribeiro

et al. [171] developed an imperative language for a relevant subset of Solidity in the context

of Ethereum, using a big-step semantics system. They additionally, formalised smart contracts

in Isabelle/HOL, extending existing work. Their formalisation of semantics is based on Hoare

logic and the weakest precondition calculus. Their main contributions are proofs of sound-

ness and relative completeness, as well as applications of their machinery to verify some smart

contracts, including modelling of smart contract vulnerabilities. Marmsoler et al. [172] have

proposed an executable denotational semantics of Solidity in the Isabelle/HOL proof assistant.

Their formal semantics create the groundwork for an interactive program verification environ-

ment for the Solidity program and enable checking Solidity programs by symbolic execution.

3.6 Verification of Smart Contracts using Model Checking

A number of papers discuss tools for analysis and verification of smart contracts that utilise

model checking. Kalra et al. [173] developed a framework called ZEUS with the aim of

supporting automatic formal verification of smart contracts using abstract interpretation and

symbolic model checking. ZEUS starts from a high-level smart contract, and employs user

assistance for capturing correctness and fairness requirements. The contract and policy specifi-
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cation are then transformed into an intermediate language with well defined execution seman-

tics. ZEUS performs static analysis on this intermediate level and uses external SMT solvers

to evaluate any verification properties discovered. A main focus of the work is on efficiently

reducing the state explosion problem inherent in any model checking approach.

Park et al. [174] proposed a formal verification tool for EVM bytecode based on KEVM,

a complete formal semantics of EVM bytecode developed in the K-framework. To address

performance challenges, they define EVM-specific abstractions and lemmas, which they then

utilise to verify a number of concrete smart contracts. Mavridou et al. [175] developed

FSolidM, a framework used to develop smart contracts on ETH via a graphical interface for

developing finite-state machines that can immediately be converted into ETH smart contracts.

Mavridou et al. [176] also introduced the VeriSolid framework to support the verification of

Ethereum smart contracts. VeriSolid is based on earlier work (FSolidM introduced by Mavri-

dou et al. in [175]), which allows graphical specification of Ethereum smart contracts as tran-

sitions systems, and generates Solidity code from those specification, using model checking

to verify smart contract models. Luu et al. [119] provided operational semantics of a sub-

set of Ethereum bytecode called EtherLite, which forms the bases of their symbolic execu-

tion tool Oyente for analysing Ethereum smart contracts. This tool let to the discovery of a

number of weaknesses in deployed smart contracts, including the DAO bug (see Etherscan

webpage [177]).

Filliâtre et al. [178] introduced the Why3 system, which allows imperative programs to be

written in WhyML, an ML dialect used for programming and specification. The system can

add pre-, post- and intermediate conditions but does not make use of weakest precondition.

Why3 can generate verification conditions for Hoare triple, which are checked using various

automated and interactive theorem provers. Why3 is used in SPARK Ada to verify its verifica-

tion conditions.

Grishchenko et al. [179] presented a full small-step semantics of EVM bytecode and for-

malised a substantial part of it in the F*. This provided executable code that they were able to

check against the official Ethereum test suite. They went on to formally define some critical

security features for smart contracts.

Nam et al. [180] presented a novel formal verification approach using an alternating-time

temporal logic (ATL) model to investigate blockchain smart contracts developed through so-

lidity. They used MCMAS introduced by Alessio et al [181]. The MCMAS is an effective

ATL model checker that verifies multi-agent systems to identify subtle defects in real smart
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contracts. Torres et al. [182] developed a symbolic execution tool known as OSIRIS, which

can automatically discover integer issues in EVM bytecode. The OSIRIS tool can explore three

kinds of integer errors: arithmetic, truncation, and signedness.

Alt. et al. [183] developed a formal verification module based on SMT and integrated it into

Solidity’s compiler. This allowed users to receive automated warnings about and counterex-

amples for possible errors including inaccessible code, assertion failures, and overflows while

the compiler was running. However, their method has several limitations, such as false over-

flow alerts and the absence of some functionality (such as call and revert). Garfatta et al. [184]

suggested a method for verifying Solidity smart contracts by transforming them into a Col-

ored Petri Net (CPN) model (see Kurt et al. article [185]). The approach involves converting

Solidity contracts to CPN and verifying contract-specific features.

3.7 Using Symbolic Execution to Verify and Analyze Smart

Contracts

Tikhomirov et al. [186] introduced SmartCheck (written with Java), a static analysis tool that

can be expanded and used to discover Solidity contract vulnerabilities by turning Solidity

source code into an intermediate form based on Extensible Markup Language, and compar-

ing this form to XPath patterns. This can find certain security holes like Denial of Service

(DoS). Beukema [187] attempted to establish a formal Bitcoin specification using mCRL2, a

programming language for specification, and specifying Bitcoin’s interface functions and the

expected outputs in his research. The majority of these functions outline how the Bitcoin net-

work protocol should work. He used mCRL2, a programming language for specification. This

contribution verified some properties like double-spending.

Mossberg et al. [188] presented Manticore, a dynamic symbolic open-source execution

framework designed to analyse Ethereum smart contracts and binary code. Manticore’s archi-

tecture is flexible, enabling it to support conventional and unconventional execution environ-

ments, and its API allows users to customise their analysis. The aim of using Manticore is

bug detection and code verification. Limitations of the Manticore tool are that it cannot detect

various vulnerabilities, including suicide and integer overflows.
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3.8 Using Tools to Verify and Analyse Smart Contracts

There are several different studies to verify and analyse smart contracts using various tools.

Akca et al. [189] introduced the SolAnalyser tool, a comprehensive automated approach that

utilises static and dynamic analysis to identify vulnerabilities in Solidity smart contracts. Sol-

Analyser facilitates the automated identification of eight distinct categories of vulnerabilities,

and a fault-seeding tool is employed to introduce various vulnerabilities into smart contracts.

These mutated contracts are utilised to evaluate the efficacy of various analysis tools. The study

employed a dataset of 1,838 actual contracts, from which a set of 12,866 modified contracts

were generated by introducing eight types of vulnerability. Permenev et al. [190] developed the

VERX tool, a mechanism for the automated validation of functional characteristics of smart

contracts founded on the amalgamation of three distinct techniques. Firstly, the verification

of the property of time is reduced to reachability control. Secondly, an efficient and precise

symbolic execution engine is employed for the EVM. Lastly, the delayed predicate abstraction

utilises symbolic execution within transactions and abstraction at transaction boundaries. The

tool’s efficacy is demonstrated through an experimental assessment of 83 temporal properties

and 12 real-world projects.

Slither, developed by Feist et al. [191], is a static analysis platform that provides com-

prehensive Ethereum smart contract information by converting Solidity smart contracts into

SlithIR. SlithIR employs the Static Single Assignment (SSA) form and a simplified instruc-

tion set to facilitate analyses and preserve semantic information lost in Solidity to bytecode.

This tool has four key use cases: automatic vulnerability detection, code optimisation, smart

contract understanding improvement, and aid in code review.

Nikolić et al. [192] earlier proposed Maian, a tool for describing and reasoning about trace

features using inter-procedural symbolic analysis and a concrete validator of the byte-code of

smart contracts in Ethereum. Maian has been implemented in Python. They focused on three

defining characteristics of trace vulnerabilities: discovering contracts that either hold funds

permanently, leak to arbitrary users or can be terminated by anyone. The Maian tool is limited

to flagged contracts that are actively operating in the forked Ethereum chain or contracts having

available source code.

Grieco et al. [193] later introduced Echidna, a static analysis tool and an open source

for Ethereum smart contracts fuzzer. Echidna was created using the Haskell programming

language, which supports three key features: user-defined properties, assertion testing, and
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gas usage estimate characteristics. Echidna can test smart contracts developed using Solidity

and Vyper (see Vyper Team Webpage [194]) programming languages. However, Vyper is no

longer actively maintained at the time of writing this thesis. One limitation of Echidna is that

it works only on single-core machines. Furthermore, there is no room for improvement in

the accuracy of gas usage measurement at the moment. Echidna is compatible with various

contract development frameworks such as Truffle and Embark.

In 2018, Tsankov et al. [195] intoduced Securify, a scalable, fully automated Ethereum

smart contract security analyser that can verify contract behaviours as safe/unsafe to a specified

property. Securify employs a technique of converting EVM bytecode into a stackless format

that is represented in the static-single assignment form. The Securify approach allows for the

deduction of semantic information that can be utilised to analyse smart contracts in a way

which comprises two distinct stages: the contract’s dependency graph is subject to symbolic

analysis to extract accurate semantic information from the code, and then the system assesses

conformity and infringement patterns that encompass satisfactory conditions for demonstrating

the veracity of a given proposition. Also in 2018, Zhou et al. [196] developed a static analysis

tool called SASC, which can create a syntax topology map showing the invocation relationships

of smart contracts and highlighting potential risks and vulnerabilities.

In 2020, So et al. [197] introduced a VeriSmart tool, a static analysis tool. Their work

focused on detecting arithmetic bugs on smart contracts in Ethereum. In the same year, Wang

et al. [198] developed VERISOL, a novel Solidity program verifier that relies on translation

into Boogie (see Mike et al. [199]). They used this tool to conduct an in-depth analysis of

all of the application contracts included with the Azure Blockchain Workbench, and found

previously undiscovered bugs in these publicly available smart contracts. These bugs were

subsequently addressed and VERISOL was shown to have successfully and comprehensively

verified all of these contracts. Almost at the same time, Luís et al. [200] presented a deductive

verification tool designed for Michelson smart contracts, which are typically used in the Tezos

blockchain. The fundamental goal of the tool is to take a formally specified Michelson contract

and automatically convert it into an equivalent program written in WhyML (see Filliâtre et al.

article [178]). The primary aim of their approach is to fully automate the verification process.

Very recently, Driessen et al. [201] developed a tool called SolAR to assist developers of

Solidity smart contracts by automatically generating test suites for smart contracts optimised

for branch coverage. These suites can be used for various testing purposes, including assessing

mutation testing frameworks and integrating with existing oracles to identify vulnerabilities,
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detect flaws and test intended behaviour.

3.9 Verification by Translation into Other Languages

There have been numerous efforts aim to translate the code of smart contract into languages

used for program verification. Ahrendt et al. [202], for example, focused on verifying Solidity

smart contracts by automatically translating them into Java. This Java translation can use veri-

fication tools and benefit from contract-oriented and object-oriented paradigms. The translated

software was validated using KeY (see Ahrendt et al. article [203]), one of the most potent

object-oriented language verification tools supporting transactions and their cancellation. One

limitation of their approach is that it is impossible in their approach to access values such as

the current block number and timestamp, which is possible in Solidity.

Luís et al. [204] developed WhylSon, a tool for deductive verification of smart contracts

written in Michelson, the low-level programming language of Tezos blockchain, which in-

stantly converts a Michelson contract into a WhyML program. They built a WhyML shallow-

embedding of smart contract instructions’ axiomatic semantics and used WhylSon to verify

smart contracts automatically. One limitation of their work is that they did not include a for-

malisation of the internal aspects of cryptographic operations.

Barnett et al. [199] designed the Boogie program, a program verifier considered to be a so-

phisticated system that employs compiler technology, program semantics, property reasoning,

verification-condition creation, automatic decision strategies, and a user interface. The Boogie

program is written using object-oriented C# programming. Pedro et al. [205] formalised So-

lidity and the Ethereum blockchain by utilising Solid and its blockchain by explicating/desug-

aring Solidity programs. Based on their formalisation, they designed the Solidifier framework,

a bounded model analyser for Solidity. The process involves translating Solid into Boogie

(see Barnett et al. article [199]), the code of which is verified using CORRAL (see Lal et al.

article [206]), a bounded model checker designed specifically for Boogie. Their framework

was used to discover errors/poor states, that is, states in a program that do not correspond to

the developer’s purpose; a lacking state, whether a vulnerability or not, may be obtained by

executing particular code patterns and unexpected behaviours.

Jiao et al. [207] developed a Solidity formal semantics to specify smart contracts with

semantic-level security features for high-level verification, also providing accurate and safe

smart contract high-level execution behaviours to reason about compiler problems and helping

developers write secure smart contracts. WhyMl (see Filliâtre et al. article [178]) has also
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been used by Nehaï et al. [208]. They first encoded current contracts into the WhyML program

using the Why3 tool, and then created specifications to ensure the lack of runtime errors and

good functional qualities before using the Why3 (see Filliâtre et al. article [178]) system to

evaluate program behaviour. They finished by compiled WhyML contracts to the EVM. Their

method calculates the gas cost, which measures transaction computational effort.

Albert et al. [209] developed the SAFEVM tool, which uses Oyente (see Luu et al. arti-

cle [119]) and EthIR (see Albert et al. article [210]) to transform Solidity programs and EVM

bytecode into a C program. They used verification tools, such as CPAchecker (see Beyer et al.

article [211]), SeaHorn (see Gurfinkel et al. article [212]), and VeryMax (see Brockschmidt et

al. article [213]) to validate the security of the converted C program. Kasampalis et al. [214]

proposed IELE, a language in the style of an LLVM (low-level virtual machine) (see Lattner

et al. article [215]) that is used for the formal reasoning and implementation of smart con-

tracts on the blockchain. IELE was developed by formally specifying its semantics within the

K-framework (see Roşu et al. article [216]), so it achieves performance levels comparable to

those of the EVM and provides verifiability.

Schrans et al. [217] introduced Flint, a contract-oriented programming language that is

high-level, type-safe, and capabilities-secure. Its primary aim is to enable the design of reliable

smart contracts on the EVM, but it also offers a mechanism for specifying contract-interacting

actors, asset types, immutability by default, and safer semantics with explicit states and re-

versible overflows that result in transaction reversals.

Regnath et al. [218] proposed a new programming language called SmaCoNat, designed to

be both human-readable and secure. To make programs more understandable, they translated

programming language syntax into natural language sentences and used variable names rather

than memory addresses. In addition, they improved the program’s security by reducing the

ways in which logic and data structures may be repeatedly aliased using unique names.

3.10 Verification of Smart Contracts Written in Novel Languages

A recent method of verifying smart contracts has come about through the use of noval lan-

guages. Sergey et al. [219] for instance, developed a new and intermediate-level programming

language called Scilla, designed for safe smart contracts and intended to function as both a

compilation target and a standalone programming framework. It provides robust safety assur-

ances through type soundness, utilising System F (see Reynolds article [220]) as its funda-

mental calculus. Implementing smart contracts ensures a clear distinction between the com-
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putational, state-manipulating, and communication aspects. This approach mitigates several

well-known problems executing contracts in a Byzantine environment and proposes a frame-

work for conducting lightweight verification of Scilla programs, which has been demonstrated

by applying two domain-specific analyses on real-world use cases. Scilla has various limita-

tions since it is a language launched only recently towards the end of 2019. Therefore, there

may be errors and issues in this language. Furthermore, this language was created specifically

for Zilliqa contracts and has not been as extensively used as other languages.

Bartoletti et al. [221] proposed a fundamental calculus for smart contracts called TinySol

(Tiny Solidity). This calculus contains an imperative core, further enhanced with a sole con-

struct for invoking contracts and effectuating currency transfers. The present formalisation

is a foundation for providing semantics to the Ethereum blockchain and prevents the partic-

ular challenges presented by Solidity, such as variations in invoking other contracts. Some

limitations to their work include the lack of support for a gas mechanism and the absence of

certain features present in Solidity. Furthermore, their work has yet to incorporate recorded

timestamps in the Blockchain.

A final example is Featherweight Solidity by Crafa et al. [222], a calculus which formalises

the key aspects of the Solidity language to allow reasoning about the safety qualities of the

smart contract source code. They demonstrated that this mitigates specific problems but other

problems, such as access to a function or state variable that does not exist, are discovered only

during run-time, resulting in the stoppage and rolling back of transactions. They suggested a

type of system modification that statically catches additional faults, such as unsafe casts and

call-back expressions, and is retro-compatible with the original Solidity code. Featherweight

Solidity was specifically designed to avoid certain problems that arise inside smart contracts,

and therefore, there might still be flaws in Featherweight Solidity, not yet addressed in its

design.

3.11 Verification of Smart Contracts using Framework

Many studies evaluate and verify smart contracts by developing frameworks. These include

Dharanikota et al. [223], who introduced a CELESTIAL framework used to verify smart con-

tracts written in Solidity language. The framework enables programmers to turn contracts and

specifications into the formal verification language F. Using an Ethereum blockchain paradigm,

CELESTIAL verifies that the contracts match their specifications using F. After the verification

process is complete, CELESTIAL eliminates the specifications and generates Solidity code that
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can be deployed into the Ethereum network. Bistarelli et al. [224] introduced SCRIFY (Script

Verify), a comprehensive framework designed explicitly for verifying the Bitcoin Script lan-

guage. SCRIFY is an open-source application developed utilising Haskell (see Thompson

article [163]). The SCRIFY framework has only been validated through examples, and is yet

to be proven correct by formal verification, such as using a theorem prover.

3.12 Verification of Smart Contracts using Interact with User

Verification of smart contracts has been attempted with behaviour-based formal verification

through program interaction with users or the environment. For example, Bigi et al. [225]

combined game theory and formal techniques to analyse and verify DSCP, and suggested a

probabilistic formal model that can verify smart contracts. They began by using game theory

to analyse the smart contract’s logic, after which they built a probabilistic formal model of the

contract, and ultimately used the PRISM tool (see Kwiatkowska et al. article [226]) to validate

the model. later, Abdellatif et al. [227] suggested a new formal modelling methodology to ver-

ify the behaviour of smart contracts within their respective execution environments. They used

this formalisation for a specific smart contract designed for name registration on the Ethereum

platform and evaluated its vulnerabilities using a statistical model-checking methodology. This

study aimed to analyse smart contract vulnerabilities and verification methods. Bai et al. [228]

developed a method for checking the correctness of a shopping contract using a model checker.

They started by developing a model of the contract using the Promela language and used the

SPIN tool (see Mikk et al. article [229]) to verify that the model fulfilled a set of conditions

that guaranteed the correct behaviour of the contract.

3.13 Verification of Smart Contracts using Mutation Testing

The final method of verifying smart contracts relates to using mutation testing. Honig et

al. [230] introduced a prototype framework and mutation testing infrastructure named Ver-

tigo, incorporating four improved mutation operators from the PIT (see Pitest Webpage [231])

framework for Java and Java Virtual Machine (JVM), two operators that are particular to Solid-

ity and two operators that are not. To evaluate the operators, they used two well-known DApps

with comprehensive test suites and high code coverage. They could get high mutation scores

using these test suites, but their mutations were relatively narrow in scope.
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Recently, Wu et al. [232] suggested 15 Solidity-specific operators supported by their MuSC

tool and tested on four DApps. They assessed the technique by contrasting the efficiency of a

test suite aimed for mutation score compared to one optimised for code coverage, and identified

vulnerabilities that may be simulated using their operators.

3.14 Chapter Summary

This chapter has provided a comprehensive review of the research on smart contract verifica-

tion, organised into several sections, each covering a specific topic related to the verification

process. We have discussed two papers that introduced Hoare logic, predicate transformer se-

mantics and weakest preconditions before detailing prior research that has addressed the use of

Agda, theorem provers, model checking, tools, translation into other languages, symbolic exe-

cution, and the framework in order to perform smart contract verification in Bitcoin, Ethereum,

and other platforms.
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Verfiying Bitcoin Script with Local
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Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Operational Semantics for Bitcoin Script . . . . . . . . . . . . . . . . . . 73

4.3 Specifying Security of Bitcoin Scripts . . . . . . . . . . . . . . . . . . . . 78

4.3.1 Weakest Precondition for Security . . . . . . . . . . . . . . . . . 78

4.3.2 Formalising Weakest Preconditions in Agda . . . . . . . . . . . . 80

4.3.3 Automatically Generated Weakest Preconditions . . . . . . . . . 81

4.3.4 Equational Reasoning with Hoare Triples . . . . . . . . . . . . . 82

4.4 Proof of Correctness of the P2PKH script using the Step-by-Step Approach 83

4.5 Proof of Correctness using Symbolic Execution . . . . . . . . . . . . . . . 87

4.5.1 Example: P2PKH Script . . . . . . . . . . . . . . . . . . . . . . 87

4.5.2 Example: MultiSig Script (P2MS) . . . . . . . . . . . . . . . . . 91

4.5.3 Example: Combining the two Methods . . . . . . . . . . . . . . 95

4.6 Using Agda to Determine Readable Weakest Preconditions . . . . . . . . 96

4.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

70
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4.1 Introduction

In this chapter, we argue that weakest preconditions are the appropriate notion to specify ac-

cess control for Bitcoin protected by a SCRIPT. We then propose to aim for human-readable

descriptions of weakest preconditions to support judging whether the security property of ac-

cess control is satisfied. We also explain two methods for obtaining human-readable descrip-

tions of weakest precondition: a step-by-step and a symbolic-execution-and-translation ap-

proaches. We then apply our proposed methodology to standard Bitcoin scripts, providing

fully formalised arguments in Agda.

In the following, we explain our contributions in more detail. The chapter introduces the

operational semantics of the SCRIPT commands used in Pay to Public Key Hash (P2PKH)

and Pay to Multisig (P2MS), two standard scripts that govern the distribution of Bitcoins. We

define the operational semantics as stack operations and reason about the correctness of such

operations using Hoare triples utilising pre- and postconditions.

Weakest precondition for access control. Our verification focuses on the security prop-

erty of access control. Access control is the restriction to access for a resource, which in our

use case is access to cryptocurrencies like Bitcoin. We advocate that, in the context of Hoare

triples, weakest preconditions are the appropriate notion to model access control: A (general)

precondition expresses that when it is satisfied, access is granted, but there may be other ways

to gain access without satisfying the precondition. The weakest precondition expresses that

access is granted if and only if the condition is satisfied.

Human-readable descriptions. The weakest precondition can always be described in a

direct way, for example as the set of states that after execution of the smart contract end in a

state satisfying the given postcondition. However, such a description is meaningless to humans

who want to convince themselves that the smart contract is secure, in the sense that they do not

provide any further insights beyond the original smart contract.

It is known in software engineering, that failures of safety-critical systems are often due

to incomplete requirements or specifications rather than coding errors.1 The same applies

to security related software.2 It is not sufficient to have a proof of security of a protocol,

if the statement does not express what is required. That the specification (here the formal

1For instance, [233] writes: “Almost all accidents with serious consequences in which software was involved
can be traced to requirements failures, and particularly to incomplete requirements.”

2The long list of protocols which were proven to be secure but had wrong proofs [234] demonstrates that a
proof of correctness is not sufficient. We assume that most of the examples had correct proofs, but the statement
shown was not sufficient to guarantee security.
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statement of secure access control) guarantees that the requirements are fulfilled (namely that

it is impossible for a hacker to access the resource, here the Bitcoin), needs to be checked by a

human being, who needs to be able to read the specification and determine whether it really is

what is expressed by the requirements. Thus, the challenge is to obtain simple, human-readable

descriptions of the weakest precondition of a smart contract. This would allow to close the

validation gap between user requirements and formal specification of smart contracts.

Two methods for obtaining human-readable weakest preconditions. We discuss two

methods for obtaining readable weakest preconditions: The first, step-by-step approach, is ob-

tained by working through the program backwards instruction by instruction. In some cases it is

easier to group several instructions together and deal with them in one step, as we will demon-

strate with an example in Sect. 4.5.3. The second method, symbolic-execution-and-translation,

evaluates the program in a symbolic way, and translates it into a nested case distinction. The

case distinctions are made on variables (of type nat or stack) or on expressions formed from

variables by applying basic functions to them such as hashing or checking for signature. From

the resulting decision tree, the weakest precondition can be read off as the disjunction of the

conjunctions of the conditions that occur along branches that lead to a successful outcome.

For both methods, it is necessary to prove that the established weakest precondition is

indeed the weakest precondition for the program under consideration. For the first method, this

follows by stepwise operation. The second uses a proof that the original program is equivalent

to the transformed program from which the weakest precondition has been established, or a

direct proof which follows the case distinctions used in the symbolic evaluation.

Application of our proposed methodology. We demonstrate the feasibility of our ap-

proaches by carrying them out in Agda for concrete smart contracts, including P2PKH and

P2MS. Our approach also provides opportunities for further applications: The usage of the

weakest precondition with explicit proofs can be seen as a method of building verified smart

contracts that are correct by construction. Instead of constructing a program and then eval-

uating it, one can start with the intended weakest precondition and postcondition, add some

intermediate conditions, and then develop the program between those conditions. Such an ap-

proach would extend the SPARK Ada framework (see Adacore webpage [235]) to use Hoare

logic (without the weakest precondition) to check programs.

The remainder of this chapter is organised as follows. In Sect. 4.2 defines Bitcoin opera-

tional semantics. In Sect. 4.3, we specify the security of Bitcoin SCRIPT using Hoare logic and

weakest preconditions. We formalise these notions in Agda and introduce equational reasoning
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for Hoare triples to streamline our correctness proofs. Sect. 4.4 introduces our first, step-by-

step method of developing human-readable weakest preconditions and proving correctness of

P2PKH. In Sect. 4.5, we introduce our second method based on symbolic execution and apply

it to various examples. In Sect. 4.6, we explain how to practically use Agda to determine and

prove weakest preconditions using our library [18]. We conclude in Sect. 4.7.

Notations and git repository. This work has been formalized and full proofs have been

carried out in the proof assistant Agda. The source code is available at [18] and can be found

as well in appendix A.

4.2 Operational Semantics for Bitcoin Script

Opcodes like OP_DUP operate on the stack defined in Agda as a list of natural numbers

Stack. Opcodes like OP_CHECKSIG check for signatures for the part of the transaction

which is to be signed – what is to be signed is hard coded in Bitcoin. Other opcodes like

OP_CHECKLOCKTIMEVERIFY refer to the current time, for which we define a type Time in

Agda. Here, Time is modelled as a number of blocks since the beginning of Bitcoin, so it is

given as a natural number. Therefore, Agda code for Time is as follows:

Time : Set

Time = N

Therefore, the operational semantics of opcodes depend on Time×Msg×Stack which we define

in Agda as the record type StackState, as follows:3

record StackState : Set where

constructor 〈_,_,_〉

field currentTime : Time

msg : Msg

stack : Stack

open StackState public

From the above definition, the StackState record contains three fields: the current time when

the smart contract is executed (currentTime), the message (msg), and the stack (stack). Here
3The idea of packaging all components of the state into one product type, which is then expanded into a more

expanded state as more language constructs are added to the language, is inspired by Peter Mosses’ Modular SOS
approach [236]. This approach was successful in creating a library of reusable components functions for defining
an executable operational semantics of language constructs, which require different sets of states. One outcome
was a “component-based semantics for CAML LIGHT” [237].
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Msg is a data type representing serialised data, and msg is the serialisation of the transaction in

question. More details will be given later in this section. Note that Time and Msg do not change

when a script is executed within one block; therefore, the time as given by a block number does

not change.

The type of all opcodes is given as InstructionBasic, as follows: 4

data InstructionBasic : Set where

opEqual opAdd opSub opVerify : InstructionBasic

opEqualVerify opDrop opSwap : InstructionBasic

opDup opHash opMultiSig : InstructionBasic

opCHECKLOCKTIMEVERIFY : InstructionBasic

opCheckSig3 opCheckSig : InstructionBasic

opPush : N → InstructionBasic

The operational semantics of an instruction op : InstructionBasic is given as

J op Ks → Maybe StackState. 5

The message and time never change, so J p Ks will, if executed successfully, only change

the stack part of s. Here, J op Ks s = nothing means that execution of the operation fails, and

J op Ks s = just s′ means that it succeeds with new StackState s′. As an example, we can define

the semantics of the instructions opEqual and opVerify. We first define a simpler function J_Kss,

which abstracts away the non-changing components Time and Msg:

J_Kss : InstructionBasic → Time → Msg → Stack → Maybe Stack

J opEqual Kss time1 msg = executeStackEquality

J opEqualVerify Kss time1 msg = executeStackVerify

. . .

The function executeStackEquality fails and returns nothing if the stack has height ≤1, and

otherwise compares the two top numbers on the stack, replacing them by 1 for true in case they

are equal, and by 0 for false otherwise. The definition of executeStackEquality is as follows:

4We are using in this chapter a sublanguage BitcoinScriptBasic of Bitcoin, which doesn’t contain condition-
als, because they require a more complex operational semantics and state (see the discussion in the conclusion).
We sometimes use notations such as b to differentiate between functions referring to the basic and full language.

5For readers not familiar with the Maybe type, a set theoretic notation can be given as Maybe X :=
{nothing}∪{just x | x : X}. Here, nothing denotes undefined, and just x denotes the defined element x. Maybe
forms a monad, with return := just : A→Maybe A and the bind operation (p>>= q : Maybe B) for p : Maybe A
and q : A → Maybe B defined by (nothing >>= q) = nothing and (just a >>= q) = q a.
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executeStackEquality : Stack → Maybe Stack

executeStackEquality [] = nothing

executeStackEquality (n :: []) = nothing

executeStackEquality (n :: m :: e) = just ((compareNaturals n m) :: e)

Furthermore, execution of Bitcoin script instructions, which require a certain number of

elements on the stack, will fail if there are not enough elements on the stack (i.e., if it causes

an underflow of the stack). Thus, stack underflows, which are programmer errors, are handled

in the same way as more dynamic forms of errors, such as executeStackVerify function:

executeStackVerify : Stack → Maybe Stack

executeStackVerify [] = nothing

executeStackVerify (0 :: e) = nothing

executeStackVerify (suc n :: e) = just (e)

The above function has two different categories of errors: one is where the programmer explic-

itly wants to have a check and if it is not fulfilled, to abort it; the other is when the execution

of the instruction is not possible. In the example above, we have a stack underflow.

J_Kss is then lifted to the semantics of the instructions J_Ks using a generic function

liftStackFun2StackState:

J_Ks : InstructionBasic → StackState → Maybe StackState

J op Ks = liftStackFun2StackState J op Kss

As prerequisites for Subsect 4.5.1, we define functions that define the operational semantics

of further Bitcoin instructions used in this chapter: executeStackDup function fails and returns

nothing if the stack is empty; otherwise, a duplicate of the top element will be added onto the

stack. The definition of executeStackDup is as follows:

executeStackDup : Stack → Maybe Stack

executeStackDup [] = nothing

executeStackDup (n :: ns) = (just (n :: n :: ns))

The function executeOpHash fails and returns nothing if the stack is empty; otherwise, the

top element is replaced by its hash. The definition of executeOpHash is as follows:

executeOpHash : Stack → Maybe Stack

executeOpHash [] = nothing

executeOpHash (x :: s) = just (hashFun x :: s)
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The function executeStackCheckSig fails and returns nothing if the height of the stack ≤1.

Otherwise, it pops the two top elements from the stack and considers them as a signature

and public key. It decides whether the message given by the argument msg : Msg is cor-

rectly signed by these data and pushes the Boolean result on the stack. The description of

executeStackCheckSig is as follows:

executeStackCheckSig : Msg → Stack → Maybe Stack

executeStackCheckSig msg [] = nothing

executeStackCheckSig msg (x :: []) = nothing

executeStackCheckSig msg (pbk :: sig :: s) = stackAuxFunction s (isSigned msg sig pbk)

For other functions, we define executeStackAdd function, which fails and returns nothing if

the top of the stack is empty or has only one element. Otherwise, if the top of the stack has

two elements, it will return the result of the addition between the first (n) and the second (m)

elements, and the rest of stack e. The definition of executeStackAdd as follows:

executeStackAdd : Stack → Maybe Stack

executeStackAdd [] = nothing

executeStackAdd (n :: []) = nothing

executeStackAdd (n :: m :: e) = just ((n + m) :: e)

The function executeStackSub is similar to the executeStackAdd function. Instead of returning

the result of the addition between two numbers, it will return the subtraction between two

numbers. In Bitcoin, the elements on the stack are byte vectors and treated as signed numbers

so that they can be negative. However, negative values are not really used. For example,

we cannot use negative time in OP_CHECKLOCKTIMEVERIFY [238, 239]. It seems like

odd to have negative numbers. In our implementation, we deal with just positive numbers.

Our definition of OP_SUB will cause an error if the second number is greater than the first

number when the Bitcoin script returns a negative value. To be fully correct, one would need to

reimplement the code referring to signed integers instead of integers. Because this is an unused

oddity of Bitcoin Script, we refrain from doing so, creating unnecessary code complications.

The definition of executeStackSub is as follows:

executeStackSub : Stack → Maybe Stack

executeStackSub [] = nothing

executeStackSub (n :: []) = nothing

executeStackSub (n :: m :: e) = just ((n −· m) :: e)
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The function executeStackSwap fails and returns nothing if the top of the stack is empty or has

only one element. Otherwise, if the top of the stack has at least two elements, it will return the

swap between the first (x) and second (y) elements, with the rest of the stack unchanged (s).

The definition of executeStackSwap is as follows:

executeStackSwap : Stack → Maybe Stack

executeStackSwap [] = nothing

executeStackSwap (x :: []) = nothing

executeStackSwap (y :: x :: s) = just (x :: y :: s)

SCRIPT has instructions with more complex behaviour, an example is the instruction

OP_CHECKMULTISIG which will be introduced in Subsect. 4.5.2. Some instructions depend

on cryptographic functions for hashing and checking signatures. We abstract away from their

concrete definition and take them as parameters of the modules of the Agda code. This is not

a problem in this chapter, since the weakest preconditions only depend on the results returned

by these functions, such as a check whether the part of the transaction to be signed is signed

by a signature corresponding to a given public key.

General scripts are formalised in Agda as lists of instructions, BitcoinScriptBasic. Let p be

a script. We define J p K : StackState → Maybe StackState by monadic composition, that is

• J [] K := just,

• for an instruction op, script q and s : StackState define J op :: q K s := J op Ks s >>= J q K.

It follows that ∀s : StackState.J p ++ q K s ≡ J p K s >>= J q K.

We lift as well J p K to s : Maybe StackState by defining J p K+ s := s >>= J p K.

Let

StackStatePred = StackState → Set,

StackPredicate = Time → Msg → Stack → Set, and

stackPred2SPred : StackPredicate → StackStatePred be the obvious liftings.

To abstract away from the precise format and the encoding, we define a message type Msg

in Agda as follows:

data Msg : Set where

nat : (n : N) → Msg

_+msg_ : (m m’ : Msg) → Msg

list : (l : List Msg) → Msg

77



4. Verfiying Bitcoin Script with Local Instructions

The Msg data type contains three constructors: one message (nat), combining two messages

into one message (_+msg_), and a list of messages (list). The Msg data type allows us to

represent messages such as those for the transaction to be signed, and is to be instantiated with

the concrete message to be signed.

This thesis uses two types of Msg: one for Bitcoin and one for Ethereum. In our section on

Bitcoin, we use three constructors, whereas when treating Ethereum, we use two. In Bitcoin,

Msg includes pairing information, whereas in Ethereum, we simplify the Msg data type; instead,

pairs are encoded as lists of length 2. This will be explained further in Subsect. 6.2.2. In

Ethereum, complex data structures (e.g., structs of maps) are serialised (encoded as numbers),

and their elements are represented as elements of Msg.

4.3 Specifying Security of Bitcoin Scripts

In this section, we will explain that weakest precondition in the context of Hoare logic is the

appropriate notion to express security properties in Subsect. 4.3.1. We provide a formalisation

of weakest preconditions in Agda in Subsect. 4.3.2, and discuss how weakest preconditions can

be generated automatically in Subsect. 4.3.3, leading to the claim that we need human-readable

descriptions of weakest preconditions. To support our verification, we develop a library for

equational reasoning with Hoare triples in Subsect. 4.3.4

4.3.1 Weakest Precondition for Security

One widely used way to specify the correctness of imperative programs axiomatically is Hoare

logic (see Hoare article [142]). Hoare logic is based on pre- and postconditions. It works well

for safety critical systems, where the set of inputs is controlled, and the aim is to guarantee a

safe result. An example of a commercial system for writing safety critical systems using Hoare

logic is SPARK 2014 (see Adacore webpage [235]).

However, when dealing with security aspects, in particular access control, Hoare logic in

general is not sufficient. The issue is that for security it is necessary to guard against malicious

entries to a program. As stated in the introduction of this chapter, we argued that weakest pre-

conditions in the context of Hoare logic is an appropriate notion to specify security properties.

A weakest precondition expresses that it is not only sufficient, but as well necessary for the

postcondition to hold after executing the program.
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To explain our point, we specify the intended correctness of the locking script

scriptPubKey from Sect. 4.2. The intention, usually given by the user requirement, is that

in order for a locking script to run successfully, we need to provide a public key pbk and a

signature sig such that pbk hashes to the value <pubKeyHash> stored in the locking script, and

that sig validates the signed message using pbk. The values pbk and sig need to be the top

elements on the stack. If we also fix their order and allow the stack to have arbitrary values

otherwise,6 then we can express this condition as follows:

The two top elements of the stack are pbk and sig, pbk hashes to <pubKeyHash>,

and sig is a valid signature of the signed message w.r.t. pbk.
(CondPBKH)

We can define the specification of the locking script scriptPubKey as the property that

(CondPBKH) is the weakest precondition for the accepting postcondition. We will show in

Sect. 4.4 that (CondPBKH) is indeed the weakest precondition of scriptPubKey, which veri-

fies that scriptPubKey fulfils the specification.

Let us now consider a faulty locking script instead of scriptPubKey:

scriptPubKeyFaulty: OP_DUP OP_HASH160 <pubKeyHash> OP_EQUAL

To see that it does not fulfil the specification given above, consider the weakest precondi-

tion for scriptPubKeyFaulty for the accepting postcondition, which can be described by the

following condition:

The top element of the stack is pbk, and pbk hashes to <pubKeyHash>. (CondPBKHfaulty)

By inspection, we see that (CondPBKHfaulty) is not equivalent to (CondPBKH), and there-

fore scriptPubKeyFaulty does not fulfil the specification. This is because its weakest precon-

dition expresses what is required to unlock it. This precondition is weaker than necessary,

meaning less is being checked. In fact, we can identify states that satisfy (CondPBKHfaulty)

but not (CondPBKH). For example, a malicious attacker could just copy the public key of the

sender onto the stack, violating the user requirements of a locking script.

We observe that this example also demonstrates the inadequacy of general Hoare logic

for the verification the security property of access control: Using standard Hoare logic,

we can prove that (CondPBKH) is a precondition for the accepting postcondition for both

scriptPubKey and scriptPubKeyFaulty.

As with all formal verification approaches, there remains a gap between the user’s intention

expressed as requirements, and what is expressed as a formal specification. This gap cannot be
6Bitcoin scripts do not impose any requirements on the stack below the data required by the scripts.
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filled in a provably correct way, since requirements are a mental intention expressed in natural

language. However, the gap can be narrowed by expressing the specification in a human-

readable format so that the validation is as easy and clear as possible. Here, validation means

showing that the specification guarantees the requirements, and is carried out by a human

reader.

4.3.2 Formalising Weakest Preconditions in Agda

We now describe how weakest preconditions can be defined in Agda. Let a precondition

ϕ and postcondition ψ be given, both of type StackStatePred. In order to accommodate

Maybe, we define a postfix operator _+, to lift ψ to (ψ +) : Maybe StackState → Set, defin-

ing (ψ +) nothing = ⊥ and (ψ +)◦ just = ψ .

A Hoare triple, consisting of a precondition, a program, and a postcondition, expresses

that if the precondition is satisfied before execution of the program, then the postcondition

holds after executing it. We formalise Hoare triples as follows:

< ϕ > p < ψ > := ∀s ∈ StackState.ϕ(s)→ (ψ +) (J p K s)

Weakest preconditions express that the precondition not only is sufficient, but as well

necessary for the postcondition to hold after executing the program:

< ϕ >↔ p < ψ > := ∀s ∈ StackState.ϕ(s) ↔ (ψ +) (J p K s)

Thus, for security, the backwards direction of the equivalence in the previous formula is

the important direction.

In Bitcoin, we consider a locking script scriptPubKey and an unlocking script scriptSig,

see Section 2.3.2.1. Let us fix an unlocking script unlock and a locking script lock. Let

init be the initial state consisting of an empty stack, and let acceptState be the accepting

condition expressing that the stack is non empty with top element being not false, i.e. >0.

The combination of unlock and lock is accepted iff running unlock on init succeeds and run-

ning lock on the resulting stack results in a state that satisfies the accepting condition, i.e. iff

(acceptState +) (J lock K+ (J unlock K init)). Note that Bitcoin does not run the concatena-

tion of the two scripts, as it did in its first version, but runs first the unlocking scripts, and

if it succeeds runs the locking script on the resulting stack. Let ϕ be the weakest precondi-

tion of lock, i.e. < ϕ >if f lock < acceptState >. Then the acceptance condition is equivalent to
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(ϕ+) (J unlock K init). Thus, unlock succeeds iff running the unlocking script unlock on the

initial state init produces a state fulfilling ϕ . Hence, by determining the weakest precondition

for the locking script w.r.t. the accepting condition we have obtained a characterisation of the

set of unlocking scripts which unlock the locking script. Note that we do not define inductively

all successful unlocking scripts, since they could be arbitrary complex programs, but instead

characterise them by the output they produce.

4.3.3 Automatically Generated Weakest Preconditions

We start by giving a direct method for defining the weakest precondition for any Bitcoin script

by describing the set of states that lead to a given final state. We then apply this general method

to a toy example to demonstrate that the description obtained in this way is usually not helpful

for a human to judge whether the script has the right properties, thus making the case that the

task must be to find (equivalent) human-readable descriptions.

Weakest preconditions can be defined by the simple definition

weakestPreConds : BitcoinScriptBasic → StackStatePred → StackStatePred

weakestPreConds p φ s = (φ +) (J p K s)

Consider a simple toy program that removes the top element from the stack three times:7

testprog = opDrop :: opDrop :: [ opDrop ]

Its weakest precondition can be computed as

weakestPreCondTestProg = weakestPreConds testprog acceptState

We obtain the following code (we slightly reformatted it to improve readability):

weakestPreCondTestProgNormalised s =

(stackPred2SPred acceptStates +)

(stackState2WithMaybe 〈 currentTime s , msg s , executeStackDrop (stack s)〉

>>= (λ s1 →

stackState2WithMaybe 〈 currentTime s1 , msg s1 , executeStackDrop (stack s1)〉

>>= liftStackFun2StackState (λ time1 msg1 → executeStackDrop)))

This condition is difficult to understand. The reason is that each instruction may cause the

program to abort in case the stack is empty. The condition expresses: if the stack is empty

then the condition is false. Otherwise, if after dropping the top element the stack is empty the
7If a : A then [ a ] : List A is the list consisting of one element a.

81



4. Verfiying Bitcoin Script with Local Instructions

condition is false. Otherwise, if after dropping again the top element the stack is empty the

condition is false. Otherwise, the condition is true if after dropping again the top element the

stack is non-empty and the top element is not false. The readable condition would express

that the height of the stack is ≥ 4 and the fourth element from the top is > 0. In this simple

example simplifying the condition would be easy, but when using different instructions the

situation becomes more complicated.

What we did using our methods to avoid this problem was to create the weakest precon-

dition by starting from the end and improving it in each step, or by replacing the program by

an easier program (which in case of this example would return nothing if the stack has height

≤ 2 and otherwise returns the result of dropping the first three elements off the stack). An

interesting project for future work would be to automate the steps we carried out manually, and

obtain readable weakest preconditions automatically.

4.3.4 Equational Reasoning with Hoare Triples

To support the verification of Bitcoin scripts with Hoare triples and weakest preconditions in

Agda, we have developed a library in Agda for equational reasoning with Hoare triples. The

library is inspired by what is described in Wadler et al. [240].

Let p,q be scripts and φ ,φ ′,ψ,ψ ′ : Predicate. If we define

ϕ <=>p ψ := ∀s : StackState.ϕ(s)↔ ψ(s)

we can easily show

< ϕ >if f p < ψ > ∧ < ψ >if f q < ρ > → < ϕ >if f p ++ q < ρ > (transitivity)

< ϕ >if f p < ψ > ∧ ψ <=>p ψ ′ → < ϕ >if f p < ψ ′ > (right equivalence)

ϕ ′ <=>p ϕ ∧ < ϕ >if f p < ψ > → < ϕ ′ >if f p < ψ > (le f t equivalence)

We illustrate this by taking an example of a typical situation where we have a proof of a

weakest precondition Hoare triple, and we assume we have already found some other proofs.

Thus, we just assume pre- and post-conditions for the programs prog1 , prog2, and prog3, and

we assume proofs of the following Hoare triples (proof1, proof2, and proof4) and of the fol-

lowing equivalence of predicates (proof3). To illustrate this, instead of assuming those proofs,

we postulate them and then show how to combine those assumed proofs into a proof of a theo-

rem. This is just an example to demonstrate the syntax. Later theorems will not depend on the

postulates used in this example:
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proof1 : < precondition >if f prog1 < intermediateCond1 >

proof2 : < intermediateCond1 >if f prog2 < intermediateCond2 >

proof3 : intermediateCond2 <=>p intermediateCond3

proof4 : < intermediateCond3 >if f prog3 < postcondition >

From the above, we have a proof for the first step (prog1):

< precondition >if f first step < intermediateCond1 >

Then, we have also a proof for the second step (prog2):

< intermediateCond1 >if f second step < intermediateCond2 >

Next, we get from these two proofs the following:

< intermediateCond1 >if f first step ++ second step < intermediateCond2 >

Subsequently, we use the following proof to get the following:

< intermediateCond1 >if f first step ++ second step ++ third step < intermediateCond3 >

Last, the following syntax is introduced to give this proof in a concise way: 8

theorem : < precondition >if f prog1 ++ (prog2 ++ prog3) < postcondition >

theorem = precondition <><>〈 prog1 〉〈 proof1 〉

intermediateCond1 <><>〈 prog2 〉〈 proof2 〉

intermediateCond2 <=>〈 proof3 〉

intermediateCond3 <><>〈 prog3 〉〈 proof4 〉e postcondition ‚p

From the above theorem, we use the symbol <><>, which is part of the syntax for defining

the chain of proofs.

4.4 Proof of Correctness of the P2PKH script using the

Step-by-Step Approach

P2PKH is the standard script for protecting Bitcoin, which requires somebody with a given

public key to a signature for the transaction. As an extra precaution, the script does not provide

the public key, only its hash.9 Thus, P2PKH will require the one who wants to unlock it

8In the last step, we use 〉e instead of 〉. This avoids concatenating the program with []. If we used 〉, the
theorem would prove the condition for program prog1++(prog2++(prog3++[])), which is provably but not
definitionally equal to the original program, requiring an additional proof step.

9A Bitcoin address is the hash of the public key with extra check bits to prevent simple typos in the hash.
Therefore, when sending money to a Bitcoin address, one is essentially sending it to the hash of the recipient’s
public key.
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to provide a public key, which hashes to a given hash, and a signature for that part of the

transaction. The signature will be provided using the private key corresponding to the public

key.

This section explains the usage of our approach by providing an example of how to prove

the correctness of the P2PKH using step-by-step to obtain the weakest precondition. The

P2PKH is the most used script in Bitcoin transactions. The locking script, which depends

on a public key hash, is defined as follows:

scriptP2PKHb : (pbkh : N) → BitcoinScriptBasic

scriptP2PKHb pbkh =

opDup :: opHash :: (opPush pbkh) :: opEqual :: opVerify :: [ opCheckSig ]

As a reminder from the above definition, [ opCheckSig ] is the list containing one single in-

struction opCheckSig, and it is therefore the program consisting of this single instruction. Note

that programs are lists of instructions.

In this section, we develop a readable weakest precondition of the P2PKH script and prove

its correctness by working backwards instruction by instruction.

Let acceptState be the predicate on states expressing that the state is non-empty and has

top element >0 (not false, i.e. true). The combination of unlocking and locking script is

accepted if, after running it, acceptState is fulfilled, so acceptState is the accepting condition.

We define intermediate conditions accept1 means , accept2, etc, the weakest precondition

wPreCondP2PKH, and proofs correct-opCheckSig, correct-opVerify etc of corresponding Hoare

triples w.r.t. the instructions of the Bitcoin script, working backwards starting from the last

instruction opCheckSig (see a full definition in appendix A.15):

correct-opCheckSig : < accept1 >if f ([ opCheckSig ]) < acceptState >

correct-opVerify : < accept2 >if f ([ opVerify ]) < accept1 >

correct-opEqual : < accept3 >if f ([ opEqual ]) < accept2 >

correct-opPush : (pbkh : N) → < accept4 pbkh >if f ([ opPush pbkh ]) < accept3 >

correct-opHash : (pbkh : N) → < accept5 pbkh >if f ([ opHash]) < accept4 pbkh >

correct-opDup : (pbkh : N) → < wPreCondP2PKH pbkh >if f ([ opDup]) < accept5 pbkh >

From the above signatures, we can read, for instance, proof correct-opCheckSig as a proof

of the Hoare triple consisting of the weakest precondition (accept1), the program (opCheckSig),

and postcondition (acceptState). This Hoare triple is the statement that if accept1 holds and
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one executes opCheckSig then acceptState holds. The other proofs, correct-opVerify, correct-

opEqual, correct-opPush, correct-opHash, and correct-opDup can be understood in a similar way.

The intermediate conditions can be read off from the operations. We present them in math-

ematical notation below, using the following conventions and abbreviations: t : N denotes time,

m : Msg, st,st ′ : Stack, x : N, x >0 means the top element is not false; for brevity, we omit

types after ∃ quantifiers. We use here and in the remaining chapter s for operations where the

StackState argument has been unfolded into its components.

acceptStates t m st ⇔∃ x,st ′. st ≡ x :: st ′ ∧ x > 0

accepts1 t m st ⇔∃ pbk,sig,st ′. st ≡ pbk :: sig :: st ′

∧ IsSigned m sig pbk

accepts2 t m st ⇔∃ x, pbk,sig,st ′. st ≡ x :: pbk :: sig :: st ′

∧ x > 0 ∧ IsSigned m sig pbk

accepts3 t m st ⇔∃ pbkh2, pbkh1, pbk,sig,st ′.st ≡ pbkh2 :: pbkh1 :: pbk :: sig :: st ′

∧ pbkh2 ≡ pbkh1∧ IsSigned m sig pbk

accepts4 pbkh1 t m st⇔∃ pbkh2, pbk,sig,st ′. st ≡ pbkh2 :: pbk :: sig :: st ′

∧ pbkh2 ≡ pbkh1∧ IsSigned m sig pbk

accepts5 pbkh1 t m st⇔∃ pbk1, pbk,sig,st ′. st ≡ pbk1 :: pbk :: sig :: st ′

∧ hashFun pbk1 ≡ pbkh1∧ IsSigned m sig pbk

wPreCondP2PKHs pbkh1 t m st⇔∃ pbk,sig,st ′. st ≡ pbk :: sig :: st ′

∧ hashFun pbk ≡ pbkh1 ∧ IsSigned m sig pbk

In Agda, these formulas are defined by case distinction on the stack. As example, the code

for the accept condition (acceptState) and the weakest precondition (wPreCondP2PKHs) is as

follows:

acceptStates : StackPredicate

acceptStates time msg1 [] = ⊥

acceptStates time msg1 (x :: stack1) = NotFalse x

wPreCondP2PKHs : (pbkh : N ) → StackPredicate

wPreCondP2PKHs pbkh time m [] = ⊥

wPreCondP2PKHs pbkh time m (x :: []) = ⊥

wPreCondP2PKHs pbkh time m ( pbk :: sig :: st) =

(hashFun pbk ≡ pbkh ) ∧ IsSigned m sig pbk
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Using our syntax for equational reasoning, we can prove the weakest precondition for the

P2PKH script as follows:

theoremP2PKH : (pbkh : N)

→ < wPreCondP2PKH pbkh >if f scriptP2PKHb pbkh < acceptState >

theoremP2PKH pbkh =

wPreCondP2PKH pbkh <><>〈 [ opDup ] 〉〈 correct-opDup pbkh 〉

accept5 pbkh <><>〈 [ opHash ] 〉〈 correct-opHash pbkh 〉

accept4 pbkh <><>〈 [ opPush pbkh ] 〉〈 correct-opPush pbkh 〉

accept3 <><>〈 [ opEqual ] 〉〈 correct-opEqual 〉

accept2 <><>〈 [ opVerify ] 〉〈 correct-opVerify 〉

accept1 <><>〈 [ opCheckSig ] 〉〈 correct-opCheckSig 〉e

acceptState ‚p

The locking script will be accepted if, after executing the code starting with the stack re-

turned by the unlocking script, the accept condition acceptState is fulfilled. The verification

conditions and proofs were developed by working backwards starting from the last instruction

and determining the weakest preconditions “accepti” w.r.t. the end piece of the script starting

with that instruction and the accept condition as post-condition. The preconditions were ob-

tained manually – one could automate this by determining for each instruction depending on

the post-condition a corresponding pre-condition, where the challenge would be to simplify the

resulting pre-conditions in order to avoid a blowup in size. We continued in this way until we

reached the first instruction and obtained the weakest precondition for the locking script. theo-

remP2PKH is using single instructions in order to prove the correctness of P2PKH. The proofs

correct-opCheckSig, correct-opVerify, etc are done by following the case distinctions made in the

corresponding verification conditions. The harder direction is to prove that they are actually

weakest preconditions: Proving that the precondition implies the postcondition after running

the program, is easier since we are used to mentally executing programs in forward direction.

Proving the opposite direction requires showing that the only way, after running the program, to

obtain the postcondition is to have the precondition fulfilled, which requires mentally reversing

the execution of programs.

Evaluation of the significance of thereomP2PKH. We actually prove that wPre-

CondP2PKH is the weakest precondition for the P2PKH script w.r.t. the postcondition being

acceptState. The reader might wonder whether this is really a theorem, or whether it should

not automatically hold. It is a proper theorem. See the example (scriptPubKeyFaulty) in
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Subsect. 4.3.1, which shows that if we have the wrong script and specify our intended weakest

precondition, then the proof that it is the weakest precondition fails.

When specifying the correctness of programs, the specification is often quite close to the

program becaue it describes what the program does. It is common for the specification and

the program to be very similar. This is a typical problem, but proving that a program fulfils a

specification often helps detect programming errors. The example of a wrong program shows

that if we make a mistake, the weakest precondition detects it. While that example is very

simple and the error is easy to detect, we expect that for more sophisticated examples, this

technique will reveal genuine programming errors.

4.5 Proof of Correctness using Symbolic Execution

In this section, we will introduce a second method for obtaining readable representations of

weakest preconditions of Bitcoin scripts. This method is based on symbolic execution [241]

of the Bitcoin script, and investigating the sequence of case distinctions carried out during the

execution. We will consider three examples: The first will be the P2PKH script which we

analysed already. We use it to explain the method and provide a second approach to determine

and verify the already obtained weakest precondition. The second example will consider the

multisig script which is a direct application of the OP_CHECKMULTISIG instruction. The

third example will see an application of a combination of both methods.

4.5.1 Example: P2PKH Script

When applying the symbolic evaluation method to the P2PKH script and analysing the se-

quence of case distinctions carried out, we will see that there will be exactly one path through

the tree of case distinctions which results in an accepting condition. The conjunction of the

cases that determine this path will form the weakest precondition. In examples with more than

one accepting path we would take the disjunction of the conditions for each accepting path. 10

We will prove that the precondition is indeed the weakest by developing an equivalent program

p2pkhFunctionDecoded and showing that it fulfils the weakest precondition.

10In our examples we got only a few accepting paths, since concrete scripts in use are designed to deal with a
small number of different scenarios for unlocking them, so the majority of paths in the program are unsuccessful
paths. It could happen however that with more advanced examples nested conditions result in an exponential blowup
of the number of cases – if that occurs one would need to take an approach where the nested case distinctions
are preserved at least partly and the resulting extracted formulas reflect those nested case distinctions rather than
flattening them out. This would avoid the blowup in the size of the resulting weakest precondition.
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We start by declaring (using Agda’s postulate) symbolic values pbkh, msg1, stack1, x1,

etc for the parameters (postulates are typeset in blue). This allows us to evaluate expressions

up to executeStackVerify symbolically by using the normalisation procedure of Agda and to

determine the function p2pkhFunctionDecoded. In Sect. 4.6, we will elaborate how to do this

practically in Agda. Afterwards, we stop using those postulates (they were defined as private)

and prove that the result of evaluating the P2PKH script for arbitrary parameters is equivalent

to p2pkhFunctionDecoded.

When evaluating J scriptP2PKHb pbkh Ks time1 msg1 stack1 we obtain

executeStackDup stack1 >>= λ stack2 →

executeOpHash stack2 >>= λ stack3 →

executeStackEquality (pbkh :: stack3) >>= λ stack4 →

executeStackVerify stack4 >>= λ stack5 →

executeStackCheckSig msg1 stack5

We can write it equivalently using the do notation11

do stack2 ← executeStackDup stack1

stack3 ← executeOpHash stack2

stack4 ← executeStackEquality (pbkh :: stack3)

stack5 ← executeStackVerify stack4

executeStackCheckSig msg1 stack5

At this point further reduction is blocked by the first line of the previous expression, be-

cause executeStackDup stack1 makes a case distinction on stack1. Therefore, we introduce a

symbolic case distinction on stack1:

• J scriptP2PKHb pbkh Ks time1 msg1 [] evaluates to nothing.

• J scriptP2PKHb pbkh Ks time1 msg1 (pbk :: stack1) evaluates to what in do notation can be

written as

do stack5 ← executeStackVerify

(compareNaturals pbkh (hashFun pbk) :: pbk :: stack1)

executeStackCheckSig msg1 stack5

11The do notation is a widely used Haskell notation adapted to Agda, which provides an alternative syntax for
the same expression making it appear as an imperative program if one reads ← as assignments. It demonstrates
that we are consecutively executing the instructions, with the possibility of aborting in each step.
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Evaluation of the latter expression is blocked by the function executeStackVerify which makes

a case distinction on the expression compareNaturals pbkh (hashFun pbk). We define

abstrFun : (stack1 : Stack)(cmp : N) → Maybe Stack

abstrFun stack1 cmp = do stack5 ← executeStackVerify (cmp :: pbk :: stack1)

executeStackCheckSig msg1 stack5

hence J scriptP2PKHb pbkh Ks time1 msg1 (pbk :: stack1) evaluates to

abstrFun stack1 (compareNaturals pbkh (hashFun pbk)).

Next we carry out a symbolic case distinction on the argument cmp of abstrFun:

• abstrFun stack1 0 evaluates to nothing.

• abstrFun stack1 (suc x1) evaluates to executeStackCheckSig msg1 (pbk :: stack1).

In order to normalise further, executeStackCheckSig needs to make a case distinction on

stack1, so we carry out a symbolic case distinction on that argument:

• abstrFun [] (suc x1) evaluates to nothing.

• abstrFun (sig1 :: stack1) (suc x1) evaluates to

just (boolToNat (isSigned msg1 sig1 pbk) :: stack1)

We can now read off the weakest precondition. The only path which ends up in a just result

is when the stack is non empty of the form pbk :: stack1, and

compareNaturals pbkh (hashFun pbk) evaluates to suc x1, i.e. it must be >0. Furthermore, in this

case stack1 needs to be itself non empty. For stack1 = sig1 :: stack2, the result returned is just

(boolToNat (isSigned msg1 sig1 pbk) :: stack1), which fulfils the accept condition if boolToNat

(isSigned msg1 sig1 pbk) > 0. The latter is the case if isSigned msg1 sig1 pbk is true.

Furthermore, compareNaturals n m returns 1 if n, m are equal otherwise 0, so it is >0 if n =

m. Therefore the P2PKH locking script succeeds with an output stack fulfilling the acceptance

condition, if and only if the input stack has height at least two, and if it is pbk :: sig1 :: stack2,

then pbkh is equal to hashFun pbk, and isSigned msg1 sig1 pbk is true. That is the same as the

weakest precondition that we determined using the first approach.

In order to prove correctness, we first determine a more Agda style formulation of the result

of evaluation of the P2PKH script, which we derive from the previous symbolic evaluation:

p2pkhFunctionDecoded : (pbkh : N)(msg1 : Msg)(stack1 : Stack)

→ Maybe Stack
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p2pkhFunctionDecoded pbkh msg1 [] = nothing

p2pkhFunctionDecoded pbkh msg1 (pbk :: stack1) =

p2pkhFunctionDecodedAux1 pbk msg1 stack1

(compareNaturals pbkh (hashFun pbk))

p2pkhFunctionDecodedAux1 : (pbk : N)(msg1 : Msg)(stack1 : Stack)(cpRes : N)

→ Maybe Stack

p2pkhFunctionDecodedAux1 pbk msg1 [] cpRes = nothing

p2pkhFunctionDecodedAux1 pbk msg1 (sig1 :: stack1) zero = nothing

p2pkhFunctionDecodedAux1 pbk msg1 (sig1 :: stack1) (suc cpRes) =

just (boolToNat (isSigned msg1 sig1 pbk) :: stack1)

We prove that this function is equivalent to the result of evaluating the P2PKH script. The

proof is a simple case distinction following the cases defining p2pkhFunctionDecoded:

p2pkhFunctionDecodedcor : (time1 : N) (pbkh : N)(msg1 : Msg)(stack1 : Stack)

→ J scriptP2PKHb pbkh Ks time1 msg1 stack1 ≡

p2pkhFunctionDecoded pbkh msg1 stack1

We show that the extracted weakest precondition is a correct for the extracted program:12

lemmaPTKHcoraux : (pbkh : N)

→ < weakestPreConditionP2PKHs pbkh >gs

(λ time msg1 s → p2pkhFunctionDecoded pbkh msg1 s)

< acceptStates >

Afterwards, this is transferred into a proof of the weakest precondition for the P2PKH

script, using the equality proof from before:

theoPTPKHcor : (pbkh : N)

→ < wPreCondP2PKH pbkh >if f scriptP2PKHb pbkh < acceptState >

theoPTPKHcor pbkh =

hoareTripleStack2HoareTriple (scriptP2PKHb pbkh)

(wPreCondP2PKHs pbkh) acceptStates (LemmaPTPKHcor pbkh)

12<_>g_<_> is the generalisation of <_>iff_<_> where Bitcoin scripts are replaced by Agda functions
StackState → Maybe StackState; <_>gs_<_> is the version, where the StackState is unfolded into its com-
ponents.
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Carrying out the symbolic execution was relatively easy, because Agda supports evaluation

of terms very well. It only becomes relatively long in the Agda code [18] when documenting

all the steps, which we did in order to explain how this is done in detail. What matters is the

resulting program and a prove that it is equivalent, which was relatively short and easy. Maybe

Agda’s reflection mechanism [242], once it is more fully developed, could be of help to find

the successful branches of the program more easily. To obtain a readable program rather than

a machine-generated program, and therefore readable verification conditions, would however

require a lot of work, and probably require delegating some programming tasks from Agda (in

which tactics need to be written) to its foreign language interface.

4.5.2 Example: MultiSig Script (P2MS)

The OP_CHECKMULTISIG instruction is an instruction that has a more complex behaviour:

it assumes that the top elements of the stack are as follows:

n :: pbkn :: · · · :: pbk2 :: pbk1 :: m :: sigm :: · · · :: sig2 :: sig1 :: dummy

OP_CHECKMULTISIG checks whether sig1 · · · sigm are signatures corresponding to m of

the n public keys pbk1 · · · pbkn for the msg to be signed. The matching public keys should be

in the smae order as the signatures. When pushed from a script, the public keys and signatures

appear in reverse order on the stack, as pbk1 is pushed first onto the stack. The dummy element

occurs because of a mistake in the Bitcoin protocol, which has not been corrected because it

would require a hard fork. Thus, the operation must include an extra dummy value in the script

to ensure correct functionality. This extra value is not used during signature verification [98,

p. 151-152].

The operational semantics is given by a function executeMultiSig, which fetches the data

from the stack as described before. It fails if there are not enough elements on the stack and

otherwise returns just (boolToNat (cmpMultiSigs msg sigs pbks) :: restStack), where sigs and

pbks are the signatures and public keys fetched from the stack in reverse order, and restStack

is the remainder of the stack. The function cmpSigs compares whether signatures correspond

to public keys and is defined as follows:

cmpMultiSigs : (msg : Msg)(sigs pbks : List N) → Bool

cmpMultiSigs msg [] pubkeys = true

cmpMultiSigs msg (sig :: sigs) [] = false

cmpMultiSigs msg (sig :: sigs) (pbk :: pbks) =
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cmpMultiSigsAux msg sigs pbks sig (isSigned msg sig pbk)

cmpMultiSigsAux : (msg : Msg)(sigs pbks : List N)(sig : N)(testRes : Bool) → Bool

cmpMultiSigsAux msg sigs pbks sig false = cmpMultiSigs msg (sig :: sigs) pbks

cmpMultiSigsAux msg sigs pbks sig true = cmpMultiSigs msg sigs pbks

We now define a generic multisig function. First, we define opPushList, which pushes a list

of public keys on the stack:

opPushList : (pbkList : List N) → BitcoinScriptBasic

opPushList [] = []

opPushList (pbk1 :: pbkList) = opPush pbk1 :: opPushList pbkList

The m out of n multi-signature script P2MS (n = length pbkList) is defined as follows:

multiSigScriptm-nb : (m : N)(pbkList : List N)(m<n : m < length pbkList)

→ BitcoinScriptBasic

multiSigScriptm-nb m pbkList m<n =

opPush m :: (opPushList pbkList ++ (opPush (length pbkList) :: [ opMultiSig ]))

The locking script MultiSig script P2MS applies OP_CHECKMULTISIG to m signa-

tures and n public keys. It pushes the number m of required signatures, then n public

keys, and then the number n as the number of public keys, onto the stack, and executes

OP_CHECKMULTISIG. If OP_CHECKMULTISIG finds that the m signatures are valid sig-

nature for the message to be signed for m out of the n public keys in the same order as they

appear in the list of public keys, then the script will be unlocked. As unlocking script one can

use opPushList applied to a list of m appropriate signatures. In order to verify the script, we will

consider the concrete example of the 2-out-of-4 P2MS, for which we obtain a very readable

verification condition (the generic one becomes difficult to read).

We will use the second approach of determining a readable form of the weakest precondi-

tion and proving correctness by symbolic evaluation for the 2 out of 4 multiSigScript2-4b. The

first approach is difficult to carry out since the instruction opMultiSig has a very complex pre-

condition that is difficult to handle – it requires that the stack contains the number of public

keys, then the public keys themselves, then the number of signatures and the signatures, and a

dummy element, where the number of public keys and number of signatures can be arbitrary. It

is much easier to handle the full multiSigScript2-4b script, since, after the data has been inputted,
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the number of required signatures is known, and the public keys are already provided by the

script.

In order to demonstrate the first approach we will instead, in Subsect. 4.5.3, apply the step-

by-step approach to a combined script, of which multiSigScript2-4b is one part. This way we

obtain a readable form of the weakest precondition and can then prove its correctness. This will

demonstrate that in some cases it is beneficial to interleave the two processes, and apply the

second method to sequences of instructions while applying the first approach to the resulting

sequences of instructions instead of single instructions. We start the symbolic evaluation by

computing the normal form of

J multiSigScript2-4b pbk1 pbk2 pbk3 pbk4 Ks time1 msg1 stack1

and obtain

executeMultiSig3 msg1 (pbk1 :: pbk2 :: pbk3 :: [ pbk4 ]) 2 stack1 []

Here, executeMultiSig3 is one of the auxiliary functions in the definition of executeMultiSig.

That expression makes a case distinctions on stack1 and returns:

• nothing when the stack has height at most 2 (obtained by evaluating it symbolically for

stacks of height 0, 1, 2).

• Otherwise, the stack has height≥ 3, and, if it is of the form sig2 :: sig1 :: dummy :: stack1,

it reduces to

just (boolToNat (cmpMultiSigsAux msg1 [ sig2 ] (pbk2 :: pbk3 :: [ pbk4 ]) sig1

(isSigned msg1 sig1 pbk1)) :: stack1)

The script has terminated, because we obtain just as a result of the evaluation. We now need

to check whether the result fulfils the accept condition. For this the top element of the stack

needs to be >0, which is the case if

cmpMultiSigsAux msg1 [ sig2 ] (pbk2 :: pbk3 :: [ pbk4 ]) sig1(isSigned msg1 sig1 pbk1)

returns true. Therefore, we perform symbolic case distinctions in the following way:

• In case isSigned msg1 sig1 pbk1 evaluates to true, i.e. if we replace that expression by

true, the reduction continues to

cmpMultiSigsAux msg1 [] (pbk3 :: [ pbk4 ]) sig2 (isSigned msg1 sig2 pbk2),

which makes a case distinction on isSigned msg1 sig2 pbk2.

– If that expression returns again true, we obtain true.
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– If it returns false, we obtain

cmpMultiSigsAux msg1 [] [ pbk4 ] sig2 (isSigned msg1 sig2 pbk3)

which makes a case distinction on isSigned msg1 sig2 pbk3

* In case of true, we obtain true.

* Otherwise the case distinctions continue, see the git repository [18] for full

details.

In total we see that we obtain true iff one of the following cases holds:

• (isSigned msg1 sig1 pbk1) ∧ (isSigned msg1 sig2 pbk2)

• (isSigned msg1 sig1 pbk1) ∧ ¬ (isSigned msg1 sig2 pbk2) ∧ (isSigned msg1 sig2 pbk3)

• (isSigned msg1 sig1 pbk1) ∧ ¬ (isSigned msg1 sig2 pbk2) ∧

¬ (isSigned msg1 sig2 pbk3) ∧ (isSigned msg1 sig2 pbk4)

• . . . more cases.

These cases can be simplified to an equivalent disjunction of the following cases:

• (isSigned msg1 sig1 pbk1) ∧ (isSigned msg1 sig2 pbk2)

• (isSigned msg1 sig1 pbk1) ∧ (isSigned msg1 sig2 pbk3)

• (isSigned msg1 sig1 pbk1) ∧ (isSigned msg1 sig2 pbk4)

• . . . more cases.

We obtain the following weakest precondition as a stack predicate:

weakestPreCondMultiSig-2-4s : (pbk1 pbk2 pbk3 pbk4 : N) → StackPredicate

weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4 time msg1 [] = ⊥

weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4 time msg1 (x :: []) = ⊥

weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4 time msg1 (x :: y :: []) = ⊥

weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4 time msg1

( sig2 :: sig1 :: dummy :: stack1) =

((IsSigned msg1 sig1 pbk1 ∧ IsSigned msg1 sig2 pbk2) ]

(IsSigned msg1 sig1 pbk1 ∧ IsSigned msg1 sig2 pbk3) ]

(IsSigned msg1 sig1 pbk1 ∧ IsSigned msg1 sig2 pbk4) ]
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(IsSigned msg1 sig1 pbk2 ∧ IsSigned msg1 sig2 pbk3) ]

(IsSigned msg1 sig1 pbk2 ∧ IsSigned msg1 sig2 pbk4) ]

(IsSigned msg1 sig1 pbk3 ∧ IsSigned msg1 sig2 pbk4))

It expresses that the stack must have height at least 3, and if it is of the form sig2 :: sig1 ::

dummy :: stack1 then the signatures need to correspond to 2 out of the 4 public keys in the same

order as the public keys. Using the same case distinctions as they occurred in the symbolic

evaluation above, we can now prove the following:

theoremCorrectnessMultiSig-2-4 : (pbk1 pbk2 pbk3 pbk4 : N)

→ < stackPred2SPred (weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4) >if f

multiSigScript2-4b pbk1 pbk2 pbk3 pbk4

< stackPred2SPred acceptStates >

From the theorem above, we have obtained a readable weakest precondition by symbolic

execution, which will be used as a starting template for developing a generic verification.

4.5.3 Example: Combining the two Methods

In this subsection, we show how to verify a combined script which consists of a simple script

checking a certain amount of time has passed and the multisig script from the previous sub-

section. To determine a readable form of the weakest precondition and proving correctness

we will combine both of our techniques: The weakest precondition for the multisig script has

been determined by symbolic evaluation in the previous subsection. The weakest precondition

for the simple time-checking script will be obtained directly, as it is very simple. When we

consider the combined scripts we will use the first method of moving backwards step-by-step.

However, instead of using single instructions in each step, we now use several instructions as

a single step.

We define the checktime script as follows:

checkTimeScriptb : (time1 : Time) → BitcoinScriptBasic

checkTimeScriptb time1 =

(opPush time1) :: opCHECKLOCKTIMEVERIFY :: [ opDrop ]

If we define

timeCheckPreCond : (time1 : Time) → StackPredicate

timeCheckPreCond time1 time2 msg stack1 = time1 ≤ time2
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we can define its weakest precondition relative to a postcondition φ only affecting the stack

as in the following theorem:

theoremCorrectnessTimeCheck : (φ : StackPredicate)(time1 : Time)

→ < stackPred2SPred (timeCheckPreCond time1 ∧sp φ ) >if f

checkTimeScriptb time1

< stackPred2SPred φ >

Now we can determine the weakest precondition for the combined script and prove its

correctness as follows:

theoremCorrectnessCombinedMultiSigTimeCheck : (time1 : Time) (pbk1 pbk2 pbk3 pbk4 : N)

→ < stackPred2SPred ( timeCheckPreCond time1 ∧sp

weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4) >if f

checkTimeScriptb time1 ++ multiSigScript2-4b pbk1 pbk2 pbk3 pbk4

< acceptState >

theoremCorrectnessCombinedMultiSigTimeCheck time1 pbk1 pbk2 pbk3 pbk4 =

stackPred2SPred (timeCheckPreCond time1 ∧sp

weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4)

<><>〈 checkTimeScriptb time1 〉〈 theoremCorrectnessTimeCheck

(weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4) time1 〉

stackPred2SPred (weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4)

<><>〈 multiSigScript2-4b pbk1 pbk2 pbk3 pbk4

〉〈 theoremCorrectnessMultiSig-2-4 pbk1 pbk2 pbk3 pbk4 〉e

stackPred2SPred acceptStates ‚p

The weakest precondition states that the state time is≥ time1, and that the weakest precon-

dition for the multisig script is fulfilled (∧sp forms the conjunction of the two conditions). For

proving it we used a combination of both methods, the second method was used to determine

preconditions for the two parts of the scripts, and the first method, where we used whole scripts

instead of basic instructions, was used to determine the combined weakest precondition.

4.6 Using Agda to Determine Readable Weakest Preconditions

Our library provides the operational semantics for (a subset of) Bitcoin SCRIPT, and a frame-

work for specifying and reasoning about weakest preconditions. The Agda user has to specify
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the script to be verified, and then consider suitable pieces of the specified script and provide

weakest preconditions. Agda will then create goals, which are unimplemented holes in the

code. Agda will display the type of goals and list of assumptions available for solving them,

and provide considerable additional support for resolving those goals. For instance, it allows

to refine partial solutions provided by the user by applying it to sufficiently many new goals.

Agda will as well automatically create case distinctions (such as whether an element of type

Maybe is just or nothing). Agda can solve goals if the solution is unique and can be found in

a direct way. Agda’s automated theorem proving support for finding solutions which are not

unique is not very strong due to the high complexity of the language.

Agda Reflection (see Agda Team webpage [242]) is an ongoing project which already now

provides a considerable library for inspecting code inside a goal and computing solutions as

Agda code. The aim is to provide something similar to Coq’s tactic language. In our code

we frequently had to consider a nested case distinction for proving a goal, where most cases

were solved because at one point one of the arguments became an element of the empty type.

Automating this using Agda Reflection would make it much easier to use our library.

Finding a description of the weakest precondition has to be done manually at the moment.

We plan to create a library which computes such descriptions for instructions or small pieces of

instructions. Sometimes it is easier to provide weakest precondition for small pieces of code,

for instance, in case of the multisig instruction the weakest precondition for the instruction

itself is very complex, whereas the weakest precondition for the P2MS script is much easier

to display. Defining and simplifying the weakest preconditions in the intermediate steps has to

be been done manually at the moment. Proofs have to be done manually in Agda, but they are

relatively easy because of Agda’s support for developing proofs. It would be desirable to have

a more automated support, where the user only needs to specify the verification conditions, but

proofs are carried out automatically. In general, our impression is that for writing programs and

specifying verification conditions Agda is very suitable: One obtains code that is very readable

and close to standard mathematical notations. Where Agda is lacking is in providing support

for machine assisted proofs of the resulting conditions.

Regarding the question, which of the two approaches to use (working backwards step-

by-step or using symbolic evaluation), we have only some heuristics at the moment. A good

approach is that for pieces of code, where one has an intuition what the underlying program

written in Agda could be, the symbolic evaluation is more suitable. For longer code, a good

strategy is to cut the code into suitable pieces, for which one can find a symbolic program
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and weakest preconditions, and then work oneself backwards using the first approach starting

from the acceptance condition. Note that symbolic execution can be done very fast: The user

postulates variables for the arguments, applies the functions to be evaluated to those postulated

arguments and then executes Agda’s normalisation mechanism. Then the user needs to man-

ually inspect the result to see which sub expression trigger the case distinction. It would be

nice project to develop a procedure which automates that process of symbolic execution – this

could be applicable to verification of other kinds of programs as well.

4.7 Chapter Summary

In this chapter, we have implemented and tested two methods for developing human-readable

weakest preconditions and proving their correctness. These methods can help smart contract

developers to fill the validation gap between user requirements and formal specifications. We

have applied our approaches to P2PKH, P2MS, and a combination of P2MS with a time lock.

In this chapter, we dealt with local instructions and defined the operational semantics for these

instructions. In the next chapter 5, we verify and apply our methods to deal with nested condi-

tional scripts.
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Chapter 5

Verifying Bitcoin Script with
Non-Local Instructions (Conditional
Instructions)
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5.1 Introduction

This chapter extends the previous chapter 4. In this chapter, we include conditionals into the

language. For the operational semantics, we use an additional stack, the IfStack, to deal with

nested conditionals. This avoids the addition of extra jump instructions, which are usually

used for the operational semantics of conditionals in Forth-style stack languages. The IfStack

preserves the original nesting of conditionals, and we determine an ifthenselse-theorem which

allows to derive verification conditions of conditionals by referring to conditions for the if- and

else-case. The IfStack essentially shows the current nesting of active if clauses. For example, it
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shows that one is in the else case of one if then else, and there is one in the if case of another if

then else, and so on.

The remaining part of this chapter is structured as follows: We introduce the operational

semantics for non-local instructions (conditional instructions) in Sect. 5.2. In Sect. 5.3, we

explain Hoare logic with a new state, which, in our case, we add an additional stack to deal

with non-local instructions. We then introduce in Sect. 5.4 an ifthenelse-theorem and apply it to

the verification of a conditional consisting of two P2PKH scripts. We finish with a conclusion

in Sect. 5.5.

Git repository. This work has been formalized and full proofs have been carried out in

the proof assistant Agda. The source code is available at [19] and can be found as well in

appendix B.

5.2 Operational Semantics

This subsection defines the operational semantics of Bitcoin SCRIPT in detail. The semantics

is implemented in Agda. It needs to be checked (validated) carefully to ensure that there are

no translation errors.

We include control flow statements of Bitcoin SCRIPT, which allows to formalise more

complex smart contracts, but have non-local behavior. All opcodes may fail if the stack has

insufficient elements to complete the operation. The operational semantics in our previous

Chapter 4 was given w.r.t. a state, consisting of a standard stack (Stack), which is given as a

list of natural numbers, a message (Msg) corresponding to the transaction that has to be signed

(we defined Msg as a data type in Agda), and the current time as represented as an element of

Time. The resulting definition is

StackState := Time×Msg×Stack

Time is referred for instance by the instruction OP_CHECKLOGTIMEVERIFY, and Msg is

referred by the instructions which check correctness of signatures.

In order to deal with conditionals, we extend the state of the previous chapter 4 by adding

an additional stack (IfStack) to deal with possibly nested conditionals. Therefore the state which

allows to deal with control flow statements is as follows:

State := Time×Msg×Stack × IfStack
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Here IfStack is a list of elements from IfStackEl. In Agda, we define the IfStackEl data type as

follows:

data IfStackEl : Set where

ifCase elseCase ifSkip elseSkip ifIgnore : IfStackEl

The IfStackEl has five constructors, which we use to represent the cases at the top of IfStack.

The process of IfStack is as follows:

• An empty IfStack means that we are currently not within any conditional,

• A top element ifCase means that we are in the if-case of a conditional to be executed,

• Top element elseCase means that we are in the else-case to be executed,

• ifSkip means that we are in the if-case of a conditional not to be executed where the

else-case is to be executed,

• elseSkip means that we are in the else-case of a conditional not to be executed,

• ifIgnore means that we are in the if-case of a conditional, where the whole conditional is

to be ignored because it is nested within an if or else-case of a conditional to be ignored.

• There is no need for an elseIgnore, since we can reuse elseSkip for it.

If the IfStack is created using the above semantics starting with the empty stack, we see

that ifCase, elseCase, ifSkip can only occur above an empty ifstack, or ifstack with top ele-

ment in {ifCase,elseCase}, and ifIgnore can only occur above an ifstack with top element in

{ifIgnore, ifSkip,elseSkip}. We add to the IfStack the consistency condition that this condition is

fulfilled. In the actual Agda code we have instead of a consistent ifstack, two components, an

ifstack, and condition requiring the ifstack to be consistent. The consistency condition avoids

having to prove, when verifying Bitcoin scripts, verification conditions for ifstacks which never

occur.

As we mentioned earlier in the introduction of this chapter, the IfStack essentially showed

the current nesting of active if clauses. For example, as we explained, nested OP_IF in Sub-

subsect. 2.3.2.1 showed that one is in the else case of one if then else, and there is one in the if

case of another if then else, and so on.

The type for all opcodes is given as an element of the Agda data type InstructionAll as

follows:
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data InstructionAll : Set where

opEqual opAdd opSub opVerify : InstructionAll

opEqualVerify opDup opDrop : InstructionAll

opCHECKLOCKTIMEVERIFY opCheckSig3 : InstructionAll

opCheckSig opSwap opHash opMultiSig : InstructionAll

opPush : N → InstructionAll

opIf opElse opEndIf : InstructionAll

Accordingly, the operational semantics of an instruction op : InstructionAll is represented as

J op Ks : InstructionAll → State → Maybe State

We define the operational semantics of conditional instructions opIf, opElse, and opEndIf, as

follows:

J_Ks : InstructionAll → State → Maybe State

J opIf Ks = executeOpIfBasic

J opElse Ks = executeOpElseBasic

J opEndIf Ks = executeOpEndIfBasic

The definition of executeOpIfBasic is as following:

executeOpIfBasic : State → Maybe State

executeOpIfBasic 〈 time , msg , bitcoinStack1 , ifSkip :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , ifIgnore :: ifSkip :: ifStack1 , c 〉

executeOpIfBasic 〈 time , msg , bitcoinStack1 , ifIgnore :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , ifIgnore :: ifIgnore :: ifStack1 , c 〉

executeOpIfBasic 〈 time , msg , bitcoinStack1 , elseSkip :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , ifIgnore :: elseSkip :: ifStack1 , c 〉

executeOpIfBasic 〈 time , msg , [] , [] , c 〉 = nothing

executeOpIfBasic 〈 time , msg , zero :: bitcoinStack1 , [] , c 〉

= just 〈 time , msg , bitcoinStack1 , ifSkip :: [] , c 〉

executeOpIfBasic 〈 time , msg , suc x :: bitcoinStack1 , [] , c 〉

= just 〈 time , msg , bitcoinStack1 , ifCase :: [] , c 〉

executeOpIfBasic 〈 time , msg , [] , ifCase :: ifStack1 , c 〉 = nothing

executeOpIfBasic 〈 time , msg , zero :: bitcoinStack1 , ifCase :: ifStack1 , c 〉
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= just 〈 time , msg , bitcoinStack1 , ifSkip :: ifCase :: ifStack1 , c 〉

executeOpIfBasic 〈 time , msg , suc x :: bitcoinStack1 , ifCase :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , ifCase :: ifCase :: ifStack1 , c 〉

executeOpIfBasic 〈 time , msg , [] , elseCase :: ifStack1 , c 〉 = nothing

executeOpIfBasic 〈 time , msg , zero :: bitcoinStack1 , elseCase :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , ifSkip :: elseCase :: ifStack1 , c 〉

executeOpIfBasic 〈 time , msg , suc x :: bitcoinStack1 , elseCase :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , ifCase :: elseCase :: ifStack1 , c 〉

From the above definition, the execution function of the operational semantic of J opIf Ks does

the following:

• If the top element of IfStack is ifSkip, elseSkip, or ifIgnore, then the conditional starting

with the IF_CASE needs to be ignored. This is achieved by pushing an additional ifIgnore

onto the IfStack.

• Otherwise, if the stack is empty, the execution will fail.

• Otherwise, the IfStack is empty, or the top element of it is ifCase or elseCase. Then if the

top element of the stack is

– 0 then ifSkip will be pushed onto IfStack, since the if-case is to be ignored and the

else-case to be executed,

– is not 0 then ifCase will be pushed on the IfStack, since the if-case is to be executed.

The definition of executeOpElseBasic as follows:

executeOpElseBasic : State → Maybe State

executeOpElseBasic 〈 time , msg , bitcoinStack1 , [] , c 〉 = nothing

executeOpElseBasic 〈 time , msg , bitcoinStack1 , elseSkip :: ifStack1 , c 〉

= nothing

executeOpElseBasic 〈 time , msg , bitcoinStack1 , elseCase :: ifStack1 , c 〉

= nothing

executeOpElseBasic 〈 time , msg , bitcoinStack1 , ifSkip :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , elseCase :: ifStack1 , c 〉

executeOpElseBasic 〈 time , msg , bitcoinStack1 , ifCase :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , elseSkip :: ifStack1 , ∧bproj2 c 〉
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executeOpElseBasic 〈 time , msg , bitcoinStack1 , ifIgnore :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , elseSkip :: ifStack1 , ∧bproj2 c 〉

Based on the above definition, the execution function (executeOpElseBasic) of the operational

semantic J opElse Ks does the following:

• If the IfStack is empty, then there is no OP_IF matching the OP_ELSE, and therefore the

execution fails.

• Otherwise, if the top element of IfStack is:

– elseSkip or elseCase then there was already an OP_ELSE matching the previous

OP_IF, and the current OP_ELSE is unmatched, therefore execution of the script

fails;

– ifSkip then the top element will be replaced with elseCase.

– ifCase or ifIgnore then the top element will be replaced with elseSkip.

Finally, we define executeOpEndIfBasic as follows:

executeOpEndIfBasic : State → Maybe State

executeOpEndIfBasic 〈 time , msg , bitcoinStack , [] , c 〉 = nothing

executeOpEndIfBasic 〈 time , msg , bitcoinStack , x :: ifStack , c 〉

= just (〈 time , msg , bitcoinStack , ifStack , lemmaIfStackConsisTail x ifStack c 〉)

From the above definition, the execution function (executeOpEndIfBasic) of the operational

semantic J opEndIf Ks does the following:

• If the IfStack is empty then the OP_ENDIF is unmatched, so the operation fails.

• Otherwise the OP_ENDIF terminates the current conditional, and we pop the top element

from the IfStack.

For all local instructions,

• If the IfStack is empty or its top element is ifCase or elseCase then the instruction is

executed (as defined in the previous chapter 4 on all components excluding the IfStack,

while the IfStack remains unchanged;

• Otherwise the State remains unchanged.
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5.3 Hoare Logic

In the previous chapter 4, particularly in Subsect. 4.3.2, we defined Hoare triples and weakest

precondition based on StackState to deal with local instruction. In this chapter, we extend the

state (StackState) to include an additional stack to deal with non-local instruction and use the

state (State) instead of (StackState).

In order to deal with non-local instruction, we redefine the definition of Hoare triples as

follows:

< ϕ > p < ψ > := ∀s ∈ State.ϕ(s)→ (ψ +) (J p K s)

We also redefine the definition of weakest precondition as follows:

<ϕ>↔ p <ψ> := ∀s ∈ State.ϕ(s)↔ (ψ +) (J p K s)

5.4 Verification of Conditionals

In our previous chapter 4, we developed techniques for determining and, proving weakest pre-

conditions for scripts not involving conditionals. Conditionals, as discussed in this chapter,

allow to define more complex scripts which allow the unlocking of scripts depending on dif-

ferent scenarios. In order to verify scripts using conditionals, we develop ifthenelse-theorems

which form the weakest preconditions for the ifProg and the elseProg of a conditional derive

the weakest preconditions for the conditional clause.

In our setting, when writing a script as

OP_IF ifProg OP_ELSE elseProg OP_ENDIF

we do not require the OP_ELSE and OP_ENDIF to match the OP_IF - there could be some

other OP_ELSE or OP_ENDIF occurring in ifProg or elseProg matching the OP_IF. The script

might still be correct because of the occurrence of another OP_IF. The reason for not requiring

parsed programs is that it allows us to keep the data structure for scripts as a simple list of

instructions and mirrors as well the real situation where there is no requirement that scripts

submitted to Bitcoin are parsed correctly. This is different from normal program verification,

where one has control over programs and requires them to be parsed correctly. Instead of

requiring correctly parsed scripts we will add additional conditions in the ifthenelse-theorem

to make sure that if the condition of the OP_IF is true, the elseProg has no effect, and if it is
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false, the ifProg has no effect. This will be in addition to the two expected conditions, one

for the ifProg in case the top element of the stack is true and one for the elseProg in case the

top element of the stack is false. The condition for elseProg requires as well some extra cases:

when working backwards from the post condition to obtain the weakest precondition, we need

to deal with the situation that before the OP_ENDIF the top element of the ifstack could have

been any element except (because of the consistency condition) ifIgnore. So we need to have

conditions for all these elements of elseProg even though, while working further backwards, we

have reached the OP_ELSE, it follows that the element must have been elseCase or elseSkip.

We first define some notations used and then introduce the main ifthenelse-theorem. In the

Agda code, we use < ... >if f because this can be written in the form of Unicode symbols,

whereas↔ can not. We use↔ in normal text because it is more readable.

Definition 5.1 (a) Let for a predicate φ on State the predicate lift(φ) on IfStack be its lifting

ignoring the ifstack component (see a full definition in appendix B.2).

(b) Let ∧p and ∨p be the conjunction and disjunction of two predicates on State.

(c) Let φ be a predicate on State. Then truePr(φ) is the predicate on State expressing that

the stack has top element > 0 (i.e. not false), and φ holds for the remaining stack, the

message to be signed, and the time.

Let falsePr(φ) be the same predicate, but assuming the top element is = 0 (i.e. false)

(see a full definition in appendix B.11).

Theorem 5.1 (Main ifthenelse-theorem (theoremIfThenElse)) Let φtrue, φfalse, ψ be predicates

on State and ifProg, elseProg two Bitcoin scripts (see a full definition in appendix B.12). Let

i : IfStack, which is either empty or has top element in {ifCase,elseCase}.
Assume the following conditions:

(1) <lift(φtrue) ∧p ifStack =cons(ifCase, i)>↔ ifProg <lift(ψ) ∧p ifStack =cons(ifCase, i)>

(2) <lift(φfalse) ∧p ifStack =cons(ifSkip, i)>↔ ifProg <lift(φfalse) ∧p ifStack =cons(ifSkip, i)>

(3) ∀x ∈ {ifCase,elseCase}.
<lift(φfalse) ∧p ifStack =cons(x, i)>↔ elseProg <lift(ψ) ∧p ifStack =cons(x, i)>

(4) ∀x ∈ {ifSkip,elseSkip}.
<lift(ψ) ∧p ifStack =cons(x, i)>↔ elseProg <lift(ψ) ∧p ifStack =cons(x, i)>
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Then we get

<(truePr(φtrue) ∨p falsePr(φfalse)) ∧p ifStack =i>↔[
opIf

]
++ ifProg ++

[
opElse

]
++ elseProg ++

[
opEndIf

]
<lift(ψ) ∧p ifStack =i>

In order to prove the conditions (2) and (4) for scripts where the ifProg or elseProg have no

occurrence of conditional instructions, we use the following theorem:

Theorem 5.2 Let φ be a predicate on State, x ∈ {ifSkip,elseSkip, ifIgnore,}, i : IfStack, and p

be a Bitcoin script not containing conditional instructions (see the theorem hoareTripleNonAc-

tiveIfStackIgnored in appendix B.17). Then we have

<lift(φ) ∧p ifStack =cons(x, i)>↔ p <lift(φ) ∧p ifStack =cons(x, i)>

Using these two theorems, we can prove, as an example, the weakest precondition for a

simple conditional:

• Let P2PKHscript(pbkh) be the P2PKH Bitcoin script as defined in chapter 4,which

checks that the stack has size at least two, the top element of the stack is pkh hash-

ing to pbkh and the next element is a signature sig for the corresponding message to

pbk.

• Let P2PKHc(pbkh) be the weakest precondition for P2PKHscript(pbkh), which ex-

presses that the stack is indeed as described before (see a full definition in ap-

pendix B.33).

• Let accept be the accept condition on State, stating that the stack has size at least 1, and

top element which is > 0 (i.e. not false) (see a full definition in appendix B.33).

• Let

P2PKHCondScr := OP_IF P2PKHscript(pbkh1)

OP_ELSE P2PKHscript(pbkh2)

OP_ENDIF
be a conditional P2PKH script, which operates like a P2PKH script but allowing two

different public key hashes pbkh1 and pbkh2 and requiring an extra element on the stack

which is considered as a Boolean decides which of the two public key hashes is to be

used (see the theorem ifThenElseP2PKH in appendix B.26).
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The theorem expresses that the weakest precondition for the accept condition for p is that the

top element of the stack is > 0 and the remaining stack fulfills the weakest precondition for

P2PKH w.r.t. pbkh1 or the top element is 0 and we have the weakest precondition for P2PKH

w.r.t. pbkh2, and the ifstack is empty:

Theorem 5.3 <(truePr(P2PKHc(pbkh1)) ∨p falsePr(P2PKHc(pbkh2))) ∧p ifStack =[ ]>↔

P2PKHCondScr <lift(accept) ∧p ifStack =[ ]>

The proof is by Theorem 5.1, where the proof conditions (1) and (3) follow by the verifi-

cation conditions for the P2PKH script lifted to having an ifstack, and conditions (2) and (4)

follow by Theorem 5.2. See a full definition of Theorem 5.3 (correctnessIfThenElseP2PKH1)

in appendix B.26 . This theorem is instantiated with the empty stack which is active.

In addition, we define the ifthenelse-theorem-non-active-stack for a non-active stack, and

we use this theorem in the case of non-conditional scripts, and the top of the stack does not

include elseCase and elseSkip. We start by defining some notations that are used to introduce

the main ifthenelse-theorem-non-active-stack.

Definition 5.2 (a) Let for a predicate φ on State the predicate lift(φ) on IfStack be its lifting

ignoring the ifstack component.

(b) Let φ be a predicate on State.

Theorem 5.4 (Main ifthenelse-theorem-non-active-stack (theoremIfThenElseNonActiveS-

tack)) Let φ be predicates on State and ifProg, elseProg two Bitcoin scripts. Let i : IfStack,

which is either empty or has top element in {ifIgnore,elseSkip} (see a full definition in ap-

pendix B.13).

Assume the following conditions:

(1) <lift(φ) ∧p ifStack =cons(ifIgnore, i)>↔ ifProg <lift(φ) ∧p ifStack =cons(ifIgnore, i)>

(2) ∀x ∈ {ifIgnore,elseSkip}.
<lift(φ) ∧p ifStack =cons(x, i)>↔ elseProg <lift(φ) ∧p ifStack =cons(x, i)>

Then we get

<lift(φ) ∧p ifStack =i>↔
[

opIf
]

++ ifProg ++
[

opElse
]

++ elseProg ++
[

opEndIf
]

<lift(φ) ∧p ifStack =i>

Now we can prove Theorem 5.4 using Theorem 5.2.
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5.5 Chapter Summary

In this chapter, we used the Agda proof assistant in order to verify Bitcoin scripts. The chapter

dealt with non-local instructions such as OP_IF, OP_ELSE, and OP_ENDIF. We formalised

these non-local instructions’ operational semantics to re-create the process of smart contract

validation. We extended the state from our previous chapter 4 by adding an additional ifstack,

and defined the operational semantics of conditionals. We developed an ifthenelse-theorem

and used it to verify an example script. In addition, we developed an ifthenelse-non-active-

stack-thereom in order if the top stack did not include non-local instructions.
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Chapter 6

Developing Two Models of the
Solidity-style Smart Contracts
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6.1 Introduction

This chapter introduces two smart contract models – one simple and one more complex – using

Agda. This chapter is a step towards converting the previous chapters 4 and 5 to Ethereum’s

Solidity-style smart contracts. Our verification is different from other works. We verify So-

lidity contracts directly, while other works verify them by compiling them into EVM. This is

because translating a simple Solidity program into the EVM program is time-consuming, and
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obtaining readable weakest preconditions would be difficult. To get readable weakest precon-

ditions, we verify Solidity contracts directly. Compared to Bitcoin, this model is significantly

more complex due to the object-oriented nature of Ethereum contracts. In this chapter, the sim-

ple model covers the execution of contracts, including the calling of other contracts, contracts

having multiple functions (methods), updating specific contracts, and transferring some funds

from one address to a specific address. In contracts, the complex model supports all features

that are included in the simple model and more features, such as dealing with gas cost and view

function, which is similar to the Solidity language. In addition, we explain the limitation of the

termination problem for each model.

The rest of this chapter is organised as follows: We develop the simple and the complex

models with examples for the Solidity-style smart contracts in Sect. 6.2. Then, we end with a

conclusion in Sect. 6.3.

Git repository. This work was developed and formalised using the proof assistant Agda.

All displayed Agda code in this chapter was generated from type-checked Agda codes. The

source code is available at [20] and can be found as well in appendix C

6.2 Modelling of Solidity-style Smart Contracts in Agda

In this section, we develop both a simple and a complex model of the Solidity-style smart

contracts. First, we provide a brief overview of these models in Subsect. 6.2.1. Then, we

explain the simple model in Subsect. 6.2.2 and the complex model in Subsect. 6.2.3.

6.2.1 Overview of Simple and Complex Models

This subsection explains the functioning of the simple and complex models in the ledger. As

shown in Figure 6.1, the ledger comprises various contracts, including Contract 1, Contract

n, and so on. The complex model’s Contract 1 comprises four fields, namely the contract

balance (amount), function name (fun), view function (viewfunction), and view function cost

(viewfunctionCost). By contrast, the simple model has two fields only, i.e., amount and fun,

as it deals with simple instructions. As an illustration of how it works, Contract 1 will use

the command call to call Contract n with the parameters (funname, msg). Contract n may call

other contracts as well. Once Contract n returns the result using the command return, Contract

1 continues the execution which may result in calls to other contracts until, if it terminates, it
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will return its result to the caller using the statement "return result (msg)". During this process,

it calculates the amount of gas used and aborts the execution in case it runs out of gas.

Figure 6.1: Ledger in the complex model.

In addition, when returning the result to Contract 1, we utilise the state execution func-

tion to update the ledger’s state, as shown in Figure 6.2. The complex model comprises nine

fields: ledger, executionStack, initialAddr, lastCallAddress, calledAddress, nextstep, gasLeft,

funNameevalState, and msgevalState. Conversely, the simple model has only the first five of

these fields: ledger, executionStack, lastCallAddress, calledAddress, and nextstep.

Figure 6.2: Execution of function in the complex model.

Remark 6.1 (Explanation of our use of wei.) Real Ethereum transactions involve values such

as 1 ether = 1018 wei, and taking a typical gas price of 50 gwei and a gas cost for exe-
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cuting a simple smart contract of 1,000,000 gas, we get a gas cost of 50,000,000 gwei =

50,000,000,000,000,000 wei [243], which is substantially smaller than 1 ether. Dealing with

such large numbers is inconvenient, so we use much smaller values. This means that if we set

the gas cost too low, the contract’s execution will fail. If we set it too high, validators may

not accept this transaction and choose other ones with lower gas fees. Furthermore, if the gas

cost exceeds the money available to the one running the smart contracts, then execution fails as

well. In the simple model with no gas costs, transfers will involve a small number of wei (e.g.

5 or 10 wei) - a realistic value would be, for example, 1 ether = 1018 wei. When switching to

the complex model, we usually use 1fwei for gas cost per instruction. In the example of the

complex model involving transfer, the overall gas cost was very small, and we used a typical

value of 10 wei for transfer. As mentioned in Sect. 1.2, we will introduce Version 2 of the

complex model in Chapter 9. In that model, we will also use a gas cost of 1 wei per instruction.

To distinguish between the fee to transfer money (big value) and the gas cost in Version 2 of

the complex model, we use transfer values such as 25,000 wei. While Agda can cope with the

much larger realistic values, it would be inconvenient to display these numbers. The problem

with the large number is that when evaluating them, Agda will normalise numbers and present

them in decimal form. Thus, the number 5 × 1016 will be displayed as 50000000000000000.

In the following subsection, we explain the simple model in 6.2.2 and the complex model

in 6.2.3 in more detail.

6.2.2 Simple Model of Solidity-style Smart Contract in Agda

In this subsection, we develop a simple model of Solidity smart contracts that supports basic

executions, such as updating smart contracts, transferring money, calling other smart contracts,

and obtaining the balance of each smart contract. It does not provide an explicit cost of gas.

We define the structure of the simple model. We start by defining a Contract as being given

by the balance and the functions to be executed, and a Ledger as a function that determines for

each address the Contract at that address (with default values used for addresses that are not

used):

record Contract : Set where

field

amount : Amount
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fun : FunctionName → Msg → SmartContractExec Msg

open Contract public

Ledger : Set

Ledger = Address → Contract

Then, we define SmartContractExec, which is the body of a function definition in Solidity

as a mutually. The SmartContractExec has commands and responses. The SmartContractExec

determines the next step in the execution of a smart command; CCommands, which is a com-

mand to be executed; and CResponse, which determines the answer returned, once a command

is executed, as follows:

data SmartContractExec (A : Set) : Set where

return : A → SmartContractExec A

error : ErrorMsg → SmartContractExec A

exec : (c : CCommands) → (CResponse c → SmartContractExec A)

→ SmartContractExec A

data CCommands : Set where

transferc : Amount → Address → CCommands

callc : Address → FunctionName → Msg → CCommands

updatec : FunctionName → (Msg → SmartContractExec Msg)

→ CCommands

currentAddrLookupc : CCommands

callAddrLookupc : CCommands

getAmountc : Address → CCommands

CResponse : CCommands → Set

CResponse (transferc amount addr) = >

CResponse (callc addr fname msg) = Msg

CResponse (updatec fname fdef) = >

CResponse currentAddrLookupc = Address

CResponse callAddrLookupc = Address

CResponse (getAmountc addr) = Amount
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Note the parameter A in SmartContractExec. We keep SmartContractExec generic because

this gives a monad structure, which might be used in the future to define programs in a more

generic way. In our setting, real Solidity programs will always have a return type of Msg

because we encode the elements of the return type as an element of Msg. In future work, we

plan to develop a proper type system of Solidity types and use elements of such types as the

return type.

SmartContractExec has three constructors. The first constructor is return, which causes the

execution to end and return its argument. The second constructor is error, which causes the

execution to abort and return an error message.1 The last constructor is exec, which executes a

command and, depending on the response returned, continues the execution.

The function exec refers to the following CCommands that can be executed:

• transferc transfers a certain amount of money to a specific address;

• callc makes a recursive call to a function at a given address, with the argument given by

an element of Msg;

• updatec updates a function definition in the current contract;

• currentAddrLookupc looks up the current address;

• callAddrLookupc looks up the calling address that made the call to the current function

executed;

• getAmountc checks the balance of any address.

In the case of transferc, the CResponse is the trivial type > (having one element), in the

case of callc, the answer is the result returned by the function call executed, represented as an

element of Msg, in the case of updatec, it is an element of >, in both cases of currentAddr-

Lookupc and callAddrLookupc, the CResponse is Address, which is a natural number, and in the

case of getAmountc, the CResponse is the return of the amount in the address that is of the type

Amount.

In order to execute SmartContractExec, we define ExecutionStack, which is a stack (or list)

of currently open calls of function from contracts. The ExecutionStack tells which function

1We decided to include error as an additional element of SmartContractExec rather than of CCommands
with an empty response type. This is because errors and non-errors are treated differently, and this design makes it
easier for case distinctions to be made within SmartContractExec.
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was called with which argument, and once we have an answer, it shows how to continue the

contract. The definition of ExecutionStack is as follows:

ExecutionStack : Set

ExecutionStack = List ExecStackEl

From the above definition, The ExecutionStack is list of ExecStackEl, where ExecStackEl is

defined as a record type as follows:

record ExecStackEl : Set where

field

lastCallAddress : Address

calledAddress : Address

continuation : Msg → SmartContractExec Msg

open ExecStackEl public

ExecStackEl has three fields: lastCallAddress which gives the address that made the last call;

calledAddress, the address that was called; continuation, which determines the next execution

step depending on the message returned after the call to the function has been completed.

Note that we defined two addresses in ExecStackEl representing users identified by Ethereum

addresses and many other blockchains. As a reminder, in Subsubsect. 2.3.2.2, we introduced

the concept of addresses and accounts. In Ethereum, we have externally owned accounts,

which are addresses corresponding to an external entity that can start a transaction, and contract

accounts, which do not correspond to external entities and are given by a smart contract that is

executed whenever its functions are called.

The state of executing a smart contract StateExecFun consists of five fields: the cur-

rent ledger (ledger), the execution stack (executionStack), the address that made the last call

(lastCallAddress), the last address that was called (calledAddress), and the current code to be

executed (nextstep):

record StateExecFun : Set where

constructor stateEF

field

ledger : Ledger

executionStack : ExecutionStack

lastCallAddress : Address
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calledAddress : Address

nextstep : SmartContractExec Msg

open StateExecFun public

Next, we define a function stepEF, which executes one step of the execution of a contract,

and a function stepEFntimes, which iterates stepEF n times. stepEFntimes can be regarded as

an execution with the first very simple form of gas limit (given by n). The definitions of the

stepEF and stepEFntimes functions are as follows:

stepEF : Ledger → StateExecFun → StateExecFun

stepEF oldLedger (stateEF currentLedger [] callAddr

currentAddr (return result))

= stateEF currentLedger [] callAddr currentAddr (return result)

stepEF oldLedger (stateEF currentLedger (execSEl :: executionStack)

callAddr currentAddr (return result))

= stateEF currentLedger executionStack callAddr

(execSEl .calledAddress) (execSEl .continuation result)

stepEF oldLedger (stateEF currentLedger executionStack callAddr

currentAddr (exec currentAddrLookupc cont))

= stateEF currentLedger executionStack callAddr currentAddr (cont currentAddr)

stepEF oldLedger (stateEF currentLedger executionStack callAddr

currentAddr (exec callAddrLookupc cont))

= stateEF currentLedger executionStack callAddr currentAddr (cont callAddr)

stepEF oldLedger (stateEF currentLedger executionStack callAddr currentAddr

(exec (updatec changedFname changedFdef) cont))

= stateEF (updateLedger currentLedger currentAddr changedFname changedFdef)

executionStack callAddr currentAddr (cont tt)

stepEF oldLedger (stateEF currentLedger executionStack oldCalladdr

oldCurrentAddr (exec (callc newaddr fname msg) cont))

= stateEF currentLedger (execStackEl oldCalladdr oldCurrentAddr cont

:: executionStack) oldCurrentAddr newaddr (currentLedger newaddr .fun fname msg)

stepEF oldLedger (stateEF currentLedger executionStack callAddr currentAddr

(exec (transferc amount destinationAddr ) cont))

= executeTransfer oldLedger currentLedger executionStack callAddr currentAddr

amount destinationAddr (cont tt)
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stepEF oldLedger (stateEF currentLedger executionStack callAddr

currentAddr (exec (getAmountc addrLookedUp) cont))

= stateEF currentLedger executionStack callAddr currentAddr

(cont (currentLedger addrLookedUp .amount))

stepEF oldLedger (stateEF currentLedger executionStack callAddr

currentAddr (error errorMsg))

= stateEF oldLedger executionStack callAddr currentAddr (error errorMsg)

stepEFntimes : Ledger → StateExecFun → N → StateExecFun

stepEFntimes oldLedger ledgerstateexecfun 0 = ledgerstateexecfun

stepEFntimes oldLedger ledgerstateexecfun (suc n)

= stepEF oldLedger (stepEFntimes oldLedger ledgerstateexecfun n)

The function stepEF does the following:

• In the case of return with an empty stack, we are finished, and stepEF is just the identity;

• In the case of return with a non-empty stack, we pop the top element from the stack and

continue executing the continuation from the top element applied to the returned value

and use, as well as the current address from the popped element;

• In the case of callc, we push the continuation together with our current ledger, call ad-

dress, and current address on the stack, and obtain from the ledger the code for the call

to be executed and start executing it;

• In the case of transferc, we first check whether there is enough money, in which case

the ledger is transferred and updated; otherwise, an error is returned, and the ledger is

updated;

• In case of an error, we are finished, and stepEF is just the identity;

• In other cases, we execute that particular command (such as currentAddrLookupc, callAd-

drLookupc, updatec, and getAmountc) and continue with the continuation of that com-

mand applied to the result obtained.

The function stepEFntimes applies the stepEF function n times. The function stepEFntimes,

where stepEF occurs 0 times, does nothing. However, in the case of (suc n), stepEF n plus

once applies to stepEFntimes n times, meaning that we apply stepEF to stepEFntimes.
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The simple model also supports simple error message data types (ErrorMsg and NatOrError),

as follows:

data ErrorMsg : Set where

strErr : String → ErrorMsg

data NatOrError : Set where

nat : N → NatOrError

err : ErrorMsg → NatOrError

The error message (ErrorMsg) data type has one constructor, which is used for an error message

given by a string (strErr). The NatOrError data type has two constructors: nat, which is used

for error messages given by a natural number error, and err, which is used to represent error

messages as string-based for the ErrorMsg data type.

As a reminder, in Sect. 4.2, we discussed the first type of Msg. In this chapter, we will

explain the second type of Msg. In an earlier version, we added a pairing operation, which

has been omitted in the current version, because a pair can be represented as a list with two

elements.2 For both Bitcoin and Ethereum, one may call functions by passing data to them

as arguments. These arguments will then be serialised as a byte array, which is essentially a

natural number. To reduce complexity, we will work directly with the Msg data type. Therefore,

to provide an abstraction from this in our model, we have defined a type for messages (keyword

data). Messages are inductively defined as natural numbers or lists of messages:

data Msg : Set where

nat : N → Msg

list : List Msg → Msg

A complex example of lists of lists, etc. . . of numbers could be as follows:

example : Msg

example = list (list [] :: (list (nat 0 :: [])) :: (list ((list (nat 0 :: [])) :: nat 0 :: [])) :: [])

Messages allow us to encode the elements of data types of Solidity. For instance, arrays are

encoded as lists of messages where each message encodes an element of the array. Maps are

encoded as lists of pairs of messages, where pairs are lists of length 2, which represent the key

and the element it is mapped to, both encoded as messages.
2On the advice of one of the examiners, who expected unifying the two message types to involve a lot of work,

we decided to keep the two different versions.
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6.2.2.1 Example of Simple Model

We first create the constant function (const), which returns the same number.

const : N → Msg → SmartContractExec Msg

const n msg = return (nat n)

Constant functions represent variables, where we look up their content by applying them

to the message nat 0.

We now build a ledger (testLedger), which, at address 1, has a balance of 40 and a con-

tract implementing a simple counter. The counter is represented by the variable "f1", and a

function "g1" that increments the variable represented by "f1" by 1. The function "f1" is

initialised with the constant function returning 0, representing a variable initialised as 0. The

function "g1" looks up the current address, which returns 1, and the content of variable "f1"
by applying it to nat 0. Then, it makes an anonymous case distinction on the result (syntax λ {

· · · }): if the result is nat n, it updates "f1" to the constant function, returning suc n; otherwise,

it raises an error. All other contracts are initialised to have a balance of 0 with all functions

being undefined, i.e. to returning an error message ("Undefined"). In the same way, all the

other functions (given by other strings) of contract 1, apart from the two functions mentioned

earlier, return the same error message. We use here the fact that, in Agda patterns are evaluated

in sequence. The first matching pattern is used to determine the result, and any future pattern

after a matching pattern is ignored. Thus, the line testLedger ow .amount = 0 applies to all

arguments ow (meaning otherwise) that have not been covered by a previous pattern. In this

case, these are all natural numbers except for 1.

testLedger 1 .amount = 40

testLedger 1 .fun "f1" m = const 0 (nat 0)

testLedger 1 .fun "g1" m = exec currentAddrLookupc λ addr →

exec (callc addr "f1" (nat 0))

λ {(nat n) → exec (updatec "f1" (const (suc n)))

λ _ → return (nat (suc n));

_ → error (strErr "f1 returns not a number")}

testLedger ow .amount = 0

testLedger ow .fun ow’ ow” = error (strErr "Undefined")
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6.2.2.2 Termination Problem in the Simple Model

A termination problem is the inability to decide whether the program terminates or not. As

regards solving the halting problem [244, 245] in Bitcoin and Ethereum, Bitcoin [245] is not

fully Turing complete, and the Bitcoin script terminates because it is executed from left to

right. For instance, if we have 50 instructions after 50 steps, the script will be terminated and

finished because each step will go from one instruction to the next, from the left to the right;

it will never go back. In addition, the Bitcoin script does not include complex instructions

for loops and constructors, which may lead to infinite execution. This design of the Bitcoin

language ensures that the halting problem is avoided and that the script terminates. In contracts,

Ethereum [244] is fully Turing complete, which means that Ethereum supports loops and the

calling of other functions, including calling the function itself. In Ethereum, to avoid this issue

and ensure the termination, the gas cost is required for each step. This means that when making

a function call, the originator needs to allocate a certain amount of gas for the transaction and

needs to pay some money for it. Each step in the execution costs some gas, so the execution is

guaranteed to terminate, since we eventually run out of gas.

The simple model of the Solidity-style smart contract does not include an explicit cost of

gas – that will be included in the complex model in Subsubsect. 6.2.3. Without gas, execution

of smart contracts may not terminate. The example below is a Solidity account with two

functions, f() and g(). These functions call each other, resulting in non-termination. Solidity

will raise an out-of-gas error exception when executing f() or g():

1 pragma solidity >=0.8.2 <0.9.0;
2

3 contract NonTerminating {
4

5 function f() public {
6 g();}
7

8 function g() public {
9 f();}}

We are going to create an evaluation function (evaluateNonTerminating), which essentially

iterates stepEF until it terminates. Because of the termination problem, this is reflected by the

fact that, in the definition below, the two auxiliary functions used in the evaluation of smart

contracts are under the pragma {-# NON_TERMINATING #-}

evaluateNonTerminatingAux : Ledger → StateExecFun → NatOrError
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evaluateNonTerminating : Ledger → Address → Address

→ FunctionName → Msg → NatOrError

evaluateNonTerminating ledger callAddr currentAddr funname msg

= evaluateNonTerminatingAux ledger

(stateEF ledger [] callAddr currentAddr (ledger currentAddr .fun funname msg))

The evaluateNonTerminating function calls evaluateNonTerminatingAux and it has four cases.

The first case is if the operation to be executed is return (nat n) and the stack is empty, it returns

(nat n). The code is as follows:

evaluateNonTerminatingAux oldledger (stateEF currentLedger [] callAddr

currentAddr (return (nat n))) = nat n

The second case is if the operation to be executed is return (nat otherwise) and the stack is

empty, the program has terminated, but the return value is not a number. For simplicity, we

return an error message (a different solution is to have a string as the return value and use a

function that transforms the messages into strings). The code is as follows:

evaluateNonTerminatingAux oldledger (stateEF currentLedger [] callAddr

currentAddr (return otherwise)) = err (strErr "result returned not nat")

The third case is if the code to be executed is error, it returns an error message. The code is as

follows:

evaluateNonTerminatingAux oldledger (stateEF currentLedger s callAddr

currentAddr (error msg)) = err msg

The last case is if the evaluation is not terminated, and we recursively apply the evaluateNon-

TerminatingAux function with stepEF for the termination problem. The code is as follows:

evaluateNonTerminatingAux oldledger evals

= evaluateNonTerminatingAux oldledger (stepEF oldledger evals)

Agda requires that the programs terminate in order to be consistent as a theorem prover,

and it uses a termination checker to check for termination. Using this pragma, we can break

the termination checker (this is not a problem and will only affect programs and not proofs;

see the discussion in Subsect. 1.5.1). Because of these nontermination problems, the simulator,
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which makes use of the evaluation function, is not guaranteed to terminate (an example would

be a contract calling itself with the same argument it is called). This problem is solved in the

complex model, as we add an explicit gas limit in Subsubsect. 6.2.3.2. We may also restrict

the number of recursive calls to a certain number in the simple model, which has the effect of

creating a simple form of gas limit.

We give an example of the usage of the evaluateNonTerminating function with our exam-

ple (testLedger) in Subsubsect. 6.2.2.1. We start by defining the checkf1Function function as

follows:

checkf1Function : NatOrError

checkf1Function = evaluateNonTerminating testLedger 0 1 "f1" (nat 0)

The checkf1Function function executes the function "f1" with argument nat 0 at address 1. The

result is nat 0, which means that it returns the constant parameter. In our case, it returns 0. As

we discussed in Subsect. 1.5.2, the function above can be witnessed by the following Agda

proof:

eqproofcheckf1Function : checkf1Function ≡ nat 0

eqproofcheckf1Function = refl

Then, we define the updatefunctionf1 function as follows:

updatefunctionf1 : NatOrError

updatefunctionf1 = evaluateNonTerminating testLedger 0 1 "g1" (nat 0)

The function updatefunctionf1 executes the function "g1" at address 1. The result is nat 1,

which means that the function "g1" increments the function "f1" by 1. This can be witnessed

by the following Agda proof:

eqproofupdatefunctionf1 : updatefunctionf1 ≡ nat 1

eqproofupdatefunctionf1 = refl

6.2.3 Complex Model of Solidity-style Smart Contract in Agda

This subsection extends the structures of the simple model into a more complex one. Similar

to the simple model in Subsect. 6.2.2, the complex model has structures and data types, such

as Msg and Ledger, and functions, such as ExecutionStack. As in our previous simple model
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in Subsect. 6.2.2, we have ordinary functions that correspond to methods in the terminology

of object-orientation. We encode the arguments and return values of functions as elements of

a message type, which allows us to encode multiple arguments as single arguments. In our

settings, functions have only one argument and one return element of this message type. Or-

dinary functions are given by a coalgebraic definition, which consists of a possibly unbounded

sequence of basic operations such as making a transfer, finding the balance of an account, or

making recursive calls to other functions. In addition to ordinary functions, we add view func-

tions (functions which can be modified by ordinary functions but don’t call other functions).

Variables are represented as view functions. They are especially useful for representing vari-

ables with this type of mapping, which frequently occurs in Solidity coding. View functions

are represented as simple functions in Agda and, therefore, are elements of a data type differ-

ent from that of ordinary functions. Ordinary functions have instructions for updating view

functions but cannot update ordinary functions. Therefore, we keep view functions and normal

functions as separate entities.3 The gas cost of ordinary functions is given by the cost of the ba-

sic instructions involved during their execution. For view functions, we add as well a function

(viewfunctionCost), which determines the cost of executing the view function.

We start by redefining the complex implementation of the smart contract (Contract) by

adding two extra fields: view function (viewfunction) and the cost of executing the view function

(viewfunctionCost). View functions are the same as those in Solidity functions and do not call

other functions (In our setting, variables are represented by functions). This means that view

functions do not interact with other functions nor make updates, and they directly compute

either the result or an error from their inputs. View functions can be updated from the contract

they belong to. Standard functions get a new command updatec, which allows the updating

of a view function by referring to its previous definition. This is useful to represent maps in

Solidity, which are finite functions from input to output. We represent maps as view functions.

We can update them to a new value for one argument by checking whether the argument is

equal to the updated argument (in which case we return the updated result) or not (in which

case we return the result of the previous version of this function). In Solidity, a view function

does not cost any gas when called externally, but if called from an internal function, it will cost

gas.

Contract has the following additional fields (with the other fields defined as in the simple

model in Subsect. 6.2.2):

3In Solidity, view functions are defined as ordinary functions but have a restriction on their code.
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record Contract : Set where

field

– fields from the simple model
viewFunction : FunctionName → Msg → MsgOrError

viewFunctionCost : FunctionName → Msg → N

Similar to our approach in the simple model in Subsect. 6.2.2, we mutually redefine Smart-

ContractExec, CCommands, and CResponse as follows:

data SmartContractExec (A : Set) : Set where

return : N → A → SmartContractExec A

error : ErrorMsg → DebugInfo → SmartContractExec A

exec : (c : CCommands) → (CResponse c → N)

→ (CResponse c → SmartContractExec A)

→ SmartContractExec A

data CCommands : Set where

– constructors from the simple model
– (excluding updatec)

callview : Address → FunctionName → Msg → CCommands

updatec : FunctionName

→ ((Msg → MsgOrError) → (Msg → MsgOrError))

→ ((Msg → MsgOrError) → (Msg → N) → Msg → N)

→ CCommands

raiseException : N → String → CCommands

CResponse : CCommands → Set

– equations from the simple model
– (excluding updatec)
CResponse (callview addr fname msg) = MsgOrError

CResponse (updatec fname fdef cost) = >

CResponse (raiseException _ str) = ⊥

In SmartContractExec, we add to return an extra argument N (natural number). This is the cost

for executing the return statement, which depends on the size of the return value. In the case
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of an error, we add debug information (DebugInfo), which includes four fields: the address that

made the call, the current address, the last function that was called, and the argument with

which the function was called. In the case of exec, we add the response cost for each command

(CResponse c → N).

In the operations command (CCommands), we define two extra commands: which are

callView, which we use to call view functions, and raiseException, for raising an exception. We

also use a slightly different definition of updatec, which we utilise to update view functions,

and add an extra argument to calculate the view function cost

((Msg → MsgOrError) → (Msg → N) → Msg → N)).

In the definition of CResponse, we add two more cases. In the case of callView, it returns a

message or error. In the case of raiseException, it is an empty type, since there is no continu-

ation. The case of updatec has different arguments but returns as in the simple model >. The

other commands and responses are the same as in the simple model in Subsect. 6.2.2.

Furthermore, we redefine the elements of the smart contract execution stack (ExecStackEl)

by adding three more fields:

• costCont, the gas cost for continuation depending on the message returned when the

current call is finished;

• funcNameexecStackEl, the last function called;

• msgexecStackEl, the argument with which the last called function was called.

The last two elements are used for displaying debugging information in case of an error.

The definition of ExecStackEl is as follows (omitting the fields defined in the simple model

in Subsect. 6.2.2):

record ExecStackEl : Set where

field

– fields from the simple model
costCont : Msg → N

funcNameexecStackEl : FunctionName

msgexecStackEl : Msg

In addition, we redefine the state of execution (StateExecFun) for the complex model by

adding four more fields:
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• initialAddr is the address that initiated the current sequence of calls;

• gasLeft is how much gas we have left in the next execution step;

• funNameevalState is the function name that was called. This is used as debug information

in case of an error;

• msgevalState is the argument with which the function name was called.

The definition of StateExecFun (with the remaining fields as in the simple model in Sub-

sect. 6.2.2) is as follows:

record StateExecFun : Set where

field

– fields from simple model
initialAddr : Address

gasLeft : N

funNameevalState : FunctionName

msgevalState : Msg

Furthermore, in the complex model, we redefine stepEF as follows:

stepEF : Ledger → StateExecFun → StateExecFun

stepEF oldLedger (stateEF currentLedger [] initialAddr lastCallAddr calledAddr

(return cost result) gasLeft funNameevalState msgevalState)

= stateEF currentLedger [] initialAddr lastCallAddr calledAddr

(return cost result) gasLeft funNameevalState msgevalState

stepEF oldLedger (stateEF currentLedger (execStackEl prevLastCallAddress

prevCalledAddress prevContinuation prevCostCont prevFunName

prevMsgExec :: executionStack) initialAddr lastCallAddr calledAddr

(return cost result) gasLeft funNameevalState msgevalState)

= stateEF currentLedger executionStack initialAddr prevLastCallAddress

prevCalledAddress (prevContinuation result) gasLeft prevFunName prevMsgExec

stepEF oldLedger (stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr (exec currentAddrLookupc costcomputecont cont)

gasLeft funNameevalState msgevalState)
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= stateEF currentLedger executionStack initialAddr lastCallAddr calledAddr

(cont calledAddr) gasLeft funNameevalState msgevalState

stepEF oldLedger (stateEF currentLedger executionStack initialAddr lastCallAddr

calledAddr (exec callAddrLookupc costcomputecont cont) gasLeft

funNameevalState msgevalState)

= stateEF currentLedger executionStack initialAddr lastCallAddr calledAddr

(cont lastCallAddr) gasLeft funNameevalState msgevalState

stepEF oldLedger (stateEF currentLedger executionStack initialAddr lastCallAddr

calledAddr (exec (updatec changedFname changedPFun cost) costcomputecont cont)

gasLeft funNameevalState msgevalState)

= stateEF (updateLedgerviewfun currentLedger calledAddr changedFname changedPFun)

executionStack initialAddr lastCallAddr calledAddr (cont tt) gasLeft

funNameevalState msgevalState

stepEF oldLedger (stateEF currentLedger executionStack initialAddr oldlastCallAddr

oldcalledAddr (exec (callc newaddr fname msg) costcomputecont cont)

gasLeft funNameevalState msgevalState)

= stateEF currentLedger (execStackEl oldlastCallAddr oldcalledAddr cont

costcomputecont funNameevalState msgevalState :: executionStack)

initialAddr oldcalledAddr newaddr (currentLedger newaddr .fun fname msg)

gasLeft fname msg

stepEF oldLedger (stateEF currentLedger executionStack initialAddr lastCallAddr

calledAddr (exec (transferc amount destinationAddr) costcomputecont cont)

gasLeft funNameevalState msgevalState)

= executeTransfer oldLedger currentLedger executionStack

initialAddr lastCallAddr calledAddr (cont tt) gasLeft

funNameevalState msgevalState amount destinationAddr

stepEF oldLedger (stateEF currentLedger executionStack initialAddr lastCallAddr

calledAddr (exec (getAmountc addrLookedUp) costcomputecont cont) gasLeft

funNameevalState msgevalState)

= stateEF currentLedger executionStack initialAddr lastCallAddr calledAddr

(cont (currentLedger addrLookedUp .amount)) gasLeft funNameevalState msgevalState

stepEF oldLedger (stateEF ledger executionStack initialAddr lastCallAddr calledAddr

(exec (raiseException cost str) costcomputecont cont) gasLeft funNameevalState
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msgevalState)

= stateEF oldLedger executionStack initialAddr lastCallAddr calledAddr

(error (strErr str)

〈 lastCallAddr » initialAddr · funNameevalState [ msgevalState ]〉)

gasLeft funNameevalState msgevalState

stepEF oldLedger (stateEF currentLedger executionStack initialAddr lastCallAddr

calledAddr (error errorMsg debugInfo) gasLeft funNameevalState msgevalState)

= stateEF oldLedger executionStack initialAddr lastCallAddr calledAddr

(error errorMsg debugInfo) gasLeft funNameevalState msgevalState

stepEF oldLedger (stateEF currentLedger executionStack initialAddr lastCallAddr

calledAddr (exec (callView addr fname msg) costcomputecont cont) gasLeft

funNameevalState msgevalState)

= stateEF currentLedger executionStack initialAddr lastCallAddr calledAddr

(cont (currentLedger addr .viewFunction fname msg))

(gasLeft - (costcomputecont (currentLedger addr .viewFunction fname msg))) fname msg

For the function stepEF in the complex model, we have more parameters in each of these cases.

These parameters are the gas left for each command and one more address; the stepEF function

takes care of these extra parameters. In addition, we have extra cases in the function stepEF,

which are callView (call view function) and raiseException. In the case of callView, we directly

execute the view function and apply the cost compute continuation to the result of evaluating

the view function, since the cost for adapting the state may depend on the size of this result;

in the case of the raiseException, we define this case for raising an exception will return an

error. Furthermore, we slightly modify the case of error by adding an extra parameter, which is

debugging information debugInfo in case of an error.

To deal with the gas cost in the complex model, we define deductGas, which we use to

deduct gas from the state execution function (StateExecFun), not from the ledger. The defini-

tion of deductGas is as follows:

deductGas : (statefun : StateExecFun) → (gasDeducted : N)

→ StateExecFun

deductGas (stateEF ledger executionStack initialAddr

lastCallAddr calledAddr nextstep gasLeft

funNameevalState msgevalState) gasDeducted

= stateEF ledger executionStack initialAddr
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lastCallAddr calledAddr nextstep (gasLeft - gasDeducted)

funNameevalState msgevalState

Then, we define stepEFgasAvailable, which shows the gas available in the smart contract code,

and stepEFgasNeeded, which determines the gas needed for the execution of the smart contract

code. The definitions of these functions are as follows:

stepEFgasAvailable : StateExecFun → N

stepEFgasAvailable (stateEF ledger executionStack initialAddr

lastCallAddr calledAddr

nextstep gasLeft funNameevalState msgevalState)

= gasLeft

stepEFgasNeeded : StateExecFun → N

stepEFgasNeeded (stateEF currentLedger [] initialAddr

lastCallAddr calledAddr (return cost result)

gasLeft funNameevalState msgevalState) = cost

stepEFgasNeeded (stateEF currentLedger (execSEl :: executionStack)

initialAddr lastCallAddr calledAddr (return cost result)

gasLeft funNameevalState msgevalState) = cost

stepEFgasNeeded (stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr (exec currentAddrLookupc costcomputecont cont)

gasLeft funNameevalState msgevalState) = costcomputecont calledAddr

stepEFgasNeeded (stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr (exec callAddrLookupc costcomputecont cont)

gasLeft funNameevalState msgevalState) = costcomputecont lastCallAddr

stepEFgasNeeded (stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr (exec (updatec changedFname changedPufun cost)

costcomputecont cont) gasLeft funNameevalState msgevalState)

= cost (currentLedger calledAddr .viewFunction changedFname)

(currentLedger calledAddr .viewFunctionCost changedFname)

msgevalState + (costcomputecont tt)

stepEFgasNeeded (stateEF currentLedger executionStack initialAddr

oldlastCallAddr oldcalledAddr (exec (callc newaddr fname msg)
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costcomputecont cont) gasLeft funNameevalState msgevalState)

= costcomputecont msg

stepEFgasNeeded (stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr (exec (transferc amount destinationAddr)

costcomputecont cont) gasLeft funNameevalState msgevalState)

= costcomputecont tt

stepEFgasNeeded (stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr (exec (getAmountc addrLookedUp)

costcomputecont cont) gasLeft funNameevalState msgevalState)

= costcomputecont (currentLedger addrLookedUp .amount)

stepEFgasNeeded (stateEF ledger executionStack initialAddr

lastCallAddr calledAddr (exec (raiseException cost str)

costcomputecont cont) gasLeft funNameevalState msgevalState)

= cost

stepEFgasNeeded (stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr (exec (callView addr fname msg)

costcompute cont) gasLeft funNameevalState msgevalState)

= (currentLedger calledAddr .viewFunctionCost fname msg)

+ costcompute (currentLedger calledAddr .viewFunction fname msg)

stepEFgasNeeded (stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr (error errorMsg debuginfo)

gasLeft funNameevalState msgevalState)

= param .costerror errorMsg

In addition, we define stepEFwithGasError to check whether we have sufficient gas for the next

step. If we have enough gas, it executes the next step. Otherwise, it returns an error.

The definition of stepEFwithGasError is as follows:

stepEFwithGasError : (oldLedger : Ledger) → (evals : StateExecFun) → StateExecFun

stepEFwithGasError oldLedger evals = stepEFAuxCompare oldLedger evals

(compareLeq (stepEFgasNeeded evals) (stepEFgasAvailable evals))

The function stepEFwithGasError applies stepEFAuxCompare to compare between stepEF-

gasAvailable and stepEFgasNeeded in order to execute stepEF.

The definition of stepEFAuxCompare is as follows:
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stepEFAuxCompare : (oldLedger : Ledger) → (statefun : StateExecFun)

→ OrderingLeq (suc (stepEFgasNeeded statefun)) (stepEFgasAvailable statefun)

→ StateExecFun

stepEFAuxCompare oldLedger statefun (leq x)

= deductGas (stepEF oldLedger statefun) (suc (stepEFgasNeeded statefun))

stepEFAuxCompare oldLedger (stateEF ledger executionStack initialAddr

lastCallAddr calledAddr nextstep gasLeft funNameevalState msgevalState)

(greater x) = stateEF oldLedger executionStack initialAddr lastCallAddr

calledAddr (error outOfGasError

〈 lastCallAddr » initialAddr · funNameevalState [ msgevalState ]〉) 0

funNameevalState msgevalState

From the above definition, stepEFAuxCompare has two cases:

• If the gas available is more than the gas needed, it deducts the gas, processes the trans-

action, and updates the ledger.

• If the gas available is less than the gas needed, we have run out of gas. It updates the

ledger to become the old ledger but with gas deducted and aborts the execution while

reporting an out-of-gas error.

We redefine the stepEFntimes function, which applies the stepEFwithGasError function (includ-

ing the gas cost), and recheck the process to determine whether there is enough gas each time

and iterates stepEFwithGasError n times.

The definition of the stepEFntimes function is as follows:

stepEFntimes : Ledger → StateExecFun → (ntimes : N) → StateExecFun

stepEFntimes oldLedger ledgerstateexecfun 0 = ledgerstateexecfun

stepEFntimes oldLedger ledgerstateexecfun (suc n)

= stepEFwithGasError oldLedger (stepEFntimes oldLedger ledgerstateexecfun n)

In the complex model, we redefine the ErrorMsg data type to include more types of errors,

as follows:

data ErrorMsg : Set where

strErr : String → ErrorMsg

numErr : N → ErrorMsg
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undefined : ErrorMsg

outOfGasError : ErrorMsg

From the above definition, we define four different error message constructors in the ErrorMsg

data type. The strErr constructor is used for error messages that are given as a string, numErr

is used for error messages given as a natural number, undefined is used for reporting the error

message “undefined”, and outOfGasError is used for error messages when there is insufficient

gas to process a transaction.

In addition, we define debug information (DebugInfo) in the case of an error as a recorded

type, as follows:

record DebugInfo : Set where

constructor 〈_»_·_[_]〉

field

lastcalladdr : Address

curraddr : Address

lastfunname : FunctionName

lastmsg : Msg

open DebugInfo public

The DebugInfo record type has four fields. The lastcalladdr field is used to represent the last

call address given by a natural number. The curraddr field is used to represent the current

address given by a natural number. The lastfunname field is used to represent the last functions

name that was executed, and the lastmsg field is used to represent the last argument for the last

function name.

To represent the message and the gas left, we define the record type of message or error

with gas (MsgOrErrorWithGas) as follows:

record MsgOrErrorWithGas : Set where

constructor _,_gas

field

msgOrError : MsgOrError’

gas : N

open MsgOrErrorWithGas public

The MsgOrErrorWithGas record type has two fields. The msgOrError field is used to return a

message. If this message is a natural number, it returns theMsg, followed by a natural number;
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otherwise, it returns different types of errors based on the data type ErrorMsg. The gas field

represents the gas left in each step and is given by a natural number.

6.2.3.1 Example of Complex Model

We create an example of a simple voting contract (testLedger) with the gas cost included to

demonstrate the complex model code.

The definition of testLedger is as follows:

testLedger 1 .amount = 100

testLedger 1 .fun "addVoter" msg

= exec (updatec "checkVoter"
(addVoterAux msg) λ oldFun oldcost msg → 1)

(λ _ → 1) λ _ → return 1 msg

testLedger 1 .fun "deleteVoter" msg

= exec (updatec "checkVoter"
(deleteVoterAux msg) λ oldFun oldcost msg → 1)

(λ _ → 1) λ _ → return 1 msg

testLedger 1 .fun "vote" msg

= exec callAddrLookupc (λ _ → 1)

λ addr → exec (callview addr "checkVoter" (nat addr))

(λ _ → 1) λ check → voteAux addr check

testLedger 1 .viewFunction "counter" msg = theMsg (nat 0)

testLedger 1 .viewFunction "checkVoter" msg = theMsg (nat 0)

testLedger 1 .viewFunctionCost "checkVoter" msg = 1

testLedger 3 .amount = 100

testLedger ow .amount = 0

testLedger ow .fun ow’ ow”

= error (strErr "Undefined") 〈 ow » ow · ow’ [ ow” ]〉

testLedger ow .viewFunction ow’ ow” = err (strErr "Undefined")

testLedger ow .viewFunctionCost ow’ ow” = 1

For the contract itself, we have four fields: amount (amount), function name (fun), view

function (viewfunction), and view function cost (viewfunctionCost). For address 1, the amount

is 100 wei, and we have three functions: ("addVoter", "deleteVoter", and "vote"). In
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addition, we have two view functions: ("checkVoter" and "counter"). The explanations of

the three functions are as follows:

• "addVoter" updates the view function "checkVoter" to allow the address represented

by its argument to vote. It makes use of the following function, which determines the

new value "checkVoter" by checking whether the argument was updated. If it was not,

it refers to the old version of "checkVoter":

addVoterAux : Msg → (Msg → MsgOrError)

→ Msg → MsgOrError

addVoterAux (nat newaddr) oldCheckVoter (nat addr) =

if newaddr ≡b addr

then theMsg (nat 1) – return 1 for true
else oldCheckVoter (nat addr)

addVoterAux ow ow’ ow” =

err (strErr " You cannot add voter ")

• "deleteVoter" does the same, but it sets it to false for the deleted voter using the

deleteVoterAux function. The definition of deleteVoterAux is as follows:

deleteVoterAux : Msg → (Msg → MsgOrError)

→ (Msg → MsgOrError)

deleteVoterAux (nat newaddr) oldCheckVoter (nat addr)

= if newaddr ≡b addr

then theMsg (nat 0) –return false
else oldCheckVoter (nat addr)

deleteVoterAux ow ow’ ow”

= err (strErr " You cannot delete voter ")

• "vote" first looks up the calling address and calls the view function ("checkVoter"),

to check whether the voter is allowed to vote (where (nat 0) represents false and

(nat (suc n)) represents true). Then, it calls voteAux to make a case distinction on

this decision. If the voter is allowed to vote, it increments the counter (view function

("counter")) by 1. Otherwise, it returns an error. The definition of voteAux is as fol-

lows:
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voteAux : Address → MsgOrError → SmartContractExec Msg

voteAux addr (theMsg (nat zero))

= error (strErr "The voter is not allowed to vote")

〈 0 » 0 · "Voter is not allowed to vote" [ nat 0 ]〉

voteAux addr (theMsg (nat (suc n)))

= exec (updatec "checkVoter"
(deleteVoterAux (nat addr)) λ oldFun oldcost msg → 1)

(λ _ → 1) (λ x → exec (callview 1 "counter" (nat 0))

(λ result → 1) incrementAux)

voteAux addr (theMsg ow)

= error (strErr "The message is not a number")

〈 0 » 0 · "Voter is not allowed to vote" [ nat 0 ]〉

voteAux addr (err x)

= error (strErr " Undefined ")

〈 0 » 0 · "The message is undefined" [ nat 0 ]〉

For voteAux, where the message (the result of checking whether the voter is allowed to vote)

represents true, it deletes the voter and looks up the counter, and if it is (nat sucn), it is incre-

mented by 1 using incrementAux. In all other cases, it raises an error. The definition of the

incrementAux function in voteAux, which we use to increment the counter by 1, is as follows:

incrementAux : MsgOrError → SmartContractExec Msg

incrementAux (theMsg (nat n)) =

(exec (updatec "counter" (λ _ → λ msg → theMsg (nat (suc n)))

λ oldFun oldcost msg → 1)(λ n → 1))

λ x → return 1 (nat (suc n))

incrementAux ow =

error (strErr "counter returns not a number")

〈 0 » 0 · "increment" [ (nat 0) ]〉

The view function "checkVoter" is initialised to 0, meaning that no voter is allowed to

vote, and "counter" is initialised to 0. For other addresses, the amount is 0, and all view

functions and functions not specified before will return an error message ("Undefined") with

debugging information. For other view functions, the costs are 1. In our contract, for brevity,

we have only one candidate to vote for, like in the former GDR. In addition, we develop a more
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democratic example, which allows voting for multiple candidates. We use the same functions

above in testLedger example. We only redefine the increment function (incrementAux) in the

voteAux function by defining a new auxiliary function for it, which is the increment candidate

function incrementcandidates. The new definitions of incrementAux and incrementcandidates

are as follows:

incrementcandidates : N → (Msg → MsgOrError) → Msg → MsgOrError

incrementcandidates candidateVotedFor oldCounter (nat candidate)

= if candidateVotedFor ≡b candidate

then mysuc (oldCounter (nat candidate))

else oldCounter (nat candidate)

incrementcandidates ow ow’ ow”

= err (strErr " You cannot delete voter ")

incrementAux : MsgOrError → SmartContractExec Msg

incrementAux (theMsg (nat candidate))

= (exec (updatec "counter" (incrementcandidates candidate)

λ oldFun oldcost msg → 1)

(λ n → 1)) λ x → return 1 (nat candidate)

incrementAux ow

= error (strErr "counter returns not a number")

〈 0 » 0 · "increment" [ (nat 0) ]〉

First, the incrementcandidates function checks whether a voter voted for this candidate and has

not voted before, then it computes the old counter with the new counter; otherwise, it returns

an error message.

6.2.3.2 Termination Problem in the Complex Model

We implement the functions (evaluateTerminatingfinal, evaluateTerminatingAuxStep1, evalu-

ateTerminatingAuxStep2, evaluateTerminatingAuxStep3, and evaluateAuxStep4), which compute

the resulting ledger, the result returned after executing a function, and the functions that com-

pute the result returned by a view function. These functions are defined recursively. In order

to guarantee termination, we add a variable numberOfSteps, which is initially set to the gas

assigned and is counted down in each execution step. Furthermore, we guarantee that the gas

used and deducted in each execution step is at least 1. Technically, we achieve this by adding 1
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to the gas specified. Because gas is reduced by at least 1 in each step, we maintain the invariant

that the gas left is always≤ numberOfSteps, so when the numberOfSteps is 0 and an execution

step is to be carried out, there is no gas left, and one obtains an out-of-gas error results. There-

fore, the program passes the termination checker of Agda, with all necessary proofs carried out

in Agda.

The definition of evaluateTerminatingfinal and its auxiliary functions are as follows:

evaluateAuxStep4 : (oldLedger : Ledger) → (currentLedger : Ledger)

→ (initialAddr : Address) → (lastCallAddr : Address)

→ (calledAddr : Address) → (cost : N) → (returnvalue : Msg)

→ (gasLeft : N) → (funNameevalState : FunctionName)

→ (msgevalState : Msg) → (cp : OrderingLeq cost gasLeft)

→ (Ledger × MsgOrErrorWithGas)

evaluateAuxStep4 oldLedger currentLedger initialAddr lastCallAddr

calledAddr cost ms gasLeft funNameevalState msgevalState (leq x)

= (addWeiToLedger currentLedger initialAddr

(GastoWei param (gasLeft - cost))) „ (theMsg ms , (gasLeft - cost) gas)

evaluateAuxStep4 oldLedger currentLedger initialAddr lastCallAddr calledAddr

cost returnvalue gasLeft funNameevalState msgevalState (greater x)

= oldLedger „ ((err (strErr " Out Of Gass ")

〈 lastCallAddr » initialAddr · funNameevalState [ msgevalState ]〉) , gasLeft gas)

mutual

evaluateTerminatingAuxStep2 : Ledger → (stateEF : StateExecFun)

→ (numberOfSteps : N) → stepEFgasAvailable stateEF 5r numberOfSteps

→ Ledger × MsgOrErrorWithGas

evaluateTerminatingAuxStep2 oldLedger (stateEF currentLedger [] initialAddr

lastCallAddr calledAddr (return cost ms) gasLeft funNameevalState msgevalState)

numberOfSteps numberOfStepsLessGas

= evaluateAuxStep4 oldLedger currentLedger

initialAddr lastCallAddr calledAddr cost ms

gasLeft funNameevalState msgevalState (compareLeq cost gasLeft)

evaluateTerminatingAuxStep2 oldLedger (stateEF currentLedger s initialAddr

lastCallAddr calledAddr (error msgg debugInfo)

gasLeft funNameevalState msgevalState)
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numberOfSteps numberOfStepsLessGas

= addWeiToLedger oldLedger initialAddr (GastoWei param gasLeft) „

(err msgg 〈 lastCallAddr » initialAddr · funNameevalState [ msgevalState ]〉 ,

gasLeft gas)

evaluateTerminatingAuxStep2 oldLedger evals (suc numberOfSteps)

numberOfStepsLessGas = evaluateTerminatingAuxStep3 oldLedger

evals numberOfSteps numberOfStepsLessGas

(compareLeq (stepEFgasNeeded evals) (stepEFgasAvailable evals))

evaluateTerminatingAuxStep2 oldLedger (stateEF currentLedger executionStack

initialAddr lastCallAddr calledAddr nextstep gasLeft

funNameevalState msgevalState) 0 numberOfStepsLessGas

= oldLedger „ (err outOfGasError 〈 lastCallAddr » initialAddr ·

funNameevalState [ msgevalState ]〉 , 0 gas)

evaluateTerminatingAuxStep3 : Ledger → (stateEF : StateExecFun)

→ (numberOfSteps : N) → stepEFgasAvailable stateEF 5r suc numberOfSteps

→ OrderingLeq (stepEFgasNeeded stateEF) (stepEFgasAvailable stateEF)

→ Ledger × MsgOrErrorWithGas

evaluateTerminatingAuxStep3 oldLedger state numberOfSteps

numberOfStepsLessgas (leq x)

= evaluateTerminatingAuxStep2 oldLedger

(deductGas (stepEF oldLedger state)(suc (stepEFgasNeeded state)))

numberOfSteps (lemmaxSucY (gasLeft (stepEF oldLedger state))

numberOfSteps (stepEFgasNeeded state)

(lemma=5r (gasLeft (stepEF oldLedger state))

(gasLeft state) (suc numberOfSteps)

(lemmaStepEFpreserveGas2 oldLedger state) numberOfStepsLessgas))

evaluateTerminatingAuxStep3 oldLedger (stateEF ledger executionStack

initialAddr lastCallAddr calledAddr nextstep gasLeft1

funNameevalState msgevalState)

numberOfSteps numberOfStepsLessgas (greater x)

= oldLedger „ (err outOfGasError 〈 lastCallAddr » initialAddr ·

funNameevalState [ msgevalState ]〉 , 0 gas)

evaluateTerminatingAuxStep1 : (ledger : Ledger) → (initialAddr : Address)
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→ (lastCallAddr : Address) → (calledAddr : Address) → FunctionName

→ Msg → (gasreserved : N)

→ (cp : OrderingLeq (GastoWei param gasreserved)(ledger initialAddr .amount))

→ Ledger × MsgOrErrorWithGas

evaluateTerminatingAuxStep1 ledger initialAddr lastCallAddr

calledAddr funname msg gasreserved (leq leqpr)

= let

ledgerDeducted : Ledger

ledgerDeducted = deductGasFromLedger ledger initialAddr

(GastoWei param gasreserved) leqpr

in evaluateTerminatingAuxStep2 ledgerDeducted

(stateEF ledgerDeducted [] initialAddr lastCallAddr calledAddr

(ledgerDeducted calledAddr .fun funname msg)

gasreserved funname msg) gasreserved (refl5r gasreserved)

evaluateTerminatingAuxStep1 ledger initialAddr lastCallAddr

calledAddr funname msg gasreserved (greater greaterpr)

= ledger „ (err outOfGasError 〈 lastCallAddr » initialAddr ·

funname [ msg ]〉 , 0 gas)

evaluateTerminatingfinal : (ledger : Ledger) → (initialAddr : Address)

→ (lastCallAddr : Address) → (calledAddr : Address)

→ FunctionName → Msg → (gasreserved : N)

→ Ledger × MsgOrErrorWithGas

evaluateTerminatingfinal ledger initialAddr lastCallAddr calledAddr

funname msg gasreserved

= evaluateTerminatingAuxStep1 ledger initialAddr lastCallAddr

calledAddr funname msg gasreserved

(compareLeq (GastoWei param gasreserved) (ledger initialAddr .amount))

The function evaluateTerminatingfinal with its auxiliary functions will check the amount of gas

reserve. If the gas needed is less or equal to the number of steps, it executes and terminates;

otherwise, it returns an out-of-gas error.

We give an example of the usage of the evaluateTerminatingfinal function, along with its

auxiliary functions, and use the previous example of voting (testLedger) in Subsubsect. 6.2.3.1.

For this example, we define six test cases, each depending on the previous case. For example,
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the second test case depends on the ledger of the first case, the third test case depends on the

ledger of the second case, and so on. These six test cases are as follows:

First test case. In the first case, we define the resultAfterAddVoter5 function to add voter 5

to our ledger as follows:

resultAfterAddVoter5 : Ledger × MsgOrErrorWithGas

resultAfterAddVoter5

= evaluateTerminatingfinal testLedger 1 1 1 "addVoter" (nat 5) 20

The resultAfterAddVoter5 function executes the "addVoter" function with argument nat 5

at calling address 1 with a gas limit of 20 wei. In this scenario, there are three different types of

addresses from left to right: the initial address, the last called address, and the calling address,

the latter of which is utilised to execute the "addVoter" function.

We then define the resultReturnedAddVoter5 function to return the result after adding voter

number 5 to our ledger as follows:

resultReturnedAddVoter5 : MsgOrErrorWithGas

resultReturnedAddVoter5 = proj2 resultAfterAddVoter5

The resultReturnedAddVoter5 function returns the result based on the second projection in the

resultAfterAddVoter5 function, which is MsgOrErrorWithGas. The result is theMsg (nat 5), 16

gas. This means that the voter 5 has been added, and the remaining gas is 16 wei. This can be

illustrated by the following Agda proof:

eqproofafterAdd5 : resultReturnedAddVoter5 ≡ theMsg (nat 5) , 16 gas

eqproofafterAdd5 = refl

We also define a function utilised to update our ledger following the addition of voter

number 5 as follows:

ledgerAfterAdd5 : Ledger

ledgerAfterAdd5 = proj1 resultAfterAddVoter5

The ledgerAfterAdd5 is based on the result of the first projection in the resultAfterAddVoter5,

which is Ledger.

In addition, we define the checkVoter5afterAdd5 function based on the result of ledgerAfter-

Add5 to check the view function as follows:
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checkVoter5afterAdd5 : MsgOrError

checkVoter5afterAdd5 = ledgerAfterAdd5 1 .viewFunction "checkVoter" (nat 5)

The checkVoter5afterAdd5 function checks our ledger for voter 5, and the result is theMsg 1,

which means 1 for true and that voter number 5 exists. This can be witnessed by the following

Agda proof:

eqprooftocheckVoter5 : checkVoter5afterAdd5 ≡ theMsg (nat 1)

eqprooftocheckVoter5 = refl

In another test case on our ledger, we define the checkVoter3AfterAdd5 function to check

the status of voter number 3 as follows:

checkVoter3AfterAdd5 : MsgOrError

checkVoter3AfterAdd5 = ledgerAfterAdd5 1 .viewFunction "checkVoter" (nat 3)

The checkVoter3AfterAdd5 function returns theMsg 0, which means 0 for false, and that our

ledger currently includes only voter number 5. This can be witnessed by the following Agda

proof:

eqprooftocheckVoter3 : checkVoter3AfterAdd5 ≡ theMsg (nat 0)

eqprooftocheckVoter3 = refl

We then define the checkCounterAfterAdd5 function to check that the counter (number of

voters) after adding (nat 5) is as follows:

checkCounterAfterAdd5 : MsgOrError

checkCounterAfterAdd5 = ledgerAfterAdd5 1 .viewFunction "counter" (nat 0)

When evaluating the checkCounterAfterAdd5 function, the result is that (theMsg 0), which

means that the counter is 0, since no one has voted. This can be illustrated by the follow-

ing Agda proof:

eqcheckCounterafterAdd5 : checkCounterAfterAdd5 ≡ theMsg (nat 0)

eqcheckCounterafterAdd5 = refl

In our scenario, we use the add voter function without actual voting taking place. In further

test cases, we will use the vote function.

144



6.2. Modelling of Solidity-style Smart Contracts in Agda

Second test case. In the second test case, we add (nat 3) to the ledger. In this case, we

define the resultAfterAddVoter3 function is as follows:

resultAfterAddVoter3 : Ledger × MsgOrErrorWithGas

resultAfterAddVoter3

= evaluateTerminatingfinal ledgerAfterAdd5 1 1 1 "addVoter" (nat 3) 20

The ledger for the resultAfterAddVoter3 function depends on the result of the ledger in (nat 5),

which is ledgerAfterAdd5, to obtain the latest status of the ledger. The resultAfterAddVoter3

function executes the "addVoter" function with argument (nat 3).

We then define the resultReturnedAddVoter3 function as follows:

resultReturnedAddVoter3 : MsgOrErrorWithGas

resultReturnedAddVoter3 = proj2 resultAfterAddVoter3

When evaluating the resultReturnedAddVoter3 function, it returns the result of the second pro-

jection on the resultReturnedAddVoter3 function. The result is (theMsg 3), 16 gas, which means

that (nat 3) is added to the ledger and that the remaining gas is 16 wei. This can be witnessed

by the following Agda proof:

eqproofresultafterAdd3 : resultReturnedAddVoter3 ≡ theMsg (nat 3) , 16 gas

eqproofresultafterAdd3 = refl

In addition, we define the ledgerAfterAdd3 function, which updates the ledger after adding

voter 3, as follows:

ledgerAfterAdd3 : Ledger

ledgerAfterAdd3 = proj1 resultAfterAddVoter3

To check the current ledger after adding (nat 5) and (nat 3), we define the following functions:

checkVoter5afterAdd3 : MsgOrError

checkVoter5afterAdd3 = ledgerAfterAdd3 1 .viewFunction "checkVoter" (nat 5)

checkVoter3afterAdd3 : MsgOrError

checkVoter3afterAdd3 = ledgerAfterAdd3 1 .viewFunction "checkVoter" (nat 3)
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In both functions checkVoter5afterAdd3 and checkVoter3afterAdd3, the result is that (theMsg 1),

which means 1 for true and that our ledger contains (nat 5) and (nat 3). The following Agda

proofs can witness the above functions:

eqproofcheckVoter5afterAdd3 : checkVoter5afterAdd3 ≡ theMsg (nat 1)

eqproofcheckVoter5afterAdd3 = refl

eqproofcheckVoter3afterAdd3 : checkVoter3afterAdd3 ≡ theMsg (nat 1)

eqproofcheckVoter3afterAdd3 = refl

Third test case. In this test case, we use the delete function in order to delete voter number

5 from the ledger in ledgerAfterAdd3 (second test case). We start by defining the resultAfter-

DeleteVoter5 function is as follows:

resultAfterDeleteVoter5 : Ledger × MsgOrErrorWithGas

resultAfterDeleteVoter5 =

evaluateTerminatingfinal ledgerAfterAdd3 1 1 1 "deleteVoter" (nat 5) 20

The resultAfterDeleteVoter5 function executes "deleteVoter" with argument (nat 5).

Furthermore, we define the resultReturnedDeleteVoter5 function as follows:

resultReturnedDeleteVoter5 : MsgOrErrorWithGas

resultReturnedDeleteVoter5 = proj2 resultAfterDeleteVoter5

The resultReturnedDeleteVoter5 returns the result of the second projection. The result is

theMsg 5, and the remaining gas is 16 wei. This means that (nat 5) is deleted from the ledger.

The following Agda proof can witness the above function:

eqproofresultafterDelete5 : resultReturnedDeleteVoter5 ≡ theMsg (nat 5) , 16 gas

eqproofresultafterDelete5 = refl

We then define a new ledger after deleting (nat 5) as follows:

ledgerAfterDelete5 : Ledger

ledgerAfterDelete5 = proj1 resultAfterDeleteVoter5

In order to check the view function after deleting (nat 5) from the ledger, we define the follow-

ing function:
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checkVoter5afterDelete5 : MsgOrError

checkVoter5afterDelete5 = ledgerAfterDelete5 1 .viewFunction "checkVoter" (nat 5)

When evaluating the checkVoter5afterDelete5 function, the result is (theMsg (nat 0)), which

means 0 for false and that (nat 5) is no longer exists in the ledger. The following Agda proof

can be witnessed in the above function:

eqproofcheck5afterDelete5 : checkVoter5afterDelete5 ≡ theMsg (nat 0)

eqproofcheck5afterDelete5 = refl

In addition, we check the view function for (nat 3) by defining the following function:

checkVoter3afterDelete5 : MsgOrError

checkVoter3afterDelete5 = ledgerAfterDelete5 1 .viewFunction "checkVoter" (nat 3)

When evaluating the checkVoter3afterDelete5 function, the result is (theMsg (nat 1)), which

means 1 for true and that (nat 3) exists in the ledger. This can be witnessed by the following

Agda proof:

eqproofcheck3afterDelete5 : checkVoter3afterDelete5 ≡ theMsg (nat 1)

eqproofcheck3afterDelete5 = refl

Fourth test case. In this case, we use the add function to add (nat 8) to the ledger. This

case is similar to the first test case; and the difference is that in the fourth test case, the ledger

depends on ledgerAfterDelete5 (the third test case). We define the resultAfterAddVoter8 function

as follows:

resultAfterAddVoter8 : Ledger × MsgOrErrorWithGas

resultAfterAddVoter8

= evaluateTerminatingfinal ledgerAfterDelete5 1 1 1 "addVoter" (nat 8) 20

The resultAfterAddVoter8 function executes "AddVoter" function with the argument (nat 8) at

calling address 1 with a gas limit of 20 wei.

We then define the resultReturnedAddVoter8 function as follows:

resultReturnedAddVoter8 : MsgOrErrorWithGas

resultReturnedAddVoter8 = proj2 resultAfterAddVoter8
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When evaluating the resultReturnedAddVoter8 function, the result is (nat 8), which means that

voter number 8 is added to the ledger, and the remaining gas is 16 wei. This can be witnessed

by the following Agda proof:

eqproofresultAddVoter8 : resultReturnedAddVoter8 ≡ theMsg (nat 8) , 16 gas

eqproofresultAddVoter8 = refl

Then, we define the ledger after adding nat 8 as follows:

ledgerAfterAdd8 : Ledger

ledgerAfterAdd8 = proj1 resultAfterAddVoter8

In order to check the view functions for (nat 8), (nat 3), and (nat 5) after adding (nat 8), we

define the following functions:

checkVoter8afterAdd8 : MsgOrError

checkVoter8afterAdd8 = ledgerAfterAdd8 1 .viewFunction "checkVoter" (nat 8)

checkVoter3afterAdd8 : MsgOrError

checkVoter3afterAdd8 = ledgerAfterAdd8 1 .viewFunction "checkVoter" (nat 3)

checkVoter5afterAdd8 : MsgOrError

checkVoter5afterAdd8 = ledgerAfterAdd8 1 .viewFunction "checkVoter" (nat 5)

In both functions checkVoter8afterAdd8 and checkVoter3afterAdd8, the result is (theMsg nat 1),

which means 1 for true and that both (nat 8) and (nat 3) are included in the ledger. However,

when evaluating checkVoter5afterAdd8, the result is (theMsg nat 0), which means 0 for false

and that the ledger does not include (nat 5). The following Agda proofs can witness the above

functions:

eqproofcheck8afterAdd8 : checkVoter8afterAdd8 ≡ theMsg (nat 1)

eqproofcheck8afterAdd8 = refl

eqproofcheck3afterAdd8 : checkVoter3afterAdd8 ≡ theMsg (nat 1)

eqproofcheck3afterAdd8 = refl
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eqproofcheck5afterAdd8 : checkVoter5afterAdd8 ≡ theMsg (nat 0)

eqproofcheck5afterAdd8 = refl

Fifth test case. In this test case, we use the vote function to verify who is not allowed to

vote. We start by defining the resultAfterVote5 function as follows:

resultAfterVote5 : Ledger × MsgOrErrorWithGas

resultAfterVote5

= evaluateTerminatingfinal ledgerAfterAdd8 1 5 1 "vote" (nat 0) 50

The resultAfterVote5 function executes the "vote" with argument (nat 0) at called address 1 and

last call address 5 for (nat 5) with gas limit of 50 wei. The leger depends on ledgerAfterAdd8

(fourth test case)

We then define the resultReturnedVote5 function in order to check whether (nat 5) is allowed

to vote, as follows:

resultReturnedVote5 : MsgOrErrorWithGas

resultReturnedVote5 = proj2 resultAfterVote5

When evaluating the function above, the result is

(strErr "The voter is not allowed to vote") 〈 5 » 1 · "checkVoter [ nat 0 ]〉, 45 gas.

This means that voter number 5 is not allowed to vote at address 1 because voter 5 is no longer

included in the ledger and the remaining gas is 45 wei. This can be illustrated by the following

Agda proof:

eqproofresultReturnedVote5 : resultReturnedVote5 ≡

err (strErr "The voter is not allowed to vote")

〈 5 » 1 · "checkVoter" [ nat 5 ]〉 , 45 gas

eqproofresultReturnedVote5 = refl

We then define the ledger (ledgerAfterVote5 ) function as follows:

ledgerAfterVote5 : Ledger

ledgerAfterVote5 = proj1 resultAfterVote5

In addition, we define the checkCounterAfterVote5 function to check the counter (number of

voters) as follows:
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checkCounterAfterVote5 : MsgOrError

checkCounterAfterVote5 = ledgerAfterVote5 1 .viewFunction "counter" (nat 0)

When evaluating the function above, the result is (theMsg (nat 0)), which means that the

counter is still 0 and that no one has voted. The following Agda proof can witness the above

function:

eqproofcheckCounterAfterVote5 : checkCounterAfterVote5 ≡ theMsg (nat 0)

eqproofcheckCounterAfterVote5 = refl

Six test case. In this case, we use the "vote" function to check who is allowed to vote. We

start by implementing the resultAfterVote3 function as follows:

resultAfterVote3 : Ledger × MsgOrErrorWithGas

resultAfterVote3

= evaluateTerminatingfinal ledgerAfterVote5 1 3 1 "vote" (nat 0) 50

The resultAfterVote3 function executes the "vote" function with the argument (nat 0) at called

address 1 for address 3 (voter number 3 at address 3) with a gas limit of 50.

Then, we define the resultReturnedVote3 function to check whether voter 3 is allowed to

vote, in which case it votes; otherwise, it returns an error message.

The definition of the resultReturnedVote3 function as follows:

resultReturnedVote3 : MsgOrErrorWithGas

resultReturnedVote3 = proj2 resultAfterVote3

From the above function, the result is (theMsg (nat 1)), which means 1 for true and that voter

number 3 has voted, and the remaining gas is 35 wei. The following Agda proof can witness

the above function:

eqproofresultReturnedVote3 : resultReturnedVote3 ≡ theMsg (nat 1) , 35 gas

eqproofresultReturnedVote3 = refl

In addition, we define the checkVoter3 function to check whether voter 3 is allowed to vote

again as follows:

checkVoter3 : MsgOrError

checkVoter3 = ledgerAfterVote3 1 .viewFunction "checkVoter" (nat 3)
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When evaluating the above function, the result is (theMsg (nat 0)). This means 0 for false and

that voter 3 has voted before. This can be witnessed by the following Agda proof:

eqproofcheckVoter3 : checkVoter3 ≡ theMsg (nat 0)

eqproofcheckVoter3 = refl

We define another function (checkVoter8) to check whether voter 8 (nat 8) is allowed to

vote as follows:

checkVoter8 : MsgOrError

checkVoter8 = ledgerAfterVote3 1 .viewFunction "checkVoter" (nat 8)

The result of the above function is (theMsg (nat 1)). This means 1 for true and that vote 8 is

allowed to vote. In our case, only voter 3 has voted. The following Agda proof can witness the

above function:

eqproofcheckVoter8 : checkVoter8 ≡ theMsg (nat 1)

eqproofcheckVoter8 = refl

Finally, we define the checkCounterAfterVote3 function to check that the counter is as fol-

lows:

checkCounterAfterVote3 : MsgOrError

checkCounterAfterVote3 = ledgerAfterVote3 1 .viewFunction "counter" (nat 0)

The result of the function checkCounterAfterVote3 is (theMsg (nat 1)). This means that the

counter has 1 voter who voted: voter 3 only. This can be witnessed by the following Agda

proof:

eqproofcheckCounterAfterVote3 : checkCounterAfterVote3 ≡ theMsg (nat 1)

eqproofcheckCounterAfterVote3 = refl

6.3 Chapter Summary

In this chapter, we presented the first step towards verifying smart contracts in Ethereum using

weakest preconditions. This will give a precise meaning to a contract. We developed smart

Solidity-style contracts in two models. The first was the simple model, which includes features
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such as dealing with simple executions, returning the available balance in each contract, calling

other smart contracts, transferring money to other contracts, and looking up the current and

calling addresses. The simple model does not include gas cost at this stage. For the simple

model, we provided a simple example, which was a counter example. In this example, we

incremented the constant parameter 0 by 1. In addition, we discussed the termination problem.

The second was the complex model, which has additional features, such as gas cost, more

complex executions, calling and updating view functions, and calculating the view function

cost. For the complex model, we provided a voting example for single and multi-candidates.

Furthermore, we discussed the termination problems in the complex model. We built these

models using the interactive theorem prover Agda, which is unique in that it allows us to write

programs and verify them in the same language, thus preventing translation errors from one

program to another. In the next chapter 7, we will build interfaces and simulate the simple and

complete models.

152





Chapter 7

Simulating Two Models of
Solidity-style Smart Contracts
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7.1 Introduction

In this chapter, we extend the previous chapter 6 by implementing two blockchain simulators

of Solidity-style smart contracts – a simple and a complex one - using the interactive theorem

prover Agda. In this chapter, we implement and design interfaces that allow interactions with

users in the simple and complex models. The simple blockchain simulator we have created

can call other contracts, transfer funds to specific contracts, and update contracts. The com-

plex blockchain simulator has additional features that can deal with more complex blockchain

instructions, support gas costs, and evaluate and update view functions. In this chapter, we
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discuss the translation process of Solidity code into Agda and provide examples of the simple

and complex models.

The remainder of this chapter is structured as follows: in Sect. 7.2, we implement and

design two simulators of Solidity-style smart contracts. Sect. 7.3 presents a full description of

the process of converting Solidity code to Agda. Finally, we end with a summary in Sect. 7.4.

Git repository. This work was created and formalised using the proof assistant Agda. All

of the Agda code shown in this chapter was derived from the type-checked Agda code. The

source code can be found in [20] and can be found as well in appendix D.

7.2 Simulation of Solidity-style Smart Contracts in Agda

A simulation interface enables a simulation model to interact with the real world. This may be

used for many purposes, such as testing and validating. In this section, we build the interface

programs for the simple blockchain simulator in Subsect. 7.2.1 and the complex blockchain

simulator in Subsect. 7.2.2 of Solidity-style smart contracts. We use Agda’s interactive pro-

gramming to verify that the modelling is correct for our programs.1

7.2.1 Simulator of the Simple Model

In the previous chapter 6, particularly in Subsubsect. 6.2.2, we developed the simple model of

Solidity-type smart contracts. This model had commands transferc, callc, and updatec. These

commands formed the set of commands (CCommands) for an interactive program. For each

command, we defined the set of possible responses (CResponse) returned in response to an

issuance of that command. Since CResponse depends on CCommands, its type is that of a

function from CCommands to the type of set Set.

CCommands and CResponses are similar to the interactive programs described in

Sect. 2.2.1.7; however, the commands are executed on the ledger instead of asking the user for a

response via an operating system. The resulting responses are obtained from the ledger, and the

ledger changes as a result of the execution. The execution forms an object model of Ethereum,

similar to the object models developed by Anton Setzer with his coauthors in [246, 44].

In this section, we rename SmartContractExec to SmartContract to improve the readability.

SmartContract is defined similarly to the types of interactive programs, but it runs on the ledger

instead of an operating system.

1Strictly, we have not proved the correctness of the smart contract but of our modelling of it.
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The simple simulator supports some operations, such as calling functions from other con-

tracts, updating functions, transferring funds, and obtaining the money balance in another smart

contract. However, the simple simulation does not include gas, which we explained in Subsub-

sect. 6.2.3.2.

We illustrate the simulation interface by referring to the following example testLedger,

which expands the previous example in Subsubsect 6.2.2.1. To test the amounts and transfer

function, we extend the previous example by adding one extra contract at address 0, with the

balance (field .amount) set to 20 wei. We also add an extra function for the contract at address

1, which is the "transfer" function. The function "transfer" transfers 10 wei to address 0.

In a contract at address 1, we simply rename "f1" to "counter" and "g1" to "increment"
(for the explanations of the functions counter (f1) and increment (g1), see Subsubsect. 6.2.2.1).

The new definition of testLedger is as follows:

testLedger 0 .amount = 20

testLedger 1 .amount = 40

testLedger 1 .fun "counter" m = const 0 (nat 0)

testLedger 1 .fun "increment" m

= exec currentAddrLookupc λ addr →

exec (callc addr "counter" (nat 0))

λ {(nat n) → exec (updatec "counter" (const (suc n)))

λ _ → return (nat (suc n));

_ → error (strErr "counter returns not a number")}

testLedger 1 .fun "transfer" m

= exec (transferc 10 0) λ _ → return m

testLedger ow .amount = 0

testLedger ow .fun ow’ ow” = error (strErr "Undefined")

Next, we develop our interface menu (mainBody) for the simple simulator Solidity-style

smart contract; it has four options a user can select from to interact with the ledger, as shown

in Figure 7.1. These options are as follows:

• "Option 1", which executes a function of a contract (in our example testLedger, we

can look up the value of "counter", by executing it, incrementing that variable by 1, or

executing the transfer given);

• "Option 2", which looks up the balance of any contract;
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• "Option 3", allows us to change the calling address from which other contracts are

called (the initial value used is 0). "Option 1" and "2" ask for the called address, and

"Option 3" allows the calling address, that is the address which makes the call (to the

function in a different contract or to where the money is transferred). For example, if

address 1 calls function f in contract 2, then the calling address is 1 and the called address

is 2, and if contract 1 makes a transfer to address 2, then the calling address is 1 and the

called address is 2;

• "Option 4", which terminates the program.

Figure 7.1: Simple blockchain simulator program interface.

The mainBody takes two arguments, ledger and callAddr. The definition of mainBody is as

follows:

mainBody : ∀{i} → Ledger → (callAddr : Address)

→ IOConsole i Unit

mainBody ledger callAddr .force

= WriteString’ ("Please choose one of the following options:
1- Execute a function of a contract.
2- Look up the balance of a contract.
3- Change the calling address.
4- Terminate the program.")

λ str → (GetLine >>= λ str →

if str == "1" then executeLedger ledger callAddr

else (if str == "2" then executeLedgercheckamount ledger callAddr

else (if str == "3" then executeLedgerChangeCallingAddress ledger callAddr

else (if str == "4" then WriteString "The program will be terminated"
else WriteStringWithCont "Please enter 1,2,3 or 4"
λ _ → mainBody ledger callAddr))))
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We define mainBody mutually recursively, with auxiliary functions for the different options.

In the case of "Option 1", these are executeLedgerStep2 - executeLedgerStep5. Function ex-

ecuteLedger asks the user to enter the calling address, i.e. the contract for which we want to

execute a function. Then, executeLedgerStep2 checks whether the result is a number. If it is

a number, it asks for the function name to be executed (given as a string). After that, exe-

cuteLedgerStep2 calls executeLedgerStep3 to ask the user to enter the argument of the function

name as a natural number (we currently only support the arguments of functions that are seri-

alised natural numbers, but in a future version, we will allow arbitrary serialised messages as

inputs). Then, executeLedgerStep4 checks whether the user has indeed entered a number, and

if so, returns the result of evaluating the function applied to the message using executeLedger-

Step5 and goes back to the start menu. Here, the result returned will be the number returned (if

it was a number), a message indicating the result is a list (if the result was a list), and otherwise,

an error message. Note that in case of an error, the ledger returns to its initial state except for

the gas used in the failed execution being deducted.

When converting a user input to a natural number, we obtain an element of Maybe N with

elements (just n) for a successful converted natural number and nothing, if the string is not a

natural number. Therefore, our code makes a case distinction on whether the result of that

conversion is nothing or (just n).

For example, as shown in Figure 7.2, we select "Option 1" and execute function

"counter" with argument 1 at address 1. The result is nat 0 (returning the content of the

variable counter).

Figure 7.2: Executing a function of a contract (Option 1).

The definitions of executeLedger and the auxiliary functions are as follows:

executeLedger : ∀{i} → Ledger → (callAddr : Address) → IOConsole i Unit

158



7.2. Simulation of Solidity-style Smart Contracts in Agda

executeLedger ledger callAddr .force

= exec’ (putStrLn "Enter the calling address")

λ _ → IOexec getLine

λ line → executeLedgerStep2 ledger callAddr (readMaybe 10 line)

executeLedgerStep2 : ∀{i} → Ledger → (callAddr : Address)

→ Maybe N → IOConsole i Unit

executeLedgerStep2 ledger callAddr nothing .force

= exec’ (putStrLn "Enter the calling cddress")

λ _ → IOexec getLine

λ _ → executeLedger ledger callAddr

executeLedgerStep2 ledger callAddr (just n) .force

= exec’ (putStrLn "Enter the function name
(e.g. counter, increment, transfer)")

λ _ → IOexec getLine

λ line → executeLedgerStep3 ledger callAddr n line

executeLedgerStep3 : ∀{i} → Ledger → (callAddr : Address)

→ N → FunctionName → IOConsole i Unit

executeLedgerStep3 ledger callAddr n f .force

= exec’ (putStrLn "Enter the argument of the function
as a natural number")

λ _ → IOexec getLine

λ line → executeLedgerStep4 ledger callAddr n f (readMaybe 10 line)

executeLedgerStep4 : ∀{i} → Ledger → (callAddr : Address)

→ N → FunctionName → Maybe N → IOConsole i Unit

executeLedgerStep4 ledger callAddr n f nothing .force

= exec’ (putStrLn "Please enter a natural number")

λ _ → executeLedgerStep3 ledger callAddr n f

executeLedgerStep4 ledger callAddr n f (just m) .force

= executeLedgerStep5 (evaluateNonTerminatingWithLedger

ledger callAddr n f (nat m)) callAddr

159



7. Simulating Two Models of Solidity-style Smart Contracts

executeLedgerStep5 : ∀{i} → MsgAndLedger → (callAddr : Address)

→ IO’ consoleI i Unit

executeLedgerStep5 (msgAndLedger newLedger (theMsg (nat n))) callAddr

= exec’ (putStrLn ("The result of execution is nat " ++ (show n)))

λ _ → mainBody newLedger callAddr

executeLedgerStep5 (msgAndLedger newLedger (theMsg (list l))) callAddr

= exec’ (putStrLn "The result of execution is of the form list l ")

λ _ → mainBody newLedger callAddr

executeLedgerStep5 (msgAndLedger newLedger (err e)) callAddr

= exec’ (putStrLn "Error")

λ _ → IOexec (putStrLn (errorMsg2Str e))

λ _ → mainBody newLedger callAddr

In the case of "Option 2", the program asks for the address to look up the balance for it,

prints out the result, and returns to the starting menu.

For example, as shown in Figure 7.3, when selecting "Option 2" and entering the calling

address 1, the result is the available money, 40 wei, at address 1, and the program returns to the

main interface.

Figure 7.3: Looking up the balance of a contract (Option 2).

The definitions of executeLedgercheckamount and the auxiliary function exe-

cuteLedgercheckamountAux are as follows:

executeLedgercheckamount : ∀{i} → Ledger → (callAddr : Address)

→ IOConsole i Unit

executeLedgercheckamount ledger callAddr .force

= exec’ (putStrLn "Enter the address of the contract
you want to look up the balance")
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λ _ → IOexec getLine

λ line → executeLedgercheckamountAux ledger callAddr (readMaybe 10 line)

executeLedgercheckamountAux : ∀{i} → Ledger → (callAddr : Address)

→ Maybe N → IOConsole i Unit

executeLedgercheckamountAux ledger callAddr nothing .force

= exec’ (putStrLn "Please enter a natural number")

λ _ → executeLedgercheckamount ledger callAddr

executeLedgercheckamountAux ledger callAddr (just calledAddr) .force

= exec’ (putStrLn

("The available money is " ++ show (ledger calledAddr .amount)

++ " wei in address " ++ show calledAddr))

λ line → mainBody ledger callAddr

In addition, we can use both "Option 1" and "Option 2" to execute the "transfer" func-

tion. For example, as shown in Figures 7.4, when selecting "Option 1" and entering the

calling address 1, the function "transfer" and the argument of the transfer function as 10,

the result is that ‘The result of execution is nat 10‘.

Figure 7.4: Executing transfer function (Option 1).

Now, we can use "Option 2" to check the balance at address 0, as shown in Figure 7.5.

Note that the old balance of address 0 was 20 wei, and after transferring 10 wei from address

1 to address 0, the result is that ‘The available money is 30 wei at address 0‘.
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Figure 7.5: Looking up the balance of a contract after transferring funds (Option 2).

For "Option 3", which is defined by function executeLedgerChangeCallingAddress, the

system asks for the new calling address, and once obtained, it executes the same code as for

"Option 1". For instance, as shown in Figure 7.6, when selected, "Option 3" will ask to

enter the new calling address; in our case, we enter the new calling address 1, the function "in-
crement", and the function’s argument as 0. The result is (nat 1), and the operation increments

the variable "counter" to 1.

Figure 7.6: Changing the calling address (Option 3).

The defintions of executeLedgerChangeCallingAddress and executeLedgerChangeCallingAd-

dressAux are as follows:

executeLedgerChangeCallingAddress : ∀{i} → Ledger → (callAddr : Address)

→ IOConsole i Unit

executeLedgerChangeCallingAddress ledger callAddr .force

= exec’ (putStrLn "Enter the new calling address")

λ _ → IOexec getLine λ line →
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executeLedgerChangeCallingAddressAux ledger callAddr (readMaybe 10 line)

executeLedgerChangeCallingAddressAux : ∀{i} → Ledger → (callAddr : Address)

→ Maybe Address → IOConsole i Unit

executeLedgerChangeCallingAddressAux ledger callAddr (just callingAddr)

= executeLedger ledger callAddr

executeLedgerChangeCallingAddressAux ledger callAddr nothing .force

= exec’ (putStrLn "Please enter a number")

λ _ → executeLedgerChangeCallingAddress ledger callAddr

Finally, we define the main function:

main : ConsoleProg

main = run (mainBody testLedger 0)

The main function serves as the entry point when executing the Agda program. It is in charge

of starting the program and executing its main logic. In this scenario, the main function applies

mainBody to the testLedger and starts by setting the calling address to 0. This creates an inter-

active program, and run translates it into a native IO program. Agda’s compiler MAlonzo [247]

then creates an interactive program. The compiled executable will execute the interactive pro-

gram as described above.

7.2.2 Simulator of the Complex Model

In the previous chapter 6, particularly in Subsubsect. 6.2.3.1, we developed the complex model.

The complex model had many features, such as dealing with complex operations, view func-

tions and, importantly, the use of gas cost. Since we cannot control the cost of the execution

of functions in Agda from Agda, we require that the user explicitly state the cost of computing

the various operations as part of all the commands of normal functions. Note that the main

purpose of the model is to verify smart contracts. Whether a contract is correct depends on

making realistic choices for the gas cost.

Using the implementation of the complex model in our previous chapter 6, specifically

in Subsubsect. 6.2.3.1, we expand the simple simulator into the complex one, adding more

complex options for the user to evaluate view functions and to change and check the gas limit.

To demonstrate our interface, we use the previous example in chapter 6, particularly in

Subsubsect. 6.2.3.1 for a simple voting example (testLedger). The current example has only
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one candidate. We leave it to the user to enhance this example to a more advanced one involv-

ing multiple candidates by making the counter and vote functions dependent on a candidate

number.

We start by defining the main menu of the complex simulation interface mainBody, as

shown in Figure 7.7. We have created three additional options ("Option 4", "Option 5",

and "Option 6") to complement those in the simple simulator. These new options aid in

verifying the voting example and show the gas consumption at each stage. Below are the

explanations for all seven options:

• "Option 1", "Option 2", and "Option 3" are functions similar to those of the simple

simulator. However, these options have been redefined to incorporate gas cost and view

function;

• "Option 4" may be utilised to update the gas limit when calling smart contracts;

• "Option 5" may be used to verify the amount of gas left before or after each operation;

• "Option 6" is used to evaluate view functions. In Solidity, view functions do not call

other functions. When called externally, these functions do not incur any gas costs.

However, gas costs are required if they are called from an internal function;

• "Option 7" terminates the simulator.

Figure 7.7: Complex blockchain simulator program interface.

The state of the system is given by an element stIO : StateIO, defined below. The main-

Body function depends on this state variable stIO. The definition of the complex simulator

(mainBody) is as follows:

mainBody : ∀{i} → StateIO → IOConsole i Unit

mainBody stIO .force
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= WriteString’ ("Please choose one of them:
1- Execute a function of a contract.
2- Look up the balance of one contract.
3- Change the calling address.
4- Update the gas limit.
5- Check the gas limit.
6- Evaluate the view function.
7- Terminate the program.") λ _ →

GetLine >>= λ str →

if str == "1" then executeLedger stIO

else (if str == "2" then executeLedger-CheckBalance stIO

else (if str == "3" then executeLedger-ChangeCallingAddress stIO

else (if str == "4" then executeLedger-updateGas stIO

else (if str == "5" then executeLedger-checkGas stIO

else (if str == "6" then executeLedger-viewfunction stIO

else (if str == "7" then WriteString "The program will be terminated"
else WriteStringWithCont "Please enter a number 1 - 7"
λ _ → mainBody stIO ))))))

We develop StateIO, a record type that defines the current state of computation. It comprises

three fields:

• ledger is the current ledger on which the calculation will be executed;

• initialAddr is the initial address used to initialise the calculation; in our case, we initialised

it to 0, but it can be changed by using "Option 3";

• gas is the quantity of gas left for use in the calculation.

The constructor for StateIO requires three parameters, which are the values to be used for each

of the three fields. The definition of StateIO is as follows:

record StateIO : Set where

constructor 〈_ledger,_initialAddr,_gas〉

field

ledger : Ledger
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initialAddr : Address

gas : N

As an example, the line of code below establishes the element of StateIO that has our voting

example (testLedger) as the ledger, 0 as the initial address, and 20 wei as the gas amount:

〈 testLedger ledger, 0 initialAddr, 20 gas〉

As we mentioned earlier, "Option 1", "Option 2", and "Option 3" have comparable

functions and structures to the simple simulator, with the inclusion of gas cost. For instance,

as shown in Figure 7.8, when selecting "Option 3", entering a new calling address 1 instead

of the previous address 0, the program starts to execute the contract function "Option 1" by

entering the "addVoter" function and the argument of the function 1. The result is that the

initial address is 1, the call address is 1, the argument of the function name is (nat 1), the

remaining gas is 16 wei, and the value returned is (theMsg (nat 1)).

Figure 7.8: Changing the calling address in the complex blockchain simulator (Option 3).

We have additionally created the executeLedger-updateGas function, along with its corre-

sponding auxiliary function (executeLedgerStep-updateGasAux), mutually recursively. These

functions allow for the implementation of "Option 4", which enables updating of the gas

limit. Upon execution of executeLedgerStep-updateGasAux, the user is prompted to input a

new value for the gas amount. If the input is successful, executeLedgerStep-updateGasAux is
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called, and the function returns both the new and old gas limit values. For example, as shown

in Figure 7.9, when selecting "Option 4", then entering the new gas limit 30, the result is that

‘The gas amount has been updated successfully, the new gas amount is 30 wei, and the old gas

amount is 20 wei‘.

Figure 7.9: Updating the gas limit in the complex blockchain simulator (Option 4).

The definitions of executeLedger-updateGas and its auxiliary function (executeLedgerStep-

updateGasAux) are as follows:

executeLedger-updateGas : ∀{i} → StateIO → IOConsole i Unit

executeLedger-updateGas stIO .force

= exec’ (putStrLn "Enter the new gas amount as a natural number")

λ _ → IOexec getLine λ line →

executeLedgerStep-updateGasAux stIO (readMaybe 10 line)

executeLedgerStep-updateGasAux : ∀{i} → StateIO → Maybe N

→ IOConsole i Unit

executeLedgerStep-updateGasAux stIO nothing .force

= exec’ (putStrLn "Please enter a gas as a natural number")

λ _ → executeLedger-updateGas stIO

executeLedgerStep-updateGasAux 〈 ledger ledger, initialAddr initialAddr, gas gas〉

(just gass) .force

= exec’ (putStrLn ("The gas amount has been updated successfully.
\n The new gas amount is " ++ show gass ++ " wei"
++ " and the old gas amount is " ++ show gas ++ " wei" ))

λ line → mainBody 〈 ledger ledger, initialAddr initialAddr, gass gas〉
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For "Option 5", we develop a mutually recursive function called executeLedger-checkGas.

This function ensures that the gas limit is verified after updating to the new value, as illustrated

in Figure 7.10.

Figure 7.10: Checking the gas limit in the complex blockchain simulator (Option 5).

The definition of executeLedger-checkGas is as follows:

executeLedger-checkGas : ∀{i} → StateIO → IOConsole i Unit

executeLedger-checkGas 〈 ledger ledger, initialAddr initialAddr, gas gas〉 .force

= exec’ (putStrLn (" The gas limit is " ++ show gas ++ " wei" ))

λ line → mainBody 〈 ledger ledger, initialAddr initialAddr, gas gas〉

Moreover, we develop mutually recursively executeLedger-viewfunction, together with its aux-

iliary functions (executeLedger-viewfunction, executeLedger-viewfunction0,

executeLedger-viewfunction1, executeLedger-viewfunStep1-2, executeLedger-viewfunStep1-3,

and executeLedger-viewfunStep1-4), in order to implement "Option 6". As an example, after

using "Option 1" to add 1 as a voter, we proceed to select "Option 6" by entering calling

address 1, called address 1, and the view function "checkVoter", along with its argument 1.

The result is that the initial address is 1, the called address is 1, and the view function returns

theMsg (nat 1), signifying that it is true, as shown in Figure 7.11.

The types of executeLedger-viewfunction and its auxiliary functions are as follows:

executeLedger-viewFunction : ∀{i} → StateIO → IOConsole i Unit

executeLedger-viewFunction stIO .force

= exec’ (putStrLn "Enter the Calling Address as a natural number")

λ _ → IOexec getLine

λ line → executeLedger-viewFunction0 stIO (readMaybe 10 line)

executeLedger-viewFunction0 : ∀{i} → StateIO
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→ Maybe Address → IOConsole i Unit

executeLedger-viewFunction0 〈 ledger1 ledger, initialAddr1 initialAddr, gas1 gas〉

(just callingAddr)

= executeLedger-viewFunction1 〈 ledger1 ledger, callingAddr initialAddr, gas1 gas〉

executeLedger-viewFunction0 stIO nothing .force

= exec’ (putStrLn "Please enter as a natural number")

λ _ → executeLedger-viewFunction stIO

executeLedger-viewFunction1 : ∀{i} → StateIO → IOConsole i Unit

executeLedger-viewFunction1 stIO .force =

exec’ (putStrLn "Enter the Called Address as a natural number")

λ _ → IOexec getLine λ line →

executeLedger-viewfunStep1-2 stIO (readMaybe 10 line)

executeLedger-viewfunStep1-2 : ∀{i} → StateIO → Maybe Address

→ IOConsole i Unit

executeLedger-viewfunStep1-2 stIO (just calledAddr) .force =

exec’ (putStrLn "Enter the function name (e.g. checkVoter, counter) ")

λ _ → IOexec getLine λ line →

executeLedger-viewfunStep1-3 stIO calledAddr (string2FunctionName line)

executeLedger-viewfunStep1-2 stIO nothing .force =

exec’ (putStrLn "Please enter an address as a natural number")

λ _ → executeLedger-viewFunction1 stIO

executeLedger-viewfunStep1-3 : ∀{i} → StateIO → (calledAddr : Address)

→ Maybe FunctionName → IOConsole i Unit

executeLedger-viewfunStep1-3 stIO calledAddr (just f ) .force

= exec’ (putStrLn "Enter the argument of the function name as a natural number")

λ _ → IOexec getLine λ line →

executeLedger-viewfunStep1-4 stIO calledAddr f (readMaybe 10 line)

executeLedger-viewfunStep1-3 stIO calledAddr nothing .force

= exec’ (putStrLn "Please enter a function name as string")

λ _ → executeLedger-viewfunStep1-2 stIO (just calledAddr)

executeLedger-viewfunStep1-4 : ∀{i} → StateIO → (calledAddr : Address)
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→ FunctionName → Maybe N → IOConsole i Unit

executeLedger-viewfunStep1-4 〈 ledger ledger, initialAddr initialAddr, gas gas〉

calledAddr f (just m) .force

= exec’ (putStrLn "The information you get is below: ")

λ _ → IOexec (putStrLn ("\n The initial address is " ++ show initialAddr ++

"\n The called address is " ++ show calledAddr ++

"\n The view function returns "
++ initialfun2Str (ledger calledAddr .viewFunction f (nat m)) ++

"\n The view function cost returns "
++ show (ledger calledAddr .viewFunctionCost f (nat m))))

λ _ → mainBody (〈 ledger ledger, initialAddr initialAddr, gas gas〉)

executeLedger-viewfunStep1-4 stIO calledAddr f nothing .force

= exec’ (putStrLn "Please enter the argument of the function
name as a natural number") λ _ →

executeLedger-viewfunStep1-3 stIO calledAddr (just f )

Figure 7.11: Evaluating a view function in the complex simulator at (Option 6).

Finally, we define the main function to run the program:
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main : ConsoleProg

main = run (mainBody (〈 testLedger ledger, 0 initialAddr, 20 gas〉))

The main function has one single argument, and runs the mainBody, which includes an argument

with a tuple of three values: ledger, initial address, and gas limit. The mainBody function uses

our ledger (testLedger), starts from the initial address 0, and has the gas limit of 20 wei.

In the Git repository [17], we demonstrated our complex simulator through an example.

The example shows if we use "Option 3" to change the calling address to address 1 and

execute the function "vote", the vote is rejected because voter 1 has not yet been added, as

shown in Figure 7.12. If we select "Option 1" and execute the function "addVoter" to add

voter 1, then vote by calling address 1, the vote succeeds, and the counter is incremented by

1 (the view function returns theMsg (nat 1), which means that the number of votes is 1), as

displayed in Figures 7.13, 7.14, and 7.15. If we select "Option 1" to execute the function

"vote" to try to vote again with voter 1, it is rejected, and the number of votes stays at 1, as

shown in Figure 7.16.

Figure 7.12: Rejecting voter 1 (using option 3).
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Figure 7.13: Adding voter 1 (using option 1).

Figure 7.14: Voting succeeds after adding voter 1 (using option 1).
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Figure 7.15: The counter increment after adding voter 1 (using option 6).

Figure 7.16: Voter 1 is not allowed to vote again (using option 1).

7.3 Translation of Solidity code into Agda

This section describes the translation of the Solidity language into the theorem prover Agda.

One disadvantage of Solidity is insufficient security. For instance, Solidity-written smart con-

tracts are vulnerable to reentrancy attacks [131]. To reduce these risks, developers must be
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knowledgeable about safe coding practices and carefully verify their contracts before deploy-

ment. In our work, we achieve a high level of security by verifying programs in Agda. An

advantage of Agda is that it allows us to write and verify programs in the same system in

which they are written. This prevents any translation errors from one system to another. There

are two approaches to translating Solidity into Agda. The first approach is to use a compiler

that translates Solidity code to Agda, which is a major project that goes beyond the thesis. We

plan to carry out this project in the future. The second approach is to convert Solidity code

to Agda manually. In our work, we use manual translation, which we explain this translation

using examples.

In our approach, we restrict ourselves to the most commonly used features of Solidity. We

omit floats, which are not yet fully implemented in the Solidity language; rationals, which are

not yet commonly used; and function types.

Arrays are represented as a message consisting of a list of the elements that encode the

arrays’s elements. Variables are represented as constant functions that return the current vari-

able. They can be updated by other smart contracts. We represent unsigned integers as nat i and

signed integers x as pairs presented as lists (nat b) (nat i), where b is 0 for negative and 1 for

positive, i = x if x is positive, and i = - x if x is negative. In both cases, i is range-restricted, with

the range given by the underlying Solidity types. Addresses are represented as range-restricted

unsigned integers. Unicode characters and numerations are represented as unsigned integers

with a range given by the data type. Range-restricted unsigned integers are represented as nat-

ural numbers, where a case distinction needs to be made as to whether or not the arguments

are in range or not. If they are out of range, we raise an exception in accordance with Solidity

≥ 0.8. Similarly, if a message is not a representation of an element of the data type in question

(e.g. in case of signed integers, the message is not a list of length 2, with the first element being

0 or 1), we raise an exception. We represent byte arrays as list x, where x consists of elements

nat y, and y is a range-restricted natural number corresponding to the value of the array. We

represent arrays as list x in which each array element is defined as a message representing the

element of its type. We also represent contracts by the addresses where they are located, i.e. as

unsigned integers within a range. We implement strings as an array of range-restricted integers

in which each integer is the character’s ASCII code. In addition, we implement maps as view

functions that take an element of the domain as an argument represented as a message and

return the result of the map applied to it as a message. Finally, we define functions as functions

of the contract, which take a message representing the list of arguments and return the result as
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a message (or in the case of multiple returned elements, a list of the results as a message).

In this section, we provide an example of the simple simulator in Subsect. 7.3.1 and the

complex model in Subsect. 7.3.2.

7.3.1 Simple Simulator

This section illustrates an example demonstrating the process of translating Solidity into Agda.

• In Solidity:

We implement a contract called CounterExample, which includes a variable called

counter (type uint16) and a function called increment function (increment()) used to

increment the counter value by 1. The counter variable is initialised to 0, which is the

default in Solidity. The definition of the contract of CounterExample in Solidity is as

follows:

1 pragma solidity >=0.8.2 <0.9.0;
2

3 contract CounterExample {
4

5 uint16 counter;
6

7 function increment() public{
8 counter ++;}}

• In Agda:

To translate the CounterExample in Agda, we define auxiliary functions to allow us to

represent our code in Agda. First, in Solidity, we declared the counter of type uint16,

which has a minimum value of 0 and a maximum value of 65535 (we have also tested

the example with uint256 in Agda. Here, we use the smaller number for presentation

purposes). In Agda, we define the Max_Uint function, which has a maximum value of

65535, and the counter is initialised to 0 as the initial value (the default initialisation in

Solidity).

The definition of Max_Uint is as follows:

Max_Uint : N

Max_Uint = 65535

In our example testLedger, we have three fields at address 1:
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– For testing purpose, we set the balance (amount) to 40 wei.

– We have two functions (fun):

* The first is "counter", which represents a variable. This variable is initialised

to nat 0.

* The second is "increment". It looks up the current address so that it knows

which address to refer to. Then, it calls the counter function and obtains the old

counter value. After obtaining the result returned by the counter, the function

makes an anonymous case distinction on whether the element returned is of

the form (nat n) or not, using (syntax λ { · · · }). If the old counter is a number,

it checks whether it is less than Max_Uint. If it is, it updates "counter" to

the constant function (const), returning suc oldcounter (increment by 1); in all

other cases, an error is raised.

The definition of testLedger is as follows:

testLedger 1 .amount = 40

testLedger 1 .fun "counter" m = const 0 (nat 0)

testLedger 1 .fun "increment" m =

exec currentAddrLookupc λ addr →

exec (callc addr "counter" (nat 0))

λ {(nat oldcounter) → (if oldcounter < Max_Uint

then exec (updatec "counter" (const (suc oldcounter)))

(λ _ → return (nat (suc oldcounter)))

else error (strErr "out of range error"));

_ → error (strErr "counter returns not a number")}

testLedger ow .amount = 0

testLedger ow .fun ow’ ow” = error (strErr "Undefined")

For other addresses, the balance (amount) is 0, and the functions (fun) will raise an error.

The simple simulator can handle mappings, but the mappings should be represented as lists

of pairs, which need to be encoded and decoded using Agda - a cumbersome process which

makes verification difficult.

The complex model can deal with mappings more directly by representing them as view

functions. Therefore, in this section, our solidity code does not include a mapping data type.
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7.3.2 Complex Simulator

In this section, we provide an example that shows how to translate Solidity code into Agda

code using the complex simulator.

• In Solidity:

We introduce a contract named "Voting_Example" with two variables. The first is a

mapping named "checkVoter", which maps addresses to Boolean values and determines

whether a voter is allowed to vote. The second is a mapping named "voteResult", which

maps uint to uint values. The "voteResult" mapping stores the number of voters’ votes

with each key representing a candidate as an unsigned integer value.

Then, we create the addVoter() function, which takes an address of a voter as input and

returns a Boolean value, and adds the voter to "checkVoter". The addVoter() function

first checks if the address is already in the mapping using the “require” statement. If the

address is already present, the function will raise an error. In contracts, if the address is

not in the mapping, the function will set the value of checkVoter for the argument of the

function to true and then return true.

Next, we define deleteVoter(), which is similar to the addVoter() function, but it requires

the mapping to return true for the voter, and if yes, sets the mapping for the voter to false.

Finally, we develop the vote() function, which returns a Boolean value. First, the vote()

function checks if the voter is eligible to vote, by checking the result of the "checkVoter"

mapping. If the voter is allowed to vote, it will first set the mapping for the voter to false,

and then it increments voterResult by 1. If not, it will raise an exception.

The definition of Voting_Example contract is as follows:

1 pragma solidity >=0.8.2 <0.9.0;
2

3 contract Voting_Example {
4 mapping(address => bool) public checkVoter;
5 mapping(uint => uint) public voteResult;
6

7

8 function addVoter(address user) public returns (bool) {
9 require(!checkVoter[user],"Voter already exists");

10 checkVoter[user] = true;
11 return true;}
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12

13 function deleteVoter(address user) public returns (bool) {
14 require(checkVoter[user],"Voter does not exist");
15 checkVoter[user] = false;
16 return false;}
17

18 function vote(uint candidate) public returns (bool) {
19 require(checkVoter[msg.sender], "The voter is not allowed to

vote");
20 checkVoter[msg.sender] = false;
21 voteResult[candidate] += 1;
22 return true;}}

• In Agda:

We translate the Voting_Example contract from Solidity into the following Agda code

testLedger:

testLedger 1 .amount = 100

testLedger 1 .viewFunction "checkVoter" msg =

checkMsgInRangeView Max_Address msg λ voter → theMsg (nat 0)

testLedger 1 .viewFunction "voteResult" msg =

checkMsgInRangeView Max_Uint msg λ voter → theMsg (nat 0)

testLedger 1 .viewFunctionCost "checkVoter" msg = 1

testLedger 1 .viewFunctionCost "voterResult" msg = 1

testLedger 1 .fun "addVoter" msg =

checkMsgInRange Max_Address msg λ user →

exec (callView 1 "checkVoter" (nat user))(λ _ → 1)

λ msgResult → checkMsgOrErrorInRange Max_Bool msgResult

λ {0 → exec (updatec "checkVoter"
(addVoterAux user) λ oldFun oldcost msg → 1) (λ _ → 1)

(λ _ → return 1 (nat 1));

(suc _) → exec (raiseException 1 "Voter already exists")(λ _ → 1)(λ ())}

testLedger 1 .fun "deleteVoter" msg =

checkMsgInRange Max_Address msg λ user →

exec (callView 1 "checkVoter" (nat user)) (λ _ → 1)
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λ msgResult → checkMsgOrErrorInRange Max_Bool msgResult

λ {0 → exec (raiseException 1 "Voter does not exist")(λ _ → 1)(λ ());

(suc _) → exec (updatec "checkVoter"
(deleteVoterAux user) λ oldFun oldcost msg → 1)(λ _ → 1)

(λ _ → return 1 (nat 0))}

testLedger 1 .fun "vote" msg =

checkMsgInRange Max_Uint msg λ candidate →

exec callAddrLookupc (λ _ → 1)

λ addr → exec (callView 1 "checkVoter" (nat addr))(λ _ → 1)

λ msgResult → checkMsgOrErrorInRange Max_Bool msgResult

λ b → voteAux addr b candidate

testLedger 0 .amount = 100

testLedger 3 .amount = 100

testLedger 5 .amount = 100

testLedger ow .amount = 0

testLedger ow .fun ow’ ow” = error (strErr "Undefined") 〈 ow » ow · ow’ [ ow” ]〉

testLedger ow .viewFunction ow’ ow” = err (strErr "Undefined")

testLedger ow .viewFunctionCost ow’ ow” = 1

In the testLedger example, there are four fields located at address 1:

– The balance of the contract (amount) has been set to 100 wei for testing purposes.

The same applies to contracts 0, 3, and 5.

– There are two view functions of (viewfunction) available:

* The view function "checkVoter" initially calls the checkMsgInRangeView

function to check whether the message is a number in the range of addresses.

A continuation function is applied to the resulting address, if the message is a

number within the designated range. In this particular case, it returns the mes-

sage (nat 0) for false. If the message is outside the range, an error message is

returned. An error message is also returned if the message is not a number. It

is initialised with the value of 0. The definition of checkMsgInRangeView is as

follows:
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checkMsgInRangeView : (bound : N) → Msg

→ (N → MsgOrError) → MsgOrError

checkMsgInRangeView bound (nat n) fn =

if n < bound

then (fn n)

else err (strErr "View function result out of range")

checkMsgInRangeView bound (msg +msg msg1) fun =

err (strErr "View function didn’t return a number")

checkMsgInRangeView bound (list l) fun =

err (strErr "View function didn’t return a number")

* The view function "voteResult" checks as "checkVoter" that the argument

is a number, and checks that it is in the range of uint. For all candidates, it

returns nat 0 as the number of votes.

– We have two view function costs (viewfunctionCost), which are "checkVoter" and

"voteResult" that are used to calculate the view function for each process. These

costs are both initialised with a value of 1.

– We have three functions (fun):

* The "addVoter" function will invoke the checkMsgInRange function to verify

if the argument is an address within the acceptable range of addresses. It will

then call "checkVoter" applied to the address, and then, using the checkMs-

gOrErrorInRange function, if the result is a number within the Booleans range,

i.e. it is ≤ 1 (if not, it raises an exception). It then makes a case distinction on

the result. If the result is 0 for false, the "addVoter" function will update the

view function "checkVoter" by using the addVoterAux function. Otherwise,

the result is suc _, i.e. false, and it will raise an exception. The addVoter-

Aux function updates the previous "checkVoter" function: if the argument is

equal to the new address, it will return nat 1 for true; otherwise, it returns the

previous result of "checkVoter".

The definition of addVoterAux is as follows:

addVoterAux : N → (Msg → MsgOrError) → Msg → MsgOrError

addVoterAux newaddr oldCheckVoter (nat addr) =

if newaddr ≡b addr
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then theMsg (nat 1) – return 1 for true
else oldCheckVoter (nat addr)

addVoterAux ow ow’ ow” =

err (strErr "The argument of checkVoter is not a number")

The definitions of the checkMsgInRange and checkMsgOrErrorInRange func-

tions are similar to the definitions of checkMsgInRangeView, so we only pro-

vide their signatures:

checkMsgInRange : (bound : N) → Msg → (N → SmartContract Msg)

→ SmartContract Msg

checkMsgOrErrorInRange : (bound : N) → MsgOrError

→ (N → SmartContract Msg) → SmartContract Msg

* The "deleteVoter" function deletes a voter. It works similarly to the "ad-
dVoter" function, but it checks whether "checkVoter" for the argument is

true, and if yes, sets it to 0 for false.

* "vote" does the following: it first calls the checkMsgInRange function to

check whether it is a number within the range of uint. If it is not, it raises

an exception. Otherwise, it looks up the calling address and then evaluates

the result of the ("checkVoter") applied to the calling address. Then, it will

use the checkMsgOrErrorInRange function to check if the result is a number

in the range of the Booleans. It then calls the voteAux function. The voteAux

determines whether the outcome was 0 for false or suc _ for true. If it is false,

it will return an error message. Otherwise, it will first set the "checkVoter"
for the voter to false (to prevent multiple voting). Then it will increment the

view function ("voteResult") applied to the candidate by 1.

The full definition of voteAux is as follows:

voteAux : Address → N → (candidate : N)→ SmartContract Msg

voteAux addr 0 candidate =

error (strErr "The voter is not allowed to vote")

〈 0 » 0 · "Voter is not allowed to vote" [ nat 0 ]〉

voteAux addr (suc _) candidate =
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exec (updatec "checkVoter"
(deleteVoterAux addr) λ oldFun oldcost msg → 1)(λ _ → 1)

(λ x → (incrementAux candidate))

For other addresses and other normal and view functions for contract 0, 3, and 5, it will

return an error ("Undefined"). For view function costs (viewfunctionCost) will set the gas cost

to 1.

7.4 Chapter Summary

This chapter presented two blockchain simulators of Solidity-style smart contracts in the theo-

rem prover Agda. The first was the simple simulator, which has simple instructions for trans-

ferring money to specific addresses and executing and updating smart contracts. The second

was the complex simulator, which has more features and complex instructions, supports gas

costs, uses a view function similar to the Solidity language, and displays better error messages

than the simple simulator. In addition, this chapter provided a detailed explanation of the pro-

cess involved in converting code written in Solidity to Agda. The simulator was written in the

interactive theorem prover Agda in the same language in which we plan to carry out the verifi-

cation in the next chapter 8. Therefore, no explicit translation from the simulated program into

the verified program was needed, thus avoiding translation errors.
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Verifying Solidity-style Smart
Contracts
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8.1 Introduction

Verification is an indispensable procedure and the foundation for the dependability and credi-

bility of data, products, and systems in various fields. It is critical for ensuring safety, security,

compliance, informed decision-making, fraud detection, and accuracy while avoiding errors. In
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a world replete with data and information, verification ensures that decisions are well-informed

and prevents deception or errors.

In this chapter, we verify smart contracts using the models developed in chapter 6. This

chapter proposes using the weakest precondition to verify smart contracts’ correctness for sim-

ple and complex models. This guarantees blockchain security even when attacks are possible.

The rest of our chapter is organised as follows: In Sect. 8.2, we verify smart contracts

using two models: simple and complex models, in the theorem prover Agda and provide two

examples for each model. In Sect. 8.3, we conclude this chapter.

Git repository. The formalisation of this work has been completed, and the proof assistant

Agda has been used to carry out full proofs. The source code is available at [20] and can be

found as well in appendix E.

8.2 Verification of Solidity-style Smart Contracts in Simple and

Complex models

We use Hoare logic and the weakest preconditions for access control, as introduced in chapter 4

- in particular, Subsect. 4.3.1 - in order to specify the correctness of smart contracts in Solidity.

In this section, we verify smart contracts in the simple model and provide two examples

in Subsubsect. 8.2.1. Then, we verify smart contracts in the complex model and provide two

examples in Subsubsect. 8.2.2

8.2.1 Verifying Contracts in the Simple Model

As a reminder, in the previous chapter 6, particularly in Subsubsect. 6.2.2, we built the sim-

ple model of Solidity-style smart contracts using the interactive theorem prover Agda. In this

model, we had a number of commands (CCommands), such as transferc, which caused a par-

ticular amount to be transferred to a specific address; callc, which is used to call a function

(also referred to as a method in object-oriented terminology) in a different contract; updatec,

which is used to update one of the functions of the contract to be updated; currentAddrLookupc,

which looked up the current address; callAddrLookupc, which looked up the call address; and

getAmountc, which returned the current balance for that address. CCommands is defined in

Agda as a mutual data type. For the simple models, we defined the set of possible responses

(CResponse) that may return in response to the execution of each command. As CResponse is

dependent on CCommands, we defined CResponse as a function of type (CCommands → Set).

185



8. Verifying Solidity-style Smart Contracts

In addition, we defined our Contract as a record type of type Set consisting of two fields:

the balance (amount) and the functions that were to be executed (fun).

We also defined our smart contract (SmartContract), termed as SmartContractExec in [11]

as the data type with three constructors: return, which ended the execution and returned its

argument; error, which aborted the execution and returned an error message; and exec, which

executed a command and continues the execution based on the response. The simple model

did not support the gas cost.

To verify smart contracts in the simple model, we start by defining the remaining program

(RemainingProgram), which is the whole thing that we are still executing as a record type. It

consists of three fields as follows:

• The remaining program (prog) of the remainder of the current function to be executed. It

is of type SmartContract;

• A stack of open functions to be executed (stack), which called the current function. The

stack is a list of execution stacks (ExecutionStack) that contain three fields of the execu-

tion stack element: lastcalladdress, the address that initiated the last call; calledAddress,

the address that was called; and continuation, which determines the subsequent execution

step to be carried out based on the message returned after the function call has concluded;

• calledAddress, the address which was called. It is given as a natural number.

The definition of RemainingProgram is as follows:

record RemainingProgram : Set where

constructor remainingProgram

field

prog : SmartContract Msg

stack : ExecutionStack

calledAddress : Address

open RemainingProgram public

We define the final state’s end program (endProg x), which depends on the return value x.

When defining weakest preconditions in Hoare logic, we will refer to the fact that the program

reduces to a terminated program, i.e. a program of the form endProg x, where the start state

fulfils the precondition, and the end state fulfils the postcondition.
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The definition of the endProg is as follows:

endProg : Msg → RemainingProgram

endProg x = remainingProgram (return x) [] 0

The above function is the end program, which returns the remaining program (return x), the

stack is empty ([]), and the called address is 0.

Then, we define the state of Hoare logic (HLState) as a record type with two fields: ledger

and calling address (callingAddress).

The definition of HLState is as follows:

record HLState : Set where

constructor stateEF

field

ledger : Ledger

callingAddress : Address

open HLState public

The full state StateExecFun consists of a RemainingProgram and an HLState, and we define

a function combineHLprog which creates an element of StateExecFun from these two compo-

nents.

The definition of combineHLprog function is stated below:

combineHLprog : RemainingProgram → HLState → StateExecFun

combineHLprog (remainingProgram prg st calledAddr) (stateEF led callingAddr)

= stateEF led st callingAddr calledAddr prg

The state of executing a smart contract (StateExecFun) is defined in Subsect. 6.2.2.

Next, we define Hoare logic predicate (HLPred) as a predicate on HLState. Pre- and post-

conditions will be defined as elements of HLPred. The definition of HLPred is as follows:

HLPred : Set1

HLPred = HLState → Set

To check whether the state execution function has terminated, we define the NotTerminated

function. This function has three cases: in the case of return or error, the programs have

terminated therefore, NotTerminated is false ⊥, but in the case of execution (exec), it returns >,

which means that the program has not terminated.
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The definition of NotTerminated function is as follows:

NotTerminated : StateExecFun → Set

NotTerminated (stateEF led eStack callingAddr calledAddr (return x)) = ⊥

NotTerminated (stateEF led eStack callingAddr calledAddr (error x)) = ⊥

NotTerminated (stateEF led eStack callingAddr calledAddr (exec c x)) = >

Furthermore, we define the evaluate function relation (EFrel) as a relation between two

elements of StateExecFun, depending on an element l : Ledger. The relation EFrel has two

constructors: reflex means that the two elements of StateExecFun are the same, and step means

that the relation between two state execution functions s and s” is one step followed by further

steps, and that the program has not terminated yet. The stepEF function is defined in Sub-

sect. 6.2.2. EFrel will not use a non-terminating definition. The use of EFrel instead of the

evaluateNonTerminating function in Subsubsect. 6.2.2.2 avoids making sure that the following

code stays in the safe subset of Agda.

The definition of the EFrel data type is as follows:

data EFrel (l : Ledger) : StateExecFun → StateExecFun → Set where

reflex : (s : StateExecFun) → EFrel l s s

step : {s s” : StateExecFun} → NotTerminated s → EFrel l (stepEF l s) s” → EFrel l s s”

We also define the statement (<_>solpresimplemodel_<_>) that when running a program

starting in a state fulfilling the precondition, we obtain a terminated state fulfilling the post-

condition. This statement depends on three arguments: precondition (φ ), program (p), and

postcondition (ψ). It expresses that for any two states s s’, any choice of a return value if by

running the program we get from state s to a terminated program of the form return x in the

state s’, then s’ fulfils the postcondition.

The definition of the statement (<_>solpresimplemodel_<_>) is as follows:

<_>solpresimplemodel_<_> : (φ : HLPred) → (p : RemainingProgram)

→ (ψ : HLPred) → Set

<_>solpresimplemodel_<_> φ p ψ = (s s’ : HLState) → (x : Msg) → φ s

→ EFrel (s .ledger) (combineHLprog p s) (combineHLprog (endProg x) s’) → ψ s’

We then define the statement (<_>solweakestsimplemodel_<_>) that when executing a pro-

gram resulting in a terminated program which fulfils the postcondition, then before executing,
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the state must have fulfilled the precondition. This statement depends on three arguments: pre-

condition (φ ), program (p), and postcondition (ψ). It expresses that for any two states s s’, any

choice of a return value if by running the program we get from state s to a terminated program

of the form return x in the state s’ fulfilling the postcondition, then s fulfils the precondition.

The definition of the statement <_>solweakestsimplemodel_<_> is as follows:

<_>solweakestsimplemodel_<_> : (φ : HLPred) → (p : RemainingProgram)

→ (ψ : HLPred) → Set

<_>solweakestsimplemodel_<_> φ p ψ = (s s’ : HLState) → (x : Msg) → ψ s’

→ EFrel (s .ledger)(combineHLprog p s) (combineHLprog (endProg x) s’) → φ s

Finally, we define the statement of Solidity (<_>sol_<_>) as the conjunction of the previous

two predicates, defined as a record type with two fields: precondition (precond) and weakest

precondition (weakest).

The definition of this statement is as follows:

record <_>sol_<_> (φ : HLPred)(p : RemainingProgram)(ψ : HLPred) : Set where

field

precond : < φ >solpresimplemodel p < ψ >

weakest : < φ >solweakestsimplemodel p < ψ >

open <_>sol_<_> public

In the following section, we prove two examples: the first example deals with one instruc-

tion in Subsubsect. 8.2.1.1 and the second deals with two instructions and uses an if statement

in Subsubsect. 8.2.1.2.

8.2.1.1 Proof of the Correctness of the First Example in the Simple Model

In the following, we develop a program along with its preconditions and postconditions. Then,

we prove that the program is correct w.r.t. these preconditions and postconditions using weak-

est precondition semantics.

We start by defining the transferProg example of the simple verification, which deals with

one instruction: transferc. In our example, we have three fields:

• The remaining program (prog) transfers 10 wei to address 6 and returns the message (nat

0);
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• The initial stack (.stack) starts from the empty list ([]);

• The called address (.calledAddress) makes a call and transfers 10 wei from address 0 to

address 6.

The definition of transferProg is as follows:

transferProg : RemainingProgram

transferProg .prog = exec (transferc 10 6)

λ _ → return (nat 0)

transferProg .stack = []

transferProg .calledAddress = 0

We define the postcondition (PostTransfer), which returns the type of semantics of the Hoare

logic predicate (HLPred). The PostTransfer means that when running the program after trans-

ferring money from address 0, the new ledger amount at address 6 is increased by 10 wei. The

calling address is 0, which is the account address that initiated the transaction.

The definition of PostTransfer as following: as following :

PostTransfer : HLPred

PostTransfer (stateEF led callingAddress) =

(led 6 .amount ≡ 10) ∧ (callingAddress ≡ 0)

Then, we define the precondition (PreTransfer) of type HLPred. The PreTransfer function

verifies that the sender has at least 10 wei in their account at address 0 in order to transfer the

funds to address 6, that the amount at address 6 is 0 wei, and that the calling address is 0.

PreTransfer : HLPred

PreTransfer (stateEF led callingAddress) =

(led 6 .amount ≡ 0) ∧ ((10 5r led 0 .amount ) ∧ (callingAddress ≡ 0))

Afterwards, we define proofPreTransfer and use it to prove the forward direction for the pre-

condition using the statement <_>solpresimplemodel_<_>. The proofPreTransfer demonstrates

that when the stack program transferProg is executed in the initial state that fulfils the PreTrans-

fer condition, it will finally achieve the final state that fulfils the PostTransfer condition. We

also define auxiliaries and prove them to obtain the correct proof, such as proofPreTransferaux1

to check the amount at address 0, efrelLemLedger to prove that the ledger in the final state is

190



8.2. Verification of Solidity-style Smart Contracts in Simple and Complex models

equal to the leger in the initial state, and efrelLemCallingAddr’ to prove that the calling address

in the final state is equal to the address in the initial state.

The proof of the proofPreTransfer is as follows, and see the appendices E.1.1 and E.1.2

for the proofs of auxiliaries function: proofPreTransferaux1, efrelLemLedger, and efrelLemCall-

ingAddr’ :

proofPreTransfer : < PreTransfer >solpresimplemodel transferProg < PostTransfer >

proofPreTransfer (stateEF led1 .0) s’ msg (and x (and 105led1-0amount refl))

(step tt x3) rewrite compareleq1 10 (led1 0 .amount) 105led1-0amount

= and (proofPreTransferaux1 led1 msg 105led1-0amount

s’ x (efrelLemLedger x3)) (efrelLemCallingAddr’ x3)

Furthermore, we define proofPreTransfer-solweakest and prove the backward direction using

the statement <_>solweakestsimplemodel_<_> for the weakest precondition.

The proof of the proofPreTransfer-solweakest is as follows:

proofPreTransfer-solweakest :

< PreTransfer >solweakestsimplemodel transferProg < PostTransfer >

proofPreTransfer-solweakest (stateEF led1 callingAddress)

(stateEF led2 .0) msg (and x refl) (step tt x2)

= proofPreTransfer-solweakestaux led1 led2 msg

callingAddress x (compareLeq 10 (led1 0 .amount)) x2

After proving that the precondition is a precondition and that it is the weakest precondition,

we can prove that the Hoare triple holds for both directions using the following statement

<_>sol_<_>:

proofTransfer : < PreTransfer >sol transferProg < PostTransfer >

proofTransfer .precond = proofPreTransfer

proofTransfer .weakest = proofPreTransfer-solweakest

From the above proof, we see that the specification is given by the precondition (PreTransfer)

and postcondition (PostTransfer). The proof proofTransfer shows that the program fulfils the

specification as expressed by this pre- and post-condition using weakest precondition seman-

tics.
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8.2.1.2 Proof of the Correctness of the Second Example in the Simple Model

Similar to Subsubsect. 8.2.1.1, we develop the second program, including its preconditions and

postconditions. Then, we prove that the program is correct in relation to these preconditions

and postconditions by employing weakest precondition semantics.

We start by defining the second example (transferSec-Prog). This example is similar to the

previous example; we only change the stack program and PreTransfer. In this example, we

deal with two instructions, which are getAmountc and transferc. In our example, the program

obtains the amount at address 0 and then it checks whether the amount is greater than or equal

to 10 wei, in which case it transfers the money to address 6; otherwise, it returns 0. In addition,

the initial stack is empty ([]), and the calling address is 0.

The definition of the second program (transferSec-Prog) is as follows:

transferSec-Prog : RemainingProgram

transferSec-Prog .prog =

exec (getAmountc 0) λ amount →

if 10 5b amount

then exec (transferc 10 6) (λ _ → return (nat 0))

else return (nat 0)

transferSec-Prog .stack = []

transferSec-Prog .calledAddress = 0

We define PreTransfer, which we use to check whether the conditions are satisfied to execute

a money transfer. We use disjunctions between these conditions; if one of the disjunctions is

true, it executes the transfer. The first disjunction is whether the balance at address 6 is 0 wei

and the balance at address 0 is greater than or equal to 10 wei, in which case it executes the

transfer. The second disjunction is whether the balance at address 6 is 10 wei and the balance

at address 0 is not at least 10 wei, in which case it executes the transfer.

PreTransfer : HLPred

PreTransfer (stateEF led callingAddress)

= (((led 6 .amount ≡ 0) ∧ (10 5r led 0 .amount)) ∨

((led 6 .amount ≡ 10) ∧ (¬ (10 5r led 0 .amount)))) ∧ (callingAddress ≡ 0)

Next, we define the proofPreTransfer function to prove the precondition (forward direc-

tion) and proofPreTransfer-solweakest to prove the weakest precondition (backward direction),
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which we did our best to use the Agda library. The definitions of proofPreTransfer and

proofPreTransfer-solweakest are as follows:

proofPreTransfer :

< PreTransfer >solpresimplemodel transferSec-Prog < PostTransfer >

proofPreTransfer (stateEF led1 .0) s’ msg (and (or1 (and x x1)) refl)

(step tt x2) with 10 5b led1 0 .amount in eq1

proofPreTransfer (stateEF led1 _) s’ msg (and (or1 (and x tt)) refl)

(step tt (step tt x2)) | true rewrite compareleq3 10 (led1 0 .amount) eq1

= let

eq2 : HLState.ledger s’ ≡ updateLedgerAmount led1 0 6 10 (transfer≡r atom eq1 tt)

eq2 = efrelLemLedger’ x2

eq2b : HLState.ledger s’ 6 .amount ≡

updateLedgerAmount led1 0 6 10 (transfer≡r atom eq1 tt) 6 .amount

eq2b =

begin

HLState.ledger s’ 6 .amount

≡〈 cong (λ x → x 6 .amount) eq2 〉

updateLedgerAmount led1 0 6 10 (transfer≡r atom eq1 tt) 6 .amount

‚

eq3 : updateLedgerAmount led1 0 6 10 (transfer≡r atom eq1 tt) 6 .amount ≡

led1 6 .amount + 10

eq3 = updateLedgerAmountLem1 led1 0 6 10 (λ {()})

(atomLemTrue (10 5b led1 0 .amount) eq1)

eq4 : HLState.ledger s’ 6 .amount ≡ led1 6 .amount + 10

eq4 =

begin

HLState.ledger s’ 6 .amount

≡〈 trans eq2b eq3 〉

led1 6 .amount + 10

‚

in and (proofPreTransferaux’ led1 (compareleq2 10 (led1 0 .amount) eq1)

led1 s’ x (sym eq4)) (efrelLemCallingAddr’ x2)
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proofPreTransfer (stateEF led1 .0) s’ msg (and (or2 (and x x3)) refl)(step tt x2)

with 10 5b led1 0 .amount

proofPreTransfer (stateEF led1 _)(stateEF .led1 .0) msg (and (or2 (and x x3)) refl)

(step tt (reflex .(stateEF led1 [] 0 0 (return (nat 0))))) | false = and x refl

proofPreTransfer (stateEF led1 _) s’ msg (and (or2 (and x x3)) refl)

(step tt (step tt x2)) | true with (x3 tt)

... | ()

proofPreTransfer-solweakest :

< PreTransfer >solweakestsimplemodel transferSec-Prog < PostTransfer >

proofPreTransfer-solweakest (stateEF led1 callingAddress) (stateEF led2 .0) msg

(and x refl) (step tt x2) with 10 5b led1 0 .amount in eq1

proofPreTransfer-solweakest (stateEF led1 .0) (stateEF .led1 _) msg

(and x refl) (step tt (reflex .(stateEF led1 [] 0 0 (return (nat 0))))) | false

= and (or2 (and x (λ x1 → x1))) refl

proofPreTransfer-solweakest (stateEF led1 callingAddress) (stateEF led2 _) msg

(and x refl) (step tt (step tt x2)) | true

= proofPreTransfer-solweakstaux led1 led2 msg callingAddress x eq1 x2

Finally, we are able to prove that the Hoare triple holds for both directions as follows:

proofTransfer : < PreTransfer >sol transferSec-Prog < PostTransfer >

proofTransfer .precond = proofPreTransfer

proofTransfer .weakest = proofPreTransfer-solweakest

8.2.2 Verifying Contracts in the Complex Model

In the previous chapter 6, particularly in Subsubsect. 6.2.3.1, we developed the complex model

by extending the simple model. In the complex model, we added extra commands, such as

calling view function (callView), which is similar to the Solidity language, and such features as

dealing with gas cost and displaying better error messages for the user. We used the gas cost

for each instruction.

To verify contracts in the complex model, we extend the verification in the simple model in

Subsect. 8.2.1 and have the same structures and recorded types, including HLPred, <_>sol_<_>,
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<_>solpresimplemodel_<_>, and <_>solweakestsimplemodel_<_>. In addition, in the verification

in the complex model, we rename <_>solpresimplemodel_<_> to <_>solprecomplexmodel_<_>

and <_>solweakestsimplemodel_<_> to <_>solweakestcomplexmodel_<_>.

In the verification in the complex model, we redefine the remaining program

(RemainingProgram) of the record type by adding three extra fields as follows:

• gasUsed, which is used to determine for how much gas is utilised for each operation;

• funName, which is the function name that is executed;

• msg, which is the argument for the function name.

The new definition of RemainingProgram is as follows:

record RemainingProgram : Set where

constructor remainingProgram

field

– fields from the simple verification
gasUsed : N

funName : FunctionName

msg : Msg

We also redefine the final state’s end program (endProg x), which depends on the return

value x. This function includes extra arguments: the cost of the return statement, which is 1

wei, the gas used is 100 wei, the function name is "f", and the argument of the function that is

nat 0.

The new definition of the endProg is as follows:

endProg : Msg → RemainingProgram

endProg x = remainingProgram (return 1 x) [] 0 100 "f" (nat 0)

We also redefine the Hoare logic state (HLState) by adding one extra field, which is the

initial address (initialAddress). The initialAddress is the address that starts the current chain of

calls being made.

The new definition of HLState is as follows:

record HLState : Set where

constructor stateEF
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field

– fields from the simple verification
initialAddress : Address

In addition, we redefine the combination of two programs (combineHLprog) by adding three

extra elements: initial address (initialAddr), gas used (gasUsed), the function that is to be exe-

cuted (funName), and the argument of the function (msg)).

The new definition of the combineHLprog function is as follows:

combineHLprog : RemainingProgram → HLState → StateExecFun

combineHLprog (remainingProgram prg st calledAddr gasUsed funName msg)

(stateEF led initialAddr callingAddr)

= stateEF led st initialAddr callingAddr calledAddr prg gasUsed funName msg

Moreover, we redefine the NotTerminated function. This function includes extra arguments:

initialAddr, gas left (gasLeft), funName, and the argument of the function (msg). The NotTermi-

nated function has three cases as follows:

• In the case of return, it has one extra argument: the cost of executing the return statement

(x). In this case, the program has terminated, and therefore, NotTerminated is false (⊥);

• In the case of error, it has one extra argument for the debug information (x1). In this case,

the program has terminated, and therefore, NotTerminated is false (⊥);

• In the case of exec, it has one extra argument: the cost for each command (x). This

statement returns >, which means the program has not terminated.

The new definition of the NotTerminated is as follows:

NotTerminated : StateExecFun → Set

NotTerminated (stateEF led eStack initialAddr callingAddr calledAddr

(return x x1) gasLeft funNameevalState msgevalState) = ⊥

NotTerminated (stateEF led eStack initialAddr callingAddr calledAddr

(error x x1) gasLeft funNameevalState msgevalState) = ⊥

NotTerminated (stateEF led eStack initialAddr callingAddr calledAddr

(exec c x x1) gasLeft funNameevalState msgevalState) = >

Furthermore, we redefine the evaluate function relation (EFrel) by adding the stepEF func-

tion in the signature of the field step, which we use to determine the relation in the initial state
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s. The stepEF function is defined in Subsect. 6.2.3 for the complex model. The definition of

EFrel is as for the simple model, but refers to the definition of EFrel as in the complex model.

For convenience, we repeat the definition of EFrel as follows:

data EFrel (l : Ledger) : StateExecFun → StateExecFun → Set where

reflex : (s : StateExecFun) → EFrel l s s

step : {s s” : StateExecFun} → NotTerminated s

→ EFrel l (stepEF l s ) s” → EFrel l s s”

In this section, we prove two examples: the first in Subsubsect. 8.2.2.1 and the second in

Subsubsect. 8.2.2.2.

8.2.2.1 Proof of the Correctness of the First Example in the Complex Model

This section will begin by developing a program, including its preconditions and postcondi-

tions. Next, we will prove that the program is correct when applied to these preconditions and

postconditions through the use of weakest precondition semantics.

We start by developing the first program (transferProg) of the verification in the complex

model, we deal with one instruction, which is transferc. The definition of the transferProg

program is as follows:

transferProg : RemainingProgram

transferProg .prog = exec (transferc 10 6) (λ gasused → 1)

λ x → return 1 (nat 0)

transferProg .stack = []

transferProg .calledAddress = 0

transferProg .gasUsed = 100

transferProg .funName = "f"
transferProg .msg = nat 0

From the above definition, we have six fields:

• .prog, which is the reminder of the current function to be executed, transfers 10 wei from

address 0 to address 6. The gas cost for the transfer is 1 wei, and the message returned

is (nat 0). The return statement costs 1 wei;

• .stack, which is the initial stack, starts from the empty list ([]);
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• .calledAddress, which is the address makes the call;

• gasUsed, which we initialise to 100 wei, is used for each instruction;

• .funName, which is the function to be executed. In our example, we define it as "f";

• .msg is the argument of the function "f" which is (nat 0).

Then, we define the postcondition (PostTransfer) for our example, which holds when run-

ning the program after transferring the funds. It must fulfil the following conditions:

• The balance at address 6 is 10;

• The initial address is 0;

• The calling address is 0.

The definition of PostTransfer function is as follows:

PostTransfer : HLPred

PostTransfer (stateEF led initialAddress callingAddress)

= (led 6 .amount ≡ 10) ∧ ((initialAddress ≡ 0) ∧ (callingAddress ≡ 0))

Next, we define the precondition (PreTransfer), which checks our program before transfer-

ring the funds and must fulfil the following conditions.

• The balance at address 6 is 0;

• The balance at address 0 is at least 10;

• The initial address is 0;

• The calling address is 0.

Remark 8.1 Note that the reader might wonder if the same postcondition cannot be achieved

by having (led 6 .amount ≡ 10) ∧ (10 > led 0 .amount) . The answer is no because the program

fails and results in an error, so the postcondition is not fulfilled since it requires successful

termination.
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The definition of PreTransfer is as follows:

PreTransfer : HLPred

PreTransfer (stateEF led initialAddress callingAddress)

= (led 6 .amount ≡ 0) ∧ ((10 5r led 0 .amount) ∧

((initialAddress ≡ 0) ∧ (callingAddress ≡ 0)))

After defining the postcondition (PostTransfer) and precondition (PreTransfer), we can now

prove the forward direction for the precondition once these conditions hold as follows:

proofPreTransfer-precond :

< PreTransfer >solprecomplexmodel transferProg < PostTransfer >

proofPreTransfer-precond (stateEF led .0 .0) s’ msg (and x

(and 105led1-0amount (and refl refl)))

(step tt x3) rewrite compareleq1 10 (led 0 .amount) 105led1-0amount

= and (proofPreTransfer-precondAux led msg

105led1-0amount s’ x (efrelLemLedger x3))

(and (efrelLeminitialAddr’ x3)(efrelLemCallingAddr’ x3))

For the backward direction, we prove the weakest precondition (proofPreTransfer-

solweakest) as follows:

proofPreTransfer-solweakest :

< PreTransfer >solweakestcomplexmodel transferProg < PostTransfer >

proofPreTransfer-solweakest s (stateEF led .0 .0) msg

(and x (and refl refl)) (step tt x2)

= proofPreTransfer-solweakestAux led s msg x (compareLeq 10 (ledger s 0 .amount)) x2

Finally, we prove that the Hoare triple holds for both directions, as follows:

proofTransfer : < PreTransfer >sol transferProg < PostTransfer >

proofTransfer .precond = proofPreTransfer-precond

proofTransfer .weakest = proofPreTransfer-solweakest
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8.2.2.2 Proof of the Correctness of the Second Example in the Complex Model

Similar to Subsubsect. 8.2.2.1, we will develop the second program, including its preconditions

and postconditions. Using weakest precondition semantics, we will show that the program is

correct in terms of these preconditions and postconditions.

We start by defining the second program (transferSec-Prog) of the verification in the com-

plex model, we deal with two instructions, which are getAmountc and transferc. In the following

instance, we have six fields that are similar to the first program of the complex model in Sub-

subsect. 8.2.2.1. While there is a slight difference in the remaining program (.prog), the other

fields remain the same:

• .prog, which is the remaining of the current function to be executed, initially obtains and

verifies the balance of address 0 using the getAmountc instruction at a gas cost of 1 wei. If

the balance at address 0 is equal to or greater than 10 wei, then 10 wei is transferred from

address 0 to address 6 using the transferc instruction at a gas cost of 1 wei, subsequently

returning "nat 0" at a gas cost of 1 wei. If the balance is not equal to or greater than 10

wei, the program returns "nat 0" at the gas cost of 1 wei;

• For other fields (.stack, .calledAddress, .funName, and .msg) are similar to the first exam-

ple of the complex model in Subsubsect. 8.2.2.1.

The definition of the transferSec-Prog program is as follows:

transferSec-Prog : RemainingProgram

transferSec-Prog .prog =

exec (getAmountc 0)(λ gasused → 1)

λ amount → if 10 5b amount

then exec (transferc 10 6)(λ gasused → 1) (λ _ → return 1 (nat 0))

else return 1 (nat 0)

transferSec-Prog .stack = []

transferSec-Prog .calledAddress = 0

transferSec-Prog .gasUsed = 100

transferSec-Prog .funName = "f"
transferSec-Prog .msg = nat 0

Next, we define the postcondition (PostTransfer) for our example, using the conjunction be-

tween these conditions and must be achieved. These conditions are as follows:
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• The balance at address 6 is greater than or equal to 10 wei;

• The initial address is 0;

• The calling address is 0.

The definition of the postcondition (PostTransfer) is as follows:

PostTransfer : HLPred

PostTransfer (stateEF led initialAddress callingAddress)

= (10 5r led 6 .amount) ∧ ((initialAddress ≡ 0) ∧ (callingAddress ≡ 0))

Then, we define the precondition (PreTransfer), which must fulfil these conditions:

• The first disjunction must achieve at least one of these conditions: the balance at address

0 is greater than or equal to 10 wei, or the balance at address 6 is greater than or equal

10 wei;

• The initial address is 0;

• The calling address is 0.

The definition of the precondition (PreTransfer) is as follows:

PreTransfer : HLPred

PreTransfer (stateEF led initialAddress callingAddress)

= ((10 5r led 0 .amount ) ∨ (10 5r led 6 .amount)) ∧

((initialAddress ≡ 0) ∧ (callingAddress ≡ 0))

In addition, we prove the forward direction for the precondition using the statement <_>sol-

precomplexmodel_<_>. The proof of the forward direction (proofPreTransfer-precond) is as fol-

lows:

proofPreTransfer-precond :

< PreTransfer >solprecomplexmodel transferSec-Prog < PostTransfer >

proofPreTransfer-precond (stateEF led .0 .0) s’ msg (and (or1 x)

(and refl refl)) (step tt x2) with 10 5b led 0 .amount in eq1

proofPreTransfer-precond (stateEF led _ _) s’ msg (and (or1 tt)

(and refl refl)) (step tt (step tt x2)) | true
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rewrite compareleq3 10 (led 0 .amount) eq1

= and (proofPreTransfer-precondAux1 led s’ msg eq1 x2)

(and (efrelLeminitialAddr’ x2) (efrelLemCallingAddr’ x2))

proofPreTransfer-precond (stateEF led .0 .0) s’ msg (and (or2 x)

(and refl refl)) (step tt x2) with 10 5b led 0 .amount

proofPreTransfer-precond (stateEF led _ _) (stateEF .led .0 .0) msg

(and (or2 x) (and refl refl)) (step tt

(reflex .(stateEF led [] 0 0 0 (return 1 (nat 0)) 100 "f" (nat 0))))

| false = and x (and refl refl)

proofPreTransfer-precond (stateEF led _ _)

(stateEF ledger initialAddress callingAddress) msg

(and (or2 x) (and refl refl)) (step tt (step tt x2)) | true

= and ((proofatom10<=bledger6amount led ledger msg

initialAddress callingAddress x x2))

(and (proofinitialAddress≡0Leq1 led ledger msg

initialAddress callingAddress x x2)

(proofcallingAddress≡0Leq1 led ledger msg

initialAddress callingAddress x x2))

In order to prove the backward direction, we define the proofPreTransfer-solweakest function us-

ing this statement (<_>solweakestcomplexmodel_<_>), thus proving the weakest precondition.

The proof of the backwards direction (proofPreTransfer-solweakest ) is as follows:

proofPreTransfer-solweakest :

< PreTransfer >solweakestcomplexmodel transferSec-Prog < PostTransfer >

proofPreTransfer-solweakest (stateEF led1 initialAddress1 callingAddress1)

(stateEF led2 .0 .0) msg (and x (and refl refl)) (step tt x2)

with 10 5b led2 0 .amount in eq1

proofPreTransfer-solweakest (stateEF led1 initialAddress1 callingAddress1)

(stateEF led2 _ _) msg (and x (and refl refl))

(step tt x2) | false with 10 5b led1 0 .amount

proofPreTransfer-solweakest (stateEF led1 .0 .0) (stateEF .led1 _ _) msg

(and x (and refl refl)) (step tt (reflex .(stateEF led1 [] 0 0 0

(return 1 (nat 0)) 100 "f" (nat 0)))) | false | false

= and (or2 x) (and refl refl)
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proofPreTransfer-solweakest (stateEF led1 initialAddress1 callingAddress1)

(stateEF led2 _ _) msg (and x (and refl refl))

(step tt (step () x2)) | false | false

proofPreTransfer-solweakest (stateEF led1 initialAddress1 callingAddress1)

(stateEF led2 _ _) msg (and x (and refl refl)) (step tt x2) | false | true

= and (or1 tt) (and

(proofinitialAddress≡0 led1 led2 msg initialAddress1 callingAddress1 eq1 x x2)

(proofcallingAddress≡0 led1 led2 msg initialAddress1 callingAddress1 eq1 x x2))

proofPreTransfer-solweakest (stateEF led1 initialAddress1 callingAddress1)

(stateEF led2 _ _) msg (and x (and refl refl)) (step tt x2)

| true with 10 5b led1 0 .amount

proofPreTransfer-solweakest (stateEF led1 .0 .0) (stateEF .led1 _ _) msg

(and x (and refl refl)) (step tt (reflex .(stateEF led1 [] 0 0 0

(return 1 (nat 0)) 100 "f" (nat 0)))) | true | false

= and (or2 x) (and refl refl)

proofPreTransfer-solweakest (stateEF led1 initialAddress1 callingAddress1)

(stateEF led2 _ _) msg (and x (and refl refl)) (step tt (step tt x2)) | true | true

= proof>OrAtom10<=led6amount led1 led2 msg initialAddress1 callingAddress1 x2

Finally, after proving the forward and backward directions, we prove that the Hoare triple holds

for both directions as follows:

proofTransfer : < PreTransfer >sol transferSec-Prog < PostTransfer >

proofTransfer .precond = proofPreTransfer-precond

proofTransfer .weakest = proofPreTransfer-solweakest

8.3 Chapter Summary

In this chapter, we developed and utilised the weakest preconditions in order to specify the cor-

rectness of Solidity-style smart contracts in two models: the simple and the complex models.

In this chapter, we proved the correctness of two examples of each model. In the next chapter 9,

we introduce a new model of Solidity-style smart contracts, which we call the complex model

version 2 to implement the reentrancy attack.
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Implementing the Reentrancy Attack
of Solidity in Agda
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9.1 Introduction

A reentrancy attack is a type of cyberattack designed to exploit a weakness in a smart con-

tract. This vulnerability is especially prevalent on the Ethereum blockchain. It occurs when

a function within a smart contract initiates an external call before updating its internal state.

This allows the adversary to invoke the function again before completing the state update. This

scenario may facilitate an unauthorised alteration of the contract’s status or even cause a finan-

cial loss [248]. For example, in 2016, a reentrancy attack was launched against the DAO smart
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contract. The attack caused a hard fork, leading to two Ethereum blockchain versions. The

market for Ether fell, leading to a loss of more than US$ 60 million [249].

This chapter presents the first step towards verifying that a variant of the smart contract,

which corrects the problem of the reentrancy attack, is actually correct w.r.t. weakest precondi-

tion semantics. We plan to develop this in detail as a future project (see the discussion in future

work on page 248). In this chapter, we build a new model of Solidity-style smart contracts to

implement the reentrancy attack, which we call complex model version 2. The complexity of

this model deals with the fallback function; when making a transfer, the fallback function is

automatically executed, which means executing the fallback function before any subsequent

things happen.

The rest of this chapter is organised as follows: In Sect. 9.2, we present the idea of the

reentrancy attack and introduce version 2 of the complex model, which contains additions such

as the fallback function in order to be able to implement the reentrancy attack in Sect. 9.3. We

then implement the reentrancy attack in Agda in Sect. 9.4 and build and execute the reentrancy

attack using our interactive simulator in Sect. 9.5. We also present a direct way to test the

reentrancy attack by defining functions instead of using the interfaces in Sect. 9.6. The chapter

concludes in Sect. 9.8.

Git repository. This work has been developed and formalised in the proof assistant Agda.

All displayed Agda codes in this chapter have been generated from type-checked Agda codes.

The source code is available at [20] and can be found as well in appendix F.

9.2 The Idea of the Reentrancy Attack

This section explains the idea of the reentrancy attack in detail. The concept of the reentrancy

attack is shown in Figure 9.1. We define the three contracts involved here: an attacker given

by an externally owned account at address 2 (originator address), an auxiliary attack contract

at address 1, and a bank that stores and sends money at address 0. The bank contract contains

two main functions, deposit and withdraw, along with a view function called balance, which is

used to check the balance associated with each address. View functions are similar to Solidity;

view functions do not call other functions. When called externally, these functions do not incur

any gas costs. However, gas costs are required if they are called from internal functions. The

deposit function allows the deposit of a certain amount i.e. 25000 wei, while the withdraw

function enables the withdrawal of a certain amount i.e. 25000 wei.
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The attack contract comprises two functions: attack and fallback. The attack function ex-

ploits the bank contract temporarily, stores the money in the attack contract, and then returns it

to the attacker who initiated the attack. The fallback function verifies the balance in the bank

contract and executes the withdraw function if there is enough money in it. The reentrancy

attack occurs when the attacker creates the attack contract. However, in the Agda implemen-

tation, we assume that the attack account already exists (see discussion in remark 9.1). The

attacker calls the attack contract, and the attack contract deposits 25000 wei, using the attack

function. This makes the balance 25000 wei, meaning that the balance in the bank for the

attack contract is 25000 wei. Using the withdraw function, the bank contract sends the balance

back to the attack contract. This triggers the fallback function, which checks the balance in the

bank contract and calls the withdraw function if there is still money left. This process repeats

until the balance in the bank contract is less than 25000 wei, so no more withdrawal is possible.

Otherwise, it returns an error message. Once the process is complete, the attack contract sends

the money back to the attacker (the originator address where the attack contract was created).

Figure 9.1: A reentrancy attack on smart contracts.

Remark 9.1 It is important to note that in the Agda implementation, we assume that the attack

contract already exists since we do not have a feature to interactively add a new contract be-
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cause such a feature would need to have the Agda code as an argument to be added. However,

this is not a problem since if a contract can be attacked assuming that auxiliary contracts exist,

then in Ethereum, it can be attacked without this assumption by adding the contract needed on

the fly.

9.3 Structure of the Complex Model Version 2

The implementation of the reentrancy attack depends on the use of a fallback function and

the possibility of sending money when making a function call. In addition, debugging this

attack becomes very complex; therefore, we also need to add events. The advantage of adding

new commands is that because functions can send money. One needs as well to have a new

command which allows one to find out how much money was sent.

To implement the reentrancy attack, we need to extend the infrastructure of the complex

model in Subsect. 6.2.3 to cover these additional features, which was quite a substantial change

and was not covered in the complex model.

In the complex model version 2, we redefine the elements of the smart contract execution

stack (ExecStackEl) by adding one extra field: the amount received (amountReceived); we need

this field in order to record the amount of money sent with a function.

The definition of ExecStackEl record type is as follows (we omit the fields defined in the

complex model in Subsect. 6.2.3):

record ExecStackEl : Set where

constructor execStackEl

field

– fields from the complex model in chapter 6
amountReceived : Amount

In addition, we redefine the state of the execution function (StateExecFun) for the complex

model version 2 by adding two more fields: the amount received (amountReceived) returns an

amount after receiving a call and a list of events (listEvent) returns the list of string in case of

debugging information and reports all events.

The definition of the StateExecFun record type is as follows (we omit the fields defined in

the complex model in Subsect. 6.2.3):

record StateExecFun : Set where

constructor stateEF
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field

– fields from the complex model in chapter 6
amountReceived : Amount

listEvent : List String

To deal with the fallback function in the complex model version 2, we redefine our com-

mands (CCommands) and responses (CResponse) in the complex model in Subsect. 6.2.3 by

slightly redefining the callc command and adding four extra commands and responses. Here,

transfercWithoutfallback and callcAssumingTransferc are commands which should not be used

in normal contracts - they are only used in the implementation of callc. The definitions of

CCommands and CResponse are follows:

data CCommands : Set where

– Constructors from the complex model in chapter 6
callc : Address → FunctionName → Msg → Amount → CCommands

transfercWithoutFallBack : Amount → Address → CCommands

callcAssumingTransferc : Address → FunctionName → Msg

→ Amount → CCommands

getTransferAmount : CCommands

eventc : String → CCommands

CResponse : CCommands → Set

– Responses from the complex model in chapter 6
CResponse (callc addr fname msg amount) = Msg

CResponse (transfercWithoutFallBack amount addr) = Msg

CResponse (callcAssumingTransferc addr fname msg amount) = Msg

CResponse getTransferAmount = Amount

CResponse (eventc s) = >

The description of the new CCommands is as follows:

• callc command. In this command, we redefine by adding one extra element, which is the

amount sent of type Amount, a natural number, and we use the new parameter in case to

send a specific amount when calling a contract;

• transfercWithoutfallback command does the same as transferc command in the complex

model in Subsect. 6.2.3. The transfercWithoutfallback executes the transfer but does not
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run the fallback function because this is not executed when making a transfer as part of

a function, only when making a direct transfer;

• callcAssumingTransferc command makes a recursive call to a function at a given address,

passing an argument from Msg. This command is similar to the previous definition of

callc in the complex model in Subsect. 6.2.3. It does not include the fallback function;

• getTransferAmount is used to obtain the transfer amount after calling a function;

• eventc adds an event. For eventc, it can be outlined that this is a very good feature,

especially for debugging, and was needed to ensure the reentrancy attack worked to

spot errors in the first version. It is similar to the Remix IDE (see Remix Documenta-

tion [250]); however, when running the Remix IDE, it does not report events in case of

an error, making debugging difficult to debut. In our setting, even in case of an error, the

events are reported.

In the case of callc, the CResponse is the result returned by calling and executing the fallback

function, defined as an element of Msg; in the case of transfercWithoutfallback, the answer is

similar to the transferc in the complex model in Subsect. 6.2.3; in the case of callcAssuming-

Transferc, the result is similar to callc in Subsect. 6.2.3; in the case of getTransferAmount, the

result is the amount after transfer, defined as Amount, which is a natural number; in the case of

eventc, the answer for this command is the trivial type >, which has only one element (tt).

We additionally redefine stepEF to replace the callc command with a sequence of the two

previous commands, transfercWithoutfallback and callcAssumingTransferc. We first transfer the

amount using transfercWithoutfallback and then make the call assuming that this transfer has

already taken place (callcAssumingTransferc).

The definition of stepEF is as follows:

stepEF : Ledger → StateExecFun → StateExecFun

– Other cases are simialr to the complex model in chapter 6

stepEF oldLedger (stateEF currentLedger executionStack initialAddr

oldlastCallAddr oldcalledAddr (exec (callc newaddr fname msg amountSent)

costcomputecont cont) gasLeft funNameevalState msgevalState

prevAmountReceived listEvent)

= (stateEF currentLedger executionStack initialAddr oldlastCallAddr
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oldcalledAddr (exec (transfercWithoutFallBack amountSent newaddr)

(λ _ → 0) λ _ → exec (callcAssumingTransferc newaddr fname msg amountSent)

costcomputecont cont) gasLeft funNameevalState msgevalState

prevAmountReceived listEvent)

For other cases in the function stepEF, we add one extra parameter, which is a list of events

(listEvent) in order to display all events; these cases are implemented similarly to the complex

model in Subsect. 6.2.3 (see the full definition of the function stepEF for the complex model

version 2 in appendix F.2).

In order to define the fallback function, we redefine the transferc command. This refers

to a more general function executeTransfer, which is used to implement both transferc and

transfercWithoutfallback. The executeTransfer function has an extra parameter (runfallback of

type Bool), which determines whether or not the fallback function should be executed. The

definition of executeTransfer as follows :

executeTransfer : (oldLedger : Ledger) → (currentledger : Ledger)

→ (execStack : ExecutionStack) → (initialAddr : Address)

→ (lastCallAddr calledAddr : Address) → (cont : Msg → SmartContractExec Msg)

→ (gasleft : N) → (gascost : Msg → N) → (funNameevalState : FunctionName)

→ (msgevalState : Msg) → (amountTransferred : Amount) → (destinationAddr : Address)

→ (prevAmountReceived : Address) → (events : List String) → (runfallback : Bool)

→ StateExecFun

executeTransfer oldLedger currentledger execStack initialAddr lastCallAddr calledAddr

cont gasleft gascost funNameevalState msgevalState amountTransferred destinationAddr

prevAmountReceived events runfallback

= executeTransferAux oldLedger currentledger execStack initialAddr lastCallAddr

calledAddr cont gasleft gascost funNameevalState msgevalState amountTransferred

destinationAddr prevAmountReceived events runfallback

(compareLeq amountTransferred (currentledger calledAddr .amount))

The executeTransfer function calls executeTransferAux, the signature of executeTransferAux is as

follows:

executeTransferAux : (oldLedger : Ledger) → (currentledger : Ledger)

→ (executionStack : ExecutionStack) → (initialAddr : Address)
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→ (lastCallAddr calledAddr : Address)

→ (cont : Msg → SmartContract Msg) → (gasleft : N)

→ (gascost : Msg → N) → (funNameevalState : FunctionName)

→ (msgevalState : Msg) → (amountSent : Amount)

→ (destinationAddr : Address) → (prevAmountReceived : Amount)

→ (events : List String) → (runfallback : Bool)

→ (cp : OrderingLeq amountSent (currentledger calledAddr .amount))

→ StateExecFun

The executeTransferAux function has three cases: in the first case is if there is enough money

and the runfallback is (true), it will update the ledger and then call the fallback function, which

is essentially done using the same code as in the definition of callc without transfer; the code is

as follows:

executeTransferAux oldLedger currentledger executionStack initialAddr

lastCallAddr calledAddr cont gasleft gascost funNameevalState

msgevalState amountSent destinationAddr prevAmountReceived events false (leq x)

= stateEF (updateLedgerAmount currentledger calledAddr destinationAddr amountSent x)

executionStack initialAddr lastCallAddr calledAddr (cont msgevalState)

gasleft funNameevalState msgevalState amountSent events

The second case is if there is enough money and the runfallback is (false), it will transfer and

update the ledger similar to the complex model in Subsect. 6.2.3; the code is as follows:

executeTransferAux oldLedger currentledger executionStack initialAddr

lastCallAddr calledAddr cont gasleft gascost funNameevalState

msgevalState amountSent destinationAddr prevAmountReceived events true (leq x)

= stateEF (updateLedgerAmount currentledger calledAddr destinationAddr amountSent x)

(execStackEl lastCallAddr calledAddr cont gascost funNameevalState msgevalState

prevAmountReceived :: executionStack) initialAddr calledAddr

destinationAddr (currentledger destinationAddr .fun fallback (nat amountSent))

gasleft fallback (nat amountSent) amountSent events

The third case is if there is insufficient money, it will return an error; the code is as follows:

executeTransferAux oldLedger currentledger executionStack initialAddr

lastCallAddr calledAddr cont gasleft gascost funNameevalState msgevalState
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amountSent destinationAddr prevAmountReceived events runfallback (greater x)

= stateEF oldLedger executionStack initialAddr lastCallAddr calledAddr

(error (strErr "not enough money")

〈 lastCallAddr » initialAddr · funNameevalState [ msgevalState ]· events 〉)

gasleft funNameevalState msgevalState amountSent events

Furthermore, we redefine the deductGas, stepEFgasAvailable, and stepEFgasNeeded func-

tions by adding two extra parameters: the amount sent and the list of events in order to display

all amount sent and events in each step. The definition of these functions is similar to the

previous definition in Subsect. 6.2.3 (see a full definition of these functions in appendix F.2).

We also redefine the message or error with gas (MsgOrErrorWithGas) record type by adding

one extra field, which is listevents, in order to record and report events.

The definition of MsgOrErrorWithGas is as follows:

record MsgOrErrorWithGas : Set where

constructor _,_gas,_

field

– fields from the complex model
listevents : List String

open MsgOrErrorWithGas public

9.4 Implementation of the Reentrancy Attack

To define the reentrancy attack in Agda, we define the example testLedger. In this example, we

define the three contracts involved: the attacker contract (the originator address at address 2),

the attack contract at address 1, and the bank contract that stores and sends money at address 0.

The Agda implementation is analogous to the code in Solidity, as shown in appendixes [ F.10,

F.11].

The bank contract contains two main functions, "deposit" and "withdraw", along with

a view function called "balance". The balance of the bank contract is 100000 wei. The

"deposit" function checks a caller’s address and receives a certain amount of wei from it

to deposit into the bank contract for the caller’s address. The balance for the bank contract

increases after the amount received from the caller’s address is deposited. Then, some events

are returned, including the amount deposited, the address that deposited the amount, and the

213



9. Implementing the Reentrancy Attack of Solidity in Agda

new balance of the bank contract after the deposit. The "withdraw" function checks if the

message is a number. It will compare the balance of the bank contract with the amount that the

caller’s address needs to withdraw from the bank contract; if this amount is less than or equal

to the balance of the bank contract, it will be withdrawn, and the balance of the bank contract

will decrease during this process. It will emit some events, including the new balance of the

bank contract after withdrawal and the amount that the caller’s address will withdraw; if the

balance of a user withdrawing is less than the amount to be withdrawn, it will return an error.

Otherwise, if the message is not a number, it returns an error. The view function ("balance")

is used to check the balance associated with each address.

The definition of the bank contract at address 0 is as follows:

testLedger 0 .amount = 100000

testLedger 0 .fun "deposit" msg =

exec callAddrLookupc (λ _ → 1) λ lastcallAddr →

exec getTransferAmount (λ _ → 1) λ transfAmount →

exec (getAmountc 0) (λ _ → 1) λ amountaddr0 →

exec (eventc (("deposit +" ++ show transfAmount ++ " wei"
++ " at address 0 for address " ++ show lastcallAddr

++ "\n New balance at address 0 is " ++ show amountaddr0 ++ "wei \n")))

(λ _ → 1) λ _ → exec (updatec "balance"
(λ olFun → incrementViewFunction lastcallAddr transfAmount olFun)

(λ oldFun oldcost msg → 1))(λ n → 1) λ _ → return (nat 0)

testLedger 0 .fun "withdraw" (nat Amount) =

exec (getAmountc 0) (λ _ → 1) λ getresult →

exec (eventc (("Balance at address 0 = " ++ show getresult

++ " wei.\n" ++ " withdraw -" ++ show Amount ++ " wei.")))(λ _ → 1)

λ _ → (exec callAddrLookupc (λ _ → 1)

λ lastcallAddr → exec (callView 0 "balance" (nat lastcallAddr))(λ _ → 1)

λ BalanceViewfunction → if Amount 5b MsgorErrortoN BalanceViewfunction

then (exec (transferc Amount lastcallAddr)(λ _ → 0) λ _ →

exec (updatec "balance" (λ oldFun → decrementViewFunction lastcallAddr

Amount oldFun)(λ oldFun oldcost msg → 1))(λ n → 1)

λ x → return (nat 0))
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else error (strErr (" Amount to withdraw is bigger than
the balance for the account withdrawing and lastcallAddr = "

++ (show lastcallAddr))) 〈 1 » 1 · "withdraw" [ nat 0 ]· [] 〉)

testLedger 0 .fun "withdraw" ow =

error (strErr (" withdraw function called with msg not being
a nat number" ++ (show 0))) 〈 1 » 1 · "withdraw" [ nat 0 ]· [] 〉

testLedger 0 .viewFunction "balance" msg = theMsg (nat 0)

The attack contract comprises two functions: "fallback" and "attack", as described in

Sect. 9.2. The initial balance of the attack contract is 0. The "fallback" function compares

the balance of the bank contract with the amount that needs to be withdrawn. If the amount

to be withdrawn is less than or equal to the balance of the bank contract, which means there

are sufficient funds, it executes the "withdraw" function; otherwise, it will return 0. The

"attack" function receives some wei from the attacker and checks this amount. If the amount

is greater than or equal to 1 wei, it executes the "deposit" function to deposit this amount

into the bank contract (address 0) for the attack contract (address 1). Then, it executes the

"withdraw" function to withdraw the same amount that was deposited in the bank contract.

This will trigger a call to the fallback function and repeated withdrawals from the bank until

the amount of the bank is too low to execute a withdrawal. Then, it transfers its balance to the

attacker’s account. If the attacker does not have enough money to send to the attack contract,

it will return an error. After the process has finished, it will return all events, including the new

balance of the bank contract after withdrawing the funds, the balance of the attack contract

after transferring all the funds to the attacker, and the new balance in the attacked account.

The definition of the attack contract at address 1 is as follows:

testLedger 1 .amount = 0

testLedger 1 .fun "fallback" msg =

exec getTransferAmount (λ _ → 1)

λ transfAmount → exec callAddrLookupc (λ _ → 1)

λ lastcallAddr → exec (getAmountc 0) (λ _ → 1)

(λ balance → if transfAmount 5b balance

then exec (callc 0 "withdraw" (nat transfAmount) 0)(λ _ → 1)

(λ resultofcallc → return (nat 0))

215



9. Implementing the Reentrancy Attack of Solidity in Agda

else return (nat 0))

testLedger 1 .fun "attack" msg =

exec callAddrLookupc (λ _ → 0)

λ lastcallAddr → exec getTransferAmount (λ _ → 0)

λ transferAmount → if 1 5b transferAmount

then (exec (callc 0 "deposit" (nat 0) transferAmount)(λ _ → 0)

λ resultofdeposit → exec (callc 0 "withdraw" (nat transferAmount) 0)

(λ _ → 1) λ resultofwithdraw → exec currentAddrLookupc (λ _ → 0)

λ curraddr → exec (getAmountc curraddr)(λ _ → 1)

λ amountofcurrntaddr →

exec (transferc amountofcurrntaddr lastcallAddr)(λ _ → 0)

λ _ → exec (getAmountc 0)(λ _ → 1) λ amountofbankaddr →

exec (getAmountc curraddr) (λ _ → 1) λ amountoflastcalladd →

exec (getAmountc lastcallAddr) (λ _ → 1) λ amountoflastcalladdr →

exec (eventc (("\n" ++ "Current balance at address 0 = "
++ show amountofbankaddr ++ " wei")))(λ _ → 1)

λ _ → exec (eventc (( "Current balance at address 1 = "
++ show amountoflastcalladd ++ " wei"))) (λ _ → 1)

λ _ → exec (eventc (( "Current balance at address 2 = "
++ show amountoflastcalladdr ++ " wei")))(λ _ → 1)

λ _ → return (nat 0))

else error (strErr " There is no money sent ")〈 1 » 1 · "attack" [ msg ]· [] 〉

The attacker account only has the amount of 26000 wei, which we define in order to process

this procedure regarding the gas cost:

testLedger 2 .amount = 26000

For other addresses, the amount is 0 wei, the function names return undefined, the view func-

tions return theMsg (nat 0), and the cost of the view functions is 1 wei.

testLedger ow .amount = 0

testLedger ow .fun "fallback" ow” = return ow”

testLedger ow .fun ow’ ow” = error (strErr "Undefined")〈 ow » ow · ow’ [ ow” ]· [] 〉
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testLedger ow .viewFunction ow’ ow” = theMsg (nat 0)

testLedger ow .viewFunctionCost ow’ ow” = 1

9.5 Simulating the Reentrancy Attack

We simulate the reentrancy attack in Agda using the previous library in Sect. 2.2.1.7 based on

Abel et al. worked in [44, Sect. 4] to interact with the interface in Agda. In this section, we use

our example (testLedger) in Sect. 9.4 in order to interact with the ledger. We start by defining

our interface menu (mainBody) for the reentrancy attack. This menu has nine options a user

can choose from to interact with the ledger, as shown in Figure 9.2.

The following are the descriptions for all nine options:

• "Option 1" executes a function of a contract;

• "Option 2" grants the user the ability to modify the calling address from which other

contracts are called (the default address is 0);

• "Option 3" is used to update the amount sent in a function call to deposit an amount

(the default value is 0);

• "Option 4" checks the amount sent after updating;

• "Option 5" looks up the balance of any contract;

• "Option 6" updates the gas limit after calling the smart contract (the initial value of the

gas amount is 150 wei);

• "Option 7" may be used to check the remaining gas before or after each operation;

• "Option 8" is utilised to evaluate the view function;

• "Option 9" terminates and finishes the simulator.
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Figure 9.2: Reentrancy attack simulator program interface.

The definition of mainBody is as follows:

mainBody : ∀{i} → StateIO → IOConsole i Unit

mainBody stIO .force

= WriteString’

("Please choose one of the following:
1- Execute a function of a contract.
2- Execute a function with new calling address.
3- Update the amount sent in function call.
4- Check the amount sent in function call.
5- Look up the amount of a contract.
6- Update the gas limit.
7- Check the gas limit.
8- Evaluate a view function.
9- Terminate the program.") λ _ →

GetLine >>= λ str →

if str == "1" then executeLedger stIO

else (if str == "2" then executeLedger-ChangeCallingAddress stIO

else (if str == "3" then executeLedger-updateAmountReceive stIO

else (if str == "4" then executeLedger-checkAmountReceive stIO

else (if str == "5" then executeLedger-CheckBalance stIO

else (if str == "6" then executeLedger-updateGas stIO

else (if str == "7" then executeLedger-checkGas stIO

else (if str == "8" then executeLedger-viewfunction1 stIO

else (if str == "9" then WriteString "The program will be terminated"
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else WriteStringWithCont "Please enter a number 1 - 9"
λ _ → mainBody stIO ))))))))

To launch the reentrancy attack with our simulator, we develop executeLedger-

updateAmountReceive, along with its auxiliary executeLedgerStep-updateAmountReceiveAux,

to implement "Option 3", which we use to update the amount sent before conducting the

reentrancy attack. The user is asked to provide a new value for the amount sent after ex-

ecuting executeLedgerStep-updateAmountReceiveAux. If the input is successful, the function

executeLedgerStep-updateAmountReceiveAux is called, and it returns the new amount sent

value. For example, as shown in Figure 9.3, when selecting "Option 3" and then entering

25000 wei to update the amount sent to conduct the reentrancy attack.

Figure 9.3: Updating the amount sent.

The definition of executeLedger-updateAmountReceive and its auxiliary function are as fol-

lows:

executeLedger-updateAmountReceive : ∀{i} → StateIO → IOConsole i Unit

executeLedger-updateAmountReceive stIO .force

= exec’ (putStrLn "Enter the new amount
to be sent as a natural number")

λ _ → IOexec getLine λ line →

executeLedgerStep-updateAmountReceiveAux stIO (readMaybe 10 line)

executeLedgerStep-updateAmountReceiveAux : ∀{i} → StateIO → Maybe N
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→ IOConsole i Unit

executeLedgerStep-updateAmountReceiveAux stIO nothing .force

= exec’ (putStrLn "Please enter the amount
to be sent as a natural number")

λ _ → executeLedger-updateAmountReceive stIO

executeLedgerStep-updateAmountReceiveAux 〈 ledger ledger, initialAddr initialAddr,

gas gas, amountR amountR〉 (just amountrecive) .force

= exec’ (putStrLn ("The amount to be sent has been updated successfully.
\n The new amount to be sent is "
++ show amountrecive ++ " wei"
++ "\n and the old amount to be sent was "
++ show amountR ++ " wei" ))

λ line → mainBody 〈 ledger ledger, initialAddr initialAddr,

gas gas, amountrecive amountR〉

As a precaution, we also develop executeLedger-checkAmountReceive to implement "Op-
tion 4" to check that the amount sent is validated after being updated to the new value, as

shown in Figure 9.4. The resulting message is that the amount to be sent has been updated

successfully: the new amount to be sent is 25000 wei, and the old amount to be sent was 0 wei.

The definition of executeLedger-checkAmountReceive is as follows:

executeLedger-checkAmountReceive : ∀{i} → StateIO → IOConsole i Unit

executeLedger-checkAmountReceive 〈 ledger ledger, initialAddr initialAddr,

gas gas, amountR amountR〉 .force

= exec’ (putStrLn (" The amount sent is "
++ show amountR ++ " wei" ))

λ line → mainBody 〈 ledger ledger, initialAddr initialAddr,

gas gas, amountR amountR〉

Then, we develop executeLedger-CheckBalance, along with its auxiliary function

executeLedgerStep-CheckBalanceAux, and define them as a recursive mutual to use with "Op-
tion 5" to check the balance of each contract before conducting the reentrancy attack. When

executeLedgerStep-CheckBalanceAux is executed, the user is required to enter the address to

check its balance. The function executeLedgerStep-CheckBalanceAux returns the balance for
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Figure 9.4: Checking the amount sent after updating.

that address if the input is successful. For example, as displayed in Figure 9.5, when selecting

"Option 5" to check the balance at address 0, the result is that the available money in address

0 (the bank contract) is 100000 wei.

Figure 9.5: Balance at the bank contract at address 0.

Similarly, when checking the balance at address 1 before the reentrancy attack, the result

is that the available money at address 1 is 0 wei, which is the attack contract, as illustrated in

Figure 9.6.
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Figure 9.6: Balance at the attack contract at address 1.

When checking the balance at address 2, the result is that the available money is 26000 wei

at address 2, which is the attacker who carried out the attack, as indicated in Figure 9.7.

Figure 9.7: Balance at the attacker at address 2.

The definition of executeLedger-CheckBalance and its auxiliary function are as follows:

executeLedger-CheckBalance : ∀{i} → StateIO → IOConsole i Unit

executeLedger-CheckBalance stIO .force

= exec’ (putStrLn "Enter the called address as a natural number")

λ _ → IOexec getLine λ line →

executeLedgerStep-CheckBalanceAux stIO (readMaybe 10 line)
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executeLedgerStep-CheckBalanceAux : ∀{i} → StateIO → Maybe N

→ IOConsole i Unit

executeLedgerStep-CheckBalanceAux stIO nothing .force

= exec’ (putStrLn "Please enter an address as a natural number")

λ _ → IOexec getLine λ _ → executeLedger-CheckBalance stIO

executeLedgerStep-CheckBalanceAux 〈 ledger ledger, initialAddr initialAddr,

gas gas, amountR amountR〉 (just calledAddr) .force

= exec’ (putStrLn "The information you get is below: ")

λ line → IOexec (putStrLn ("The available money is "
++ show (ledger calledAddr .amount)

++ " wei in address " ++ show calledAddr))

(λ line → mainBody (〈 ledger ledger, initialAddr initialAddr,

gas gas, amountR amountR〉))

We develop executeLedger-updateGas with its auxiliary function (executeLedgerStep-

updateGasAux) as a recursive mutual, using "Option 6" to update the gas limit. The user

is asked to enter a new gas amount when executeLedgerStep-updateGasAux is executed. The

function executeLedgerStep-updateGasAux returns the new and old gas limit values if the

input is successful. For example, as illustrated in Figure 9.8, when choosing "Option 6" and

then inputting the new gas limit of 250, the gas amount is updated successfully. The new gas

amount is 250 wei, while the old gas amount was 150 wei.

Figure 9.8: New gas amount after updating.
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The signature of executeLedger-updateGas and its auxiliary function are as follows:

executeLedger-updateGas : ∀{i} → StateIO → IOConsole i Unit

executeLedger-updateGas stIO .force

= exec’ (putStrLn "Enter the new gas amount as a natural number")

λ _ → IOexec getLine λ line →

executeLedgerStep-updateGasAux stIO (readMaybe 10 line)

executeLedgerStep-updateGasAux : ∀{i} → StateIO → Maybe N

→ IOConsole i Unit

executeLedgerStep-updateGasAux stIO nothing .force

= exec’ (putStrLn "Please enter a gas as a natural number")

λ _ → executeLedger-updateGas stIO

executeLedgerStep-updateGasAux 〈 ledger ledger, initialAddr initialAddr,

gas gas, amountR amountR〉 (just gass) .force

= exec’ (putStrLn ("The gas amount has been updated successfully.
\n The new gas amount is " ++ show gass ++ " wei"

++ " and the old gas amount is " ++ show gas ++ " wei" ))

λ line → mainBody 〈 ledger ledger, initialAddr initialAddr,

gass gas, amountR amountR〉

As a precaution, we create executeLedger-checkGas to implement "Option 7". As seen in

Figure 9.9, this function guarantees that the gas limit is validated after being updated to the

new value.

The definition of executeLedger-checkGas is as follows:

executeLedger-checkGas : ∀{i} → StateIO → IOConsole i Unit

executeLedger-checkGas 〈 ledger ledger, initialAddr initialAddr,

gas gas, amountR amountR〉 .force

= exec’ (putStrLn (" The gas limit is " ++ show gas ++ " wei" ))

λ line → mainBody 〈 ledger ledger, initialAddr initialAddr,

gas gas, amountR amountR〉

After we update the amount sent to 25000 wei, we launch the reentrancy attack. First, we

develop executeLedger and its auxiliary functions (executeLedgerStep1-2, executeLedgerStep1-
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Figure 9.9: Result after updating the gas amount.

3, executeLedgerStep1-4, and executeLedgerFinalStep) to implement "Option 1". The func-

tion executeLedger asks the user to enter the calling address for the contract in which we want

to execute a function. Then, it calls the executeLedgerStep1-2 function to check if the in-

put is a number; it asks the user to enter the function name as a string, and then it calls the

executeLedgerStep1-3 function to ask the user to enter the argument of the function as a num-

ber; then it calls the executeLedgerStep1-4 function to check the argument that entered by the

user is a number, and if it is a number it applies the calling address and the function name to be

executed with the argument to the executeLedgerFinalStep function to evaluate and return the

result including all events and go back to the main menu.

Then, we develop executeLedger-ChangeCallingAddress and with its auxiliary function

(executeLedger-ChangeCallingAddressAux) to implement "Option 2". The executeLedger-

ChangeCallingAddress function will ask the user to enter a new calling address as a number.

Then it calls the executeLedger-ChangeCallingAddressAux function to check the input entered

by the user. If it is a number, it executes the same code as for "Option 1". Otherwise,

it makes a recursive call to the executeLedger-ChangeCallingAddress function to ask the user

again to enter a number.

As shown in Figure 9.10, when selecting "Option 2" and entering a new calling address 2

instead of the initial address 0, the contract function "Option 1" is executed. The "attack"
function and the argument of the function 25000 are used to withdraw 25000 wei until the

balance at address 1 is 0. The result is as follows:

• The initial address is 2.

• The called address is 1, which the "attack" function defines at address 1.

225



9. Implementing the Reentrancy Attack of Solidity in Agda

• The amount sent is 25000 wei, which is used to deposit 25000 wei from address 2 to

address 1 at address 0.

• The argument of the function name is (nat 25000), which is used to withdraw 25000 wei

from address 0 and transfer all the money from address 1 to address 2.

• The remaining gas is 66 wei, and the gas used is 184 wei.

• The function returns (theMsg 0).

• Below is the list of events:

– deposit 25000 wei at address 0 for address 1.

– The list "withdraw" withdraws 25000 wei each time and repeats "withdraw" five

times because we have 125000 wei until the balance at address 0 is 0.

– The current balance at address 0 is 0 wei.

– The current balance at address 1 is 0 wei because the attack contract transfers all

the money to the originator address (the attacker contract at address 2);

– The current balance at address 2 is 125750 wei.
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Figure 9.10: Reentrancy attack simulator.

The definitions of executeLedger and its auxiliary functions for "Option 1" are as fol-

lows:

executeLedger : ∀{i} → StateIO → IOConsole i Unit

executeLedger stIO .force =

exec’ (putStrLn "Enter the called address as a natural number")

λ _ → IOexec getLine λ line →

executeLedgerStep1-2 stIO (readMaybe 10 line)
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executeLedgerStep1-2 : ∀{i} → StateIO → Maybe N

→ IOConsole i Unit

executeLedgerStep1-2 stIO (just calledAddr) .force =

exec’ (putStrLn "Enter the function name")

λ _ → IOexec getLine

λ line → executeLedgerStep1-3 stIO calledAddr line

executeLedgerStep1-2 stIO nothing .force =

exec’ (putStrLn "Please enter an address as a natural number")

λ _ → executeLedger stIO

executeLedgerStep1-3 : ∀{i} → StateIO → N → FunctionName

→ IOConsole i Unit

executeLedgerStep1-3 stIO calledAddr f .force =

exec’ (putStrLn "Enter the argument of the
function name as a natural number")

λ _ → IOexec getLine λ line →

executeLedgerStep1-4 stIO calledAddr f (readMaybe 10 line)

executeLedgerStep1-4 : ∀{i} → StateIO → N → FunctionName

→ Maybe N → IOConsole i Unit

executeLedgerStep1-4 〈 ledger ledger, initialAddr initialAddr,

gas gas, amountR amountR〉 calledAddr f (just m) .force

= exec’ (putStrLn (" The result is as follows: \n" ++

" \n The inital address is " ++ show initialAddr ++

" \n The called address is " ++ show calledAddr ++

" \n The amount sent is " ++ show amountR ++ " wei"))

λ _ → executeLedgerFinalStep

(evaluateNonTerminatingfinalstep ledger initialAddr

initialAddr calledAddr gas f (nat m) amountR [])

〈 ledger ledger, initialAddr initialAddr, gas gas, amountR amountR〉

executeLedgerStep1-4 stIO calledAddr f nothing .force

= exec’ (putStrLn "Enter the argument of the
function name as a natural number")

λ _ → executeLedgerStep1-3 stIO calledAddr f
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executeLedgerFinalStep : ∀{i} → Maybe (Ledger × MsgOrErrorWithGas)

→ StateIO → IO consoleI i Unit

executeLedgerFinalStep (just (newledger „ (theMsg ms , gas1 gas, listevents)))

〈 ledger ledger, initialAddr initialAddr, gas gas, amountR amountR〉 .force

= exec’ (putStrLn (" The argument of the function name is "
++ msg2string (nat amountR)))

λ _ → IOexec (putStrLn (" The remaining gas is "
++ (show gas1) ++ " wei" ++ " and the gas used is "
++ (show (gas - gas1)) ++ " wei" ++ " , \n The function returned "
++ initialfun2Str (theMsg ms) ++ " , \n The list of events : \n"
++ listsreting2string (reverse listevents)))

λ _ → mainBody (〈 newledger ledger, initialAddr initialAddr,

gas gas, amountR amountR〉)

executeLedgerFinalStep (just (newledger „ (err e 〈 lastCallAddress » curraddr ·

lastfunname [ lastmsg ]· event 〉 , gas1 gas, listevents)))

〈 ledger ledger, initialAddr initialAddr, gas gas, amountR amountR〉 .force

= exec’ (putStrLn "Debug information")

λ _ → IOexec (putStrLn (errorMsg2Str (err e

〈 lastCallAddress » curraddr · lastfunname [ lastmsg ]· listevents 〉)))

λ _ → IOexec (putStrLn ("Address " ++ show lastCallAddress ++

" is trying to call the address " ++ show curraddr ++

" with Function Name " ++ funname2string lastfunname ++

" with Message " ++ msg2string lastmsg

++ " , \n The list of events : \n"
++ listsreting2string (reverse listevents)))

λ _ → IOexec (putStrLn ("The remaining gas is "
++ show gas1 ++ " wei"
++ " and the gas used is " ++ (show (gas - gas1))))

λ _ → mainBody (〈 newledger ledger, initialAddr

initialAddr, gas gas, amountR amountR〉)

executeLedgerFinalStep (just (newledger „ (invalidtransaction ,

gas1 gas, listevents)))

〈 ledger ledger, initialAddr initialAddr, gas gas, amountR amountR〉 .force
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= exec’ (putStrLn "Invalid transaction")

λ _ → IOexec (putStrLn (errorMsg2Str invalidtransaction))

λ _ → IOexec (putStrLn ("The remaining gas is "
++ (show gas1) ++ " wei"
++ " and the gas used is " ++ (show (gas - gas1))))

λ _ → mainBody (〈 newledger ledger, initialAddr initialAddr,

gas gas, amountR amountR〉)

executeLedgerFinalStep nothing 〈 ledger ledger, initialAddr initialAddr,

gas gas, amountR amountR〉 .force

= exec’ (putStrLn "Nothing and the ledger will change to old ledger")

λ _ → mainBody (〈 ledger ledger, initialAddr initialAddr,

gas gas, amountR amountR〉)

The definitions of executeLedger-ChangeCallingAddress and its auxiliary function for "Op-
tion 2" are as follows:

executeLedger-ChangeCallingAddress : ∀{i} → StateIO → IOConsole i Unit

executeLedger-ChangeCallingAddress stIO .force

= exec’ (putStrLn "Enter a new calling address as a natural number")

λ _ → IOexec getLine

λ line → executeLedger-ChangeCallingAddressAux

stIO (readMaybe 10 line)

executeLedger-ChangeCallingAddressAux : ∀{i} → StateIO

→ Maybe Address → IOConsole i Unit

executeLedger-ChangeCallingAddressAux 〈 ledger1 ledger, initialAddr1 initialAddr,

gas1 gas, amountR amountR〉 (just callingAddr)

= executeLedger 〈 ledger1 ledger, callingAddr initialAddr,

gas1 gas, amountR amountR〉

executeLedger-ChangeCallingAddressAux stIO nothing .force

= exec’ (putStrLn "Please enter the calling address as a natural number")

λ _ → executeLedger-ChangeCallingAddress stIO

We then define the main function to run our program:

main : ConsoleProg

main = run (mainBody 〈 testLedger ledger, 0 initialAddr, 100 gas, 0 amountR〉)
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The main function takes a single argument and runs the mainBody function, which takes an

argument containing a tuple of four values: the ledger, the initial address, the gas limit, and the

amount to be sent. The mainBody function uses our ledger (testLedger), and starting from the

initial address of 0, the gas limit is 20 wei, and the amount to be sent is 0.

9.6 Direct Testing the Reentrancy Attack

This section presents an alternative way to test the reentrancy attack instead of using the inter-

faces.

We also introduce the functions (evaluateTerminatingfinal, evaluateTerminatingAuxStep1,

evaluateTerminatingAuxStep2, evaluateTerminatingAuxStep3, and evaluateAuxStep4) to manu-

ally execute the testLedger example in Sect. 9.4. These are useful during development since

repeatedly using the interface can be time-consuming. We redefine these functions in the com-

plex model in Subsubsect. 6.2.3.2 by adding extra parameters: the amount received after the

reentrancy attack and the list of events to show the events in each step.

The signatures of the evaluateTerminatingfinal and its auxiliary functions are as follows (the

full definitions of these functions can be found in the appendices [F.2, F.8]):

evaluateAuxStep4 : (oldLedger : Ledger) → (currentLedger : Ledger)

→ (initialAddr : Address) → (lastCallAddr : Address)

→ (calledAddr : Address) → (cost : N) → (returnvalue : Msg)

→ (gasLeft : N) → (funNameevalState : FunctionName)

→ (msgevalState : Msg) → (amountReceived : Amount) → (listEvent : List String)

→ (cp : OrderingLeq cost gasLeft) → (Ledger × MsgOrErrorWithGas)

mutual

evaluateTerminatingAuxStep2 : Ledger → (stateEF : StateExecFun)

→ (numberOfSteps : N) → stepEFgasAvailable param stateEF 5r numberOfSteps

→ Ledger × MsgOrErrorWithGas

evaluateTerminatingAuxStep3 : Ledger → (evals : StateExecFun)

→ (numberOfSteps : N) → stepEFgasAvailable param evals 5r suc numberOfSteps

→ OrderingLeq (stepEFgasNeeded param evals) (stepEFgasAvailable param evals)

→ Ledger × MsgOrErrorWithGas
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evaluateTerminatingAuxStep1 : (ledger : Ledger) → (initialAddr : Address)

→ (lastCallAddr : Address) → (calledAddr : Address) → FunctionName

→ Msg → (amountReceived : Amount) → (listEvent : List String)

→ (gasreserved : N)

→ (cp : OrderingLeq (GastoWei param gasreserved) (ledger initialAddr .amount))

→ Ledger × MsgOrErrorWithGas

evaluateTerminatingfinal : (ledger : Ledger) → (initialAddr : Address)

→ (lastCallAddr : Address) → (calledAddr : Address)

→ FunctionName → Msg → (amountReceived : Amount) → (listEvent : List String)

→ (gasreserved : N) → Ledger × MsgOrErrorWithGas

The function evaluateTerminatingfinal and its auxiliary functions are the same as in Subsub-

sect. 6.2.3.2, but in the case of error or correct code, it returns the list of events.

Based on our example testLedger in Sect. 9.4, we define three test cases to check the evalu-

ateTerminatingfinal function with its auxiliary functions. These test cases depend on each other;

for instance, the second test case depends on the result of the ledger in the first case. The three

cases are the following:

First test case. In the first test case, we define the resultAfterdeposit function to execute the

"deposit" function with argument (nat 0) and with a gas limit of 250 wei. The resultAfterde-

posit function deposits 25000 wei at address 0 (bank contract).

The definition of resultAfterdeposit is as follows:

resultAfterdeposit : Ledger × MsgOrErrorWithGas

resultAfterdeposit

= evaluateTerminatingfinal testLedger 2 2 0 "deposit"
(nat 0) 25000 ("deposit function" :: []) 250

We then define the resultReturneddeposit function to return the result after depositing 25000

wei at address 0.

The definition of resultReturneddeposit is as follows:

resultReturneddeposit : MsgOrErrorWithGas

resultReturneddeposit = proj2 resultAfterdeposit

When evaluating the resultReturneddeposit function, the result is
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(theMsg (nat 0) , 231 gas, ("deposit 25000 wei at address 0 for address 2,
the new balance at address 0 is 125000 wei" :: "deposit function" :: [])

This means that the balance at the bank contract (address 0) increases by 25000 wei, and

the new balance is 125000 wei (previously, it was 100000 wei). This can be witnessed by the

following Agda proof:

eqproofresultReturneddeposit : resultReturneddeposit ≡

theMsg (nat 0) , 231 gas,

("deposit +25000 wei at address 0 for address 2
New balance at address 0 is 125000wei \n"
:: "deposit function" :: [])

eqproofresultReturneddeposit = refl

We also define the ledgerAfterdeposit function to update our ledger and obtain the latest

ledger as follows:

ledgerAfterdeposit : Ledger

ledgerAfterdeposit = proj1 resultAfterdeposit

To check the balance at address 0 after depositing 25000 wei, we define checkamountAfter-

depositAtadd0 as follows:

checkamountAfterdepositAtadd0 : N

checkamountAfterdepositAtadd0 = ledgerAfterdeposit 0 .amount

When evaluating the checkamountAfterdepositAtadd0 function, the result is 125000 wei. This

can be illustrated by the following Agda proof:

eqproofcheckamountAfterdepositAt0 : checkamountAfterdepositAtadd0 ≡ 125000

eqproofcheckamountAfterdepositAt0 = refl

Furthermore, we define the checkamountAfterdepositAtadd2 function to check the balance

for the attacker contract (at address 2) after deposit 25000 wei at address 0, as follows:

checkamountAfterdepositAtadd2 : N

checkamountAfterdepositAtadd2 = ledgerAfterdeposit 2 .amount
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When evaluating the checkamountAfterdepositAtadd2 function, the result is 981 wei (previously,

the balance for the attacker contract was 26000 wei). This result means that the attacker con-

tracts after depositing 25000 at address 0, with the gas used being 19 wei. This can be witnessed

by the following Agda proof:

eqproofcheckamountAfterdepositAt2 : checkamountAfterdepositAtadd2 ≡ 981

eqproofcheckamountAfterdepositAt2 = refl

To check the view function, we define the checkviewfunctionAfterdeposit function, as fol-

lows:

checkviewfunctionAfterdeposit : MsgOrError

checkviewfunctionAfterdeposit = ledgerAfterdeposit 0 .viewfunction "balance" (nat 2)

The checkviewfunctionAfterdeposit function checks the amount deposited at address 0 for ad-

dress 2, and the result is theMsg (nat 25000). This can be illustrated by the following Agda

proof:

eqproofcheckviewFunction : checkviewFunctionAfterdeposit ≡ theMsg (nat 25000)

eqproofcheckviewFunction = refl

Second test case. Based on the ledger in the first test case, we define the resultAfterwithdraw

function to use "withdraw" function to withdraw all the funds from address 0 to address 1.

Then, address 1 transfers all the funds to address 2.

The definition of the resultAfterwithdraw function is as follows:

resultAfterwithdraw : Ledger × MsgOrErrorWithGas

resultAfterwithdraw =

evaluateTerminatingfinal ledgerAfterdeposit 2 2 0

"withdraw" (nat 25000) 0 ([]) 250

The resultAfterwithdraw function executes the withdraw function with the argument (nat 0)
with a gas limit of 250 wei at address 0. This function withdraws 25000 wei every time. When
evaluating this function, the result is

theMsg (nat 0) , 227 gas, ("Balance at address 0 = 125000 wei.
withdraw -25000 wei." :: [])
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This can be witnessed by the following Agda proof:

eqproofresultReturnedwithdraw : resultReturnedwithdraw ≡

theMsg (nat 0) , 227 gas,

("Balance at address 0 = 125000 wei.
withdraw -25000 wei." :: [])

eqproofresultReturnedwithdraw = refl

We then define the ledgerAfterwithdraw function to obtain the latest ledger after using the

withdraw function to check the balances at address 0 and address 2 as follows:

ledgerAfterwithdraw : Ledger

ledgerAfterwithdraw = proj1 resultAfterwithdraw

To check the balances at address 0 and address 2, we define the following functions:

checkamountforAddr0Afterwithdraw : N

checkamountforAddr0Afterwithdraw = ledgerAfterwithdraw 0 .amount

checkamountforAddr1Afterwithdraw : N

checkamountforAddr1Afterwithdraw = ledgerAfterwithdraw 2 .amount

When evaluating the checkamountforAddr0Afterwithdraw function, the result is 100000 wei for

address 0 (previously, it was 125000 wei), and the result of checkamountforAddr1Afterwithdraw

is 25958 wei for address 2 (previously, it was 981 wei). These can be illustrated by the follow-

ing Agda proofs:

eqproofcheckamountAfterwithdraw0 : checkamountforAddr0Afterwithdraw ≡ 100000

eqproofcheckamountAfterwithdraw0 = refl

eqproofcheckamountAfterwithdraw2 : checkamountforAddr1Afterwithdraw ≡ 25958

eqproofcheckamountAfterwithdraw2 = refl

Third test case. Based on the result of the ledger in the second test case, we define the

resultAfterattack function to use the "attack" function. This function is based on the result of

the ledger in the second test case.

The definition of the resultAfterattack function is as follows:
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resultAfterattack : Ledger × MsgOrErrorWithGas

resultAfterattack

= evaluateTerminatingfinal testLedger 2 2 1

"attack" (nat 0) 25000 ("deposit function" :: []) 250

The resultAfterattack function executes the attack function with the argument (nat 0) and with a

gas limit of 250 wei at address 1. This function calls the attack contract to deposit some funds

and withdraw all the funds from address 0 to transfer them to address 1. Then, it transfers all

the funds to address 2 (the attacker account).

The definition of the resultAfterattack function is as follows:

resultReturnedattack : MsgOrErrorWithGas

resultReturnedattack = proj2 resultAfterattack

When evaluating the resultAfterattack function, we obtain the same result as in Figure 9.10.

theMsg (nat 0) , 66 gas,
("deposit +25000 wei at address 0 for address 1.
New balance at address 0 is 125000 wei":: "deposit function" :: []

"Balance at address 0 = 125000 wei.
withdraw -25000 wei." ::

"Balance at address 0 = 100000 wei.
withdraw -25000 wei." ::

"Balance at address 0 = 75000 wei.
withdraw -25000 wei." ::

"Balance at address 0 = 50000 wei.
withdraw -25000 wei." ::

"Balance at address 0 = 25000 wei.
withdraw -25000 wei." ::

"Current balance at address 0 = 0 wei" ::

"Current balance at address 1 = 0 wei" ::

"Current balance at address 2 = 125750 wei" ::)

9.7 Evaluation

We evaluate the implementation of the reentrancy attack in Solidity in Agda by considering the

following aspects:
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• Three parties. There are three parties involved in the reentrancy attack: The obvious

ones are the bank, which implemented it naively, and the attacker (i.e. a criminal).

However, there is as well a third party, namely the creators of Ethereum, which included

the fallback mechanism and, therefore, a vulnerability. We included these three parties in

the definition of our example (testLedger) in Sect. 9.4. In Sect. 9.4, we described the bank

code and the withdrawal function’s vulnerability. Furthermore, the attacker contract is

described as well in Sect. 9.4, and the attack is triggered by the attack function in the

attack contract, which is also defined in Sect. 9.4. In addition, the fallback function is

implemented in page 211, which is implemented in the executeTransfer function, which

calls the executeTransferAux function.

As observed by Conor McBride, it is possible that the real problem is not that the bank

made a mistake but that the designers of Ethereum introduced vulnerability by including

the fallback mechanism, which in this case was exploited by the attacker.

• Reasons for including the fallback mechanism. The reader might wonder, why is there

a fallback mechanism in the first place. In fact, in the white paper of Ethereum [112, 111]

the fallback function is not mentioned, and we could not find a reference referring to the

original motivation of the originators of Ethereum for including the fallback function.

What one can speculate is that the motivation for including a fallback function in book-

keeping contracts when receiving money is the actions that it can perform. The fallback

function can log an event such as “received money” in a table or transfer the money

somewhere else (potentially waiting until sufficient money has accumulated). The prob-

lem is that the fallback mechanism allows more than simple book keeping. The origina-

tors of Ethereum tried to limit the fallback mechanism by restricting the amount of gas

it can use, but it was a crude measure. Further problems arose when the gas cost instruc-

tions were updated. A possible solution is limiting the depth of the fallback mechanism’s

recursive call, but we assume there is nothing in the EVM supporting this functionality

at the moment this would require, in case such a mechanism is not part of the EVM,

require a hard fork.

• The prevention of reentrancy attacks. To prevent this kind of attack, we provide a

new version of the withdraw function that changes the order of the transfer and update

commands to first update the bank, and then transfer the money, as follows:

testLedger 0 .fun "withdraw" (nat Amount) =
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exec (getAmountc 0) (λ _ → 1) λ getresult →

exec (eventc (("Balance at address 0 = " ++ show getresult

++ " wei.\n" ++ " withdraw -" ++ show Amount ++ " wei.")))(λ _ → 1)

λ _ → (exec callAddrLookupc (λ _ → 1)

λ lastcallAddr → exec (callView 0 "balance" (nat lastcallAddr))(λ _ → 1)

λ BalanceViewFunction → if Amount 5b MsgorErrortoN BalanceViewFunction

then (exec (updatec "balance" (λ oldFun → decrementViewFunction lastcallAddr

Amount oldFun)(λ oldFun oldcost msg → 1))(λ n → 1)

λ _ → exec (transferc Amount lastcallAddr) (λ _ → 0)

λ x → return (nat 0))

else error (strErr (" Amount to withdraw is bigger than
the balance for the account withdrawing and lastcallAddr = "
++ (show lastcallAddr))) 〈 1 » 1 · "withdraw" [ nat 0 ]· [] 〉)

In order to check the new version of the withdraw function, we create

Agda file (prevent-reentrancy-attack.agda) in [] under this folder ‘Implement-

ing_the_Reentrancy_Attack_of_Solidity_in_Agda’ and apply this function to our exam-

ple testLedger in Sect. 9.4. We use the IO program to test our code, and we get the

following result as shown in Figure 9.11, which means the reentrancy attack is impossi-

ble to happen.
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Figure 9.11: Prevent the reentrancy attack.

9.8 Chapter Summary

In this chapter, we built the complex model version 2 to implement the first step towards the

type of attack that may occur in the Ethereum smart contracts, which is the reentrancy attack.

This model is more complex because it deals with the fallback function. In this chapter, we

provided how the reentrancy attack works. In addition, we presented the structure of the com-

plex model version 2 in order to implement and simulate the reentrancy attack. Furthermore,

we provided three test cases, which was an alternative way to test the reentrancy attack instead

of using the interfaces. Finally, we evaluated this chapter in particular aspects.
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Conclusions, Evaluation, and Future
Work
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10.1 Conclusions

In this thesis, we developed a new technique to verify smart contracts in Bitcoin and Solidity,

using the weakest preconditions for access control. We used Agda as a dependently typed

proof assistant and programming language, as it allowed us to write a program and verify it in

the same language to prevent any translation errors from one program to another.

Chapter 2 provided an overview of a theorem prover using Agda. In this chapter, we

introduced Agda and discussed some of its features. We compared Agda with other theorem

provers. We also explained some attempts that used tools that integrated automated theorem

proving into interactive theorem provers. We also outlined two applications for blockchain:

cryptocurrencies and smart contracts. We provided two examples of cryptocurrencies (the most

prominent examples of blockchain applications): Bitcoin and Ethereum. We also included an

overview of these cryptocurrencies. We also provided an overview of smart contracts, including

the languages that are used to write smart contracts in Bitcoin and Ethereum, the processes to

verify smart contracts and some types of vulnerabilities that may happen in smart contracts
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Chapter 3 covered the verification of smart contracts using different methods such as theo-

rem provers, model checking, translation into other languages, and frameworks to verify smart

contracts for different platforms, such as Bitcoin and Ethereum.

In this thesis, we divided our work on Bitcoin script into two parts. In the first part, in

Chapter 4, we developed the Bitcoin smart contract for local instructions using Agda. We fo-

cused on two standard scripts, pay to public key hash (P2PKH) and pay to multisig (P2MS),

written in Bitcoin’s low-level language script. We created the operational semantics of these

standard scripts by formalising them in the Agda proof assistant and reasoning them out using

Hoare triples. We introduced weakest preconditions in the context of Hoare triples, which were

suitable for access control verification. We developed two methods of obtaining the weakest

human-readable preconditions to fill the validation gap between user requirements and formal

specifications: (1) a step-by-step approach, which works through a script in reverse, instruction

by instruction, sometimes skipping several instructions in one go, and (2) the symbolic exe-

cution of the code and translation into a nested case distinction, which allows for reading off

the weakest preconditions as the disjunction of accepting paths. We used these methods with

P2PKH, P2MS, and a combination of P2MS and a time lock. Moreover, to verify the Bitcoin

scripts using Hoare triples and the weakest preconditions in Agda, we developed a library in

Agda to enable equational reasoning with Hoare triples.

In the second part of the first approach of the Bitcoin script in Chapter 5, we extended

the approach in Chapter 4 to the verification of Bitcoin scripts in Agda by including non-local

instructions, which are control flow statements (if-then-else conditionals). We defined and

implemented operational semantics for non-local instructions. We then developed theorems

that derive the weakest preconditions for a conditional from the weakest preconditions for the

if and else cases. We used them to verify more complex scripts, including nested if-then-else

statements.

Next, we divided the second approach into four parts. In the first part in Chapter 6, we

developed a basic model of smart contracts in Agda. This model is an initial step towards

transferring the work in Chapter 4 to the Solidity-style smart contracts of Ethereum. We devel-

oped two models: the simple and complex models. We also created the operational semantics

of a Solidity-style smart contract in Agda for the simple model. The simple model only sup-

ports simple executions, such as calling other contracts, updating specific contracts, checking

the amount in each address, and transferring money. It does not support gas costs involving

money and the state. Next, we expanded the simple model into a more complex one. The
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complex model includes all features of the simple version and other features, such as gas cost,

complex instructions, and view functions. Accordingly, we created operational semantics for

the complex model. In both models, we created error types. For instance, if someone calls the

wrong address, they will see a message telling them that they are calling the wrong address.

The complex model includes numerous additional messages. Examples include insufficient gas

for transferring money, an invalid transaction, and debugging information, including the last

called address, the calling address, the amount of gas, and the function name. In both models,

we provided examples and discussed the termination problem for each model.

In the second part of the second approach, Chapter 7 is based on Chapter 6, we imple-

mented IO programs in both the simple and complex models in Agda. We further developed an

interface to deal with the programs by creating commands and responses that ensure the pro-

grams are correct. We tested various examples with an interface using the simple and complex

models (see our GitHub, where we demonstrated the simple and complex models [20]).

The third part of the second approach, Chapter 8 is based on Chapter 6, where we verified

the correctness of smart contracts in the simple and complex models using the weakest precon-

ditions in Agda. We also provided two examples for each model and proved the correctness of

these examples.

In the last part of the second approach in Chapter 9, we developed the first step towards the

reentrancy attack in Agda, which may happen on the Ethereum network. This model is more

complicated because we use the fallback function to implement the reentrancy attack. We

called this model the complex model version 2. In this chapter, we explained the idea of the

reentrancy attack and implemented it in Agda. In addition, we built the interface and simulated

the reentrancy attack (see our GitHub, where we provided an example and demonstrated the

reentrancy attack [20]). For the last point, we provided an alternative way to test the reentrancy

attack instead of using the interfaces.

10.2 Evaluation

In this section, we evaluate our thesis across various aspects as follows:

• Comparison of Bitcoin script and Solidity- and the middle ground between the two.

Bitcoin Script has limited capabilities for implementing smart contracts; we do not know

how to implement even a simple example of a bank using Bitcoin Script. Solidity, on

contrast, offers a rich language for writing complex smart contracts. However, this gener-
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icity comes with a problem, namely, that there are frequent difficult-to-detect errors that

can result in substantial financial losses.

One might consider a middle ground between Bitcoin Script and Solidity. We looked

into other smart contract languages and explored the language of Cardano (see Cardano

Developer Portal [251]) in more detail. We understand that Cardano is similar to Bitcoin

in that it protects the unlocking of some Cardano units with a program. However, instead

of using machine language, it uses Plutus, a sublanguage of Haskell, and uses some

form of gas to control termination. Nevertheless, it does not seem to allow definition of

contracts that interact with other contracts, as commonly seen in Ethereum. This is a

preliminary evaluation, and we leave it to a future work to explore Plutus in depth.

It may be necessary to have a certain level of complexity for smart contracts, but restric-

tions on problematic features, such as the fallback function, need to be made. The reason

is that Solidity allows very complex contracts: one can create investment funds (DAOs)

and decide how the money is spent, depending on one’s share. Another approach is to

keep Solidity, but one needs to develop a good theory and tools for verifying Solidity

smart contracts. This thesis takes an important step towards achieving this goal.

• Smart contract verification. Verifying smart contracts poses challenges due to their

immutable nature once published on the blockchain. There are two primary methods

for verification: formal verification and test case execution, as discussed in Subsub-

sect. 2.3.2.4. Formal verification enables the early detection of weaknesses and vulner-

abilities in smart contracts, offering security guarantees through mathematical verifica-

tion, employing various mathematical and logical methods [252]. Several approaches

to formal verification exist, including theorem proving [26] and model checking [136].

In our thesis, we used the interactive theorem prover Agda to verify the correctness of

smart contracts. To support our verification, we developed a new technique employing

weakest precondition for access control, applying it to verify smart contracts in leading

cryptocurrencies, Bitcoin and Ethereum.

• Weakest precondition. Our thesis accomplishes its objective by introducing new se-

mantics using weakest preconditions, precisely expressing access control for Bitcoin

and Solidity.

• The Agda proof assistant. While Agda is effective for proving correctness in small

programs, its use becomes cumbersome for more complex models, where better support
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for automated theorem proving would be beneficial.

• Verification of Bitcoin Script for local and non-local instructions. We successfully

implemented and verified local and non-local instructions in Bitcoin Script using Agda.

Verification for both instructions was conducted using our developed library, with a mod-

ular treatment of conditionals rendering the verification process robust.

• Development of two methods to derive weakest precondition. We achieved this by

devising step-by-step and symbolic execution methods, applied to smart contracts in

Bitcoin and Solidity. These methods are specifically tailored for smart contracts.

• Development of three models of Solidity-style smart contracts. This thesis presented

three models, called simple, complex, and complex version 2, each offering distinct

features. The simple model excludes intricate instructions, while the complex model

incorporates them along with considerations for gas cost and view functions. Proving

properties in the complex model requires significant time investment. Furthermore, the

complex model version 2 extended the complex model, adding a fallback function, the

possibility of sending money when making a function call, and emitting events because

debugging the reentrancy attack became very complex. These three models cover a sub-

stantial fragment of solidity, but despite their complexity do not encompass all aspects

of the by now very complex language Solidity.

• We provided test cases in Subsections [6.2.2.2, 6.2.3.2]. The reader might wonder

how we know that the modelling of Solidity in Agda is correct. When modelling one

language in another, it is challenging to guarantee the correctness of the translation. The

difficulty is that a theorem comparing one implementation with another would need to

fully represent both the source and target languages to express their equivalence. We

are not aware of any good framework to solve this problem. This is a significant issue

in software verification: one models a system in a different theory and then proves its

correctness, but there can be translation errors. The only realistic way to address this

problem at the moment seems to be to run test cases.

• A simulator for Solidity-style smart contracts in the three models. Through interface

creation, we simulated contracts in the simple, complex, and complex version 2 models,

showcasing their features.

• Gas cost. At this point, we divided into three as follows:
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– We implemented the gas mechanism of Ethereum in both complex model and com-

plex model version 2.

– Termination checked execution in the complex model and complex model ver-

sion 2. This solves the termination problem in the simple model. In the simple

model, the evaluation does not terminate check in Agda. It might not terminate,

whereas, in the complex model and complex model version 2, execution termina-

tion is checked, which requires some proofs in Agda. Therefore, it implements the

gas mechanism used in Ethereum to guarantee the termination of the execution of

smart contracts.

– Addressing the challenge of gas cost computation, we assign a gas cost as a param-

eter to the instructions. This allows user-defined cost determination; see Nielsen et

al. article [162] for a similar problem.

• Need for a more automated translation from Solidity to Agda. We encountered a

challenge translating the codes from Solidity to Agda, as it was carried out manually.

Initially, we implemented the code in Solidity and then proceeded to translate it into

Agda. This manual translation process was time-consuming, mainly due to the absence

of tools or programs capable of direct translation. A first step would be to create a good

library that directly supports data types and language constructs from Solidity. This is

one of the most important aspects of future work.

• Reentrancy attack. The reentrancy attack is implemented. It turned out that this re-

quired substantial work, including developing complex model version 2. It is a major

challenge to verify the correctness of the contract not containing the error. This type

of attack is more intricate than both the simple and complex models, primarily due to

its interaction with a fallback function. Implementing this attack in Agda poses a chal-

lenge, as it requires an intermediate contract to function properly. Our implementation

closely follows the implementation in Solidity (see the appendices for the definitions of

Solidity for both the bank contract in F.10 and the attack contract in F.11). Verifying

the reentrancy attack presents the challenge of demonstrating safety from it in the cor-

rected version, independent of any other contracts created, requiring quantification over

all potential attack contracts.

• Events in the reentrancy attack. In Chapter 9, we introduced the new command called

eventc. This command differs from its Solidity counterpart because, in our approach,
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events are reported even if the execution causes an error. When using the IDE remix for

Solidity, no events are reported in case of an error, making debugging very cumbersome.

• Comparing the three models. As shown in table 10.1, we compare the simple, complex,

and complex version 2 models in different aspects:

Name of models

Characteristics Simple Complex Complex version 2

Support simple instructions X X X
Support complex instructions 7 X X

More complicated 7 7 X
Types of error messages simple complex complex

Debug information 7 X X
Complicated debug information including events 7 7 X

Gas cost 7 X X
View functions 7 X X

Fallback function 7 7 X
Termination checked 7 X X
Interactive simulator X X X

Verification X X 7

Table 10.1: Comparing the three models.

• Applications of weakest precondition semantics in other applications. In this thesis,

we applied our technique to smart contracts in Bitcoin and Solidity. It would be an

interesting project to apply weakest precondition semantics for access control to other

applications outside of smart contracts.

10.3 Future Work

There are several theoretical and practical factors that may be expanded to enhance this re-

search.

In Chapters [4, 5], the verifications focused on the sub-language of the Bitcoin script.

There is considerable potential for research to expand this work to cover the full language of

the Bitcoin script and develop a translation tool from the Bitcoin script language for Agda or

other theorem provers.

Another future work based on Chapters [4, 5] involoves developing our approach into a

framework for smart contracts that are correct by construction. One way to build such smart

contracts is to use Hoare type theory [253, 254]. This is a dependently typed system that allows
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one to specify and verify programs using Hoare logic. It allows to define imperative programs

in Haskell style monad notation and to prove theorems such as [255] “A Hoare type ST P (fun

x : A => Q) denotes computations with a precondition P and postcondition Q, returning a value

x of type A”.

Furthermore, another future work is to apply our approach to verify the correctness of smart

contracts in Agda using the automated theorem prover tools that exist in Agda to achieve simi-

lar results. In this thesis, the proof was carried out manually. An alternate for future research is

to use interactive theorem provers with better support for automatic theorem proving, such as

Coq (see Paulin-Mohring article [33]) and Lean (see Löh article [256]) to obtain similar results.

Manual proving is possible for small smart contracts, but proving becomes more complicated

and requires more time as contracts expand. Using automatic theorem provers for huge smart

contracts is more efficient but creates the challenge of how to efficiently manage these more

complex contracts. This is an important area for future research and development in smart

contract verification.

Moreover, as pointed out by Conor McBride, in this thesis, at the moment preconditions

are handcrafted. One could think of having a data type from which preconditions are defined

that would allow automated theorem proving. Then, we could define a program which sim-

plifies a predicate to obtain weakest preconditions (human readable weakest preconditions).

In addition, especially in Sect. 4.4, we handcrafted the accept conditions, and it would be an

improvement if one could derive these accept conditions automatically.

In Chapter 4, particularly in Subsect. 4.5.2, the reader may observe that, depending on the

values of n and m, it is possible to generalise the concept of weakestPreCondMultiSig-2-4s to a

generic weakest precondition for multisig-n-m scripts. We leave this to future works.

In Chapters [6, 9], our coverage of the Solidity language was limited to simple, com-

plex, and complex models version 2. For future research, one can extend and include the full

languages of Solidity in these models.

Additionally, in Chapters [6, 9], we manually translated the Solidity code into Agda,

because no tools or programs currently support automatic translation. This is one route for

future work that allows researchers to develop tools capable of directly converting code from

the Solidity language to Agda. The development of such a tool must be considered to avoid

translation errors between programs. For example, the first step is to create a good library that

directly supports the data types and language constructs that are used in Solidity language.

In Chapter 9, we have illustrated the first step of the reentrancy attack without carrying out
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any verification. The difficulty of this attack is that it cannot be executed directly and typically

requires creating an intermediary smart contract. For example, to withdraw funds from a bank

contract, an attacker will typically deploy an intermediate contract and use it to get this money

out of it. To avoid the intermediate contract, we need a way to show that there are no additional

intermediate smart contracts, with the help of which we can get money from the contract we

are attacking. Addressing this challenge requires further in-depth analysis of how it can be

done. Furthermore, we focused on only one type of attack, which is the reentrancy attack. For

future work, we can investigate other attacks, such as integer overflow and underflow [129].

Moreover, for future work, we explore whether we can define a language that is a suitable

middle ground between Bitcoin and solidity.

Finally, for future work, it is important to apply whether this technique of using the weakest

precondition for access control works for other applications out of smart contracts.

249



Bibliography

[1] A. Setzer, “Interactive Programs in Agda,” Swansea University, Retrieved 10 September

2023, Available from https://csetzer.github.io/slides/agdaimplementorsmeeting/agdaI

mplementorsMeetingGoeteborg2009/goeteborg2009AgdaIntensiveMeetingRevised.p

df.

[2] A. Sicard-Ramírez and J. Cubides, “Apia tool,” Retrieved 10 January 2024, Available

from https://github.com/asr/apia.

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized Business

Review, 2008, Available from https://www.ussc.gov/sites/default/files/pdf/training/an

nual-national-training-seminar/2018/Emerging_Tech_Bitcoin_Crypto.pdf.

[4] Y.-C. Chen, Y.-P. Chou, and Y.-C. Chou, “An image authentication scheme using merkle

tree mechanisms,” Future Internet, vol. 11, no. 7, 2019, doi: https://www.mdpi.com/1

999-5903/11/7/149.

[5] A. Setzer , “Modelling Bitcoin in Agda,” CoRR, vol. abs/1804.06398, 2018, Available

from http://arxiv.org/abs/1804.06398.

[6] A. Setzer and B. Lazar, “Modelling smart contracts of Bitcoin in Agda,” June 2021, in

Henning Basold (Ed): TYPES 2021 – Book of Abstracts, 27th International Conference

on Types for Proofs and Programs on 14 - 18 June 2021, Available from https://types2

1.liacs.nl/download/modelling-smart-contracts-of-bitcoin-in-agda/.

[7] N. Atzei, M. Bartoletti, and T. Cimoli, “A Survey of Attacks on Ethereum Smart Con-

tracts (SoK),” in Principles of Security and Trust. Berlin, Heidelberg: Springer, 2017,

pp. 164–186, doi: https://doi.org/10.1007/978-3-662-54455-6_8.

250

https://csetzer.github.io/slides/agdaimplementorsmeeting/agdaImplementorsMeetingGoeteborg2009/goeteborg2009AgdaIntensiveMeetingRevised.pdf
https://csetzer.github.io/slides/agdaimplementorsmeeting/agdaImplementorsMeetingGoeteborg2009/goeteborg2009AgdaIntensiveMeetingRevised.pdf
https://csetzer.github.io/slides/agdaimplementorsmeeting/agdaImplementorsMeetingGoeteborg2009/goeteborg2009AgdaIntensiveMeetingRevised.pdf
https://github.com/asr/apia
https://www.ussc.gov/sites/default/files/pdf/training/annual-national-training-seminar/2018/Emerging_Tech_Bitcoin_Crypto.pdf
https://www.ussc.gov/sites/default/files/pdf/training/annual-national-training-seminar/2018/Emerging_Tech_Bitcoin_Crypto.pdf
https://www.mdpi.com/1999-5903/11/7/149
https://www.mdpi.com/1999-5903/11/7/149
http://arxiv.org/abs/1804.06398
https://types21.liacs.nl/download/modelling-smart-contracts-of-bitcoin-in-agda/
https://types21.liacs.nl/download/modelling-smart-contracts-of-bitcoin-in-agda/
https://doi.org/10.1007/978-3-662-54455-6_8


Bibliography

[8] L. Liu, S. Zhou, H. Huang, and Z. Zheng, “From Technology to Society: An Overview

of Blockchain-Based DAO,” IEEE Open Journal of the Computer Society, vol. 2, pp.

204–215, 2021, doi: https://doi.org/10.1109/OJCS.2021.3072661.

[9] F. F. Alhabardi, A. Beckmann, B. Lazar, and A. Setzer, “Verification of Bitcoin

Script in Agda Using Weakest Preconditions for Access Control,” in 27th Interna-

tional Conference on Types for Proofs and Programs (TYPES 2021), ser. LIPIcs, vol.

239. Dagstuhl, Germany: Leibniz-Zentrum für Informatik, 2022, pp. 1:1–1:25, doi:

https://doi.org/10.4230/LIPIcs.TYPES.2021.1.

[10] F. Alhabardi, B. Lazar, and A. Setzer, “Verifying correctness of smart contracts with

conditionals,” in 2022 IEEE 1st Global Emerging Technology Blockchain Forum:

Blockchain & Beyond (iGETblockchain). Irvine, CA, USA: IEEE, 2022, pp. 1–6,

doi: https://doi.org/10.1109/iGETblockchain56591.2022.10087054.

[11] F. Alhabardi and A. Setzer, “A model of Solidity-style smart contracts in the theo-

rem prover Agda,” in 2023 IEEE International Conference on Artificial Intelligence,

Blockchain, and Internet of Things (AIBThings). Mount Pleasant, MI, USA: IEEE,

2023, pp. 1–10, doi: https://doi.org/10.1109/AIBThings58340.2023.10292478.

[12] Solidity Community, “Solidity documentation,” Retrieved 15 August 2022, Available

from https://docs.soliditylang.org/en/v0.8.16/.

[13] Alhabardi, Fahad and Setzer, Anton, “A simulator of Solidity-style smart contracts in

the theorem prover Agda,” in Proceedings of the 2023 6th International Conference

on Blockchain Technology and Applications, ser. ICBTA ’23. New York, NY, USA:

Association for Computing Machinery, 2024, p. 1–11, doi: https://doi.org/10.1145/36

51655.3651656.

[14] Alhabardi, Fahad, Beckmann, Arnold, Lazar, Bogdan, and Setzer, Anton, “Verification

Techniques for Smart Contracts in Agda,” June 2022, Available from https://types22.in

ria.fr/files/2022/06/TYPES_2022_paper_40.pdf.

[15] Alhabardi, Fahad and Setzer, Anton, “A simple model of smart contracts in Agda,” pp.

164–166, January 2023, Available from https://types2023.webs.upv.es/TYPES2023.pd

f.

251

https://doi.org/10.1109/OJCS.2021.3072661
https://doi.org/10.4230/LIPIcs.TYPES.2021.1
https://doi.org/10.1109/iGETblockchain56591.2022.10087054
https://doi.org/10.1109/AIBThings58340.2023.10292478
https://docs.soliditylang.org/en/v0.8.16/
https://doi.org/10.1145/3651655.3651656
https://doi.org/10.1145/3651655.3651656
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_40.pdf
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_40.pdf
https://types2023.webs.upv.es/TYPES2023.pdf
https://types2023.webs.upv.es/TYPES2023.pdf


Bibliography

[16] Solidity Community, “Solidity documentation,” Retrieved 10 March 2023, Available

from https://docs.soliditylang.org/en/v0.8.19/.

[17] A. Setzer and F. Alhabardi, “A simulator of Solidity-style smart contracts in the theorem

prover Agda,” 2023, Available from https://github.com/fahad1985lab/A_simulator_o

f_Solidity-style_smart_contracts_in_the_theorem_prover_Agda.

[18] A. Setzer, F. Alhabardi, and B. Lazar, “Verification Of Smart Contracts With Agda,”

2021, Available from https://github.com/fahad1985lab/Smart--Contracts--Verification-

-With--Agda.

[19] Setzer, A., Alhabardi, F. and Lazar, B., “Verifying Correctness of Smart Contracts with

Conditionals,” 2022, Available from https://github.com/fahad1985lab/Verifying--Corre

ctness--of-Smart--Contracts--with--Conditionals.

[20] Alhabardi, F. and Setzer, A., “Solidity approach,” 2024, Available from https://github.c

om/fahad1985lab/Solidity_approach.

[21] Agda Community, “Agda Community,” Retrieved 10 January 2021, Available from ht

tps://agda.readthedocs.io/en/v2.6.2/.

[22] M. S. Nawaz, M. Malik, Y. Li, M. Sun, and M. I. U. Lali, “A Survey on Theorem

Provers in Formal Methods,” CoRR, vol. abs/1912.03028, 2019, Available from http:

//arxiv.org/abs/1912.03028.

[23] E. M. Clarke and J. M. Wing, “Formal Methods: State of the Art and Future Directions,”

ACM Comput. Surv., vol. 28, no. 4, p. 626–643, Dec. 1996, doi: http://dx.doi.org/10.11

45/242223.242257.

[24] O. Hasan and S. Tahar, Formal Verification Methods. In M. Khosrow-Pour, D.B.A.

(Ed.), Encyclopedia of Information Science and Technology, Third Edition (pp. 7162-

7170). IGI Global, 2015, vol. 32, doi: http://dx.doi.org/10.4018/978-1-4666-5888-2.c

h705.

[25] W. Ahrendt, B. Beckert, R. Hähnle, W. Menzel, W. Reif, G. Schellhorn, and P. H.

Schmitt, “Integrating Automated and Interactive Theorem Proving,” 1998, Available

from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.7968&rep=rep1&t

ype=pdf.

252

https://docs.soliditylang.org/en/v0.8.19/
https://github.com/fahad1985lab/A_simulator_of_Solidity-style_smart_contracts_in_the_theorem_prover_Agda
https://github.com/fahad1985lab/A_simulator_of_Solidity-style_smart_contracts_in_the_theorem_prover_Agda
https://github.com/fahad1985lab/Smart--Contracts--Verification--With--Agda
https://github.com/fahad1985lab/Smart--Contracts--Verification--With--Agda
https://github.com/fahad1985lab/Verifying--Correctness--of-Smart--Contracts--with--Conditionals
https://github.com/fahad1985lab/Verifying--Correctness--of-Smart--Contracts--with--Conditionals
https://github.com/fahad1985lab/Solidity_approach
https://github.com/fahad1985lab/Solidity_approach
https://agda.readthedocs.io/en/v2.6.2/
https://agda.readthedocs.io/en/v2.6.2/
http://arxiv.org/abs/1912.03028
http://arxiv.org/abs/1912.03028
http://dx.doi.org/10.1145/242223.242257
http://dx.doi.org/10.1145/242223.242257
http://dx.doi.org/10.4018/978-1-4666-5888-2.ch705
http://dx.doi.org/10.4018/978-1-4666-5888-2.ch705
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.7968&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.7968&rep=rep1&type=pdf


Bibliography

[26] J. Harrison, J. Urban, and F. Wiedijk, “History of Interactive Theorem Proving.” in

Computational Logic, ser. Handbook of the History of Logic, vol. 9. Amsterdam, The

Netherlands: North-Holland, Elsevier, 2014, pp. 135–214, doi: https://doi.org/10.1016/

B978-0-444-51624-4.50004-6.

[27] G. Sutcliffe, “The TPTP World – Infrastructure for Automated Reasoning,” in Logic for

Programming, Artificial Intelligence, and Reasoning. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2010, pp. 1–12, doi: http://dx.doi.org/10.1007/978-3-642-17511-4

_1.

[28] P. Martin-Löf, “An Intuitionistic Theory of Types: Predicative Part,” in Logic Collo-

quium ’73, ser. Studies in Logic and the Foundations of Mathematics. Elsevier, 1975,

vol. 80, pp. 73–118, doi: http://dx.doi.org/10.1016/S0049-237X(08)71945-1.

[29] Martin-Löf, Per, Intuitionistic type theory, ser. Studies in Proof Theory. Bibliopolis,

1984, vol. 1.

[30] A. Bove, P. Dybjer, and U. Norell, “A Brief Overview of Agda – A Functional Language

with Dependent Types,” in Theorem Proving in Higher Order Logics. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2009, pp. 73–78, doi: https://doi.org/10.1007/978-3-

642-03359-9_6.

[31] A. Stump, Verified Functional Programming in Agda. New York, US: Association for

Computing Machinery and Morgan & Claypool, 2016, doi: https://doi.org/10.1145/28

41316.

[32] Coq Community, “Coq Community,” Retrieved 19 March 2021, Available from https:

//coq.inria.fr/.

[33] C. Paulin-Mohring, Introduction to the Coq Proof-Assistant for Practical Software Ver-

ification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 45–95, doi:

http://dx.doi.org/10.1007/978-3-642-35746-6_3.

[34] L. C. Paulson, “Isabelle: The Next 700 Theorem Provers,” CoRR, vol. cs.LO/9301106,

1993, Available from https://arxiv.org/abs/cs/9301106.

[35] C. McBride and J. McKinna, “The view from the left,” Journal of Functional Program-

ming, vol. 14, no. 1, p. 69–111, 2004, doi: https://doi.org/10.1017/S0956796803004829.

253

https://doi.org/10.1016/B978-0-444-51624-4.50004-6
https://doi.org/10.1016/B978-0-444-51624-4.50004-6
http://dx.doi.org/10.1007/978-3-642-17511-4_1
http://dx.doi.org/10.1007/978-3-642-17511-4_1
http://dx.doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1145/2841316
https://doi.org/10.1145/2841316
https://coq.inria.fr/
https://coq.inria.fr/
http://dx.doi.org/10.1007/978-3-642-35746-6_3
https://arxiv.org/abs/cs/9301106
https://doi.org/10.1017/S0956796803004829


Bibliography

[36] Lean Community, “Lean Community,” Retrieved 19 January 2024, Available from http

s://leanprover-community.github.io/.

[37] Mathematisches Institut, Ludwig-Maximilians Universtät München, “The Minlog sys-

tem,” Retrieved 23 February 2024, Available from https://www.mathematik.uni-muenc

hen.de/~logik/minlog/index.php.

[38] U. Norell, “Towards a practical programming language based on dependent type

theory,” Ph.D. dissertation, Department of Computer Science and Engineering,

Chalmers University of Technology, SE-412 96 Göteborg, Sweden, September 2007.

[Online]. Available: http://www.cse.chalmers.se/~ulfn/papers/thesis.pdf

[39] N. A. Danielsson and U. Norell, “Parsing Mixfix Operators,” in Implementation and

Application of Functional Languages. Berlin, Heidelberg: Springer Berlin Heidelberg,

2011, pp. 80–99.

[40] P. Martin-Löf and G. Sambin, Intuitionistic Type Theory. Bibliopolis Naples, 1984,

vol. 9.

[41] A. Abel, M. Benke, A. Bove, J. Hughes, and U. Norell, “Verifying Haskell Programs

Using Constructive Type Theory,” in Proceedings of the 2005 ACM SIGPLAN Work-

shop on Haskell, ser. Haskell ’05. New York, NY, USA: Association for Computing

Machinery, 2005, p. 62–73, doi:https://doi.org/10.1145/1088348.1088355.

[42] A. Bove, L. S. Barbosa, A. Pardo, and J. S. Pinto, Language Engineering and Rigorous

Software Development: International LerNet ALFA Summer School 2008, Piriapolis,

Uruguay, February 24-March 1, 2008, Revised, Selected Papers. Springer Science &

Business Media, 2009, vol. 5520.

[43] H. B. Curry, “Functionality in combinatory logic*,” Proceedings of the National

Academy of Sciences, vol. 20, no. 11, pp. 584–590, 1934, doi: https://doi.org/10.1

073/pnas.20.11.584.

[44] A. Abel, S. Adelsberger, and A. Setzer, “Interactive programming in Agda – Objects and

graphical user interfaces,” Journal of Functional Programming, vol. 27, p. e8, 2017, doi:

https://doi.org/10.1017/S0956796816000319.

254

https://leanprover-community.github.io/
https://leanprover-community.github.io/
https://www.mathematik.uni-muenchen.de/~logik/minlog/index.php
https://www.mathematik.uni-muenchen.de/~logik/minlog/index.php
http://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
https://doi.org/10.1145/1088348.1088355
https://doi.org/10.1073/pnas.20.11.584
https://doi.org/10.1073/pnas.20.11.584
https://doi.org/10.1017/S0956796816000319


Bibliography

[45] A. R. Meyer and M. B. Reinhold, “"Type" is Not a Type,” in Proceedings of the 13th

ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, ser.

POPL ’86. New York, NY, USA: Association for Computing Machinery, 1986, p.

287–295, doi: https://doi.org/10.1145/512644.512671.

[46] A. J. C. Hurkens, “A simplification of Girard’s paradox,” in Typed Lambda Calculi and

Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 266–278.

[47] E. Moggi, “Notions of computation and monads,” Information and Computation,

vol. 93, no. 1, pp. 55 – 92, 1991, doi:http://dx.doi.org/10.1016/0890-5401(91)90052-4.

[48] P. Hancock and A. Setzer, “The IO monad in dependent type theory,” 1999, 13 pages.

Electronic proceedings of the workshop on dependent types in programming, Göteborg,

27-28 March 1999, Available from https://csetzer.github.io/articles/dtp99.pdf.

[49] Setzer, A. and Hancock, P., “Interactive Programs and Weakly Final Coalgebras (Ex-

tended Version),” in Dependently typed programming, ser. Dagstuhl Seminar Proceed-

ings, T. Altenkirch, M. Hofmann, and J. Hughes, Eds., no. 04381. Dagstuhl, Ger-

many: Internationales Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl,

Germany, 2004, pp. 1 – 30, doi:https://doi.org/10.4230/DagSemProc.04381.2.

[50] Hancock, P. and Setzer, A., “Specifying interactions with dependent types,” 2000, Elec-

tronic proceedings of the Workshop on subtyping and dependent types in programming,

Ponte de Lima, Portugal. 13 pp. Available from http://www-sop.inria.fr/oasis/DTP00/P

roceedings/proceedings.html.

[51] P. Hancock and A. Setzer, “Interactive Programs in Dependent Type Theory,” in Com-

puter Science Logic, ser. Lecture Notes in Computer Science. Berlin / Heidelberg:

Springer, 2000, vol. 1862, pp. 317–331, doi:http://dx.doi.org/10.1007/3-540-44622-2

_21.

[52] P. Hancock and A. Setzer, “Interactive programs and weakly final coalgebras in depen-

dent type theory,” in From Sets and Types to Topology and Analysis. Towards Practicable

Foundations for Constructive Mathematics. Oxford: Clarendon Press, 2005, pp. 115 –

136, doi: http://dx.doi.org/10.1093/acprof:oso/9780198566519.003.0007.

255

https://doi.org/10.1145/512644.512671
http://dx.doi.org/10.1016/0890-5401(91)90052-4
https://csetzer.github.io/articles/dtp99.pdf
https://doi.org/10.4230/DagSemProc.04381.2
http://www-sop.inria.fr/oasis/DTP00/Proceedings/proceedings.html
http://www-sop.inria.fr/oasis/DTP00/Proceedings/proceedings.html
http://dx.doi.org/10.1007/3-540-44622-2_21
http://dx.doi.org/10.1007/3-540-44622-2_21
 http://dx.doi.org/10.1093/acprof:oso/9780198566519.003.0007


Bibliography

[53] Andreas Abel, “Type-Based Termination Behind the Curtain,” Retrieved 02 July 2024,

Abstract of talk given at Agda Implementors’ Meeting XXXVIII, May 2024, Available

from https://wiki.portal.chalmers.se/agda/Main/AIMXXXVIII.

[54] Lean Community Discussion Forum, “Compartmentalization of axioms in Lean 4,” Re-

trieved 19 January 2024, Available from https://leanprover.zulipchat.com/#narrow/stre

am/270676-lean4/topic/Compartmentalization.20of.20axioms.20in.20Lean.204.

[55] E. Brady, “Idris, a general-purpose dependently typed programming language: Design

and implementation,” Journal of Functional Programming, vol. 23, no. 5, p. 552–593,

2013, doi: http://dx.doi.org/10.1017/S095679681300018X.

[56] F. Lindblad and M. Benke, “A Tool for Automated Theorem Proving in Agda,” in Types

for Proofs and Programs. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.

154–169, doi: https://doi.org/10.1007/11617990_10.

[57] W. Kokke and W. Swierstra, “Auto in Agda,” in Mathematics of Program Construction.

Cham: Springer International Publishing, 2015, pp. 276–301, doi: https://doi.org/10.1

007/978-3-319-19797-5_14.

[58] P. van der Walt and W. Swierstra, “Engineering Proof by Reflection in Agda,” in Im-

plementation and Application of Functional Languages. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2013, pp. 157–173, Available from http://citeseerx.ist.psu.edu/view

doc/download?doi=10.1.1.722.6833&rep=rep1&type=pdf.

[59] D. Christiansen and E. Brady, “Elaborator reflection: Extending Idris in Idris,” in Pro-

ceedings of the 21st ACM SIGPLAN International Conference on Functional Program-

ming, ser. ICFP 2016. New York, NY, USA: Association for Computing Machinery,

2016, p. 284–297, doi: http://dx.doi.org/10.1145/2951913.2951932.

[60] S. Foster and G. Struth, “Integrating an Automated Theorem Prover into Agda,” in NASA

Formal Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 116–130.

[61] K. Kanso and A. Setzer, “A light-weight integration of automated and interactive theo-

rem proving,” Mathematical Structures in Computer Science, vol. 26, no. 1, p. 129–153,

2016, doi: http://dx.doi.org/10.1017/S0960129514000140.

256

https://wiki.portal.chalmers.se/agda/Main/AIMXXXVIII
https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/Compartmentalization.20of.20axioms.20in.20Lean.204
https://leanprover.zulipchat.com/#narrow/stream/270676-lean4/topic/Compartmentalization.20of.20axioms.20in.20Lean.204
http://dx.doi.org/10.1017/S095679681300018X
https://doi.org/10.1007/11617990_10
https://doi.org/10.1007/978-3-319-19797-5_14
https://doi.org/10.1007/978-3-319-19797-5_14
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.722.6833&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.722.6833&rep=rep1&type=pdf
http://dx.doi.org/10.1145/2951913.2951932
http://dx.doi.org/10.1017/S0960129514000140


Bibliography

[62] J. Prieto-Cubides, “Proof-Reconstruction in Type Theory for Propositional Logic,” in

Logic and Computation Research Group, 2017, Available from https://repository.eafit

.edu.co/handle/10784/12484.

[63] W. M. Farmer, J. D. Guttman, and F. J. Thayer, “IMPS: An interactive mathematical

proof system,” Journal of Automated Reasoning, vol. 11, no. 2, pp. 213–248, 1993,

Available from https://imps.mcmaster.ca/doc/imps-overview.pdf.

[64] J. Betzendahl and M. Kohlhase, “Translating the IMPS Theory Library to MMT/OM-

Doc,” in Intelligent Computer Mathematics. Cham: Springer International Publishing,

2018, pp. 7–22, doi: http://dx.doi.org/10.1007/978-3-319-96812-4_2.

[65] Ł. Czajka and C. Kaliszyk, “Hammer for Coq: Automation for dependent type theory,”

Journal of automated reasoning, vol. 61, no. 1, pp. 423–453, 2018, doi: http://dx.doi.o

rg/10.1007/s10817-018-9458-4.

[66] J. Blanchette, C. Kaliszyk, L. Paulson, and J. Urban, “Hammering towards QED,” Jour-

nal of Formalized Reasoning, vol. 9, no. 1, pp. 101–148, 2016, doi: http://dx.doi.org/1

0.6092/issn.1972-5787/4593.

[67] R. Bonichon, D. Delahaye, and D. Doligez, “Zenon: An Extensible Automated Theorem

Prover Producing Checkable Proofs,” in Logic for Programming, Artificial Intelligence,

and Reasoning. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 151–165,

doi: http://dx.doi.org/10.1007/978-3-540-75560-9_13.

[68] M. Fleury and J. Blanchette, “Translation of Proofs Provided by External Provers,” Tech.

rep. Techniche Universität München, Tech. Rep., 2014, Available from https://www.mp

i-inf.mpg.de/fileadmin/inf/rg1/Documents/fleury_internship_2014.pdf.

[69] C. Benzmüller, N. Sultana, L. C. Paulson, and F. Theiß, “The higher-order prover LEO-

II,” Journal of Automated Reasoning, vol. 55, no. 4, pp. 389–404, 2015, doi: http:

//dx.doi.org/10.1007/s10817-015-9348-y.

[70] S. Böhme, “Proving Theorems of Higher-Order Logic with SMT Solvers,” Dissertation,

Technische Universität München, München, 2012, Available from https://mediatum.ub.

tum.de/doc/1084525/1084525.pdf.

257

https://repository.eafit.edu.co/handle/10784/12484
https://repository.eafit.edu.co/handle/10784/12484
https://imps.mcmaster.ca/doc/imps-overview.pdf
http://dx.doi.org/10.1007/978-3-319-96812-4_2
http://dx.doi.org/10.1007/s10817-018-9458-4
http://dx.doi.org/10.1007/s10817-018-9458-4
http://dx.doi.org/10.6092/issn.1972-5787/4593
http://dx.doi.org/10.6092/issn.1972-5787/4593
http://dx.doi.org/10.1007/978-3-540-75560-9_13
https://www.mpi-inf.mpg.de/fileadmin/inf/rg1/Documents/fleury_internship_2014.pdf
https://www.mpi-inf.mpg.de/fileadmin/inf/rg1/Documents/fleury_internship_2014.pdf
http://dx.doi.org/10.1007/s10817-015-9348-y
http://dx.doi.org/10.1007/s10817-015-9348-y
https://mediatum.ub.tum.de/doc/1084525/1084525.pdf
https://mediatum.ub.tum.de/doc/1084525/1084525.pdf


Bibliography

[71] H. F. Atlam, A. Alenezi, M. O. Alassafi, and G. Wills, “Blockchain with Internet of

Things: benefits, challenges, and future directions,” International Journal of Intelligent

Systems and Applications, vol. 10, no. 6, pp. 40–48, June 2018. [Online]. Available:

https://eprints.soton.ac.uk/421529/

[72] N. M. Kumar and P. K. Mallick, “Blockchain technology for security issues and chal-

lenges in IoT,” Procedia Computer Science, vol. 132, pp. 1815–1823, 2018, interna-

tional Conference on Computational Intelligence and Data Science, doi: http://dx.doi.o

rg/10.1016/j.procs.2018.05.140.

[73] M. B. Yassein, F. Shatnawi, S. Rawashdeh, and W. Mardin, “Blockchain technology:

Characteristics, security and privacy; issues and solutions,” in 2019 IEEE/ACS 16th

International Conference on Computer Systems and Applications (AICCSA), 2019, pp.

1–8, doi: https://doi.org/10.1109/AICCSA47632.2019.9035216.

[74] Bidry, Mahmoud and Ouaguid, Abdellah and Hanine, Mohamed, “Enhancing E-

Learning with Blockchain: Characteristics, Projects, and Emerging Trends,” Future In-

ternet, vol. 15, no. 9, 2023, doi: https://doi.org/10.3390/fi15090293.

[75] S. Davidson, P. De Filippi, and J. Potts, “Economics of Blockchain,” SSRN Electronic

Journal, pp. 1–23, 2016, doi: http://dx.doi.org/10.2139/ssrn.2744751.

[76] W. Viriyasitavat and D. Hoonsopon, “Blockchain characteristics and consensus in mod-

ern business processes,” Journal of Industrial Information Integration, vol. 13, pp. 32–

39, 2019, doi: https://doi.org/10.1016/j.jii.2018.07.004.

[77] McBee, Morgan P. and Wilcox, Chad, “Blockchain Technology: Principles and Appli-

cations in Medical Imaging,” Journal of Digital Imaging, vol. 33, no. 3, pp. 726–734,

2020, doi: https://doi.org/10.1007/s10278-019-00310-3.

[78] L. Ismail and H. Materwala, “A review of blockchain architecture and consensus pro-

tocols: Use cases, challenges, and solutions,” Symmetry, vol. 11, no. 10, 2019, doi:

http://dx.doi.org/10.3390/sym11101198.

[79] A. G. Gad, D. T. Mosa, L. Abualigah, and A. A. Abohany, “Emerging trends in

blockchain technology and applications: A review and outlook,” Journal of King Saud

University - Computer and Information Sciences, vol. 34, no. 9, pp. 6719–6742, 2022,

doi: https://doi.org/10.1016/j.jksuci.2022.03.007.

258

https://eprints.soton.ac.uk/421529/
http://dx.doi.org/10.1016/j.procs.2018.05.140
http://dx.doi.org/10.1016/j.procs.2018.05.140
https://doi.org/10.1109/AICCSA47632.2019.9035216
https://doi.org/10.3390/fi15090293
http://dx.doi.org/10.2139/ssrn.2744751
https://doi.org/10.1016/j.jii.2018.07.004
https://doi.org/10.1007/s10278-019-00310-3
http://dx.doi.org/10.3390/sym11101198
https://doi.org/10.1016/j.jksuci.2022.03.007


Bibliography

[80] B. Bhushan, P. Sinha, K. M. Sagayam, and A. J, “Untangling blockchain technology:

A survey on state of the art, security threats, privacy services, applications and future

research directions,” Computers & Electrical Engineering, vol. 90, p. 106897, 2021,

doi: https://doi.org/10.1016/j.compeleceng.2020.106897.

[81] R. Yang, R. Wakefield, S. Lyu, S. Jayasuriya, F. Han, X. Yi, X. Yang, G. Amaras-

inghe, and S. Chen, “Public and private blockchain in construction business process and

information integration,” Automation in Construction, vol. 118, p. 103276, 2020, doi:

https://doi.org/10.1016/j.autcon.2020.103276.

[82] Abdi, Adam Ibrahim and Eassa, Fathy Elbouraey and Jambi, Kamal and Almarhabi,

Khalid and AL-Ghamdi, Abdullah Saad AL-Malaise, “Blockchain Platforms and Access

Control Classification for IoT Systems,” Symmetry, vol. 12, no. 10, 2020, doi: https:

//doi.org/10.3390/sym12101663.

[83] Zheng, Zibin and Xie, Shaoan and Dai, Hongning and Chen, Xiangping and Wang,

Huaimin, “An Overview of Blockchain Technology: Architecture, Consensus, and Fu-

ture Trends,” in 2017 IEEE International Congress on Big Data (BigData Congress),

2017, pp. 557–564, doi: https://doi.org/10.1109/BigDataCongress.2017.85.

[84] D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun, “A review on consensus

algorithm of blockchain,” in 2017 IEEE International Conference on Systems, Man, and

Cybernetics (SMC). Banff, AB, Canada: IEEE, 2017, pp. 1–6, doi: http://dx.doi.org/1

0.1109/SMC.2017.8123011.

[85] S. Aggarwal and N. Kumar, “Chapter Eleven - Cryptographic consensus mechanisms,

Introduction to blockchain.” in The Blockchain Technology for Secure and Smart Ap-

plications across Industry Verticals, ser. Advances in Computers. Elsevier, 2021, vol.

121, pp. 211–226, doi: http://dx.doi.org/10.1016/bs.adcom.2020.08.011.

[86] Manimuthu, Arunmozhi and Sreedharan V., Raja and G., Rejikumar and Marwaha,

Drishti, “A Literature Review on Bitcoin: Transformation of Crypto Currency Into a

Global Phenomenon,” IEEE Engineering Management Review, vol. 47, no. 1, pp. 28–

35, 2019, doi: http://dx.doi.org/10.1109/EMR.2019.2901431.

[87] Luke Tredinnick, “Cryptocurrencies and the blockchain,” Business Information Review,

vol. 36, no. 1, pp. 39–44, 2019, doi: http://dx.doi.org/10.1177/0266382119836314.

259

https://doi.org/10.1016/j.compeleceng.2020.106897
https://doi.org/10.1016/j.autcon.2020.103276
https://doi.org/10.3390/sym12101663
https://doi.org/10.3390/sym12101663
https://doi.org/10.1109/BigDataCongress.2017.85
http://dx.doi.org/10.1109/SMC.2017.8123011
http://dx.doi.org/10.1109/SMC.2017.8123011
http://dx.doi.org/10.1016/bs.adcom.2020.08.011
http://dx.doi.org/10.1109/EMR.2019.2901431
http://dx.doi.org/10.1177/0266382119836314


Bibliography

[88] Coinmarketcap, “Cryptocurrency market capitalization,” Retrieved 15 January 2024,

Available from https://coinmarketcap.com/.

[89] L. H. White, “The Market For Cryptocurrency,” Cato Journal, vol. 35, no. 2, pp. 383–

402, Spring 2015, Available from https://www.proquest.com/scholarly-journals/market

-cryptocurrencies/docview/1690790445/se-2?accountid=14680.

[90] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker,

and S. Savage, “A Fistful of Bitcoins: Characterizing Payments among Men with No

Names,” in Proceedings of the 2013 Conference on Internet Measurement Conference,

ser. IMC ’13. New York, NY, USA: Association for Computing Machinery, 2013, p.

127–140, doi: http://dx.doi.org/10.1145/2504730.2504747.

[91] R. Böhme, N. Christin, B. Edelman, and T. Moore, “Bitcoin: Economics, Technology,

and Governance,” Journal of Economic Perspectives, vol. 29, no. 2, pp. 213–238, May

2015, doi: http://dx.doi.org/10.1257/jep.29.2.213.

[92] D. Puthal, N. Malik, S. P. Mohanty, E. Kougianos, and G. Das, “Everything you wanted

to know about the blockchain: Its promise, components, processes, and problems,” IEEE

Consumer Electronics Magazine, vol. 7, no. 4, pp. 6–14, 2018, doi: https://doi.org/10.1

109/MCE.2018.2816299.

[93] P. Koshy, D. Koshy, and P. McDaniel, “An Analysis of Anonymity in Bitcoin Using P2P

Network Traffic,” in Financial Cryptography and Data Security. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2014, pp. 469–485, doi: https://doi.org/10.1007/978-3-66

2-45472-5_30.

[94] J. Han, M. Song, H. Eom, and Y. Son, “An Efficient Multi-Signature Wallet in

Blockchain Using Bloom Filter,” in Proceedings of the 36th Annual ACM Symposium

on Applied Computing, ser. SAC ’21. New York, NY, USA: Association for Computing

Machinery, 2021, p. 273–281, doi: https://doi.org/10.1145/3412841.3441910. [Online].

Available: https://doi.org/10.1145/3412841.3441910
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Appendix A

Full Agda code for chapter Verifying
Bitcoin Script with local instructions

A.1 Definition of Stack (stack.agda)

module stack where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Maybe

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head)

open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib
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A.1. Definition of Stack (stack.agda)

open import libraries.andLib

open import libraries.maybeLib

open import basicBitcoinDataType

Stack : Set

Stack = List N

stackHasSingletonTop : N → Maybe Stack → Bool

stackHasSingletonTop l nothing = false

stackHasSingletonTop l (just []) = false

stackHasSingletonTop l (just (z :: y)) = l ==b z

stackHasTop : List N → Maybe Stack → Set

stackHasTop [] m = >

stackHasTop (y :: n) m

= True(stackHasSingletonTop y m)

stackAuxFunction : Stack → Bool → Maybe Stack

stackAuxFunction s b = just (boolToNat b :: s)

– Stack transformer
StackTransformer : Set

StackTransformer = Time → Msg → Stack → Maybe Stack

– function that checking if the
–stack is empty or the top element is false
checkStackAux : Stack → Bool

checkStackAux [] = false

checkStackAux (zero :: bitcoinStack1) = false

checkStackAux (suc x :: bitcoinStack1) = true

– lifting the checkStackAux to Maybe
– StackIfStack data type
checkStack : Maybe Stack → Bool

checkStack nothing = false

checkStack (just x) = checkStackAux x
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A. Full Agda code for chapter Verifying Bitcoin Script with local instructions

A.2 Definition of basic Bitcoin data type

(basicBitcoinDataType.agda)

module basicBitcoinDataType where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head)

open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

Time : Set

Time = N

Amount : Set

Amount = N

Address : Set

Address = N

TXID : Set
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A.2. Definition of basic Bitcoin data type (basicBitcoinDataType.agda)

TXID = N

Signature : Set

Signature = N

PublicKey : Set

PublicKey = N

infixr 3 _+msg_

data Msg : Set where

nat : (n : N) → Msg

_+msg_ : (m m’ : Msg) → Msg

list : (l : List Msg) → Msg

– function that compares time
instructOpTime : (currentTime : Time)

(entryInContract : Time) → Bool

instructOpTime currentTime entryInContract

= entryInContract ≤b currentTime

record GlobalParameters : Set where

field

publicKey2Address : (pubk : PublicKey) → Address

hash : N → N

signed : (msg : Msg)(s : Signature)

(publicKey : PublicKey) → Bool

Signed : (msg : Msg)(s : Signature)

(publicKey : PublicKey) → Set

Signed msg s publicKey

= True (signed msg s publicKey)

open GlobalParameters public
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A. Full Agda code for chapter Verifying Bitcoin Script with local instructions

A.3 Definition of Stack state (stackState.agda)

module verificationStackScripts.stackState where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Maybe

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

–our libraries
open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import basicBitcoinDataType

open import stack

record StackState : Set where

constructor 〈_,_,_〉

field currentTime : Time
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A.3. Definition of Stack state (stackState.agda)

– current time, i.e.
–time when the the smart contract
– is executed

msg : Msg

stack : Stack

open StackState public

record StackStateWithMaybe : Set where

constructor 〈_,_,_〉

field

currentTime : Time

– current time, i.e. time when the
– the smart contract is executed

msg : Msg

maybeStack : Maybe Stack

open StackStateWithMaybe public

stackState2WithMaybe : StackStateWithMaybe

→ Maybe StackState

stackState2WithMaybe

〈 currentTime1 , msg1 , just x 〉

= just 〈 currentTime1 , msg1 , x 〉

stackState2WithMaybe

〈 currentTime1 , msg1 , nothing 〉

= nothing

mutual

liftStackToStateTransformerAux’ : Maybe Stack

→ StackState → StackStateWithMaybe

liftStackToStateTransformerAux’ maybest
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A. Full Agda code for chapter Verifying Bitcoin Script with local instructions

〈 currentTime1 , msg1 , stack1 〉

= 〈 currentTime1 , msg1 , maybest 〉

exeTransformerDepIfStack’ :

( StackState → StackStateWithMaybe )

→ StackState → Maybe StackState

exeTransformerDepIfStack’ f s

= stackState2WithMaybe ( f s)

stackTransform2StackStateTransform :

StackTransformer → StackState

→ Maybe StackState

stackTransform2StackStateTransform f s

= stackState2WithMaybe

((liftStackToStateTransformerAux’

( f (s .currentTime) (s .msg) (s .stack))) s )

liftStackToStackStateTransformer’ :

(Stack → Maybe Stack)

→ StackState → Maybe StackState

liftStackToStackStateTransformer’ f

= stackTransform2StackStateTransform

(λ time msg → f )

liftTimeStackToStateTransformer’ :

(Time → Stack → Maybe Stack)

→ StackState → Maybe StackState

liftTimeStackToStateTransformer’ f =

stackTransform2StackStateTransform

(λ time msg → f time)

liftMsgStackToStateTransformer’ :
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A.4. Definition of instruction basic and Bitcoin Script basic (instructionBasic.agda)

(Msg → Stack → Maybe Stack)

→ StackState → Maybe StackState

liftMsgStackToStateTransformer’ f

= stackTransform2StackStateTransform

(λ time msg → f msg)

msgToMStackToIfStackToMState :

Time → Msg → Maybe Stack → Maybe StackState

msgToMStackToIfStackToMState time msg

nothing = nothing

msgToMStackToIfStackToMState time msg

(just x) = just 〈 time , msg , x 〉

liftStackFun2StackState :

(Time → Msg → Stack → Maybe Stack)

→ StackState → Maybe StackState

liftStackFun2StackState f

〈 currentTime1 , msg1 , stack1 〉 =

stackState2WithMaybe

〈 currentTime1 , msg1 ,

( f currentTime1 msg1 stack1) 〉

A.4 Definition of instruction basic and Bitcoin Script basic

(instructionBasic.agda)

module instructionBasic where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty
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open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head)

open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import basicBitcoinDataType

–list with normal instructions

data InstructionBasic : Set where

opEqual opAdd opSub opVerify : InstructionBasic

opEqualVerify : InstructionBasic

opDrop opSwap opDup : InstructionBasic

opHash opMultiSig : InstructionBasic

opCHECKLOCKTIMEVERIFY : InstructionBasic

opCheckSig3 opCheckSig : InstructionBasic

opPush : N → InstructionBasic

BitcoinScriptBasic : Set

BitcoinScriptBasic = List InstructionBasic

A.5 Define Maybe (>>=)(maybeDef.agda)

module paperTypes2021PostProceed.maybeDef where
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(stackSemanticsInstructionsBasic.agda)

data Maybe (X : Set) : Set where

nothing : Maybe X

just : X → Maybe X

return : {A : Set} → A → Maybe A

return = just

_>>=_ : {A B : Set} → Maybe A →

(A → Maybe B) → Maybe B

nothing >>= q = nothing

just x >>= q = q x

A.6 Define the semantics for basic instructions (J_Kss)

(stackSemanticsInstructionsBasic.agda)

open import basicBitcoinDataType

module verificationStackScripts.stackSemanticsInstructionsBasic

(param : GlobalParameters) where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.Maybe

import Relation.Binary.PropositionalEquality as Eq
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open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

–our libraries
open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import semanticBasicOperations param

open import instructionBasic

open import verificationStackScripts.stackState

open import verificationStackScripts.sPredicate

J_Kss : InstructionBasic → Time → Msg

→ Stack → Maybe Stack

J opEqual Kss time1 msg = executeStackEquality

J opAdd Kss time1 msg = executeStackAdd

J opPush x Kss time1 msg = executeStackPush x

J opSub Kss time1 msg = executeStackSub

J opVerify Kss time1 msg = executeStackVerify

J opCheckSig Kss time1 msg

= executeStackCheckSig msg

J opEqualVerify Kss time1 msg = executeStackVerify

J opDup Kss time1 msg = executeStackDup

J opDrop Kss time1 msg = executeStackDrop

J opSwap Kss time1 msg = executeStackSwap

J opHash Kss time1 msg = executeOpHash

J opCHECKLOCKTIMEVERIFY Kss time1 msg
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executeStackVerify etc..) (semanticBasicOperations.agda)

= executeOpCHECKLOCKTIMEVERIFY time1

J opCheckSig3 Kss time1 msg

= executeStackCheckSig3Aux msg

J opMultiSig Kss time1 msg = executeMultiSig msg

– execute only the stack operations
– of a bitcoin script
– is correct only for non-if instructiosn
J_Ks : (prog : BitcoinScriptBasic)(time1 : Time)

(msg : Msg)(stack1 : Stack) → Maybe Stack

J [] Ks time1 msg stack1 = just stack1

J op :: [] Ks time1 msg stack1

= J op Kss time1 msg stack1

J op :: prog Ks time1 msg stack1

= J op Kss time1 msg stack1 >>= J prog Ks time1 msg

A.7 Define semantic basic operations to execute OP codes

(executeOpHash, executeStackVerify etc..)

(semanticBasicOperations.agda)

open import basicBitcoinDataType

module semanticBasicOperations (param : GlobalParameters) where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)
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open import Data.Maybe

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

hashFun : N → N

hashFun = param .hash

executeOpHash : Stack → Maybe Stack

executeOpHash [] = nothing

executeOpHash (x :: s)

= just (hashFun x :: s)

–operational semantics for opAdd
executeStackAdd : Stack → Maybe Stack

executeStackAdd [] = nothing

executeStackAdd (n :: []) = nothing

executeStackAdd (n :: m :: e)

= just ((n + m) :: e)

–operational semantics for opVerify
executeStackVerify : Stack → Maybe Stack
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executeStackVerify [] = nothing

executeStackVerify (0 :: e) = nothing

executeStackVerify (suc n :: e) = just (e)

–operational semantics for opEqual
executeStackEquality : Stack → Maybe Stack

executeStackEquality [] = nothing

executeStackEquality (n :: []) = nothing

executeStackEquality (n :: m :: e)

= just ((compareNaturals n m) :: e)

–operational semantics for opSwap
executeStackSwap : Stack → Maybe Stack

executeStackSwap [] = nothing

executeStackSwap (x :: []) = nothing

executeStackSwap (y :: x :: s)

= just (x :: y :: s)

–operational semantics for opSub
executeStackSub : Stack → Maybe Stack

executeStackSub [] = nothing

executeStackSub (n :: []) = nothing

executeStackSub (n :: m :: e)

= just ((n −· m) :: e)

–operational semantics for opDup
executeStackDup : Stack → Maybe Stack

executeStackDup [] = nothing

executeStackDup (n :: ns)

= (just (n :: n :: ns))

–operational semantics for opPush
executeStackPush : N → Stack → Maybe Stack
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executeStackPush n s = just (n :: s )

–operational semantics for opDrop
executeStackDrop : Stack → Maybe Stack

executeStackDrop [] = nothing

executeStackDrop (x :: s) = just s

–auxiliary function for OpCHECKLOCKTIMEVERIFY
executeOpCHECKLOCKTIMEVERIFYAux :

Stack → Bool → Maybe Stack

executeOpCHECKLOCKTIMEVERIFYAux

s false = nothing

executeOpCHECKLOCKTIMEVERIFYAux

s true = just s

– operational semantics for OpCHECKLOCKTIMEVERIFY
executeOpCHECKLOCKTIMEVERIFY :

(currentTime : Time) → Stack → Maybe Stack

executeOpCHECKLOCKTIMEVERIFY

currentTime [] = nothing

executeOpCHECKLOCKTIMEVERIFY

currentTime (x :: s)

= executeOpCHECKLOCKTIMEVERIFYAux

(x :: s) (instructOpTime currentTime x)

– isSigned refers to pbk and not pbkh
– since a message can only be checked against pbk
isSigned : (msg : Msg)(s : Signature)

(pbk : PublicKey) → Bool

isSigned = param .signed

IsSigned : (msg : Msg)(s : Signature)

(pbk : PublicKey) → Set

IsSigned = Signed param
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executeStackVerify etc..) (semanticBasicOperations.agda)

–operational semantics for opCheckSig
executeStackCheckSig : Msg → Stack → Maybe Stack

executeStackCheckSig msg [] = nothing

executeStackCheckSig msg (x :: []) = nothing

– pbk is on top of sig
executeStackCheckSig msg (pbk :: sig :: s)

= stackAuxFunction s (isSigned msg sig pbk)

–operational semantics for opCheckSig3
executeStackCheckSig3Aux : Msg → Stack → Maybe Stack

executeStackCheckSig3Aux msg [] = nothing

executeStackCheckSig3Aux mst

(x :: []) = nothing

executeStackCheckSig3Aux msg

(m :: k :: []) = nothing

executeStackCheckSig3Aux msg

(m :: k :: x :: []) = nothing

executeStackCheckSig3Aux msg

(m :: k :: x :: f :: []) = nothing

executeStackCheckSig3Aux msg

(m :: k :: x :: f :: l :: []) = nothing

executeStackCheckSig3Aux msg

(p1 :: p2 :: p3 :: s1 :: s2 :: s3 :: s) =

stackAuxFunction s

((isSigned msg s1 p1 ) ∧b

(isSigned msg s2 p2) ∧b

(isSigned msg s3 p3))

mutual

compareSigsMultiSigAux : (msg : Msg)

(restSigs restPubKeys : List N)

(topSig : N)(testRes : Bool) → Bool
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compareSigsMultiSigAux msg1

restSigs restPubKeys

topSig false

= compareSigsMultiSig msg1

(topSig :: restSigs) restPubKeys

– If the top publicKey doesn’t match
– the topSignature
– we throw away the top publicKey,
– but still need to find a match for the
– top publicKey in the remaining signatures

compareSigsMultiSigAux msg1

restSigs restPubKeys

topSig true

= compareSigsMultiSig msg1 restSigs restPubKeys

– If the top publicKey matches the topSignature
– we need to find matches between
– the remaining public Keys and signatures

compareSigsMultiSig : (msg : Msg)

(sigs pbks : List N) → Bool

compareSigsMultiSig msg []

pubkeys = true

– all signatures have found a match
– throw away remaing public keys

compareSigsMultiSig msg

(topSig :: sigs) [] = false

– for topSig we haven’t found a match
compareSigsMultiSig msg

(topSig :: sigs) (topPbk :: pbks)

= compareSigsMultiSigAux msg

sigs pbks topSig (isSigned msg topSig topPbk)

executeMultiSig3 : (msg : Msg)(pbks : List N)
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executeStackVerify etc..) (semanticBasicOperations.agda)

(numSigs : N)(st : Stack)(sigs : List N)

→ Maybe Stack

executeMultiSig3 msg1 pbks zero [] sigs = nothing

– need to fetch one extra because
– of a bug in bitcoin definition of MultiSig
executeMultiSig3 msg1 pbks zero (x :: restStack) sigs

= just (boolToNat

(compareSigsMultiSig msg1 sigs pbks)

:: restStack)

– We have found enough public Keys and
– signatures to compare
– We check using compareSigsMultiSig
– whether public Keys match the signatures
– and the result is pushed on the stack.
– Note that in BitcoinScript the public Keys
– and signatures need to be in the same order
–
executeMultiSig3 msg1 pbks

(suc numSigs) [] sigs = nothing

executeMultiSig3 msg1 pbks

(suc numSigs) (sig :: rest) sigs

= executeMultiSig3 msg1 pbks numSigs

rest (sig :: sigs)

executeMultiSig2 : (msg : Msg)(numPbks : N)

(st : Stack)(pbks : List N) → Maybe Stack

executeMultiSig2 msg _

[] pbks = nothing

executeMultiSig2 msg

zero (numSigs :: rest) pbks

= executeMultiSig3 msg pbks numSigs rest []

executeMultiSig2 msg (suc n)

(pbk :: rest) pbks
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= executeMultiSig2 msg n rest (pbk :: pbks)

executeMultiSig : Msg → Stack → Maybe Stack

executeMultiSig msg [] = nothing

executeMultiSig msg (numberOfPbks :: st)

= executeMultiSig2 msg numberOfPbks st []

A.8 Define J_Ks (semanticsStackInstructions.agda)

open import basicBitcoinDataType

module verificationStackScripts.semanticsStackInstructions

(param : GlobalParameters) where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.Maybe

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

–our libraries
open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib
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open import libraries.andLib

open import libraries.maybeLib

open import stack

open import semanticBasicOperations param

open import instructionBasic

open import verificationStackScripts.stackState

open import verificationStackScripts.sPredicate

open import verificationStackScripts.stackSemanticsInstructionsBasic param

J_Ks : InstructionBasic → StackState

→ Maybe StackState

J op Ks =

liftStackFun2StackState J op Kss

J_Ks+ : InstructionBasic

→ Maybe StackState → Maybe StackState

J op Ks+ t = t >>= J op Ks

J_K : BitcoinScriptBasic

→ StackState → Maybe StackState

J [] K = just

J op :: [] K = J op Ks

J op :: p K s

= J op Ks s >>= J p K

J_K+ : BitcoinScriptBasic

→ Maybe StackState → Maybe StackState

J p K+ s = s >>= J p K

validStackAux : (pbkh : N) →

(msg : Msg) → Stack → Bool
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validStackAux pkh msg[] [] = false

validStackAux pkh msg (pbk :: []) = false

validStackAux pkh msg (pbk :: sig :: s)

= hashFun pbk ==b pkh ∧b isSigned msg sig pbk

validStack : (pkh : N) → BStackStatePred

validStack pkh 〈 time , msg1 , stack1 〉

= validStackAux pkh msg1 stack1

A.9 Define stack predicate for verification (sPredicate.agda)

open import basicBitcoinDataType

module verificationStackScripts.sPredicate where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Sum

open import Data.Maybe

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality
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–our libraries
open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate

open import verificationStackScripts.stackState

BStackStatePred : Set

BStackStatePred = StackState → Bool

MaybeBStackStatePred : Set

MaybeBStackStatePred = Maybe StackState → Bool

– Stack Predicate
StackStatePred : Set1

StackStatePred = StackState → Set

predicateAfterPushingx : (n : N)(φ : StackStatePred)

→ StackStatePred

predicateAfterPushingx n φ 〈 time , msg1 , stack1 〉

= φ 〈 time , msg1 , n :: stack1 〉

predicateForTopElOfStack : (n : N) → StackStatePred

predicateForTopElOfStack n

〈 time , msg1 , [] 〉 = ⊥

predicateForTopElOfStack n
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〈 time , msg1 , x :: stack1 〉 = x ≡ n

_∧p_ : ( φ ψ : StackStatePred )

→ StackStatePred

(φ ∧p ψ ) s = φ s ∧ ψ s

⊥p : StackStatePred

⊥p s = ⊥

infixl 4 _]p_

_]p_ : (φ ψ : StackStatePred)

→ StackStatePred

(φ ]p ψ) s = φ s ] ψ s

lemma]pleft : (ψ ψ’ : StackStatePred)

(s : Maybe StackState)

→ (ψ +) s → ( (ψ ]p ψ’) +) s

lemma]pleft ψ ψ’ (just x) p = inj1 p

lemma]pright : (ψ ψ’ : StackStatePred)

(s : Maybe StackState)

→ (ψ’ +) s → (( ψ ]p ψ’ ) + ) s

lemma]pright ψ ψ’ (just x) p = inj2 p

lemma]pinv : (ψ ψ’ : StackStatePred)

(A : Set) (s : Maybe StackState)

→ ((ψ +) s → A)

→ ((ψ’ +) s → A)

→ ((ψ ]p ψ’) +) s → A

lemma]pinv ψ ψ’ A (just x) p q (inj1 x1) = p x1

lemma]pinv ψ ψ’ A (just x) p q (inj2 y) = q y
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stackPred2SPred : StackPredicate → StackStatePred

stackPred2SPred f 〈 time , msg1 , stack1 〉

= f time msg1 stack1

stackPred2SPredBool : ( Time → Msg → Stack → Bool )

→ ( StackState → Bool )

stackPred2SPredBool f

〈 currentTime1 , msg1 , stack1 〉

= f currentTime1 msg1 stack1

topElStack=0 : StackStatePred

topElStack=0 〈 time , msg1 , [] 〉 = ⊥

topElStack=0 〈 time , msg1 , zero :: stack1 〉 = >

topElStack=0 〈 time , msg1 , suc x :: stack1 〉 = ⊥

truePred : StackPredicate → StackStatePred

truePred φ = stackPred2SPred (truePredaux φ )

falsePredaux : StackPredicate → StackPredicate

falsePredaux φ time msg [] = ⊥

falsePredaux φ time msg (zero :: st) = φ time msg st

falsePredaux φ time msg (suc x :: st) = ⊥

falsePred : StackPredicate → StackStatePred

falsePred φ = stackPred2SPred (falsePredaux φ )

liftAddingx : (n : N)( φ : StackPredicate )

→ StackStatePred

liftAddingx n φ =

predicateAfterPushingx n (stackPred2SPred φ )

acceptState : StackStatePred

acceptState = stackPred2SPred acceptStates
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A.10 Define stack predicate (stackPredicate.agda)

module stackPredicate where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Sum

open import Data.Maybe

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import basicBitcoinDataType

StackPredicate : Set1

StackPredicate = Time → Msg → Stack → Set
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_]sp_ : (φ ψ : StackPredicate) → StackPredicate

(φ ]sp ψ) t m st = φ t m st ] ψ t m st

_∧sp_ : ( φ ψ : StackPredicate ) → StackPredicate

(φ ∧sp ψ ) t m s = φ t m s ∧ ψ t m s

truePredaux : StackPredicate → StackPredicate

truePredaux φ time msg [] = ⊥

truePredaux φ time msg (zero :: st) = ⊥

truePredaux φ time msg (suc x :: st)

= φ time msg st

acceptStates : StackPredicate

acceptStates time msg1 [] = ⊥

acceptStates time msg1 (x :: stack1)

= NotFalse x

A.11 Define hoare triple (stackHoareTriple.agda)

open import basicBitcoinDataType

module verificationStackScripts.stackHoareTriple (param : GlobalParameters) where

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Sum

open import Data.Maybe

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)
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open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

– our libraries
open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import libraries.emptyLib

open import libraries.equalityLib

open import stack

open import instructionBasic

open import verificationStackScripts.stackState

open import verificationStackScripts.sPredicate

open import verificationStackScripts.semanticsStackInstructions param

open import verificationStackScripts.stackVerificationLemmas param

_<_>_ : BStackStatePred → BitcoinScriptBasic

→ BStackStatePred → Set

φ < p > ψ = (s : StackState)

→ True (φ s) → True( (ψ +b) ( J p K s))
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weakestPreCond : (Postcond : BStackStatePred)

→ BitcoinScriptBasic → BStackStatePred

weakestPreCond ψ p state = (ψ +b) ( J p K state)

record <_>if f_<_> (φ : StackStatePred)

(p : BitcoinScriptBasic)(ψ : StackStatePred)

: Set where

constructor hoare3

field

==> : (s : StackState)

→ φ s → (ψ +) (J p K s )

<== : (s : StackState)

→ (ψ +) (J p K s ) → φ s

open <_>if f_<_> public

record _<=>p_ (φ ψ : StackStatePred) : Set where

constructor equivp

field

==>e : (s : StackState)

→ φ s → ψ s

<==e : (s : StackState)

→ ψ s → φ s

open _<=>p_ public

refl<=> : (φ : StackStatePred)

→ φ <=>p φ

refl<=> φ .==>e s x = x

refl<=> φ .<==e s x = x

sym<=> : (φ ψ : StackStatePred)

→ φ <=>p ψ
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→ ψ <=>p φ

sym<=> φ ψ (equivp ==>e1 <==e1) .==>e = <==e1

sym<=> φ ψ (equivp ==>e1 <==e1) .<==e = ==>e1

trans<=> : (φ ψ ψ’ : StackStatePred)

→ φ <=>p ψ

→ ψ <=>p ψ’

→ φ <=>p ψ’

trans<=> φ ψ ψ’ (equivp ==>e1 <==e1)

(equivp ==>e2 <==e2) .==>e s p

= ==>e2 s (==>e1 s p)

trans<=> φ ψ ψ’ (equivp ==>e1 <==e1)

(equivp ==>e2 <==e2) .<==e s p

= <==e1 s (<==e2 s p)

]HoareLemma1 : {φ ψ ψ’ : StackStatePred}

(p : BitcoinScriptBasic)

→ < φ >if f p < ψ >

→ < ⊥p >if f p < ψ’ >

→ < φ >if f p < ψ ]p ψ’ >

]HoareLemma1 {φ } {ψ} {ψ’} p (hoare3 c1 c2)

c .==> s q = lemma]pleft ψ ψ’ (J p K s) (c1 s q)

]HoareLemma1 {φ } {ψ} {ψ’}

p (hoare3 ==>1 <==1) (hoare3 ==>2 <==2) .<== s q

= let

r : (ψ’ +) (J p K s) → φ s

r x = efq (<==2 s x)

in lemma]pinv ψ ψ’ (φ s) (J p K s) (<==1 s) r q

]HoareLemma2 : {φ φ ’ ψ ψ’ : StackStatePred}

(p : BitcoinScriptBasic)

→ < φ >if f p < ψ >
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→ < φ ’ >if f p < ψ’ >

→ < φ ]p φ ’ >if f p < ψ ]p ψ’ >

]HoareLemma2 {φ } {φ ’} {ψ} {ψ’} prog (hoare3 ==>1 <==1)

(hoare3 ==>2 <==2) .==> s (inj1 q)

= lemma]pleft ψ ψ’ (J prog K s) (==>1 s q)

]HoareLemma2 {φ } {φ ’} {ψ} {ψ’} prog (hoare3 ==>1 <==1)

(hoare3 ==>2 <==2) .==> s (inj2 q)

= lemma]pright ψ ψ’ (J prog K s) (==>2 s q)

]HoareLemma2 {φ } {φ ’} {ψ} {ψ’} prog (hoare3 ==>1 <==1)

(hoare3 ==>2 <==2) .<== s q

= let

q1 : (ψ +) (J prog K s) → φ s ] φ ’ s

q1 x = inj1 (<==1 s x)

q2 : (ψ’ +) (J prog K s) → φ s ] φ ’ s

q2 x = inj2 (<==2 s x)

in lemma]pinv ψ ψ’ ((φ ]p φ ’) s) (J prog K s) q1 q2 q

predEquivr : (φ ψ ψ’ : StackStatePred)

(prog : BitcoinScriptBasic)

→ < φ >if f prog < ψ >

→ ψ <=>p ψ’

→ < φ >if f prog < ψ’ >

predEquivr φ ψ ψ’ prog (hoare3 ==>1 <==1)

(equivp ==>e <==e) .==> s p1

= liftPredtransformerMaybe ψ ψ’ ==>e (J prog K s)

(==>1 s p1)

predEquivr φ ψ ψ’ prog (hoare3 ==>1 <==1)

(equivp ==>e <==e) .<== s p1

= let

subgoal : (ψ +) (J prog K s)

subgoal = liftPredtransformerMaybe ψ’ ψ <==e (J prog K s) p1

goal : φ s

goal = <==1 s subgoal

309



A. Full Agda code for chapter Verifying Bitcoin Script with local instructions

in goal

predEquivl : (φ φ ’ ψ : StackStatePred)

(prog : BitcoinScriptBasic)

→ φ <=>p φ ’

→ < φ ’ >if f prog < ψ >

→ < φ >if f prog < ψ >

predEquivl φ φ ’ ψ prog (equivp ==>e <==e)

(hoare3 ==>1 <==1) .==> s p1

= let

goal : (ψ +) (J prog K s)

goal = ==>1 s (==>e s p1)

in goal

predEquivl φ φ ’ ψ prog (equivp ==>e <==e)

(hoare3 ==>1 <==1) .<== s p1

= let

subgoal : φ ’ s

subgoal = <==1 s p1

goal : φ s

goal = <==e s subgoal

in goal

equivPreds] : (φ ψ ψ’ : StackStatePred)

→ (φ ∧p (ψ ]p ψ’)) <=>p ((φ ∧p ψ ) ]p (φ ∧p ψ’))

equivPreds] φ ψ ψ’ .==>e s (conj and4 (inj1 x))

= inj1 (conj and4 x)

equivPreds] φ ψ ψ’ .==>e s (conj and4 (inj2 y))

= inj2 (conj and4 y)

equivPreds] φ ψ ψ’ .<==e s (inj1 (conj and4 and5))

= conj and4 (inj1 and5)

equivPreds] φ ψ ψ’ .<==e s (inj2 (conj and4 and5))

= conj and4 (inj2 and5)

equivPreds]Rev : (φ ψ ψ’ : StackStatePred)
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→ ((φ ∧p ψ ) ]p (φ ∧p ψ’)) <=>p (φ ∧p (ψ ]p ψ’))

equivPreds]Rev φ ψ ψ’ .==>e s (inj1 (conj and4 and5))

= conj and4 (inj1 and5)

equivPreds]Rev φ ψ ψ’ .==>e s (inj2 (conj and4 and5))

= conj and4 (inj2 and5)

equivPreds]Rev φ ψ ψ’ .<==e s (conj and4 (inj1 x))

= inj1 (conj and4 x)

equivPreds]Rev φ ψ ψ’ .<==e s (conj and4 (inj2 y))

= inj2 (conj and4 y)

_++ho_ : {φ ψ ρ : StackStatePred}{p q : BitcoinScriptBasic}

→ < φ >if f p < ψ > → < ψ >if f q < ρ > → < φ >if f p ++ q < ρ >

_++ho_ {φ } {ψ} {ρ} {p} {q} pproof qproof .==>

= bindTransformer-toSequence φ ψ ρ p q (pproof .==>)

(qproof .==>)

_++ho_ {φ } {ψ} {ρ} {p} {q} pproof qproof .<==

= bindTransformer-fromSequence φ ψ ρ p q (pproof .<==)

(qproof .<==)

_++hoeq_ : {φ ψ ρ : StackStatePred}{p : BitcoinScriptBasic}

→ < φ >if f p < ψ > → < ψ >if f [] < ρ > → < φ >if f p < ρ >

_++hoeq_ {φ } {ψ} {ρ} {p} pproof qproof .==>

= bindTransformer-toSequenceeq φ ψ ρ p (pproof .==>)

(qproof .==>)

_++hoeq_ {φ } {ψ} {ρ} {p} pproof qproof .<==

= bindTransformer-fromSequenceeq φ ψ ρ p (pproof .<==)

(qproof .<==)

module HoareReasoning where

infix 3 _‚p

infixr 2 step-<><> step-<><>e step-<=>

_‚p : ∀ (φ : StackStatePred)

→ < φ >if f [] < φ >

311



A. Full Agda code for chapter Verifying Bitcoin Script with local instructions

(φ ‚p) .==> s p = p

(φ ‚p) .<== s p = p

step-<><> : ∀ {φ ψ ρ : StackStatePred}

(p : BitcoinScriptBasic){q : BitcoinScriptBasic}

→ < φ >if f p < ψ >

→ < ψ >if f q < ρ >

→ < φ >if f p ++ q < ρ >

step-<><> {φ } {ψ} {ρ} p φpψ ψqρ = φpψ ++ho ψqρ

step-<><>e : ∀ {φ ψ ρ : StackStatePred}

(p : BitcoinScriptBasic)

→ < φ >if f p < ψ >

→ < ψ >if f [] < ρ >

→ < φ >if f p < ρ >

step-<><>e p φpψ ψqρ = φpψ ++hoeq ψqρ

step-<=> : ∀ {φ ψ ρ : StackStatePred}

{p : BitcoinScriptBasic}

→ φ <=>p ψ

→ < ψ >if f p < ρ >

→ < φ >if f p < ρ >

step-<=> {φ } {ψ} {ρ} {p} φψ ψqρ

= predEquivl φ ψ ρ p φψ ψqρ

syntax step-<><> {φ } p φψ ψρ = φ <><>〈 p 〉〈 φψ 〉 ψρ

syntax step-<><>e {φ } p φψ ψρ = φ <><>〈 p 〉〈 φψ 〉e ψρ

syntax step-<=> {φ } φψ ψρ = φ <=>〈 φψ 〉 ψρ
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open HoareReasoning public

⊥Lemmap : (p : BitcoinScriptBasic)

→ < ⊥p >if f p < ⊥p >

⊥Lemmap [] .==> s ()

⊥Lemmap p .<== s p’ = liftToMaybeLemma⊥ (J p K s) p’

lemmaHoare[] : {φ : StackStatePred}

→ < φ >if f [] < φ >

lemmaHoare[] .==> s p = p

lemmaHoare[] .<== s p = p

– a generic Hoare triple,
– which refers instead of an instruction to the
– state transformer (f will be equal to J instr Ks )
record <_>ssgen_<_> (φ : StackStatePred)

( f : StackState → Maybe StackState)

(ψ : StackStatePred) : Set where

constructor hoareTripleSSGen

field

==>g : (s : StackState)

→ φ s → (ψ +) ( f s )

<==g : (s : StackState)

→ (ψ +) ( f s ) → φ s

open <_>ssgen_<_> public

lemmaTransferHoareTripleGen : (φ ψ : StackStatePred)

( f g : StackState → Maybe StackState)
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(eq : (s : StackState) → f s ≡ g s)

→ < φ >ssgen f < ψ >

→ < φ >ssgen g < ψ >

lemmaTransferHoareTripleGen φ ψ f g eq

(hoareTripleSSGen ==>g1 <==g1) .==>g s x1

= transfer (λ x → (ψ +) x) (eq s) (==>g1 s x1)

lemmaTransferHoareTripleGen φ ψ f g eq

(hoareTripleSSGen ==>g1 <==g1) .<==g s x1

= <==g1 s (transfer (λ x → (ψ +) x) (sym (eq s)) x1)

A.12 Define Maybe lift (maybelib.agda)

module libraries.maybeLib where

open import Data.Maybe

open import Data.Bool

open import Data.Empty

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import Relation.Nullary

liftJustIsIdLem : {A : Set} → (B : Maybe A → Set)

→ (ma : Maybe A) → B ma → B (ma >>= just )

liftJustIsIdLem B nothing b = b

liftJustIsIdLem B (just x) b = b

liftJustIsIdLem2 : {A : Set} → (B : Maybe A → Set)

→ (ma : Maybe A) → B (ma >>= just) → B ma

liftJustIsIdLem2 B nothing b = b

liftJustIsIdLem2 B (just x) b = b
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liftPred2Maybe : {A : Set}→ (A → Set)

→ Maybe A → Set

liftPred2Maybe p nothing = ⊥

liftPred2Maybe p (just x) = p x

lemmaEqualLift2Maybe : {A : Set}

( f f ’ : A → Maybe A)(cor : (a : A) → f a ≡ f ’ a)

→ (a : Maybe A) → (a >>= f ) ≡ (a >>= f ’)

lemmaEqualLift2Maybe f f ’ p (just x) = p x

lemmaEqualLift2Maybe f f ’ p nothing = refl

liftJustEqLem : {A : Set}(s : Maybe A)

→ (s >>= just) ≡ s

liftJustEqLem nothing = refl

liftJustEqLem (just x) = refl

liftJustEqLem2 : {A : Set}(s : Maybe A)

→ s ≡ (s >>= just)

liftJustEqLem2 nothing = refl

liftJustEqLem2 (just x) = refl

_+ : {A : Set} → (A → Set)

→ Maybe A → Set

(P +) nothing = ⊥

(P +) (just x) = P x

_+b : {A : Set} → (A → Bool)

→ (Maybe A → Bool)

(p +b) nothing = false

(p +b) (just x) = p x
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predicateLiftToMaybe : {A : Set}(P : A → Set)(s : A)

→ P s → (P +) (just s)

predicateLiftToMaybe P s a = a

liftPredtransformerMaybe : {A : Set}

(φ ψ : A → Set)

( f : (s : A) → φ s → ψ s)

→ (s : Maybe A) → (φ +) s → (ψ +) s

liftPredtransformerMaybe φ ψ f (just s) p = f s p

liftToMaybeLemma⊥ : {S : Set}

→ (s : Maybe S) → ¬ ( (λ s → ⊥ ) +) s

liftToMaybeLemma⊥ nothing p = p

liftToMaybeLemma⊥ (just x) p = p

A.13 Example of Automatically Generated Weakest

Preconditions (exampleGeneratedWeakPreCond.agda)

open import basicBitcoinDataType

module exampleGeneratedWeakPreCond (param : GlobalParameters) where

open import libraries.listLib

open import Data.List.Base

open import libraries.natLib

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Maybe

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )
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open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head; [_])

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

–our libraries
open import libraries.andLib

open import libraries.maybeLib

open import libraries.boolLib

open import stack

open import stackPredicate

open import semanticBasicOperations param

open import instructionBasic

open import verificationP2PKHbasic param

open import verificationStackScripts.stackHoareTriple param

open import verificationStackScripts.stackState

open import verificationStackScripts.sPredicate

open import verificationStackScripts.semanticsStackInstructions param

open import verificationStackScripts.stackVerificationLemmas param

weakestPreConds : BitcoinScriptBasic

→ StackStatePred → StackStatePred

weakestPreConds p φ s = (φ +) (J p K s)

testprog : BitcoinScriptBasic

testprog = opDrop :: opDrop :: [ opDrop ]

weakestPreCondTestProg : StackStatePred

weakestPreCondTestProg = weakestPreConds testprog acceptState
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weakestPreCondTestProgNormalised : StackStatePred

weakestPreCondTestProgNormalised s =

(stackPred2SPred acceptStates +)

(stackState2WithMaybe

〈 currentTime s , msg s , executeStackDrop (stack s) 〉

>>= (λ s1 → stackState2WithMaybe

〈 currentTime s1 , msg s1 , executeStackDrop (stack s1) 〉

>>= liftStackFun2StackState (λ time1 msg1 → executeStackDrop)))

A.14 Demo for library (demoEqualityReasoning.agda)

open import basicBitcoinDataType

module paperTypes2021PostProceed.demoEqualityReasoning (param : GlobalParameters) where

open import Data.List.Base hiding (_++_ )

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_ )

open import Data.Sum

open import Data.Unit

open import Data.Empty

open import Data.Maybe

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head; [_])

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality
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–our libraries
open import libraries.listLib

open import libraries.emptyLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.equalityLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate

open import semanticBasicOperations param

open import instructionBasic

open import verificationMultiSig param

open import verificationStackScripts.semanticsStackInstructions param

open import verificationStackScripts.stackVerificationLemmas param

open import verificationStackScripts.stackHoareTriple param

open import verificationStackScripts.sPredicate

open import verificationStackScripts.hoareTripleStackBasic param

open import verificationStackScripts.stackState

open import verificationStackScripts.stackSemanticsInstructionsBasic param

open import verificationStackScripts.verificationMultiSigBasic param

postulate

precondition : StackStatePred

postcondition : StackStatePred

intermediateCond1 : StackStatePred

intermediateCond2 : StackStatePred

intermediateCond3 : StackStatePred
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prog1 : BitcoinScriptBasic

prog2 prog3 : BitcoinScriptBasic

proof1 : < precondition >if f prog1 < intermediateCond1 >

proof2 : < intermediateCond1 >if f prog2 < intermediateCond2 >

proof3 : intermediateCond2 <=>p intermediateCond3

proof4 : < intermediateCond3 >if f prog3 < postcondition >

theorem :

< precondition >if f prog1 ++ (prog2 ++ prog3) < postcondition >

theorem =

precondition <><>〈 prog1 〉〈 proof1 〉

intermediateCond1 <><>〈 prog2 〉〈 proof2 〉

intermediateCond2 <=>〈 proof3 〉

intermediateCond3 <><>〈 prog3 〉〈 proof4 〉e postcondition ‚p

A.15 stack Verification P2PKH (stackVerificationP2PKH.agda)

open import basicBitcoinDataType

module verificationStackScripts.stackVerificationP2PKH (param : GlobalParameters) where

open import libraries.listLib

open import Data.List.Base

open import libraries.natLib

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )
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open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head; [_])

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

–our libraries
open import libraries.andLib

open import libraries.maybeLib

open import libraries.boolLib

open import stack

open import stackPredicate

open import semanticBasicOperations param

open import instructionBasic

open import verificationP2PKHbasic param

open import verificationStackScripts.stackHoareTriple param

open import verificationStackScripts.stackState

open import verificationStackScripts.sPredicate

open import verificationStackScripts.semanticsStackInstructions param

open import verificationStackScripts.stackVerificationLemmas param

– note accept_0 is the same as acceptState
accept-0 : StackStatePred

accept-0 = stackPred2SPred accept-0Basic

accept1 : StackStatePred

accept1 = stackPred2SPred accept1s

accept2 : StackStatePred

accept2 = stackPred2SPred accept2s
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accept3 : StackStatePred

accept3 = stackPred2SPred accept3s

– checked needs to be pbkh not pbk
accept4 : N → StackStatePred

accept4 pbkh =

stackPred2SPred (accept4s pbkh)

– checked needs to be pbkh not pbk
accept5 : N → StackStatePred

accept5 pbkh =

stackPred2SPred (accept5s pbkh)

– checked needs to be pbkh not pbk
wPreCondP2PKH : (pbkh : N) → StackStatePred

wPreCondP2PKH pbkh =

stackPred2SPred (wPreCondP2PKHs pbkh)

– we use pbk and not pbkh because that
– is what is provided by the unlocking script
correct-opCheckSig-to : (s : StackState)

→ accept1 s → (accept-0 +) (J opCheckSig Ks s )

correct-opCheckSig-to

〈 time , msg1 , pbk :: sig :: st 〉 p

= boolToNatNotFalseLemma (isSigned msg1 sig pbk) p

correct-opCheckSig-from : (s : StackState)

→ (accept-0 +) (J opCheckSig Ks s ) → accept1 s

correct-opCheckSig-from

〈 time , msg1 , pbk :: sig :: stack1 〉 p

= boolToNatNotFalseLemma2 (isSigned msg1 sig pbk) p

correct-opCheckSig :
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< accept1 >if f ([ opCheckSig ]) < acceptState >

correct-opCheckSig .==>

= correct-opCheckSig-to

correct-opCheckSig .<==

= correct-opCheckSig-from

correct-opVerify-to : (s : StackState)

→ accept2 s → (accept1 +) (J opVerify Ks s )

correct-opVerify-to

〈 time , msg1 , suc x :: x1 :: x2 :: stack1 〉 p = p

correct-opVerify-from : (s : StackState)

→ (accept1 +) (J opVerify Ks s ) → accept2 s

correct-opVerify-from

〈 time , msg1 , suc x :: x1 :: x2 :: stack1 〉 p = p

correct-opVerify : < accept2 >if f ([ opVerify ]) < accept1 >

correct-opVerify .==>

= correct-opVerify-to

correct-opVerify .<==

= correct-opVerify-from

correct-opEqual-to : (s : StackState)

→ accept3 s → (accept2 +) (J opEqual Ks s )

correct-opEqual-to

〈 time , msg1 , pbk1 :: .pbk1 :: pbk2 :: sig :: [] 〉

(conj refl checkSig) rewrite ( lemmaCompareNat pbk1 )

= checkSig

correct-opEqual-to

〈 time , msg1 , pbk1 :: .pbk1 :: pbk2 :: sig

:: x :: rest 〉 (conj refl checkSig)

rewrite ( lemmaCompareNat pbk1 ) = checkSig
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correct-opEqual-from : (s : StackState)

→ (accept2 +) (J opEqual Ks s ) → accept3 s

correct-opEqual-from

〈 time , msg1 , x :: x1 :: pbk

:: sig :: stack1 〉 p rewrite

( lemmaCorrect3From x x1 pbk sig time msg1 p )

= let

q : True (isSigned msg1 sig pbk)

q = correct3Aux2

(compareNaturals x x1) pbk sig stack1 time msg1 p

in (conj refl q)

correct-opEqual : < accept3 >if f

([ opEqual ]) < accept2 >

correct-opEqual .==> = correct-opEqual-to

correct-opEqual .<== = correct-opEqual-from

– needs to be pbkh since opPush refers to it
correct-opPush-to : ( pbkh : N ) → (s : StackState)

→ accept4 pbkh s → (accept3 +) (J opPush pbkh Ks s )

correct-opPush-to pbkh 〈 currentTime1 , msg1 ,

.pbkh :: x1 :: x2 :: stack1 〉 (conj refl and4)

= conj refl and4

correct-opPush-from : ( pbkh : N ) → (s : StackState)

→ (accept3 +) (J opPush pbkh Ks s )

→ accept4 pbkh s

correct-opPush-from pbkh

〈 currentTime1 , msg1 ,

.pbkh :: x1 :: x2 :: stack1 〉

(conj refl and4) = conj refl and4
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correct-opPush :( pbkh : N )

→ < accept4 pbkh >if f

([ opPush pbkh ]) < accept3 >

correct-opPush pbkh .==>

= correct-opPush-to pbkh

correct-opPush pbkh .<==

= correct-opPush-from pbkh

– needs to be pbkh since accept4 and accept5 refer to pbkh
correct-opHash-to : (pbkh : N )

→ (s : StackState) → accept5 pbkh s

→ (( accept4 pbkh ) +) (J opHash Ks s )

correct-opHash-to pbkh

〈 time , msg1 , x :: x1 :: x2 :: stack1 〉

(conj refl checkSig) = (conj refl checkSig)

correct-opHash-from : ( pbkh : N )

→ (s : StackState)

→ (( accept4 pbkh) +) (J opHash Ks s )

→ accept5 pbkh s

correct-opHash-from .(hashFun x)

〈 time , msg1 , x :: x1 :: x2 :: stack1 〉

(conj refl checkSig) = conj refl checkSig

correct-opHash :( pbkh : N )

→ < accept5 pbkh >if f

([ opHash ]) < accept4 pbkh >

correct-opHash pbkh .==>

= correct-opHash-to pbkh

correct-opHash pbkh .<==

= correct-opHash-from pbkh
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– needs to be pbkh since accept5 refer to pbkh
correct-opDup-to : (pbkh : N )

→ (s : StackState)

→ wPreCondP2PKH pbkh s

→ (( accept5 pbkh ) +) (J opDup Ks s )

correct-opDup-to pbkh

〈 time , msg1 , x :: x1 :: [] 〉 p

= p

correct-opDup-to pbkh

〈 time , msg1 , x :: x1 :: x2 :: stack1 〉 p

= p

correct-opDup-from : ( pbkh : N )

→ (s : StackState)

→ (( accept5 pbkh) +) (J opDup Ks s )

→ wPreCondP2PKH pbkh s

correct-opDup-from pbkh

〈 time , msg1 , x :: x1 :: stack1 〉 p = p

correct-opDup :( pbkh : N )

→ < wPreCondP2PKH pbkh >if f

([ opDup ]) < accept5 pbkh >

correct-opDup pbkh .==>

= correct-opDup-to pbkh

correct-opDup pbkh .<==

= correct-opDup-from pbkh

– P2PKH script refers to pbkh not pbk
scriptP2PKHb : (pbkh : N) → BitcoinScriptBasic

scriptP2PKHb pbkh

= opDup :: opHash

:: (opPush pbkh) :: opEqual

:: opVerify :: [ opCheckSig ]
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–main theorem for P2PKH
theoremP2PKH : (pbkh : N)

→ < wPreCondP2PKH pbkh >if f

scriptP2PKHb pbkh < acceptState >

theoremP2PKH pbkh =

wPreCondP2PKH pbkh <><>〈 [ opDup ]

〉〈 correct-opDup pbkh 〉

accept5 pbkh <><>〈

[ opHash ]

〉〈 correct-opHash pbkh 〉

accept4 pbkh

<><>〈 [ opPush pbkh ]

〉〈 correct-opPush pbkh 〉

accept3

<><>〈 [ opEqual ]

〉〈 correct-opEqual 〉

accept2

<><>〈 [ opVerify ]

〉〈 correct-opVerify 〉

accept1

<><>〈 [ opCheckSig ]

〉〈 correct-opCheckSig 〉e

acceptState ‚p

A.16 verification P2PKH basic (verificationP2PKHbasic.agda)

open import basicBitcoinDataType

module verificationP2PKHbasic (param : GlobalParameters) where

open import libraries.listLib

open import Data.List.Base
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open import libraries.natLib

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head )

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.andLib

open import libraries.maybeLib

open import libraries.boolLib

open import stack

open import stackPredicate

open import instruction

open import instructionBasic

open import semanticBasicOperations param

instruction-1 : InstructionBasic

instruction-1 = opCheckSig

instruction-2 : InstructionBasic

instruction-2 = opVerify

instruction-3 : InstructionBasic

instruction-3 = opEqual
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instruction-4 : N → InstructionBasic

instruction-4 pbkh = opPush pbkh

instruction-5 : InstructionBasic

instruction-5 = opHash

instruction-6 : InstructionBasic

instruction-6 = opDup

accept-0Basic : StackPredicate

accept-0Basic = acceptStates

accept1s : StackPredicate

accept1s time m [] = ⊥

accept1s time m (sig :: []) = ⊥

accept1s time m ( pbk :: sig :: st)

= IsSigned m sig pbk

accept2sCore : Time → Msg → N → N → N → Set

accept2sCore time m zero pbk sig = ⊥

accept2sCore time m (suc x) pbk sig

= IsSigned m sig pbk

accept2s : StackPredicate

accept2s time m [] = ⊥

accept2s time m (x :: []) = ⊥

accept2s time m (x :: x1 :: []) = ⊥

accept2s time m (x :: pbk :: sig :: rest)

= accept2sCore time m x pbk sig

accept3s : StackPredicate

accept3s time m [] = ⊥

accept3s time m (x :: []) = ⊥

accept3s time m (x :: x1 :: [])
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= ⊥

accept3s time m (x :: x1 :: x2 :: [])

= ⊥

accept3s

time m (pbkh2 :: pbkh1 :: pbk :: sig :: rest)

= (pbkh2 ≡ pbkh1) ∧ IsSigned m sig pbk

accept4s : ( pbkh1 : N ) → StackPredicate

accept4s pbkh1 time m [] = ⊥

accept4s pbkh1 time m (x :: []) = ⊥

accept4s pbkh1 time m (x :: x1 :: [])

= ⊥

accept4s

pbkh1 time m ( pbkh2 :: pbk :: sig :: st)

= (pbkh2 ≡ pbkh1) ∧ IsSigned m sig pbk

accept5s : ( pbkh1 : N ) → StackPredicate

accept5s pbkh1 time m [] = ⊥

accept5s pbkh1 time m (x :: []) = ⊥

accept5s pbkh1 time m (x :: x1 :: [])

= ⊥

accept5s

pbkh1 time m ( pbk1 :: pbk2 :: sig :: st)

= (hashFun pbk1 ≡ pbkh1) ∧ IsSigned m sig pbk2

wPreCondP2PKHs : (pbkh : N ) → StackPredicate

wPreCondP2PKHs pbkh time m []

= ⊥

wPreCondP2PKHs pbkh time m (x :: [])

= ⊥

wPreCondP2PKHs pbkh time m ( pbk :: sig :: st) =

(hashFun pbk ≡ pbkh ) ∧ IsSigned m sig pbk
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correct3Aux1 : (x : N)(rest : List N)

(time : Time)(msg : Msg)

→ accept2s time msg (x :: rest)

→ isTrueNat x

correct3Aux1 zero (zero :: [])

time msg accept = accept

correct3Aux1 zero (zero :: x :: rest)

time msg accept = accept

correct3Aux1 zero (suc x :: [])

time msg accept = accept

correct3Aux1 zero (suc x :: x1 :: rest)

time msg accept = accept

correct3Aux1 (suc x) (x1 :: rest)

time msg accept = tt

correct3Aux2 : ( x pbk sig : N )

( rest : List N)(time : Time)(m : Msg)

→ accept2s time m (x :: pbk :: sig :: rest)

→ IsSigned m sig pbk

correct3Aux2 (suc x) pubkey

sig rest time m accept = accept

lemmaCorrect3From1 : (x z t : N)

(time : Time )(m : Msg)

→ accept2sCore time m x z t → isTrueNat x

lemmaCorrect3From1 (suc x) z t time m p = tt

lemmaCorrect3From : (x y z t : N)

(time : Time)(m : Msg)

→ accept2sCore time m

(compareNaturals x y) z t → x ≡ y
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lemmaCorrect3From x y z t time m p

= compareNatToEq x y

(lemmaCorrect3From1 (compareNaturals x y)

z t time m p)

script-1-b : BitcoinScriptBasic

script-1-b = opCheckSig :: []

script-2-b : BitcoinScriptBasic

script-2-b = opVerify :: script-1-b

script-3-b : BitcoinScriptBasic

script-3-b = opEqual :: script-2-b

script-4-b : N → BitcoinScriptBasic

script-4-b pbkh = opPush pbkh :: script-3-b

script-5-b : N → BitcoinScriptBasic

script-5-b pbkh = opHash :: script-4-b pbkh

script-6-b : N → BitcoinScriptBasic

script-6-b pbkh = opDup :: script-5-b pbkh

script-7-b : N → BitcoinScriptBasic

script-7-b pbkh = opMultiSig :: script-6-b pbkh

script-7’-b : (pbkh pbk1 pbk2 : N)

→ BitcoinScriptBasic

script-7’-b pbkh pbk1 pbk2

= opMultiSig :: script-6-b pbkh

script-1 : BitcoinScript

script-1 = basicBScript2BScript script-1-b

script-2 : BitcoinScript
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script-2 = basicBScript2BScript script-2-b

script-3 : BitcoinScript

script-3 = basicBScript2BScript script-3-b

script-4 : N → BitcoinScript

script-4 pbk = basicBScript2BScript

(script-4-b pbk)

script-5 : N → BitcoinScript

script-5 pbk = basicBScript2BScript

(script-5-b pbk)

script-6 : N → BitcoinScript

script-6 pbk = basicBScript2BScript

(script-6-b pbk)

script-7 : N → BitcoinScript

script-7 pbk = basicBScript2BScript

(script-7-b pbk)

script-7’ : (pbkh pbk1 pbk2 : N) → BitcoinScript

script-7’ pbkh pbk1 pbk2

= basicBScript2BScript (script-7’-b pbkh pbk1 pbk2)

instructionsBasic : (pbkh : N) (n : N)

→ n ≤ 5 → InstructionBasic

instructionsBasic pbkh 0 _ = opCheckSig

instructionsBasic pbkh 1 _ = opVerify

instructionsBasic pbkh 2 _ = opEqual

instructionsBasic pbkh 3 _ = opPush pbkh

instructionsBasic pbkh 4 _ = opHash

instructionsBasic pbkh 5 _ = opDup

scriptP2PKH : (pbkh : N) → BitcoinScript
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scriptP2PKH pbkh = opDup :: opHash

:: (opPush pbkh) :: opEqual

:: opVerify :: opCheckSig :: []

weakestPreConditionP2PKHs :

(pbkh : N) → StackPredicate

weakestPreConditionP2PKHs = wPreCondP2PKHs

A.17 stack Verification P2PKH symbolic execution (stackVerifi-

cationP2PKHsymbolicExecutionPaperVersion.agda)

open import basicBitcoinDataType

module paperTypes2021PostProceed.stackVerificationP2PKHsymbolicExecutionPaperVersion

(param : GlobalParameters) where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Sum

open import Data.Bool hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head ; [_] )

open import Data.Maybe

open import Relation.Nullary

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality
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–our libraries
open import libraries.listLib

open import libraries.equalityLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.emptyLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate

open import semanticBasicOperations param

open import hoareTripleStack param

open import instruction

open import verificationStackScripts.stackState

open import verificationStackScripts.sPredicate

open import verificationStackScripts.stackHoareTriple param

open import verificationStackScripts.stackVerificationLemmas param

open import verificationStackScripts.stackSemanticsInstructionsBasic param

open import verificationStackScripts.semanticsStackInstructions param

open import verificationStackScripts.stackVerificationP2PKH param

open import verificationStackScripts.stackVerificationP2PKHindexed param

————————————————————-
– This file explores the symoblic
– execution of the P2PKH program
– in order to determine the case distinction
– and extract a program from it
–
– This is done by postulating parameters
– and applying J scriptP2PKHb pbkh Ks

– to parameters
——————————————————————————–

private
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postulate time1 : Time

postulate msg1 : Msg

postulate stack1 : Stack

postulate pbkh : N

postulate pbk : N

postulate x1 : N

postulate sig1 : N

{- We first create a symbolic
execution of the scriptP2PKHb pbkh to see what kind
of case distinction happens -}

check = scriptP2PKHb

testP2PKHscript : Maybe Stack

testP2PKHscript =

J scriptP2PKHb pbkh Ks time1 msg1 stack1

–J scriptP2PKHb pbkh Ks time1 msg1 stack

{- evaluation gives

executeStackDup stack1 >>=

(λ stack2 →
executeOpHash stack2 >>=

(λ stack3 →
executeStackEquality (pbkh :: stack3) >>=

(λ stack4 →
executeStackVerify stack4 >>=

(λ stack5 → executeStackCheckSig msg1 stack5))))

Improved layout
executeStackDup stack1 >>= (λ stack2 → executeOpHash stack2 >>=
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(λ stack3 → executeStackEquality (pbkh :: stack3) >>=

(λ stack4 → executeStackVerify stack4 >>=

(λ stack5 → executeStackCheckSig msg1 stack5))))

-}

– We define a term giving the result of the evaluation

testP2PKHscript2 : Maybe Stack

testP2PKHscript2 =

executeStackDup stack1

>>= λ stack2 → executeOpHash stack2

>>= λ stack3 →

executeStackEquality (pbkh :: stack3)

>>= λ stack4 → executeStackVerify stack4

>>= λ stack5 →

executeStackCheckSig msg1 stack5

testP2PKHscript2UsingMoreSpace =

executeStackDup stack1 >>=

λ stack2 → executeOpHash stack2 >>=

λ stack3 → executeStackEquality

(pbkh :: stack3) >>=

λ stack4 → executeStackVerify stack4 >>=

λ stack5 → executeStackCheckSig msg1 stack5

testP2PKHscript2UsingMoreSpaceUsingDo =

do stack2 ← executeStackDup stack1

stack3 ← executeOpHash stack2

stack4 ← executeStackEquality (pbkh :: stack3)

stack5 ← executeStackVerify stack4

executeStackCheckSig msg1 stack5
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{- in imperative programming we would write

stack2 := executeStackDup stack1;
stack3 := executeOpHash stack2;
stack4 := executeStackEquality (pbkh :: stack3);
stack5 := executeStackVerify stack4;
executeStackCheckSig msg1 stack5;

-}

{-
If we execute the first line
(executeStackDup stack1)

we see it will give
nothing if stack1 = []
just something if stack1 is nonempty

So let’s check what happens if stack1 = []
-}

testP2PKHscriptEmpty : Maybe Stack

testP2PKHscriptEmpty =

J scriptP2PKHb pbkh Ks time1 msg1 []

{- if we evaluate testP2PKHscriptEmpty we get:

nothing

So now get the first (trivial) theorem
(without the postulated parameters)
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-}

stackfunP2PKHemptyIsNothing : (pubKeyHash : N)(time1 : Time)(msg1 : Msg)

→ J scriptP2PKHb pubKeyHash Ks time1 msg1 [] ≡ nothing

stackfunP2PKHemptyIsNothing pubKeyHash time1 msg1 = refl

{- Now we look at what happens if the stack is non empty

lets a test for symbolic execution -}

teststackfunP2PKHNonEmptyStack : Maybe Stack

teststackfunP2PKHNonEmptyStack =

J scriptP2PKHb pbkh Ks time1 msg1 (pbk :: stack1)

{- If we evaluate teststackfunP2PKHNonEmptyStack we get
executeStackVerify (compareNaturals pbkh (param .hash pbk) :: pbk :: stack1)
>>= (λ stack2 → executeStackCheckSig msg1 stack2)
-}

stackfunP2PKHNonEmptyStackNormalForm : Maybe Stack

stackfunP2PKHNonEmptyStackNormalForm =

executeStackVerify

(compareNaturals pbkh (hashFun pbk) :: pbk :: stack1)

>>=

executeStackCheckSig msg1

stackfunP2PKHNonEmptyStackNormalFormDo : Maybe Stack

stackfunP2PKHNonEmptyStackNormalFormDo =

do stack5 ← executeStackVerify (compareNaturals pbkh (hashFun pbk)

:: pbk :: stack1)

executeStackCheckSig msg1 stack5
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stackfunP2PKHNonEmptyStackNormalFormFirstPart : Maybe Stack

stackfunP2PKHNonEmptyStackNormalFormFirstPart =

executeStackVerify

(compareNaturals pbkh (hashFun pbk) :: pbk :: stack1)

stackfunP2PKHNonEmptyStackNormalFormFirstPartZoomedIn : N

stackfunP2PKHNonEmptyStackNormalFormFirstPartZoomedIn =

compareNaturals pbkh (hashFun pbk)

{-
We see that

(λ stack2 → executeStackCheckSig msg1 stack2)
= executeStackCheckSig msg1

and can therefore use

executeStackVerify (compareNaturals pbkh
(param .hash pbk) :: pbk :: stack1)

>>= executeStackCheckSig msg1

-}

stackfunP2PKHNonEmptyStack : (pubKeyHash : N)(msg1 : Msg)

(pbk : N)(stack2 : Stack) → Maybe Stack

stackfunP2PKHNonEmptyStack pubKeyHash msg1 pbk stack2

= executeStackVerify (compareNaturals

pubKeyHash (hashFun pbk) :: pbk :: stack2)
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>>= executeStackCheckSig msg1

– and check that this is correct

stackfunP2PKHemptyNonEmptyStackCorrect :

(pubKeyHash : N)(time1 : Time)(msg1 : Msg)

(pbk : N)(stack2 : Stack)

→ J scriptP2PKHb pubKeyHash Ks

time1 msg1 (pbk :: stack2) ≡

stackfunP2PKHNonEmptyStack pubKeyHash msg1 pbk stack2

stackfunP2PKHemptyNonEmptyStackCorrect

pubKeyHash time1 msg1 pbk stack2 = refl

{- We see now the case distinction depends on
compres := compareNaturals pbkh (hashFun pbk)

since

executeStackVerify (compres :: pbk :: stack1)

will depend on whether compres is 0 or suc x’

so we abstract from

compres = compareNaturals pubKeyHash (hashFun pbk)

-}

– This function will be repeated in
– stackVerificationP2PKHextractedProgram.agda
– and therefore is kept private in this section
– in order to avoid a conflict
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– \stackVerificationPtoPKHsymbolicExecutionabstract

p2PKHNonEmptyStackAbstr’ : (msg1 : Msg)

(pbk : N)(stack1 : Stack)(cmp : N) → Maybe Stack

p2PKHNonEmptyStackAbstr’ msg1 pbk stack1 cmp

= executeStackVerify (cmp :: pbk :: stack1) >>=

executeStackCheckSig msg1

abstrFun : (stack1 : Stack)(cmp : N) → Maybe Stack

abstrFun stack1 cmp =

do stack5 ← executeStackVerify (cmp :: pbk :: stack1)

executeStackCheckSig msg1 stack5

stackfunP2PKHNonEmptyStackNormalFormUsingAbstractedFun :

Maybe Stack

stackfunP2PKHNonEmptyStackNormalFormUsingAbstractedFun =

abstrFun stack1 (compareNaturals pbkh (hashFun pbk))

stackfunP2PKHNonEmptyStackNormalFormUsingAbstractedFunTest :

stackfunP2PKHNonEmptyStackNormalForm

≡ stackfunP2PKHNonEmptyStackNormalFormUsingAbstractedFun

stackfunP2PKHNonEmptyStackNormalFormUsingAbstractedFunTest

= refl

– and we show that this is the right function

– This function will be repeated in
– stackVerificationP2PKHextractedProgram.agda
– and therefore is kept private in this section
– in order to avoid a conflict
private

stackfunP2PKHNonEmptyStackAbstractedCor :

(pubKeyHash : N)(time1 : Time)(msg1 : Msg)
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(pbk : N)(stack2 : Stack)

→ J scriptP2PKHb pubKeyHash Ks time1 msg1 (pbk :: stack2)

≡ p2PKHNonEmptyStackAbstr’ msg1 pbk stack2

(compareNaturals pubKeyHash (hashFun pbk))

stackfunP2PKHNonEmptyStackAbstractedCor

pubKeyHash time1 msg1 pbk stack2 = refl

{- Now we investigate what p2PKHNonEmptyStackAbstr’
When looking at it and see that

p2PKHNonEmptyStackAbstr’ msg1 pbk stack2 cmp

will execute
executeStackVerify (cmp :: pbk :: stack2)
which will in turn make a case disctintion on
whether cmp is 0 or not zero

(that corresponds to what the original function
does because it makes this comparison

compareNaturals pubKeyHash (hashFun pbk)
which checks whether the pbk provided
by the user hashes to the pubKeyHash of the locking script
if it is 0 it should fail, and if it is 1 it should succeed.

So lets make the test
-}

testStackfunP2PKHNonEmptyStackAbstractedCompre0 :

Maybe Stack

testStackfunP2PKHNonEmptyStackAbstractedCompre0

= p2PKHNonEmptyStackAbstr’ msg1 pbk stack1 0

{- if we evaluate
testStackfunP2PKHNonEmptyStackAbstractedCompre0 we get
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nothing
-}

– we evaluate now
abstrFunZeroCase : Maybe Stack

abstrFunZeroCase = abstrFun stack1 0

– We show now this is always the case

– This function will be repeated in
–stackVerificationP2PKHextractedProgram.agda

– and therefore is kept private
– in this section in order to avoid a conflict
private

stackfunP2PKHNonEmptyStackAbstractedCorCompr0IsNothing :

(msg1 : Msg)(pbk : N)(stack2 : Stack)

→ p2PKHNonEmptyStackAbstr’ msg1 pbk stack2

0 ≡ nothing

stackfunP2PKHNonEmptyStackAbstractedCorCompr0IsNothing

msg1 pbk stack2 = refl

{- Now we look at what happens if the value is non zero -}

testStackfunP2PKHNonEmptyStackAbstractedCompreSucCase :

Maybe Stack

testStackfunP2PKHNonEmptyStackAbstractedCompreSucCase

= p2PKHNonEmptyStackAbstr’ msg1 pbk stack1 (suc x1)

– we evaluate now
abstrFunSucCase : Maybe Stack
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abstrFunSucCase = abstrFun stack1 (suc x1)

– we obtain

abstrFunSucCaseNormal : Maybe Stack

abstrFunSucCaseNormal =

executeStackCheckSig msg1 (pbk :: stack1)

– executeStackCheckSig msg1 (pbk :: stack1)

{- if we evalute
testStackfunP2PKHNonEmptyStackAbstractedCompreSucCase

we get

executeStackCheckSig msg1 (pbk :: stack1)

This corresponds to the situation where
the original stack1 was non empty,
and the comparision of the pbk with the pbkhash
got a result > 0

If we look at
executeStackCheckSig

we see that it gives nothing when the stack has height < 2
and otherwise does something,

so we can make a case distinction on whether in

p2PKHNonEmptyStackAbstr’ msg1 pbk stack1 x
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stack1 is [] or nonempty

So lets look at the easy case []

-}

– we evaluate now
abstrFunSucCaseEmpty : Maybe Stack

abstrFunSucCaseEmpty = abstrFun [] (suc x1)

– and obtain nothing
abstrFunSucCaseEmptyCheck : abstrFunSucCaseEmpty ≡ nothing

abstrFunSucCaseEmptyCheck = refl

– we evaluate now
abstrFunSucCaseNonEmpty : Maybe Stack

abstrFunSucCaseNonEmpty =

abstrFun (sig1 :: stack1) (suc x1)

abstrFunSucCaseNonEmptyNormal : Maybe Stack

abstrFunSucCaseNonEmptyNormal =

just (boolToNat (isSigned msg1 sig1 pbk) :: stack1)

abstrFunSucCaseNonEmptyCheck :

abstrFunSucCaseNonEmpty ≡ abstrFunSucCaseNonEmptyNormal

abstrFunSucCaseNonEmptyCheck = refl

testStackfunP2PKHNonEmptyStackAbstractedCompreSucEmpty :

Maybe Stack

testStackfunP2PKHNonEmptyStackAbstractedCompreSucEmpty =

p2PKHNonEmptyStackAbstr’ msg1 pbk [] (suc x1)
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{- if we evaluate
testStackfunP2PKHNonEmptyStackAbstractedCompreSucEmpty we get result

nothing

we check that this always holds
-}

stackfunP2PKHNonEmptyStackAbstractedCorComprSucStackEmpty :

(msg1 : Msg)(pbk : N)(x : N)

→ p2PKHNonEmptyStackAbstr’ msg1 pbk [] (suc x) ≡ nothing

stackfunP2PKHNonEmptyStackAbstractedCorComprSucStackEmpty msg1 pbk x

= refl

{- Intermezzo: we can see that
stackfunP2PKHNonEmptyStackAbstractedCorComprSucStackEmpty
returns always nothing if the stack is empty

independent of the result

But this result is not really needed
-}

– This function will be repeated in
–stackVerificationP2PKHextractedProgram.agda
– and therefore is kept private in
–this section in order to avoid a conflict
private

stackfunP2PKHNonEmptyStackAbstractedCorEmptysNothing :

(msg1 : Msg)(pbk : N)(x : N)

→ p2PKHNonEmptyStackAbstr’ msg1 pbk [] x ≡ nothing

stackfunP2PKHNonEmptyStackAbstractedCorEmptysNothing

msg1 pbk1 zero = refl

stackfunP2PKHNonEmptyStackAbstractedCorEmptysNothing
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msg1 pbk1 (suc x) = refl

{- Now we look at what happens if we
have non empty stack1 and comparision > 0
-}

{- if we evaluate
stackfunP2PKHNonEmptyStackAbstractedCorEmptysNothing we get

just (boolToNat (isSigned msg1 sig1 pbk) :: stack1)

and we show that this is the case

-}

testStackfunP2PKHNonEmptyStackAbstractedCompreSucNonEmpty :

Maybe Stack

testStackfunP2PKHNonEmptyStackAbstractedCompreSucNonEmpty

= p2PKHNonEmptyStackAbstr’ msg1 pbk (sig1 :: stack1) (suc x1)

stackfunP2PKHNonEmptyStackAbstractedCorComprSucStackNonEmptyCor :

(msg1 : Msg)(pbk : N)(x : N)(sig1 : N)(stack2 : Stack)

→ p2PKHNonEmptyStackAbstr’ msg1 pbk (sig1 :: stack2) (suc x)

≡ just (boolToNat (isSigned msg1 sig1 pbk) :: stack2)

stackfunP2PKHNonEmptyStackAbstractedCorComprSucStackNonEmptyCor

msg2 pbk1 sig1 x stack3 = refl

{- this theorem is not needed
but an interesting observation -}

stackfunP2PKHemptySingleStackIsNothing :
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(pubKeyHash : N)(time1 : Time)(msg1 : Msg)(pbk : N)

→ J scriptP2PKHb pubKeyHash Ks time1 msg1 (pbk :: []) ≡ nothing

stackfunP2PKHemptySingleStackIsNothing pubKeyHash time1 msg1 pbk

= J scriptP2PKHb pubKeyHash Ks time1 msg1 (pbk :: [])

≡〈 stackfunP2PKHNonEmptyStackAbstractedCor pubKeyHash time1 msg1 pbk [] 〉

p2PKHNonEmptyStackAbstr’ msg1 pbk []

(compareNaturals pubKeyHash (hashFun pbk))

≡〈 stackfunP2PKHNonEmptyStackAbstractedCorEmptysNothing

msg1 pbk (compareNaturals pubKeyHash (hashFun pbk)) 〉

nothing

‚

abstrFunSucCaseNonEmptyNormalSubTerm1 : N

abstrFunSucCaseNonEmptyNormalSubTerm1 =

boolToNat (isSigned msg1 sig1 pbk)

abstrFunSucCaseNonEmptyNormalSubTerm2 : Bool

abstrFunSucCaseNonEmptyNormalSubTerm2 =

isSigned msg1 sig1 pbk

A.18 stack Verification P2PKH extracted Program

(stackVerificationP2PKHextractedProgram.agda)

open import basicBitcoinDataType

module verificationStackScripts.stackVerificationP2PKHextractedProgram (param : GlobalParameters) where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Sum
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open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head ; [_] )

open import Data.Maybe

open import Relation.Nullary

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

–our libraries
open import libraries.listLib

open import libraries.equalityLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.emptyLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate

open import semanticBasicOperations param

open import hoareTripleStack param

open import instruction

open import stackSemanticsInstructions param

open import verificationP2PKHbasic param

open import verificationStackScripts.stackState

open import verificationStackScripts.sPredicate

open import verificationStackScripts.stackHoareTriple param

open import verificationStackScripts.stackVerificationLemmas param

open import verificationStackScripts.stackSemanticsInstructionsBasic param
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open import verificationStackScripts.semanticsStackInstructions param

open import verificationStackScripts.stackVerificationP2PKH param

open import verificationStackScripts.stackVerificationP2PKHindexed param

open import verificationStackScripts.hoareTripleStackBasic param

open import verificationStackScripts.stackVerificationLemmasPart2 param

mutual

p2pkhFunctionDecoded : (pbkh : N)(msg1 : Msg)

(stack1 : Stack) → Maybe Stack

p2pkhFunctionDecoded pbkh msg1 []

= nothing

p2pkhFunctionDecoded pbkh msg1

(pbk :: stack1)

= p2pkhFunctionDecodedAux1 pbk msg1 stack1

(compareNaturals pbkh (hashFun pbk))

p2pkhFunctionDecodedAux1 : (pbk : N)(msg1 : Msg)

(stack1 : Stack)(cpRes : N) → Maybe Stack

p2pkhFunctionDecodedAux1 pbk msg1 []

cpRes = nothing

p2pkhFunctionDecodedAux1 pbk

msg1 (sig1 :: stack1) zero

= nothing

p2pkhFunctionDecodedAux1 pbk

msg1 (sig1 :: stack1) (suc cpRes) =

just (boolToNat (isSigned msg1 sig1 pbk) :: stack1)

A.19 Hoare Triple Stack Basic (hoareTripleStackBasic.agda)

open import basicBitcoinDataType
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module verificationStackScripts.hoareTripleStackBasic (param : GlobalParameters) where

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Sum

open import Data.Maybe

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

– our libraries
open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import libraries.emptyLib

open import stack

open import stackPredicate

open import instructionBasic

open import hoareTripleStack param

open import verificationStackScripts.stackState

open import verificationStackScripts.sPredicate

open import verificationStackScripts.semanticsStackInstructions param
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open import verificationStackScripts.stackSemanticsInstructionsBasic param

open import verificationStackScripts.stackVerificationLemmas param

open import verificationStackScripts.stackHoareTriple param

– defines hoare triples for stack functions
– and that their
– correspondence to the full hoare
– triples for nonif instructions

– Hoare triple with stack instructions
<_>stackb_<_> : StackPredicate

→ BitcoinScriptBasic → StackPredicate → Set

< φ >stackb prog < ψ > = < φ >gs (J prog Ks ) < ψ >

– Generalisation of <_>_<_>
– by referring instead of Bitcoin Scripts
– to functions of type StackState → Maybe StackState
– Note that there is a version
– <_>gs_<_> in module hoareTripleStack for StackPredicate
– which refers to StackPredicate instead of StackStatePred

record <_>g_<_> (φ : StackStatePred)

(stackfun : StackState → Maybe StackState)

(ψ : StackStatePred) : Set where

constructor hoareTripleStackGenStackState

field

==>stg : (s : StackState)

→ φ s

→ liftPred2Maybe ψ (stackfun s)

<==stg : (s : StackState)

→ liftPred2Maybe ψ (stackfun s)

→ φ s
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open <_>g_<_> public

– Proof that the generic Hoare triple
– implies the standard one for an instruction
lemmaGenericHoareTripleImpliesHoareTriple :

(instr : InstructionBasic)

(φ ψ : StackStatePred)

→ < φ >ssgen J instr Ks < ψ >

→ < φ >if f [ instr ] < ψ >

lemmaGenericHoareTripleImpliesHoareTriple

instr φ ψ prog .==> = prog .==>g

lemmaGenericHoareTripleImpliesHoareTriple

instr φ ψ prog .<== = prog .<==g

lemmaGenericHoareTripleImpliesHoareTriple” :

(prog : BitcoinScriptBasic)

(φ ψ : StackStatePred)

→ < φ >ssgen J prog K < ψ >

→ < φ >if f prog < ψ >

lemmaGenericHoareTripleImpliesHoareTriple”

prog φ ψ prog1 .==> = prog1 .==>g

lemmaGenericHoareTripleImpliesHoareTriple”

prog φ ψ prog1 .<== = prog1 .<==g

– intermediate step towards showing that the
– Hoare triple of a stack function implies
– the Hoare triple of the instruction
lemmaNonIfInstrGenericCondImpliesTripleaux :

(op : InstructionBasic)

(φ ψ : StackStatePred)

→ < φ >ssgen
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stackTransform2StackStateTransform

J [ op ] Ks < ψ >

→ < φ >ssgen J op Ks < ψ >

lemmaNonIfInstrGenericCondImpliesTripleaux

opEqual φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux

opAdd φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux

(opPush x1) φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux

opSub φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux

opVerify φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux

opCheckSig φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux

opEqualVerify φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux

opDup φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux

opDrop φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux

opSwap φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux

opHash φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux

opCHECKLOCKTIMEVERIFY φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux

opCheckSig3 φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux

opMultiSig φ ψ x = x

lemmaNonIfInstrGenericCondImpliesHoareTriple :

(op : InstructionBasic)
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(φ ψ : StackStatePred)

→ < φ >ssgen

stackTransform2StackStateTransform

J [ op ] Ks < ψ >

→ < φ >if f [ op ] < ψ >

lemmaNonIfInstrGenericCondImpliesHoareTriple

op φ ψ p

= lemmaGenericHoareTripleImpliesHoareTriple

op φ ψ

(lemmaNonIfInstrGenericCondImpliesTripleaux

op φ ψ p)

– auxiliary function used for proving
– lemmaLift2StateCorrectnessStackFun=>
lemmaLift2StateCorrectnessStackFun=>aux :

(ψ : StackPredicate)

(funRes : Maybe Stack)

(currentTime1 : Time)

(msg1 : Msg)

(p : liftPred2Maybe (ψ currentTime1 msg1) funRes)

→ ((stackPred2SPred ψ ) +)

(stackState2WithMaybe

〈 currentTime1 , msg1 , funRes 〉)

lemmaLift2StateCorrectnessStackFun=>aux ψ

(just x) currentTime1 msg1 p = p

– Stack correctness implies
– correctness of the hoare triple

– here direction =>
lift2StateCorrectnessStackFun=> :

(φ ψ : StackPredicate)

(stackfun : StackTransformer)

(stackCorrectness : (time : Time)
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(msg : Msg)(s : Stack)

→ φ time msg s

→ liftPred2Maybe (ψ time msg)

(stackfun time msg s))

(s : StackState)

→ stackPred2SPred φ s

→ ((stackPred2SPred ψ) +)

(stackTransform2StackStateTransform stackfun s)

lift2StateCorrectnessStackFun=>

φ ψ stackfun stackCorrectness

〈 currentTime1 , msg1 , stack1 〉 and3

= lemmaLift2StateCorrectnessStackFun=>aux ψ

(stackfun currentTime1 msg1 stack1) currentTime1 msg1

(stackCorrectness currentTime1 msg1 stack1 and3)

lemmaLift2StateCorrectnessStackFun<=aux :

(φ ψ : StackPredicate)

(funRes : Maybe Stack)

(currentTime1 : Time)

(msg1 : Msg)

(stack1 : Stack)

(p : ((λ s → ψ (currentTime s)

(msg s) (stack s) ) +)

(exeTransformerDepIfStack’

(liftStackToStateTransformerAux’ funRes)

〈 currentTime1 , msg1 , stack1 〉))

(q : liftPred2Maybe

(ψ currentTime1 msg1)

funRes → φ currentTime1 msg1 stack1)

→ φ currentTime1 msg1 stack1

lemmaLift2StateCorrectnessStackFun<=aux

φ ψ (just x) currentTime1 msg1 stack1 p q = q p
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– Stack correctness implies correctness of the hoare triple
– here direction <=
lift2StateCorrectnessStackFun<= :

(φ ψ : StackPredicate)

(stackfun : StackTransformer)

(stackCorrectness : (time : Time)

(msg : Msg)(s : Stack)

→ liftPred2Maybe (ψ time msg)

(stackfun time msg s) → φ time msg s)

(s : StackState)

→ ((stackPred2SPred ψ) +)

(stackTransform2StackStateTransform stackfun s)

→ stackPred2SPred φ s

lift2StateCorrectnessStackFun<=

φ ψ stackfun stackCorrectness

〈 currentTime1 , msg1 , stack1 〉 x

= lemmaLift2StateCorrectnessStackFun<=aux

φ ψ (stackfun currentTime1 msg1 stack1)

currentTime1 msg1 stack1 x

(stackCorrectness currentTime1 msg1 stack1)

– Correctness of the stack function
– implies correctness of the Hoare triple
– here generic

lemmaHoareTripleStackPartToHoareTripleGeneric :

(stackfun : StackTransformer)

(φ ψ : StackPredicate)

→ < φ >gs stackfun < ψ >

→ < stackPred2SPred φ >ssgen

stackTransform2StackStateTransform

stackfun

< stackPred2SPred ψ >
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lemmaHoareTripleStackPartToHoareTripleGeneric

stackfun φ ψ

(hoareTripleStackGen ==>stg1 <==stg1)

.==>g s p

= lift2StateCorrectnessStackFun=> φ ψ

stackfun ==>stg1 s p

lemmaHoareTripleStackPartToHoareTripleGeneric

stackfun φ ψ

(hoareTripleStackGen ==>stg1 <==stg1)

.<==g s p

= lift2StateCorrectnessStackFun<= φ ψ

stackfun <==stg1 s p

– Hoare triple correctness of the
– stack function of an instruction
– implies correctness of the Hoare triple
– for that instruction

hoartTripleStackPartImpliesHoareTriple :

(op : InstructionBasic)

(φ ψ : StackPredicate)

→ < φ >stackb [ op ] < ψ >

→ < stackPred2SPred φ >if f [ op ]

< stackPred2SPred ψ >

hoartTripleStackPartImpliesHoareTriple

op φ ψ x

= lemmaGenericHoareTripleImpliesHoareTriple

op

(stackPred2SPred φ )

(stackPred2SPred ψ)

(lemmaNonIfInstrGenericCondImpliesTripleaux

op

(stackPred2SPred φ )

359



A. Full Agda code for chapter Verifying Bitcoin Script with local instructions

(stackPred2SPred ψ)

(lemmaHoareTripleStackPartToHoareTripleGeneric

J [ op ] Ks φ ψ x))

A.20 stack verification P2PKH using equality Of programs

(stackVerificationP2PKHUsingEqualityOfPrograms.agda)

open import basicBitcoinDataType

module verificationStackScripts.stackVerificationP2PKHUsingEqualityOfPrograms (param : GlobalParameters) where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Sum

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head ; [_] )

open import Data.Maybe

open import Relation.Nullary

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

–our libraries
open import libraries.listLib

open import libraries.equalityLib
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(stackVerificationP2PKHUsingEqualityOfPrograms.agda)

open import libraries.natLib

open import libraries.boolLib

open import libraries.emptyLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate

open import semanticBasicOperations param

open import stackSemanticsInstructions param

open import hoareTripleStack param

open import instruction

open import verificationP2PKHbasic param

open import verificationStackScripts.stackState

open import verificationStackScripts.sPredicate

open import verificationStackScripts.stackHoareTriple param

open import verificationStackScripts.stackVerificationLemmas param

open import verificationStackScripts.stackSemanticsInstructionsBasic param

open import verificationStackScripts.semanticsStackInstructions param

open import verificationStackScripts.stackVerificationP2PKH param

open import verificationStackScripts.stackVerificationP2PKHindexed param

open import verificationStackScripts.stackVerificationP2PKHextractedProgram param

open import verificationStackScripts.hoareTripleStackBasic param

open import verificationStackScripts.stackVerificationLemmasPart2 param

——————————————————-
– The symbolic execution can be found in
–
– stackVerificationP2PKHsymbolicExecution.agda
–
– The extracted program obtained by the symbolic execution can be found in
–
– stackVerificationP2PKHextractedProgram.agda
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–
——————————————————————————

p2PKHNonEmptyStackAbstr : (msg1 : Msg)(pbk : N)

(stack1 : Stack)(cmp : N) → Maybe Stack

p2PKHNonEmptyStackAbstr msg1 pbk stack1 cmp

= executeStackVerify (cmp :: pbk :: stack1) >>=

executeStackCheckSig msg1

stackfunP2PKHNonEmptyStackAbstractedCorCompr0IsNothing :

(msg1 : Msg)(pbk : N)(stack1 : Stack)

→ p2PKHNonEmptyStackAbstr

msg1 pbk stack1 0 ≡ nothing

stackfunP2PKHNonEmptyStackAbstractedCorCompr0IsNothing

msg1 pbk stack1 = refl

stackfunP2PKHNonEmptyStackAbstractedCorEmptysNothing :

(msg1 : Msg)(pbk : N)(x : N)

→ p2PKHNonEmptyStackAbstr msg1 pbk [] x ≡ nothing

stackfunP2PKHNonEmptyStackAbstractedCorEmptysNothing

msg1 pbk1 zero = refl

stackfunP2PKHNonEmptyStackAbstractedCorEmptysNothing

msg1 pbk1 (suc x) = refl

stackfunP2PKHNonEmptyStackAbstractedCor :

(pubKeyHash : N)(time1 : Time)

(msg1 : Msg)(pbk : N)(stack1 : Stack)

→ J scriptP2PKHb pubKeyHash Ks time1 msg1 (pbk :: stack1)

≡ p2PKHNonEmptyStackAbstr msg1 pbk stack1

(compareNaturals pubKeyHash (hashFun pbk))

stackfunP2PKHNonEmptyStackAbstractedCor

pubKeyHash time1 msg1 pbk stack1 = refl
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(stackVerificationP2PKHUsingEqualityOfPrograms.agda)

p2pkhFunctionDecodedAux1Cor :

(pbk : N)(msg1 : Msg)(stack1 : Stack)

(cpRes : N)

→ p2PKHNonEmptyStackAbstr msg1 pbk stack1 cpRes

≡ p2pkhFunctionDecodedAux1 pbk msg1 stack1 cpRes

p2pkhFunctionDecodedAux1Cor pbk1 msg1 [] cpRes

= stackfunP2PKHNonEmptyStackAbstractedCorEmptysNothing

msg1 pbk1 cpRes

p2pkhFunctionDecodedAux1Cor

pbk1 msg1 (x :: stack1) zero = refl

p2pkhFunctionDecodedAux1Cor

pbk1 msg1 (x :: stack1) (suc cpRes) = refl

p2pkhFunctionDecodedcor : (time1 : N) (pbkh : N)

(msg1 : Msg)(stack1 : Stack)

→ J scriptP2PKHb pbkh Ks time1 msg1 stack1

≡ p2pkhFunctionDecoded pbkh msg1 stack1

p2pkhFunctionDecodedcor

time1 pbkh msg1 [] = refl

p2pkhFunctionDecodedcor

time1 pbkh msg1 (pbk :: stack1) =

J scriptP2PKHb pbkh Ks

time1 msg1 (pbk :: stack1)

≡〈 stackfunP2PKHNonEmptyStackAbstractedCor

pbkh time1 msg1 pbk stack1 〉

p2PKHNonEmptyStackAbstr

msg1 pbk stack1

(compareNaturals pbkh (hashFun pbk))

≡〈 p2pkhFunctionDecodedAux1Cor

pbk msg1 stack1

(compareNaturals pbkh

(hashFun pbk)) 〉
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p2pkhFunctionDecodedAux1

pbk msg1 stack1 (compareNaturals

pbkh (hashFun pbk))

‚

– Now we just verify the hoare triple
– for the function we have found

lemmaPHKcoraux3 : (x1 : N)

(time : Time) (msg1 : Msg)

(x2 : N)(s : Stack) (x : N) →

liftPred2Maybe

(λ s1 → acceptStates time msg1 s1)

(p2pkhFunctionDecodedAux1 x1 msg1

(x2 :: s) x)

→ ¬ (x ≡ 0 )

lemmaPHKcoraux3 x1 time msg1 x2 s zero () x4

lemmaPHKcoraux3 x1 time msg1 x2 s (suc x) x3 ()

lemmaCompareNat2 : ( x y : N )

→ ¬ (compareNaturals x y ≡ 0 ) → x ≡ y

lemmaCompareNat2 zero zero p = refl

lemmaCompareNat2 zero (suc y) p

= efq (p refl)

lemmaCompareNat2 (suc x) zero p

= efq (p refl)

lemmaCompareNat2 (suc x) (suc y) p

= cong suc (lemmaCompareNat2 x y p)

lemmaPHKcoraux2 : (pbk : N)(time : Time)

(msg1 : Msg) (sig : N)(s : Stack) (cpRes : N) →

liftPred2Maybe (λ s1 → acceptStates time msg1 s1)

(p2pkhFunctionDecodedAux1 pbk msg1 (sig :: s) cpRes)

→ NotFalse (boolToNat (isSigned msg1 sig pbk))

lemmaPHKcoraux2 pbk time msg1 sig s (suc cpRes) p = p
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(stackVerificationP2PKHUsingEqualityOfPrograms.agda)

lemmaPTKHcoraux : (pbkh : N) →

< weakestPreConditionP2PKHs pbkh >gs

(λ time msg1 s → p2pkhFunctionDecoded pbkh msg1 s)

< acceptStates >

lemmaPTKHcoraux .(hashFun pbk)

.==>stg time msg1 (pbk :: sig :: s)

(conj refl and4)

rewrite (lemmaCompareNat (hashFun pbk))

= boolToNatNotFalseLemma (isSigned msg1 sig pbk) and4

lemmaPTKHcoraux pbkh .<==stg time msg1 (pbk :: sig :: s) x

= conj (sym (lemmaCompareNat2 pbkh (hashFun pbk)

(lemmaPHKcoraux3 pbk time msg1 sig s

(compareNaturals pbkh (hashFun pbk)) x)))

(boolToNatNotFalseLemma2

(isSigned msg1 sig pbk)

(lemmaPHKcoraux2 pbk time msg1 sig s

((compareNaturals pbkh (hashFun pbk))) x))

LemmaPTPKHcor : (pubKeyHash : N)

→ < weakestPreConditionP2PKHs

pubKeyHash >stackb

scriptP2PKHb pubKeyHash

< acceptStates >

LemmaPTPKHcor pbkh

= lemmaTransferHoareTripleStack

(weakestPreConditionP2PKHs pbkh) acceptStates

(λ time msg s

→ p2pkhFunctionDecoded pbkh msg s )

J scriptP2PKH pbkh Kstack

(λ t m s

→ sym (p2pkhFunctionDecodedcor t pbkh m s))
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(lemmaPTKHcoraux pbkh)

theoPTPKHcor : (pbkh : N)

→ < wPreCondP2PKH pbkh >if f

scriptP2PKHb pbkh < acceptState >

theoPTPKHcor pbkh =

hoareTripleStack2HoareTriple

(scriptP2PKHb pbkh)

(wPreCondP2PKHs pbkh)

acceptStates (LemmaPTPKHcor pbkh)

A.21 Verification Multi-Sig Basic Symbolic Execution

(verificationMultiSigBasicSymbolicExecutionPaper.agda)

open import basicBitcoinDataType

module paperTypes2021PostProceed.verificationMultiSigBasicSymbolicExecutionPaper (param : GlobalParameters) where

open import Data.List.Base hiding (_++_ )

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_ )

open import Data.Sum

open import Data.Unit

open import Data.Empty

open import Data.Maybe

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head; [_])

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq
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(verificationMultiSigBasicSymbolicExecutionPaper.agda)

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

–our libraries
open import libraries.listLib

open import libraries.emptyLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.equalityLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate

open import semanticBasicOperations param

renaming (compareSigsMultiSigAux to cmpMultiSigsAux)

open import instructionBasic

open import verificationMultiSig param hiding (multiSigScript2-4b)

open import verificationStackScripts.semanticsStackInstructions param

open import verificationStackScripts.stackVerificationLemmas param

open import verificationStackScripts.stackHoareTriple param

open import verificationStackScripts.sPredicate

open import verificationStackScripts.hoareTripleStackBasic param

open import verificationStackScripts.stackState

open import verificationStackScripts.stackSemanticsInstructionsBasic param

open import verificationStackScripts.verificationMultiSigBasic param

private

postulate pbk1 pbk2 pbk3 pbk4 : N

postulate time1 : Time

postulate msg1 : Msg

postulate stack1 : List N

postulate sig2 sig1 dummy : N
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multiSigScript2-4b : (pbk1 pbk2 pbk3 pbk4 : N)

→ BitcoinScriptBasic

multiSigScript2-4b pbk1 pbk2 pbk3 pbk4

= (opPush 2) :: (opPush pbk1)

:: (opPush pbk2) :: (opPush pbk3)

:: (opPush pbk4) :: (opPush 4)

:: [ opMultiSig ]

multisigScript-2-4-symbolic =

J multiSigScript2-4b pbk1 pbk2 pbk3 pbk4 Ks

time1 msg1 stack1

{- evaluate multisigScript-2-4-symbolic we get

executeMultiSig3 msg1
(pbk1 :: pbk2 :: pbk3 :: [ pbk4 ]) 2 stack1 []

-}

test2 : Maybe Stack

test2 =

executeMultiSig3 msg1

(pbk1 :: pbk2 :: pbk3 :: [ pbk4 ]) 2 stack1 []

– now we try out stack1 = []

multisigScript-2-4-symbolic-empty

= J multiSigScript2-4b pbk1 pbk2 pbk3 pbk4 Ks

time1 msg1 []

–result nothing

multisigScript-2-4-symbolic-1stackelement

= J multiSigScript2-4b pbk1 pbk2 pbk3 pbk4 Ks
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(verificationMultiSigBasicSymbolicExecutionPaper.agda)

time1 msg1 [ sig2 ]

– result nothing
multisigScript-2-4-symbolic-2stackelement

= J multiSigScript2-4b pbk1 pbk2 pbk3 pbk4 Ks

time1 msg1 (sig2 :: [ sig1 ])

– result nothing

stackNeededFirstStepMultiSig :

(sig2 sig1 dummy : N)(stack1 : Stack)

→ Stack

stackNeededFirstStepMultiSig sig2 sig1 dummy stack1 =

sig2 :: sig1 :: dummy :: stack1

stackNeededFirstStepMultiSig’ : Stack

stackNeededFirstStepMultiSig’ =

sig2 :: sig1 :: dummy :: stack1

multisigScript-2-4-symbolic-3stackelement =

J multiSigScript2-4b pbk1 pbk2 pbk3 pbk4 Ks

time1 msg1 (sig2 :: sig1 :: dummy :: stack1)

{-
just
(boolToNat
(cmpMultiSigsAux msg1 [ sig2 ]
(pbk2 :: pbk3 :: [ pbk4 ]) sig1
(isSigned msg1 sig1 pbk1))
:: stack1)
-}

multisigScript-2-4-symbolic-3stackelementNormalised :

Maybe Stack
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multisigScript-2-4-symbolic-3stackelementNormalised =

just (boolToNat (cmpMultiSigsAux msg1

[ sig2 ] (pbk2 :: pbk3 :: [ pbk4 ]) sig1

(isSigned msg1 sig1 pbk1)) :: stack1)

{-
So the program succeeds
(we obtain result just)
and all we need to check is whether the top element is
(boolToNat
(cmpMultiSigsAux msg1 [ sig2 ]
(pbk2 :: pbk3 :: [ pbk4 ]) sig1
(isSigned msg1 sig1 pbk1))

is > 0

which is the case if
(cmpMultiSigsAux msg1
[ sig2 ] (pbk2 :: pbk3 :: [ pbk4 ])
sig1 (isSigned msg1 sig1 pbk1))
is true

so we symbolically evaluate

cmpMultiSigsAux msg1 [ sig2 ]
(pbk2 :: pbk3 :: [ pbk4 ]) sig1 (isSigned msg1 sig1 pbk1)

-}

topElementMultisigScript-2-4-symbolic-3’ :

Bool

topElementMultisigScript-2-4-symbolic-3’ =
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cmpMultiSigsAux msg1 [ sig2 ]

(pbk2 :: pbk3 :: [ pbk4 ]) sig1

(param .signed msg1 sig1 pbk1)

topElementMultisigScript-2-4-symbolic-3 :

Bool

topElementMultisigScript-2-4-symbolic-3 =

cmpMultiSigsAux msg1 [ sig2 ]

(pbk2 :: pbk3 :: [ pbk4 ]) sig1

(isSigned msg1 sig1 pbk1)

subExpTopElementMultisigScript-2-4-symbolic-3 :

(msg1 : Msg)(sig1 pbk1 : N)

→ Bool

subExpTopElementMultisigScript-2-4-symbolic-3

msg1 sig1 pbk1 =

isSigned msg1 sig1 pbk1

subExpTopElementMultisigScript-2-4-symbolic-3’ :

Bool

subExpTopElementMultisigScript-2-4-symbolic-3’ =

isSigned msg1 sig1 pbk1

testEqual :

topElementMultisigScript-2-4-symbolic-3’

≡ topElementMultisigScript-2-4-symbolic-3

testEqual = refl

{- So we can always write

isSigned instead of param .signed

-}
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{-
We now make a casedistinction on
(isSigned msg1 sig1 pbk1)

-}

multisigAuxStep1True

= cmpMultiSigsAux msg1

[ sig2 ] (pbk2 :: pbk3 :: [ pbk4 ]) sig1 true

{-
compareSigsMultiSigAux msg1
[] (pbk3 :: [ pbk4 ]) sig2 (isSigned msg1 sig2 pbk2)

-}

resultMultisigAuxStep1True : Bool

resultMultisigAuxStep1True =

cmpMultiSigsAux msg1 []

(pbk3 :: [ pbk4 ]) sig2 (isSigned msg1 sig2 pbk2)

resultMultisigAuxStep1TrueSubExp : Bool

resultMultisigAuxStep1TrueSubExp =

isSigned msg1 sig2 pbk2

multisigAuxStep1TrueStep2True

= cmpMultiSigsAux msg1 [] (pbk3 :: [ pbk4 ]) sig2 true

– returns true

multisigAuxStep1TrueStep2False

= cmpMultiSigsAux msg1 [] (pbk3 :: [ pbk4 ]) sig2 false
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{- returns
compareSigsMultiSigAux msg1 []
[ pbk4 ] sig2 (isSigned msg1 sig2 pbk3)

-}

resultMultisigAuxStep1Step2False : Bool

resultMultisigAuxStep1Step2False =

cmpMultiSigsAux msg1 [] [ pbk4 ] sig2

(isSigned msg1 sig2 pbk3)

resultMultisigAuxStep1Step2FalseCoreExp : Bool

resultMultisigAuxStep1Step2FalseCoreExp =

isSigned msg1 sig2 pbk3

multisigAuxStep1TrueStep2FalseStep3True

= cmpMultiSigsAux msg1 [] [ pbk4 ] sig2 true

– returns true

multisigAuxStep1TrueStep2FalseStep3False

= cmpMultiSigsAux msg1 [] [ pbk4 ] sig2 false

{- returns
cmpMultiSigsAux msg1
[] [] sig2 (isSigned msg1 sig2 pbk4)

-}

multisigAuxStep1TrueStep2FalseStep3FalseStep4True

= cmpMultiSigsAux msg1 [] [] sig2 true

– returns true

multisigAuxStep1TrueStep2FalseStep3FalseStep4False

= cmpMultiSigsAux msg1 [] [] sig2 false
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– returns false

multisigAuxStep1False =

cmpMultiSigsAux msg1 [ sig2 ]

(pbk2 :: pbk3 :: [ pbk4 ]) sig1 false

{- returns

cmpMultiSigsAux msg1 [ sig2 ]
(pbk3 :: [ pbk4 ]) sig1 (isSigned msg1 sig1 pbk2)

-}

multisigAuxStep1FalseStep2True =

cmpMultiSigsAux msg1 [ sig2 ]

(pbk3 :: [ pbk4 ]) sig1 true

{- returns
cmpMultiSigsAux msg1 []
[ pbk4 ] sig2 (isSigned msg1 sig2 pbk3)

-}

multisigAuxStep1FalseStep2TrueStep3True

= cmpMultiSigsAux msg1 [] [ pbk4 ] sig2 true

{- returns true -}

multisigAuxStep1FalseStep2TrueStep3False

= cmpMultiSigsAux msg1 [] [ pbk4 ] sig2 false

{- returns
cmpMultiSigsAux msg1 [] []
sig2 (isSigned msg1 sig2 pbk4)

-}

multisigAuxStep1FalseStep2TrueStep3FalseStep4True

= cmpMultiSigsAux msg1 [] [] sig2 true
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{- returns true -}

multisigAuxStep1FalseStep2TrueStep3FalseStepFalse

= cmpMultiSigsAux msg1 [] [] sig2 false

{- returns false -}

multisigAuxStep1FalseStep2False

= cmpMultiSigsAux msg1 [ sig2 ]

(pbk3 :: [ pbk4 ]) sig1 false

{-returns

cmpMultiSigsAux msg1 [ sig2 ] [ pbk4 ]
sig1 (isSigned msg1 sig1 pbk3)
-}

multisigAuxStep1FalseStep2FalseStep3True

= cmpMultiSigsAux msg1 [ sig2 ] [ pbk4 ] sig1 true

{- returns
cmpMultiSigsAux msg1 [] [] sig2
(isSigned msg1 sig2 pbk4)

-}

multisigAuxStep1FalseStep2FalseStep3TrueStep4True

= cmpMultiSigsAux msg1 [] [] sig2 true

{- returns true -}

multisigAuxStep1FalseStep2FalseStep3TrueStep4False

= cmpMultiSigsAux msg1 [] [] sig2 false

{- returns false -}
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multisigAuxStep1FalseStep2FalseStep3False

= cmpMultiSigsAux msg1 [ sig2 ] [ pbk4 ] sig1 false

{- returns
cmpMultiSigsAux msg1 [ sig2 ]
[] sig1 (isSigned msg1 sig1 pbk4)

-}

multisigAuxStep1FalseStep2FalseStep3FalseStep4True

= cmpMultiSigsAux msg1 [ sig2 ] [] sig1 true

{- returns false -}

multisigAuxStep1FalseStep2FalseStep3FalseStep4False

= cmpMultiSigsAux msg1 [ sig2 ] [] sig1 false

{- returns false -}

{- So we see that that

(cmpMultiSigsAux msg1 [ sig2 ]
(pbk2 :: pbk3 :: [ pbk4 ]) sig1 (isSigned msg1 sig1 pbk1))

returns true iff

(isSigned msg1 sig2 pbk2)
and (isSigned msg1 sig2 pbk2)
or
(isSigned msg1 sig2 pbk2)
and ¬ (isSigned msg1 sig2 pbk2)
and (isSigned msg1 sig2 pbk3)
or
(isSigned msg1 sig2 pbk2)
and ¬ (isSigned msg1 sig2 pbk2)
and ¬ (isSigned msg1 sig2 pbk3)
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and (isSigned msg1 sig2 pbk4)
or
¬ (isSigned msg1 sig2 pbk2)
and (isSigned msg1 sig1 pbk2)
and (isSigned msg1 sig2 pbk3)
or
¬ (isSigned msg1 sig2 pbk2)
and (isSigned msg1 sig1 pbk2)
and ¬ (isSigned msg1 sig2 pbk3)
and (isSigned msg1 sig2 pbk4)
or
¬ (isSigned msg1 sig2 pbk2)
and ¬ (isSigned msg1 sig1 pbk2)
and (isSigned msg1 sig1 pbk3)
and (isSigned msg1 sig2 pbk4)

we simplify it to:

(isSigned msg1 sig2 pbk2)
and (isSigned msg1 sig2 pbk2)
or
(isSigned msg1 sig2 pbk2)
and (isSigned msg1 sig2 pbk3)
or
(isSigned msg1 sig2 pbk2)
and (isSigned msg1 sig2 pbk4)
or
(isSigned msg1 sig1 pbk2)
and (isSigned msg1 sig2 pbk3)
or
(isSigned msg1 sig1 pbk2)
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and (isSigned msg1 sig2 pbk4)
or
(isSigned msg1 sig1 pbk3)
and (isSigned msg1 sig2 pbk4)

so the full script is accepted if
and only if the stack has hight at least 3 and
if the top elements are sig1 sig2 dummy
then the above condition holds

so the weakest precondition is ... name for weakest precondition

-}

A.22 verification Multi-Sig Basic (verificationMultiSigBasic.agda)

includes (theoremCorrectnessTimeChec and

theoremCorrectnessCombinedMultiSigTimeChec and

theoremCorrectnessMultiSig-2-4 and

weakestPreConditionMultiSig-2-4)

open import basicBitcoinDataType

module verificationStackScripts.verificationMultiSigBasic (param : GlobalParameters) where

open import Data.List.Base hiding (_++_ )

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_ )

open import Data.Sum
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(theoremCorrectnessTimeChec and theoremCorrectnessCombinedMultiSigTimeChec and

theoremCorrectnessMultiSig-2-4 and weakestPreConditionMultiSig-2-4)
open import Data.Unit

open import Data.Empty

open import Data.Maybe

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head; [_])

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

–our libraries
open import libraries.listLib

open import libraries.emptyLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.equalityLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate

open import semanticBasicOperations param

open import instructionBasic

open import verificationMultiSig param

open import hoareTripleStack param

open import verificationStackScripts.semanticsStackInstructions param

open import verificationStackScripts.stackVerificationLemmas param

open import verificationStackScripts.stackHoareTriple param

open import verificationStackScripts.sPredicate

open import verificationStackScripts.hoareTripleStackBasic param
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open import verificationStackScripts.stackState

open import verificationStackScripts.stackSemanticsInstructionsBasic param

open import verificationStackScripts.stackVerificationLemmasPart2 param

open import verificationStackScripts.stackVerificationP2PKH param

mainLemmaCorrectnessMultiSig-2-4 :

(msg1 : Msg)(pbk1 pbk2 pbk3 pbk4 : N) →

< weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4 >stackb

multiSigScript2-4b pbk1 pbk2 pbk3 pbk4

< acceptStates >

mainLemmaCorrectnessMultiSig-2-4

msg1 pbk1 pbk2 pbk3 pbk4

.==>stg time msg2 (sig2 :: sig1 :: dummy :: stack)

(inj1 (conj and3 and4)) =

boolToNatNotFalseLemma (compareSigsMultiSigAux

msg2 (sig2 :: []) (pbk2 :: pbk3 :: pbk4 :: []) sig1

(isSigned msg2 sig1 pbk1))

(lemmaHoareTripleStackGeAux’7 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 and3 and4)

mainLemmaCorrectnessMultiSig-2-4 msg1 pbk1 pbk2 pbk3

pbk4 .==>stg time msg2 (sig2 :: sig1 :: dummy :: stack)

(inj2 (inj1 (conj and3 and4))) =

boolToNatNotFalseLemma (compareSigsMultiSigAux msg2

(sig2 :: []) (pbk2 :: pbk3 :: pbk4 :: []) sig1

(isSigned msg2 sig1 pbk1))

(lemmaHoareTripleStackGeAux’8 msg2 pbk1 pbk2 pbk3

pbk4 sig1 sig2 and3 and4)

mainLemmaCorrectnessMultiSig-2-4 msg1 pbk1 pbk2 pbk3

pbk4 .==>stg time msg2 (sig2 :: sig1 :: dummy :: stack)

(inj2 (inj2 (inj1 (conj and3 and4)))) =

boolToNatNotFalseLemma (compareSigsMultiSigAux msg2

(sig2 :: []) (pbk2 :: pbk3 :: pbk4 :: []) sig1

(isSigned msg2 sig1 pbk1))

(lemmaHoareTripleStackGeAux’9 msg2 pbk1 pbk2 pbk3
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(theoremCorrectnessTimeChec and theoremCorrectnessCombinedMultiSigTimeChec and

theoremCorrectnessMultiSig-2-4 and weakestPreConditionMultiSig-2-4)
pbk4 sig1 sig2 and3 and4)

mainLemmaCorrectnessMultiSig-2-4 msg1 pbk1 pbk2 pbk3

pbk4 .==>stg time msg2 (sig2 :: sig1 :: dummy :: stack)

(inj2 (inj2 (inj2 (inj1 (conj and3 and4))))) =

boolToNatNotFalseLemma (compareSigsMultiSigAux msg2

(sig2 :: []) (pbk2 :: pbk3 :: pbk4 :: []) sig1

(isSigned msg2 sig1 pbk1))

(lemmaHoareTripleStackGeAux’10 msg2 pbk1 pbk2 pbk3

pbk4 sig1 sig2 and3 and4)

mainLemmaCorrectnessMultiSig-2-4 msg1 pbk1 pbk2 pbk3

pbk4 .==>stg time msg2 (sig2 :: sig1 :: dummy :: stack)

(inj2 (inj2 (inj2 (inj2 (inj1 (conj and3 and4)))))) =

boolToNatNotFalseLemma (compareSigsMultiSigAux msg2

(sig2 :: []) (pbk2 :: pbk3 :: pbk4 :: []) sig1

(isSigned msg2 sig1 pbk1))

(lemmaHoareTripleStackGeAux’11 msg2 pbk1 pbk2 pbk3

pbk4 sig1 sig2 and3 and4)

mainLemmaCorrectnessMultiSig-2-4 msg1 pbk1 pbk2 pbk3

pbk4 .==>stg time msg2 (sig2 :: sig1 :: dummy :: stack)

(inj2 (inj2 (inj2 (inj2 (inj2 (conj and3 and4)))))) =

boolToNatNotFalseLemma (compareSigsMultiSigAux msg2

(sig2 :: []) (pbk2 :: pbk3 :: pbk4 :: []) sig1

(isSigned msg2 sig1 pbk1))

(lemmaHoareTripleStackGeAux’12 msg2 pbk1 pbk2 pbk3

pbk4 sig1 sig2 and3 and4)

mainLemmaCorrectnessMultiSig-2-4 msg1 pbk1 pbk2 pbk3

pbk4 .<==stg time msg2 (sig2 :: sig1 :: dummy :: stack) x =

lemmaHoareTripleStackGeAux’Comb2-4 msg2 pbk1 pbk2 pbk3

pbk4 sig1 sig2

(boolToNatNotFalseLemma2 (compareSigsMultiSigAux

msg2 (sig2 :: []) (pbk2 :: pbk3 :: pbk4 :: [])

sig1 (isSigned msg2 sig1 pbk1)) x)

weakestPreCondMultiSig-2-4 : (pbk1 pbk2 pbk3 pbk4 : N)
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→ StackStatePred

weakestPreCondMultiSig-2-4 pbk1 pbk2 pbk3 pbk4

= stackPred2SPred (weakestPreCondMultiSig-2-4s

pbk1 pbk2 pbk3 pbk4)

– Main theorem for multisig-2-4
theoremCorrectnessMultiSig-2-4 :

(pbk1 pbk2 pbk3 pbk4 : N)

→ < weakestPreCondMultiSig-2-4 pbk1 pbk2 pbk3 pbk4 >if f

multiSigScript2-4b pbk1 pbk2 pbk3 pbk4

< stackPred2SPred acceptStates >

theoremCorrectnessMultiSig-2-4 pbk1 pbk2 pbk3 pbk4

= hoareTripleStack2HoareTriple

(multiSigScript2-4b pbk1 pbk2 pbk3 pbk4)

(weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4 )

acceptStates

(mainLemmaCorrectnessMultiSig-2-4 (nat pbk4)

pbk1 pbk2 pbk3 pbk4)

theoremCorrectnessTimeCheck :

(φ : StackPredicate)(time1 : Time)

→ < stackPred2SPred

(timeCheckPreCond time1 ∧sp φ ) >if f

checkTimeScriptb time1

< stackPred2SPred φ >

theoremCorrectnessTimeCheck φ time1 .==>

〈 currentTime1 , msg1 , stack1 〉 (conj and3 and4)

with (instructOpTime currentTime1 time1)

theoremCorrectnessTimeCheck φ time1 .==>
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theoremCorrectnessMultiSig-2-4 and weakestPreConditionMultiSig-2-4)
〈 currentTime1 , msg1 , stack1 〉 (conj and3 and4)

| true = and4

theoremCorrectnessTimeCheck φ time1 .<==

〈 currentTime1 , msg1 , stack1 〉 p

with (instructOpTime currentTime1 time1)

theoremCorrectnessTimeCheck φ time1

.<== 〈 currentTime1 , msg1 , stack1 〉 p

| true = conj tt p

theoremCorrectnessCombinedMultiSigTimeCheck

: (time1 : Time) (pbk1 pbk2 pbk3 pbk4 : N)

→ < stackPred2SPred ( timeCheckPreCond time1 ∧sp

weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4) >if f

checkTimeScriptb time1 ++ multiSigScript2-4b

pbk1 pbk2 pbk3 pbk4

< acceptState >

theoremCorrectnessCombinedMultiSigTimeCheck

time1 pbk1 pbk2 pbk3 pbk4 =

stackPred2SPred (timeCheckPreCond time1 ∧sp

weakestPreCondMultiSig-2-4s pbk1 pbk2 pbk3 pbk4)

<><>〈 checkTimeScriptb time1 〉〈

theoremCorrectnessTimeCheck

(weakestPreCondMultiSig-2-4s

pbk1 pbk2 pbk3 pbk4) time1 〉

stackPred2SPred (weakestPreCondMultiSig-2-4s

pbk1 pbk2 pbk3 pbk4)

<><>〈 multiSigScript2-4b pbk1 pbk2 pbk3 pbk4

〉〈 theoremCorrectnessMultiSig-2-4

pbk1 pbk2 pbk3 pbk4 〉e

stackPred2SPred acceptStates ‚p
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A.23 Verification Multi-Sig (verificationMultiSig.agda) include

(opPushLis and multiSigScriptm-n and checkTimeScript

and timeCheckPreCond

open import basicBitcoinDataType

module verificationMultiSig (param : GlobalParameters) where

open import Data.List.Base hiding (_++_ )

open import Data.Nat renaming (_≤_ to _≤’_) – _<_ to _<’_)
open import Data.List hiding (_++_ )

open import Data.Sum

open import Data.Unit

open import Data.Empty

open import Data.Maybe

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head; [_]; length)

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.listLib

open import libraries.emptyLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.equalityLib
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multiSigScriptm-n and checkTimeScript and timeCheckPreCond

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate

open import instructionBasic

open import semanticBasicOperations param

open import stackSemanticsInstructions param

open import hoareTripleStack param

weakestPreCondMultiSig-2-3-bas : (pbk1 pbk2 pbk3 : N)

→ StackPredicate

weakestPreCondMultiSig-2-3-bas

pbk1 pbk2 pbk3 time msg1 [] = ⊥

weakestPreCondMultiSig-2-3-bas

pbk1 pbk2 pbk3 time msg1 (x :: []) = ⊥

weakestPreCondMultiSig-2-3-bas

pbk1 pbk2 pbk3 time msg1 (x :: y :: []) = ⊥

weakestPreCondMultiSig-2-3-bas

pbk1 pbk2 pbk3 time msg1 (sig2 :: sig1 :: dummy :: stack1) =

( (IsSigned msg1 sig1 pbk1

∧ IsSigned msg1 sig2 pbk2) ]

(IsSigned msg1 sig1 pbk1

∧ IsSigned msg1 sig2 pbk3) ]

(IsSigned msg1 sig1 pbk2

∧ IsSigned msg1 sig2 pbk3 ))

multiSigScript-2-3-b : (pbk1 pbk2 pbk3 : N) → BitcoinScriptBasic

multiSigScript-2-3-b pbk1 pbk2 pbk3

= (opPush 2) :: (opPush pbk1)

:: (opPush pbk2) :: (opPush pbk3)

:: (opPush 3) :: opMultiSig :: []
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lemmaHoareTripleStackGeAux’1 : (msg2 : Msg)

(pbk1 pbk2 pbk3 sig1 sig2 : N)

→ True (isSigned msg2 sig1 pbk1)

→ True (isSigned msg2 sig2 pbk2)

→ True (compareSigsMultiSig msg2

( sig1 :: sig2 :: []) (pbk1 :: pbk2 :: pbk3 :: []))

lemmaHoareTripleStackGeAux’1 msg2

pbk1 pbk2 pbk3 sig1 sig2 x x1 with

(isSigned msg2 sig1 pbk1)

lemmaHoareTripleStackGeAux’1 msg2

pbk1 pbk2 pbk3 sig1 sig2 x x1 | true

with (isSigned msg2 sig2 pbk2)

lemmaHoareTripleStackGeAux’1 msg2

pbk1 pbk2 pbk3 sig1 sig2 x x1 | true |

true = tt

lemmaHoareTripleStackGeAux’2 : (msg2 : Msg)

(pbk1 pbk2 pbk3 sig1 sig2 : N)

→ True (isSigned msg2 sig1 pbk1)

→ True (isSigned msg2 sig2 pbk3)

→ True (compareSigsMultiSig msg2 ( sig1 :: sig2 :: [])

(pbk1 :: pbk2 :: pbk3 :: []))

lemmaHoareTripleStackGeAux’2 msg2 pbk1 pbk2 pbk3 sig1 sig2

x x1 with (isSigned msg2 sig1 pbk1)

lemmaHoareTripleStackGeAux’2 msg2 pbk1 pbk2 pbk3 sig1 sig2

x x1 | true with (isSigned msg2 sig2 pbk2)

lemmaHoareTripleStackGeAux’2 msg2 pbk1 pbk2 pbk3 sig1 sig2 x x1

| true | false with (isSigned msg2 sig2 pbk3)

lemmaHoareTripleStackGeAux’2 msg2 pbk1 pbk2 pbk3 sig1 sig2 x x1

| true | false | true = tt

lemmaHoareTripleStackGeAux’2 msg2 pbk1 pbk2 pbk3 sig1 sig2 x x1

| true | true = tt
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multiSigScriptm-n and checkTimeScript and timeCheckPreCond

lemmaHoareTripleStackGeAux’3 : (msg2 : Msg)

(pbk1 pbk2 pbk3 sig1 sig2 : N)

→ True (isSigned msg2 sig1 pbk2)

→ True (isSigned msg2 sig2 pbk3)

→ True (compareSigsMultiSig msg2 ( sig1 :: sig2 :: [])

(pbk1 :: pbk2 :: pbk3 :: []))

lemmaHoareTripleStackGeAux’3 msg2 pbk1 pbk2 pbk3

sig1 sig2 x x1 with (isSigned msg2 sig1 pbk1 )

lemmaHoareTripleStackGeAux’3 msg2 pbk1 pbk2 pbk3

sig1 sig2 x x1 | false with (isSigned msg2 sig1 pbk2)

lemmaHoareTripleStackGeAux’3 msg2 pbk1 pbk2 pbk3

sig1 sig2 x x1 | false | true with isSigned msg2

sig2 pbk3

lemmaHoareTripleStackGeAux’3 msg2 pbk1 pbk2 pbk3

sig1 sig2 x x1 | false | true | true = tt

lemmaHoareTripleStackGeAux’3 msg2 pbk1 pbk2 pbk3

sig1 sig2 x x1 | true with (isSigned msg2 sig2 pbk2)

lemmaHoareTripleStackGeAux’3 msg2 pbk1 pbk2 pbk3

sig1 sig2 x x1 | true | false with

(isSigned msg2 sig2 pbk3)

lemmaHoareTripleStackGeAux’3 msg2 pbk1 pbk2 pbk3

sig1 sig2 x x1 | true | false | true = tt

lemmaHoareTripleStackGeAux’3 msg2 pbk1 pbk2 pbk3

sig1 sig2 x x1 | true | true = tt

lemmaHoareTripleStackGeAux’4 : (msg2 : Msg)

(pbk1 pbk2 pbk3 sig1 sig2 : N)

→ True (compareSigsMultiSigAux msg2 (sig2 :: [])

(pbk2 :: pbk3 :: []) sig1

(isSigned msg2 sig1 pbk1 ))

→ (True (isSigned msg2 sig1 pbk1 )
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∧ True (isSigned msg2 sig2 pbk2))

] (True (isSigned msg2 sig1 pbk1 )

∧ True (isSigned msg2 sig2 pbk3))

] (True (isSigned msg2 sig1 pbk2)

∧ True (isSigned msg2 sig2 pbk3))

lemmaHoareTripleStackGeAux’4 msg2 pbk1 pbk2 pbk3

sig1 sig2

_ with (isSigned msg2 sig1 pbk1 )

lemmaHoareTripleStackGeAux’4 msg2 pbk1 pbk2 pbk3

sig1 sig2

_ | false with (isSigned msg2 sig1 pbk2)

lemmaHoareTripleStackGeAux’4 msg2 pbk1 pbk2 pbk3

sig1 sig2

_ | false | false with (isSigned msg2 sig1 pbk3)

lemmaHoareTripleStackGeAux’4 msg2 pbk1 pbk2 pbk3

sig1 sig2

() | false | false | false

lemmaHoareTripleStackGeAux’4 msg2 pbk1 pbk2 pbk3

sig1 sig2

() | false | false | true

lemmaHoareTripleStackGeAux’4 msg2 pbk1 pbk2 pbk3

sig1 sig2 _ | false | true with

(isSigned msg2 sig2 pbk3)

lemmaHoareTripleStackGeAux’4 msg2 pbk1 pbk2 pbk3

sig1 sig2 _ | false | true | true

= inj2 (inj2 (conj tt tt))

lemmaHoareTripleStackGeAux’4 msg2 pbk1 pbk2 pbk3

sig1 sig2 _ | true with

(isSigned msg2 sig2 pbk2)

lemmaHoareTripleStackGeAux’4 msg2 pbk1 pbk2 pbk3

sig1 sig2 _ | true | false

with (isSigned msg2 sig2 pbk3)

lemmaHoareTripleStackGeAux’4 msg2 pbk1 pbk2 pbk3
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sig1 sig2 _ | true | false | true

= inj2 (inj1 (conj tt tt))

lemmaHoareTripleStackGeAux’4 msg2 pbk1 pbk2 pbk3

sig1 sig2 _ | true | true = inj1 (conj tt tt)

weakestPreCondMultiSig-2-4s : (pbk1 pbk2 pbk3 pbk4 : N)

→ StackPredicate

weakestPreCondMultiSig-2-4s pbk1 pbk2

pbk3 pbk4 time msg1 [] = ⊥

weakestPreCondMultiSig-2-4s pbk1 pbk2

pbk3 pbk4 time msg1 (x :: []) = ⊥

weakestPreCondMultiSig-2-4s pbk1 pbk2

pbk3 pbk4 time msg1 (x :: y :: []) = ⊥

weakestPreCondMultiSig-2-4s pbk1 pbk2

pbk3 pbk4 time msg1

( sig2 :: sig1 :: dummy :: stack1) =

((IsSigned msg1 sig1 pbk1

∧ IsSigned msg1 sig2 pbk2) ]

(IsSigned msg1 sig1 pbk1

∧ IsSigned msg1 sig2 pbk3) ]

(IsSigned msg1 sig1 pbk1

∧ IsSigned msg1 sig2 pbk4) ]

(IsSigned msg1 sig1 pbk2

∧ IsSigned msg1 sig2 pbk3) ]

(IsSigned msg1 sig1 pbk2

∧ IsSigned msg1 sig2 pbk4) ]

(IsSigned msg1 sig1 pbk3

∧ IsSigned msg1 sig2 pbk4))
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HoareTripleStackGeAux’ :

(msg1 : Msg)(pbk1 pbk2 pbk3 : N) →

< (weakestPreCondMultiSig-2-3-bas

pbk1 pbk2 pbk3) >gs

(λ time1 msg1 stack →

executeMultiSig3 msg1 (pbk1

:: pbk2 :: pbk3 :: []) 2 stack [])

< (λ time1 msg1 stack

→ acceptStates time1 msg1 stack) >

HoareTripleStackGeAux’ msg1 pbk1 pbk2 pbk3

.==>stg time msg2 (sig2 :: sig1 :: dummy :: s)

(inj1 (conj and3 and4))

= boolToNatNotFalseLemma

(compareSigsMultiSigAux msg2 (sig2 :: [])

(pbk2 :: pbk3 :: []) sig1

(isSigned msg2 sig1 pbk1))

(lemmaHoareTripleStackGeAux’1 msg2 pbk1

pbk2 pbk3 sig1 sig2 and3 and4)

HoareTripleStackGeAux’ msg1 pbk1 pbk2 pbk3

.==>stg time msg2 (sig2 :: sig1 :: dummy :: s)

(inj2 (inj1 (conj and3 and4)))

= boolToNatNotFalseLemma

(compareSigsMultiSigAux msg2 (sig2 :: [])

(pbk2 :: pbk3 :: []) sig1

(isSigned msg2 sig1 pbk1))

(lemmaHoareTripleStackGeAux’2

msg2 pbk1 pbk2 pbk3 sig1 sig2 and3 and4)

HoareTripleStackGeAux’ msg1 pbk1 pbk2 pbk3

.==>stg time msg2 (sig2 :: sig1 :: dummy :: s)

(inj2 (inj2 (conj and1 and2)))

= boolToNatNotFalseLemma

(compareSigsMultiSigAux msg2

(sig2 :: []) (pbk2 :: pbk3 :: []) sig1
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(isSigned msg2 sig1 pbk1 ))

(lemmaHoareTripleStackGeAux’3 msg2

pbk1 pbk2 pbk3 sig1 sig2 and1 and2)

HoareTripleStackGeAux’ msg1 pbk1 pbk2 pbk3

.<==stg time msg2 (sig2 :: sig1 :: dummy :: s) x

= lemmaHoareTripleStackGeAux’4 msg2 pbk1 pbk2

pbk3 sig1 sig2

(boolToNatNotFalseLemma2

(compareSigsMultiSigAux msg2 (sig2 :: [])

(pbk2 :: pbk3 :: []) sig1

(isSigned msg2 sig1 pbk1 )) x)

lemmaHoareTripleStackGeAux’7 : (msg2 : Msg)

(pbk1 pbk2 pbk3 pbk4 sig1 sig2 : N)

→ True (isSigned msg2 sig1 pbk1)

→ True (isSigned msg2 sig2 pbk2)

→ True (compareSigsMultiSig msg2

( sig1 :: sig2 :: [])

(pbk1 :: pbk2 :: pbk3 :: pbk4 :: []))

lemmaHoareTripleStackGeAux’7 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x x1

with (isSigned msg2 sig1 pbk1)

lemmaHoareTripleStackGeAux’7 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true with (isSigned msg2 sig2 pbk2)

lemmaHoareTripleStackGeAux’7 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x x1 | true

| true = tt
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lemmaHoareTripleStackGeAux’8 : (msg2 : Msg)

(pbk1 pbk2 pbk3 pbk4 sig1 sig2 : N)

→ True (isSigned msg2 sig1 pbk1)

→ True (isSigned msg2 sig2 pbk3)

→ True (compareSigsMultiSig msg2

( sig1 :: sig2 :: [])

(pbk1 :: pbk2 :: pbk3 :: pbk4 :: []))

lemmaHoareTripleStackGeAux’8 msg2 pbk1 pbk2

pbk3 pbk4 sig1 sig2 x x1

with (isSigned msg2 sig2 pbk1)

lemmaHoareTripleStackGeAux’8 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| false

with (isSigned msg2 sig1 pbk1)

lemmaHoareTripleStackGeAux’8 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| false | true with

(isSigned msg2 sig2 pbk2)

lemmaHoareTripleStackGeAux’8 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x x1

| false | true | false with

(isSigned msg2 sig2 pbk3)

lemmaHoareTripleStackGeAux’8 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| false | true | false | true = tt

lemmaHoareTripleStackGeAux’8 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x x1

| false | true | true = tt

lemmaHoareTripleStackGeAux’8 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x x1

| true with (isSigned msg2 sig1 pbk1)

lemmaHoareTripleStackGeAux’8 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x x1
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| true | true with (isSigned msg2 sig2 pbk2)

lemmaHoareTripleStackGeAux’8 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true | true | false with (isSigned msg2 sig2 pbk3)

lemmaHoareTripleStackGeAux’8 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true | true | false | true = tt

lemmaHoareTripleStackGeAux’8 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true | true | true = tt

lemmaHoareTripleStackGeAux’9 : (msg2 : Msg)

(pbk1 pbk2 pbk3 pbk4 sig1 sig2 : N)

→ True (isSigned msg2 sig1 pbk1)

→ True (isSigned msg2 sig2 pbk4)

→ True (compareSigsMultiSig msg2

( sig1 :: sig2 :: [])

(pbk1 :: pbk2 :: pbk3 :: pbk4 :: []))

lemmaHoareTripleStackGeAux’9 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

with (isSigned msg2 sig1 pbk1)

lemmaHoareTripleStackGeAux’9 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x x1

| true with (isSigned msg2 sig2 pbk2)

lemmaHoareTripleStackGeAux’9 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true | false with (isSigned msg2 sig2 pbk3)

lemmaHoareTripleStackGeAux’9 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true | false | false

with (isSigned msg2 sig2 pbk4)

lemmaHoareTripleStackGeAux’9 msg2
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pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true | false | false | true = tt

lemmaHoareTripleStackGeAux’9 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x x1 | true | false | true = tt

lemmaHoareTripleStackGeAux’9 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x x1 | true | true = tt

lemmaHoareTripleStackGeAux’10 : (msg2 : Msg)

(pbk1 pbk2 pbk3 pbk4 sig1 sig2 : N)

→ True (isSigned msg2 sig1 pbk2)

→ True (isSigned msg2 sig2 pbk3)

→ True (compareSigsMultiSig msg2

( sig1 :: sig2 :: [])

(pbk1 :: pbk2 :: pbk3 :: pbk4 :: []))

lemmaHoareTripleStackGeAux’10 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x x1

with (isSigned msg2 sig1 pbk1)

lemmaHoareTripleStackGeAux’10 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x x1

| false with (isSigned msg2 sig1 pbk2)

lemmaHoareTripleStackGeAux’10 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| false | true with (isSigned msg2 sig2 pbk3)

lemmaHoareTripleStackGeAux’10 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| false | true | true = tt

lemmaHoareTripleStackGeAux’10 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true with (isSigned msg2 sig2 pbk2)

lemmaHoareTripleStackGeAux’10 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1
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| true | false with (isSigned msg2 sig2 pbk3)

lemmaHoareTripleStackGeAux’10 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true | false | true = tt

lemmaHoareTripleStackGeAux’10 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x x1

| true | true = tt

lemmaHoareTripleStackGeAux’11 : (msg2 : Msg)

(pbk1 pbk2 pbk3 pbk4 sig1 sig2 : N)

→ True (isSigned msg2 sig1 pbk2)

→ True (isSigned msg2 sig2 pbk4)

→ True (compareSigsMultiSig msg2

( sig1 :: sig2 :: [])

(pbk1 :: pbk2 :: pbk3 :: pbk4 :: []))

lemmaHoareTripleStackGeAux’11 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x x1

with (isSigned msg2 sig1 pbk1)

lemmaHoareTripleStackGeAux’11 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x x1

| false with (isSigned msg2 sig1 pbk2)

lemmaHoareTripleStackGeAux’11 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| false | true with

(isSigned msg2 sig2 pbk3)

lemmaHoareTripleStackGeAux’11 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| false | true | false with

(isSigned msg2 sig2 pbk4)

lemmaHoareTripleStackGeAux’11 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

395



A. Full Agda code for chapter Verifying Bitcoin Script with local instructions

| false | true | false | true = tt

lemmaHoareTripleStackGeAux’11 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| false | true | true = tt

lemmaHoareTripleStackGeAux’11 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true with (isSigned msg2 sig2 pbk2)

lemmaHoareTripleStackGeAux’11 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true | false with (isSigned msg2 sig2 pbk3)

lemmaHoareTripleStackGeAux’11 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true | false | false with

(isSigned msg2 sig2 pbk4)

lemmaHoareTripleStackGeAux’11 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true | false | false | true = tt

lemmaHoareTripleStackGeAux’11 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true | false | true = tt

lemmaHoareTripleStackGeAux’11 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true | true = tt

lemmaHoareTripleStackGeAux’12 : (msg2 : Msg)

(pbk1 pbk2 pbk3 pbk4 sig1 sig2 : N)

→ True (isSigned msg2 sig1 pbk3)

→ True (isSigned msg2 sig2 pbk4)

→ True (compareSigsMultiSig msg2

( sig1 :: sig2 :: [])

(pbk1 :: pbk2 :: pbk3 :: pbk4 :: []))
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lemmaHoareTripleStackGeAux’12 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

with (isSigned msg2 sig1 pbk1)

lemmaHoareTripleStackGeAux’12 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| false with (isSigned msg2 sig1 pbk2)

lemmaHoareTripleStackGeAux’12 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| false | false with

(isSigned msg2 sig1 pbk3)

lemmaHoareTripleStackGeAux’12 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| false | false | true with

(isSigned msg2 sig2 pbk4)

lemmaHoareTripleStackGeAux’12 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| false | false | true | true = tt

lemmaHoareTripleStackGeAux’12 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| false | true with

(isSigned msg2 sig2 pbk3)

lemmaHoareTripleStackGeAux’12 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| false | true | false with

(isSigned msg2 sig2 pbk4)

lemmaHoareTripleStackGeAux’12 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| false | true | false | true = tt

lemmaHoareTripleStackGeAux’12 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| false | true | true = tt

lemmaHoareTripleStackGeAux’12 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1
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| true with (isSigned msg2 sig2 pbk2)

lemmaHoareTripleStackGeAux’12 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true | false with

(isSigned msg2 sig2 pbk3)

lemmaHoareTripleStackGeAux’12 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true | false | false with

(isSigned msg2 sig2 pbk4)

lemmaHoareTripleStackGeAux’12 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true | false | false | true = tt

lemmaHoareTripleStackGeAux’12 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true | false | true = tt

lemmaHoareTripleStackGeAux’12 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x x1

| true | true = tt

lemmaHoareTripleStackGeAux’Comb2-4 : (msg2 : Msg)

(pbk1 pbk2 pbk3 pbk4 sig1 sig2 : N)

→ True (compareSigsMultiSigAux msg2 (sig2 :: [])

(pbk2 :: pbk3 :: pbk4 :: []) sig1

(isSigned msg2 sig1 pbk1 ))

→ (True (isSigned msg2 sig1 pbk1)

∧ True (isSigned msg2 sig2 pbk2)) ]

(True (isSigned msg2 sig1 pbk1)

∧ True (isSigned msg2 sig2 pbk3)) ]

(True (isSigned msg2 sig1 pbk1)

∧ True (isSigned msg2 sig2 pbk4)) ]

(True (isSigned msg2 sig1 pbk2)

∧ True (isSigned msg2 sig2 pbk3)) ]
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(True (isSigned msg2 sig1 pbk2)

∧ True (isSigned msg2 sig2 pbk4)) ]

(True (isSigned msg2 sig1 pbk3)

∧ True (isSigned msg2 sig2 pbk4))

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x

with (isSigned msg2 sig1 pbk1)

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x

| false with (isSigned msg2 sig1 pbk2)

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x

| false | false with (isSigned msg2 sig1 pbk3)

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x | false

| false | false with (isSigned msg2 sig1 pbk4)

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 ()

| false | false | false | false

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 ()

| false | false | false | true

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x

| false | false | true with (isSigned msg2 sig2 pbk4)

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 tt | false |

false | true | true with (isSigned msg2 sig2 pbk3)

lemmaHoareTripleStackGeAux’Comb2-4 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 tt | false | false

| true | true | false with (isSigned msg2 sig2 pbk2)

lemmaHoareTripleStackGeAux’Comb2-4 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 tt | false | false
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| true | true | false | false

= inj2 (inj2 (inj2 (inj2 (inj2 (conj tt tt)))))

lemmaHoareTripleStackGeAux’Comb2-4 msg2 pbk1 pbk2

pbk3 pbk4 sig1 sig2 tt | false | false | true

| true | false | true

= inj2 (inj2 (inj2 (inj2 (inj2 (conj tt tt)))))

lemmaHoareTripleStackGeAux’Comb2-4 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 tt | false | false

| true | true | true

with (isSigned msg2 sig2 pbk2)

lemmaHoareTripleStackGeAux’Comb2-4 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 tt | false | false

| true | true | true | false

= inj2 (inj2 (inj2 (inj2 (inj2 (conj tt tt)))))

lemmaHoareTripleStackGeAux’Comb2-4 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 tt | false | false |

true | true | true | true

= inj2 (inj2 (inj2 (inj2 (inj2 (conj tt tt)))))

lemmaHoareTripleStackGeAux’Comb2-4 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x | false |

true with (isSigned msg2 sig2 pbk3)

lemmaHoareTripleStackGeAux’Comb2-4 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x | false | true

| false with (isSigned msg2 sig2 pbk4)

lemmaHoareTripleStackGeAux’Comb2-4 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x | false | true |

false | true with isSigned msg2 sig1 pbk3

lemmaHoareTripleStackGeAux’Comb2-4 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x | false | true | false

| true | false with (isSigned msg2 sig2 pbk2)

lemmaHoareTripleStackGeAux’Comb2-4 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x | false | true | false

| true | false | false
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= inj2 (inj2 (inj2 (inj2 (inj1 (conj tt tt)))))

lemmaHoareTripleStackGeAux’Comb2-4 msg2 pbk1 pbk2

pbk3 pbk4 sig1 sig2 x | false | true | false

| true | false | true

= inj2 (inj2 (inj2 (inj2 (inj1 (conj tt tt)))))

lemmaHoareTripleStackGeAux’Comb2-4 msg2 pbk1 pbk2

pbk3 pbk4 sig1 sig2 x | false | true | false

| true | true with (isSigned msg2 sig2 pbk2)

lemmaHoareTripleStackGeAux’Comb2-4 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x | false | true

| false | true | true | false

= inj2 (inj2 (inj2 (inj2 (inj1 (conj tt tt)))))

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x | false

| true | false | true | true | true

= inj2 (inj2 (inj2 (inj2 (inj1 (conj tt tt)))))

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x | false

| true | true with (isSigned msg2 sig2 pbk4)

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x | false |

true | true | false with (isSigned msg2 sig1 pbk3)

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x | false |

true | true | false | false

with (isSigned msg2 sig2 pbk2)

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x | false

| true | true | false | false | false

= inj2 (inj2 (inj2 (inj1 (conj tt tt))))

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x | false

| true | true | false | false | true
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= inj2 (inj2 (inj2 (inj1 (conj tt tt))))

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x | false

| true | true | false | true

= inj2 (inj2 (inj2 (inj1 (conj tt tt))))

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x | false

| true | true | true

= inj2 (inj2 (inj2 (inj1 (conj tt tt))))

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x

| true with (isSigned msg2 sig2 pbk2)

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x

| true | false with (isSigned msg2 sig2 pbk3)

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x | true

| false | false with (isSigned msg2 sig2 pbk4)

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x | true

| false | false | true

= inj2 (inj2 (inj1 (conj tt tt)))

lemmaHoareTripleStackGeAux’Comb2-4 msg2

pbk1 pbk2 pbk3 pbk4 sig1 sig2 x | true

| false | true = inj2 (inj1 (conj tt tt))

lemmaHoareTripleStackGeAux’Comb2-4 msg2 pbk1

pbk2 pbk3 pbk4 sig1 sig2 x | true | true

= inj1 (conj tt tt)

lemmaHoareTripleStackGeAux’14 : (msg : Msg)

(pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 : N)
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→ True (isSigned msg sig1 pbk1)

→ True (isSigned msg sig3 pbk3)

→ True (isSigned msg sig2 pbk2)

→ True (compareSigsMultiSig msg

( sig1 :: sig2 :: sig3 :: [])

(pbk1 :: pbk2 :: pbk3 :: pbk4 :: pbk5 :: []))

lemmaHoareTripleStackGeAux’14 msg pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

with (isSigned msg sig1 pbk1)

lemmaHoareTripleStackGeAux’14 msg pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true with (isSigned msg sig2 pbk2)

lemmaHoareTripleStackGeAux’14 msg pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true | true with (isSigned msg sig3 pbk3)

lemmaHoareTripleStackGeAux’14 msg pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true | true | true = tt

lemmaHoareTripleStackGeAux’15 : (msg : Msg)

(pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 : N)

→ True (isSigned msg sig3 pbk4)

→ True (isSigned msg sig2 pbk2)

→ True (isSigned msg sig1 pbk1)

→ True (compareSigsMultiSig msg

( sig1 :: sig2 :: sig3 :: [])

(pbk1 :: pbk2 :: pbk3 :: pbk4 :: pbk5 :: []))

lemmaHoareTripleStackGeAux’15 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 with (isSigned msg1 sig1 pbk1)

lemmaHoareTripleStackGeAux’15 msg1

403



A. Full Agda code for chapter Verifying Bitcoin Script with local instructions

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true with

(isSigned msg1 sig2 pbk2)

lemmaHoareTripleStackGeAux’15 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3

x x1 x2 | true | true

with (isSigned msg1 sig3 pbk3)

lemmaHoareTripleStackGeAux’15 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true | true | false

with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’15 msg1 pbk1 pbk2

pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true | true | false | true = tt

lemmaHoareTripleStackGeAux’15 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3

x x1 x2 | true | true | true = tt

lemmaHoareTripleStackGeAux’16 : (msg : Msg)

(pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 : N)

→ True (isSigned msg sig3 pbk5)

→ True (isSigned msg sig2 pbk2)

→ True (isSigned msg sig1 pbk1)

→ True (compareSigsMultiSig msg

( sig1 :: sig2 :: sig3 :: [])

(pbk1 :: pbk2 :: pbk3 :: pbk4 :: pbk5 :: []))

lemmaHoareTripleStackGeAux’16 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3

x x1 x2 with (isSigned msg1 sig1 pbk1)

lemmaHoareTripleStackGeAux’16 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true with (isSigned msg1 sig2 pbk2)
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lemmaHoareTripleStackGeAux’16 msg1 pbk1 pbk2

pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true | true with (isSigned msg1 sig3 pbk3)

lemmaHoareTripleStackGeAux’16 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true | true | false with

(isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’16 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true | true | false | false

with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’16 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true | true | false | false | true = tt

lemmaHoareTripleStackGeAux’16 msg1 pbk1 pbk2

pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2 | true

| true | false | true = tt

lemmaHoareTripleStackGeAux’16 msg1 pbk1 pbk2

pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true | true | true = tt

lemmaHoareTripleStackGeAux’17 : (msg : Msg)

(pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 : N)

→ True (isSigned msg sig3 pbk4)

→ True (isSigned msg sig2 pbk3)

→ True (isSigned msg sig1 pbk1)

→ True (compareSigsMultiSig msg

( sig1 :: sig2 :: sig3 :: [])

(pbk1 :: pbk2 :: pbk3 :: pbk4 :: pbk5 :: []))

lemmaHoareTripleStackGeAux’17 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 with (isSigned msg1 sig1 pbk1)
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lemmaHoareTripleStackGeAux’17 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

with (isSigned msg1 sig2 pbk2)

lemmaHoareTripleStackGeAux’17 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false

with (isSigned msg1 sig2 pbk3)

lemmaHoareTripleStackGeAux’17 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false

| true with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’17 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true | false

| true | true = tt

lemmaHoareTripleStackGeAux’17 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

| true with (isSigned msg1 sig3 pbk3)

lemmaHoareTripleStackGeAux’17 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | true

| false with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’17 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

| true | false | true = tt

lemmaHoareTripleStackGeAux’17 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | true | true = tt
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lemmaHoareTripleStackGeAux’18 : (msg : Msg)

(pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 : N)

→ True (isSigned msg sig3 pbk5)

→ True (isSigned msg sig2 pbk3)

→ True (isSigned msg sig1 pbk1)

→ True (compareSigsMultiSig msg

( sig1 :: sig2 :: sig3 :: [])

(pbk1 :: pbk2 :: pbk3 :: pbk4 :: pbk5 :: []))

lemmaHoareTripleStackGeAux’18 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3

x x1 x2 with (isSigned msg1 sig1 pbk1)

lemmaHoareTripleStackGeAux’18 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true with (isSigned msg1 sig2 pbk2)

lemmaHoareTripleStackGeAux’18 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true | false with (isSigned msg1 sig2 pbk3)

lemmaHoareTripleStackGeAux’18 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false

| true with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’18 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true | false | true

| false with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’18 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3

x x1 x2 | true | false | true

| false | true = tt

lemmaHoareTripleStackGeAux’18 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true | false | true | true = tt

lemmaHoareTripleStackGeAux’18 msg1 pbk1 pbk2
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pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true | true with (isSigned msg1 sig3 pbk3)

lemmaHoareTripleStackGeAux’18 msg1 pbk1 pbk2

pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true | true | false

with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’18 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true | true | false | false

with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’18 msg1 pbk1 pbk2

pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true | true | false | false | true = tt

lemmaHoareTripleStackGeAux’18 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3

x x1 x2 | true | true | false | true = tt

lemmaHoareTripleStackGeAux’18 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x x1 x2

| true | true | true = tt

lemmaHoareTripleStackGeAux’19 : (msg : Msg)

(pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 : N)

→ True (isSigned msg sig3 pbk5)

→ True (isSigned msg sig2 pbk4)

→ True (isSigned msg sig1 pbk1)

→ True (compareSigsMultiSig msg

( sig1 :: sig2 :: sig3 :: [])

(pbk1 :: pbk2 :: pbk3 :: pbk4 :: pbk5 :: []))

lemmaHoareTripleStackGeAux’19 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 with (isSigned msg1 sig1 pbk1)

lemmaHoareTripleStackGeAux’19 msg1
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pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true with (isSigned msg1 sig2 pbk2)

lemmaHoareTripleStackGeAux’19 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false with

(isSigned msg1 sig2 pbk3)

lemmaHoareTripleStackGeAux’19 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false

| false with (isSigned msg1 sig2 pbk4)

lemmaHoareTripleStackGeAux’19 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false | false

| true with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’19 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false

| false | true | true = tt

lemmaHoareTripleStackGeAux’19 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false

| true with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’19 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false | true

| false with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’19 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false

| true | false | true = tt

lemmaHoareTripleStackGeAux’19 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false | true
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| true = tt

lemmaHoareTripleStackGeAux’19 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | true

with (isSigned msg1 sig3 pbk3)

lemmaHoareTripleStackGeAux’19 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | true

| false with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’19 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | true | false

| false with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’19 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | true

| false | false | true = tt

lemmaHoareTripleStackGeAux’19 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | true | false | true = tt

lemmaHoareTripleStackGeAux’19 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | true | true = tt

lemmaHoareTripleStackGeAux’20 : (msg : Msg)

(pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 : N)

→ True (isSigned msg sig3 pbk4)

→ True (isSigned msg sig2 pbk3)

→ True (isSigned msg sig1 pbk2)

→ True (compareSigsMultiSig msg

( sig1 :: sig2 :: sig3 :: [])

(pbk1 :: pbk2 :: pbk3 :: pbk4 :: pbk5 :: []))
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lemmaHoareTripleStackGeAux’20 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2

with (isSigned msg1 sig1 pbk1)

lemmaHoareTripleStackGeAux’20 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2

| false with (isSigned msg1 sig1 pbk2)

lemmaHoareTripleStackGeAux’20 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false | true

with (isSigned msg1 sig2 pbk3)

lemmaHoareTripleStackGeAux’20 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false | true

| true with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’20 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | false

| true | true | true = tt

lemmaHoareTripleStackGeAux’20 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2

| true with (isSigned msg1 sig2 pbk2)

lemmaHoareTripleStackGeAux’20 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

| false with (isSigned msg1 sig2 pbk3)

lemmaHoareTripleStackGeAux’20 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3

x x1 x2 | true | false

| true with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’20 msg1
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pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

| false | true | true = tt

lemmaHoareTripleStackGeAux’20 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3

x x1 x2 | true | true

with (isSigned msg1 sig3 pbk3)

lemmaHoareTripleStackGeAux’20 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

| true | false with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’20 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true | true | false | true = tt

lemmaHoareTripleStackGeAux’20 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true | true | true = tt

lemmaHoareTripleStackGeAux’21 : (msg : Msg)

(pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 : N)

→ True (isSigned msg sig3 pbk5)

→ True (isSigned msg sig2 pbk3)

→ True (isSigned msg sig1 pbk2)

→ True (compareSigsMultiSig msg

( sig1 :: sig2 :: sig3 :: [])

(pbk1 :: pbk2 :: pbk3 :: pbk4 :: pbk5 :: []))

lemmaHoareTripleStackGeAux’21 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 with

(isSigned msg1 sig1 pbk1)

lemmaHoareTripleStackGeAux’21 msg1

412



A.23. Verification Multi-Sig (verificationMultiSig.agda) include (opPushLis and
multiSigScriptm-n and checkTimeScript and timeCheckPreCond

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | false

with (isSigned msg1 sig1 pbk2)

lemmaHoareTripleStackGeAux’21 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | false

| true with (isSigned msg1 sig2 pbk3)

lemmaHoareTripleStackGeAux’21 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | false | true

| true with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’21 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | false | true

| true | false with

(isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’21 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false | true

| true | false | true = tt

lemmaHoareTripleStackGeAux’21 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | false

| true | true | true = tt

lemmaHoareTripleStackGeAux’21 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

with (isSigned msg1 sig2 pbk2)

lemmaHoareTripleStackGeAux’21 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

| false with (isSigned msg1 sig2 pbk3)

lemmaHoareTripleStackGeAux’21 msg1
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pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

| false | true with

(isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’21 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

| false | true

| false with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’21 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

| false | true | false

| true = tt

lemmaHoareTripleStackGeAux’21 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

| false | true | true = tt

lemmaHoareTripleStackGeAux’21 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

| true with (isSigned msg1 sig3 pbk3)

lemmaHoareTripleStackGeAux’21 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true | true

| false with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’21 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true | true

| false | false with

(isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’21 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1
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sig2 sig3 x x1 x2 | true

| true | false | false

| true = tt

lemmaHoareTripleStackGeAux’21 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

| true | false | true = tt

lemmaHoareTripleStackGeAux’21 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

| true | true = tt

lemmaHoareTripleStackGeAux’22 : (msg : Msg)

(pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 : N)

→ True (isSigned msg sig3 pbk5)

→ True (isSigned msg sig2 pbk4)

→ True (isSigned msg sig1 pbk2)

→ True (compareSigsMultiSig msg

( sig1 :: sig2 :: sig3 :: [])

(pbk1 :: pbk2 :: pbk3 :: pbk4 :: pbk5 :: []))

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 with

(isSigned msg1 sig1 pbk1)

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | false

with (isSigned msg1 sig1 pbk2)

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false | true

with (isSigned msg1 sig2 pbk3)
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lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | false | true

| false with (isSigned msg1 sig2 pbk4)

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | false | true

| false | true with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false | true

| false | true | true = tt

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | false | true

| true with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false | true | true

| false with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | false | true

| true | false | true = tt

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | false | true

| true | true = tt

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

with (isSigned msg1 sig2 pbk2)

lemmaHoareTripleStackGeAux’22 msg1

416



A.23. Verification Multi-Sig (verificationMultiSig.agda) include (opPushLis and
multiSigScriptm-n and checkTimeScript and timeCheckPreCond

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false with

(isSigned msg1 sig2 pbk3)

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false |

false with (isSigned msg1 sig2 pbk4)

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false | false

| true with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’22 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3

x x1 x2 | true | false | false

| true | true = tt

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

| false | true

with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true | false

| true | false with

(isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false

| true | false | true = tt

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

| false | true | true = tt
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lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

| true with (isSigned msg1 sig3 pbk3)

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true | true

| false with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | true | false

| false with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

| true | false | false | true = tt

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | true | false | true = tt

lemmaHoareTripleStackGeAux’22 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | true | true = tt

lemmaHoareTripleStackGeAux’23 : (msg : Msg)

(pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 : N)

→ True (isSigned msg sig3 pbk5)

→ True (isSigned msg sig2 pbk4)

→ True (isSigned msg sig1 pbk3)

→ True (compareSigsMultiSig msg

( sig1 :: sig2 :: sig3 :: [])

(pbk1 :: pbk2 :: pbk3 :: pbk4 :: pbk5 :: []))

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2
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sig3 x x1 x2 with (isSigned msg1 sig1 pbk1)

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false with

(isSigned msg1 sig1 pbk2)

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false

| false with (isSigned msg1 sig1 pbk3)

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false | false

| true with (isSigned msg1 sig2 pbk4)

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false | false | true

| true with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false | false

| true | true | true = tt

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false | true

with (isSigned msg1 sig2 pbk3)

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false | true

| false with (isSigned msg1 sig2 pbk4)

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false | true

| false | true with (isSigned msg1 sig3 pbk5)
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lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false | true

| false | true | true = tt

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false | true

| true with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false | true | true

| false with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false | true

| true | false | true = tt

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | false | true

| true | true = tt

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true

with (isSigned msg1 sig2 pbk2)

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false

with (isSigned msg1 sig2 pbk3)

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1

sig2 sig3 x x1 x2 | true

| false | false

with (isSigned msg1 sig2 pbk4)
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lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true

| false | false | true

with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false

| false | true | true = tt

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false

| true with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false

| true | false with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false

| true | false | true = tt

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | false

| true | true = tt

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true

| true with (isSigned msg1 sig3 pbk3)

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | true

| false with (isSigned msg1 sig3 pbk4)
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lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | true | false

| false with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | true

| false | false | true = tt

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2

sig3 x x1 x2 | true | true

| false | true = tt

lemmaHoareTripleStackGeAux’23 msg1

pbk1 pbk2 pbk3 pbk4 pbk5

sig1 sig2 sig3 x x1 x2

| true | true | true = tt

lemmaHoareTripleStackGeAux’Comb3-5 : (msg1 : Msg)

(pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 : N)

→ True (compareSigsMultiSigAux

msg1 (sig2 :: sig3 :: [])

( pbk2 :: pbk3 :: pbk4 :: pbk5 :: []) sig1

(isSigned msg1 sig1 pbk1 ))

→ ((True (isSigned msg1 sig1 pbk1)

∧ True (isSigned msg1 sig2 pbk2))

∧ True (isSigned msg1 sig3 pbk3)) ]

((True (isSigned msg1 sig1 pbk1)

∧ True (isSigned msg1 sig2 pbk2))

∧ True (isSigned msg1 sig3 pbk4)) ]

((True (isSigned msg1 sig1 pbk1)

∧ True (isSigned msg1 sig2 pbk2))

∧ True (isSigned msg1 sig3 pbk5)) ]
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((True (isSigned msg1 sig1 pbk1)

∧ True (isSigned msg1 sig2 pbk3))

∧ True (isSigned msg1 sig3 pbk4)) ]

((True (isSigned msg1 sig1 pbk1)

∧ True (isSigned msg1 sig2 pbk3))

∧ True (isSigned msg1 sig3 pbk5)) ]

((True (isSigned msg1 sig1 pbk1)

∧ True (isSigned msg1 sig2 pbk4))

∧ True (isSigned msg1 sig3 pbk5)) ]

((True (isSigned msg1 sig1 pbk2)

∧ True (isSigned msg1 sig2 pbk3))

∧ True (isSigned msg1 sig3 pbk4)) ]

((True (isSigned msg1 sig1 pbk2)

∧ True (isSigned msg1 sig2 pbk3))

∧ True (isSigned msg1 sig3 pbk5)) ]

((True (isSigned msg1 sig1 pbk2)

∧ True (isSigned msg1 sig2 pbk4))

∧ True (isSigned msg1 sig3 pbk5)) ]

((True (isSigned msg1 sig1 pbk3)

∧ True (isSigned msg1 sig2 pbk4))

∧ True (isSigned msg1 sig3 pbk5))

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

with (isSigned msg1 sig1 pbk1)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| false with (isSigned msg1 sig1 pbk2)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| false | false with (isSigned msg1 sig1 pbk3)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| false | false | false
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with (isSigned msg1 sig1 pbk4)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| false | false | false | false

with (isSigned msg1 sig1 pbk5)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 ()

| false | false | false | false | false

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 ()

| false | false | false | false | true

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| false | false | false | true

with (isSigned msg1 sig2 pbk5)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 ()

| false | false | false | true | false

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 ()

| false | false | false | true | true

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| false | false | true

with (isSigned msg1 sig2 pbk4)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| false | false | true | false

with (isSigned msg1 sig2 pbk5)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 ()

| false | false | true | false | false

lemmaHoareTripleStackGeAux’Comb3-5 msg1
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pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 ()

| false | false | true | false | true

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| false | false | true | true

with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| false | false | true | true | true

= inj2 (inj2 (inj2 (inj2 (inj2 (inj2

(inj2 (inj2 (inj2 (conj (conj tt tt) tt)))))))))

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| false | true with (isSigned msg1 sig2 pbk3)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| false | true | false

with (isSigned msg1 sig2 pbk4)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| false | true | false | false

with (isSigned msg1 sig2 pbk5)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 ()

| false | true | false | false | false

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 ()

| false | true | false | false | true

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| false | true | false | true

with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’Comb3-5 msg1
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pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| false | true | false | true | true

= inj2 (inj2 (inj2 (inj2 (inj2 (inj2

(inj2 (inj2 (inj1 (conj (conj tt tt) tt)))))))))

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| false | true | true

with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| false | true | true | false

with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| false | true | true | false | true

= inj2 (inj2 (inj2 (inj2 (inj2 (inj2

(inj2 (inj1 (conj (conj tt tt) tt))))))))

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| false | true | true | true

= inj2 (inj2 (inj2 (inj2 (inj2 (inj2 (inj1

(conj (conj tt tt) tt)))))))

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| true with (isSigned msg1 sig2 pbk2)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| true | false with (isSigned msg1 sig2 pbk3)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| true | false | false with (isSigned msg1 sig2 pbk4)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x
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| true | false | false | false with

(isSigned msg1 sig2 pbk5)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 ()

| true | false | false | false | false

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 ()

| true | false | false | false | true

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| true | false | false | true

with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| true | false | false | true | true

= inj2 (inj2 (inj2 (inj2 (inj2 (inj1 (conj (conj tt tt) tt))))))

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| true | false | true with (isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3

x | true | false | true | false

with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| true | false | true | false | true

= inj2 (inj2 (inj2 (inj2 (inj1 (conj (conj tt tt) tt)))))

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| true | false | true | true

= inj2 (inj2 (inj2 (inj1 (conj (conj tt tt) tt))))

lemmaHoareTripleStackGeAux’Comb3-5 msg1

pbk1 pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x
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| true | true with (isSigned msg1 sig3 pbk3)

lemmaHoareTripleStackGeAux’Comb3-5 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| true | true | false with

(isSigned msg1 sig3 pbk4)

lemmaHoareTripleStackGeAux’Comb3-5 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| true | true | false | false

with (isSigned msg1 sig3 pbk5)

lemmaHoareTripleStackGeAux’Comb3-5 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| true | true | false | false | true

= inj2 (inj2 (inj1 (conj (conj tt tt) tt)))

lemmaHoareTripleStackGeAux’Comb3-5 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| true | true | false | true

= inj2 (inj1 (conj (conj tt tt) tt))

lemmaHoareTripleStackGeAux’Comb3-5 msg1 pbk1

pbk2 pbk3 pbk4 pbk5 sig1 sig2 sig3 x

| true | true | true

= inj1 (conj (conj tt tt) tt)

–opPush list of publickey
opPushList : (pbkList : List N) → BitcoinScriptBasic

opPushList [] = []

opPushList (pbk1 :: pbkList) = opPush pbk1 :: opPushList pbkList

– The multisig script m out of (length pbkList)
– where pbkList is a list of public keys.
–multiSig script m out of length pbkList
multiSigScriptm-nb : (m : N)(pbkList : List N)

(m<n : m < length pbkList)

→ BitcoinScriptBasic
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multiSigScriptm-nb m pbkList m<n =

opPush m ::

(opPushList pbkList

++ (opPush (length pbkList)

:: [ opMultiSig ]))

multiSigScript2-4b : (pbk1 pbk2 pbk3 pbk4 : N) → BitcoinScriptBasic

multiSigScript2-4b pbk1 pbk2 pbk3 pbk4 =

multiSigScriptm-nb 2

(pbk1 :: pbk2 :: pbk3

:: [ pbk4 ]) (s≤s (s≤s (s≤s z≤n)))

multiSigScript-3-5-b : (pbk1 pbk2 pbk3 pbk4 pbk5 : N)

→ BitcoinScriptBasic

multiSigScript-3-5-b pbk1 pbk2 pbk3 pbk4 pbk5 =

(opPush 3) :: (opPush pbk1)

:: (opPush pbk2) :: (opPush pbk3)

:: (opPush pbk4) :: (opPush pbk5)

:: (opPush 5) :: opMultiSig :: []

checkTimeScriptb : (time1 : Time) → BitcoinScriptBasic

checkTimeScriptb time1 = (opPush time1)

:: opCHECKLOCKTIMEVERIFY :: [ opDrop ]

lemmaHoareTripleStackGeAux’5 : (msg : Msg)

(pbk1 pbk2 pbk3 sig1 sig3 : N)

→ True (isSigned msg sig1 pbk1)

→ True (isSigned msg sig3 pbk3)

→ True (compareSigsMultiSig msg

( sig1 :: sig3 :: []) (pbk1 :: pbk2 :: pbk3 :: []))
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lemmaHoareTripleStackGeAux’5 msg pbk1 pbk2 pbk3

sig1 sig3 x x1 with (isSigned msg sig1 pbk1)

lemmaHoareTripleStackGeAux’5 msg pbk1 pbk2 pbk3

sig1 sig3 x x1 | true with (isSigned msg sig3 pbk2)

lemmaHoareTripleStackGeAux’5 msg pbk1 pbk2 pbk3

sig1 sig3 x x1 | true | false with (isSigned msg sig3 pbk3)

lemmaHoareTripleStackGeAux’5 msg pbk1 pbk2 pbk3

sig1 sig3 x x1 | true | false | true = tt

lemmaHoareTripleStackGeAux’5 msg pbk1 pbk2 pbk3

sig1 sig3 x x1 | true | true = tt

timeCheckPreCond : (time1 : Time) → StackPredicate

timeCheckPreCond time1 time2 msg stack1 = time1 ≤ time2

A.24 Define the ledger

open import basicBitcoinDataType

module ledger (param : GlobalParameters) where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head)

open import Data.Maybe
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open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import instruction

record SignedWithSigPbk

(msg : Msg)(address : Address) : Set where

field publicKey : PublicKey

pbkCorrect

: param .publicKey2Address publicKey ≡N address

signature : Signature

signed

: Signed param msg signature publicKey

– record for the transaction field
record TXFieldNew : Set where

constructor txFieldNew

field amount : N

address : Address

smartContract : BitcoinScript

open TXFieldNew public

txField2MsgNew : (inp : TXFieldNew) → Msg

txField2MsgNew inp =

nat (amount inp) +msg nat (address inp)

txFieldList2MsgNew : (inp : List TXFieldNew) → Msg

txFieldList2MsgNew inp = list (mapL txField2MsgNew inp)
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txFieldList2TotalAmountNew :

(inp : List TXFieldNew) → Amount

txFieldList2TotalAmountNew inp

= sumListViaf amount inp

– record for unsigned transaction
record TXUnsignedNew : Set where

field inputs : List TXFieldNew

outputs : List TXFieldNew

TXID1 : N

open TXUnsignedNew public

txUnsigned2MsgNew : (transac : TXUnsignedNew) → Msg

txUnsigned2MsgNew transac =

txFieldList2MsgNew (inputs transac)

+msg txFieldList2MsgNew (outputs transac)

txInput2MsgNew : (inp : TXFieldNew)

(outp : List TXFieldNew) → Msg

txInput2MsgNew inp outp = txField2MsgNew inp

+msg txFieldList2MsgNew outp

tx2SignauxNew : (inp : List TXFieldNew)

(outp : List TXFieldNew) → Set

tx2SignauxNew [] outp = >

tx2SignauxNew (inp :: restinp) outp =

SignedWithSigPbk (txInput2MsgNew inp outp)

(address inp) × tx2SignauxNew restinp outp
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tx2SignNew : TXUnsignedNew → Set

tx2SignNew tr = tx2SignauxNew (inputs tr) (outputs tr)

– \bitcoinVersFive

record TXNew : Set where

field tx : TXUnsignedNew

cor : txFieldList2TotalAmountNew

(inputs tx) ≥ txFieldList2TotalAmountNew (outputs tx)

nonEmpt : NonNil (inputs tx) × NonNil (outputs tx)

sig : tx2SignNew tx

open TXNew public

–record for a ledger
record ledgerEntryNew : Set where

constructor ledgerEntrNew

field ins : BitcoinScript

amount : N

open ledgerEntryNew public

record LedgerNew : Set where

constructor ledger

field

entries : (addr : Address)

→ Maybe ledgerEntryNew

currentTime : Time

open LedgerNew public

–record for transaction entry
record TXEntryNew : Set where

constructor txentryNew

field amount : N
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smartContract : BitcoinScript

address : Address

– indentifiers for unspentTX outputs (UTXO) (Lists of UTXO)

open TXEntryNew public

testLedgerNewEntries : Address → Maybe ledgerEntryNew

testLedgerNewEntries zero =

just (ledgerEntrNew [] 50)

testLedgerNewEntries (suc zero) =

just (ledgerEntrNew [] 80)

testLedgerNewEntries (suc (suc x)) = nothing

testLedgerNew : LedgerNew

testLedgerNew .entries = testLedgerNewEntries

testLedgerNew .currentTime = 31

– record for transaction
record transactionNew : Set where

constructor transactNew

field txid : N

inputs : TXEntryNew

outputs : TXEntryNew

open transactionNew public

– function that is used to check if
– the coins go to the same address
processLedger : LedgerNew → transactionNew

→ LedgerNew

processLedger oldLed

(transactNew txid1

(txentryNew amount1 smartContract1 recipientAddress)

(txentryNew amount2 smartContract2 desinntationAddress))

.entries addr

= if (addr ==b recipientAddress)
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then nothing

else ( if (addr ==b desinntationAddress)

then just (ledgerEntrNew smartContract2 amount2)

else oldLed .entries addr )

processLedger oldLed trans .currentTime

= suc (oldLed .currentTime)

tx2MsgNew : transactionNew → Msg

tx2MsgNew t = nat (txid t)

A.25 Other libraries (bool library, empty library, natural library,

and list library.

module libraries.boolLib where

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Unit

open import Data.Empty

open import Relation.Nullary hiding (True)

if_then_else_ : {A : Set }→ Bool → A

→ A → A

if true then n else m = n

if false then n else m = m

∧bproj1 : {b b’ : Bool} → True (b ∧b b’)

→ True b

∧bproj1 {true} {true} tt = tt

∧bproj2 : {b b’ : Bool} → True (b ∧b b’)

→ True b’

∧bproj2 {true} {true} tt = tt

∧bIntro : {b b’ : Bool} → True b
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→ True b’ → True (b ∧b b’)

∧bIntro {true} {true} tt tt = tt

¬bLem : {b : Bool} → True (not b)

→ ¬ (True b)

¬bLem {false} x ()

module libraries.emptyLib where

open import Data.Empty

efq : {A : Set} → ⊥→ A

efq ()

module libraries.natLib where

open import Data.Nat hiding (_≤_ ; _<_ )

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Unit

open import Data.Empty

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.boolLib

_≡Nb_ : N → N → Bool

zero ≡Nb zero = true

zero ≡Nb suc m = false

suc n ≡Nb zero = false

suc n ≡Nb suc m = n ≡Nb m

_≡N_ : N → N → Set

n ≡N m = True (n ≡Nb m)
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_≤b_ : N → N → Bool

0 ≤b n = true

(suc n) ≤b 0 = false

(suc n) ≤b (suc m) = n ≤b m

_≤_ : N → N → Set

n ≤ m = True (n ≤b m)

_==b_ : N → N → Bool

0 ==b 0 = true

suc n ==b suc m = n ==b m

_ ==b _ = false

nat2TrueFalse : N → N

nat2TrueFalse 0 = 0

nat2TrueFalse (suc n) = 1

boolToNat : Bool → N

boolToNat true = 1

boolToNat false = 0

_<b_ : N → N → Bool

n <b m = suc n ≤b m

isTrueNat : N → Set

isTrueNat zero = ⊥

isTrueNat (suc m) = >

compareNaturals : N → N → N

compareNaturals 0 0 = 1

compareNaturals 0 (suc m) = 0

compareNaturals(suc n) 0 = 0

compareNaturals(suc n) (suc m)
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= compareNaturals n m

compareNaturalsSet : N → N → Bool

compareNaturalsSet 0 0 = true

compareNaturalsSet 0 (suc m) = false

compareNaturalsSet (suc n) 0 = false

compareNaturalsSet (suc n) (suc m) = n ==b m

notFalse : N → Bool

notFalse zero = false

notFalse (suc x) = true

NotFalse : N → Set

NotFalse zero = ⊥

NotFalse (suc x) = >

compareNatToEq : (x y : N)

→ isTrueNat (compareNaturals x y)

→ x ≡ y

compareNatToEq zero zero t = refl

compareNatToEq (suc x) (suc y) t

= cong suc (compareNatToEq x y t)

lemmaCompareNat : ( x : N )

→ compareNaturals x x ≡ 1

lemmaCompareNat zero = refl

lemmaCompareNat (suc n)

= lemmaCompareNat n

boolToNatNotFalseLemma : (b : Bool) → True b

→ NotFalse (boolToNat b)

boolToNatNotFalseLemma true p = tt

boolToNatNotFalseLemma2 : (b : Bool)

→ NotFalse (boolToNat b) → True b
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boolToNatNotFalseLemma2 true p = tt

leqSucLemma : (n m : N) → n ≤ m → n ≤ suc m

leqSucLemma zero zero p = tt

leqSucLemma zero (suc m) p = tt

leqSucLemma (suc n) (suc m) p

= leqSucLemma n m p

module libraries.listLib where

open import Data.List hiding (_++_)

open import Data.Fin hiding (_+_)

open import Data.Nat

open import Data.Bool

open import Data.Empty

open import Data.Product

open import Level using (Level)

open import Data.Unit.Base

open import Function

open import Relation.Binary.PropositionalEquality

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

–open import Agda.Builtin.Equality.Rewrite

infixr 7 _::’_

infixl 6 _++_

_++_ : {a : Level}{A : Set a}

→ List A → List A → List A

[] ++ ys = ys

(x :: xs) ++ ys = x :: (xs ++ ys)
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_::’_ : {a : Level}{A : Set a}

→ A → List A → List A

a ::’ l = a :: l

lengthList : ∀ {A : Set} → List A → N

lengthList []

= zero

lengthList (x :: xs)

= suc (lengthList xs)

mapL : {X Y : Set}( f : X → Y)

(l : List X) → List Y

mapL f [] = []

mapL f (x :: l) = f x :: mapL f l

corLengthMapL : {X Y : Set}( f : X → Y)

(l : List X) → length (mapL f l) ≡ length l

corLengthMapL f [] = refl

corLengthMapL f (x :: l)

= cong suc (corLengthMapL f l)

nth : {X : Set}(l : List X) (i : Fin (length l))

→ X

nth [] ()

nth (x :: l) zero = x

nth (x :: l) (suc i) = nth l i

delFromList : {X : Set}(l : List X)

(i : Fin (length l)) → List X

delFromList [] ()

delFromList (x :: l) zero = l

delFromList (x :: l) (suc i)

= x :: delFromList l i
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– an index of (delFromList l i)
– is mapped to an index of l
delFromListIndexToOrigIndex : {X : Set}

(l : List X)(i : Fin (length l))

(j : Fin (length (delFromList l i)))

→ Fin (length l)

delFromListIndexToOrigIndex [] () j

delFromListIndexToOrigIndex (x :: l)

zero j = suc j

delFromListIndexToOrigIndex (x :: l)

(suc i) zero = zero

delFromListIndexToOrigIndex (x :: l)

(suc i) (suc j)

= suc (delFromListIndexToOrigIndex l i j)

correctNthDelFromList : {X : Set}(l : List X)

(i : Fin (length l))

(j : Fin (length (delFromList l i)))

→ nth (delFromList l i) j ≡

nth l (delFromListIndexToOrigIndex l i j)

correctNthDelFromList [] () j

correctNthDelFromList (x :: l) zero j = refl

correctNthDelFromList (x :: l) (suc i) zero = refl

correctNthDelFromList (x :: l) (suc i) (suc j)

= correctNthDelFromList l i j

concatListIndex2OriginIndices : {X Y : Set}(l l’ : List X)

( f : Fin (length l) → Y)

(f ’ : Fin (length l’) → Y)

(i : Fin (length (l ++ l’))) → Y

concatListIndex2OriginIndices [] l’ f f’ i = f ’ i

concatListIndex2OriginIndices (x :: l) l’ f f’ zero = f zero

concatListIndex2OriginIndices (x :: l) l’ f f’ (suc i) =
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concatListIndex2OriginIndices l l’ ( f ◦ suc) f ’ i

corCconcatListIndex2OriginIndices : {X Y : Set}

(l l’ : List X)

( f : X → Y)

(g : Fin (length l) → Y)

(g’ : Fin (length l’) → Y)

(cor1 : (i : Fin (length l))

→ f (nth l i) ≡ g i)

(cor2 : (i’ : Fin (length l’))

→ f (nth l’ i’) ≡ g’ i’)

(i : Fin (length (l ++ l’)))

→ f (nth (l ++ l’) i)

≡ concatListIndex2OriginIndices l l’ g g’ i

corCconcatListIndex2OriginIndices [] l’ f g g’

cor1 cor2 i = cor2 i

corCconcatListIndex2OriginIndices (x :: l) l’ f g g’

cor1 cor2 zero = cor1 zero

corCconcatListIndex2OriginIndices (x :: l) l’ f g g’

cor1 cor2 (suc i) =

corCconcatListIndex2OriginIndices l l’ f (g ◦ suc)

g’ (cor1 ◦ suc) cor2 i

listOfElementsOfFin : (n : N) → List (Fin n)

listOfElementsOfFin zero = []

listOfElementsOfFin (suc n) =

zero :: (mapL suc (listOfElementsOfFin n))

corListOfElementsOfFinLength : (n : N)

→ length (listOfElementsOfFin n) ≡ n

corListOfElementsOfFinLength zero = refl

corListOfElementsOfFinLength (suc n) = cong suc cor3

where
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cor1 : length (mapL {Y = Fin (suc n)} (λ i → suc i)

(listOfElementsOfFin n)) ≡ length (listOfElementsOfFin n)

cor1 = corLengthMapL suc (listOfElementsOfFin n)

cor2 : length (listOfElementsOfFin n) ≡ n

cor2 = corListOfElementsOfFinLength n

cor3 : length (mapL {Y = Fin (suc n)} (λ i → suc i)

(listOfElementsOfFin n)) ≡ n

cor3 = trans cor1 cor2

– subtract list consists of elements from
– the list which are about to
– be subtracted from it.
– every element of the list can be
– subtracted only once
– however since elements can occur multiple
– times they can still occur
– multiple times (as many times as
– they occur in the list) from the list

data SubList {X : Set} : (l : List X) → Set where

[] : {l : List X} → SubList l

cons : {l : List X}(i : Fin (length l))

(o : SubList (delFromList l i)) → SubList l

listMinusSubList : {X : Set}(l : List X)

(o : SubList l) → List X

listMinusSubList l []

= l

listMinusSubList l (cons i o)

= listMinusSubList (delFromList l i) o

subList2List : {X : Set}{l : List X}

(sl : SubList l) → List X

443



A. Full Agda code for chapter Verifying Bitcoin Script with local instructions

subList2List []

= []

subList2List {l = l} (cons i sl)

= nth l i :: subList2List sl

data SubList+ {X : Set} (Y : Set) :

(l : List X) → Set where

[] : {l : List X} → SubList+ Y l

cons : {l : List X}(i : Fin (length l))

(y : Y)(o : SubList+ Y (delFromList l i))

→ SubList+ Y l

listMinusSubList+ : {X Y : Set}(l : List X)

(o : SubList+ Y l) → List X

listMinusSubList+ l [] = l

listMinusSubList+ l (cons i y o)

= listMinusSubList+ (delFromList l i) o

subList+2List : {X Y : Set}{l : List X}

(sl : SubList+ Y l) → List (X × Y)

subList+2List [] = []

subList+2List {X} {Y} {l} (cons i y sl)

= (nth l i , y) :: subList+2List sl

listMinusSubList+Index2OrgIndex : {X Y : Set}

(l : List X)(o : SubList+ Y l)

(i : Fin (length (listMinusSubList+ l o)))

→ Fin (length l)

listMinusSubList+Index2OrgIndex l [] i

= i

listMinusSubList+Index2OrgIndex l (cons i1 y o) i =
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delFromListIndexToOrigIndex l i1

(listMinusSubList+Index2OrgIndex

(delFromList l i1) o i)

corListMinusSubList+Index2OrgIndex : {X Y : Set}

(l : List X)(o : SubList+ Y l)

(i : Fin (length (listMinusSubList+ l o)))

→ nth (listMinusSubList+ l o) i

≡ nth l (listMinusSubList+Index2OrgIndex l o i)

corListMinusSubList+Index2OrgIndex l [] i = refl

corListMinusSubList+Index2OrgIndex [] (cons () y o) i

corListMinusSubList+Index2OrgIndex (x :: l) (cons zero y o) i

= corListMinusSubList+Index2OrgIndex l o i

corListMinusSubList+Index2OrgIndex (x :: l)

(cons (suc i1) y o) i

= trans eq1 eq2

where

eq1 : nth (listMinusSubList+ (x :: delFromList l i1) o) i ≡

nth (x :: delFromList l i1)

(listMinusSubList+Index2OrgIndex

(x :: delFromList l i1) o i)

eq1 = corListMinusSubList+Index2OrgIndex

(x :: delFromList l i1) o i

eq2 : nth (x :: delFromList l i1)

(listMinusSubList+Index2OrgIndex

(x :: delFromList l i1) o i)

≡ nth (x :: l)

(delFromListIndexToOrigIndex (x :: l)

(suc i1)

(listMinusSubList+Index2OrgIndex

(x :: delFromList l i1) o i))

eq2 = correctNthDelFromList (x :: l)

(suc i1)

((listMinusSubList+Index2OrgIndex
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(x :: delFromList l i1) o i))

subList+2IndicesOriginalList : {X Y : Set}(l : List X)

(sl : SubList+ Y l) → List (Fin (length l) × Y)

subList+2IndicesOriginalList l [] = []

subList+2IndicesOriginalList {X} {Y} l (cons i y sl) =

(i , y) :: mapL (λ {(j , y) →

(delFromListIndexToOrigIndex l i j , y)}) res1

where

res1 : List (Fin (length

(delFromList l i)) × Y)

res1 = subList+2IndicesOriginalList

(delFromList l i) sl

sumListViaf : {X : Set} ( f : X → N)

(l : List X) → N

sumListViaf f [] = 0

sumListViaf f (x :: l) = f x + sumListViaf f l

∀inList : {X : Set}(l : List X)

(P : X → Set) → Set

∀inList [] P = >

∀inList (x :: l) P = P x × ∀inList l P

nonNil : {X : Set}(l : List X) → Bool

nonNil [] = true

nonNil (_ :: _) = false

NonNil : {X : Set}(l : List X) → Set

NonNil l = T (nonNil l)
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list2ListWithIndexaux : {X : Set}(n : N)

(l : List X) → List (X × N)

list2ListWithIndexaux n [] = []

list2ListWithIndexaux n (x :: l) =

(x , n) :: list2ListWithIndexaux (suc n) l

list2ListWithIndex : {X : Set}(l : List X)

→ List (X × N)

list2ListWithIndex l =

list2ListWithIndexaux 0 l

lemma++[] : { A : Set}(l : List A)

→ l ++ [] ≡ l

lemma++[] {A} [] = refl

lemma++[] {A} (x :: l) =

cong (λ l’ → x :: l’) (lemma++[] l)

lemmaListAssoc : {A : Set}(l1 l2 l3 : List A)

→ l1 ++ (l2 ++ l3) ≡

(l1 ++ l2) ++ l3

lemmaListAssoc [] l2 l3 = refl

lemmaListAssoc (x :: l1) l2 l3 = cong (λ l → x :: l)

(lemmaListAssoc l1 l2 l3)

lemmaListAssoc4 : {A : Set}(l1 l2 l3 l4 : List A)

→ (l1 ++ (l2 ++ (l3 ++ l4)))

≡

(((l1 ++ l2) ++ l3) ++ l4)

lemmaListAssoc4 l1 l2 l3 l4 =

(l1 ++ (l2 ++ (l3 ++ l4)))

≡〈 cong (λ l → l1 ++ l)

(lemmaListAssoc l2 l3 l4) 〉

(l1 ++ ((l2 ++ l3) ++ l4))
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≡〈 lemmaListAssoc l1

(l2 ++ l3) l4 〉

((l1 ++ (l2 ++ l3)) ++ l4)

≡〈 cong (λ l → l ++ l4)

(lemmaListAssoc l1 l2 l3) 〉

(((l1 ++ l2) ++ l3) ++ l4)

‚
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Full Agda code for chapter Verifying
Bitcoin Script with non-local
instructions (conditionals instructions)

B.1 Definition of Stack

module stack where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Maybe

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head)

open import libraries.listLib
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open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import basicBitcoinDataType

Stack : Set

Stack = List N

stackHasSingletonTop : N → Maybe Stack → Bool

stackHasSingletonTop l nothing = false

stackHasSingletonTop l (just []) = false

stackHasSingletonTop l (just (z :: y)) = l ==b z

stackHasTop : List N → Maybe Stack → Set

stackHasTop [] m = >

stackHasTop (y :: n) m

= True(stackHasSingletonTop y m)

stackAuxFunction : Stack → Bool → Maybe Stack

stackAuxFunction s b = just (boolToNat b :: s)

– Stack transformer
StackTransformer : Set

StackTransformer = Time → Msg → Stack → Maybe Stack

– function that checking if the
–stack is empty or the top element is false
checkStackAux : Stack → Bool

checkStackAux [] = false

checkStackAux (zero :: bitcoinStack1) = false

checkStackAux (suc x :: bitcoinStack1) = true
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– lifting the checkStackAux to Maybe
– StackIfStack data type
checkStack : Maybe Stack → Bool

checkStack nothing = false

checkStack (just x) = checkStackAux x

B.2 Define stack predicate

module stackPredicate where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Sum

open import Data.Maybe

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib
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open import stack

open import basicBitcoinDataType

StackPredicate : Set1

StackPredicate = Time → Msg → Stack → Set

_]sp_ : (φ ψ : StackPredicate) → StackPredicate

(φ ]sp ψ) t m st = φ t m st ] ψ t m st

_∧sp_ : ( φ ψ : StackPredicate ) → StackPredicate

(φ ∧sp ψ ) t m s = φ t m s ∧ ψ t m s

truePredaux : StackPredicate → StackPredicate

truePredaux φ time msg [] = ⊥

truePredaux φ time msg (zero :: st) = ⊥

truePredaux φ time msg (suc x :: st)

= φ time msg st

acceptStates : StackPredicate

acceptStates time msg1 [] = ⊥

acceptStates time msg1 (x :: stack1)

= NotFalse x

B.3 Definition of basic Bitcoin data type

module basicBitcoinDataType where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty
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open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head)

open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

Time : Set

Time = N

Amount : Set

Amount = N

Address : Set

Address = N

TXID : Set

TXID = N

Signature : Set

Signature = N

PublicKey : Set

PublicKey = N

infixr 3 _+msg_

data Msg : Set where

nat : (n : N) → Msg

_+msg_ : (m m’ : Msg) → Msg
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list : (l : List Msg) → Msg

– function that compares time
instructOpTime : (currentTime : Time)

(entryInContract : Time) → Bool

instructOpTime currentTime entryInContract

= entryInContract ≤b currentTime

record GlobalParameters : Set where

field

publicKey2Address : (pubk : PublicKey) → Address

hash : N → N

signed : (msg : Msg)(s : Signature)

(publicKey : PublicKey) → Bool

Signed : (msg : Msg)(s : Signature)

(publicKey : PublicKey) → Set

Signed msg s publicKey

= True (signed msg s publicKey)

open GlobalParameters public

B.4 Define semantic basic operations to execute OP codes

(executeOpHash, executeStackVerify etc..)

open import basicBitcoinDataType

module semanticBasicOperations (param : GlobalParameters) where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty
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open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.Maybe

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

hashFun : N → N

hashFun = param .hash

executeOpHash : Stack → Maybe Stack

executeOpHash [] = nothing

executeOpHash (x :: s)

= just (hashFun x :: s)

–operational semantics for opAdd
executeStackAdd : Stack → Maybe Stack

executeStackAdd [] = nothing

executeStackAdd (n :: []) = nothing

executeStackAdd (n :: m :: e)
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= just ((n + m) :: e)

–operational semantics for opVerify
executeStackVerify : Stack → Maybe Stack

executeStackVerify [] = nothing

executeStackVerify (0 :: e) = nothing

executeStackVerify (suc n :: e) = just (e)

–operational semantics for opEqual
executeStackEquality : Stack → Maybe Stack

executeStackEquality [] = nothing

executeStackEquality (n :: []) = nothing

executeStackEquality (n :: m :: e)

= just ((compareNaturals n m) :: e)

–operational semantics for opSwap
executeStackSwap : Stack → Maybe Stack

executeStackSwap [] = nothing

executeStackSwap (x :: []) = nothing

executeStackSwap (y :: x :: s)

= just (x :: y :: s)

–operational semantics for opSub
executeStackSub : Stack → Maybe Stack

executeStackSub [] = nothing

executeStackSub (n :: []) = nothing

executeStackSub (n :: m :: e)

= just ((n −· m) :: e)

–operational semantics for opDup
executeStackDup : Stack → Maybe Stack

executeStackDup [] = nothing

executeStackDup (n :: ns)
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= (just (n :: n :: ns))

–operational semantics for opPush
executeStackPush : N → Stack → Maybe Stack

executeStackPush n s = just (n :: s )

–operational semantics for opDrop
executeStackDrop : Stack → Maybe Stack

executeStackDrop [] = nothing

executeStackDrop (x :: s) = just s

–auxiliary function for OpCHECKLOCKTIMEVERIFY
executeOpCHECKLOCKTIMEVERIFYAux :

Stack → Bool → Maybe Stack

executeOpCHECKLOCKTIMEVERIFYAux

s false = nothing

executeOpCHECKLOCKTIMEVERIFYAux

s true = just s

– operational semantics for OpCHECKLOCKTIMEVERIFY
executeOpCHECKLOCKTIMEVERIFY :

(currentTime : Time) → Stack → Maybe Stack

executeOpCHECKLOCKTIMEVERIFY

currentTime [] = nothing

executeOpCHECKLOCKTIMEVERIFY

currentTime (x :: s)

= executeOpCHECKLOCKTIMEVERIFYAux

(x :: s) (instructOpTime currentTime x)

– isSigned refers to pbk and not pbkh
– since a message can only be checked against pbk
isSigned : (msg : Msg)(s : Signature)

(pbk : PublicKey) → Bool

isSigned = param .signed
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IsSigned : (msg : Msg)(s : Signature)

(pbk : PublicKey) → Set

IsSigned = Signed param

–operational semantics for opCheckSig
executeStackCheckSig : Msg → Stack → Maybe Stack

executeStackCheckSig msg [] = nothing

executeStackCheckSig msg (x :: []) = nothing

– pbk is on top of sig
executeStackCheckSig msg (pbk :: sig :: s)

= stackAuxFunction s (isSigned msg sig pbk)

–operational semantics for opCheckSig3
executeStackCheckSig3Aux : Msg → Stack → Maybe Stack

executeStackCheckSig3Aux msg [] = nothing

executeStackCheckSig3Aux mst

(x :: []) = nothing

executeStackCheckSig3Aux msg

(m :: k :: []) = nothing

executeStackCheckSig3Aux msg

(m :: k :: x :: []) = nothing

executeStackCheckSig3Aux msg

(m :: k :: x :: f :: []) = nothing

executeStackCheckSig3Aux msg

(m :: k :: x :: f :: l :: []) = nothing

executeStackCheckSig3Aux msg

(p1 :: p2 :: p3 :: s1 :: s2 :: s3 :: s) =

stackAuxFunction s

((isSigned msg s1 p1 ) ∧b

(isSigned msg s2 p2) ∧b

(isSigned msg s3 p3))

mutual
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compareSigsMultiSigAux : (msg : Msg)

(restSigs restPubKeys : List N)

(topSig : N)(testRes : Bool) → Bool

compareSigsMultiSigAux msg1

restSigs restPubKeys

topSig false

= compareSigsMultiSig msg1

(topSig :: restSigs) restPubKeys

– If the top publicKey doesn’t match
– the topSignature
– we throw away the top publicKey,
– but still need to find a match for the
– top publicKey in the remaining signatures

compareSigsMultiSigAux msg1

restSigs restPubKeys

topSig true

= compareSigsMultiSig msg1 restSigs restPubKeys

– If the top publicKey matches the topSignature
– we need to find matches between
– the remaining public Keys and signatures

compareSigsMultiSig : (msg : Msg)

(sigs pbks : List N) → Bool

compareSigsMultiSig msg []

pubkeys = true

– all signatures have found a match
– throw away remaing public keys

compareSigsMultiSig msg

(topSig :: sigs) [] = false

– for topSig we haven’t found a match
compareSigsMultiSig msg

(topSig :: sigs) (topPbk :: pbks)

= compareSigsMultiSigAux msg

sigs pbks topSig (isSigned msg topSig topPbk)

459



B. Full Agda code for chapter Verifying Bitcoin Script with non-local instructions
(conditionals instructions)

executeMultiSig3 : (msg : Msg)(pbks : List N)

(numSigs : N)(st : Stack)(sigs : List N)

→ Maybe Stack

executeMultiSig3 msg1 pbks zero [] sigs = nothing

– need to fetch one extra because
– of a bug in bitcoin definition of MultiSig
executeMultiSig3 msg1 pbks zero (x :: restStack) sigs

= just (boolToNat

(compareSigsMultiSig msg1 sigs pbks)

:: restStack)

– We have found enough public Keys and
– signatures to compare
– We check using compareSigsMultiSig
– whether public Keys match the signatures
– and the result is pushed on the stack.
– Note that in BitcoinScript the public Keys
– and signatures need to be in the same order
–
executeMultiSig3 msg1 pbks

(suc numSigs) [] sigs = nothing

executeMultiSig3 msg1 pbks

(suc numSigs) (sig :: rest) sigs

= executeMultiSig3 msg1 pbks numSigs

rest (sig :: sigs)

executeMultiSig2 : (msg : Msg)(numPbks : N)

(st : Stack)(pbks : List N) → Maybe Stack

executeMultiSig2 msg _

[] pbks = nothing

executeMultiSig2 msg

zero (numSigs :: rest) pbks
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= executeMultiSig3 msg pbks numSigs rest []

executeMultiSig2 msg (suc n)

(pbk :: rest) pbks

= executeMultiSig2 msg n rest (pbk :: pbks)

executeMultiSig : Msg → Stack → Maybe Stack

executeMultiSig msg [] = nothing

executeMultiSig msg (numberOfPbks :: st)

= executeMultiSig2 msg numberOfPbks st []

B.5 Define instructions (OP_code) for non-local instructions such

as OP_IF

module instruction where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head)

open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib
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open import stack

open import instructionBasic

open import basicBitcoinDataType

–list with all instructions
data InstructionAll : Set where

opEqual : InstructionAll

opAdd : InstructionAll

opPush : N → InstructionAll

opSub : InstructionAll

opVerify : InstructionAll

opCheckSig : InstructionAll

opEqualVerify : InstructionAll

opDup : InstructionAll

opDrop : InstructionAll

opSwap : InstructionAll

opHash : InstructionAll

opCHECKLOCKTIMEVERIFY : InstructionAll

opCheckSig3 : InstructionAll

opMultiSig : InstructionAll

opIf opElse opEndIf : InstructionAll

basicInstr2Instr : InstructionBasic

→ InstructionAll

basicInstr2Instr opEqual = opEqual

basicInstr2Instr opAdd = opAdd

basicInstr2Instr (opPush x) = (opPush x)

basicInstr2Instr opSub = opSub

basicInstr2Instr opVerify = opVerify

basicInstr2Instr opCheckSig = opCheckSig

basicInstr2Instr opEqualVerify = opEqualVerify

basicInstr2Instr opDup = opDup
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basicInstr2Instr opDrop = opDrop

basicInstr2Instr opSwap = opSwap

basicInstr2Instr opHash = opHash

basicInstr2Instr opCHECKLOCKTIMEVERIFY

= opCHECKLOCKTIMEVERIFY

basicInstr2Instr opCheckSig3 = opCheckSig3

basicInstr2Instr opMultiSig = opMultiSig

BitcoinScript : Set

BitcoinScript = List InstructionAll

basicBScript2BScript : BitcoinScriptBasic

→ BitcoinScript

basicBScript2BScript [] = []

basicBScript2BScript (op :: p) =

basicInstr2Instr op :: basicBScript2BScript p

– true if the instruction is not
– an if then else operation
nonIfInstr : InstructionAll → Bool

nonIfInstr opIf = false

nonIfInstr opElse = false

nonIfInstr opEndIf = false

nonIfInstr op = true

NonIfInstr : InstructionAll → Set

NonIfInstr op = True (nonIfInstr op)

– check whether a script consists of
– nonif instructions only
nonIfScript : BitcoinScript → Bool

nonIfScript [] = true

463



B. Full Agda code for chapter Verifying Bitcoin Script with non-local instructions
(conditionals instructions)

nonIfScript (op :: rest) =

nonIfInstr op ∧b nonIfScript rest

NonIfScript : BitcoinScript → Set

NonIfScript p = True (nonIfScript p)

nonIfScript2NonIf2Head :

(op : InstructionAll)(rest : BitcoinScript)

→ NonIfScript (op :: rest)

→ NonIfInstr op

nonIfScript2NonIf2Head op rest p = ∧bproj1 p

nonIfScript2NonIf2Tail :

(op : InstructionAll)(rest : BitcoinScript)

→ NonIfScript (op :: rest)

→ NonIfScript rest

nonIfScript2NonIf2Tail op rest p = ∧bproj2 p

B.6 Define Hoare triple stack

open import basicBitcoinDataType

module hoareTripleStack (param : GlobalParameters) where

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Sum

open import Data.Maybe

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )
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open import Data.Nat.Base hiding (_≤_)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import libraries.emptyLib

open import stack

open import stackPredicate

open import instruction

open import stackSemanticsInstructions param

record <_>gs_<_> (φ : StackPredicate) (stackfun : StackTransformer)

(ψ : StackPredicate) : Set where

constructor hoareTripleStackGen – corrStackPartGeneric
field

==>stg : (time : Time)(msg : Msg)(s : Stack)

→ φ time msg s

→ liftPred2Maybe (ψ time msg) (stackfun time msg s)

<==stg : (time : Time)(msg : Msg)(s : Stack)

→ liftPred2Maybe (ψ time msg) (stackfun time msg s)

→ φ time msg s

open <_>gs_<_> public

<_>stack_<_> : StackPredicate → BitcoinScript → StackPredicate → Set

< φ >stack prog < ψ > = < φ >gs J prog Kstack < ψ >
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B.7 Define equalities if then else

open import basicBitcoinDataType

module verificationWithIfStack.equalitiesIfThenElse (param : GlobalParameters) where

open import Data.List hiding (_++_)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.listLib

open import stack

open import instruction

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

lemmaOpIfProg++[] : (ifCaseProg elseCaseProg : BitcoinScript) →

_≡_ {A = BitcoinScript}

(opIf ::’ ifCaseProg ++ ( opElse ::’ elseCaseProg ++ []))

(opIf ::’ ifCaseProg ++ opElse ::’ elseCaseProg)

lemmaOpIfProg++[] ifCaseProg elseCaseProg

= cong (λ l → opIf :: ifCaseProg ++ l)

(lemma++[] (opElse :: elseCaseProg))

lemmaOpIfProg++[]’ : (ifCaseProg elseCaseProg : BitcoinScript) →

_≡_ {A = BitcoinScript}
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(opIf :: (ifCaseProg ++ (opElse :: elseCaseProg) ++ [] ))

(opIf ::’ ifCaseProg ++ opElse ::’ elseCaseProg)

lemmaOpIfProg++[]’ ifCaseProg elseCaseProg

= cong (λ x → (opIf :: []) ++ x) ((lemma++[]

(ifCaseProg ++ opElse ::’ elseCaseProg)))

lemmaOpIfProg++[]new : (ifCaseProg elseCaseProg : BitcoinScript) →

_≡_ {A = BitcoinScript}

((opIf :: [] ) ++ (ifCaseProg ++ (((opElse :: []) ++ elseCaseProg ) )))

((((opIf :: []) ++ ifCaseProg) ++ (opElse :: [])) ++ elseCaseProg)

lemmaOpIfProg++[]new ifCaseProg elseCaseProg

= lemmaListAssoc4 (opIf :: []) ifCaseProg (opElse :: []) elseCaseProg

lemmaIfThenElseProg== : (ifCaseProg elseCaseProg : BitcoinScript) →

_≡_ {A = BitcoinScript}

((opIf :: (ifCaseProg ++ opElse ::’ elseCaseProg)) ++ opEndIf ::’ [])

(opIf ::’ ifCaseProg ++ opElse ::’ elseCaseProg ++ opEndIf ::’ [])

lemmaIfThenElseProg== ifCaseProg elseCaseProg = refl

lemmaOpIfProg++[]”’ :

(ifCaseProg elseCaseProg : BitcoinScript) →

_≡_ {A = BitcoinScript}

(opIf :: (ifCaseProg ++ opElse ::’ elseCaseProg) ++ opEndIf ::’ [])

(opIf :: ifCaseProg ++ opElse ::’ elseCaseProg ++ opEndIf ::’ [])

lemmaOpIfProg++[]”’ ifCaseProg elseCaseProg = refl

lemmaOpIfProg++[]5 : (ifCaseProg elseCaseProg : BitcoinScript) →

_≡_ {A = BitcoinScript}

(ifCaseProg ++ (opElse :: elseCaseProg))

(ifCaseProg ++ (opElse :: []) ++ elseCaseProg)
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lemmaOpIfProg++[]5 [] elseCaseProg = refl

lemmaOpIfProg++[]5 (x :: ifCaseProg) elseCaseProg

= cong (λ l → x :: l) (lemmaOpIfProg++[]5 ifCaseProg elseCaseProg)

lemmaOpIfProg++[]4 :

(ifCaseProg elseCaseProg : BitcoinScript) →

_≡_ {A = BitcoinScript}

(opIf :: (ifCaseProg ++ opElse ::’ elseCaseProg ++ opEndIf ::’ []))

(opIf :: (ifCaseProg ++ opElse ::’ [] ++ elseCaseProg ++ opEndIf ::’ []))

lemmaOpIfProg++[]4 ifCaseProg elseCaseProg =

cong (λ l → opIf :: (l ++ opEndIf ::’ []))

(lemmaOpIfProg++[]5 ifCaseProg elseCaseProg)

B.8 The state definition for non-local instructions

module verificationWithIfStack.state where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Maybe

open import Data.Bool hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality
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open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import basicBitcoinDataType

open import stack

open import verificationWithIfStack.ifStack

record State : Set where

constructor 〈_,_,_,_,_〉

field

currentTime : Time

msg : Msg

stack : Stack

ifStack : IfStack

consis : IfStackConsis ifStack

open State public

record StateWithMaybe : Set where

constructor 〈_,_,_,_,_〉

field

currentTime : Time

msg : Msg

maybeStack : Maybe Stack

ifStack : IfStack

consis : IfStackConsis ifStack

open StateWithMaybe public
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state1WithMaybe : StateWithMaybe → Maybe State

state1WithMaybe 〈 currentTime1 , msg1 , just x , ifStack1 , consis1 〉 =

just 〈 currentTime1 , msg1 , x , ifStack1 , consis1 〉

state1WithMaybe 〈 currentTime1 , msg1 , nothing , ifStack1 , consis1 〉 = nothing

mutual

liftStackToStateTransformerAux’ : Maybe Stack → State → StateWithMaybe

liftStackToStateTransformerAux’ maybest 〈 currentTime1 ,

msg1 , stack1 , ifStack1 , consis1 〉

= 〈 currentTime1 , msg1 , maybest , ifStack1 , consis1 〉

exeTransformerDepIfStack : ( State → Maybe State ) → State → Maybe State

exeTransformerDepIfStack f st@( 〈 time , msg1 , stack1 , [] , c 〉 ) = f st

exeTransformerDepIfStack f st@( 〈 time , msg1 , stack1 ,

ifCase :: ifStack1 , c 〉) = f st

exeTransformerDepIfStack f st@( 〈 time , msg1 , stack1 ,

elseCase :: ifStack1 , c 〉) = f st

exeTransformerDepIfStack f st@( 〈 time , msg1 , stack1 ,

elseSkip :: ifStack1 , c 〉 ) = just st

exeTransformerDepIfStack f st@( 〈 time , msg1 , stack1 ,

ifIgnore :: ifStack1 , c 〉 ) = just st

exeTransformerDepIfStack f st@( 〈 time , msg1 , stack1 ,

ifSkip :: ifStack1 , c 〉) = just st

exeTransformerDepIfStack’ : ( State → StateWithMaybe )

→ State → Maybe State

exeTransformerDepIfStack’ f st@( 〈 currentTime1 , msg1 , stack1 , [] , consis1 〉)
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= state1WithMaybe ( f st)

exeTransformerDepIfStack’ f st@( 〈 currentTime1 , msg1 , stack1 ,

ifCase :: ifStack1 , consis1 〉)

= state1WithMaybe ( f st)

exeTransformerDepIfStack’ f st@( 〈 currentTime1 , msg1 , stack1 ,

elseCase :: ifStack1 , consis1 〉)

= state1WithMaybe ( f st)

exeTransformerDepIfStack’ f st@( 〈 currentTime1 , msg1 , stack1 ,

ifSkip :: ifStack1 , consis1 〉) = just st

exeTransformerDepIfStack’ f st@( 〈 currentTime1 , msg1 , stack1 ,

elseSkip :: ifStack1 , consis1 〉) = just st

exeTransformerDepIfStack’ f st@( 〈 currentTime1 , msg1 , stack1 ,

ifIgnore :: ifStack1 , consis1 〉) = just st

stackTransform2StateTransform : StackTransformer → State → Maybe State

stackTransform2StateTransform f s

= exeTransformerDepIfStack’ (liftStackToStateTransformerAux’

( f (s .currentTime) (s .msg) (s .stack))) s

liftStackToStateTransformerDepIfStack’ : (Stack → Maybe Stack)

→ State → Maybe State

liftStackToStateTransformerDepIfStack’ f

= stackTransform2StateTransform (λ time msg → f )

liftTimeStackToStateTransformerDepIfStack’ : (Time → Stack → Maybe Stack)

→ State → Maybe State

liftTimeStackToStateTransformerDepIfStack’ f

= stackTransform2StateTransform (λ time msg → f time)

liftMsgStackToStateTransformerDepIfStack’ : (Msg → Stack → Maybe Stack)

→ State → Maybe State

liftMsgStackToStateTransformerDepIfStack’ f

= stackTransform2StateTransform (λ time → f )
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msgToMStackToIfStackToMState : Time → Msg → Maybe Stack

→ (ifs : IfStack) → IfStackConsis ifs → Maybe State

msgToMStackToIfStackToMState time m nothing ifs c = nothing

msgToMStackToIfStackToMState time m (just x) ifs c = just 〈 time , m , x , ifs , c 〉

liftFromMsgToStateAssumeIfStack : ( Msg → Stack → Maybe Stack)

→ State → Maybe State

liftFromMsgToStateAssumeIfStack f 〈 time , msg1 , stack1 , ifStack1 , c 〉

= msgToMStackToIfStackToMState time msg1 ( f msg1 stack1) ifStack1 c

liftToStateAssumeIfStack : ( Stack → Maybe Stack) → State → Maybe State

liftToStateAssumeIfStack f 〈 time , msg1 , stack1 , ifStack1 , c 〉

= msgToMStackToIfStackToMState time msg1 ( f stack1) ifStack1 c

B.9 Define the semantics for instructions, including conditionals

open import basicBitcoinDataType

module verificationWithIfStack.semanticsInstructions (param : GlobalParameters) where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.Maybe

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality
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open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

–open import libraries.miscLib
open import libraries.maybeLib

open import stack

open import instruction

open import semanticBasicOperations param

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

–function for opIf
executeOpIfBasic : State → Maybe State

executeOpIfBasic 〈 time , msg , bitcoinStack1 , ifSkip :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , ifIgnore :: ifSkip :: ifStack1 , c 〉

executeOpIfBasic 〈 time , msg , bitcoinStack1 , ifIgnore :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , ifIgnore :: ifIgnore :: ifStack1 , c 〉

executeOpIfBasic 〈 time , msg , bitcoinStack1 , elseSkip :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , ifIgnore :: elseSkip :: ifStack1 , c 〉

executeOpIfBasic 〈 time , msg , [] , [] , c 〉 = nothing

executeOpIfBasic 〈 time , msg , zero :: bitcoinStack1 , [] , c 〉

= just 〈 time , msg , bitcoinStack1 , ifSkip :: [] , c 〉

executeOpIfBasic 〈 time , msg , suc x :: bitcoinStack1 , [] , c 〉

= just 〈 time , msg , bitcoinStack1 , ifCase :: [] , c 〉

executeOpIfBasic 〈 time , msg , [] , ifCase :: ifStack1 , c 〉 = nothing

executeOpIfBasic 〈 time , msg , zero :: bitcoinStack1 , ifCase :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , ifSkip :: ifCase :: ifStack1 , c 〉
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executeOpIfBasic 〈 time , msg , suc x :: bitcoinStack1 , ifCase :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , ifCase :: ifCase :: ifStack1 , c 〉

executeOpIfBasic 〈 time , msg , [] , elseCase :: ifStack1 , c 〉 = nothing

executeOpIfBasic 〈 time , msg , zero :: bitcoinStack1 , elseCase :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , ifSkip :: elseCase :: ifStack1 , c 〉

executeOpIfBasic 〈 time , msg , suc x :: bitcoinStack1 , elseCase :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , ifCase :: elseCase :: ifStack1 , c 〉

–function for opElse
executeOpElseBasic : State → Maybe State

executeOpElseBasic 〈 time , msg , bitcoinStack1 , [] , c 〉 = nothing

executeOpElseBasic 〈 time , msg , bitcoinStack1 , elseSkip :: ifStack1 , c 〉 = nothing

executeOpElseBasic 〈 time , msg , bitcoinStack1 , elseCase :: ifStack1 , c 〉 = nothing

executeOpElseBasic 〈 time , msg , bitcoinStack1 , ifSkip :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , elseCase :: ifStack1 , c 〉

executeOpElseBasic 〈 time , msg , bitcoinStack1 , ifCase :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , elseSkip :: ifStack1 , ∧bproj2 c 〉

executeOpElseBasic 〈 time , msg , bitcoinStack1 , ifIgnore :: ifStack1 , c 〉

= just 〈 time , msg , bitcoinStack1 , elseSkip :: ifStack1 , ∧bproj2 c 〉

–function for opEndIf
executeOpEndIfBasic : State → Maybe State

executeOpEndIfBasic 〈 time , msg , bitcoinStack , [] , c 〉 = nothing

executeOpEndIfBasic 〈 time , msg , bitcoinStack , x :: ifStack , c 〉 = just (〈 time , msg , bitcoinStack , ifStack , lemmaIfStackConsisTail x ifStack c 〉)

J_Ks : InstructionAll → State → Maybe State

J opEqual Ks = liftStackToStateTransformerDepIfStack’ executeStackEquality

J opAdd Ks = liftStackToStateTransformerDepIfStack’ executeStackAdd

J (opPush x) Ks = liftStackToStateTransformerDepIfStack’ (executeStackPush x)

J opSub Ks = liftStackToStateTransformerDepIfStack’ executeStackSub

J opVerify Ks = liftStackToStateTransformerDepIfStack’ executeStackVerify
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J opCheckSig Ks = liftMsgStackToStateTransformerDepIfStack’ executeStackCheckSig

J opEqualVerify Ks = liftStackToStateTransformerDepIfStack’ executeStackVerify

J opDup Ks = liftStackToStateTransformerDepIfStack’ executeStackDup

J opDrop Ks = liftStackToStateTransformerDepIfStack’ executeStackDrop

J opSwap Ks = liftStackToStateTransformerDepIfStack’ executeStackSwap

J opCHECKLOCKTIMEVERIFY Ks = liftTimeStackToStateTransformerDepIfStack’ executeOpCHECKLOCKTIMEVERIFY

J opCheckSig3 Ks = liftMsgStackToStateTransformerDepIfStack’ executeStackCheckSig3Aux

J opHash Ks = liftStackToStateTransformerDepIfStack’ executeOpHash

J opMultiSig Ks = liftMsgStackToStateTransformerDepIfStack’ executeMultiSig

J opIf Ks = executeOpIfBasic

J opElse Ks = executeOpElseBasic

J opEndIf Ks = executeOpEndIfBasic

J_Ks+ : InstructionAll → Maybe State → Maybe State

J op Ks+ t = t >>= J op Ks

J_K : BitcoinScript → State → Maybe State

J [] K = just

J x :: [] K = J x Ks

J x :: l K s = J x Ks s >>= J l K

J_K+ : BitcoinScript → Maybe State → Maybe State

J op K+ s = s >>= J op K

validStackAux : (pbkh : N) → (msg : Msg) → Stack → Bool

validStackAux pkh msg[] [] = false

validStackAux pkh msg (pbk :: []) = false

validStackAux pkh msg (pbk :: sig :: s) = hashFun pbk ==b pkh ∧b isSigned msg sig pbk

validStack : (pkh : N) → BPredicate

validStack pkh 〈 time , msg1 , stack1 , ifStack1 , c 〉 = validStackAux pkh msg1 stack1
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B.10 Define ifStackEl and IfStack

module verificationWithIfStack.ifStack where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head)

open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

–open import libraries.miscLib
open import libraries.maybeLib

open import basicBitcoinDataType

data IfStackEl : Set where

ifCase elseCase ifSkip elseSkip ifIgnore : IfStackEl

–ifStack
IfStack : Set

IfStack = List IfStackEl

isActiveIfStackEl : IfStackEl → Bool

isActiveIfStackEl ifCase = true

isActiveIfStackEl elseCase = true

isActiveIfStackEl ifSkip = false

isActiveIfStackEl elseSkip = false

476



B.10. Define ifStackEl and IfStack

isActiveIfStackEl ifIgnore = false

IsActiveIfStackEl : IfStackEl → Set

IsActiveIfStackEl s = True (isActiveIfStackEl s)

isNonActiveIfStackEl : IfStackEl → Bool

isNonActiveIfStackEl s = not (isActiveIfStackEl s)

IsNonActiveIfStackEl : IfStackEl → Set

IsNonActiveIfStackEl s = True (isNonActiveIfStackEl s)

isActiveIfStack : IfStack → Bool

isActiveIfStack [] = true

isActiveIfStack (x :: s) = isActiveIfStackEl x

IsActiveIfStack : IfStack → Set

IsActiveIfStack s = True (isActiveIfStack s)

isNonActiveIfStack : IfStack → Bool

isNonActiveIfStack s = not (isActiveIfStack s)

IsNonActiveIfStack : IfStack → Set

IsNonActiveIfStack s = True (isNonActiveIfStack s)

ifStackElIsNonIfIgnore : IfStackEl → Bool

ifStackElIsNonIfIgnore ifIgnore = false

ifStackElIsNonIfIgnore s = true

IfStackIsNonIfIgnore : IfStackEl → Set

IfStackIsNonIfIgnore s = True (ifStackElIsNonIfIgnore s)

ifStackElIsIfSkipOrElseSkip : IfStackEl → Bool

ifStackElIsIfSkipOrElseSkip ifSkip = true
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ifStackElIsIfSkipOrElseSkip elseSkip = true

ifStackElIsIfSkipOrElseSkip s = false

IfStackElIsIfSkipOrElseSkip : IfStackEl → Set

IfStackElIsIfSkipOrElseSkip s = True (ifStackElIsIfSkipOrElseSkip s)

ifStackElementIsIfSkipOrIfIgnore : IfStackEl → Set

ifStackElementIsIfSkipOrIfIgnore ifSkip = >

ifStackElementIsIfSkipOrIfIgnore ifIgnore = >

ifStackElementIsIfSkipOrIfIgnore ifCase = ⊥

ifStackElementIsIfSkipOrIfIgnore elseCase = ⊥

ifStackElementIsIfSkipOrIfIgnore elseSkip = ⊥

ifStackConsis : IfStack → Bool

ifStackConsis [] = true

ifStackConsis (ifCase :: s) = isActiveIfStack s ∧b ifStackConsis s

ifStackConsis (elseCase :: s) = isActiveIfStack s ∧b ifStackConsis s

ifStackConsis (ifSkip :: s) = isActiveIfStack s ∧b ifStackConsis s

ifStackConsis (elseSkip :: s) = ifStackConsis s

ifStackConsis (ifIgnore :: s) = isNonActiveIfStack s ∧b ifStackConsis s

IfStackConsis : IfStack → Set

IfStackConsis s = True (ifStackConsis s)

ifStackElementIsElseSkipOrIfIgnore : IfStackEl → Set

ifStackElementIsElseSkipOrIfIgnore ifIgnore = >

ifStackElementIsElseSkipOrIfIgnore elseSkip = >

ifStackElementIsElseSkipOrIfIgnore ifSkip = ⊥

ifStackElementIsElseSkipOrIfIgnore ifCase = ⊥

ifStackElementIsElseSkipOrIfIgnore elseCase = ⊥

lemmaIfStackIsNonIfIgnore : (x : IfStackEl)(l : IfStack) → IfStackConsis (x :: l)

→ IsActiveIfStack l
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→ IfStackIsNonIfIgnore x

lemmaIfStackIsNonIfIgnore ifCase l c a = tt

lemmaIfStackIsNonIfIgnore elseCase l c a = tt

lemmaIfStackIsNonIfIgnore ifSkip l c a = tt

lemmaIfStackIsNonIfIgnore elseSkip l c a = tt

lemmaIfStackIsNonIfIgnore ifIgnore (ifCase :: l) () a

lemmaIfStackIsNonIfIgnore ifIgnore (elseCase :: l) () a

lemmaIfStackIsNonIfIgnore ifIgnore (ifSkip :: l) c ()

lemmaIfStackIsNonIfIgnore ifIgnore (elseSkip :: l) c ()

lemmaIfStackIsNonIfIgnore ifIgnore (ifIgnore :: l) c ()

lemmaIfStackConsisTail : (x : IfStackEl)(s : IfStack) → IfStackConsis (x :: s)

→ IfStackConsis s

lemmaIfStackConsisTail ifCase s p = ∧bproj2 p

lemmaIfStackConsisTail elseCase s p = ∧bproj2 p

lemmaIfStackConsisTail ifSkip s p = ∧bproj2 p

lemmaIfStackConsisTail elseSkip s p = p

lemmaIfStackConsisTail ifIgnore s p = ∧bproj2 p

lemmaIfStackConsisNonActiveIf : (s : IfStack) → IfStackConsis s → IsActiveIfStack s

→ IsActiveIfStack (ifCase :: s)

lemmaIfStackConsisNonActiveIf s consis active = tt

lemmaIfStackConsisNonActiveElse : (s : IfStack) → IfStackConsis s → IsActiveIfStack s

→ IsActiveIfStack (elseCase :: s)

lemmaIfStackConsisNonActiveElse s consis active = tt

lemmaIfStackElIsIfSkipOrElseSkip2IsSkip : (x : IfStackEl)

→ True (ifStackElIsIfSkipOrElseSkip x)

→ IsNonActiveIfStackEl x

lemmaIfStackElIsIfSkipOrElseSkip2IsSkip ifSkip p = p

lemmaIfStackElIsIfSkipOrElseSkip2IsSkip elseSkip p = p
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B.11 Define Predicate

module verificationWithIfStack.predicate where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Sum

open import Data.Maybe

open import Data.Bool hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import basicBitcoinDataType

open import stack

open import stackPredicate

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state
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BPredicate : Set

BPredicate = State → Bool

Predicate : Set1

Predicate = State → Set

MaybeBPredicate : Set

MaybeBPredicate = Maybe State → Bool

ifStackPredicate : IfStack → Predicate

ifStackPredicate ifs 〈 time , msg1 , stack1 , ifStack1 , c 〉 = ifStack1 ≡ ifs

ifStackPredicateAnyTop : IfStack → Predicate

ifStackPredicateAnyTop ifs 〈 time , msg1 , stack1 , [] , c 〉 = ⊥

ifStackPredicateAnyTop ifs 〈 time , msg1 , stack1 , x :: ifStack1 , c 〉 = ifStack1 ≡ ifs

ifStackPredicateAnySkipTop : IfStack → Predicate

ifStackPredicateAnySkipTop ifs 〈 time , msg1 , stack1 , [] , c 〉 = ⊥

ifStackPredicateAnySkipTop ifs 〈 time , msg1 , stack1 ,

ifSkip :: ifStack1 , c 〉

= ifStack1 ≡ ifs

ifStackPredicateAnySkipTop ifs 〈 time , msg1 , stack1 ,

elseSkip :: ifStack1 , c 〉

= ifStack1 ≡ ifs

ifStackPredicateAnySkipTop ifs 〈 time , msg1 , stack1 ,

ifIgnore :: ifStack1 , c 〉

= ifStack1 ≡ ifs

ifStackPredicateAnySkipTop ifs 〈 time , msg1 , stack1 ,

ifCase :: ifStack1 , c 〉

= ⊥

ifStackPredicateAnySkipTop ifs 〈 time , msg1 , stack1 ,

elseCase :: ifStack1 , c 〉
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= ⊥

ifStackPredicateAnyDoTop : IfStack → Predicate

ifStackPredicateAnyDoTop ifs 〈 time , msg1 , stack1 , [] , c 〉 = ⊥

ifStackPredicateAnyDoTop ifs 〈 time , msg1 , stack1 , ifSkip :: ifStack1 , c 〉 = ⊥

ifStackPredicateAnyDoTop ifs 〈 time , msg1 , stack1 , elseSkip :: ifStack1 , c 〉 = ⊥

ifStackPredicateAnyDoTop ifs 〈 time , msg1 , stack1 , ifIgnore :: ifStack1 , c 〉 = ⊥

ifStackPredicateAnyDoTop ifs 〈 time , msg1 , stack1 , ifCase :: ifStack1 , c 〉

= ifStack1 ≡ ifs

ifStackPredicateAnyDoTop ifs 〈 time , msg1 , stack1 , elseCase :: ifStack1 , c 〉

= ifStack1 ≡ ifs

ifStackPredicateIfSkipOrIgnoreOnTop : IfStack → Predicate

ifStackPredicateIfSkipOrIgnoreOnTop ifs 〈 time , msg1 , stack1 , [] , c 〉 = ⊥

ifStackPredicateIfSkipOrIgnoreOnTop ifs 〈 time , msg1 , stack1 ,

ifSkip :: ifStack1 , c 〉

= ifStack1 ≡ ifs

ifStackPredicateIfSkipOrIgnoreOnTop ifs 〈 time , msg1 , stack1 ,

ifIgnore :: ifStack1 , c 〉

= ifStack1 ≡ ifs

ifStackPredicateIfSkipOrIgnoreOnTop ifs 〈 time , msg1 , stack1 ,

ifCase :: ifStack1 , c 〉 = ⊥

ifStackPredicateIfSkipOrIgnoreOnTop ifs 〈 time , msg1 , stack1 ,

elseSkip :: ifStack1 , c 〉 = ⊥

ifStackPredicateIfSkipOrIgnoreOnTop ifs 〈 time , msg1 , stack1 ,

elseCase :: ifStack1 , c 〉 = ⊥

ifStackPredicateAnyNonIfIgnoreTop : IfStack → Predicate

ifStackPredicateAnyNonIfIgnoreTop ifs 〈 time , msg1 , stack1 , [] , c 〉 = ⊥

ifStackPredicateAnyNonIfIgnoreTop ifs 〈 time , msg1 , stack1 , x :: ifStack1 , c 〉

= (ifStack1 ≡ ifs) ∧ IfStackIsNonIfIgnore x

ifStackPredicateElseSkipOrIgnoreOnTop : IfStack → Predicate

ifStackPredicateElseSkipOrIgnoreOnTop ifs 〈 time , msg1 , stack1 , [] , c 〉 = ⊥

ifStackPredicateElseSkipOrIgnoreOnTop ifs 〈 time , msg1 , stack1 ,
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elseSkip :: ifStack1 , c 〉 = ifStack1 ≡ ifs

ifStackPredicateElseSkipOrIgnoreOnTop ifs 〈 time , msg1 , stack1 ,

ifIgnore :: ifStack1 , c 〉 = ifStack1 ≡ ifs

ifStackPredicateElseSkipOrIgnoreOnTop ifs 〈 time , msg1 , stack1 ,

ifCase :: ifStack1 , c 〉 = ⊥

ifStackPredicateElseSkipOrIgnoreOnTop ifs 〈 time , msg1 , stack1 ,

ifSkip :: ifStack1 , c 〉 = ⊥

ifStackPredicateElseSkipOrIgnoreOnTop ifs 〈 time , msg1 , stack1 ,

elseCase :: ifStack1 , c 〉 = ⊥

predicateAfterPushingx : (n : N)(P : Predicate) → Predicate

predicateAfterPushingx n P 〈 time , msg1 , stack1 , ifStack1 , c 〉 =

P 〈 time , msg1 , n :: stack1 , ifStack1 , c 〉

predicateForTopElOfStack : (n : N) → Predicate

predicateForTopElOfStack n 〈 time , msg1 , [] , ifStack1 , c 〉 = ⊥

predicateForTopElOfStack n 〈 time , msg1 , x :: stack1 , ifStack1 , c 〉 = x ≡ n

truefalsePred : (φ ψ : StackPredicate) → Predicate

truefalsePred φ ψ 〈 time , msg , [] , ifStack , c 〉 = ⊥

truefalsePred φ ψ 〈 time , msg , zero :: stack , ifStack , c 〉

= φ time msg stack

truefalsePred φ ψ 〈 time , msg , suc x :: stack , ifStack , c 〉

= ψ time msg stack

_∧p_ : ( φ ψ : Predicate ) → Predicate

(φ ∧p ψ ) s = φ s ∧ ψ s

⊥p : Predicate

⊥p s = ⊥
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infixl 4 _]p_

_]p_ : (φ ψ : Predicate) → Predicate

(φ ]p ψ) s = φ s ] ψ s

lemma]pleft : (ψ ψ’ : Predicate)(s : Maybe State)

→ (ψ +) s → ((ψ ]p ψ’) +) s

lemma]pleft ψ ψ’ (just x) p = inj1 p

lemma]pright : (ψ ψ’ : Predicate) (s : Maybe State)

→ (ψ’ +) s → ((ψ ]p ψ’) +) s

lemma]pright ψ ψ’ (just x) p = inj2 p

lemma]pinv : (ψ ψ’ : Predicate)(A : Set) (s : Maybe State)

→ ((ψ +) s → A)

→ ((ψ’ +) s → A)

→ ((ψ ]p ψ’) +) s → A

lemma]pinv ψ ψ’ A (just x) p q (inj1 x1) = p x1

lemma]pinv ψ ψ’ A (just x) p q (inj2 y) = q y

stackPred2Pred : StackPredicate → Predicate

stackPred2Pred f 〈 time , msg1 , stack1 , [] , c 〉 = f time msg1 stack1

stackPred2Pred f 〈 time , msg1 , stack1 , x :: ifStack1 , c 〉 = ⊥

stackPred2PredBool : ( Time → Msg → Stack → Bool ) → ( State → Bool )

stackPred2PredBool f 〈 currentTime1 , msg1 , stack1 , [] , consis1 〉

= f currentTime1 msg1 stack1

stackPred2PredBool f 〈 currentTime1 , msg1 , stack1 , x :: ifStack1 , consis1 〉

= false

liftStackPred2PredIgnoreIfStack : StackPredicate → Predicate

liftStackPred2PredIgnoreIfStack f 〈 time , msg1 , stack1 , ifStack1 , c 〉 = f time msg1 stack1
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topElStack>0 : Predicate

topElStack>0 〈 time , msg1 , [] , ifStack1 , c 〉 = ⊥

topElStack>0 〈 time , msg1 , zero :: stack1 , ifStack1 , c 〉 = ⊥

topElStack>0 〈 time , msg1 , suc x :: stack1 , ifStack1 , c 〉 = >

topElStack=0 : Predicate

topElStack=0 〈 time , msg1 , [] , ifStack1 , c 〉 = ⊥

topElStack=0 〈 time , msg1 , zero :: stack1 , ifStack1 , c 〉 = >

topElStack=0 〈 time , msg1 , suc x :: stack1 , ifStack1 , c 〉 = ⊥

truePred : StackPredicate → Predicate

truePred φ = liftStackPred2PredIgnoreIfStack (truePredaux φ )

falsePredaux : StackPredicate → StackPredicate

falsePredaux φ time msg [] = ⊥

falsePredaux φ time msg (zero :: st) = φ time msg st

falsePredaux φ time msg (suc x :: st) = ⊥

falsePred : StackPredicate → Predicate

falsePred φ = liftStackPred2PredIgnoreIfStack (falsePredaux φ )

liftAddingx : (n : N)( φ : StackPredicate ) → Predicate

liftAddingx n φ = predicateAfterPushingx n (liftStackPred2PredIgnoreIfStack φ )

liftStackPred2Pred : StackPredicate → IfStack → Predicate

liftStackPred2Pred ψ ifStack1 = liftStackPred2PredIgnoreIfStack ψ ∧p ifStackPredicate ifStack1

acceptState : Predicate

acceptState = stackPred2Pred acceptStates
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B.12 The main ifthenelse-theorem (theoremIfThenElse)

open import basicBitcoinDataType

module verificationWithIfStack.ifThenElseTheoremPart4 (param : GlobalParameters) where

open import Data.List.Base hiding (_++_)

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Sum

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head)

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.listLib

open import libraries.natLib

open import libraries.equalityLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate

open import instruction

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate
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open import verificationWithIfStack.semanticsInstructions param

open import verificationWithIfStack.verificationLemmas param

open import verificationWithIfStack.hoareTriple param

open import verificationWithIfStack.equalitiesIfThenElse param

open import verificationWithIfStack.ifThenElseTheoremPart1 param

open import verificationWithIfStack.ifThenElseTheoremPart3 param

lemmaTopElementIfCase : (ifStack1 : IfStack)

(φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(activeIfStack : IsActiveIfStack ifStack1)

(elseCaseDo : (x : IfStackEl)

→ IsActiveIfStackEl x

→ < liftStackPred2Pred φ false (x :: ifStack1) >if f

elseCaseProg

< liftStackPred2Pred ψ (x :: ifStack1) >)

→ < ⊥p >if f

(opIf :: (ifCaseProg ++ (opElse :: elseCaseProg)))

< liftStackPred2Pred ψ (ifCase :: ifStack1) >

lemmaTopElementIfCase ifStack1 φ false ψ ifCaseProg

elseCaseProg activeIfStack elseCaseDo

= ⊥p <><>〈 opIf :: [] 〉〈 ⊥Lemmap (opIf :: []) 〉

⊥p <><>〈 ifCaseProg 〉〈 ⊥Lemmap ifCaseProg 〉

⊥p <><>〈 opElse :: [] 〉〈

opElseCorrectness3 φ false ifStack1 〉

(liftStackPred2PredIgnoreIfStack φ false ∧p

ifStackPredicate (ifCase :: ifStack1))

<><>〈 elseCaseProg 〉〈 elseCaseDo ifCase tt 〉e

(liftStackPred2Pred ψ (ifCase :: ifStack1) )

‚p
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lemmaTopElementIfSkip : (ifStack1 : IfStack)

(φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(activeIfStack : IsActiveIfStack ifStack1)

(elseCaseSkip : (x : IfStackEl)

→ IfStackElIsIfSkipOrElseSkip x

→ < liftStackPred2Pred ψ (x :: ifStack1) >if f

elseCaseProg

< liftStackPred2Pred ψ (x :: ifStack1) >)

→ < ⊥p >if f

(opIf :: (ifCaseProg ++ (opElse :: elseCaseProg)))

< liftStackPred2Pred ψ (ifSkip :: ifStack1) >

lemmaTopElementIfSkip ifStack1 φ false ψ ifCaseProg elseCaseProg activeIfStack elseCaseSkip

= ⊥p <><>〈 opIf :: [] 〉〈 ⊥Lemmap (opIf :: []) 〉

⊥p <><>〈 ifCaseProg 〉〈 ⊥Lemmap ifCaseProg 〉

⊥p <><>〈 opElse :: [] 〉〈 opElseCorrectness4 ψ ifStack1 〉

(liftStackPred2Pred ψ (ifSkip :: ifStack1) )

<><>〈 elseCaseProg 〉〈 elseCaseSkip ifSkip tt 〉e

(liftStackPred2Pred ψ (ifSkip :: ifStack1) )

‚p

lemmaEquivalenceBeforeEndIf3 : (ifStack1 : IfStack)

(ψ : StackPredicate) →

((liftStackPred2Pred ψ (elseSkip :: ifStack1) ) ]p

(liftStackPred2Pred ψ (elseCase :: ifStack1) ) ]p

(liftStackPred2Pred ψ (ifCase :: ifStack1) ) ]p

(liftStackPred2Pred ψ (ifSkip :: ifStack1) ))

<=>p

(liftStackPred2PredIgnoreIfStack ψ ∧p

ifStackPredicateAnyNonIfIgnoreTop ifStack1)
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lemmaEquivalenceBeforeEndIf3 ifStack1 ψ .==>e 〈 time , msg1 , stack1 ,

.(elseSkip :: ifStack1) , consis1 〉

(inj1 (inj1 (inj1 (conj and4 refl)))) = conj and4 (conj refl tt)

lemmaEquivalenceBeforeEndIf3 ifStack1 ψ .==>e 〈 time , msg1 , stack1 ,

.(elseCase :: ifStack1) , consis1 〉

(inj1 (inj1 (inj2 (conj and4 refl)))) = conj and4 (conj refl tt)

lemmaEquivalenceBeforeEndIf3 ifStack1 ψ .==>e 〈 time , msg1 , stack1 ,

.(ifCase :: ifStack1) , consis1 〉

(inj1 (inj2 (conj and4 refl))) = conj and4 (conj refl tt)

lemmaEquivalenceBeforeEndIf3 ifStack1 ψ .==>e 〈 time , msg1 , stack1 ,

.(ifSkip :: ifStack1) , consis1 〉

(inj2 (conj and4 refl)) = conj and4 (conj refl tt)

lemmaEquivalenceBeforeEndIf3 ifStack1 ψ .<==e 〈 time , msg1 , stack1 ,

ifCase :: .ifStack1 , consis1 〉

(conj and4 (conj refl and6)) = inj1 (inj2 (conj and4 refl))

lemmaEquivalenceBeforeEndIf3 ifStack1 ψ .<==e 〈 time , msg1 , stack1 ,

elseCase :: .ifStack1 , consis1 〉

(conj and4 (conj refl and6)) = inj1 (inj1 (inj2 (conj and4 refl)))

lemmaEquivalenceBeforeEndIf3 ifStack1 ψ .<==e 〈 time , msg1 , stack1 ,

ifSkip :: .ifStack1 , consis1 〉

(conj and4 (conj refl and6)) = inj2 (conj and4 refl)

lemmaEquivalenceBeforeEndIf3 ifStack1 ψ .<==e 〈 time , msg1 , stack1 ,

elseSkip :: .ifStack1 , consis1 〉

(conj and4 (conj refl and6)) = inj1 (inj1 (inj1 (conj and4 refl)))

lemmaEquivalenceBeforeEndIf2WithoutActiveStack : (ifStack1 : IfStack)

(ψ : StackPredicate) →

((liftStackPred2Pred ψ (elseCase :: ifStack1) ) ]p

(liftStackPred2Pred ψ (elseSkip :: ifStack1) ) ]p

(liftStackPred2Pred ψ (ifCase :: ifStack1) ) ]p

(liftStackPred2Pred ψ (ifSkip :: ifStack1) ) ]p

(liftStackPred2Pred ψ (ifIgnore :: ifStack1) ))

<=>p

(liftStackPred2PredIgnoreIfStack ψ ∧p ifStackPredicateAnyTop ifStack1)
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lemmaEquivalenceBeforeEndIf2WithoutActiveStack ifStack1 ψ .==>e 〈 time , msg1 , stack1 ,

.elseCase :: .ifStack1 , c 〉

(inj1 (inj1 (inj1 (inj1 (conj and4 refl))))) = conj and4 refl

lemmaEquivalenceBeforeEndIf2WithoutActiveStack ifStack1 ψ .==>e 〈 time , msg1 , stack1 ,

.elseSkip :: .ifStack1 , c 〉

(inj1 (inj1 (inj1 (inj2 (conj and4 refl))))) = conj and4 refl

lemmaEquivalenceBeforeEndIf2WithoutActiveStack ifStack1 ψ .==>e 〈 time , msg1 , stack1 ,

.ifCase :: .ifStack1 , c 〉

(inj1 (inj1 (inj2 (conj and4 refl)))) = conj and4 refl

lemmaEquivalenceBeforeEndIf2WithoutActiveStack ifStack1 ψ .==>e 〈 time , msg1 , stack1 ,

.ifSkip :: .ifStack1 , c 〉

(inj1 (inj2 (conj and4 refl))) = conj and4 refl

lemmaEquivalenceBeforeEndIf2WithoutActiveStack ifStack1 ψ .==>e 〈 time , msg1 , stack1 ,

.ifIgnore :: .ifStack1 , c 〉

(inj2 (conj and4 refl)) = conj and4 refl

lemmaEquivalenceBeforeEndIf2WithoutActiveStack ifStack1 ψ .<==e 〈 time , msg1 , stack1 ,

ifCase :: .ifStack1 , c 〉

(conj and4 refl) = inj1 (inj1 (inj2 (conj and4 refl)))

lemmaEquivalenceBeforeEndIf2WithoutActiveStack ifStack1 ψ .<==e 〈 time , msg1 , stack1 ,

ifSkip :: .ifStack1 , c 〉

(conj and4 refl) = inj1 (inj2 (conj and4 refl))

lemmaEquivalenceBeforeEndIf2WithoutActiveStack ifStack1 ψ .<==e 〈 time , msg1 , stack1 ,

elseCase :: .ifStack1 , c 〉

(conj and4 refl) = inj1 (inj1 (inj1 (inj1 (conj and4 refl))))

lemmaEquivalenceBeforeEndIf2WithoutActiveStack ifStack1 ψ .<==e 〈 time , msg1 , stack1 ,

elseSkip :: .ifStack1 , c 〉

(conj and4 refl) = inj1 (inj1 (inj1 (inj2 (conj and4 refl))))

lemmaEquivalenceBeforeEndIf2WithoutActiveStack ifStack1 ψ .<==e 〈 time , msg1 , stack1 ,

ifIgnore :: .ifStack1 , c 〉

(conj and4 refl) = inj2 (conj and4 refl)

lemmaIfThenElseExcludingEndIf4a : (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)
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(assumption : AssumptionIfThenElse ifStack1 φ true

φ false ψ ifCaseProg elseCaseProg)

→ < (truePred φ true ∧p ifStackPredicate ifStack1) >if f

(opIf :: (ifCaseProg ++ (opElse :: elseCaseProg )))

< (liftStackPred2Pred ψ (elseSkip :: ifStack1) ) >

lemmaIfThenElseExcludingEndIf4a ifStack1 φ true φ false ψ

ifCaseProg elseCaseProg

(assumptionIfThenElse activeIfStack ifCaseDo

ifCaseSkip elseCaseDo elseCaseSkip)

= (truePred φ true ∧p ifStackPredicate ifStack1)

<><>〈 opIf :: [] 〉〈 opIfCorrectness1 φ true ifStack1 activeIfStack 〉

(liftStackPred2Pred φ true (ifCase :: ifStack1))

<><>〈 ifCaseProg 〉〈 ifCaseDo 〉

(liftStackPred2Pred ψ (ifCase :: ifStack1))

<><>〈 opElse :: [] 〉〈 opElseCorrectness1 ψ ifStack1 activeIfStack 〉

(liftStackPred2Pred ψ (elseSkip :: ifStack1))

<><>〈 elseCaseProg 〉〈 elseCaseSkip elseSkip tt 〉e

(liftStackPred2Pred ψ (elseSkip :: ifStack1) )

‚p

lemmaIfThenElseExcludingEndIf4b : (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElse ifStack1 φ true φ false ψ ifCaseProg elseCaseProg)

→ < (falsePred φ false ∧p ifStackPredicate ifStack1) >if f

(opIf :: (ifCaseProg ++ (opElse :: elseCaseProg )))

< (liftStackPred2Pred ψ (elseCase :: ifStack1) ) >

lemmaIfThenElseExcludingEndIf4b ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

(assumptionIfThenElse activeIfStack ifCaseDo ifCaseSkip elseCaseDo elseCaseSkip)

= (falsePred φ false ∧p ifStackPredicate ifStack1)

<><>〈 opIf :: [] 〉〈 opIfCorrectness2 φ false ifStack1 activeIfStack 〉

(liftStackPred2Pred φ false (ifSkip :: ifStack1))
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<><>〈 ifCaseProg 〉〈 ifCaseSkip 〉

(liftStackPred2Pred φ false (ifSkip :: ifStack1))

<><>〈 opElse :: [] 〉〈 opElseCorrectness2 φ false ifStack1 〉

(liftStackPred2Pred φ false (elseCase :: ifStack1))

<><>〈 elseCaseProg 〉〈 elseCaseDo elseCase tt 〉e

(liftStackPred2Pred ψ (elseCase :: ifStack1) )

‚p

lemmaIfThenElseExcludingEndIf4 : (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElse ifStack1

φ true φ false ψ ifCaseProg elseCaseProg)

→ < (truePred φ true ∧p ifStackPredicate ifStack1) ]p

(falsePred φ false ∧p ifStackPredicate ifStack1) >if f

(opIf :: (ifCaseProg ++ (opElse :: elseCaseProg )))

< (liftStackPred2Pred ψ (elseSkip :: ifStack1) ) ]p

((liftStackPred2Pred ψ (elseCase :: ifStack1) )) >

lemmaIfThenElseExcludingEndIf4 ifStack1 φ true φ false ψ

ifCaseProg elseCaseProg assumption

= ]HoareLemma2

(opIf :: (ifCaseProg ++ (opElse :: elseCaseProg )))

(lemmaIfThenElseExcludingEndIf4a ifStack1 φ true φ false

ψ ifCaseProg elseCaseProg assumption)

(lemmaIfThenElseExcludingEndIf4b ifStack1 φ true φ false

ψ ifCaseProg elseCaseProg assumption)

lemmaIfThenElseExcludingEndIf5 : (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)
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(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElse ifStack1 φ true

φ false ψ ifCaseProg elseCaseProg)

→ < (truePred φ true ∧p ifStackPredicate ifStack1) ]p

(falsePred φ false ∧p ifStackPredicate ifStack1) >if f

(opIf :: (ifCaseProg ++ (opElse :: elseCaseProg)))

< ((liftStackPred2Pred ψ (elseSkip :: ifStack1) ) ]p

(liftStackPred2Pred ψ (elseCase :: ifStack1) )) ]p

(liftStackPred2Pred ψ (ifCase :: ifStack1) ) >

lemmaIfThenElseExcludingEndIf5 ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

ass@(assumptionIfThenElse activeIfStack ifCaseDo

ifCaseSkipIgnore elseCaseDo elseCaseSkip)

= ]HoareLemma1 (opIf :: (ifCaseProg ++ (opElse :: elseCaseProg)))

(lemmaIfThenElseExcludingEndIf4 ifStack1 φ true φ false

ψ ifCaseProg elseCaseProg ass)

(lemmaTopElementIfCase ifStack1 φ false ψ

ifCaseProg elseCaseProg activeIfStack elseCaseDo)

lemmaIfThenElseExcludingEndIf6 : (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElse ifStack1

φ true φ false ψ ifCaseProg elseCaseProg)

→ < (truePred φ true ∧p ifStackPredicate ifStack1) ]p

(falsePred φ false ∧p ifStackPredicate ifStack1) >if f

(opIf :: (ifCaseProg ++ (opElse :: elseCaseProg)))

< ( (liftStackPred2Pred ψ (elseSkip :: ifStack1) ) ]p

(liftStackPred2Pred ψ (elseCase :: ifStack1) )) ]p

(liftStackPred2Pred ψ (ifCase :: ifStack1) ) ]p

(liftStackPred2Pred ψ (ifSkip :: ifStack1) ) >

lemmaIfThenElseExcludingEndIf6 ifStack1 φ true φ false

ψ ifCaseProg elseCaseProg

ass@( assumptionIfThenElse activeIfStack ifCaseDo

ifCaseSkipIgnore elseCaseDo elseCaseSkip )
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= ]HoareLemma1 (opIf :: (ifCaseProg ++ opElse ::’ elseCaseProg))

(lemmaIfThenElseExcludingEndIf5 ifStack1 φ true φ false ψ

ifCaseProg elseCaseProg ass)

((lemmaTopElementIfSkip ifStack1 φ false ψ ifCaseProg

elseCaseProg activeIfStack elseCaseSkip))

lemmaIfThenElseExcludingEndIf : (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElse ifStack1 φ true

φ false ψ ifCaseProg elseCaseProg)

→ < (truePred φ true ∧p ifStackPredicate ifStack1) ]p

(falsePred φ false ∧p ifStackPredicate ifStack1) >if f

(opIf :: (ifCaseProg ++ opElse ::’ elseCaseProg))

< (liftStackPred2PredIgnoreIfStack ψ ∧p

ifStackPredicateAnyNonIfIgnoreTop ifStack1 ) >

lemmaIfThenElseExcludingEndIf ifStack1 φ true φ false ψ

ifCaseProg elseCaseProg

ass@(assumptionIfThenElse activeIfStack ifCaseDo

ifCaseSkip elseCaseDo elseCaseSkip)

= (truePred φ true ∧p ifStackPredicate ifStack1)

]p (falsePred φ false ∧p ifStackPredicate ifStack1)

<><>〈 opIf :: (ifCaseProg ++ opElse ::’ elseCaseProg) 〉〈

lemmaIfThenElseExcludingEndIf6 ifStack1

φ true φ false ψ ifCaseProg elseCaseProg ass 〉e

(((liftStackPred2Pred ψ (elseSkip :: ifStack1) ) ]p

(liftStackPred2Pred ψ (elseCase :: ifStack1) )) ]p

(liftStackPred2Pred ψ (ifCase :: ifStack1) ) ]p

(liftStackPred2Pred ψ (ifSkip :: ifStack1) ))

<=>〈 lemmaEquivalenceBeforeEndIf3 ifStack1 ψ 〉

(liftStackPred2PredIgnoreIfStack ψ

∧p ifStackPredicateAnyNonIfIgnoreTop ifStack1 )
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‚p

lemmaIfThenElseWithEndIf : (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElse ifStack1 φ true

φ false ψ ifCaseProg elseCaseProg)

→ < (truePred φ true ∧p ifStackPredicate ifStack1) ]p

(falsePred φ false ∧p ifStackPredicate ifStack1) >if f

((opIf :: (ifCaseProg ++ opElse ::’ elseCaseProg)) ++ (opEndIf :: []))

< (liftStackPred2Pred ψ ifStack1 ) >

lemmaIfThenElseWithEndIf ifStack1 φ true φ false ψ

ifCaseProg elseCaseProg

ass@(assumptionIfThenElse activeIfStack ifCaseDo

ifCaseSkip elseCaseDo elseCaseSkip)

= (truePred φ true ∧p ifStackPredicate ifStack1)

]p (falsePred φ false ∧p ifStackPredicate ifStack1)

<><>〈 opIf :: (ifCaseProg ++ (opElse :: elseCaseProg)) 〉〈

lemmaIfThenElseExcludingEndIf ifStack1 φ true φ false ψ

ifCaseProg elseCaseProg ass 〉

(liftStackPred2PredIgnoreIfStack ψ ∧p

ifStackPredicateAnyNonIfIgnoreTop ifStack1 )

<><>〈 opEndIf :: [] 〉〈

opEndIfCorrectness” ψ ifStack1 activeIfStack 〉e

(liftStackPred2Pred ψ ifStack1 )

‚p

theoremIfThenElse : (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElse ifStack1 φ true

φ false ψ ifCaseProg elseCaseProg)

→ < (truePred φ true ∧p ifStackPredicate ifStack1) ]p
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(falsePred φ false ∧p ifStackPredicate ifStack1) >if f

(opIf ::’ ifCaseProg ++ opElse ::’ elseCaseProg ++ opEndIf ::’ [])

< (liftStackPred2Pred ψ ifStack1 ) >

theoremIfThenElse ifStack1 φ true φ false ψ ifCaseProg elseCaseProg assumption

= transfer

(λ prog →

<

(truePred φ true ∧p ifStackPredicate ifStack1) ]p

(falsePred φ false ∧p ifStackPredicate ifStack1)

>if f prog < liftStackPred2Pred ψ ifStack1

>)

((lemmaIfThenElseProg== ifCaseProg elseCaseProg))

(lemmaIfThenElseWithEndIf ifStack1 φ true φ false

ψ ifCaseProg elseCaseProg assumption)

B.13 The main ifthenelse-theorem-non-active-stack

(theoremIfThenElseNonActiveStack)

open import basicBitcoinDataType

module verificationWithIfStack.ifThenElseTheoremPart8nonActive (param : GlobalParameters) where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Sum

open import Data.Bool hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head)

open import Data.Maybe

open import Relation.Nullary hiding (True)
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import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.listLib

open import libraries.equalityLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.emptyLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate

open import instruction

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.hoareTriple param

open import verificationWithIfStack.equalitiesIfThenElse param

open import verificationWithIfStack.ifThenElseTheoremPart1 param

opEndIfCorrectnessNonActIfStack1 : (φ : StackPredicate )(ifStack1 : IfStack)

→ (nonactive : IsNonActiveIfStack ifStack1)

→ < liftStackPred2PredIgnoreIfStack φ ∧p

ifStackPredicateElseSkipOrIgnoreOnTop ifStack1 >if f

(opEndIf :: [])

< liftStackPred2Pred φ ifStack1 >

opEndIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .==>
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〈 currentTime1 , msg1 , stack1 , ifSkip :: ifStack2 , consis1 〉

(conj and3 ())

opEndIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .==>

〈 currentTime1 , msg1 , stack1 , elseSkip :: .ifStack1 , consis1 〉

(conj and3 refl) = conj and3 refl

opEndIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .==>

〈 currentTime1 , msg1 , stack1 , ifIgnore :: .ifStack1 , consis1 〉

(conj and3 refl) = conj and3 refl

opEndIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , stack1 , ifCase :: .ifStack1 , consis1 〉

(conj and3 refl) = let

isactive1 : True (isActiveIfStack ifStack1)

isactive1 = ∧bproj1 consis1

nonAct : ¬ (True (isActiveIfStack ifStack1))

nonAct = ¬bLem nonactive

in efq (nonAct isactive1)

opEndIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , stack1 , elseCase :: .ifStack1 , consis1 〉

(conj and3 refl) = efq ( (¬bLem nonactive) (∧bproj1 consis1))

opEndIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , stack1 , ifSkip :: .ifStack1 , consis1 〉

(conj and3 refl) = efq ( (¬bLem nonactive) (∧bproj1 consis1))

opEndIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , stack1 , elseSkip :: .ifStack1 , consis1 〉

(conj and3 refl) = conj and3 refl

opEndIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , stack1 , ifIgnore :: .ifStack1 , consis1 〉

(conj and3 refl) = conj and3 refl

opEndIfCorrectnessNonActIfStack<=> : (φ : StackPredicate ) (ifStack1 : IfStack)

→ ((liftStackPred2Pred φ (elseSkip :: ifStack1)) ]p

(liftStackPred2Pred φ (ifIgnore :: ifStack1)))

<=>p
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(liftStackPred2PredIgnoreIfStack φ ∧p

ifStackPredicateElseSkipOrIgnoreOnTop ifStack1)

opEndIfCorrectnessNonActIfStack<=> φ ifStack1 .==>e

〈 currentTime1 , msg1 , stack1 , .(elseSkip :: ifStack1) , consis1 〉

(inj1 (conj and3 refl)) = conj and3 refl

opEndIfCorrectnessNonActIfStack<=> φ ifStack1 .==>e

〈 currentTime1 , msg1 , stack1 , .(ifIgnore :: ifStack1) , consis1 〉

(inj2 (conj and3 refl)) = conj and3 refl

opEndIfCorrectnessNonActIfStack<=> φ ifStack1 .<==e

〈 currentTime1 , msg1 , stack1 , elseSkip :: .ifStack1 , consis1 〉

(conj and3 refl) = inj1 (conj and3 refl)

opEndIfCorrectnessNonActIfStack<=> φ ifStack1 .<==e

〈 currentTime1 , msg1 , stack1 , ifIgnore :: .ifStack1 , consis1 〉

(conj and3 refl) = inj2 (conj and3 refl)

opEndIfCorrectnessNonActIfStack2 : (φ : StackPredicate ) (ifStack1 : IfStack)

→ (nonactive : IsNonActiveIfStack ifStack1)

→ < ((liftStackPred2Pred φ (elseSkip :: ifStack1)) ]p

(liftStackPred2Pred φ (ifIgnore :: ifStack1))) >if f

(opEndIf :: [])

< liftStackPred2Pred φ ifStack1 >

opEndIfCorrectnessNonActIfStack2 φ ifStack1 nonactive =

((liftStackPred2Pred φ (elseSkip :: ifStack1)) ]p

(liftStackPred2Pred φ (ifIgnore :: ifStack1)))

<=>〈 opEndIfCorrectnessNonActIfStack<=> φ ifStack1 〉

liftStackPred2PredIgnoreIfStack φ ∧p

ifStackPredicateElseSkipOrIgnoreOnTop ifStack1

<><>〈 opEndIf :: [] 〉〈

opEndIfCorrectnessNonActIfStack1 φ ifStack1 nonactive 〉e

liftStackPred2Pred φ ifStack1

‚p
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opElseCorrectnessNonActIfStack1 : (φ : StackPredicate ) (ifStack1 : IfStack)

(nonactive : IsNonActiveIfStack ifStack1)

→ < liftStackPred2Pred φ (ifIgnore :: ifStack1) >if f

(opElse :: [])

< liftStackPred2Pred φ (elseSkip :: ifStack1) >

opElseCorrectnessNonActIfStack1 φ ifStack1 nonactive .==>

〈 currentTime1 , msg1 , stack1 , .(ifIgnore :: ifStack1) , consis1 〉

(conj and3 refl) = conj and3 refl

opElseCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , stack1 , ifCase :: .ifStack1 , consis1 〉

(conj and3 refl) = efq ( (¬bLem nonactive) (∧bproj1 consis1))

opElseCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , stack1 , ifIgnore :: .ifStack1 , consis1 〉

(conj and3 refl) = conj and3 refl

opElseCorrectnessNonActIfStack2 : (φ : StackPredicate ) (ifStack1 : IfStack)

(nonactive : IsNonActiveIfStack ifStack1)

→ < liftStackPred2Pred φ (ifIgnore :: ifStack1) >if f

(opElse :: [])

< (((liftStackPred2Pred φ (elseSkip :: ifStack1)) ]p

(liftStackPred2Pred φ (ifSkip :: ifStack1))) ]p

(liftStackPred2Pred φ (ifIgnore :: ifStack1))) >

opElseCorrectnessNonActIfStack2 φ ifStack1 nonactive

= ]HoareLemma1 ((opElse :: []))

(]HoareLemma1 (opElse :: [])

(opElseCorrectnessNonActIfStack1 φ ifStack1 nonactive)

(opElseCorrectness4 φ ifStack1))

(opElseCorrectness5 φ ifStack1)

opIfCorrectnessNonActIfStack1 : (φ : StackPredicate ) (ifStack1 : IfStack)

→ (nonactive : IsNonActiveIfStack ifStack1)

→ < liftStackPred2Pred φ ifStack1 >if f

(opIf :: [])
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< liftStackPred2Pred φ (ifIgnore :: ifStack1) >

opIfCorrectnessNonActIfStack1 φ (ifSkip :: ifStack1) nonactive .==>

〈 currentTime1 , msg1 , stack1 , .(ifSkip :: ifStack1) , consis1 〉 (conj and3 refl)

= conj and3 refl

opIfCorrectnessNonActIfStack1 φ (elseSkip :: ifStack1) nonactive .==>

〈 currentTime1 , msg1 , stack1 , .(elseSkip :: ifStack1) , consis1 〉

(conj and3 refl) = conj and3 refl

opIfCorrectnessNonActIfStack1 φ (ifIgnore :: ifStack1) nonactive .==>

〈 currentTime1 , msg1 , stack1 , .(ifIgnore :: ifStack1) , consis1 〉

(conj and3 refl) = conj and3 refl

opIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , zero :: stack1 , [] , consis1 〉 ()

opIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , suc x1 :: stack1 , [] , consis1 〉 ()

opIfCorrectnessNonActIfStack1 φ .(ifSkip :: ifStack2) nonactive .<==

〈 currentTime1 , msg1 , [] , ifSkip :: ifStack2 , consis1 〉

(conj and3 refl) = conj and3 refl

opIfCorrectnessNonActIfStack1 φ .(elseSkip :: ifStack2) nonactive .<==

〈 currentTime1 , msg1 , [] , elseSkip :: ifStack2 , consis1 〉

(conj and3 refl) = conj and3 refl

opIfCorrectnessNonActIfStack1 φ .(ifIgnore :: ifStack2) nonactive .<==

〈 currentTime1 , msg1 , [] , ifIgnore :: ifStack2 , consis1 〉

(conj and3 refl) = conj and3 refl

opIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , zero :: stack1 , ifCase :: ifStack2 , consis1 〉 ()

opIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , suc x2 :: stack1 , ifCase :: ifStack2 , consis1 〉 ()

opIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , zero :: stack1 , elseCase :: ifStack2 , consis1 〉 ()

opIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , suc x2 :: stack1 , elseCase :: ifStack2 , consis1 〉 ()

opIfCorrectnessNonActIfStack1 φ .(ifSkip :: ifStack2) nonactive .<==

〈 currentTime1 , msg1 , x2 :: stack1 , ifSkip :: ifStack2 , consis1 〉
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(conj and3 refl) = conj and3 refl

opIfCorrectnessNonActIfStack1 φ .(elseSkip :: ifStack2) nonactive .<==

〈 currentTime1 , msg1 , x2 :: stack1 , elseSkip :: ifStack2 , consis1 〉

(conj and3 refl) = conj and3 refl

opIfCorrectnessNonActIfStack1 φ .(ifIgnore :: ifStack2) nonactive .<==

〈 currentTime1 , msg1 , x2 :: stack1 , ifIgnore :: ifStack2 , consis1 〉

(conj and3 refl) = conj and3 refl

opIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , [] , [] , consis1 〉 ()

opIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , [] , ifCase :: ifStack2 , consis1 〉 ()

opIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , [] , elseCase :: ifStack2 , consis1 〉 ()

record AssumptionIfThenElseNonActIfSt (ifStack1 : IfStack)

(φ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript) : Set where

constructor assumptionIfThenElseNActIfSt

field

nonActive : IsNonActiveIfStack ifStack1

ifCaseIfIgnore :

< liftStackPred2Pred φ (ifIgnore :: ifStack1) >if f

ifCaseProg

< liftStackPred2Pred φ (ifIgnore :: ifStack1) >

elseCaseSkip :

(x : IfStackEl) → ifStackElementIsElseSkipOrIfIgnore x

→ < liftStackPred2Pred φ (x :: ifStack1) >if f

elseCaseProg

< liftStackPred2Pred φ (x :: ifStack1) >

open AssumptionIfThenElseNonActIfSt public

lemmaIfThenElseNonActiveEndingElseSkip :
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(ifStack1 : IfStack)

(φ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElseNonActIfSt ifStack1 φ ifCaseProg elseCaseProg)

→ < liftStackPred2Pred φ ifStack1 >if f

(opIf :: (ifCaseProg ++ opElse ::’ elseCaseProg))

< liftStackPred2Pred φ (elseSkip :: ifStack1) >

lemmaIfThenElseNonActiveEndingElseSkip ifStack1 φ ifCaseProg elseCaseProg assu

= liftStackPred2Pred φ ifStack1

<><>〈 opIf :: [] 〉〈

opIfCorrectnessNonActIfStack1 φ ifStack1 (assu .nonActive) 〉

liftStackPred2Pred φ (ifIgnore :: ifStack1)

<><>〈 ifCaseProg 〉〈 assu .ifCaseIfIgnore 〉

liftStackPred2Pred φ (ifIgnore :: ifStack1)

<><>〈 opElse :: [] 〉〈

opElseCorrectnessNonActIfStack1 φ ifStack1 (assu .nonActive) 〉

liftStackPred2Pred φ (elseSkip :: ifStack1)

<><>〈 elseCaseProg 〉〈 assu .elseCaseSkip elseSkip tt 〉e

liftStackPred2Pred φ (elseSkip :: ifStack1)

‚p

lemmaIfThenElseNonActiveEndingIfIgnore :

(ifStack1 : IfStack)

(φ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElseNonActIfSt

ifStack1 φ ifCaseProg elseCaseProg)

→ < ⊥p >if f

(opIf :: (ifCaseProg ++ opElse ::’ elseCaseProg))

< liftStackPred2Pred φ (ifIgnore :: ifStack1) >

lemmaIfThenElseNonActiveEndingIfIgnore ifStack1 φ ifCaseProg elseCaseProg assu

= ⊥p

<><>〈 opIf :: [] 〉〈 ⊥Lemmap (opIf :: [] ) 〉

⊥p

503



B. Full Agda code for chapter Verifying Bitcoin Script with non-local instructions
(conditionals instructions)

<><>〈 ifCaseProg 〉〈 ⊥Lemmap ifCaseProg 〉

⊥p

<><>〈 opElse :: [] 〉〈 opElseCorrectness5 φ ifStack1 〉

liftStackPred2Pred φ (ifIgnore :: ifStack1)

<><>〈 elseCaseProg 〉〈 assu .elseCaseSkip ifIgnore tt 〉e

liftStackPred2Pred φ (ifIgnore :: ifStack1)

‚p

lemmaIfThenElseNonActiveEndingElseSkiporIfIgnore :

(ifStack1 : IfStack)

(φ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElseNonActIfSt ifStack1 φ ifCaseProg elseCaseProg)

→ < liftStackPred2Pred φ ifStack1 >if f

(opIf :: (ifCaseProg ++ opElse ::’ elseCaseProg))

< ((liftStackPred2Pred φ (elseSkip :: ifStack1)) ]p

(liftStackPred2Pred φ (ifIgnore :: ifStack1))) >

lemmaIfThenElseNonActiveEndingElseSkiporIfIgnore ifStack1 φ

ifCaseProg elseCaseProg assumption

= ]HoareLemma1

(opIf :: ifCaseProg ++ opElse ::’ elseCaseProg)

(lemmaIfThenElseNonActiveEndingElseSkip ifStack1 φ

ifCaseProg elseCaseProg assumption)

(lemmaIfThenElseNonActiveEndingIfIgnore ifStack1 φ

ifCaseProg elseCaseProg assumption)

theoremIfThenElseNonActiveStackaux :

(ifStack1 : IfStack)

(φ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElseNonActIfSt ifStack1

φ ifCaseProg elseCaseProg)

→ < liftStackPred2Pred φ ifStack1 >if f
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((opIf :: (ifCaseProg ++ opElse ::’ elseCaseProg)) ++ (opEndIf :: []))

< liftStackPred2Pred φ ifStack1 >

theoremIfThenElseNonActiveStackaux ifStack1 φ

ifCaseProg elseCaseProg assu

= (liftStackPred2Pred φ ifStack1)

<><>〈 opIf :: (ifCaseProg ++ opElse ::’ elseCaseProg )

〉〈 lemmaIfThenElseNonActiveEndingElseSkiporIfIgnore

ifStack1 φ ifCaseProg elseCaseProg assu 〉

((liftStackPred2Pred φ (elseSkip :: ifStack1)) ]p

(liftStackPred2Pred φ (ifIgnore :: ifStack1)))

<><>〈 opEndIf :: [] 〉〈

opEndIfCorrectnessNonActIfStack2 φ ifStack1 (assu .nonActive) 〉e

liftStackPred2Pred φ ifStack1

‚p

theoremIfThenElseNonActiveStack :

(ifStack1 : IfStack)

(φ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElseNonActIfSt ifStack1 φ

ifCaseProg elseCaseProg)

→ < liftStackPred2Pred φ ifStack1 >if f

(opIf ::’ ifCaseProg ++ opElse ::’ elseCaseProg ++ opEndIf ::’ [])

< liftStackPred2Pred φ ifStack1 >

theoremIfThenElseNonActiveStack ifStack1 φ ifCaseProg elseCaseProg assu

= transfer

(λ prog →

< liftStackPred2Pred φ ifStack1 >if f prog

< liftStackPred2Pred φ ifStack1 >)

(lemmaIfThenElseProg== ifCaseProg elseCaseProg)

(theoremIfThenElseNonActiveStackaux ifStack1 φ

ifCaseProg elseCaseProg assu)
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B.14 Define Hoare triple

open import basicBitcoinDataType

module verificationWithIfStack.hoareTriple (param : GlobalParameters) where

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Sum

open import Data.Maybe

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import libraries.emptyLib

open import libraries.equalityLib

open import stack

open import instruction

open import verificationWithIfStack.ifStack
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open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.semanticsInstructions param

open import verificationWithIfStack.verificationLemmas param

_<_>_ : BPredicate → BitcoinScript → BPredicate → Set

φ < P > ψ = (s : State) → True (φ s) → True( (ψ +b) ( J P K s))

weakestPreCond : (Postcond : BPredicate) → BitcoinScript → BPredicate

weakestPreCond ψ P state = (ψ +b) ( J P K state)

record <_>if f_<_> (P : Predicate)(p : BitcoinScript)(Q : Predicate) : Set where

constructor hoare3

field

==> : (s : State) → P s → (Q +) (J p K s )

<== : (s : State) → (Q +) (J p K s ) → P s

open <_>if f_<_> public

record _<=>p_ (φ ψ : Predicate) : Set where

constructor equivp

field

==>e : (s : State) → φ s → ψ s

<==e : (s : State) → ψ s → φ s

open _<=>p_ public

refl<=> : (φ : Predicate)

→ φ <=>p φ

refl<=> φ .==>e s x = x

refl<=> φ .<==e s x = x
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sym<=> : (φ ψ : Predicate)

→ φ <=>p ψ

→ ψ <=>p φ

sym<=> φ ψ (equivp ==>e1 <==e1) .==>e = <==e1

sym<=> φ ψ (equivp ==>e1 <==e1) .<==e = ==>e1

trans<=> : (φ ψ ψ’ : Predicate)

→ φ <=>p ψ

→ ψ <=>p ψ’

→ φ <=>p ψ’

trans<=> φ ψ ψ’ (equivp ==>e1 <==e1) (equivp ==>e2 <==e2)

.==>e s p = ==>e2 s (==>e1 s p)

trans<=> φ ψ ψ’ (equivp ==>e1 <==e1) (equivp ==>e2 <==e2)

.<==e s p = <==e1 s (<==e2 s p)

]HoareLemma1 : {φ ψ ψ’ : Predicate}(p : BitcoinScript)

→ < φ >if f p < ψ >

→ < ⊥p >if f p < ψ’ >

→ < φ >if f p < ψ ]p ψ’ >

]HoareLemma1 {φ } {ψ} {ψ’} p (hoare3 c1 c2) c .==> s q

= lemma]pleft ψ ψ’ (J p K s) (c1 s q)

]HoareLemma1 {φ } {ψ} {ψ’} p (hoare3 ==>1 <==1)

(hoare3 ==>2 <==2) .<== s q

= let

r : (ψ’ +) (J p K s) → φ s

r x = efq (<==2 s x)

in lemma]pinv ψ ψ’ (φ s) (J p K s) (<==1 s) r q

]HoareLemma2 : {φ φ ’ ψ ψ’ : Predicate}(p : BitcoinScript)

→ < φ >if f p < ψ >

→ < φ ’ >if f p < ψ’ >
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→ < φ ]p φ ’ >if f p < ψ ]p ψ’ >

]HoareLemma2 {φ } {φ ’} {ψ} {ψ’} prog (hoare3 ==>1 <==1)

(hoare3 ==>2 <==2) .==> s (inj1 q)

= lemma]pleft ψ ψ’ (J prog K s) (==>1 s q)

]HoareLemma2 {φ } {φ ’} {ψ} {ψ’} prog (hoare3 ==>1 <==1)

(hoare3 ==>2 <==2) .==> s (inj2 q)

= lemma]pright ψ ψ’ (J prog K s) (==>2 s q)

]HoareLemma2 {φ } {φ ’} {ψ} {ψ’} prog (hoare3 ==>1 <==1)

(hoare3 ==>2 <==2) .<== s q

= let

q1 : (ψ +) (J prog K s) → φ s ] φ ’ s

q1 x = inj1 (<==1 s x)

q2 : (ψ’ +) (J prog K s) → φ s ] φ ’ s

q2 x = inj2 (<==2 s x)

in lemma]pinv ψ ψ’ ((φ ]p φ ’) s) (J prog K s) q1 q2 q

predEquivr : (φ ψ ψ’ : Predicate)

(prog : BitcoinScript)

→ < φ >if f prog < ψ >

→ ψ <=>p ψ’

→ < φ >if f prog < ψ’ >

predEquivr φ ψ ψ’ prog (hoare3 ==>1 <==1) (equivp ==>e <==e) .==> s p1

= liftPredtransformerMaybe ψ ψ’ ==>e (J prog K s) (==>1 s p1)

predEquivr φ ψ ψ’ prog (hoare3 ==>1 <==1) (equivp ==>e <==e) .<== s p1

= let

subgoal : (ψ +) (J prog K s)

subgoal = liftPredtransformerMaybe ψ’ ψ <==e (J prog K s) p1

goal : φ s

goal = <==1 s subgoal

in goal

predEquivl : (φ φ ’ ψ : Predicate)

(prog : BitcoinScript)

509



B. Full Agda code for chapter Verifying Bitcoin Script with non-local instructions
(conditionals instructions)

→ φ <=>p φ ’

→ < φ ’ >if f prog < ψ >

→ < φ >if f prog < ψ >

predEquivl φ φ ’ ψ prog (equivp ==>e <==e) (hoare3 ==>1 <==1) .==> s p1

= let

goal : (ψ +) (J prog K s)

goal = ==>1 s (==>e s p1)

in goal

predEquivl φ φ ’ ψ prog (equivp ==>e <==e) (hoare3 ==>1 <==1) .<== s p1

= let

subgoal : φ ’ s

subgoal = <==1 s p1

goal : φ s

goal = <==e s subgoal

in goal

equivPreds] : (φ ψ ψ’ : Predicate)

→ (φ ∧p (ψ ]p ψ’)) <=>p ((φ ∧p ψ ) ]p (φ ∧p ψ’))

equivPreds] φ ψ ψ’ .==>e s (conj and4 (inj1 x)) = inj1 (conj and4 x)

equivPreds] φ ψ ψ’ .==>e s (conj and4 (inj2 y)) = inj2 (conj and4 y)

equivPreds] φ ψ ψ’ .<==e s (inj1 (conj and4 and5)) = conj and4 (inj1 and5)

equivPreds] φ ψ ψ’ .<==e s (inj2 (conj and4 and5)) = conj and4 (inj2 and5)

equivPreds]Rev : (φ ψ ψ’ : Predicate)

→ ((φ ∧p ψ ) ]p (φ ∧p ψ’)) <=>p (φ ∧p (ψ ]p ψ’))

equivPreds]Rev φ ψ ψ’ .==>e s (inj1 (conj and4 and5)) = conj and4 (inj1 and5)

equivPreds]Rev φ ψ ψ’ .==>e s (inj2 (conj and4 and5)) = conj and4 (inj2 and5)

equivPreds]Rev φ ψ ψ’ .<==e s (conj and4 (inj1 x)) = inj1 (conj and4 x)

equivPreds]Rev φ ψ ψ’ .<==e s (conj and4 (inj2 y)) = inj2 (conj and4 y)

_++ho_ : {P Q R : Predicate}{p q : BitcoinScript} → < P >if f p < Q >

→ < Q >if f q < R > → < P >if f p ++ q < R >

_++ho_ {P} {Q} {R} {p} {q} pproof qproof .==>
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= bindTransformer-toSequence P Q R p q (pproof .==>) (qproof .==>)

_++ho_ {P} {Q} {R} {p} {q} pproof qproof .<==

= bindTransformer-fromSequence P Q R p q (pproof .<==) (qproof .<==)

_++hoeq_ : {P Q R : Predicate}{p : BitcoinScript} → < P >if f p < Q >

→ < Q >if f [] < R > → < P >if f p < R >

_++hoeq_ {P} {Q} {R} {p} pproof qproof .==>

= bindTransformer-toSequenceeq P Q R p (pproof .==>) (qproof .==>)

_++hoeq_ {P} {Q} {R} {p} pproof qproof .<==

= bindTransformer-fromSequenceeq P Q R p (pproof .<==) (qproof .<==)

module HoareReasoning where

infix 3 _‚p

infixr 2 step-<><> step-<><>e step-<=>

_‚p : ∀ (φ : Predicate) → < φ >if f [] < φ >

(φ ‚p) .==> s p = p

(φ ‚p) .<== s p = p

step-<><> : ∀ {φ ψ ρ : Predicate}(p : BitcoinScript){q : BitcoinScript}

→ < φ >if f p < ψ >

→ < ψ >if f q < ρ >

→ < φ >if f p ++ q < ρ >

step-<><> {φ } {ψ} {ρ} p φpψ ψqρ = φpψ ++ho ψqρ

step-<><>e : ∀ {φ ψ ρ : Predicate}(p : BitcoinScript)

→ < φ >if f p < ψ >

→ < ψ >if f [] < ρ >

→ < φ >if f p < ρ >

step-<><>e p φpψ ψqρ = φpψ ++hoeq ψqρ

step-<=> : ∀ {φ ψ ρ : Predicate}{p : BitcoinScript}

→ φ <=>p ψ
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→ < ψ >if f p < ρ >

→ < φ >if f p < ρ >

step-<=> {φ } {ψ} {ρ} {p} φψ ψqρ = predEquivl φ ψ ρ p φψ ψqρ

syntax step-<><> {φ } p φψ ψρ = φ <><>〈 p 〉〈 φψ 〉 ψρ

syntax step-<><>e {φ } p φψ ψρ = φ <><>〈 p 〉〈 φψ 〉e ψρ

syntax step-<=> {φ } φψ ψρ = φ <=>〈 φψ 〉 ψρ

open HoareReasoning public

unfoldGenericCase=> : (A : IfStackEl → Set)

(φ ψ : (x : IfStackEl) → Predicate)

(prog : BitcoinScript)

(case : (x : IfStackEl) → A x → < φ x >if f prog < ψ x >)

(x : IfStackEl)

→ A x

→ (s : State)

→ φ x s → ((ψ x) +) ( J prog K s)

unfoldGenericCase=> A φ ψ prog case x a = case x a .==>

unfoldGenericCase<= : (A : IfStackEl → Set)

(φ ψ : (x : IfStackEl) → Predicate)

(prog : BitcoinScript)

(case : (x : IfStackEl) → A x → < φ x >if f prog < ψ x >)

(x : IfStackEl)

→ A x

→ (s : State)

→ ((ψ x) +) ( J prog K s) → φ x s
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unfoldGenericCase<= A φ ψ prog case x a = case x a .<==

⊥Lemmap : (p : BitcoinScript)

→ < ⊥p >if f p < ⊥p >

⊥Lemmap [] .==> s ()

⊥Lemmap p .<== s p’ = liftToMaybeLemma⊥ (J p K s) p’

lemmaHoare[] : {φ : Predicate}

→ < φ >if f [] < φ >

lemmaHoare[] .==> s p = p

lemmaHoare[] .<== s p = p

record <_>gen_<_> (φ : Predicate)( f : State → Maybe State)(ψ : Predicate) : Set where

constructor hoareTripleGen

field

==>g : (s : State) → φ s → (ψ +) ( f s )

<==g : (s : State) → (ψ +) ( f s ) → φ s

open <_>gen_<_> public

lemmaTransferHoareTripleGen : (φ ψ : Predicate)

( f g : State → Maybe State)

(p : (s : State) → f s ≡ g s)

→ < φ >gen f < ψ >

→ < φ >gen g < ψ >

lemmaTransferHoareTripleGen φ ψ f g p (hoareTripleGen ==>g1 <==g1) .==>g s x1

= transfer (λ x → (ψ +) x) (p s) (==>g1 s x1)

lemmaTransferHoareTripleGen φ ψ f g p (hoareTripleGen ==>g1 <==g1) .<==g s x1

= <==g1 s (transfer (λ x → (ψ +) x) (sym (p s)) x1)
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B.15 Define Assumption IfThenElse

open import basicBitcoinDataType

module verificationWithIfStack.ifThenElseTheoremPart3 (param : GlobalParameters) where

open import libraries.listLib

open import Data.List.Base hiding (_++_)

open import libraries.natLib

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Sum

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head)

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate

open import instruction

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.semanticsInstructions param
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open import verificationWithIfStack.verificationLemmas param

open import verificationWithIfStack.hoareTriple param

open import verificationWithIfStack.ifThenElseTheoremPart1 param

record AssumptionIfThenElse (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript) : Set where

constructor assumptionIfThenElse

field

activeIfStack : IsActiveIfStack ifStack1

ifCaseDo : < liftStackPred2Pred φ true (ifCase :: ifStack1) >if f

ifCaseProg

< liftStackPred2Pred ψ (ifCase :: ifStack1) >

ifCaseSkip : < liftStackPred2Pred φ false (ifSkip :: ifStack1) >if f

ifCaseProg

< liftStackPred2Pred φ false (ifSkip :: ifStack1) >

elseCaseDo : (x : IfStackEl) → IsActiveIfStackEl x

→ < liftStackPred2Pred φ false (x :: ifStack1) >if f

elseCaseProg

< liftStackPred2Pred ψ (x :: ifStack1) >

elseCaseSkip : (x : IfStackEl)

→ IfStackElIsIfSkipOrElseSkip x

→ < liftStackPred2Pred ψ (x :: ifStack1) >if f

elseCaseProg

< liftStackPred2Pred ψ (x :: ifStack1) >

open AssumptionIfThenElse public

ConclusionTmp : (ifStack1 : IfStack)
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(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

→ Set

ConclusionTmp ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

= < (truePred φ true ∧p ifStackPredicate ifStack1) ]p

(falsePred φ false ∧p ifStackPredicate ifStack1) >if f

((opIf :: ifCaseProg ++ (opElse :: elseCaseProg)) ++ (opEndIf :: [] ))

< liftStackPred2Pred ψ ifStack1 >

IfThenElseTheorem1Tmp : Set1

IfThenElseTheorem1Tmp = (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

→ AssumptionIfThenElse ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

→ ConclusionTmp ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

Conclusion : (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

→ Set

Conclusion ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

= < (truePred φ true ∧p ifStackPredicate ifStack1) ]p

(falsePred φ false ∧p ifStackPredicate ifStack1) >if f

((opIf :: [] ) ++ ifCaseProg ++ (opElse :: [] ) ++ elseCaseProg ++ (opEndIf :: [] ))

< liftStackPred2Pred ψ ifStack1 >

IfThenElseTheorem1 : Set1

IfThenElseTheorem1 = (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

→ AssumptionIfThenElse ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

→ Conclusion ifStack1 φ true φ false ψ ifCaseProg elseCaseProg
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lemmaEquivalenceBeforeEndIf : (ifStack1 : IfStack)

(ψ : StackPredicate) →

((liftStackPred2PredIgnoreIfStack ψ ∧p ifStackPredicateAnyDoTop ifStack1) ]p

(liftStackPred2PredIgnoreIfStack ψ ∧p ifStackPredicateAnySkipTop ifStack1))

<=>p

(liftStackPred2PredIgnoreIfStack ψ ∧p ifStackPredicateAnyTop ifStack1)

lemmaEquivalenceBeforeEndIf ifStack1 ψ .==>e 〈 time , msg1 , stack1 , ifCase :: .ifStack1 , c 〉

(inj1 (conj and4 refl)) = conj and4 refl

lemmaEquivalenceBeforeEndIf ifStack1 ψ .==>e 〈 time , msg1 , stack1 , ifSkip :: ifStack2 , c 〉

(inj2 (conj and4 refl)) = conj and4 refl

lemmaEquivalenceBeforeEndIf ifStack1 ψ .==>e 〈 time , msg1 , stack1 , elseCase :: ifStack2 , c 〉

(inj1 (conj and4 refl)) = conj and4 refl

lemmaEquivalenceBeforeEndIf ifStack1 ψ .==>e 〈 time , msg1 , stack1 , elseSkip :: ifStack2 , c 〉

(inj2 (conj and4 refl)) = conj and4 refl

lemmaEquivalenceBeforeEndIf ifStack1 ψ .==>e 〈 time , msg1 , stack1 , ifIgnore :: ifStack2 , c 〉

(inj2 (conj and4 refl)) = conj and4 refl

lemmaEquivalenceBeforeEndIf ifStack1 ψ .<==e 〈 time , msg1 , stack1 , ifCase :: .ifStack1 , c 〉

(conj and4 refl) = inj1 (conj and4 refl)

lemmaEquivalenceBeforeEndIf ifStack1 ψ .<==e 〈 time , msg1 , stack1 , ifSkip :: .ifStack1 , c 〉

(conj and4 refl) = inj2 (conj and4 refl)

lemmaEquivalenceBeforeEndIf ifStack1 ψ .<==e 〈 time , msg1 , stack1 , elseCase :: .ifStack1 , c 〉

(conj and4 refl) = inj1 (conj and4 refl)

lemmaEquivalenceBeforeEndIf ifStack1 ψ .<==e 〈 time , msg1 , stack1 , elseSkip :: ifStack2 , c 〉

(conj and4 refl) = inj2 (conj and4 refl)

lemmaEquivalenceBeforeEndIf ifStack1 ψ .<==e 〈 time , msg1 , stack1 , ifIgnore :: ifStack2 , c 〉

(conj and4 refl) = inj2 (conj and4 refl)

lemmaEquivalenceBeforeOpIf : (ifStack1 : IfStack)

(φ true φ false : StackPredicate)

→ ((truePred φ true ]p falsePred φ false) ∧p ifStackPredicate ifStack1)

<=>p

((truePred φ true ∧p ifStackPredicate ifStack1) ]p
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(falsePred φ false ∧p ifStackPredicate ifStack1))

lemmaEquivalenceBeforeOpIf .ifStack1 φ true φ false .==>e 〈 time , msg1 , stack1 , ifStack1 , c 〉

(conj (inj1 x) refl) = inj1 (conj x refl)

lemmaEquivalenceBeforeOpIf .(ifStack s) φ true φ false .==>e s (conj (inj2 y) refl) = inj2 (conj y refl)

lemmaEquivalenceBeforeOpIf .(ifStack s) φ true φ false .<==e s (inj1 (conj and4 refl)) = conj (inj1 and4) refl

lemmaEquivalenceBeforeOpIf .(ifStack s) φ true φ false .<==e s (inj2 (conj and4 refl)) = conj (inj2 and4) refl

lemmaTopElementFalse’ : (ifStack1 : IfStack)

(φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(activeIfStack : IsActiveIfStack ifStack1)

(ifCaseSkipIgnore : (x : IfStackEl)

→ ifStackElementIsIfSkipOrIfIgnore x

→ < liftStackPred2Pred φ false (x :: ifStack1) >if f

ifCaseProg

< liftStackPred2Pred φ false (x :: ifStack1) >)

(elseCaseDo : (x : IfStackEl)

→ IsActiveIfStackEl x

→ < liftStackPred2Pred φ false (x :: ifStack1) >if f

elseCaseProg

< liftStackPred2Pred ψ (x :: ifStack1) >)

→ < (falsePred φ false ∧p ifStackPredicate ifStack1) >if f

((opIf :: [] ) ++ (ifCaseProg ++ ((opElse :: [] ) ++ elseCaseProg)))

< liftStackPred2Pred ψ (elseCase :: ifStack1) >

lemmaTopElementFalse’ ifStack1 φ false ψ ifCaseProg elseCaseProg

activeIfStack ifCaseSkipIgnore elseCaseDo

= (falsePred φ false ∧p ifStackPredicate ifStack1)

<><>〈 opIf :: [] 〉〈 opIfCorrectness2 φ false ifStack1 activeIfStack 〉

(liftStackPred2Pred φ false (ifSkip :: ifStack1))

<><>〈 ifCaseProg 〉〈 ifCaseSkipIgnore ifSkip tt 〉
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(liftStackPred2Pred φ false (ifSkip :: ifStack1))

<><>〈 opElse :: [] 〉〈 opElseCorrectness2 (λ z z1 → φ false z z1) ifStack1 〉

(liftStackPred2PredIgnoreIfStack ((λ z z1 → φ false z z1)) ∧p

ifStackPredicate (elseCase :: ifStack1))

<><>〈 elseCaseProg 〉〈 elseCaseDo elseCase tt 〉e

(liftStackPred2Pred ψ (elseCase :: ifStack1) )

‚p

lemmaTopElementTrue’ : (ifStack1 : IfStack)

(φ true ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(activeIfStack : IsActiveIfStack ifStack1)

(ifCaseDo : (x : IfStackEl)

→ IsActiveIfStackEl x

→ < liftStackPred2Pred φ true (ifCase :: ifStack1) >if f

ifCaseProg

< liftStackPred2Pred ψ (ifCase :: ifStack1) >)

(ifCaseSkipIgnore : (x : IfStackEl)

→ ifStackElementIsIfSkipOrIfIgnore x

→ < liftStackPred2Pred ψ (x :: ifStack1) >if f

ifCaseProg

< liftStackPred2Pred ψ (x :: ifStack1) >)

(elseCaseSkip : (x : IfStackEl)

→ IfStackElIsIfSkipOrElseSkip x

→ < liftStackPred2Pred ψ (x :: ifStack1) >if f

elseCaseProg

< liftStackPred2Pred ψ (x :: ifStack1) >)

→ < (truePred φ true ∧p ifStackPredicate ifStack1) >if f –
((opIf :: [] ) ++ (ifCaseProg ++ ((opElse :: [] ) ++ elseCaseProg )))

< liftStackPred2Pred ψ (elseSkip :: ifStack1) >

519



B. Full Agda code for chapter Verifying Bitcoin Script with non-local instructions
(conditionals instructions)

lemmaTopElementTrue’ ifStack1 φ true ψ ifCaseProg elseCaseProg

activeIfStack ifCaseDo ifCaseSkipIgnore elseCaseSkip

=

(truePred φ true ∧p ifStackPredicate ifStack1)

<><>〈 opIf :: [] 〉〈 ]HoareLemma1

(opIf :: []) (opIfCorrectness1 φ true ifStack1 activeIfStack)

(opIfCorrectness3 ψ ifStack1 activeIfStack) 〉

((liftStackPred2PredIgnoreIfStack φ true ∧p

(ifStackPredicate (ifCase :: ifStack1))) ]p

(liftStackPred2Pred ψ (ifIgnore :: ifStack1)))

<><>〈 ifCaseProg 〉〈 ]HoareLemma2

ifCaseProg (ifCaseDo ifCase tt) ((ifCaseSkipIgnore ifIgnore tt )) 〉

((liftStackPred2PredIgnoreIfStack ψ ∧p (ifStackPredicate (ifCase :: ifStack1))) ]p

(liftStackPred2Pred ψ (ifIgnore :: ifStack1)))

<=>〈 equivPreds]Rev (liftStackPred2PredIgnoreIfStack ψ )

( ifStackPredicate (ifCase :: ifStack1))

(ifStackPredicate (ifIgnore :: ifStack1)) 〉

(liftStackPred2PredIgnoreIfStack ψ ∧p (ifStackPredicate

(ifCase :: ifStack1) ]p ifStackPredicate (ifIgnore :: ifStack1)))

<><>〈 opElse :: [] 〉〈 opElseCorrectness1withoutActiveCond ψ ifStack1 〉

((liftStackPred2Pred ψ (elseSkip :: ifStack1) ))

<><>〈 elseCaseProg 〉〈 elseCaseSkip elseSkip tt 〉e

( liftStackPred2Pred ψ (elseSkip :: ifStack1) )

‚p

record AssumptionIfThenElseTest (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript) : Set where
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constructor assumptionIfThenElse

field

activeIfStack : IsActiveIfStack ifStack1

ifCaseDo : < liftStackPred2Pred φ true (ifCase :: ifStack1) >if f

ifCaseProg

< liftStackPred2Pred ψ (ifCase :: ifStack1) >

ifCaseSkip : < liftStackPred2Pred φ false (ifSkip :: ifStack1) >if f

ifCaseProg

< liftStackPred2Pred φ false (ifSkip :: ifStack1) >

elseCaseDo : (x : IfStackEl) → IsActiveIfStackEl x

→ < liftStackPred2Pred φ false (x :: ifStack1) >if f

elseCaseProg

< liftStackPred2Pred ψ (x :: ifStack1) >

elseCaseSkip : (x : IfStackEl)

→ IfStackElIsIfSkipOrElseSkip x

→ < liftStackPred2Pred ψ (x :: ifStack1) >if f

elseCaseProg

< liftStackPred2Pred ψ (x :: ifStack1) >

ConclusionTest : (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

→ Set

ConclusionTest ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

= < liftStackPred2Pred (truePredaux φ true) ifStack1 ]p

liftStackPred2Pred (falsePredaux φ false) ifStack1 >if f

((opIf :: [] ) ++ ifCaseProg ++ (opElse :: [] ) ++ elseCaseProg ++ (opEndIf :: [] ))

< liftStackPred2Pred ψ ifStack1 >

IfThenElseTheorem1test : Set1

IfThenElseTheorem1test = (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)
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(ifCaseProg elseCaseProg : BitcoinScript)

→ AssumptionIfThenElse ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

→ ConclusionTest ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

testIfThenElseTheorem1 : IfThenElseTheorem1 ≡ IfThenElseTheorem1test

testIfThenElseTheorem1 = refl

B.16 Hoare triple stack to Hoare triple

open import basicBitcoinDataType

module verificationWithIfStack.hoareTripleStack2HoareTriple (param : GlobalParameters) where

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Sum

open import Data.Maybe

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib
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open import libraries.andLib

open import libraries.maybeLib

open import libraries.emptyLib

open import stack

open import stackPredicate

open import instruction

open import stackSemanticsInstructions param

open import hoareTripleStack param

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.semanticsInstructions param

open import verificationWithIfStack.verificationLemmas param

open import verificationWithIfStack.hoareTriple param

lemmaGenericHoareTripleImpliesHoareTriple : (instr : InstructionAll)

(φ ψ : Predicate)

→ < φ >gen J instr Ks < ψ >

→ < φ >if f [ instr ] < ψ >

lemmaGenericHoareTripleImpliesHoareTriple instr φ ψ prog .==> = prog .==>g

lemmaGenericHoareTripleImpliesHoareTriple instr φ ψ prog .<== = prog .<==g

lemmaGenericHoareTripleImpliesHoareTriple” : (prog : BitcoinScript)

(φ ψ : Predicate)

→ < φ >gen J prog K < ψ >

→ < φ >if f prog < ψ >
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lemmaGenericHoareTripleImpliesHoareTriple” prog φ ψ prog1 .==> = prog1 .==>g

lemmaGenericHoareTripleImpliesHoareTriple” prog φ ψ prog1 .<== = prog1 .<==g

lemmaNonIfInstrGenericCondImpliesTripleaux :

(instr : InstructionAll)(nonIf : NonIfInstr instr)

(φ ψ : Predicate)

→ < φ >gen stackTransform2StateTransform J [ instr ] Kstack < ψ >

→ < φ >gen J instr Ks < ψ >

lemmaNonIfInstrGenericCondImpliesTripleaux opEqual nonIf φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux opAdd nonIf φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux (opPush x1) nonIf φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux opSub nonIf φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux opVerify nonIf φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux opCheckSig nonIf φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux opEqualVerify nonIf φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux opDup nonIf φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux opDrop nonIf φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux opSwap nonIf φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux opHash nonIf φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux opCHECKLOCKTIMEVERIFY nonIf φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux opCheckSig3 nonIf φ ψ x = x

lemmaNonIfInstrGenericCondImpliesTripleaux opMultiSig nonIf φ ψ x = x

lemmaNonIfInstrGenericCondImpliesHoareTriple :

(instr : InstructionAll)

(nonIf : NonIfInstr instr)

(φ ψ : Predicate)

→ < φ >gen stackTransform2StateTransform J [ instr ] Kstack < ψ >

→ < φ >if f [ instr ] < ψ >

lemmaNonIfInstrGenericCondImpliesHoareTriple instr nonif φ ψ p

= lemmaGenericHoareTripleImpliesHoareTriple instr φ ψ

(lemmaNonIfInstrGenericCondImpliesTripleaux instr nonif φ ψ p)
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lemmaLift2StateCorrectnessStackFun=>aux : (ifStack2 : IfStack)

(ψ : StackPredicate)(funRes : Maybe Stack) (currentTime1 : Time)

(msg1 : Msg)(consis1 : IfStackConsis ifStack2)

(p : liftPred2Maybe (ψ currentTime1 msg1) funRes)

→ ((λ s → ψ (currentTime s) (msg s) (stack s) ∧ (ifStack s ≡ ifStack2)) +)

(state1WithMaybe

〈 currentTime1 , msg1 , funRes , ifStack2 , consis1 〉)

lemmaLift2StateCorrectnessStackFun=>aux ifStack2 ψ (just x) currentTime1 msg1 consis1 p = conj p refl

lift2StateCorrectnessStackFun=> : (ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)(φ ψ : StackPredicate)

(stackfun : StackTransformer)(stackCorrectness : (time : Time)(msg : Msg)(s : Stack)

→ φ time msg s → liftPred2Maybe (ψ time msg) (stackfun time msg s))

(s : State) → liftStackPred2Pred φ ifStack1 s

→ ((liftStackPred2Pred ψ ifStack1 ) +)(stackTransform2StateTransform stackfun s)

lift2StateCorrectnessStackFun=> [] active φ ψ stackfun stackCorrectness

〈 currentTime1 , msg1 , stack1 , .[] , consis1 〉 (conj and3 refl)

= lemmaLift2StateCorrectnessStackFun=>aux [] ψ (stackfun currentTime1 msg1 stack1)

currentTime1 msg1 consis1 (stackCorrectness currentTime1 msg1 stack1 and3)

lift2StateCorrectnessStackFun=> (ifCase :: ifs) active φ ψ stackfun stackCorrectness

〈 currentTime1 , msg1 , stack1 , .(ifCase :: ifs) , consis1 〉 (conj and3 refl)

= lemmaLift2StateCorrectnessStackFun=>aux (ifCase :: ifs) ψ

(stackfun currentTime1 msg1 stack1) currentTime1 msg1 consis1 (stackCorrectness currentTime1 msg1 stack1 and3)

lift2StateCorrectnessStackFun=> (elseCase :: ifs) active φ ψ stackfun stackCorrectness

〈 currentTime1 , msg1 , stack1 , .(elseCase :: ifs) , consis1 〉 (conj and3 refl)

= lemmaLift2StateCorrectnessStackFun=>aux (elseCase :: ifs) ψ

(stackfun currentTime1 msg1 stack1) currentTime1 msg1 consis1 (stackCorrectness currentTime1 msg1 stack1 and3)

lemmaLift2StateCorrectnessStackFun<=aux : (ifStack1 ifStack2 : IfStack)

(φ ψ : StackPredicate)

(active : IsActiveIfStack ifStack2)
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(funRes : Maybe Stack)

(currentTime1 : Time)

(msg1 : Msg)

(stack1 : Stack)

(consis1 : IfStackConsis ifStack1)

(p : ((λ s → ψ (currentTime s) (msg s) (stack s) ∧ (ifStack s ≡ ifStack2)) +)

(exeTransformerDepIfStack’

(liftStackToStateTransformerAux’ funRes)

〈 currentTime1 , msg1 , stack1 , ifStack1 , consis1 〉))

(q : liftPred2Maybe (ψ currentTime1 msg1) funRes → φ currentTime1 msg1 stack1)

→ φ currentTime1 msg1 stack1 ∧ (ifStack1 ≡ ifStack2)

lemmaLift2StateCorrectnessStackFun<=aux [] .[] φ ψ active (just x)

currentTime1 msg1 stack1 consis1 (conj and3 refl) q

= conj (q and3) refl

lemmaLift2StateCorrectnessStackFun<=aux (ifCase :: ifStack1) .(ifCase :: ifStack1)

φ ψ active (just x) currentTime1 msg1 stack1 consis1 (conj and3 refl) q

= conj (q and3) refl

lemmaLift2StateCorrectnessStackFun<=aux (elseCase :: ifStack1) .(elseCase :: ifStack1)

φ ψ active (just x) currentTime1 msg1 stack1 consis1 (conj and3 refl) q

= conj (q and3) refl

lemmaLift2StateCorrectnessStackFun<=aux (ifCase :: ifStack1) ifStack2

φ ψ active nothing currentTime1 msg1 stack1 consis1 () q

lemmaLift2StateCorrectnessStackFun<=aux (elseCase :: ifStack1) ifStack2

φ ψ active nothing currentTime1 msg1 stack1 consis1 () q

lemmaLift2StateCorrectnessStackFun<=aux (ifSkip :: ifStack1) .(ifSkip :: ifStack1)

φ ψ () (just x) currentTime1 msg1 stack1 consis1 (conj and3 refl) q

lemmaLift2StateCorrectnessStackFun<=aux (elseSkip :: ifStack1) .(elseSkip :: ifStack1)

φ ψ () (just x) currentTime1 msg1 stack1 consis1 (conj and3 refl) q

lemmaLift2StateCorrectnessStackFun<=aux (ifIgnore :: ifStack1) .(ifIgnore :: ifStack1)

φ ψ () (just x) currentTime1 msg1 stack1 consis1 (conj and3 refl) q

lift2StateCorrectnessStackFun<= : (ifStack1 : IfStack)
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(active : IsActiveIfStack ifStack1)

(φ ψ : StackPredicate)

(stackfun : StackTransformer)(stackCorrectness :

(time : Time)(msg : Msg)(s : Stack)

→ liftPred2Maybe (ψ time msg) (stackfun time msg s) → φ time msg s)

(s : State)

→ ((liftStackPred2Pred ψ ifStack1 ) +)

(stackTransform2StateTransform stackfun s)

→ liftStackPred2Pred φ ifStack1 s

lift2StateCorrectnessStackFun<= [] active φ ψ stackfun stackCorrectness

〈 currentTime1 , msg1 , stack1 , ifStack1 , consis1 〉 x

= lemmaLift2StateCorrectnessStackFun<=aux ifStack1 [] φ ψ active (stackfun currentTime1 msg1 stack1)

currentTime1 msg1 stack1 consis1 x (stackCorrectness currentTime1 msg1 stack1)

lift2StateCorrectnessStackFun<= (ifCase :: ifStack2) active φ ψ stackfun stackCorrectness

〈 currentTime1 , msg1 , stack1 , ifStack1 , consis1 〉 x

= lemmaLift2StateCorrectnessStackFun<=aux ifStack1 (ifCase :: ifStack2)

φ ψ active (stackfun currentTime1 msg1 stack1) currentTime1 msg1 stack1 consis1 x

(stackCorrectness currentTime1 msg1 stack1)

lift2StateCorrectnessStackFun<= (elseCase :: ifStack2) active φ ψ stackfun stackCorrectness

〈 currentTime1 , msg1 , stack1 , ifStack1 , consis1 〉 x

= lemmaLift2StateCorrectnessStackFun<=aux ifStack1 (elseCase :: ifStack2)

φ ψ active (stackfun currentTime1 msg1 stack1) currentTime1 msg1 stack1 consis1 x

(stackCorrectness currentTime1 msg1 stack1)

lemmaHoareTripleStackPartToHoareTripleGeneric :

(stackfun : StackTransformer)

(ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)

(φ ψ : StackPredicate)

→ < φ >gs stackfun < ψ >

→ < liftStackPred2Pred φ ifStack1 >gen

stackTransform2StateTransform stackfun
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< liftStackPred2Pred ψ ifStack1 >

lemmaHoareTripleStackPartToHoareTripleGeneric stackfun ifStack1 active φ ψ

(hoareTripleStackGen ==>stg1 <==stg1) .==>g s p

= lift2StateCorrectnessStackFun=> ifStack1 active φ ψ stackfun ==>stg1 s p

lemmaHoareTripleStackPartToHoareTripleGeneric stackfun ifStack1 active φ ψ

(hoareTripleStackGen ==>stg1 <==stg1) .<==g s p

= lift2StateCorrectnessStackFun<= ifStack1 active φ ψ stackfun <==stg1 s p

hoartTripleStackPartImpliesHoareTriple :

(ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)

(instr : InstructionAll)

(nonIf : NonIfInstr instr)

(φ ψ : StackPredicate)

→ < φ >stack [ instr ] < ψ >

→ < liftStackPred2Pred φ ifStack1 >if f [ instr ] < liftStackPred2Pred ψ ifStack1 >

hoartTripleStackPartImpliesHoareTriple ifStack1 active instr nonIf φ ψ x

= lemmaGenericHoareTripleImpliesHoareTriple instr

(liftStackPred2Pred φ ifStack1 )

(liftStackPred2Pred ψ ifStack1 )

(lemmaNonIfInstrGenericCondImpliesTripleaux instr nonIf

(liftStackPred2Pred φ ifStack1 )

(liftStackPred2Pred ψ ifStack1 )

(lemmaHoareTripleStackPartToHoareTripleGeneric

J [ instr ] Kstack ifStack1 active φ ψ x))

B.17 Hoare triple stack Script

open import basicBitcoinDataType
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module verificationWithIfStack.hoareTripleStackScript (param : GlobalParameters) where

open import Data.List.Base hiding (_++_)

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Sum

open import Data.Unit

open import Data.Empty

open import Data.Maybe

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head)

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.listLib

open import libraries.emptyLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.equalityLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate

open import instruction

open import stackSemanticsInstructions param

open import hoareTripleStack param
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open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.semanticsInstructions param

open import verificationWithIfStack.stackSemanticsInstructionsLemma param

open import verificationWithIfStack.verificationLemmas param

open import verificationWithIfStack.hoareTriple param

open import verificationWithIfStack.hoareTripleStack2HoareTriple param

open import verificationWithIfStack.hoareTripleStackNonActiveIfStack param

lemmaStackSemIsSemScriptaux2 : (g’ : Time → Msg → Stack → Maybe Stack)

(st : State) (mst : Maybe Stack)

→ (exeTransformerDepIfStack’ (liftStackToStateTransformerAux’ mst ) st

>>= λ s → exeTransformerDepIfStack’

(liftStackToStateTransformerAux’

(g’ (s .currentTime) (s .msg) (s .stack))) s)

≡

exeTransformerDepIfStack’ (liftStackToStateTransformerAux’

(mst >>= g’ (st .currentTime) (st .msg)) ) st

lemmaStackSemIsSemScriptaux2 g’ 〈 currentTime1 , msg1 , stack1 ,

[] , consis1 〉 (just x) = refl

lemmaStackSemIsSemScriptaux2 g’ 〈 currentTime1 , msg1 , stack1 ,

ifCase :: ifStack1 , consis1 〉 (just x) = refl

lemmaStackSemIsSemScriptaux2 g’ 〈 currentTime1 , msg1 , stack1 ,

elseCase :: ifStack1 , consis1 〉 (just x) = refl

lemmaStackSemIsSemScriptaux2 g’ 〈 currentTime1 , msg1 , stack1 ,

ifSkip :: ifStack1 , consis1 〉 (just x) = refl

lemmaStackSemIsSemScriptaux2 g’ 〈 currentTime1 , msg1 , stack1 ,

elseSkip :: ifStack1 , consis1 〉 (just x) = refl

lemmaStackSemIsSemScriptaux2 g’ 〈 currentTime1 , msg1 , stack1 ,

ifIgnore :: ifStack1 , consis1 〉 (just x) = refl
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lemmaStackSemIsSemScriptaux2 g’ 〈 currentTime1 , msg1 , stack1 ,

[] , consis1 〉 nothing = refl

lemmaStackSemIsSemScriptaux2 g’ 〈 currentTime1 , msg1 , stack1 ,

ifCase :: ifStack1 , consis1 〉 nothing = refl

lemmaStackSemIsSemScriptaux2 g’ 〈 currentTime1 , msg1 , stack1 ,

elseCase :: ifStack1 , consis1 〉 nothing = refl

lemmaStackSemIsSemScriptaux2 g’ 〈 currentTime1 , msg1 , stack1 ,

ifSkip :: ifStack1 , consis1 〉 nothing = refl

lemmaStackSemIsSemScriptaux2 g’ 〈 currentTime1 , msg1 , stack1 ,

elseSkip :: ifStack1 , consis1 〉 nothing = refl

lemmaStackSemIsSemScriptaux2 g’ 〈 currentTime1 , msg1 , stack1 ,

ifIgnore :: ifStack1 , consis1 〉 nothing = refl

lemmaStackSemIsSemScriptaux : ( f g : State → Maybe State)

(f ’ g’ : Time → Msg → Stack → Maybe Stack)

(p : (s : State) → f s ≡ stackTransform2StateTransform f ’ s)

(q : (s : State) → g s ≡ stackTransform2StateTransform g’ s)

(st : State)

→

( f st >>= g) ≡ stackTransform2StateTransform

(λ time1 msg stack1 → (f ’ time1 msg stack1 >>= g’ time1 msg) )

st

lemmaStackSemIsSemScriptaux f g f’ g’ p q st =

( f st >>= g)

≡〈 cong (λ x → x >>= g) (p st) 〉

(stackTransform2StateTransform f ’ st >>= g )

≡〈 lemmaEqualLift2Maybe g (stackTransform2StateTransform g’ )

q (stackTransform2StateTransform f ’ st) 〉

(stackTransform2StateTransform f ’ st >>= stackTransform2StateTransform g’)

≡〈〉

(exeTransformerDepIfStack’

(liftStackToStateTransformerAux’ (f ’ (st .currentTime) (st .msg) (st .stack))) st

>>=

λ s → exeTransformerDepIfStack’
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(liftStackToStateTransformerAux’ (g’ (s .currentTime) (s .msg) (s .stack))) s)

≡〈 lemmaStackSemIsSemScriptaux2 g’ st (f ’ (st .currentTime) (st .msg) (st .stack)) 〉

exeTransformerDepIfStack’

(liftStackToStateTransformerAux’

(f ’ (st .currentTime) (st .msg) (st .stack) >>= g’ (st .currentTime) (st .msg))) st ‚

lemmaStackSemIsSemScript : (prog : BitcoinScript) (nonIfs : NonIfScript prog)

(state1 : State)

→ J prog K state1 ≡ stackTransform2StateTransform J prog Kstack state1

lemmaStackSemIsSemScript [] nonIfs 〈 currentTime1 , msg1 , stack1 , [] , consis1 〉 = refl

lemmaStackSemIsSemScript [] nonIfs 〈 currentTime1 , msg1 , stack1 , ifCase :: ifStack1 , consis1 〉 = refl

lemmaStackSemIsSemScript [] nonIfs 〈 currentTime1 , msg1 , stack1 , elseCase :: ifStack1 , consis1 〉 = refl

lemmaStackSemIsSemScript [] nonIfs 〈 currentTime1 , msg1 , stack1 , ifSkip :: ifStack1 , consis1 〉 = refl

lemmaStackSemIsSemScript [] nonIfs 〈 currentTime1 , msg1 , stack1 , elseSkip :: ifStack1 , consis1 〉 = refl

lemmaStackSemIsSemScript [] nonIfs 〈 currentTime1 , msg1 , stack1 , ifIgnore :: ifStack1 , consis1 〉 = refl

lemmaStackSemIsSemScript (op :: []) nonIfs state1 rewrite

lemmaStackSemIsSemantics op (nonIfScript2NonIf2Head op [] nonIfs ) = refl

lemmaStackSemIsSemScript (op :: rest@(x1 :: prog)) nonIfs 〈 currentTime1 , msg1 , stack1 , ifstack1 , consis1 〉 =

(J op Ks 〈 currentTime1 , msg1 , stack1 , ifstack1 , consis1 〉 >>= J rest K)

≡〈 cong (λ x → (x 〈 currentTime1 , msg1 , stack1 , ifstack1 , consis1 〉 >>= J rest K ))

(lemmaStackSemIsSemantics op (nonIfScript2NonIf2Head op rest nonIfs)) 〉

(stackTransform2StateTransform J op Kstacks 〈 currentTime1 , msg1 , stack1 , ifstack1 , consis1 〉

>>= J rest K)

≡〈 lemmaEqualLift2Maybe J rest K (stackTransform2StateTransform J rest Kstack )

(lemmaStackSemIsSemScript rest (nonIfScript2NonIf2Tail op rest nonIfs))

((stackTransform2StateTransform J op Kstacks

〈 currentTime1 , msg1 , stack1 , ifstack1 , consis1 〉)) 〉

(stackTransform2StateTransform J op Kstacks

〈 currentTime1 , msg1 , stack1 , ifstack1 , consis1 〉

>>= stackTransform2StateTransform J rest Kstack)

≡〈 lemmaStackSemIsSemScriptaux2 J x1 :: prog Kstack

〈 currentTime1 , msg1 , stack1 , ifstack1 , consis1 〉
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(J op Kstacks currentTime1 msg1 stack1) 〉

exeTransformerDepIfStack’

(liftStackToStateTransformerAux’

(J op Kstacks currentTime1 msg1 stack1

>>= J rest Kstack currentTime1 msg1))

〈 currentTime1 , msg1 , stack1 , ifstack1 , consis1 〉

‚

lemmaNonIfInstrGenericCondImpliesTripleaux’ :

(prog : BitcoinScript)(nonIf : NonIfScript prog)

(φ ψ : Predicate)

→ < φ >gen stackTransform2StateTransform J prog Kstack < ψ >

→ < φ >gen J prog K < ψ >

lemmaNonIfInstrGenericCondImpliesTripleaux’ prog nonIf φ ψ x

= lemmaTransferHoareTripleGen φ ψ (stackTransform2StateTransform J prog Kstack) J prog K

(λ s → sym (lemmaStackSemIsSemScript prog nonIf

〈 currentTime s , msg s , stack s , ifStack s , consis s 〉)) x

lemmaGenericHoareTripleImpliesHoareTripleProg : (prog : BitcoinScript)

(φ ψ : Predicate)

→ < φ >gen J prog K < ψ >

→ < φ >if f prog < ψ >

lemmaGenericHoareTripleImpliesHoareTripleProg prog φ ψ (hoareTripleGen ==>g1 <==g1) .==> = ==>g1

lemmaGenericHoareTripleImpliesHoareTripleProg prog φ ψ (hoareTripleGen ==>g1 <==g1) .<== = <==g1

lemmaNonIfInstrGenericCondImpliesTripleauxProg :

(prog : BitcoinScript)(nonIf : NonIfScript prog)
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(φ ψ : Predicate)

→ < φ >gen stackTransform2StateTransform J prog Kstack < ψ >

→ < φ >gen J prog K < ψ >

lemmaNonIfInstrGenericCondImpliesTripleauxProg prog nonIf φ ψ x =

lemmaTransferHoareTripleGen φ ψ

(stackTransform2StateTransform J prog Kstack) J prog K

(λ s → sym (lemmaStackSemIsSemScript prog nonIf s)) x

hoareTripleStack2HoareTripleIfStack :

(ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)

(prog : BitcoinScript)

(nonIf : NonIfScript prog)

(φ ψ : StackPredicate)

→ < φ >stack prog < ψ >

→ < liftStackPred2Pred φ ifStack1 >if f prog < liftStackPred2Pred ψ ifStack1 >

hoareTripleStack2HoareTripleIfStack ifStack1 active prog nonIf φ ψ x

= lemmaGenericHoareTripleImpliesHoareTripleProg prog (liftStackPred2Pred φ ifStack1)

(liftStackPred2Pred ψ ifStack1)

(lemmaNonIfInstrGenericCondImpliesTripleauxProg prog nonIf

(liftStackPred2Pred φ ifStack1) (liftStackPred2Pred ψ ifStack1)

(lemmaHoareTripleStackPartToHoareTripleGeneric J prog Kstack ifStack1 active φ ψ

x))

hoareTripleNonActiveIfStackIgnored :

(ifStack1 : IfStack)

(nonactive : IsNonActiveIfStack ifStack1)

(instr : BitcoinScript)

(nonIf : NonIfScript instr)

(φ : StackPredicate)

→ < liftStackPred2Pred φ ifStack1 >if f instr < liftStackPred2Pred φ ifStack1 >

hoareTripleNonActiveIfStackIgnored ifStack1 nonactive instr nonIf φ
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= lemmaGenericHoareTripleImpliesHoareTriple” instr

(liftStackPred2Pred φ ifStack1) (liftStackPred2Pred φ ifStack1)

(lemmaNonIfInstrGenericCondImpliesTripleaux’ instr nonIf (liftStackPred2Pred φ ifStack1)

(liftStackPred2Pred φ ifStack1)

(lemmaHoareTripleStackPartToHoareTripleNonActiveGeneric ifStack1 nonactive φ J instr Kstack))

B.18 If-then-else-part 1

open import basicBitcoinDataType

module verificationWithIfStack.ifThenElseTheoremPart1 (param : GlobalParameters) where

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Sum

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head)

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

open import Relation.Nullary hiding (True)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.listLib

open import libraries.natLib

open import libraries.emptyLib

open import libraries.boolLib

open import libraries.andLib
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open import libraries.maybeLib

open import stack

open import stackPredicate

open import instruction

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.semanticsInstructions param

open import verificationWithIfStack.verificationLemmas param

open import verificationWithIfStack.hoareTriple param

– first top element of IfStack afterwards is ifCase
opIfCorrectness1 : (φ : StackPredicate ) (ifStack : IfStack)

(active : IsActiveIfStack ifStack)

→ < truePred φ ∧p ifStackPredicate ifStack >if f

( opIf :: [])

< liftStackPred2Pred φ (ifCase :: ifStack) >

opIfCorrectness1 φ [] active .==> 〈 time , msg1 , suc x :: stack1 , .[] , c 〉

(conj and4 refl) = conj and4 refl

opIfCorrectness1 φ (ifCase :: ifStack1) active .==> 〈 time , msg1 , suc x1 :: stack1 ,

.(ifCase :: ifStack1) , c 〉 (conj and4 refl) = conj and4 refl

opIfCorrectness1 φ (elseCase :: ifStack1) active .==> 〈 time , msg1 , suc x1 :: stack1 ,

.(elseCase :: ifStack1) , c 〉 (conj and4 refl) = conj and4 refl

opIfCorrectness1 φ [] active .<== 〈 time , msg1 , [] , ifCase :: ifStack1 , c 〉 ()

opIfCorrectness1 φ [] active .<== 〈 time , msg1 , [] , ifSkip :: ifStack1 , c 〉 ()

opIfCorrectness1 φ [] active .<== 〈 time , msg1 , [] , elseCase :: ifStack1 , c 〉 ()

opIfCorrectness1 φ [] active .<== 〈 time , msg1 , [] , elseSkip :: ifStack1 , c 〉 ()

opIfCorrectness1 φ [] active .<== 〈 time , msg1 , [] , ifIgnore :: ifStack1 , c 〉 ()

opIfCorrectness1 φ [] active .<== 〈 time , msg1 , zero :: stack1 ,
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ifCase :: ifStack1 , c 〉 ()

opIfCorrectness1 φ [] active .<== 〈 time , msg1 , zero :: stack1 ,

ifSkip :: ifStack1 , c 〉 ()

opIfCorrectness1 φ [] active .<== 〈 time , msg1 , zero :: stack1 ,

elseCase :: ifStack1 , c 〉 ()

opIfCorrectness1 φ [] active .<== 〈 time , msg1 , zero :: stack1 ,

elseSkip :: ifStack1 , c 〉 ()

opIfCorrectness1 φ [] active .<== 〈 time , msg1 , zero :: stack1 ,

ifIgnore :: ifStack1 , c 〉 ()

opIfCorrectness1 φ [] active .<== 〈 time , msg1 , suc x :: stack1 , [] , c 〉

(conj and4 refl) = conj and4 refl

opIfCorrectness1 φ [] active .<== 〈 time , msg1 , suc x :: stack1 ,

ifCase :: ifStack1 , c 〉 ()

opIfCorrectness1 φ [] active .<== 〈 time , msg1 , suc x :: stack1 ,

ifSkip :: ifStack1 , c 〉 ()

opIfCorrectness1 φ [] active .<== 〈 time , msg1 , suc x :: stack1 ,

elseCase :: ifStack1 , c 〉 ()

opIfCorrectness1 φ [] active .<== 〈 time , msg1 , suc x :: stack1 ,

elseSkip :: ifStack1 , c 〉 ()

opIfCorrectness1 φ [] active .<== 〈 time , msg1 , suc x :: stack1 ,

ifIgnore :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (ifCase :: ifStack2) active .<== 〈 time , msg1 , [] ,

ifCase :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (ifCase :: ifStack2) active .<== 〈 time , msg1 , [] ,

ifSkip :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (ifCase :: ifStack2) active .<== 〈 time , msg1 , [] ,

elseCase :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (ifCase :: ifStack2) active .<== 〈 time , msg1 , [] ,

elseSkip :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (ifCase :: ifStack2) active .<== 〈 time , msg1 , [] ,

ifIgnore :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (ifCase :: ifStack2) active .<== 〈 time , msg1 , zero :: stack1 ,

ifCase :: ifStack1 , c 〉 ()
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opIfCorrectness1 φ (ifCase :: ifStack2) active .<== 〈 time , msg1 , zero :: stack1 ,

ifSkip :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (ifCase :: ifStack2) active .<== 〈 time , msg1 , zero :: stack1 ,

elseCase :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (ifCase :: ifStack2) active .<== 〈 time , msg1 , zero :: stack1 ,

elseSkip :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (ifCase :: ifStack2) active .<== 〈 time , msg1 , zero :: stack1 ,

ifIgnore :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (ifCase :: ifStack2) active .<== 〈 time , msg1 , suc x :: stack1 ,

ifCase :: .ifStack2 , c 〉 (conj and4 refl) = conj and4 refl

opIfCorrectness1 φ (elseCase :: ifStack2) active .<== 〈 time , msg1 ,

zero :: stack1 , [] , c 〉 ()

opIfCorrectness1 φ (elseCase :: ifStack2) active .<== 〈 time , msg1 ,

suc x :: stack1 , [] , c 〉 ()

opIfCorrectness1 φ (elseCase :: ifStack2) active .<== 〈 time , msg1 , [] ,

ifCase :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (elseCase :: ifStack2) active .<== 〈 time , msg1 , [] ,

ifSkip :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (elseCase :: ifStack2) active .<== 〈 time , msg1 , [] ,

elseCase :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (elseCase :: ifStack2) active .<== 〈 time , msg1 , [] ,

elseSkip :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (elseCase :: ifStack2) active .<== 〈 time , msg1 , [] ,

ifIgnore :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (elseCase :: ifStack2) active .<== 〈 time , msg1 , zero :: stack1 ,

ifCase :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (elseCase :: ifStack2) active .<== 〈 time , msg1 , zero :: stack1 ,

ifSkip :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (elseCase :: ifStack2) active .<== 〈 time , msg1 , zero :: stack1 ,

elseCase :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (elseCase :: ifStack2) active .<== 〈 time , msg1 , zero :: stack1 ,

elseSkip :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (elseCase :: ifStack2) active .<== 〈 time , msg1 , zero :: stack1 ,
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ifIgnore :: ifStack1 , c 〉 ()

opIfCorrectness1 φ (elseCase :: ifStack2) active .<== 〈 time , msg1 , suc x1 :: stack1 ,

elseCase :: ifStack1 , c 〉 (conj and4 refl) = conj and4 refl

opIfCorrectness2 : (φ : StackPredicate ) (ifStack : IfStack)

(active : IsActiveIfStack ifStack)

→ < falsePred φ ∧p ifStackPredicate ifStack >if f

( opIf :: [])

< liftStackPred2Pred φ (ifSkip :: ifStack) >

opIfCorrectness2 φ [] active .==> 〈 time , msg1 , zero :: stack1 , .[] , c 〉

(conj and4 refl) = conj and4 refl

opIfCorrectness2 φ (ifCase :: ifStack1) active .==> 〈 time , msg1 , zero :: stack1 ,

.(ifCase :: ifStack1) , c 〉 (conj and4 refl) = conj and4 refl

opIfCorrectness2 φ (elseCase :: ifStack1) active .==> 〈 time , msg1 , zero :: stack1 ,

.(elseCase :: ifStack1) , c 〉 (conj and4 refl) = conj and4 refl

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , zero :: stack1 , [] , c 〉

(conj and4 refl) = conj and4 refl

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , [] , ifCase :: [] , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , [] , ifSkip :: [] , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , [] , elseCase :: [] , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , [] , elseSkip :: [] , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , [] , ifIgnore :: [] , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , zero :: stack1 , ifCase :: [] , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , zero :: stack1 , ifSkip :: [] , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , zero :: stack1 , elseCase :: [] , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , zero :: stack1 , elseSkip :: [] , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , zero :: stack1 , ifIgnore :: [] , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , suc x1 :: stack1 , ifCase :: [] , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , suc x1 :: stack1 , ifSkip :: [] , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , suc x1 :: stack1 , elseCase :: [] , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , suc x1 :: stack1 , elseSkip :: [] , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , suc x1 :: stack1 , ifIgnore :: [] , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , zero :: stack1 ,

ifCase :: x1 :: ifStack1 , c 〉 ()
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opIfCorrectness2 φ [] active .<== 〈 time , msg1 , suc x :: stack1 ,

ifCase :: x1 :: ifStack1 , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , zero :: stack1 ,

ifSkip :: x1 :: ifStack1 , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , suc x :: stack1 ,

ifSkip :: x1 :: ifStack1 , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , zero :: stack1 ,

elseCase :: x1 :: ifStack1 , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , suc x :: stack1 ,

elseCase :: x1 :: ifStack1 , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , zero :: stack1 , elseSkip :: x1 :: ifStack1 , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , suc x :: stack1 , elseSkip :: x1 :: ifStack1 , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , zero :: stack1 , ifIgnore :: x1 :: ifStack1 , c 〉 ()

opIfCorrectness2 φ [] active .<== 〈 time , msg1 , suc x :: stack1 , ifIgnore :: x1 :: ifStack1 , c 〉 ()

opIfCorrectness2 φ (ifCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 , [] , c 〉 ()

opIfCorrectness2 φ (ifCase :: ifStack1) active .<== 〈 time , msg1 , suc x :: stack1 , [] , c 〉 ()

opIfCorrectness2 φ (ifCase :: ifStack1) active .<== 〈 time , msg1 , [] , ifCase :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (ifCase :: ifStack1) active .<== 〈 time , msg1 , [] , ifSkip :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (ifCase :: ifStack1) active .<== 〈 time , msg1 , [] , elseCase :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (ifCase :: ifStack1) active .<== 〈 time , msg1 , [] , elseSkip :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (ifCase :: ifStack1) active .<== 〈 time , msg1 , [] , ifIgnore :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (ifCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 ,

ifCase :: .ifStack1 , c 〉 (conj and4 refl) = conj and4 refl

opIfCorrectness2 φ (ifCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 ,

ifSkip :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (ifCase :: ifStack1) active .<== 〈 time , msg1 , suc x1 :: stack1 ,

ifSkip :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (ifCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 ,

elseCase :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (ifCase :: ifStack1) active .<== 〈 time , msg1 , suc x1 :: stack1 ,

elseCase :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (ifCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 ,

elseSkip :: ifStack2 , c 〉 ()
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opIfCorrectness2 φ (ifCase :: ifStack1) active .<== 〈 time , msg1 , suc x1 :: stack1 ,

elseSkip :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (ifCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 ,

ifIgnore :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (ifCase :: ifStack1) active .<== 〈 time , msg1 , suc x1 :: stack1 ,

ifIgnore :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (elseCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 , [] , c 〉 ()

opIfCorrectness2 φ (elseCase :: ifStack1) active .<== 〈 time , msg1 , suc x :: stack1 , [] , c 〉 ()

opIfCorrectness2 φ (elseCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1

, ifCase :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (elseCase :: ifStack1) active .<== 〈 time , msg1 , suc x :: stack1 ,

ifCase :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (elseCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 ,

ifSkip :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (elseCase :: ifStack1) active .<== 〈 time , msg1 , suc x :: stack1 ,

ifSkip :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (elseCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 ,

elseCase :: .ifStack1 , c 〉 (conj and4 refl) = conj and4 refl

opIfCorrectness2 φ (elseCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 ,

elseSkip :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (elseCase :: ifStack1) active .<== 〈 time , msg1 , suc x :: stack1

, elseSkip :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (elseCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1

, ifIgnore :: ifStack2 , c 〉 ()

opIfCorrectness2 φ (elseCase :: ifStack1) active .<== 〈 time , msg1 , suc x :: stack1

, ifIgnore :: ifStack2 , c 〉 ()

opIfCorrectness3 : (ψ : StackPredicate ) (ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)

→ < ⊥p >if f ( opIf :: [])

< liftStackPred2Pred ψ (ifIgnore :: ifStack1) >

opIfCorrectness3 ψ ifStack1 active .==> s ()

opIfCorrectness3 ψ ifStack1 active .<== 〈 time , msg1 , zero :: stack1 , [] , c 〉 ()

opIfCorrectness3 ψ ifStack1 active .<== 〈 time , msg1 , suc x :: stack1 , [] , c 〉 ()
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opIfCorrectness3 ψ (.ifSkip :: ifStack1) () .<== 〈 time , msg1 , [] ,

ifSkip :: .ifStack1 , c 〉 (conj and4 refl)

opIfCorrectness3 ψ .(elseSkip :: ifStack2) () .<== 〈 time , msg1 , [] ,

elseSkip :: ifStack2 , c 〉 (conj and4 refl)

opIfCorrectness3 ψ .(ifIgnore :: ifStack2) () .<== 〈 time , msg1 , [] ,

ifIgnore :: ifStack2 , c 〉 (conj and4 refl)

opIfCorrectness3 ψ .(ifSkip :: ifStack2) () .<== 〈 time , msg1 , zero :: stack1

, ifSkip :: ifStack2 , c 〉 (conj and4 refl)

opIfCorrectness3 ψ .(elseSkip :: ifStack2) () .<== 〈 time , msg1 , zero :: stack1 ,

elseSkip :: ifStack2 , c 〉 (conj and4 refl)

opIfCorrectness3 ψ .(ifIgnore :: ifStack2) () .<== 〈 time , msg1 , zero :: stack1 ,

ifIgnore :: ifStack2 , c 〉 (conj and4 refl)

opIfCorrectness3 ψ .(ifSkip :: ifStack2) () .<== 〈 time , msg1 , suc x1 :: stack1 ,

ifSkip :: ifStack2 , c 〉 (conj and4 refl)

opIfCorrectness3 ψ .(elseSkip :: ifStack2) () .<== 〈 time , msg1 , suc x1 :: stack1 ,

elseSkip :: ifStack2 , c 〉 (conj and4 refl)

opIfCorrectness3 ψ .(ifIgnore :: ifStack2) () .<== 〈 time , msg1 , suc x1 :: stack1 ,

ifIgnore :: ifStack2 , c 〉 (conj and4 refl)

opIfCorrectness4 : (φ ψ : StackPredicate ) (ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)

→ < ⊥p >if f ( opIf :: [])

< liftStackPred2Pred ψ (elseCase :: ifStack1) >

opIfCorrectness4 φ ψ [] active .==> s ()

opIfCorrectness4 φ ψ (x :: ifStack1) active .==> s ()

opIfCorrectness4 φ ψ [] active .<== 〈 time , msg1 , zero :: stack1 , [] , c 〉 ()

opIfCorrectness4 φ ψ [] active .<== 〈 time , msg1 , suc x :: stack1 , [] , c 〉 ()

opIfCorrectness4 φ ψ [] active .<== 〈 time , msg1 , zero :: stack1 , ifCase :: ifStack1 , c 〉 ()

opIfCorrectness4 φ ψ [] active .<== 〈 time , msg1 , suc x :: stack1 , ifCase :: ifStack1 , c 〉 ()

opIfCorrectness4 φ ψ [] active .<== 〈 time , msg1 , zero :: stack1 , ifSkip :: ifStack1 , c 〉 ()

opIfCorrectness4 φ ψ [] active .<== 〈 time , msg1 , suc x :: stack1 , ifSkip :: ifStack1 , c 〉 ()
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opIfCorrectness4 φ ψ [] active .<== 〈 time , msg1 , zero :: stack1 , elseCase :: ifStack1 , c 〉 ()

opIfCorrectness4 φ ψ [] active .<== 〈 time , msg1 , suc x :: stack1 , elseCase :: ifStack1 , c 〉 ()

opIfCorrectness4 φ ψ [] active .<== 〈 time , msg1 , zero :: stack1 , elseSkip :: ifStack1 , c 〉 ()

opIfCorrectness4 φ ψ [] active .<== 〈 time , msg1 , suc x :: stack1 , elseSkip :: ifStack1 , c 〉 ()

opIfCorrectness4 φ ψ [] active .<== 〈 time , msg1 , zero :: stack1 , ifIgnore :: ifStack1 , c 〉 ()

opIfCorrectness4 φ ψ [] active .<== 〈 time , msg1 , suc x :: stack1 , ifIgnore :: ifStack1 , c 〉 ()

opIfCorrectness4 φ ψ (ifCase :: ifStack1) active .<== 〈 time , msg1 ,

zero :: stack1 , [] , c 〉 ()

opIfCorrectness4 φ ψ (ifCase :: ifStack1) active .<== 〈 time , msg1 ,

suc x :: stack1 , [] , c 〉 ()

opIfCorrectness4 φ ψ (ifCase :: ifStack1) active .<== 〈 time , msg1 , [] ,

ifCase :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (ifCase :: ifStack1) active .<== 〈 time , msg1 , [] ,

ifSkip :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (ifCase :: ifStack1) active .<== 〈 time , msg1 , [] ,

elseCase :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (ifCase :: ifStack1) active .<== 〈 time , msg1 , [] ,

elseSkip :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (ifCase :: ifStack1) active .<== 〈 time , msg1 , [] ,

ifIgnore :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (ifCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 ,

ifCase :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (ifCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 ,

ifSkip :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (ifCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 ,

elseCase :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (ifCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 ,

elseSkip :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (ifCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 ,

ifIgnore :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (ifCase :: ifStack1) active .<== 〈 time , msg1 , suc x1 :: stack1 ,

ifCase :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (ifCase :: ifStack1) active .<== 〈 time , msg1 , suc x1 :: stack1 ,
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ifSkip :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (ifCase :: ifStack1) active .<== 〈 time , msg1 , suc x1 :: stack1 ,

elseCase :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (ifCase :: ifStack1) active .<== 〈 time , msg1 , suc x1 :: stack1 ,

elseSkip :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (ifCase :: ifStack1) active .<== 〈 time , msg1 , suc x1 :: stack1 ,

ifIgnore :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (elseCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 , [] , c 〉 ()

opIfCorrectness4 φ ψ (elseCase :: ifStack1) active .<== 〈 time , msg1 , suc x :: stack1 , [] , c 〉 ()

opIfCorrectness4 φ ψ (elseCase :: ifStack1) active .<== 〈 time , msg1 , [] ,

ifCase :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (elseCase :: ifStack1) active .<== 〈 time , msg1 , [] ,

ifSkip :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (elseCase :: ifStack1) active .<== 〈 time , msg1 , [] ,

elseCase :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (elseCase :: ifStack1) active .<== 〈 time , msg1 , []

, elseSkip :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (elseCase :: ifStack1) active .<== 〈 time , msg1 , []

, ifIgnore :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (elseCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1

, ifCase :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (elseCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1

, ifSkip :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (elseCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1

, elseCase :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (elseCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1

, elseSkip :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (elseCase :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1

, ifIgnore :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (elseCase :: ifStack1) active .<== 〈 time , msg1 , suc x1 :: stack1

, ifCase :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (elseCase :: ifStack1) active .<== 〈 time , msg1 , suc x1 :: stack1

, ifSkip :: ifStack2 , c 〉 ()
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opIfCorrectness4 φ ψ (elseCase :: ifStack1) active .<== 〈 time , msg1 , suc x1 :: stack1

, elseCase :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (elseCase :: ifStack1) active .<== 〈 time , msg1 , suc x1 :: stack1

, elseSkip :: ifStack2 , c 〉 ()

opIfCorrectness4 φ ψ (elseCase :: ifStack1) active .<== 〈 time , msg1 , suc x1 :: stack1

, ifIgnore :: ifStack2 , c 〉 ()

opIfCorrectness5 : (φ ψ : StackPredicate ) (ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)

→ < ⊥p >if f ( opIf :: [])

< liftStackPred2Pred ψ (elseSkip :: ifStack1) >

opIfCorrectness5 φ ψ [] active .==> s ()

opIfCorrectness5 φ ψ (x :: ifStack1) active .==> s ()

opIfCorrectness5 φ ψ [] active .<== 〈 time , msg1 , zero :: stack1 , [] , c 〉 ()

opIfCorrectness5 φ ψ [] active .<== 〈 time , msg1 , suc x :: stack1 , [] , c 〉 ()

opIfCorrectness5 φ ψ [] active .<== 〈 time , msg1 , [] , ifCase :: ifStack1 , c 〉 ()

opIfCorrectness5 φ ψ [] active .<== 〈 time , msg1 , [] , ifSkip :: ifStack1 , c 〉 ()

opIfCorrectness5 φ ψ [] active .<== 〈 time , msg1 , [] , elseCase :: ifStack1 , c 〉 ()

opIfCorrectness5 φ ψ [] active .<== 〈 time , msg1 , [] , elseSkip :: ifStack1 , c 〉 ()

opIfCorrectness5 φ ψ [] active .<== 〈 time , msg1 , [] , ifIgnore :: ifStack1 , c 〉 ()

opIfCorrectness5 φ ψ [] active .<== 〈 time , msg1 , zero :: stack1 ,

ifCase :: ifStack1 , c 〉 ()

opIfCorrectness5 φ ψ [] active .<== 〈 time , msg1 , zero :: stack1 ,

ifSkip :: ifStack1 , c 〉 ()

opIfCorrectness5 φ ψ [] active .<== 〈 time , msg1 , zero :: stack1 ,

elseCase :: ifStack1 , c 〉 ()

opIfCorrectness5 φ ψ [] active .<== 〈 time , msg1 , zero :: stack1 ,

elseSkip :: ifStack1 , c 〉 ()

opIfCorrectness5 φ ψ [] active .<== 〈 time , msg1 , zero :: stack1 ,

ifIgnore :: ifStack1 , c 〉 ()

opIfCorrectness5 φ ψ [] active .<== 〈 time , msg1 , suc x1 :: stack1 ,

ifCase :: ifStack1 , c 〉 ()

opIfCorrectness5 φ ψ [] active .<== 〈 time , msg1 , suc x1 :: stack1 ,
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ifSkip :: ifStack1 , c 〉 ()

opIfCorrectness5 φ ψ [] active .<== 〈 time , msg1 , suc x1 :: stack1 ,

elseCase :: ifStack1 , c 〉 ()

opIfCorrectness5 φ ψ [] active .<== 〈 time , msg1 , suc x1 :: stack1 ,

elseSkip :: ifStack1 , c 〉 ()

opIfCorrectness5 φ ψ [] active .<== 〈 time , msg1 , suc x1 :: stack1 ,

ifIgnore :: ifStack1 , c 〉 ()

opIfCorrectness5 φ ψ (x :: ifStack1) active .<== 〈 time , msg1 ,

zero :: stack1 , [] , c 〉 ()

opIfCorrectness5 φ ψ (x :: ifStack1) active .<== 〈 time , msg1 ,

suc x1 :: stack1 , [] , c 〉 ()

opIfCorrectness5 φ ψ (x :: ifStack1) active .<== 〈 time , msg1 , [] ,

ifCase :: ifStack2 , c 〉 ()

opIfCorrectness5 φ ψ (x :: ifStack1) active .<== 〈 time , msg1 , [] ,

ifSkip :: ifStack2 , c 〉 ()

opIfCorrectness5 φ ψ (x :: ifStack1) active .<== 〈 time , msg1 , [] ,

elseCase :: ifStack2 , c 〉 ()

opIfCorrectness5 φ ψ (x :: ifStack1) active .<== 〈 time , msg1 , [] ,

elseSkip :: ifStack2 , c 〉 ()

opIfCorrectness5 φ ψ (x :: ifStack1) active .<== 〈 time , msg1 , [] ,

ifIgnore :: ifStack2 , c 〉 ()

opIfCorrectness5 φ ψ (x :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 ,

ifCase :: ifStack2 , c 〉 ()

opIfCorrectness5 φ ψ (x :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 ,

ifSkip :: ifStack2 , c 〉 ()

opIfCorrectness5 φ ψ (x :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 ,

elseCase :: ifStack2 , c 〉 ()

opIfCorrectness5 φ ψ (x :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 ,

elseSkip :: ifStack2 , c 〉 ()

opIfCorrectness5 φ ψ (x :: ifStack1) active .<== 〈 time , msg1 , zero :: stack1 ,

ifIgnore :: ifStack2 , c 〉 ()

opIfCorrectness5 φ ψ (x :: ifStack1) active .<== 〈 time , msg1 , suc x2 :: stack1 ,

ifCase :: ifStack2 , c 〉 ()
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opIfCorrectness5 φ ψ (x :: ifStack1) active .<== 〈 time , msg1 , suc x2 :: stack1 ,

ifSkip :: ifStack2 , c 〉 ()

opIfCorrectness5 φ ψ (x :: ifStack1) active .<== 〈 time , msg1 , suc x2 :: stack1 ,

elseCase :: ifStack2 , c 〉 ()

opIfCorrectness5 φ ψ (x :: ifStack1) active .<== 〈 time , msg1 , suc x2 :: stack1 ,

elseSkip :: ifStack2 , c 〉 ()

opIfCorrectness5 φ ψ (x :: ifStack1) active .<== 〈 time , msg1 , suc x2 :: stack1 ,

ifIgnore :: ifStack2 , c 〉 ()

opElseCorrectness1withoutActiveCond : (ρ : StackPredicate ) (ifStack1 : IfStack)

→ < liftStackPred2PredIgnoreIfStack ρ

∧p (ifStackPredicate (ifCase :: ifStack1) ]p

ifStackPredicate (ifIgnore :: ifStack1)) >if f

(opElse :: [])

< liftStackPred2Pred ρ (elseSkip :: ifStack1) >

opElseCorrectness1withoutActiveCond ρ ifStack1 .==> 〈 time , msg1 , stack1 ,

.(ifCase :: ifStack1) , c 〉 (conj and4 (inj1 refl)) = conj and4 refl

opElseCorrectness1withoutActiveCond ρ ifStack1 .==> 〈 time , msg1 , stack1 ,

.(ifIgnore :: ifStack1) , c 〉 (conj and4 (inj2 refl)) = conj and4 refl

opElseCorrectness1withoutActiveCond ρ ifStack1 .<== 〈 time , msg1 , stack1 ,

ifCase :: .ifStack1 , c 〉 (conj and4 refl) = conj and4 (inj1 refl)

opElseCorrectness1withoutActiveCond ρ ifStack1 .<== 〈 time , msg1 , stack1 ,

ifIgnore :: .ifStack1 , c 〉 (conj and4 refl) = conj and4 (inj2 refl)

opElseCorrectness1 : (ρ : StackPredicate ) (ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)

→ < liftStackPred2Pred ρ (ifCase :: ifStack1) >if f

(opElse :: [])

< liftStackPred2Pred ρ (elseSkip :: ifStack1) >

opElseCorrectness1 ρ ifStack1 active .==> 〈 time , msg1 , stack1 ,

ifCase :: .ifStack1 , consis1 〉 (conj and4 refl) = conj and4 refl

opElseCorrectness1 ρ ifStack1 active .<== 〈 time , msg1 , stack1 ,

ifCase :: .ifStack1 , consis1 〉 (conj and4 refl) = conj and4 refl
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opElseCorrectness1 ρ ifStack1 active .<== 〈 time , msg1 , stack1 ,

ifIgnore :: .ifStack1 , consis1 〉 (conj and4 refl) =

let

a : True (not (isActiveIfStack ifStack1) ∧b ifStackConsis ifStack1)

a = consis1

b : True (not (isActiveIfStack ifStack1))

b = ∧bproj1 a

c = ¬ (True (isActiveIfStack ifStack1) )

c = ¬bLem b

in efq (c active)

opElseCorrectness2 : (ρ : StackPredicate ) (ifStack1 : IfStack)

→ < liftStackPred2Pred ρ (ifSkip :: ifStack1) >if f

(opElse :: [])

< liftStackPred2Pred ρ (elseCase :: ifStack1) >

opElseCorrectness2 ρ ifStack1 .==> 〈 time , msg1 , stack1 ,

.(ifSkip :: ifStack1) , c 〉 (conj and4 refl) = conj and4 refl

opElseCorrectness2 ρ ifStack1 .<== 〈 time , msg1 , stack1 ,

ifSkip :: .ifStack1 , c 〉 (conj and4 refl) = conj and4 refl

opElseCorrectness3 : (ρ : StackPredicate ) (ifStack1 : IfStack)

→ < ⊥p >if f

(opElse :: [])

< liftStackPred2Pred ρ (ifCase :: ifStack1) >

opElseCorrectness3 ρ ifStack1 .==> p ()

opElseCorrectness3 ρ ifStack1 .<== 〈 time , msg1 , stack1 , ifCase :: ifStack2 , c 〉 ()

opElseCorrectness3 ρ ifStack1 .<== 〈 time , msg1 , stack1 , ifSkip :: ifStack2 , c 〉 ()

opElseCorrectness3 ρ ifStack1 .<== 〈 time , msg1 , stack1 , elseCase :: ifStack2 , c 〉 ()

opElseCorrectness3 ρ ifStack1 .<== 〈 time , msg1 , stack1 , elseSkip :: ifStack2 , c 〉 ()

opElseCorrectness3 ρ ifStack1 .<== 〈 time , msg1 , stack1 , ifIgnore :: ifStack2 , c 〉 ()
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opElseCorrectness4 : (ρ : StackPredicate ) (ifStack1 : IfStack)

→ < ⊥p >if f

(opElse :: [])

< liftStackPred2Pred ρ (ifSkip :: ifStack1) >

opElseCorrectness4 ρ ifStack1 .==> s ()

opElseCorrectness4 ρ ifStack1 .<== 〈 time , msg1 , stack1 , ifCase :: ifStack2 , c 〉 ()

opElseCorrectness4 ρ ifStack1 .<== 〈 time , msg1 , stack1 , ifSkip :: ifStack2 , c 〉 ()

opElseCorrectness4 ρ ifStack1 .<== 〈 time , msg1 , stack1 , elseCase :: ifStack2 , c 〉 ()

opElseCorrectness4 ρ ifStack1 .<== 〈 time , msg1 , stack1 , elseSkip :: ifStack2 , c 〉 ()

opElseCorrectness4 ρ ifStack1 .<== 〈 time , msg1 , stack1 , ifIgnore :: ifStack2 , c 〉 ()

opElseCorrectness5 : (ρ : StackPredicate ) (ifStack1 : IfStack)

→ < ⊥p >if f

(opElse :: [])

< liftStackPred2Pred ρ (ifIgnore :: ifStack1) >

opElseCorrectness5 ρ ifStack1 .==> s ()

opElseCorrectness5 ρ ifStack1 .<== 〈 time , msg1 , stack1 , ifCase :: ifStack2 , c 〉 ()

opElseCorrectness5 ρ ifStack1 .<== 〈 time , msg1 , stack1 , ifSkip :: ifStack2 , c 〉 ()

opElseCorrectness5 ρ ifStack1 .<== 〈 time , msg1 , stack1 , elseCase :: ifStack2 , c 〉 ()

opElseCorrectness5 ρ ifStack1 .<== 〈 time , msg1 , stack1 , elseSkip :: ifStack2 , c 〉 ()

opElseCorrectness5 ρ ifStack1 .<== 〈 time , msg1 , stack1 , ifIgnore :: ifStack2 , c 〉 ()

opEndIfCorrectness : (ρ : StackPredicate ) (ifStack1 : IfStack)

→ (active : IsActiveIfStack ifStack1)

→ < liftStackPred2PredIgnoreIfStack ρ ∧p ifStackPredicateAnyTop ifStack1 >if f

(opEndIf :: [])

< liftStackPred2Pred ρ ifStack1 >

opEndIfCorrectness ρ [] active .==> 〈 time , msg1 , stack1 , x :: .[] , c 〉

(conj and4 refl) = conj and4 refl
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opEndIfCorrectness ρ (ifCase :: ifStack1) active .==> 〈 time , msg1 , stack1 , x1 ::

.(ifCase :: ifStack1) , c 〉 (conj and4 refl) = conj and4 refl

opEndIfCorrectness ρ (elseCase :: ifStack1) active .==> 〈 time , msg1 , stack1 , x1 ::

.(elseCase :: ifStack1) , c 〉 (conj and4 refl) = conj and4 refl

opEndIfCorrectness ρ [] active .<== 〈 time , msg1 , stack1 , x :: .[] , c 〉

(conj and4 refl) = conj and4 refl

opEndIfCorrectness ρ (ifCase :: ifStack1) active .<== 〈 time , msg1 , stack1 , x ::

.(ifCase :: ifStack1) , c 〉 (conj and4 refl) = conj and4 refl

opEndIfCorrectness ρ (elseCase :: ifStack1) active .<== 〈 time , msg1 , stack1 , x ::

.(elseCase :: ifStack1) , c 〉 (conj and4 refl) = conj and4 refl

opEndIfCorrectness” : (ρ : StackPredicate ) (ifStack1 : IfStack)

→ (active : IsActiveIfStack ifStack1)

→ < liftStackPred2PredIgnoreIfStack ρ ∧p

ifStackPredicateAnyNonIfIgnoreTop ifStack1 >if f

(opEndIf :: [])

< liftStackPred2Pred ρ ifStack1 >

opEndIfCorrectness” ρ [] active .==> 〈 time , msg1 , stack1 , x :: [] , consis1 〉

(conj and4 and5) = conj and4 refl

opEndIfCorrectness” ρ (x :: i) active .==> 〈 time , msg1 , stack1 , x1 :: .x :: .i

, consis1 〉 (conj and4 (conj refl and6)) = conj and4 refl

opEndIfCorrectness” ρ i active .<== 〈 time , msg1 , stack1 , x :: .i , consis1 〉

(conj and4 refl) = conj and4 (conj refl (lemmaIfStackIsNonIfIgnore x i consis1 active))

B.19 Proof Ifthenelse 1

open import basicBitcoinDataType

module verificationWithIfStack.ifThenElseTheoremPart5 (param : GlobalParameters) where

open import Data.List.Base hiding ( _++_)

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)
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open import Data.List hiding ( _++_)

open import Data.Sum

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head)

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

–open import Agda.Builtin.Equality.Rewrite

open import libraries.listLib

open import libraries.natLib

open import libraries.equalityLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import instruction

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.semanticsInstructions param

open import verificationWithIfStack.verificationLemmas param

open import verificationWithIfStack.hoareTriple param

open import verificationWithIfStack.ifThenElseTheoremPart1 param

open import verificationWithIfStack.ifThenElseTheoremPart2 param

open import verificationWithIfStack.ifThenElseTheoremPart3 param
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open import verificationWithIfStack.ifThenElseTheoremPart4 param

open import verificationWithIfStack.equalitiesIfThenElse param

proofIfThenElseTheorem1Tmp : IfThenElseTheorem1Tmp

proofIfThenElseTheorem1Tmp ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

ass@(assumptionIfThenElse activeIfStack ifCaseDo ifCaseSkip elseCaseDo elseCaseSkip)

=

(truePred φ true ∧p ifStackPredicate ifStack1) ]p (falsePred φ false ∧p ifStackPredicate ifStack1)

<><>〈 (opIf :: []) ++ (ifCaseProg ++ ((opElse :: []) ++ elseCaseProg))

〉〈 lemmaIfThenElseExcludingEndIf ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

ass 〉

(liftStackPred2PredIgnoreIfStack ψ ∧p ifStackPredicateAnyNonIfIgnoreTop ifStack1)

<><>〈 opEndIf :: [] 〉〈 opEndIfCorrectness” ψ ifStack1 activeIfStack 〉e

(liftStackPred2Pred ψ ifStack1 )

‚p

proofIfThenElseTheorem1 : IfThenElseTheorem1

proofIfThenElseTheorem1 ifStack1 φ true φ false ψ ifCaseProg elseCaseProg assumption

= transfer

(λ l → < (truePred φ true ∧p ifStackPredicate ifStack1) ]p

(falsePred φ false ∧p ifStackPredicate ifStack1) >if f

l

< liftStackPred2Pred ψ ifStack1 >)

(lemmaOpIfProg++[]4 ifCaseProg elseCaseProg)

(proofIfThenElseTheorem1Tmp ifStack1 φ true φ false ψ ifCaseProg elseCaseProg assumption)

B.20 Assumption IfThenElse simplified

open import basicBitcoinDataType
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module verificationWithIfStack.ifThenElseTheoremPart6 (param : GlobalParameters) where

open import libraries.listLib

open import Data.List.Base

open import libraries.natLib

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List

open import Data.Sum

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head)

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate

open import instruction

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.semanticsInstructions param

open import verificationWithIfStack.verificationLemmas param

open import verificationWithIfStack.hoareTriple param

open import verificationWithIfStack.ifThenElseTheoremPart1 param

open import verificationWithIfStack.ifThenElseTheoremPart3 param
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open import verificationWithIfStack.ifThenElseTheoremPart5 param

record AssumptionIfThenElseSimplified (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript) : Set where

constructor assumptionIfThenElseSimplified

field

activeIfStack : IsActiveIfStack ifStack1

ifCaseDo : (x : IfStackEl)

→ IsActiveIfStackEl x

→ < liftStackPred2Pred φ true (x :: ifStack1) >if f

ifCaseProg

< liftStackPred2Pred ψ (x :: ifStack1) >

ifCaseSkipIgnore : (x : IfStackEl)

→ IsNonActiveIfStackEl x

→ < liftStackPred2Pred φ false (x :: ifStack1) >if f

ifCaseProg

< liftStackPred2Pred φ false (x :: ifStack1) >

elseCaseDo : (x : IfStackEl)

→ IsActiveIfStackEl x

→ < liftStackPred2Pred φ false (x :: ifStack1) >if f

elseCaseProg

< liftStackPred2Pred ψ (x :: ifStack1) >

elseCaseSkip : (x : IfStackEl)

→ IsNonActiveIfStackEl x

→ < liftStackPred2Pred ψ (x :: ifStack1) >if f

elseCaseProg

< liftStackPred2Pred ψ (x :: ifStack1) >
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open AssumptionIfThenElseSimplified public

IfThenElseTheorem1Simplified : Set1

IfThenElseTheorem1Simplified = (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

→ AssumptionIfThenElseSimplified ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

→ Conclusion ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

proofIfThenElseTheorem1Simplified : IfThenElseTheorem1Simplified

proofIfThenElseTheorem1Simplified ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

( assumptionIfThenElseSimplified activeIfStack1 ifCaseDo

ifCaseSkipIgnore elseCaseDo elseCaseSkip)

= proofIfThenElseTheorem1 ifStack1 φ true φ false ψ

ifCaseProg elseCaseProg

(assumptionIfThenElse

activeIfStack1

(ifCaseDo ifCase tt) (ifCaseSkipIgnore ifSkip tt)

elseCaseDo

(λ x p → elseCaseSkip x

(lemmaIfStackElIsIfSkipOrElseSkip2IsSkip x p)))

B.21 Proof ifthenelse 2

open import basicBitcoinDataType

module verificationWithIfStack.ifThenElseTheoremPart7 (param : GlobalParameters) where

open import libraries.listLib

open import Data.List.Base hiding (_++_)

open import libraries.natLib

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Sum

555



B. Full Agda code for chapter Verifying Bitcoin Script with non-local instructions
(conditionals instructions)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_ ; _<_)

– open import Data.List.NonEmpty hiding (head)
open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate

open import instruction

– open import ledger param

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.semanticsInstructions param

open import verificationWithIfStack.hoareTriple param

open import verificationWithIfStack.ifThenElseTheoremPart1 param

open import verificationWithIfStack.ifThenElseTheoremPart2 param

open import verificationWithIfStack.ifThenElseTheoremPart3 param

open import verificationWithIfStack.ifThenElseTheoremPart4 param

open import verificationWithIfStack.ifThenElseTheoremPart5 param

open import verificationWithIfStack.ifThenElseTheoremPart6 param

ifThenElseProg : (ifCaseProg elseCaseProg : BitcoinScript)

→ BitcoinScript

ifThenElseProg ifCaseProg elseCaseProg
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= [ opIf ] ++ ifCaseProg ++ [ opElse ] ++ elseCaseProg ++ [ opEndIf ]

ConclusionIfThenElseTheoImproved : (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

→ Set

ConclusionIfThenElseTheoImproved ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

= < liftStackPred2Pred (truePredaux φ true ]sp falsePredaux φ false) ifStack1 >if f

ifThenElseProg ifCaseProg elseCaseProg

< liftStackPred2Pred ψ ifStack1 >

conclusionIfThenElse<=> : (ifStack1 : IfStack)

(φ true φ false : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

→ ((liftStackPred2Pred (truePredaux φ true ]sp falsePredaux φ false))

ifStack1)

<=>p

((truePred φ true ∧p ifStackPredicate ifStack1) ]p

(falsePred φ false ∧p ifStackPredicate ifStack1))

conclusionIfThenElse<=> .(ifStack s) φ true φ false ifCaseProg elseCaseProg .==>e s (conj (inj1 x) refl)

= inj1 (conj x refl)

conclusionIfThenElse<=> .(ifStack s) φ true φ false ifCaseProg elseCaseProg .==>e s (conj (inj2 y) refl)

= inj2 (conj y refl)

conclusionIfThenElse<=> .(ifStack s) φ true φ false ifCaseProg elseCaseProg .<==e s (inj1 (conj and3 refl))

= conj (inj1 and3) refl

conclusionIfThenElse<=> .(ifStack s) φ true φ false ifCaseProg elseCaseProg .<==e s (inj2 (conj and3 refl))

= conj (inj2 and3) refl

ifThenElseTheorem2 : (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

→ AssumptionIfThenElse ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

→ ConclusionIfThenElseTheoImproved ifStack1 φ true φ false ψ ifCaseProg elseCaseProg
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ifThenElseTheorem2 ifStack1 φ true φ false ψ ifCaseProg elseCaseProg assu =

(liftStackPred2Pred (truePredaux φ true ]sp falsePredaux φ false)

ifStack1)

<=>〈 conclusionIfThenElse<=> ifStack1 φ true φ false ifCaseProg elseCaseProg 〉

((truePred φ true ∧p ifStackPredicate ifStack1) ]p

(falsePred φ false ∧p ifStackPredicate ifStack1))

<><>〈 ifThenElseProg ifCaseProg elseCaseProg

〉〈 proofIfThenElseTheorem1 ifStack1 φ true φ false ψ

ifCaseProg elseCaseProg assu 〉e

liftStackPred2Pred ψ ifStack1

‚p

IfThenElseTheorem1SimplifiedImprovedStm : Set1

IfThenElseTheorem1SimplifiedImprovedStm = (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

→ AssumptionIfThenElseSimplified ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

→ ConclusionIfThenElseTheoImproved ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

ifThenElseTheorem1SimplifiedImproved : IfThenElseTheorem1SimplifiedImprovedStm

ifThenElseTheorem1SimplifiedImproved ifStack1 φ true φ false ψ ifCaseProg elseCaseProg assu =

(liftStackPred2Pred (truePredaux φ true ]sp falsePredaux φ false)

ifStack1)

<=>〈 conclusionIfThenElse<=> ifStack1 φ true φ false ifCaseProg elseCaseProg 〉

((truePred φ true ∧p ifStackPredicate ifStack1) ]p

(falsePred φ false ∧p ifStackPredicate ifStack1))

<><>〈 ifThenElseProg ifCaseProg elseCaseProg

〉〈 proofIfThenElseTheorem1Simplified ifStack1 φ true φ false ψ

ifCaseProg elseCaseProg assu 〉e

liftStackPred2Pred ψ ifStack1

‚p
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B.22 Prrof non-active stack

open import basicBitcoinDataType

module verificationWithIfStack.ifThenElseTheoremPart8nonActive (param : GlobalParameters) where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Sum

open import Data.Bool hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head)

open import Data.Maybe

open import Relation.Nullary hiding (True)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.listLib

open import libraries.equalityLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.emptyLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate

open import instruction
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open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.hoareTriple param

open import verificationWithIfStack.equalitiesIfThenElse param

open import verificationWithIfStack.ifThenElseTheoremPart1 param

opEndIfCorrectnessNonActIfStack1 : (φ : StackPredicate )(ifStack1 : IfStack)

→ (nonactive : IsNonActiveIfStack ifStack1)

→ < liftStackPred2PredIgnoreIfStack φ ∧p

ifStackPredicateElseSkipOrIgnoreOnTop ifStack1 >if f

(opEndIf :: [])

< liftStackPred2Pred φ ifStack1 >

opEndIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .==>

〈 currentTime1 , msg1 , stack1 , ifSkip :: ifStack2 , consis1 〉

(conj and3 ())

opEndIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .==>

〈 currentTime1 , msg1 , stack1 , elseSkip :: .ifStack1 , consis1 〉

(conj and3 refl) = conj and3 refl

opEndIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .==>

〈 currentTime1 , msg1 , stack1 , ifIgnore :: .ifStack1 , consis1 〉

(conj and3 refl) = conj and3 refl

opEndIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , stack1 , ifCase :: .ifStack1 , consis1 〉

(conj and3 refl) = let

isactive1 : True (isActiveIfStack ifStack1)

isactive1 = ∧bproj1 consis1

nonAct : ¬ (True (isActiveIfStack ifStack1))

nonAct = ¬bLem nonactive

in efq (nonAct isactive1)
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opEndIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , stack1 , elseCase :: .ifStack1 , consis1 〉

(conj and3 refl) = efq ( (¬bLem nonactive) (∧bproj1 consis1))

opEndIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , stack1 , ifSkip :: .ifStack1 , consis1 〉

(conj and3 refl) = efq ( (¬bLem nonactive) (∧bproj1 consis1))

opEndIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , stack1 , elseSkip :: .ifStack1 , consis1 〉

(conj and3 refl) = conj and3 refl

opEndIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , stack1 , ifIgnore :: .ifStack1 , consis1 〉

(conj and3 refl) = conj and3 refl

opEndIfCorrectnessNonActIfStack<=> : (φ : StackPredicate ) (ifStack1 : IfStack)

→ ((liftStackPred2Pred φ (elseSkip :: ifStack1)) ]p

(liftStackPred2Pred φ (ifIgnore :: ifStack1)))

<=>p

(liftStackPred2PredIgnoreIfStack φ ∧p

ifStackPredicateElseSkipOrIgnoreOnTop ifStack1)

opEndIfCorrectnessNonActIfStack<=> φ ifStack1 .==>e

〈 currentTime1 , msg1 , stack1 , .(elseSkip :: ifStack1) , consis1 〉

(inj1 (conj and3 refl)) = conj and3 refl

opEndIfCorrectnessNonActIfStack<=> φ ifStack1 .==>e

〈 currentTime1 , msg1 , stack1 , .(ifIgnore :: ifStack1) , consis1 〉

(inj2 (conj and3 refl)) = conj and3 refl

opEndIfCorrectnessNonActIfStack<=> φ ifStack1 .<==e

〈 currentTime1 , msg1 , stack1 , elseSkip :: .ifStack1 , consis1 〉

(conj and3 refl) = inj1 (conj and3 refl)

opEndIfCorrectnessNonActIfStack<=> φ ifStack1 .<==e

〈 currentTime1 , msg1 , stack1 , ifIgnore :: .ifStack1 , consis1 〉

(conj and3 refl) = inj2 (conj and3 refl)
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opEndIfCorrectnessNonActIfStack2 : (φ : StackPredicate ) (ifStack1 : IfStack)

→ (nonactive : IsNonActiveIfStack ifStack1)

→ < ((liftStackPred2Pred φ (elseSkip :: ifStack1)) ]p

(liftStackPred2Pred φ (ifIgnore :: ifStack1))) >if f

(opEndIf :: [])

< liftStackPred2Pred φ ifStack1 >

opEndIfCorrectnessNonActIfStack2 φ ifStack1 nonactive =

((liftStackPred2Pred φ (elseSkip :: ifStack1)) ]p

(liftStackPred2Pred φ (ifIgnore :: ifStack1)))

<=>〈 opEndIfCorrectnessNonActIfStack<=> φ ifStack1 〉

liftStackPred2PredIgnoreIfStack φ ∧p

ifStackPredicateElseSkipOrIgnoreOnTop ifStack1

<><>〈 opEndIf :: [] 〉〈

opEndIfCorrectnessNonActIfStack1 φ ifStack1 nonactive 〉e

liftStackPred2Pred φ ifStack1

‚p

opElseCorrectnessNonActIfStack1 : (φ : StackPredicate ) (ifStack1 : IfStack)

(nonactive : IsNonActiveIfStack ifStack1)

→ < liftStackPred2Pred φ (ifIgnore :: ifStack1) >if f

(opElse :: [])

< liftStackPred2Pred φ (elseSkip :: ifStack1) >

opElseCorrectnessNonActIfStack1 φ ifStack1 nonactive .==>

〈 currentTime1 , msg1 , stack1 , .(ifIgnore :: ifStack1) , consis1 〉

(conj and3 refl) = conj and3 refl

opElseCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , stack1 , ifCase :: .ifStack1 , consis1 〉

(conj and3 refl) = efq ( (¬bLem nonactive) (∧bproj1 consis1))

opElseCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , stack1 , ifIgnore :: .ifStack1 , consis1 〉

(conj and3 refl) = conj and3 refl

opElseCorrectnessNonActIfStack2 : (φ : StackPredicate ) (ifStack1 : IfStack)
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(nonactive : IsNonActiveIfStack ifStack1)

→ < liftStackPred2Pred φ (ifIgnore :: ifStack1) >if f

(opElse :: [])

< (((liftStackPred2Pred φ (elseSkip :: ifStack1)) ]p

(liftStackPred2Pred φ (ifSkip :: ifStack1))) ]p

(liftStackPred2Pred φ (ifIgnore :: ifStack1))) >

opElseCorrectnessNonActIfStack2 φ ifStack1 nonactive

= ]HoareLemma1 ((opElse :: []))

(]HoareLemma1 (opElse :: [])

(opElseCorrectnessNonActIfStack1 φ ifStack1 nonactive)

(opElseCorrectness4 φ ifStack1))

(opElseCorrectness5 φ ifStack1)

opIfCorrectnessNonActIfStack1 : (φ : StackPredicate ) (ifStack1 : IfStack)

→ (nonactive : IsNonActiveIfStack ifStack1)

→ < liftStackPred2Pred φ ifStack1 >if f

(opIf :: [])

< liftStackPred2Pred φ (ifIgnore :: ifStack1) >

opIfCorrectnessNonActIfStack1 φ (ifSkip :: ifStack1) nonactive .==>

〈 currentTime1 , msg1 , stack1 , .(ifSkip :: ifStack1) , consis1 〉 (conj and3 refl)

= conj and3 refl

opIfCorrectnessNonActIfStack1 φ (elseSkip :: ifStack1) nonactive .==>

〈 currentTime1 , msg1 , stack1 , .(elseSkip :: ifStack1) , consis1 〉

(conj and3 refl) = conj and3 refl

opIfCorrectnessNonActIfStack1 φ (ifIgnore :: ifStack1) nonactive .==>

〈 currentTime1 , msg1 , stack1 , .(ifIgnore :: ifStack1) , consis1 〉

(conj and3 refl) = conj and3 refl

opIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , zero :: stack1 , [] , consis1 〉 ()

opIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , suc x1 :: stack1 , [] , consis1 〉 ()

opIfCorrectnessNonActIfStack1 φ .(ifSkip :: ifStack2) nonactive .<==

〈 currentTime1 , msg1 , [] , ifSkip :: ifStack2 , consis1 〉

(conj and3 refl) = conj and3 refl
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opIfCorrectnessNonActIfStack1 φ .(elseSkip :: ifStack2) nonactive .<==

〈 currentTime1 , msg1 , [] , elseSkip :: ifStack2 , consis1 〉

(conj and3 refl) = conj and3 refl

opIfCorrectnessNonActIfStack1 φ .(ifIgnore :: ifStack2) nonactive .<==

〈 currentTime1 , msg1 , [] , ifIgnore :: ifStack2 , consis1 〉

(conj and3 refl) = conj and3 refl

opIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , zero :: stack1 , ifCase :: ifStack2 , consis1 〉 ()

opIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , suc x2 :: stack1 , ifCase :: ifStack2 , consis1 〉 ()

opIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , zero :: stack1 , elseCase :: ifStack2 , consis1 〉 ()

opIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , suc x2 :: stack1 , elseCase :: ifStack2 , consis1 〉 ()

opIfCorrectnessNonActIfStack1 φ .(ifSkip :: ifStack2) nonactive .<==

〈 currentTime1 , msg1 , x2 :: stack1 , ifSkip :: ifStack2 , consis1 〉

(conj and3 refl) = conj and3 refl

opIfCorrectnessNonActIfStack1 φ .(elseSkip :: ifStack2) nonactive .<==

〈 currentTime1 , msg1 , x2 :: stack1 , elseSkip :: ifStack2 , consis1 〉

(conj and3 refl) = conj and3 refl

opIfCorrectnessNonActIfStack1 φ .(ifIgnore :: ifStack2) nonactive .<==

〈 currentTime1 , msg1 , x2 :: stack1 , ifIgnore :: ifStack2 , consis1 〉

(conj and3 refl) = conj and3 refl

opIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , [] , [] , consis1 〉 ()

opIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , [] , ifCase :: ifStack2 , consis1 〉 ()

opIfCorrectnessNonActIfStack1 φ ifStack1 nonactive .<==

〈 currentTime1 , msg1 , [] , elseCase :: ifStack2 , consis1 〉 ()

record AssumptionIfThenElseNonActIfSt (ifStack1 : IfStack)

(φ : StackPredicate)
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(ifCaseProg elseCaseProg : BitcoinScript) : Set where

constructor assumptionIfThenElseNActIfSt

field

nonActive : IsNonActiveIfStack ifStack1

ifCaseIfIgnore :

< liftStackPred2Pred φ (ifIgnore :: ifStack1) >if f

ifCaseProg

< liftStackPred2Pred φ (ifIgnore :: ifStack1) >

elseCaseSkip :

(x : IfStackEl) → ifStackElementIsElseSkipOrIfIgnore x

→ < liftStackPred2Pred φ (x :: ifStack1) >if f

elseCaseProg

< liftStackPred2Pred φ (x :: ifStack1) >

open AssumptionIfThenElseNonActIfSt public

lemmaIfThenElseNonActiveEndingElseSkip :

(ifStack1 : IfStack)

(φ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElseNonActIfSt ifStack1 φ ifCaseProg elseCaseProg)

→ < liftStackPred2Pred φ ifStack1 >if f

(opIf :: (ifCaseProg ++ opElse ::’ elseCaseProg))

< liftStackPred2Pred φ (elseSkip :: ifStack1) >

lemmaIfThenElseNonActiveEndingElseSkip ifStack1 φ ifCaseProg elseCaseProg assu

= liftStackPred2Pred φ ifStack1

<><>〈 opIf :: [] 〉〈

opIfCorrectnessNonActIfStack1 φ ifStack1 (assu .nonActive) 〉

liftStackPred2Pred φ (ifIgnore :: ifStack1)

<><>〈 ifCaseProg 〉〈 assu .ifCaseIfIgnore 〉

liftStackPred2Pred φ (ifIgnore :: ifStack1)

<><>〈 opElse :: [] 〉〈

opElseCorrectnessNonActIfStack1 φ ifStack1 (assu .nonActive) 〉

liftStackPred2Pred φ (elseSkip :: ifStack1)

<><>〈 elseCaseProg 〉〈 assu .elseCaseSkip elseSkip tt 〉e
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liftStackPred2Pred φ (elseSkip :: ifStack1)

‚p

lemmaIfThenElseNonActiveEndingIfIgnore :

(ifStack1 : IfStack)

(φ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElseNonActIfSt

ifStack1 φ ifCaseProg elseCaseProg)

→ < ⊥p >if f

(opIf :: (ifCaseProg ++ opElse ::’ elseCaseProg))

< liftStackPred2Pred φ (ifIgnore :: ifStack1) >

lemmaIfThenElseNonActiveEndingIfIgnore ifStack1 φ ifCaseProg elseCaseProg assu

= ⊥p

<><>〈 opIf :: [] 〉〈 ⊥Lemmap (opIf :: [] ) 〉

⊥p

<><>〈 ifCaseProg 〉〈 ⊥Lemmap ifCaseProg 〉

⊥p

<><>〈 opElse :: [] 〉〈 opElseCorrectness5 φ ifStack1 〉

liftStackPred2Pred φ (ifIgnore :: ifStack1)

<><>〈 elseCaseProg 〉〈 assu .elseCaseSkip ifIgnore tt 〉e

liftStackPred2Pred φ (ifIgnore :: ifStack1)

‚p

lemmaIfThenElseNonActiveEndingElseSkiporIfIgnore :

(ifStack1 : IfStack)

(φ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElseNonActIfSt ifStack1 φ ifCaseProg elseCaseProg)

→ < liftStackPred2Pred φ ifStack1 >if f

(opIf :: (ifCaseProg ++ opElse ::’ elseCaseProg))

< ((liftStackPred2Pred φ (elseSkip :: ifStack1)) ]p

(liftStackPred2Pred φ (ifIgnore :: ifStack1))) >

lemmaIfThenElseNonActiveEndingElseSkiporIfIgnore ifStack1 φ
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ifCaseProg elseCaseProg assumption

= ]HoareLemma1

(opIf :: ifCaseProg ++ opElse ::’ elseCaseProg)

(lemmaIfThenElseNonActiveEndingElseSkip ifStack1 φ

ifCaseProg elseCaseProg assumption)

(lemmaIfThenElseNonActiveEndingIfIgnore ifStack1 φ

ifCaseProg elseCaseProg assumption)

theoremIfThenElseNonActiveStackaux :

(ifStack1 : IfStack)

(φ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElseNonActIfSt ifStack1

φ ifCaseProg elseCaseProg)

→ < liftStackPred2Pred φ ifStack1 >if f

((opIf :: (ifCaseProg ++ opElse ::’ elseCaseProg)) ++ (opEndIf :: []))

< liftStackPred2Pred φ ifStack1 >

theoremIfThenElseNonActiveStackaux ifStack1 φ

ifCaseProg elseCaseProg assu

= (liftStackPred2Pred φ ifStack1)

<><>〈 opIf :: (ifCaseProg ++ opElse ::’ elseCaseProg )

〉〈 lemmaIfThenElseNonActiveEndingElseSkiporIfIgnore

ifStack1 φ ifCaseProg elseCaseProg assu 〉

((liftStackPred2Pred φ (elseSkip :: ifStack1)) ]p

(liftStackPred2Pred φ (ifIgnore :: ifStack1)))

<><>〈 opEndIf :: [] 〉〈

opEndIfCorrectnessNonActIfStack2 φ ifStack1 (assu .nonActive) 〉e

liftStackPred2Pred φ ifStack1

‚p

theoremIfThenElseNonActiveStack :

(ifStack1 : IfStack)
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(φ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElseNonActIfSt ifStack1 φ

ifCaseProg elseCaseProg)

→ < liftStackPred2Pred φ ifStack1 >if f

(opIf ::’ ifCaseProg ++ opElse ::’ elseCaseProg ++ opEndIf ::’ [])

< liftStackPred2Pred φ ifStack1 >

theoremIfThenElseNonActiveStack ifStack1 φ ifCaseProg elseCaseProg assu

= transfer

(λ prog →

< liftStackPred2Pred φ ifStack1 >if f prog

< liftStackPred2Pred φ ifStack1 >)

(lemmaIfThenElseProg== ifCaseProg elseCaseProg)

(theoremIfThenElseNonActiveStackaux ifStack1 φ

ifCaseProg elseCaseProg assu)

B.23 Proof some lemmas part 1

open import basicBitcoinDataType

module verificationWithIfStack.ifThenElseTheoremVariant1 (param : GlobalParameters) where

open import Data.List.Base hiding (_++_)

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Sum

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head)

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)
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import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.listLib

open import libraries.natLib

open import libraries.equalityLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate

open import instruction

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.semanticsInstructions param

open import verificationWithIfStack.verificationLemmas param

open import verificationWithIfStack.hoareTriple param

open import verificationWithIfStack.equalitiesIfThenElse param

open import verificationWithIfStack.ifThenElseTheoremPart1 param

open import verificationWithIfStack.ifThenElseTheoremPart2 param

open import verificationWithIfStack.ifThenElseTheoremPart3 param

open import verificationWithIfStack.ifThenElseTheoremPart4 param

open import verificationWithIfStack.ifThenElseTheoremPart5 param

opEndIfCorrectness’ : (ρ : StackPredicate ) (ifStack1 : IfStack)
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→ (active : IsActiveIfStack ifStack1)

→ < liftStackPred2PredIgnoreIfStack ρ ∧p

ifStackPredicateAnyNonIfIgnoreTop ifStack1 >if f

(opEndIf :: [])

< liftStackPred2Pred ρ ifStack1 >

opEndIfCorrectness’ ρ [] active .==> 〈 time , msg1 , stack1 , x :: [] , consis1 〉

(conj and4 and5) = conj and4 refl

opEndIfCorrectness’ ρ (x :: i) active .==> 〈 time , msg1 , stack1 , x1 :: .x :: .i , consis1 〉

(conj and4 (conj refl and6)) = conj and4 refl

opEndIfCorrectness’ ρ i active .<== 〈 time , msg1 , stack1 , x :: .i , consis1 〉

(conj and4 refl) = conj and4 (conj refl (lemmaIfStackIsNonIfIgnore x i consis1 active))

lemmaEquivalenceBeforeEndIf’1 :

(ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)

(ψ : StackPredicate)

→ ((liftStackPred2Pred ψ (elseSkip :: ifStack1) ) ]p

(liftStackPred2Pred ψ (elseCase :: ifStack1) ) ]p

(liftStackPred2Pred ψ (ifCase :: ifStack1) ) ]p

(liftStackPred2Pred ψ (ifSkip :: ifStack1) ))

<=>p

(liftStackPred2PredIgnoreIfStack ψ ∧p

ifStackPredicateAnyNonIfIgnoreTop ifStack1)

lemmaEquivalenceBeforeEndIf’1 ifStack1 act ψ .==>e 〈 time , msg1 , stack1 ,

.(elseSkip :: ifStack1) , consis1 〉 (inj1 (inj1 (inj1 (conj and4 refl)))) = conj and4 (conj refl tt)

lemmaEquivalenceBeforeEndIf’1 ifStack1 act ψ .==>e 〈 time , msg1 , stack1 ,

.(elseCase :: ifStack1) , consis1 〉 (inj1 (inj1 (inj2 (conj and4 refl)))) = conj and4 (conj refl tt)

lemmaEquivalenceBeforeEndIf’1 ifStack1 act ψ .==>e 〈 time , msg1 , stack1 ,

.(ifCase :: ifStack1) , consis1 〉 (inj1 (inj2 (conj and4 refl))) = conj and4 (conj refl tt)

lemmaEquivalenceBeforeEndIf’1 ifStack1 act ψ .==>e 〈 time , msg1 , stack1 ,

.(ifSkip :: ifStack1) , consis1 〉 (inj2 (conj and4 refl)) = conj and4 (conj refl tt)

lemmaEquivalenceBeforeEndIf’1 i act ψ .<==e 〈 time , msg1 , stack1 ,

ifCase :: .i , consis1 〉 (conj and4 (conj refl and6)) = inj1 (inj2 (conj and4 refl))
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lemmaEquivalenceBeforeEndIf’1 i act ψ .<==e 〈 time , msg1 , stack1 ,

elseCase :: .i , consis1 〉 (conj and4 (conj refl and6)) = inj1 (inj1 (inj2 (conj and4 refl)))

lemmaEquivalenceBeforeEndIf’1 i act ψ .<==e 〈 time , msg1 , stack1 ,

ifSkip :: .i , consis1 〉 (conj and4 (conj refl and6)) = inj2 (conj and4 refl)

lemmaEquivalenceBeforeEndIf’1 i act ψ .<==e 〈 time , msg1 , stack1 ,

elseSkip :: .i , consis1 〉 (conj and4 (conj refl and6)) = inj1 (inj1 (inj1 (conj and4 refl)))

lemmaIfThenElseExcludingEndIf’2 : (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElse ifStack1

φ true φ false ψ ifCaseProg elseCaseProg)

→ < (truePred φ true ∧p ifStackPredicate ifStack1) ]p

(falsePred φ false ∧p ifStackPredicate ifStack1) >if f

((opIf :: [] ) ++ (ifCaseProg ++ ((opElse :: [] )

++ elseCaseProg)))

< ((liftStackPred2Pred ψ (elseSkip :: ifStack1) ) ]p

(liftStackPred2Pred ψ (elseCase :: ifStack1) )) ]p

(liftStackPred2Pred ψ (ifCase :: ifStack1) ) ]p

(liftStackPred2Pred ψ (ifSkip :: ifStack1) ) >

lemmaIfThenElseExcludingEndIf’2 ifStack1 φ true φ false ψ

ifcaseProg elsecaseProg

ass@( assumptionIfThenElse activeIfStack ifCaseDo

ifCaseSkip elseCaseDo elseCaseSkip)

= ]HoareLemma1 ((opIf :: []) ++ (ifcaseProg ++ ((opElse :: [])

++ elsecaseProg)))

(lemmaIfThenElseExcludingEndIf5 ifStack1

φ true φ false ψ ifcaseProg elsecaseProg ass)

(lemmaTopElementIfSkip ifStack1 φ false ψ

ifcaseProg elsecaseProg activeIfStack elseCaseSkip)

lemmaIfThenElseExcludingEndIf”2 : (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)
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(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElse ifStack1

φ true φ false ψ ifCaseProg elseCaseProg)

→ < (truePred φ true ∧p ifStackPredicate ifStack1) ]p

(falsePred φ false ∧p ifStackPredicate ifStack1) >if f

(opIf :: ifCaseProg ++ (opElse :: []) ++ elseCaseProg)

< ((liftStackPred2Pred ψ (elseSkip :: ifStack1) ) ]p

(liftStackPred2Pred ψ (elseCase :: ifStack1) ) ]p

(liftStackPred2Pred ψ (ifCase :: ifStack1) ) ]p

(liftStackPred2Pred ψ (ifSkip :: ifStack1) )) >

lemmaIfThenElseExcludingEndIf”2 ifStack1 φ true φ false ψ ifCaseProg

elseCaseProg assumption

= transfer (λ prog → < (truePred φ true ∧p ifStackPredicate ifStack1) ]p

(falsePred φ false ∧p ifStackPredicate ifStack1) >if f

prog

< ((liftStackPred2Pred ψ (elseSkip :: ifStack1) ) ]p

(liftStackPred2Pred ψ (elseCase :: ifStack1) ) ]p

(liftStackPred2Pred ψ (ifCase :: ifStack1) ) ]p

(liftStackPred2Pred ψ (ifSkip :: ifStack1) )) >)

( ( ((lemmaOpIfProg++[]new ifCaseProg elseCaseProg))))

(lemmaIfThenElseExcludingEndIf’2 ifStack1

φ true φ false ψ ifCaseProg elseCaseProg assumption)

lemmaEquivalenceBeforeEndIf2WithoutActiveStack” : (ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)

(ψ : StackPredicate)

→

((liftStackPred2Pred ψ (elseSkip :: ifStack1) ) ]p

(liftStackPred2Pred ψ (elseCase :: ifStack1) ) ]p

(liftStackPred2Pred ψ (ifCase :: ifStack1) ) ]p

(liftStackPred2Pred ψ (ifSkip :: ifStack1) ) ]p

(liftStackPred2Pred ψ (ifIgnore :: ifStack1) ))

<=>p

(liftStackPred2PredIgnoreIfStack ψ ∧p ifStackPredicateAnyNonIfIgnoreTop ifStack1)
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lemmaEquivalenceBeforeEndIf2WithoutActiveStack” ifStack1 active ψ .==>e

〈 time , msg1 , stack1 , ifCase :: .ifStack1 , consis1 〉

(inj1 (inj1 (inj2 (conj and4 refl)))) = conj and4 (conj refl tt)

lemmaEquivalenceBeforeEndIf2WithoutActiveStack” ifStack1 active ψ .==>e

〈 time , msg1 , stack1 , elseCase :: .ifStack1 , consis1 〉

(inj1 (inj1 (inj1 (inj2 (conj and4 refl))))) = conj and4 (conj refl tt)

lemmaEquivalenceBeforeEndIf2WithoutActiveStack” ifStack1 active ψ .==>e

〈 time , msg1 , stack1 , ifSkip :: .ifStack1 , consis1 〉

(inj1 (inj2 (conj and4 refl))) = conj and4 (conj refl tt)

lemmaEquivalenceBeforeEndIf2WithoutActiveStack” ifStack1 active ψ .==>e

〈 time , msg1 , stack1 , elseSkip :: .ifStack1 , consis1 〉

(inj1 (inj1 (inj1 (inj1 (conj and4 refl))))) = conj and4 (conj refl tt)

lemmaEquivalenceBeforeEndIf2WithoutActiveStack” ifStack1 active ψ .==>e

〈 time , msg1 , stack1 , ifIgnore :: .ifStack1 , consis1 〉 (inj2 (conj and4 refl))

= conj and4 (conj refl (lemmaIfStackIsNonIfIgnore ifIgnore ifStack1 consis1 active))

lemmaEquivalenceBeforeEndIf2WithoutActiveStack” ifStack1 active ψ .<==e

〈 time , msg1 , stack1 , ifCase :: .ifStack1 , consis1 〉

(conj and4 (conj refl and6)) = inj1 (inj1 (inj2 (conj and4 refl)))

lemmaEquivalenceBeforeEndIf2WithoutActiveStack” ifStack1 active ψ .<==e

〈 time , msg1 , stack1 , elseCase :: .ifStack1 , consis1 〉

(conj and4 (conj refl and6)) = inj1 (inj1 (inj1 (inj2 (conj and4 refl))))

lemmaEquivalenceBeforeEndIf2WithoutActiveStack” ifStack1 active ψ .<==e

〈 time , msg1 , stack1 , ifSkip :: .ifStack1 , consis1 〉

(conj and4 (conj refl and6)) = inj1 (inj2 (conj and4 refl))

lemmaEquivalenceBeforeEndIf2WithoutActiveStack” ifStack1 active ψ .<==e

〈 time , msg1 , stack1 , elseSkip :: .ifStack1 , consis1 〉 (conj and4 (conj refl and6))

= inj1 (inj1 (inj1 (inj1 (conj and4 refl))))

lemmaIfThenElseExcludingEndIf’ : (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElse ifStack1

φ true φ false ψ ifCaseProg elseCaseProg)
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→ < (truePred φ true ∧p ifStackPredicate ifStack1) ]p

(falsePred φ false ∧p ifStackPredicate ifStack1) >if f

(((opIf ::’ [] ++ ifCaseProg ++ opElse ::’ [] ++ elseCaseProg) ) )

< (liftStackPred2PredIgnoreIfStack ψ ∧p ifStackPredicateAnyNonIfIgnoreTop ifStack1) >

lemmaIfThenElseExcludingEndIf’ ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

ass@(assumptionIfThenElse activeIfStack ifCaseDo ifCaseSkip elseCaseDo elseCaseSkip)

= (truePred φ true ∧p ifStackPredicate ifStack1) ]p (falsePred φ false ∧p ifStackPredicate ifStack1)

<><>〈 opIf ::’ [] ++ ifCaseProg ++ opElse ::’ [] ++ elseCaseProg

〉〈 lemmaIfThenElseExcludingEndIf”2 ifStack1 φ true φ false ψ ifCaseProg

elseCaseProg ass 〉e

( (liftStackPred2Pred ψ (elseSkip :: ifStack1) )

]p (liftStackPred2Pred ψ (elseCase :: ifStack1) )

]p (liftStackPred2Pred ψ (ifCase :: ifStack1) )

]p (liftStackPred2Pred ψ (ifSkip :: ifStack1) ))

<=>〈 lemmaEquivalenceBeforeEndIf’1 ifStack1 activeIfStack ψ 〉

((liftStackPred2PredIgnoreIfStack ψ ∧p ifStackPredicateAnyNonIfIgnoreTop ifStack1))

‚p

B.24 Proof some lemmas part 2

open import basicBitcoinDataType

module verificationWithIfStack.ifThenElseTheoremVariant2 (param : GlobalParameters) where

open import libraries.listLib

open import Data.List.Base hiding (_++_)

open import libraries.natLib

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Sum

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)
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open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head)

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate

open import instruction

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.semanticsInstructions param

open import verificationWithIfStack.verificationLemmas param

open import verificationWithIfStack.hoareTriple param

open import verificationWithIfStack.ifThenElseTheoremPart1 param

open import verificationWithIfStack.ifThenElseTheoremPart3 param

lemmaElseSkip2PhiTrue : (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElse ifStack1 φ true φ false ψ ifCaseProg elseCaseProg)

→ < (truePred φ true ∧p ifStackPredicate ifStack1 ) >if f –
((opIf :: [] ) ++ (ifCaseProg ++ ((opElse :: [] ) ++ elseCaseProg )))

< liftStackPred2Pred ψ (elseSkip :: ifStack1) >
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lemmaElseSkip2PhiTrue ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

(assumptionIfThenElse activeIfStack ifCaseDo ifCaseSkip elseCaseDo elseCaseSkip)

= (truePred φ true ∧p ifStackPredicate ifStack1)

<><>〈 opIf :: [] 〉〈 opIfCorrectness1 φ true ifStack1 activeIfStack 〉

(liftStackPred2Pred φ true (ifCase :: ifStack1) )

<><>〈 ifCaseProg 〉〈 ifCaseDo 〉

(liftStackPred2Pred ψ (ifCase :: ifStack1) )

<><>〈 (opElse :: []) 〉〈 opElseCorrectness1 ψ ifStack1 activeIfStack 〉

(liftStackPred2Pred ψ (elseSkip :: ifStack1) )

<><>〈 elseCaseProg 〉〈 elseCaseSkip elseSkip tt 〉e

(liftStackPred2Pred ψ (elseSkip :: ifStack1) )

‚p

lemmaElseCase2PhiTrue : (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElse ifStack1 φ true φ false ψ ifCaseProg elseCaseProg)

→ < (falsePred φ false ∧p ifStackPredicate ifStack1) >if f

((opIf :: [] ) ++ (ifCaseProg ++ ((opElse :: [] ) ++ elseCaseProg )))

< liftStackPred2Pred ψ (elseCase :: ifStack1 ) >

lemmaElseCase2PhiTrue ifStack1 φ true φ false ψ ifCaseProg elseCaseProg

(assumptionIfThenElse activeIfStack ifCaseDo ifCaseSkip elseCaseDo elseCaseSkip)

= (falsePred φ false ∧p ifStackPredicate ifStack1)

<><>〈 opIf :: [] 〉〈 opIfCorrectness2 φ false ifStack1 activeIfStack 〉

(liftStackPred2Pred φ false ( ifSkip :: ifStack1))

<><>〈 ifCaseProg 〉〈 ifCaseSkip 〉

((liftStackPred2Pred φ false (ifSkip :: ifStack1)))

<><>〈 (opElse :: []) 〉〈 opElseCorrectness2 φ false ifStack1 〉

(((liftStackPred2Pred φ false (elseCase :: ifStack1))))

<><>〈 elseCaseProg 〉〈 elseCaseDo elseCase tt 〉e

(liftStackPred2Pred ψ (elseCase :: ifStack1) )

‚p
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lemmaIfThenElseExcludingEndIf4’ : (ifStack1 : IfStack)

(φ true φ false ψ : StackPredicate)

(ifCaseProg elseCaseProg : BitcoinScript)

(assumption : AssumptionIfThenElse ifStack1 φ true φ false ψ ifCaseProg elseCaseProg)

→ < (truePred φ true ∧p ifStackPredicate ifStack1) ]p

(falsePred φ false ∧p ifStackPredicate ifStack1) >if f

((opIf :: [] ) ++ (ifCaseProg ++ ((opElse :: [] ) ++ elseCaseProg )))

< (liftStackPred2Pred ψ (elseSkip :: ifStack1) ) ]p

(liftStackPred2Pred ψ (elseCase :: ifStack1) ) >

lemmaIfThenElseExcludingEndIf4’ ifStack1 φ true φ false ψ ifCaseProg elseCaseProg assumption

= ]HoareLemma2

((opIf :: []) ++ (ifCaseProg ++ ((opElse :: []) ++ elseCaseProg )))

(lemmaElseSkip2PhiTrue ifStack1 φ true φ false ψ ifCaseProg elseCaseProg assumption)

(lemmaElseCase2PhiTrue ifStack1 φ true φ false ψ ifCaseProg elseCaseProg assumption)

B.25 Proof some lemmas part 3

open import basicBitcoinDataType

module verificationWithIfStack.stackSemanticsInstructionsLemma (param : GlobalParameters) where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

– open import Data.List.NonEmpty hiding (head)
open import Data.Maybe

import Relation.Binary.PropositionalEquality as Eq
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open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

–open import Agda.Builtin.Equality.Rewrite

open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import instruction

open import semanticBasicOperations param

open import stackSemanticsInstructions param

open import verificationWithIfStack.state

open import verificationWithIfStack.semanticsInstructions param

lemmaStackSemIsSemantics : (op : InstructionAll) (nonIf : NonIfInstr op)

→ J op Ks ≡ stackTransform2StateTransform J [ op ] Kstack

lemmaStackSemIsSemantics opEqual nonif = refl

lemmaStackSemIsSemantics opAdd nonif = refl

lemmaStackSemIsSemantics (opPush x) nonif = refl

lemmaStackSemIsSemantics opSub nonif = refl

lemmaStackSemIsSemantics opVerify nonif = refl

lemmaStackSemIsSemantics opCheckSig nonif = refl

lemmaStackSemIsSemantics opEqualVerify nonif = refl

lemmaStackSemIsSemantics opDup nonif = refl

lemmaStackSemIsSemantics opDrop nonif = refl

lemmaStackSemIsSemantics opSwap nonif = refl

lemmaStackSemIsSemantics opHash nonif = refl

lemmaStackSemIsSemantics opCHECKLOCKTIMEVERIFY nonif = refl

lemmaStackSemIsSemantics opCheckSig3 nonif = refl
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lemmaStackSemIsSemantics opMultiSig nonif = refl

B.26 Verification ifThenElse P2PKH Part1

open import basicBitcoinDataType

module verificationWithIfStack.verificationifThenElseP2PKHPart1 (param : GlobalParameters) where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head)

open import Data.Maybe

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate
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open import instruction

open import verificationP2PKHbasic param

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.hoareTriple param

open import verificationWithIfStack.verificationLemmas param

open import verificationWithIfStack.semanticsInstructions param

open import verificationWithIfStack.verificationP2PKH param

open import verificationWithIfStack.verificationP2PKHindexed param

open import verificationWithIfStack.ifThenElseTheoremPart6 param

open import verificationWithIfStack.ifThenElseTheoremPart7 param

open import verificationWithIfStack.verificationP2PKHwithIfStackindexedPart2 param

open import verificationWithIfStack.hoareTripleStackNonActiveIfStack param

IsActiveIfStackElImpliesExecution :

(ifStackEl : IfStackEl)

(ifStack1 : IfStack)

→ IsActiveIfStackEl ifStackEl

→ IsActiveIfStack (ifStackEl :: ifStack1)

IsActiveIfStackElImpliesExecution ifCase ifStack1 isDo = tt

IsActiveIfStackElImpliesExecution elseCase ifStack1 isDo = tt

ifStackElementIsSkipImpliesSkipping :

(ifStackEl : IfStackEl)

(ifStack1 : IfStack)

→ IsNonActiveIfStackEl ifStackEl

→ IsNonActiveIfStack (ifStackEl :: ifStack1)

ifStackElementIsSkipImpliesSkipping ifSkip ifStack1 isSkip = tt

ifStackElementIsSkipImpliesSkipping elseSkip ifStack1 isSkip = tt
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ifStackElementIsSkipImpliesSkipping ifIgnore ifStack1 isSkip = tt

assumptionIfThenElseP2PKH-ifCaseDo :

(pubKeyHash : N )(ifStack1 : IfStack)

→ (x : IfStackEl)

→ IsActiveIfStackEl x

→ < liftStackPred2Pred (wPreCondP2PKHs pubKeyHash) (x :: ifStack1) >if f

scriptP2PKH pubKeyHash

< liftStackPred2Pred accept-0Basic (x :: ifStack1) >

assumptionIfThenElseP2PKH-ifCaseDo pubKeyHash ifStack1 x isdo

= lemmaP2PKHwithStack-new pubKeyHash (x :: ifStack1) (IsActiveIfStackElImpliesExecution x ifStack1 isdo)

assumptionIfThenElseP2PKH-ifCaseSkipIgnore :

(pubKeyHash1 pubKeyHash2 : N )(ifStack1 : IfStack)

→ (x : IfStackEl)

→ IsNonActiveIfStackEl x

→ < liftStackPred2Pred (wPreCondP2PKHs pubKeyHash1) (x :: ifStack1) >if f

scriptP2PKH pubKeyHash2

< liftStackPred2Pred (wPreCondP2PKHs pubKeyHash1) (x :: ifStack1) >

assumptionIfThenElseP2PKH-ifCaseSkipIgnore pubKeyHash1 pubKeyHash2 ifStack1 x isSkip

= lemmaP2PKHwithNonActiveIfStack (wPreCondP2PKHs pubKeyHash1) pubKeyHash2 (x :: ifStack1)

(ifStackElementIsSkipImpliesSkipping x ifStack1 isSkip)

assumptionIfThenElseP2PKH-elseSkipIgnore :

(pubKeyHash2 : N )(ifStack1 : IfStack)

→ (x : IfStackEl)

→ IsNonActiveIfStackEl x

→ < liftStackPred2Pred accept-0Basic (x :: ifStack1) >if f

scriptP2PKH pubKeyHash2

< liftStackPred2Pred accept-0Basic (x :: ifStack1) >

assumptionIfThenElseP2PKH-elseSkipIgnore pubKeyHash2 ifStack1 x isSkip

= lemmaP2PKHwithNonActiveIfStack (λ z z1 z2 → acceptStates z z1 z2) pubKeyHash2 (x :: ifStack1)

(ifStackElementIsSkipImpliesSkipping x ifStack1 isSkip)

581



B. Full Agda code for chapter Verifying Bitcoin Script with non-local instructions
(conditionals instructions)

assumptionIfThenElseP2PKH :

(pubKeyHash1 pubKeyHash2 : N )(ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)

→ AssumptionIfThenElseSimplified ifStack1 (wPreCondP2PKHs pubKeyHash1) (wPreCondP2PKHs pubKeyHash2)

accept-0Basic (scriptP2PKH pubKeyHash1) (scriptP2PKH pubKeyHash2)

assumptionIfThenElseP2PKH pubKeyHash1 pubKeyHash2 ifStack1 active .activeIfStack = active

assumptionIfThenElseP2PKH pubKeyHash1 pubKeyHash2 ifStack1 active .ifCaseDo

= assumptionIfThenElseP2PKH-ifCaseDo pubKeyHash1 ifStack1

assumptionIfThenElseP2PKH pubKeyHash1 pubKeyHash2 ifStack1 active .ifCaseSkipIgnore x x1

= assumptionIfThenElseP2PKH-ifCaseSkipIgnore pubKeyHash2 pubKeyHash1 ifStack1 x x1

assumptionIfThenElseP2PKH pubKeyHash1 pubKeyHash2 ifStack1 active .elseCaseDo

= assumptionIfThenElseP2PKH-ifCaseDo pubKeyHash2 ifStack1

assumptionIfThenElseP2PKH pubKeyHash1 pubKeyHash2 ifStack1 active .elseCaseSkip

= assumptionIfThenElseP2PKH-elseSkipIgnore pubKeyHash2 ifStack1

ifThenElseP2PKH : (pubKeyHash1 pubKeyHash2 : N ) → BitcoinScript

ifThenElseP2PKH pubKeyHash1 pubKeyHash2 =

ifThenElseProg (scriptP2PKH pubKeyHash1) (scriptP2PKH pubKeyHash2)

– test
test = ifThenElseP2PKH 555 666

{-
test = opIf :: opDup :: opHash :: opPush 555 :: opEqual :: opVerify :: opCheckSig ::

opElse :: opDup :: opHash :: opPush 666 :: opEqual :: opVerify :: opCheckSig ::

opEndIf :: []
-}

weakestPreCondIfThenElseP2PKHStackPred : (pubKeyHash1 pubKeyHash2 : N )

→ StackPredicate

weakestPreCondIfThenElseP2PKHStackPred pubKeyHash1 pubKeyHash2

= truePredaux (weakestPreConditionP2PKHs pubKeyHash1)

]sp falsePredaux (weakestPreConditionP2PKHs pubKeyHash2)
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weakestPreCondIfThenElseP2PKHS : (pubKeyHash1 pubKeyHash2 : N )

(ifStack1 : IfStack)

→ Predicate

weakestPreCondIfThenElseP2PKHS pubKeyHash1 pubKeyHash2 ifStack1

= liftStackPred2Pred (weakestPreCondIfThenElseP2PKHStackPred pubKeyHash1 pubKeyHash2)

ifStack1

correctnessIfThenElseP2PKH1 : (pubKeyHash1 pubKeyHash2 : N )

(ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)

→ < (truePred (weakestPreConditionP2PKHs pubKeyHash1) ∧p ifStackPredicate ifStack1) ]p

(falsePred (weakestPreConditionP2PKHs pubKeyHash2) ∧p ifStackPredicate ifStack1) >if f

ifThenElseP2PKH pubKeyHash1 pubKeyHash2

< liftStackPred2Pred acceptStates ifStack1 >

correctnessIfThenElseP2PKH1 pubKeyHash1 pubKeyHash2 ifStack1 active

= proofIfThenElseTheorem1Simplified ifStack1

(weakestPreConditionP2PKHs pubKeyHash1) (weakestPreConditionP2PKHs pubKeyHash2)

acceptStates

(scriptP2PKH pubKeyHash1) (scriptP2PKH pubKeyHash2)

(assumptionIfThenElseP2PKH pubKeyHash1 pubKeyHash2 ifStack1 active)

correctnessIfThenElseP2PKH2 : (pubKeyHash1 pubKeyHash2 : N )

(ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)

→ < weakestPreCondIfThenElseP2PKHS pubKeyHash1 pubKeyHash2 ifStack1 >if f

ifThenElseP2PKH pubKeyHash1 pubKeyHash2

< liftStackPred2Pred acceptStates ifStack1 >

correctnessIfThenElseP2PKH2 pubKeyHash1 pubKeyHash2 ifStack1 active

= ifThenElseTheorem1SimplifiedImproved ifStack1

(weakestPreConditionP2PKHs pubKeyHash1) (weakestPreConditionP2PKHs pubKeyHash2)
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acceptStates

(scriptP2PKH pubKeyHash1) (scriptP2PKH pubKeyHash2)

(assumptionIfThenElseP2PKH pubKeyHash1 pubKeyHash2 ifStack1 active)

B.27 Verification some lemmas

open import basicBitcoinDataType

module verificationWithIfStack.verificationLemmas (param : GlobalParameters) where

open import libraries.listLib

open import libraries.natLib

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Maybe

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head )

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

–open import Agda.Builtin.Equality.Rewrite

open import libraries.andLib

–open import libraries.miscLib
open import libraries.maybeLib

open import libraries.boolLib
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– open import verificationWithIfStack.ifStack
open import stack

open import instruction

– open import ledger param

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.semanticsInstructions param

liftCondOperation2Program-to-simple : (accept2 : Predicate)

(op : InstructionAll) (s : State)

→ (accept2 +) (J op Ks s )

→ (accept2 +) (J op :: [] K s )

liftCondOperation2Program-to-simple accept2 op s x

= x

liftCondOperation2Program-from-simple : (accept2 : Predicate)

(op : InstructionAll) (s : State)

→ (accept2 +) (J op :: [] K s )

→ (accept2 +) (J op Ks s )

liftCondOperation2Program-from-simple accept2 op s x

= x

liftCondOperation2Program-to : (accept1 accept2 : Predicate)

(op : InstructionAll)

(correct : (s : State) → accept1 s → (accept2 +) (J op Ks s ))

(s : State)

→ accept1 s

→ (accept2 +) (J op :: [] K s )

liftCondOperation2Program-to accept1 accept2 op correct s a

= correct s a

liftCondOperation2Program-from : (accept1 accept2 : Predicate)
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(op : InstructionAll)

(correct : (s : State) → (accept2 +) (J op Ks s ) → accept1 s)

(s : State)

→ (accept2 +) (J op :: [] K s ) → accept1 s

liftCondOperation2Program-from accept1 accept2 op correct s a

= correct s a

emptyProgramCorrect-to : (accept1 : Predicate)

(s : State) → accept1 s → (accept1 +) (J [] K s )

emptyProgramCorrect-to accept1 s a = a

emptyProgramCorrect-from : (accept1 : Predicate)

(s : State) → (accept1 +) (J [] K s ) → accept1 s

emptyProgramCorrect-from accept1 s a = a

bindTransformerBack : (accept2 accept3 : Predicate)

( f : State → Maybe State)

(correct2 : (s : State) → (accept3 +) ( f s) → accept2 s)

(s : Maybe State)

→ ((accept3 +) (s >>= f )) → (accept2 +) s

bindTransformerBack accept2 accept3 f correct2 (just s) a = correct2 s a

bindTransformeraux : (accept2 accept3 : Predicate)

( f : State → Maybe State)

(correct2 : (s : State) → accept2 s → (accept3 +) ( f s ))

→ (s2 : Maybe State) → ((accept2 +) s2) → (accept3 +) (s2 >>= f )

bindTransformeraux accept2 accept3 f correct2 (just s) correct1 = correct2 s correct1

bindTransformer-toSingle : (accept1 accept2 accept3 : Predicate)

(op : InstructionAll)

(p : List InstructionAll)

(correct1 : (s : State) → accept1 s → (accept2 +) (J op Ks s ))

(correct2 : (s : State) → accept2 s → (accept3 +) (J p K s )) →

(s : State)
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→ accept1 s

→ (accept3 +) (J op :: p K s )

bindTransformer-toSingle accept1 accept2 accept3 op [] correct1 correct2 s a

= liftPredtransformerMaybe accept2 accept3 correct2 (J op Ks s) (correct1 s a)

bindTransformer-toSingle accept1 accept2 accept3 op ( p@(x :: p1) )

correct1 correct2 s a = bindTransformeraux accept2 accept3 J p K correct2 (J op Ks s) (correct1 s a)

bindTransformer-fromSingle : (accept1 accept2 accept3 : Predicate)

(op : InstructionAll)

(p : List InstructionAll)

(correct1 : (s : State) → (accept2 +) (J op Ks s ) → accept1 s)

(correct2 : (s : State) → (accept3 +) (J p K s ) → accept2 s) (s : State)

→ (accept3 +) (J op :: p K s ) → accept1 s

bindTransformer-fromSingle accept1 accept2 accept3 op [] correct1 correct2 s a

= correct1 s (liftPredtransformerMaybe accept3 accept2 correct2 (J op Ks s) a)

bindTransformer-fromSingle accept1 accept2 accept3 op (p@(x :: p1))

correct1 correct2 s a = correct1 s (bindTransformerBack accept2 accept3 J p K correct2 ( J op Ks s) a )

p++xSemLem : (x : InstructionAll)(s : Maybe State) (p : BitcoinScript)

→ (J p K+ s >>= J x Ks )

≡

J p ++ (x :: []) K+ s

p++xSemLem x nothing s = refl

p++xSemLem x (just s) [] = refl

p++xSemLem x (just s) (x1 :: []) = refl

p++xSemLem x (just s) (x1 :: x2 :: p) = p++xSemLem x (J x1 Ks s) (x2 :: p)

p++xSemLemb : (x : InstructionAll)(s : Maybe State) (p : BitcoinScript)

→ J p ++ (x :: []) K+ s

≡

(J p K+ s >>= J x Ks )

p++xSemLemb x nothing s = refl

p++xSemLemb x (just s) [] = refl

p++xSemLemb x (just s) (x1 :: []) = refl
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p++xSemLemb x (just s) (x1 :: x2 :: p) = p++xSemLemb x (J x1 Ks s ) ( x2 :: p )

p++x::qLem : (p1 p2 : BitcoinScript)(x : InstructionAll)

→ p1 ++ x ::’ p2 ≡ (p1 ++ (x :: [])) ++ p2

p++x::qLem [] p2 x = refl

p++x::qLem (x1 :: p1) p2 x = cong (λ p → x1 :: p)

(p++x::qLem p1 p2 x)

++[]lem : (p : BitcoinScript) → p ++ [] ≡ p

++[]lem [] = refl

++[]lem (x :: p) = cong (λ q → x :: q) (++[]lem p)

liftMaybeCompLemma : ( f k : State → Maybe State)(s : Maybe State)

→ (s >>= λ s1 → k s1 >>= f ) ≡ ((s >>= k) >>= f )

liftMaybeCompLemma f k nothing = refl

liftMaybeCompLemma f k (just x) = refl

liftMaybeCompLemma2 : ( f k : State → Maybe State)(s : Maybe State)

→ ((s >>= k) >>= f ) ≡ (s >>= λ s1 → k s1 >>= f )

liftMaybeCompLemma2 f k nothing = refl

liftMaybeCompLemma2 f k (just x) = refl

lemmaBindTransformerAux’ : (p1 p2 : BitcoinScript)(s : Maybe State)

→ J p2 ++ p1 K+ s ≡ (J p2 K+ s >>= J p1 K )

lemmaBindTransformerAux’ [] p2 s = J p2 ++ [] K+ s

≡〈 cong (λ p → J p K+ s) (++[]lem p2) 〉

J p2 K+ s

≡〈 liftJustEqLem2 (J p2 K+ s) 〉

(J p2 K+ s >>= just )

‚

lemmaBindTransformerAux’ (x :: []) p2 s = p++xSemLemb x s p2

lemmaBindTransformerAux’ (x :: p1@(x1 :: p1’)) p2 s

= J p2 ++ x ::’ p1 K+ s

≡〈 cong (λ p → J p K+ s ) (p++x::qLem p2 p1 x) 〉
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J (p2 ++ (x :: [])) ++ p1 K+ s

≡〈 lemmaBindTransformerAux’ p1 (p2 ++ (x :: [])) s 〉

(J p2 ++ (x :: []) K+ s >>= J p1 K )

≡〈 cong (λ t → J p1 K+ t) (p++xSemLemb x s p2) 〉

((J p2 K+ s >>= J x Ks ) >>= J p1 K )

≡〈 liftMaybeCompLemma2 J p1 K J x Ks (J p2 K+ s ) 〉

(J p2 K+ s >>= λ s1 → J x Ks s1 >>= J p1 K )

≡〈 refl 〉

(J p2 K+ s >>= J x :: p1 K )

‚

lemmaBindTransformer’ : (p1 p2 : BitcoinScript)(s : State)

→ J p2 ++ p1 K s ≡ (J p2 K s >>= J p1 K )

lemmaBindTransformer’ p1 p2 s = lemmaBindTransformerAux’ p1 p2 (just s)

lemmaBindTransformerAux : (p1 p2 : BitcoinScript)(s : Maybe State)

→ J p2 ++ p1 K+ s ≡ (J p2 K+ s >>= J p1 K )

lemmaBindTransformerAux p1 [] s = lemmaBindTransformerAux’ p1 [] s

lemmaBindTransformerAux p1 (x :: p2) s = lemmaBindTransformerAux’ p1 (x :: p2) s

lemmaBindTransformer : (p1 p2 : BitcoinScript)(s : State)

→ J p2 ++ p1 K s ≡ (J p2 K s >>= J p1 K )

lemmaBindTransformer p1 [] s = refl

lemmaBindTransformer [] (x :: []) s = liftJustIsIdLem

(λ l → J x Ks s ≡ l) (J x Ks s) refl

lemmaBindTransformer (x1 :: p1) (x :: []) s = refl

lemmaBindTransformer p1 (x :: p2@(x1 :: p2’)) s = lemmaBindTransformerAux p1 p2 (J x Ks s)

lemmaBindTransformereq : (p2 : BitcoinScript)(s : State)

→ J p2 K s ≡ (J p2 K s >>= J [] K )

lemmaBindTransformereq [] s = refl

lemmaBindTransformereq (x :: p2) s = liftJustEqLem2 (J x :: p2 K s)
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bindTransformer-toSequence : (accept1 accept2 accept3 : Predicate)

(p1 : BitcoinScript)

(p2 : BitcoinScript)

(correct1 : (s : State) → accept1 s → (accept2 +) (J p1 K s ))

(correct2 : (s : State) → accept2 s → (accept3 +) (J p2 K s )) →

(s : State) → accept1 s → (accept3 +) (J p1 ++ p2 K s )

bindTransformer-toSequence accept1 accept2

accept3 p1 p2 correct1 correct2 s a rewrite lemmaBindTransformer p2 p1 s

= bindTransformeraux accept2 accept3 J p2 K correct2 ( J p1 K s )(correct1 s a)

bindTransformer-fromSequence : (accept1 accept2 accept3 : Predicate)

(p1 : BitcoinScript)

(p2 : BitcoinScript)

(correct1 : (s : State) → (accept2 +) (J p1 K s ) → accept1 s)

(correct2 : (s : State) → (accept3 +) (J p2 K s ) → accept2 s) →

(s : State) → (accept3 +) (J p1 ++ p2 K s ) → accept1 s

bindTransformer-fromSequence accept1 accept2 accept3 p1 p2

correct1 correct2 s a rewrite lemmaBindTransformer p2 p1 s

= correct1 s (bindTransformerBack accept2 accept3 J p2 K correct2 (J p1 K s) a)

bindTransformer-toSequenceeq : (accept1 accept2 accept3 : Predicate)

(p1 : BitcoinScript)

(correct1 : (s : State) → accept1 s → (accept2 +) (J p1 K s ))

(correct2 : (s : State) → accept2 s → (accept3 +) (J [] K s )) →

(s : State) → accept1 s → (accept3 +) (J p1 K s )

bindTransformer-toSequenceeq accept1 accept2 accept3 p1

correct1 correct2 s a rewrite lemmaBindTransformereq p1 s

= bindTransformeraux accept2 accept3 J [] K correct2 ( J p1 K s )(correct1 s a)

bindTransformer-fromSequenceeq : (accept1 accept2 accept3 : Predicate)

(p1 : BitcoinScript)

(correct1 : (s : State) → (accept2 +) (J p1 K s ) → accept1 s)

(correct2 : (s : State) → (accept3 +) (J [] K s ) → accept2 s) →

590



B.28. Verification P2PKH

(s : State) → (accept3 +) (J p1 K s ) → accept1 s

bindTransformer-fromSequenceeq accept1 accept2 accept3 p1

correct1 correct2 s a rewrite lemmaBindTransformereq p1 s

= correct1 s (bindTransformerBack accept2 accept3 J [] K correct2 (J p1 K s) a)

B.28 Verification P2PKH

open import basicBitcoinDataType

module verificationWithIfStack.verificationP2PKH (param : GlobalParameters) where

open import libraries.listLib

open import Data.List.Base

open import libraries.natLib

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head )

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.andLib

open import libraries.maybeLib

open import libraries.boolLib

open import stack

open import stackPredicate
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open import instruction

open import semanticBasicOperations param

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.semanticsInstructions param

open import verificationP2PKHbasic param

accept-0 : Predicate

accept-0 = stackPred2Pred accept-0Basic

accept1 : Predicate

accept1 = stackPred2Pred accept1s

accept2 : Predicate

accept2 = stackPred2Pred accept2s

accept3 : Predicate

accept3 = stackPred2Pred accept3s

accept4 : N → Predicate

accept4 pubKey = stackPred2Pred (accept4s pubKey)

accept5 : N → Predicate

accept5 pubKey = stackPred2Pred (accept5s pubKey)

accept-6 : N → Predicate

accept-6 pubKeyHash = stackPred2Pred (wPreCondP2PKHs pubKeyHash)

correct-1-to : (s : State) → accept1 s → (accept-0 +) (J opCheckSig Ks s )

correct-1-to 〈 time , msg1 , pubKey :: sig :: st , [] , c 〉 p

= boolToNatNotFalseLemma (isSigned msg1 sig pubKey) p
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correct-1-from : (s : State) → (accept-0 +) (J opCheckSig Ks s )

→ accept1 s

correct-1-from 〈 time , msg1 , pubKey :: sig :: stack1 , [] , c 〉 p

= boolToNatNotFalseLemma2 (isSigned msg1 sig pubKey) p

correct-1-from 〈 time , msg1 , x :: [] , ifCase :: ifStack1 , c 〉 ()

correct-1-from 〈 time , msg1 , x :: x1 :: stack1 , ifCase :: ifStack1 , c 〉 ()

correct-1-from 〈 time , msg1 , x :: [] , elseCase :: ifStack1 , c 〉 ()

correct-1-from 〈 time , msg1 , x :: x1 :: stack1 , elseCase :: ifStack1 , c 〉 ()

correct-2-to : (s : State) → accept2 s → (accept1 +) (J opVerify Ks s )

correct-2-to 〈 time , msg1 , suc x :: x1 :: x2 :: stack1 , [] , c 〉 p = p

correct-2-from : (s : State) → (accept1 +) (J opVerify Ks s ) → accept2 s

correct-2-from 〈 time , msg1 , suc x :: x1 :: x2 :: stack1 , [] , c 〉 p = p

correct-2-from 〈 time , msg1 , zero :: stack1 , ifCase :: s , c 〉 ()

correct-2-from 〈 time , msg1 , suc x :: stack1 , ifCase :: s , c 〉 ()

correct-2-from 〈 time , msg1 , zero :: stack1 , elseCase :: s , c 〉 ()

correct-2-from 〈 time , msg1 , suc x :: stack1 , elseCase :: s , c 〉 ()

correct-3-to : (s : State) → accept3 s → (accept2 +) (J opEqual Ks s )

correct-3-to 〈 time , msg1 , pubKey1 :: .pubKey1 :: pubKey2 :: sig :: [] , [] , c 〉

(conj refl checkSig) rewrite ( lemmaCompareNat pubKey1 ) = checkSig

correct-3-to 〈 time , msg1 , pubKey1 :: .pubKey1 :: pubKey2 :: sig :: x ::

rest , [] , c 〉 (conj refl checkSig) rewrite ( lemmaCompareNat pubKey1 ) = checkSig

correct-3-from : (s : State) → (accept2 +) (J opEqual Ks s ) → accept3 s

correct-3-from 〈 time , msg1 , x :: x1 :: pbk :: sig :: stack1 , [] , c 〉

p rewrite ( lemmaCorrect3From x x1 pbk sig time msg1 p )

= let

q : True (isSigned msg1 sig pbk)

q = correct3Aux2 (compareNaturals x x1) pbk sig stack1 time msg1 p

in (conj refl q)
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correct-3-from 〈 time , msg1 , x :: [] , ifCase :: ifStack1 , c 〉 ()

correct-3-from 〈 time , msg1 , x :: x1 :: [] , ifCase :: ifStack1 , c 〉 ()

correct-3-from 〈 time , msg1 , x :: x1 :: x2 :: stack1 , ifCase :: ifStack1 , c 〉 ()

correct-3-from 〈 time , msg1 , x :: [] , elseCase :: ifStack1 , c 〉 ()

correct-3-from 〈 time , msg1 , x :: x1 :: stack1 , elseCase :: ifStack1 , c 〉 ()

correct-4-to : ( pubKey : N ) → (s : State)

→ accept4 pubKey s → (accept3 +) (J opPush pubKey Ks s )

correct-4-to pubKey 〈 currentTime1 , msg1 ,

.pubKey :: x1 :: x2 :: stack1 , [] , consis1 〉 (conj refl and4) = conj refl and4

correct-4-from : ( pubKey : N ) → (s : State)

→ (accept3 +) (J opPush pubKey Ks s ) → accept4 pubKey s

correct-4-from pubKey 〈 currentTime1 , msg1 ,

.pubKey :: x1 :: x2 :: stack1 , [] , consis1 〉 (conj refl and4) = conj refl and4

correct-4-from pubKey 〈 currentTime1 , msg1 ,

stack1 , ifCase :: ifStack1 , consis1 〉 ()

correct-4-from pubKey 〈 currentTime1 , msg1 ,

stack1 , elseCase :: ifStack1 , consis1 〉 ()

correct-4-from pubKey 〈 currentTime1 , msg1 ,

stack1 , ifSkip :: ifStack1 , consis1 〉 ()

correct-4-from pubKey 〈 currentTime1 , msg1 ,

stack1 , elseSkip :: ifStack1 , consis1 〉 ()

correct-4-from pubKey 〈 currentTime1 , msg1 ,

stack1 , ifIgnore :: ifStack1 , consis1 〉 ()

correct-5-to : (pubKey : N ) → (s : State)

→ accept5 pubKey s → ((accept4 pubKey ) +) (J opHash Ks s )

correct-5-to pubKey 〈 time , msg1 , x :: x1 :: x2

:: stack1 , [] , c 〉 (conj refl checkSig) = (conj refl checkSig)

correct-5-from : ( pubKey : N ) → (s : State)

→ ((accept4 pubKey) +) (J opHash Ks s ) → accept5 pubKey s

correct-5-from .(hashFun x) 〈 time , msg1 ,
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x :: x1 :: x2 :: stack1 , [] , c 〉 (conj refl checkSig) = conj refl checkSig

correct-5-from pubKey 〈 time , msg1 , [] , ifCase :: ifStack1 , c 〉 ()

correct-5-from pubKey 〈 time , msg1 , x :: stack1 , ifCase :: ifStack1 , c 〉 p = p

correct-5-from pubKey 〈 time , msg1 , [] , elseCase :: ifStack1 , c 〉 p = p

correct-5-from pubKey 〈 time , msg1 , x :: stack1 , elseCase :: ifStack1 , c 〉 p = p

correct-6-to : (pubKeyHash : N ) → (s : State) →

accept-6 pubKeyHash s → ((accept5 pubKeyHash ) +) (J opDup Ks s )

correct-6-to pubKeyHash 〈 time , msg1 , x :: x1 :: [] , [] , c 〉 p = p

correct-6-to pubKeyHash 〈 time , msg1 , x :: x1 :: x2 :: stack1 , [] , c 〉 p = p

correct-6-from : ( pubKeyHash : N ) → (s : State)

→ ((accept5 pubKeyHash) +) (J opDup Ks s ) → accept-6 pubKeyHash s

correct-6-from pubKeyHash 〈 time , msg1 , x :: x1 :: stack1 , [] , c 〉 p = p

correct-6-from pubKeyHash 〈 time , msg1 , [] , ifCase :: ifStack1 , c 〉 p = p

correct-6-from pubKeyHash 〈 time , msg1 , x :: [] , ifCase :: ifStack1 , c 〉 p = p

correct-6-from pubKeyHash 〈 time , msg1 , x :: x1 :: stack1 , ifCase :: ifStack1 , c 〉 p = p

B.29 Verification P2PKH indexed

open import basicBitcoinDataType

module verificationWithIfStack.verificationP2PKHindexed (param : GlobalParameters) where

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.List.NonEmpty hiding (head )
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open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

–open import Agda.Builtin.Equality.Rewrite

open import libraries.andLib

open import libraries.maybeLib

open import libraries.boolLib

open import libraries.listLib

open import libraries.natLib

open import stack

open import stackPredicate

open import instruction

open import semanticBasicOperations param

open import verificationP2PKHbasic param

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.semanticsInstructions param

open import verificationWithIfStack.verificationLemmas param

open import verificationWithIfStack.hoareTriple param

open import verificationWithIfStack.verificationP2PKH param

instructions : (pubKeyHash : N) (n : N) → n ≤ 5 → InstructionAll

instructions pbkh n p = basicInstr2Instr (instructionsBasic pbkh n p)

script : (pubKeyHash : N) (n : N) → n ≤ 6 → BitcoinScript

script pubKeyHash 0 _ = []

script pubKeyHash (suc n) p
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= instructions pubKeyHash n p :: script pubKeyHash n (leqSucLemma n 5 p)

script’ : (pubKeyHash : N) (n : N) → n ≤ 6 → BitcoinScript

script’ pubKeyHash 0 _ = []

script’ pubKeyHash (suc n) p

= (instructions pubKeyHash n p :: [] ) ++ script’ pubKeyHash n (leqSucLemma n 5 p)

conditionBasic : (pubKeyHash : N) (n : N) → n ≤ 6 → StackPredicate

conditionBasic pubKeyHash 0 _ = acceptStates

conditionBasic pubKeyHash 1 _ = accept1s

conditionBasic pubKeyHash 2 _ = accept2s

conditionBasic pubKeyHash 3 _ = accept3s

conditionBasic pubKeyHash 4 _ = accept4s pubKeyHash

conditionBasic pubKeyHash 5 _ = accept5s pubKeyHash

conditionBasic pubKeyHash 6 _ = wPreCondP2PKHs pubKeyHash

condition : (pubKeyHash : N) (n : N) → n ≤ 6 → (s : State) → Set

condition pubKeyHash n p = stackPred2Pred (conditionBasic pubKeyHash n p)

correct-1-to’ : (s : State) → accept1 s

→ (acceptState +) (J opCheckSig Ks s)

correct-1-to’ 〈 time , msg1 , pubKey :: sig :: st , [] , c 〉 p

= boolToNatNotFalseLemma (isSigned msg1 sig pubKey) p

correct-1-from’ : (s : State)

→ (acceptState +) (J opCheckSig Ks s)

→ accept1 s

correct-1-from’ 〈 time , msg1 , pubKey :: sig :: stack1 , [] , c 〉 p

= boolToNatNotFalseLemma2 (isSigned msg1 sig pubKey) p

correct-1-from’ 〈 time , msg1 , x :: [] , ifCase :: ifStack1 , c 〉 p = p

correct-1-from’ 〈 time , msg1 , x :: x1 :: stack1 , ifCase :: ifStack1 , c 〉 p = p

correct-1-from’ 〈 time , msg1 , x :: [] , elseCase :: ifStack1 , c 〉 p = p

correct-1-from’ 〈 time , msg1 , x :: x1 :: stack1 , elseCase :: ifStack1 , c 〉 p = p
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correctStep-to : (pubKeyHash : N) (n : N) (p : n ≤ 5)

(s : State)

→ condition pubKeyHash (suc n) p s

→ ((condition pubKeyHash n (leqSucLemma n 5 p)) +)

(J instructions pubKeyHash n p Ks s)

correctStep-to pubKeyHash 0 _ = correct-1-to’

correctStep-to pubKeyHash 1 _ = correct-2-to

correctStep-to pubKeyHash 2 _ = correct-3-to

correctStep-to pubKeyHash 3 _ = correct-4-to pubKeyHash

correctStep-to pubKeyHash 4 _ = correct-5-to pubKeyHash

correctStep-to pubKeyHash 5 _ = correct-6-to pubKeyHash

correctStep-from : (pubKeyHash : N) (n : N)(p : n ≤ 5)(s : State)

→ ((condition pubKeyHash n (leqSucLemma n 5 p)) +)

(J instructions pubKeyHash n p Ks s)

→ condition pubKeyHash (suc n) p s

correctStep-from pubKeyHash 0 _ = correct-1-from’

correctStep-from pubKeyHash 1 _ = correct-2-from

correctStep-from pubKeyHash 2 _ = correct-3-from

correctStep-from pubKeyHash 3 _ = correct-4-from pubKeyHash

correctStep-from pubKeyHash 4 _ = correct-5-from pubKeyHash

correctStep-from pubKeyHash 5 _ = correct-6-from pubKeyHash

correct-from : (pubKeyHash : N) (n : N) (p : n ≤ 6)(s : State)

→ (acceptState +) ( J script pubKeyHash n p K s)

→ condition pubKeyHash n p s

correct-from pubKeyHash 0 p s st

= emptyProgramCorrect-from (condition pubKeyHash 0 tt) s st

correct-from pubKeyHash (suc n) p s st

= bindTransformer-fromSingle

(condition pubKeyHash (suc n) p)
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(condition pubKeyHash n (leqSucLemma n 5 p))

acceptState

(instructions pubKeyHash n p)

(script pubKeyHash n (leqSucLemma n 5 p))

(correctStep-from pubKeyHash n p)

(correct-from pubKeyHash n (leqSucLemma n 5 p)) s st

correct-to : (pubKeyHash : N) (n : N) (p : n ≤ 6)(s : State)

→ condition pubKeyHash n p s

→ (acceptState +) (J script pubKeyHash n p K s)

correct-to pubKeyHash 0 p = emptyProgramCorrect-to (condition pubKeyHash 0 tt)

correct-to pubKeyHash (suc n) p = bindTransformer-toSingle (condition pubKeyHash (suc n) p)

(condition pubKeyHash n (leqSucLemma n 5 p)) acceptState

(instructions pubKeyHash n p)

(script pubKeyHash n (leqSucLemma n 5 p))

(correctStep-to pubKeyHash n p)

(correct-to pubKeyHash n (leqSucLemma n 5 p))

completeCorrect-1-to : (s : State) → accept1 s

→ (acceptState +) (J script-1 K s)

completeCorrect-1-to 〈 time , msg1 , pubKey :: sig :: st , [] , c 〉 p

= boolToNatNotFalseLemma (isSigned msg1 sig pubKey) p

completeCorrect-1-from : (s : State)

→ (acceptState +) (J script-1 K s )

→ accept1 s

completeCorrect-1-from 〈 time , msg1 , pubKey :: sig :: stack1 , [] , c 〉 p

= boolToNatNotFalseLemma2 (isSigned msg1 sig pubKey) p

completeCorrect-1-from 〈 time , msg1 , x :: [] , ifCase :: ifStack1 , c 〉 ()

completeCorrect-1-from 〈 time , msg1 , x :: x1 :: stack1 , ifCase :: ifStack1 , c 〉 ()

completeCorrect-1-from 〈 time , msg1 , x :: [] , elseCase :: ifStack1 , c 〉 ()

completeCorrect-1-from 〈 time , msg1 , x :: x1 :: stack1 , elseCase :: ifStack1 , c 〉 ()
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completeCorrect-2-to : (s : State) → accept2 s

→ (acceptState +) (J script-2 K s)

completeCorrect-2-to s a

= bindTransformer-toSingle accept2 accept1 acceptState (basicInstr2Instr instruction-2)

script-1 correct-2-to completeCorrect-1-to s a

completeCorrect-2-from : (s : State) → (acceptState +) (J script-2 K s) → accept2 s

completeCorrect-2-from s a = bindTransformer-fromSingle accept2 accept1 acceptState

(basicInstr2Instr instruction-2) script-1 correct-2-from completeCorrect-1-from s a

completeCorrect-3-to : (s : State) → accept3 s → (acceptState +) (J script-3 K s)

completeCorrect-3-to s a = bindTransformer-toSingle accept3 accept2 acceptState

(basicInstr2Instr instruction-3) script-2 correct-3-to completeCorrect-2-to s a

completeCorrect-3-from : (s : State) → (acceptState +) (J script-3 K s) → accept3 s

completeCorrect-3-from s a = bindTransformer-fromSingle accept3 accept2 acceptState

(basicInstr2Instr instruction-3) script-2 correct-3-from completeCorrect-2-from s a

completeCorrect-4-to : (pubKeyHash : N )(s : State) → accept4 pubKeyHash s

→ (acceptState +) (J script-4 pubKeyHash K s)

completeCorrect-4-to pubKeyHash s a = bindTransformer-toSingle (accept4 pubKeyHash)

accept3 acceptState (basicInstr2Instr (instruction-4 pubKeyHash)) script-3

(correct-4-to pubKeyHash) completeCorrect-3-to s a

completeCorrect-4-from :(pubKeyHash : N )(s : State) → (acceptState +)

(J script-4 pubKeyHash K s) → accept4 pubKeyHash s

completeCorrect-4-from pubKeyHash s a = bindTransformer-fromSingle

(accept4 pubKeyHash) accept3 acceptState (basicInstr2Instr (instruction-4 pubKeyHash))

script-3 (correct-4-from pubKeyHash) completeCorrect-3-from s a
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completeCorrect-5-to : (pubKeyHash : N )(s : State) → accept5 pubKeyHash s

→ (acceptState +) (J script-5 pubKeyHash K s)

completeCorrect-5-to pubKeyHash s a = bindTransformer-toSingle (accept5 pubKeyHash)

(accept4 pubKeyHash) acceptState (basicInstr2Instr instruction-5) (script-4 pubKeyHash)

(correct-5-to pubKeyHash) (completeCorrect-4-to pubKeyHash) s a

completeCorrect-5-from :(pubKeyHash : N )(s : State) → (acceptState +)

(J script-5 pubKeyHash K s) → accept5 pubKeyHash s

completeCorrect-5-from pubKeyHash s a = bindTransformer-fromSingle (accept5 pubKeyHash)

(accept4 pubKeyHash) acceptState (basicInstr2Instr instruction-5) (script-4 pubKeyHash)

(correct-5-from pubKeyHash) (completeCorrect-4-from pubKeyHash) s a

completecorrect-6-to : (pubKeyHash : N ) → (s : State) → accept-6 pubKeyHash s →

(acceptState +) (J script-6 pubKeyHash K s )

completecorrect-6-to pubKeyHash s a = bindTransformer-toSingle (accept-6 pubKeyHash)

(accept5 pubKeyHash) acceptState (basicInstr2Instr instruction-6) (script-5 pubKeyHash)

(correct-6-to pubKeyHash) (completeCorrect-5-to pubKeyHash) s a

completeCorrect-6-from :(pubKeyHash : N )(s : State) → (acceptState +)

(J script-6 pubKeyHash K s) → accept-6 pubKeyHash s

completeCorrect-6-from pubKeyHash s a = bindTransformer-fromSingle

(accept-6 pubKeyHash) (accept5 pubKeyHash) acceptState (basicInstr2Instr instruction-6)

(script-5 pubKeyHash) (correct-6-from pubKeyHash) (completeCorrect-5-from pubKeyHash) s a

instructionSequence : (pubKeyHash : N) (n : N) → n ≤ 5 → BitcoinScript

instructionSequence pubKeyHash n p = instructions pubKeyHash n p :: []

scriptSequence : (pubKeyHash : N) (n : N) → n ≤ 6 → BitcoinScript

scriptSequence pubKeyHash 0 _ = []

scriptSequence pubKeyHash (suc n) p = instructionSequence pubKeyHash n p

++ scriptSequence pubKeyHash n (leqSucLemma n 5 p)
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correctStep-toSequence’ : (pubKeyHash : N) (n : N) → (p : n ≤ 5)

(s : State) → condition pubKeyHash (suc n) p s

→ ((condition pubKeyHash n (leqSucLemma n 5 p)) +)

(J instructionSequence pubKeyHash n p K s)

correctStep-toSequence’ pubKeyHash 0 _ =

liftCondOperation2Program-to (condition pubKeyHash 1 tt)

(condition pubKeyHash 0 tt) (instructions pubKeyHash 0 tt)

correct-1-to’

correctStep-toSequence’ pubKeyHash 1 _ =

liftCondOperation2Program-to (condition pubKeyHash 2 tt)

(condition pubKeyHash 1 tt) (instructions pubKeyHash 1 tt)

correct-2-to

correctStep-toSequence’ pubKeyHash 2 _ =

liftCondOperation2Program-to (condition pubKeyHash 3 tt)

(condition pubKeyHash 2 tt) (instructions pubKeyHash 2 tt)

correct-3-to

correctStep-toSequence’ pubKeyHash 3 _ =

liftCondOperation2Program-to (condition pubKeyHash 4 tt)

(condition pubKeyHash 3 tt) (instructions pubKeyHash 3 tt)

(correct-4-to pubKeyHash)

correctStep-toSequence’ pubKeyHash 4 _ =

liftCondOperation2Program-to (condition pubKeyHash 5 tt)

(condition pubKeyHash 4 tt) (instructions pubKeyHash 4 tt)

(correct-5-to pubKeyHash)

correctStep-toSequence’ pubKeyHash 5 _ =

liftCondOperation2Program-to (condition pubKeyHash 6 tt)

(condition pubKeyHash 5 tt) (instructions pubKeyHash 5 tt)

(correct-6-to pubKeyHash)

correctStep-FromSequence’ : (pubKeyHash : N) (n : N) → (p : n ≤ 5)

(s : State) → ((condition pubKeyHash n (leqSucLemma n 5 p)) +)
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(J instructionSequence pubKeyHash n p K s)

→ condition pubKeyHash (suc n) p s

correctStep-FromSequence’ pubKeyHash 0 _ =

liftCondOperation2Program-from (condition pubKeyHash 1 tt)

(condition pubKeyHash 0 tt) (instructions pubKeyHash 0 tt)

correct-1-from’

correctStep-FromSequence’ pubKeyHash 1 _ =

liftCondOperation2Program-from (condition pubKeyHash 2 tt)

(condition pubKeyHash 1 tt) (instructions pubKeyHash 1 tt)

correct-2-from

correctStep-FromSequence’ pubKeyHash 2 _ =

liftCondOperation2Program-from (condition pubKeyHash 3 tt)

(condition pubKeyHash 2 tt) (instructions pubKeyHash 2 tt)

correct-3-from

correctStep-FromSequence’ pubKeyHash 3 _ =

liftCondOperation2Program-from (condition pubKeyHash 4 tt)

(condition pubKeyHash 3 tt) (instructions pubKeyHash 3 tt)

(correct-4-from pubKeyHash)

correctStep-FromSequence’ pubKeyHash 4 _ =

liftCondOperation2Program-from (condition pubKeyHash 5 tt)

(condition pubKeyHash 4 tt) (instructions pubKeyHash 4 tt)

(correct-5-from pubKeyHash)

correctStep-FromSequence’ pubKeyHash 5 _ =

liftCondOperation2Program-from (condition pubKeyHash 6 tt)

(condition pubKeyHash 5 tt) (instructions pubKeyHash 5 tt)

(correct-6-from pubKeyHash)

correct-toSequence : (pubKeyHash : N) (n : N) (p : n ≤ 6)(s : State)

→ condition pubKeyHash n p s

→ (acceptState +) (J scriptSequence pubKeyHash n p K s)

correct-toSequence pubKeyHash 0 p =

emptyProgramCorrect-to (condition pubKeyHash 0 tt)

correct-toSequence pubKeyHash (suc n) p =
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bindTransformer-toSequence ( (condition pubKeyHash (suc n) p))

( (condition pubKeyHash n (leqSucLemma n 5 p))) acceptState

((instructionSequence pubKeyHash n p)) (scriptSequence pubKeyHash n (leqSucLemma n 5 p))

(correctStep-toSequence’ pubKeyHash n p)

(correct-toSequence pubKeyHash n (leqSucLemma n 5 p))

correct-fromSequence : (pubKeyHash : N) (n : N) (p : n ≤ 6)(s : State)

→ (acceptState +) (J scriptSequence pubKeyHash n p K s)

→ condition pubKeyHash n p s

correct-fromSequence pubKeyHash zero p s st =

emptyProgramCorrect-from (condition pubKeyHash 0 tt) s st

correct-fromSequence pubKeyHash (suc n) p s st =

bindTransformer-fromSequence (condition pubKeyHash (suc n) p)

(condition pubKeyHash n (leqSucLemma n 5 p))

acceptState (instructionSequence pubKeyHash n p)

(scriptSequence pubKeyHash n (leqSucLemma n 5 p))

(correctStep-FromSequence’ pubKeyHash n p)

(correct-fromSequence pubKeyHash n (leqSucLemma n 5 p)) s st

weakestPreConditionP2PKH : (pubKeyHash : N) (s : State) → Set

weakestPreConditionP2PKH pubKeyHash = stackPred2Pred (wPreCondP2PKHs pubKeyHash)

correctComplete-from : (pubKeyHash : N)(s : State)

→ (acceptState +) (J script-6 pubKeyHash K s)

→ weakestPreConditionP2PKH pubKeyHash s

correctComplete-from pubKeyHash = correct-from pubKeyHash 6 tt

correctComplete-to : (pubKeyHash : N)(s : State)

→ weakestPreConditionP2PKH pubKeyHash s

→ (acceptState +) (J script-6 pubKeyHash K s)

correctComplete-to pubKeyHash = correct-to pubKeyHash 6 tt

correctnessP2PKH : (pubKeyHash : N)
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→ < weakestPreConditionP2PKH pubKeyHash >if f

scriptP2PKH pubKeyHash

< acceptState >

correctnessP2PKH pubKeyHash .==> = correctComplete-to pubKeyHash

correctnessP2PKH pubKeyHash .<== = correctComplete-from pubKeyHash

B.30 Verification P2PKH with IfStack

open import basicBitcoinDataType

module verificationWithIfStack.verificationP2PKHwithIfStack (param : GlobalParameters) where

open import libraries.listLib

open import Data.List.Base

open import libraries.natLib

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head )

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.andLib

open import libraries.maybeLib

open import libraries.boolLib
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open import stack

open import instruction

open import semanticBasicOperations param

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.semanticsInstructions param

open import verificationWithIfStack.verificationLemmas param

open import verificationP2PKHbasic param

open import verificationWithIfStack.verificationP2PKH param

acceptWithIfStack-0 : IfStack → Predicate

acceptWithIfStack-0 ifStack1 = liftStackPred2Pred accept-0Basic ifStack1

acceptWithIfStack-1 : IfStack → Predicate

acceptWithIfStack-1 ifStack1 = liftStackPred2Pred accept1s ifStack1

acceptWithIfStack-2 : IfStack → Predicate

acceptWithIfStack-2 ifStack1 = liftStackPred2Pred accept2s ifStack1

acceptWithIfStack-3 : IfStack → Predicate

acceptWithIfStack-3 ifStack1 = liftStackPred2Pred accept3s ifStack1

acceptWithIfStack-4 : N → IfStack → Predicate

acceptWithIfStack-4 pubKey ifStack1 =

liftStackPred2Pred (accept4s pubKey) ifStack1

acceptWithIfStack-5 : N → IfStack → Predicate

acceptWithIfStack-5 pubKey ifStack1 =

liftStackPred2Pred (accept5s pubKey) ifStack1

acceptWithIfStack-6 : N → IfStack → Predicate

acceptWithIfStack-6 pubKeyHash ifStack1 =
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liftStackPred2Pred (wPreCondP2PKHs pubKeyHash) ifStack1

correctWithIfStack-1-to : (ifStack1 : IfStack)(active : IsActiveIfStack ifStack1)

(s : State)

→ acceptWithIfStack-1 ifStack1 s

→ ((acceptWithIfStack-0 ifStack1) +) (J opCheckSig Ks s )

correctWithIfStack-1-to [] active 〈 time , msg1 , pubKey :: sig :: st ,

.[] , c 〉 (conj and3 refl)

= conj (boolToNatNotFalseLemma (isSigned msg1 sig pubKey) and3) refl

correctWithIfStack-1-to (ifCase :: ifStack1) active

〈 time , msg1 , pubKey :: sig :: st , .(ifCase :: ifStack1) , c 〉 (conj and3 refl)

= conj (boolToNatNotFalseLemma (isSigned msg1 sig pubKey) and3) refl

correctWithIfStack-1-to (elseCase :: ifStack1) active

〈 time , msg1 , pubKey :: sig :: st , .(elseCase :: ifStack1) , c 〉

(conj and3 refl)

= conj (boolToNatNotFalseLemma (isSigned msg1 sig pubKey) and3) refl

correctWithIfStack-1-from : (ifStack1 : IfStack)(active : IsActiveIfStack ifStack1)

(s : State)

→ ((acceptWithIfStack-0 ifStack1) +) (J opCheckSig Ks s )

→ acceptWithIfStack-1 ifStack1 s

correctWithIfStack-1-from ifStack1 active 〈 time , msg1 , [] ,

ifCase :: ifst , c 〉 ()

correctWithIfStack-1-from ifStack1 active 〈 time , msg1 , [] ,

elseCase :: ifst , c 〉 ()

correctWithIfStack-1-from ifStack1 active 〈 time , msg1 , [] ,

ifSkip :: ifst , c 〉 ()

correctWithIfStack-1-from ifStack1 active 〈 time , msg1 , [] ,

elseSkip :: ifst , c 〉 ()

correctWithIfStack-1-from ifStack1 active 〈 time , msg1 , [] ,

ifIgnore :: ifst , c 〉 ()

correctWithIfStack-1-from .(ifSkip :: ifst) () 〈 time , msg1 , x :: [] ,
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ifSkip :: ifst , c 〉 (conj and3 refl)

correctWithIfStack-1-from .(elseSkip :: ifst) () 〈 time , msg1 , x :: [] ,

elseSkip :: ifst , c 〉 (conj and3 refl)

correctWithIfStack-1-from .(ifIgnore :: ifst) () 〈 time , msg1 , x :: [] ,

ifIgnore :: ifst , c 〉 (conj and3 refl)

correctWithIfStack-1-from .[] tt 〈 time , msg1 , pubKey :: sig :: l , [] , c 〉

(conj and3 refl) = conj (boolToNatNotFalseLemma2 (isSigned msg1 sig pubKey) and3) refl

correctWithIfStack-1-from .(ifCase :: ifst) active 〈 time , msg1 , pubKey :: sig :: l ,

ifCase :: ifst , c 〉 (conj and3 refl) = conj (boolToNatNotFalseLemma2

(isSigned msg1 sig pubKey) and3) refl

correctWithIfStack-1-from .(elseCase :: ifst) active 〈 time , msg1 , pubKey :: sig :: l ,

elseCase :: ifst , c 〉 (conj and3 refl) = conj (boolToNatNotFalseLemma2 (isSigned msg1 sig pubKey) and3) refl

correctWithIfStack-1-from .(ifSkip :: ifst) () 〈 time , msg1 , x :: x1 :: l ,

ifSkip :: ifst , c 〉 (conj and3 refl)

correctWithIfStack-1-from .(elseSkip :: ifst) () 〈 time , msg1 , x :: x1 :: l ,

elseSkip :: ifst , c 〉 (conj and3 refl)

correctWithIfStack-1-from .(ifIgnore :: ifst) () 〈 time , msg1 , x :: x1 :: l ,

ifIgnore :: ifst , c 〉 (conj and3 refl)

correctWithIfStack-2-to : (ifStack1 : IfStack)(active : IsActiveIfStack ifStack1)

(s : State)

→ acceptWithIfStack-2 ifStack1 s

→ ((acceptWithIfStack-1 ifStack1) +) (J opVerify Ks s )

correctWithIfStack-2-to [] active 〈 currentTime1 , msg1 , suc x :: x1 :: x2 :: stack1 ,

.[] , consis1 〉 (conj and3 refl) = conj and3 refl

correctWithIfStack-2-to (ifCase :: ifStack1) active

〈 currentTime1 , msg1 , suc x :: x1 :: x2 :: stack1 ,

.(ifCase :: ifStack1) , consis1 〉 (conj and3 refl) = conj and3 refl

correctWithIfStack-2-to (elseCase :: ifStack1) active

〈 currentTime1 , msg1 , suc x :: x1 :: x2 :: stack1 ,

.(elseCase :: ifStack1) , consis1 〉 (conj and3 refl) = conj and3 refl

correctWithIfStack-2-from : (ifStack1 : IfStack)(active : IsActiveIfStack ifStack1)
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(s : State)

→ ((acceptWithIfStack-1 ifStack1) +) (J opVerify Ks s )

→ acceptWithIfStack-2 ifStack1 s

correctWithIfStack-2-from .[] active 〈 currentTime1 , msg1 , suc x :: x1 :: x2 :: stack1

, [] , consis1 〉 (conj and3 refl) = conj and3 refl

correctWithIfStack-2-from (x3 :: ifStack1) active 〈 currentTime1 , msg1 , zero :: x2 :: []

, ifSkip :: ifStack2 , consis1 〉 (conj and3 refl) = conj active refl

correctWithIfStack-2-from (x3 :: ifStack1) active 〈 currentTime1 , msg1 , zero :: x2 :: []

, elseSkip :: ifStack2 , consis1 〉 (conj and3 refl) = conj active refl

correctWithIfStack-2-from (x3 :: ifStack1) active 〈 currentTime1 , msg1 , zero :: x2 :: []

, ifIgnore :: ifStack2 , consis1 〉 (conj and3 refl) = conj active refl

correctWithIfStack-2-from (x3 :: ifStack1) active 〈 currentTime1 , msg1 , suc x1 :: x2 :: []

, ifSkip :: ifStack2 , consis1 〉 (conj and3 refl) = conj active refl

correctWithIfStack-2-from (x3 :: ifStack1) active 〈 currentTime1 , msg1 , suc x1 :: x2 :: []

, elseSkip :: ifStack2 , consis1 〉 (conj and3 refl) = conj active refl

correctWithIfStack-2-from (x3 :: ifStack1) active 〈 currentTime1 , msg1 , suc x1 :: x2 :: []

, ifIgnore :: ifStack2 , consis1 〉 (conj and3 refl) = conj active refl

correctWithIfStack-2-from ifStack1 active 〈 currentTime1 , msg1 , zero :: x2 :: x3 :: stack1

, ifSkip :: ifStack2 , consis1 〉 (conj and3 refl) = conj active refl

correctWithIfStack-2-from ifStack1 active 〈 currentTime1 , msg1 , zero :: x2 :: x3 :: stack1

, elseSkip :: ifStack2 , consis1 〉 (conj and3 refl) = conj active refl

correctWithIfStack-2-from ifStack1 active 〈 currentTime1 , msg1 , zero :: x2 :: x3 :: stack1

, ifIgnore :: ifStack2 , consis1 〉 (conj and3 refl) = conj active refl

correctWithIfStack-2-from ifStack1 active 〈 currentTime1 , msg1 , suc x1 :: x2 :: x3 :: stack1

, ifCase :: ifStack2 , consis1 〉 (conj and3 refl) = conj and3 refl

correctWithIfStack-2-from ifStack1 active 〈 currentTime1 , msg1 , suc x1 :: x2 :: x3 :: stack1

, elseCase :: ifStack2 , consis1 〉 (conj and3 refl) = conj and3 refl

correctWithIfStack-2-from (.ifSkip :: ifStack1) () 〈 currentTime1 , msg1 , suc x1 :: x2 :: x3 :: stack1

, ifSkip :: .ifStack1 , consis1 〉 (conj and3 refl)

correctWithIfStack-2-from .(elseSkip :: ifStack2) () 〈 currentTime1 , msg1 , suc x1 :: x2 :: x3 :: stack1

, elseSkip :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-2-from .(ifIgnore :: ifStack2) () 〈 currentTime1 , msg1 , suc x1 :: x2 :: x3 :: stack1

, ifIgnore :: ifStack2 , consis1 〉 (conj and3 refl)
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correctWithIfStack-3-to : (ifStack1 : IfStack)(active : IsActiveIfStack ifStack1)

(s : State) → acceptWithIfStack-3 ifStack1 s

→ ((acceptWithIfStack-2 ifStack1) +) (J opEqual Ks s )

correctWithIfStack-3-to [] active 〈 currentTime1 , msg1 , x :: x1 :: x2 :: x3 :: stack1 , [] , consis1 〉

(conj (conj refl and4) refl) rewrite (lemmaCompareNat x)

= conj and4 refl

correctWithIfStack-3-to .(ifCase :: ifStack2) active 〈 currentTime1 , msg1 , x1 :: .x1 :: x3 :: x4 :: stack1

, ifCase :: ifStack2 , consis1 〉 (conj (conj refl and5) refl) rewrite (lemmaCompareNat x1)

= conj and5 refl

correctWithIfStack-3-to .(elseCase :: ifStack2) active 〈 currentTime1 , msg1 , x1 :: .x1 :: x3 :: x4 :: stack1

, elseCase :: ifStack2 , consis1 〉 (conj (conj refl and5) refl) rewrite (lemmaCompareNat x1)

= conj and5 refl

correctWithIfStack-3-to .(ifSkip :: ifStack2) () 〈 currentTime1 , msg1 , x1 :: x2 :: x3 :: x4 :: stack1

, ifSkip :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-3-to .(elseSkip :: ifStack2) () 〈 currentTime1 , msg1 , x1 :: x2 :: x3 :: x4 :: stack1

, elseSkip :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-3-to .(ifIgnore :: ifStack2) () 〈 currentTime1 , msg1 , x1 :: x2 :: x3 :: x4 :: stack1

, ifIgnore :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-3-from : (ifStack1 : IfStack)(active : IsActiveIfStack ifStack1)

(s : State)

→ ((acceptWithIfStack-2 ifStack1) + ) (J opEqual Ks s )

→ acceptWithIfStack-3 ifStack1 s

correctWithIfStack-3-from ifStack1 active 〈 currentTime1 , msg1 , x :: x1 :: pbk :: sig :: stack1

, [] , consis1 〉(conj and3 refl) rewrite

( lemmaCorrect3From x x1 pbk sig currentTime1 msg1 and3 )

= let

q : True (isSigned msg1 sig pbk)

q = correct3Aux2 (compareNaturals x x1) pbk sig stack1 currentTime1 msg1 and3

in conj (conj refl q) refl

correctWithIfStack-3-from ifStack1 active 〈 currentTime1 , msg1 , [] ,

ifCase :: ifStack2 , consis1 〉 ()
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correctWithIfStack-3-from ifStack1 active 〈 currentTime1 , msg1 , [] ,

elseCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-3-from ifStack1 active 〈 currentTime1 , msg1 , [] ,

ifSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-3-from ifStack1 active 〈 currentTime1 , msg1 , [] ,

elseSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-3-from ifStack1 active 〈 currentTime1 , msg1 , [] ,

ifIgnore :: ifStack2 , consis1 〉 ()

correctWithIfStack-3-from ifStack1 active 〈 currentTime1 , msg1 , x1 :: [] ,

ifCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-3-from ifStack1 active 〈 currentTime1 , msg1 , x1 :: [] ,

elseCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-3-from ifStack1 active 〈 currentTime1 , msg1 , x1 :: [] ,

ifSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-3-from ifStack1 active 〈 currentTime1 , msg1 , x1 :: [] ,

elseSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-3-from ifStack1 active 〈 currentTime1 , msg1 , x1 :: [] ,

ifIgnore :: ifStack2 , consis1 〉 ()

correctWithIfStack-3-from ifStack1 active 〈 currentTime1 , msg1 , x1 :: x2 :: [] ,

ifCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-3-from ifStack1 active 〈 currentTime1 , msg1 , x1 :: x2 :: [] ,

elseCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-3-from ifStack1 active 〈 currentTime1 , msg1 , x1 :: x2 :: [] ,

ifSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-3-from ifStack1 active 〈 currentTime1 , msg1 , x1 :: x2 :: [] ,

elseSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-3-from ifStack1 active 〈 currentTime1 , msg1 , x1 :: x2 :: [] ,

ifIgnore :: ifStack2 , consis1 〉 ()

correctWithIfStack-3-from .(ifSkip :: ifStack2) () 〈 currentTime1 , msg1 , x1 :: x2 :: x3 :: [] ,

ifSkip :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-3-from .(elseSkip :: ifStack2) () 〈 currentTime1 , msg1 , x1 :: x2 :: x3 :: [] ,

elseSkip :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-3-from .(ifIgnore :: ifStack2) () 〈 currentTime1 , msg1 , x1 :: x2 :: x3 :: [] ,
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ifIgnore :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-3-from .(ifCase :: ifStack2) active 〈 currentTime1 , msg1 , x1 :: x2 ::

pbk :: sig :: stack1 , ifCase :: ifStack2 , consis1 〉

(conj and3 refl) rewrite ( lemmaCorrect3From x1 x2 pbk sig currentTime1 msg1 and3 )

= let

q : True (isSigned msg1 sig pbk)

q = correct3Aux2 (compareNaturals x1 x2) pbk sig stack1 currentTime1 msg1 and3

in conj (conj refl q) refl

correctWithIfStack-3-from .(elseCase :: ifStack2) active 〈 currentTime1 , msg1 , x1 :: x2

:: pbk :: sig :: stack1 , elseCase :: ifStack2 , consis1 〉

(conj and3 refl) rewrite ( lemmaCorrect3From x1 x2 pbk sig currentTime1 msg1 and3 )

= let

q : True (isSigned msg1 sig pbk)

q = correct3Aux2 (compareNaturals x1 x2) pbk sig stack1 currentTime1 msg1 and3

in conj (conj refl q) refl

correctWithIfStack-3-from .(ifSkip :: ifStack2) () 〈 currentTime1 , msg1 , x1 :: x2 :: pbk ::

sig :: stack1 , ifSkip :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-3-from .(elseSkip :: ifStack2) () 〈 currentTime1 , msg1 , x1 :: x2 :: pbk :: sig ::

stack1 , elseSkip :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-3-from .(ifIgnore :: ifStack2) () 〈 currentTime1 , msg1 , x1 :: x2 :: pbk :: sig ::

stack1 , ifIgnore :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-4-to : (pubKey : N)

(ifStack1 : IfStack)(active : IsActiveIfStack ifStack1)

(s : State) → acceptWithIfStack-4 pubKey ifStack1 s

→ ((acceptWithIfStack-3 ifStack1) +) (J opPush pubKey Ks s )

correctWithIfStack-4-to pubKey .[] active 〈 currentTime1 , msg1 , .pubKey :: x1 :: x2 ::

stack1 , [] , consis1 〉 (conj (conj refl and4) refl) = conj (conj refl and4) refl

correctWithIfStack-4-to pubKey .(ifCase :: ifStack2) active 〈 currentTime1 , msg1 ,

x :: x1 :: x2 :: stack1 , ifCase :: ifStack2 , consis1 〉 (conj (conj refl and4) refl)

= conj (conj refl and4) refl

correctWithIfStack-4-to pubKey .(elseCase :: ifStack2) active 〈 currentTime1 ,
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msg1 , x :: x1 :: x2 :: stack1 , elseCase :: ifStack2 , consis1 〉

(conj (conj refl and4) refl) = conj (conj refl and4) refl

correctWithIfStack-4-to pubKey .(ifSkip :: ifStack2) () 〈 currentTime1 ,

msg1 , x :: x1 :: x2 :: stack1 , ifSkip :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-4-to pubKey .(elseSkip :: ifStack2) () 〈 currentTime1 ,

msg1 , x :: x1 :: x2 :: stack1 , elseSkip :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-4-to pubKey .(ifIgnore :: ifStack2) () 〈 currentTime1 ,

msg1 , x :: x1 :: x2 :: stack1 , ifIgnore :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-4-from : (pubKey : N)

(ifStack1 : IfStack)(active : IsActiveIfStack ifStack1)

(s : State)

→ ((acceptWithIfStack-3 ifStack1) +) (J opPush pubKey Ks s )

→ acceptWithIfStack-4 pubKey ifStack1 s

correctWithIfStack-4-from pubKey .[] active 〈 currentTime1 , msg1 ,

x :: x1 :: x2 :: stack1 , [] , consis1 〉 (conj (conj refl and4) refl) = conj (conj refl and4) refl

correctWithIfStack-4-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , [] , ifCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-4-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , [] , elseCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-4-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , [] , ifSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-4-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , [] , elseSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-4-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , [] , ifIgnore :: ifStack2 , consis1 〉 ()

correctWithIfStack-4-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: [] , ifCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-4-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: [] , elseCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-4-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: [] , ifSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-4-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: [] , elseSkip :: ifStack2 , consis1 〉 ()
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correctWithIfStack-4-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: [] , ifIgnore :: ifStack2 , consis1 〉 ()

correctWithIfStack-4-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: x2 :: [] , ifCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-4-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: x2 :: [] , elseCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-4-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: x2 :: [] , ifSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-4-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: x2 :: [] , elseSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-4-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: x2 :: [] , ifIgnore :: ifStack2 , consis1 〉 ()

correctWithIfStack-4-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: x2 :: x3 :: stack1 , ifCase :: ifStack2 , consis1 〉

(conj (conj refl and4) refl) = conj (conj refl and4) refl

correctWithIfStack-4-from pubKey .(elseCase :: ifStack2) active

〈 currentTime1 , msg1 , x1 :: x2 :: x3 :: stack1 , elseCase :: ifStack2 , consis1 〉

(conj (conj refl and4) refl) = conj (conj refl and4) refl

correctWithIfStack-4-from pubKey .(ifSkip :: ifStack2) ()

〈 currentTime1 , msg1 , x1 :: x2 :: x3 :: stack1 , ifSkip :: ifStack2 , consis1 〉

(conj and3 refl)

correctWithIfStack-4-from pubKey .(elseSkip :: ifStack2) ()

〈 currentTime1 , msg1 , x1 :: x2 :: x3 :: stack1 , elseSkip :: ifStack2 , consis1 〉

(conj and3 refl)

correctWithIfStack-4-from pubKey .(ifIgnore :: ifStack2) ()

〈 currentTime1 , msg1 , x1 :: x2 :: x3 :: stack1 , ifIgnore :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-5-to : (pubKey : N)

(ifStack1 : IfStack)(active : IsActiveIfStack ifStack1)

(s : State)

→ acceptWithIfStack-5 pubKey ifStack1 s

→ ((acceptWithIfStack-4 pubKey ifStack1) +) (J opHash Ks s )

correctWithIfStack-5-to pubKey .[] active
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〈 currentTime1 , msg1 , x :: x1 :: x2 :: stack1 , [] , consis1 〉

(conj and3 refl) = conj and3 refl

correctWithIfStack-5-to pubKey .(ifCase :: ifStack2) active

〈 currentTime1 , msg1 , x1 :: x2 :: x3 :: stack1 , ifCase :: ifStack2 , consis1 〉

(conj and3 refl) = conj and3 refl

correctWithIfStack-5-to pubKey ifStack1 active 〈 currentTime1 , msg1 ,

x1 :: x2 :: x3 :: stack1 , elseCase :: ifStack2 , consis1 〉

(conj and3 refl) = conj and3 refl

correctWithIfStack-5-to pubKey .(ifSkip :: ifStack2) ()

〈 currentTime1 , msg1 , x1 :: x2 :: x3 :: stack1 , ifSkip :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-5-to pubKey .(elseSkip :: ifStack2) ()

〈 currentTime1 , msg1 , x1 :: x2 :: x3 :: stack1 , elseSkip :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-5-to pubKey .(ifIgnore :: ifStack2) ()

〈 currentTime1 , msg1 , x1 :: x2 :: x3 :: stack1 , ifIgnore :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-5-from : (pubKey : N)

(ifStack1 : IfStack)(active : IsActiveIfStack ifStack1)

(s : State)

→ ((acceptWithIfStack-4 pubKey ifStack1) +) (J opHash Ks s )

→ acceptWithIfStack-5 pubKey ifStack1 s

correctWithIfStack-5-from pubKey .[] active 〈 currentTime1 , msg1 ,

x :: x1 :: x2 :: stack1 , [] , consis1 〉 (conj and3 refl) = conj and3 refl

correctWithIfStack-5-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , [] , ifCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-5-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , [] , elseCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-5-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , [] , ifSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-5-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , [] , elseSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-5-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , [] , ifIgnore :: ifStack2 , consis1 〉 ()

correctWithIfStack-5-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: [] , ifCase :: ifStack2 , consis1 〉 ()
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correctWithIfStack-5-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: [] , elseCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-5-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: [] , ifSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-5-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: [] , elseSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-5-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: [] , ifIgnore :: ifStack2 , consis1 〉 ()

correctWithIfStack-5-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: x2 :: [] , ifCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-5-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: x2 :: [] , elseCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-5-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: x2 :: [] , ifSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-5-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: x2 :: [] , elseSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-5-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: x2 :: [] , ifIgnore :: ifStack2 , consis1 〉 ()

correctWithIfStack-5-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: x2 :: x3 :: stack1 , ifCase :: ifStack2 , consis1 〉

(conj and3 refl) = conj and3 refl

correctWithIfStack-5-from pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: x2 :: x3 :: stack1 , elseCase :: ifStack2 , consis1 〉

(conj and3 refl) = conj and3 refl

correctWithIfStack-5-from pubKey .(ifSkip :: ifStack2) ()

〈 currentTime1 , msg1 , x1 :: x2 :: x3 :: stack1 , ifSkip :: ifStack2 , consis1 〉

(conj and3 refl)

correctWithIfStack-5-from pubKey .(elseSkip :: ifStack2) ()

〈 currentTime1 , msg1 , x1 :: x2 :: x3 :: stack1 , elseSkip :: ifStack2 , consis1 〉

(conj and3 refl)

correctWithIfStack-5-from pubKey .(ifIgnore :: ifStack2) ()

〈 currentTime1 , msg1 , x1 :: x2 :: x3 :: stack1 , ifIgnore :: ifStack2 , consis1 〉

(conj and3 refl)
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correctWithIfStack-6-to : (pubKey : N)

(ifStack1 : IfStack)(active : IsActiveIfStack ifStack1)

(s : State)

→ acceptWithIfStack-6 pubKey ifStack1 s

→ ((acceptWithIfStack-5 pubKey ifStack1) +) (J opDup Ks s )

correctWithIfStack-6-to pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x :: x1 :: [] , [] , consis1 〉 (conj and3 refl) = conj and3 refl

correctWithIfStack-6-to pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x :: x1 :: x2 :: stack1 , [] , consis1 〉 (conj and3 refl) = conj and3 refl

correctWithIfStack-6-to pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: x2 :: [] , ifCase :: ifStack2 , consis1 〉 (conj and3 refl) = conj and3 refl

correctWithIfStack-6-to pubKey ifStack1 active 〈 currentTime1 ,

msg1 , x1 :: x2 :: [] , elseCase :: ifStack2 , consis1 〉 (conj and3 refl) = conj and3 refl

correctWithIfStack-6-to pubKey .(ifSkip :: ifStack2) () 〈 currentTime1 ,

msg1 , x1 :: x2 :: [] , ifSkip :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-6-to pubKey .(elseSkip :: ifStack2) () 〈 currentTime1 ,

msg1 , x1 :: x2 :: [] , elseSkip :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-6-to pubKey .(ifIgnore :: ifStack2) () 〈 currentTime1 ,

msg1 , x1 :: x2 :: [] , ifIgnore :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-6-to pubKey ifStack1 active 〈 currentTime1 , msg1 ,

x1 :: x2 :: x3 :: stack1 , ifCase :: ifStack2 , consis1 〉 (conj and3 refl) = conj and3 refl

correctWithIfStack-6-to pubKey ifStack1 active 〈 currentTime1 , msg1 ,

x1 :: x2 :: x3 :: stack1 , elseCase :: ifStack2 , consis1 〉 (conj and3 refl) = conj and3 refl

correctWithIfStack-6-to pubKey .(ifSkip :: ifStack2) () 〈 currentTime1 ,

msg1 , x1 :: x2 :: x3 :: stack1 , ifSkip :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-6-to pubKey .(elseSkip :: ifStack2) () 〈 currentTime1 ,

msg1 , x1 :: x2 :: x3 :: stack1 , elseSkip :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-6-to pubKey .(ifIgnore :: ifStack2) () 〈 currentTime1 ,

msg1 , x1 :: x2 :: x3 :: stack1 , ifIgnore :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-6-from : (pubKey : N)

(ifStack1 : IfStack)(active : IsActiveIfStack ifStack1)
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(s : State)

→ ((acceptWithIfStack-5 pubKey ifStack1) +) (J opDup Ks s )

→ acceptWithIfStack-6 pubKey ifStack1 s

correctWithIfStack-6-from pubKey .[] active 〈 currentTime1 , msg1 , x :: x1

:: [] , [] , consis1 〉 (conj and3 refl) = conj and3 refl

correctWithIfStack-6-from pubKey ifStack1 active 〈 currentTime1 , msg1 , x

:: x1 :: x2 :: stack1 , [] , consis1 〉 (conj and3 refl) = conj and3 refl

correctWithIfStack-6-from pubKey ifStack1 active 〈 currentTime1 , msg1 , [] ,

ifCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-6-from pubKey ifStack1 active 〈 currentTime1 , msg1 , [] ,

elseCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-6-from pubKey ifStack1 active 〈 currentTime1 , msg1 , [] ,

ifSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-6-from pubKey ifStack1 active 〈 currentTime1 , msg1 , [] ,

elseSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-6-from pubKey ifStack1 active 〈 currentTime1 , msg1 , [] ,

ifIgnore :: ifStack2 , consis1 〉 ()

correctWithIfStack-6-from pubKey ifStack1 active 〈 currentTime1 , msg1 ,

x1 :: [] , ifCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-6-from pubKey ifStack1 active 〈 currentTime1 , msg1 ,

x1 :: [] , elseCase :: ifStack2 , consis1 〉 ()

correctWithIfStack-6-from pubKey ifStack1 active 〈 currentTime1 , msg1 ,

x1 :: [] , ifSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-6-from pubKey ifStack1 active 〈 currentTime1 , msg1 ,

x1 :: [] , elseSkip :: ifStack2 , consis1 〉 ()

correctWithIfStack-6-from pubKey ifStack1 active 〈 currentTime1 , msg1 ,

x1 :: [] , ifIgnore :: ifStack2 , consis1 〉 ()

correctWithIfStack-6-from pubKey ifStack1 active 〈 currentTime1 , msg1 ,

x1 :: x2 :: [] , ifCase :: ifStack2 , consis1 〉 (conj and3 refl) = conj and3 refl

correctWithIfStack-6-from pubKey ifStack1 active 〈 currentTime1 , msg1 ,

x1 :: x2 :: [] , elseCase :: ifStack2 , consis1 〉 (conj and3 refl) = conj and3 refl

correctWithIfStack-6-from pubKey ifStack1 active 〈 currentTime1 , msg1 ,

x1 :: x2 :: x3 :: stack1 , ifCase :: ifStack2 , consis1 〉 (conj and3 refl)
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= conj and3 refl

correctWithIfStack-6-from pubKey ifStack1 active 〈 currentTime1 , msg1 ,

x1 :: x2 :: x3 :: stack1 , elseCase :: ifStack2 , consis1 〉 (conj and3 refl)

= conj and3 refl

correctWithIfStack-6-from pubKey .(ifSkip :: ifStack2) () 〈 currentTime1 ,

msg1 , x1 :: x2 :: x3 :: stack1 , ifSkip :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-6-from pubKey .(elseSkip :: ifStack2) () 〈 currentTime1 ,

msg1 , x1 :: x2 :: x3 :: stack1 , elseSkip :: ifStack2 , consis1 〉 (conj and3 refl)

correctWithIfStack-6-from pubKey .(ifIgnore :: ifStack2) () 〈 currentTime1 ,

msg1 , x1 :: x2 :: x3 :: stack1 , ifIgnore :: ifStack2 , consis1 〉 (conj and3 refl)

B.31 Verification P2PKH with IfStack indexed part 1

open import basicBitcoinDataType

module verificationWithIfStack.verificationP2PKHwithIfStackindexed (param : GlobalParameters) where

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.List.NonEmpty hiding (head )

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

–open import Agda.Builtin.Equality.Rewrite

open import libraries.andLib

open import libraries.maybeLib
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open import libraries.boolLib

open import libraries.listLib

open import libraries.natLib

open import stack

open import instruction

– open import ledger param

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.semanticsInstructions param

open import verificationWithIfStack.verificationLemmas param

open import verificationWithIfStack.hoareTriple param

open import verificationP2PKHbasic param

open import verificationWithIfStack.verificationP2PKH param

open import verificationWithIfStack.verificationP2PKHindexed param

open import verificationWithIfStack.verificationP2PKHwithIfStack param

conditionWithStack : (pubKeyHash : N)(ifStack1 : IfStack) (n : N)

→ n ≤ 6 → (s : State) → Set

conditionWithStack pubKeyHash ifStack1 n p

= liftStackPred2Pred (conditionBasic pubKeyHash n p) ifStack1

correctStepWithIfStack-to : (pubKeyHash : N)(ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)(n : N) (p : n ≤ 5)

(s : State)

→ conditionWithStack pubKeyHash ifStack1 (suc n) p s

→ ((conditionWithStack pubKeyHash ifStack1 n (leqSucLemma n 5 p)) +)

(J instructions pubKeyHash n p Ks s)

correctStepWithIfStack-to pubKeyHash ifStack1 active 0 _

= correctWithIfStack-1-to ifStack1 active

correctStepWithIfStack-to pubKeyHash ifStack1 active 1 _

620



B.31. Verification P2PKH with IfStack indexed part 1

= correctWithIfStack-2-to ifStack1 active

correctStepWithIfStack-to pubKeyHash ifStack1 active 2 _

= correctWithIfStack-3-to ifStack1 active

correctStepWithIfStack-to pubKeyHash ifStack1 active 3 _

= correctWithIfStack-4-to pubKeyHash ifStack1 active

correctStepWithIfStack-to pubKeyHash ifStack1 active 4 _

= correctWithIfStack-5-to pubKeyHash ifStack1 active

correctStepWithIfStack-to pubKeyHash ifStack1 active 5 _

= correctWithIfStack-6-to pubKeyHash ifStack1 active

correctStepWithIfStack-from : (pubKeyHash : N)(ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)(n : N) (p : n ≤ 5)

(s : State)

→ ((conditionWithStack pubKeyHash ifStack1 n (leqSucLemma n 5 p)) +)

(J instructions pubKeyHash n p Ks s)

→ conditionWithStack pubKeyHash ifStack1 (suc n) p s

correctStepWithIfStack-from pubKeyHash ifStack1 active 0 _

= correctWithIfStack-1-from ifStack1 active

correctStepWithIfStack-from pubKeyHash ifStack1 active 1 _

= correctWithIfStack-2-from ifStack1 active

correctStepWithIfStack-from pubKeyHash ifStack1 active 2 _

= correctWithIfStack-3-from ifStack1 active

correctStepWithIfStack-from pubKeyHash ifStack1 active 3 _

= correctWithIfStack-4-from pubKeyHash ifStack1 active

correctStepWithIfStack-from pubKeyHash ifStack1 active 4 _

= correctWithIfStack-5-from pubKeyHash ifStack1 active

correctStepWithIfStack-from pubKeyHash ifStack1 active 5 _

= correctWithIfStack-6-from pubKeyHash ifStack1 active

correctStepWithIfStack-to’ : (pubKeyHash : N)(ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)(n : N) (p : n ≤ 5)

(s : State)

→ conditionWithStack pubKeyHash ifStack1 (suc n) p s
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→ ((conditionWithStack pubKeyHash ifStack1 n (leqSucLemma n 5 p)) +)

(J instructions pubKeyHash n p :: [] K s)

correctStepWithIfStack-to’ pubKeyHash ifStack1 active n p s c =

liftCondOperation2Program-to-simple

(conditionWithStack pubKeyHash ifStack1 n (leqSucLemma n 5 p))

(instructions pubKeyHash n p) s

(correctStepWithIfStack-to pubKeyHash ifStack1 active n p s c)

correctStepWithIfStack-from’ : (pubKeyHash : N)(ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)(n : N) (p : n ≤ 5)

(s : State)

→ ((conditionWithStack pubKeyHash ifStack1 n (leqSucLemma n 5 p)) +)

(J instructions pubKeyHash n p :: [] K s)

→ conditionWithStack pubKeyHash ifStack1 (suc n) p s

correctStepWithIfStack-from’ pubKeyHash ifStack1 active n p s c =

correctStepWithIfStack-from pubKeyHash ifStack1 active n p s

(liftCondOperation2Program-from-simple

(conditionWithStack pubKeyHash ifStack1 n (leqSucLemma n 5 p))

(instructions pubKeyHash n p) s c)

correctStepWithIfStack : (pubKeyHash : N)(ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)(n : N) (p : n ≤ 5)

(s : State)

→ < conditionWithStack pubKeyHash ifStack1 (suc n) p >if f

(instructions pubKeyHash n p :: [])

< conditionWithStack pubKeyHash ifStack1 n (leqSucLemma n 5 p) >

correctStepWithIfStack pubKeyHash ifStack1 active n p s .==>

= correctStepWithIfStack-to’ pubKeyHash ifStack1 active n p

correctStepWithIfStack pubKeyHash ifStack1 active n p s .<==

= correctStepWithIfStack-from’ pubKeyHash ifStack1 active n p

correctSeqWithIfStack : (pubKeyHash : N)(ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)(n : N) (p : n ≤ 6)
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(s : State)

→ < conditionWithStack pubKeyHash ifStack1 n p >if f

(script’ pubKeyHash n p)

< liftStackPred2Pred accept-0Basic ifStack1 >

correctSeqWithIfStack pubKeyHash ifStack1 active 0 p s

= lemmaHoare[]

correctSeqWithIfStack pubKeyHash ifStack1 active (suc n) p s

= conditionWithStack pubKeyHash ifStack1 (suc n) p

<><>〈 instructions pubKeyHash n p :: [] 〉〈

correctStepWithIfStack pubKeyHash ifStack1 active n p s 〉

conditionWithStack pubKeyHash ifStack1 n (leqSucLemma n 5 p)

<><>〈 script’ pubKeyHash n (leqSucLemma n 5 p) 〉〈

correctSeqWithIfStack pubKeyHash ifStack1 active n (leqSucLemma n 5 p) s 〉e

liftStackPred2Pred accept-0Basic ifStack1

‚p

lemmaP2PKHwithStack : (pubKeyHash : N)(ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)(n : N) (p : n ≤ 5)

(s : State)

→ < liftStackPred2Pred (wPreCondP2PKHs pubKeyHash) ifStack1 >if f

scriptP2PKH pubKeyHash

< liftStackPred2Pred accept-0Basic ifStack1 >

lemmaP2PKHwithStack pubKeyHash ifStack1 active n p s

= correctSeqWithIfStack pubKeyHash ifStack1 active 6 tt s

B.32 Verification P2PKH with IfStack indexed part 2

open import basicBitcoinDataType

module verificationWithIfStack.verificationP2PKHwithIfStackindexedPart2 (param : GlobalParameters) where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit
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open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ ) renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.Maybe

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import stackPredicate

open import instruction

open import hoareTripleStack param

open import semanticBasicOperations param

open import verificationWithIfStack.ifStack

open import verificationWithIfStack.state

open import verificationWithIfStack.predicate

open import verificationWithIfStack.hoareTriple param

open import verificationWithIfStack.hoareTripleStack2HoareTriple param

open import verificationWithIfStack.verificationLemmas param

open import verificationWithIfStack.semanticsInstructions param

open import verificationP2PKHbasic param
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open import verificationWithIfStack.verificationP2PKH param

open import verificationWithIfStack.verificationP2PKHindexed param

open import verificationWithIfStack.verificationP2PKHwithIfStack param

open import verificationWithIfStack.verificationP2PKHwithIfStackindexed param

correctnessStackPart-1 : < accept1s >stack [ opCheckSig ] < accept-0Basic >

correctnessStackPart-1 .==>stg time msg1 (pubKey :: sig :: st) p

= boolToNatNotFalseLemma (isSigned msg1 sig pubKey) p

correctnessStackPart-1 .<==stg time msg1 (pubKey :: sig :: st) p

= boolToNatNotFalseLemma2 (isSigned msg1 sig pubKey) p

correctnessStackPart-2 : < accept2s >stack [ opVerify ] < accept1s >

correctnessStackPart-2 .==>stg time msg1 (suc x :: x1 :: x2 :: st) p = p

correctnessStackPart-2 .<==stg time msg1 (suc x :: x1 :: x2 :: st) p = p

correctnessStackPart-3 : < accept3s >stack [ opEqual ] < accept2s >

correctnessStackPart-3 .==>stg time msg1 (x1 :: .x1 :: pbk :: sig :: s)

(conj refl and4) rewrite ( lemmaCompareNat x1 ) = and4

correctnessStackPart-3 .<==stg time msg1 (x1 :: x2 :: pbk :: sig :: s)

x rewrite ( lemmaCorrect3From x1 x2 pbk sig time msg1 x )

= let

q : True (isSigned msg1 sig pbk)

q = correct3Aux2 (compareNaturals x1 x2) pbk sig s time msg1 x

in (conj refl q)

correctnessStackPart-4 : (pubKey : N)

→ < accept4s pubKey >stack [ opPush pubKey ] < accept3s >

correctnessStackPart-4 pubKey .==>stg time msg1

(.pubKey :: x1 :: x2 :: st) (conj refl and4) = conj refl and4

correctnessStackPart-4 pubKey .<==stg time msg1

(.pubKey :: x1 :: x2 :: st) (conj refl and4) = conj refl and4

correctnessStackPart-5 : (pubKey : N)

→ < accept5s pubKey >stack [ opHash ] < accept4s pubKey >
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correctnessStackPart-5 .(hashFun x) .==>stg time msg1

(x :: x1 :: x2 :: st) (conj refl checkSig) = conj refl checkSig

correctnessStackPart-5 .(hashFun x) .<==stg time msg1

(x :: x1 :: x2 :: st) (conj refl checkSig) = conj refl checkSig

correctnessStackPart-6 : (pubKey : N)

→ < wPreCondP2PKHs pubKey >stack [ opDup ] < accept5s pubKey >

correctnessStackPart-6 pubKeyHash .==>stg time msg1 (x :: x1 :: st) p = p

correctnessStackPart-6 pubKeyHash .<==stg time msg1 (x :: x1 :: st) p = p

corrrectnessStackPart : (pubKey : N)(n : N)(p : n ≤ 5)

→ < conditionBasic pubKey (suc n) p >stack [ instructions pubKey n p ]

< conditionBasic pubKey n (leqSucLemma n 5 p) >

corrrectnessStackPart pubKey 0 p = correctnessStackPart-1

corrrectnessStackPart pubKey 1 p = correctnessStackPart-2

corrrectnessStackPart pubKey 2 p = correctnessStackPart-3

corrrectnessStackPart pubKey 3 p = correctnessStackPart-4 pubKey

corrrectnessStackPart pubKey 4 p = correctnessStackPart-5 pubKey

corrrectnessStackPart pubKey 5 p = correctnessStackPart-6 pubKey

p2pkhInstrIsNonIf : (pubKey : N)(n : N)(p : n ≤ 5)

→ NonIfInstr (instructions pubKey n p)

p2pkhInstrIsNonIf pubKey 0 p = tt

p2pkhInstrIsNonIf pubKey 1 p = tt

p2pkhInstrIsNonIf pubKey 2 p = tt

p2pkhInstrIsNonIf pubKey 3 p = tt

p2pkhInstrIsNonIf pubKey 4 p = tt

p2pkhInstrIsNonIf pubKey 5 p = tt

correctStepWithIfStack-new : (pubKey : N)(ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)

(n : N)(p : n ≤ 5)

→ < conditionWithStack pubKey ifStack1 (suc n) p >if f
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[ instructions pubKey n p ]

< conditionWithStack pubKey ifStack1 n (leqSucLemma n 5 p) >

correctStepWithIfStack-new pubKey ifStack1 active n p =

hoartTripleStackPartImpliesHoareTriple ifStack1 active

(instructions pubKey n p)

(p2pkhInstrIsNonIf pubKey n p)

(conditionBasic pubKey (suc n) p )

(conditionBasic pubKey n (leqSucLemma n 5 p))

(corrrectnessStackPart pubKey n p)

correctSeqWithIfStack-new : (pubKeyHash : N)(ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)(n : N) (p : n ≤ 6)

→ < conditionWithStack pubKeyHash ifStack1 n p >if f

(script’ pubKeyHash n p)

< liftStackPred2Pred accept-0Basic ifStack1 >

correctSeqWithIfStack-new pubKeyHash ifStack1 active 0 p

= lemmaHoare[]

correctSeqWithIfStack-new pubKeyHash ifStack1 active (suc n) p

= conditionWithStack pubKeyHash ifStack1 (suc n) p

<><>〈 [ instructions pubKeyHash n p ] 〉〈

correctStepWithIfStack-new pubKeyHash ifStack1 active n p 〉

conditionWithStack pubKeyHash ifStack1 n (leqSucLemma n 5 p)

<><>〈 script’ pubKeyHash n (leqSucLemma n 5 p) 〉〈

correctSeqWithIfStack-new pubKeyHash ifStack1 active n (leqSucLemma n 5 p) 〉e

liftStackPred2Pred accept-0Basic ifStack1

‚p

lemmaP2PKHwithStack-new : (pubKeyHash : N)(ifStack1 : IfStack)

(active : IsActiveIfStack ifStack1)

→ < liftStackPred2Pred (weakestPreConditionP2PKHs pubKeyHash) ifStack1 >if f

scriptP2PKH pubKeyHash

< liftStackPred2Pred acceptStates ifStack1 >

lemmaP2PKHwithStack-new pubKeyHash ifStack1 active

= correctSeqWithIfStack-new pubKeyHash ifStack1 active 6 tt
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B.33 verification P2PKH basic

open import basicBitcoinDataType

module verificationP2PKHbasic (param : GlobalParameters) where

open import libraries.listLib

open import Data.List.Base

open import libraries.natLib

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_ ; _<_)

open import Data.List.NonEmpty hiding (head )

open import Data.Nat using (N; _+_; _≥_; _>_; zero; suc; s≤s; z≤n)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.andLib

open import libraries.maybeLib

open import libraries.boolLib

open import stack

open import stackPredicate

open import instruction

open import instructionBasic

open import semanticBasicOperations param
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instruction-1 : InstructionBasic

instruction-1 = opCheckSig

instruction-2 : InstructionBasic

instruction-2 = opVerify

instruction-3 : InstructionBasic

instruction-3 = opEqual

instruction-4 : N → InstructionBasic

instruction-4 pbkh = opPush pbkh

instruction-5 : InstructionBasic

instruction-5 = opHash

instruction-6 : InstructionBasic

instruction-6 = opDup

accept-0Basic : StackPredicate

accept-0Basic = acceptStates

accept1s : StackPredicate

accept1s time m [] = ⊥

accept1s time m (sig :: []) = ⊥

accept1s time m ( pbk :: sig :: st)

= IsSigned m sig pbk

accept2sCore : Time → Msg → N → N → N → Set

accept2sCore time m zero pbk sig = ⊥

accept2sCore time m (suc x) pbk sig

= IsSigned m sig pbk

accept2s : StackPredicate

accept2s time m [] = ⊥

accept2s time m (x :: []) = ⊥

accept2s time m (x :: x1 :: []) = ⊥
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accept2s time m (x :: pbk :: sig :: rest)

= accept2sCore time m x pbk sig

accept3s : StackPredicate

accept3s time m [] = ⊥

accept3s time m (x :: []) = ⊥

accept3s time m (x :: x1 :: [])

= ⊥

accept3s time m (x :: x1 :: x2 :: [])

= ⊥

accept3s

time m (pbkh2 :: pbkh1 :: pbk :: sig :: rest)

= (pbkh2 ≡ pbkh1) ∧ IsSigned m sig pbk

accept4s : ( pbkh1 : N ) → StackPredicate

accept4s pbkh1 time m [] = ⊥

accept4s pbkh1 time m (x :: []) = ⊥

accept4s pbkh1 time m (x :: x1 :: [])

= ⊥

accept4s

pbkh1 time m ( pbkh2 :: pbk :: sig :: st)

= (pbkh2 ≡ pbkh1) ∧ IsSigned m sig pbk

accept5s : ( pbkh1 : N ) → StackPredicate

accept5s pbkh1 time m [] = ⊥

accept5s pbkh1 time m (x :: []) = ⊥

accept5s pbkh1 time m (x :: x1 :: [])

= ⊥

accept5s

pbkh1 time m ( pbk1 :: pbk2 :: sig :: st)

= (hashFun pbk1 ≡ pbkh1) ∧ IsSigned m sig pbk2
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wPreCondP2PKHs : (pbkh : N ) → StackPredicate

wPreCondP2PKHs pbkh time m []

= ⊥

wPreCondP2PKHs pbkh time m (x :: [])

= ⊥

wPreCondP2PKHs pbkh time m ( pbk :: sig :: st) =

(hashFun pbk ≡ pbkh ) ∧ IsSigned m sig pbk

correct3Aux1 : (x : N)(rest : List N)

(time : Time)(msg : Msg)

→ accept2s time msg (x :: rest)

→ isTrueNat x

correct3Aux1 zero (zero :: [])

time msg accept = accept

correct3Aux1 zero (zero :: x :: rest)

time msg accept = accept

correct3Aux1 zero (suc x :: [])

time msg accept = accept

correct3Aux1 zero (suc x :: x1 :: rest)

time msg accept = accept

correct3Aux1 (suc x) (x1 :: rest)

time msg accept = tt

correct3Aux2 : ( x pbk sig : N )

( rest : List N)(time : Time)(m : Msg)

→ accept2s time m (x :: pbk :: sig :: rest)

→ IsSigned m sig pbk

correct3Aux2 (suc x) pubkey

sig rest time m accept = accept

lemmaCorrect3From1 : (x z t : N)
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(time : Time )(m : Msg)

→ accept2sCore time m x z t → isTrueNat x

lemmaCorrect3From1 (suc x) z t time m p = tt

lemmaCorrect3From : (x y z t : N)

(time : Time)(m : Msg)

→ accept2sCore time m

(compareNaturals x y) z t → x ≡ y

lemmaCorrect3From x y z t time m p

= compareNatToEq x y

(lemmaCorrect3From1 (compareNaturals x y)

z t time m p)

script-1-b : BitcoinScriptBasic

script-1-b = opCheckSig :: []

script-2-b : BitcoinScriptBasic

script-2-b = opVerify :: script-1-b

script-3-b : BitcoinScriptBasic

script-3-b = opEqual :: script-2-b

script-4-b : N → BitcoinScriptBasic

script-4-b pbkh = opPush pbkh :: script-3-b

script-5-b : N → BitcoinScriptBasic

script-5-b pbkh = opHash :: script-4-b pbkh

script-6-b : N → BitcoinScriptBasic

script-6-b pbkh = opDup :: script-5-b pbkh

script-7-b : N → BitcoinScriptBasic

script-7-b pbkh = opMultiSig :: script-6-b pbkh

script-7’-b : (pbkh pbk1 pbk2 : N)
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→ BitcoinScriptBasic

script-7’-b pbkh pbk1 pbk2

= opMultiSig :: script-6-b pbkh

script-1 : BitcoinScript

script-1 = basicBScript2BScript script-1-b

script-2 : BitcoinScript

script-2 = basicBScript2BScript script-2-b

script-3 : BitcoinScript

script-3 = basicBScript2BScript script-3-b

script-4 : N → BitcoinScript

script-4 pbk = basicBScript2BScript

(script-4-b pbk)

script-5 : N → BitcoinScript

script-5 pbk = basicBScript2BScript

(script-5-b pbk)

script-6 : N → BitcoinScript

script-6 pbk = basicBScript2BScript

(script-6-b pbk)

script-7 : N → BitcoinScript

script-7 pbk = basicBScript2BScript

(script-7-b pbk)

script-7’ : (pbkh pbk1 pbk2 : N) → BitcoinScript

script-7’ pbkh pbk1 pbk2

= basicBScript2BScript (script-7’-b pbkh pbk1 pbk2)

instructionsBasic : (pbkh : N) (n : N)

→ n ≤ 5 → InstructionBasic
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instructionsBasic pbkh 0 _ = opCheckSig

instructionsBasic pbkh 1 _ = opVerify

instructionsBasic pbkh 2 _ = opEqual

instructionsBasic pbkh 3 _ = opPush pbkh

instructionsBasic pbkh 4 _ = opHash

instructionsBasic pbkh 5 _ = opDup

scriptP2PKH : (pbkh : N) → BitcoinScript

scriptP2PKH pbkh = opDup :: opHash

:: (opPush pbkh) :: opEqual

:: opVerify :: opCheckSig :: []

weakestPreConditionP2PKHs :

(pbkh : N) → StackPredicate

weakestPreConditionP2PKHs = wPreCondP2PKHs

B.34 Define the ledger

open import basicBitcoinDataType

module ledger (param : GlobalParameters) where

open import Data.Nat hiding (_≤_)

open import Data.List hiding (_++_)

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

open import Data.List.NonEmpty hiding (head)

open import Data.Maybe
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open import libraries.listLib

open import libraries.natLib

open import libraries.boolLib

open import libraries.andLib

open import libraries.maybeLib

open import stack

open import instruction

record SignedWithSigPbk

(msg : Msg)(address : Address) : Set where

field publicKey : PublicKey

pbkCorrect

: param .publicKey2Address publicKey ≡N address

signature : Signature

signed

: Signed param msg signature publicKey

– record for the transaction field
record TXFieldNew : Set where

constructor txFieldNew

field amount : N

address : Address

smartContract : BitcoinScript

open TXFieldNew public

txField2MsgNew : (inp : TXFieldNew) → Msg

txField2MsgNew inp =

nat (amount inp) +msg nat (address inp)

txFieldList2MsgNew : (inp : List TXFieldNew) → Msg
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txFieldList2MsgNew inp = list (mapL txField2MsgNew inp)

txFieldList2TotalAmountNew :

(inp : List TXFieldNew) → Amount

txFieldList2TotalAmountNew inp

= sumListViaf amount inp

– record for unsigned transaction
record TXUnsignedNew : Set where

field inputs : List TXFieldNew

outputs : List TXFieldNew

TXID1 : N

open TXUnsignedNew public

txUnsigned2MsgNew : (transac : TXUnsignedNew) → Msg

txUnsigned2MsgNew transac =

txFieldList2MsgNew (inputs transac)

+msg txFieldList2MsgNew (outputs transac)

txInput2MsgNew : (inp : TXFieldNew)

(outp : List TXFieldNew) → Msg

txInput2MsgNew inp outp = txField2MsgNew inp

+msg txFieldList2MsgNew outp

tx2SignauxNew : (inp : List TXFieldNew)

(outp : List TXFieldNew) → Set

tx2SignauxNew [] outp = >

tx2SignauxNew (inp :: restinp) outp =

SignedWithSigPbk (txInput2MsgNew inp outp)

(address inp) × tx2SignauxNew restinp outp
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tx2SignNew : TXUnsignedNew → Set

tx2SignNew tr = tx2SignauxNew (inputs tr) (outputs tr)

– \bitcoinVersFive

record TXNew : Set where

field tx : TXUnsignedNew

cor : txFieldList2TotalAmountNew

(inputs tx) ≥ txFieldList2TotalAmountNew (outputs tx)

nonEmpt : NonNil (inputs tx) × NonNil (outputs tx)

sig : tx2SignNew tx

open TXNew public

–record for a ledger
record ledgerEntryNew : Set where

constructor ledgerEntrNew

field ins : BitcoinScript

amount : N

open ledgerEntryNew public

record LedgerNew : Set where

constructor ledger

field

entries : (addr : Address)

→ Maybe ledgerEntryNew

currentTime : Time

open LedgerNew public

–record for transaction entry
record TXEntryNew : Set where

637



B. Full Agda code for chapter Verifying Bitcoin Script with non-local instructions
(conditionals instructions)

constructor txentryNew

field amount : N

smartContract : BitcoinScript

address : Address

– indentifiers for unspentTX outputs (UTXO) (Lists of UTXO)

open TXEntryNew public

testLedgerNewEntries : Address → Maybe ledgerEntryNew

testLedgerNewEntries zero =

just (ledgerEntrNew [] 50)

testLedgerNewEntries (suc zero) =

just (ledgerEntrNew [] 80)

testLedgerNewEntries (suc (suc x)) = nothing

testLedgerNew : LedgerNew

testLedgerNew .entries = testLedgerNewEntries

testLedgerNew .currentTime = 31

– record for transaction
record transactionNew : Set where

constructor transactNew

field txid : N

inputs : TXEntryNew

outputs : TXEntryNew

open transactionNew public

– function that is used to check if
– the coins go to the same address
processLedger : LedgerNew → transactionNew

→ LedgerNew

processLedger oldLed

(transactNew txid1

(txentryNew amount1 smartContract1 recipientAddress)

(txentryNew amount2 smartContract2 desinntationAddress))
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.entries addr

= if (addr ==b recipientAddress)

then nothing

else ( if (addr ==b desinntationAddress)

then just (ledgerEntrNew smartContract2 amount2)

else oldLed .entries addr )

processLedger oldLed trans .currentTime

= suc (oldLed .currentTime)

tx2MsgNew : transactionNew → Msg

tx2MsgNew t = nat (txid t)

B.35 Other libraries (bool library, empty library, natural library,

Maybe lift, and list library.

module libraries.boolLib where

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Unit

open import Data.Empty

open import Relation.Nullary hiding (True)

if_then_else_ : {A : Set }→ Bool → A

→ A → A

if true then n else m = n

if false then n else m = m

∧bproj1 : {b b’ : Bool} → True (b ∧b b’)

→ True b

∧bproj1 {true} {true} tt = tt

∧bproj2 : {b b’ : Bool} → True (b ∧b b’)

→ True b’

∧bproj2 {true} {true} tt = tt
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∧bIntro : {b b’ : Bool} → True b

→ True b’ → True (b ∧b b’)

∧bIntro {true} {true} tt tt = tt

¬bLem : {b : Bool} → True (not b)

→ ¬ (True b)

¬bLem {false} x ()

module libraries.emptyLib where

open import Data.Empty

efq : {A : Set} → ⊥→ A

efq ()

module libraries.natLib where

open import Data.Nat hiding (_≤_ ; _<_ )

open import Data.Bool hiding (_≤_ ; _<_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Unit

open import Data.Empty

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import libraries.boolLib

_≡Nb_ : N → N → Bool

zero ≡Nb zero = true

zero ≡Nb suc m = false

suc n ≡Nb zero = false

suc n ≡Nb suc m = n ≡Nb m
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_≡N_ : N → N → Set

n ≡N m = True (n ≡Nb m)

_≤b_ : N → N → Bool

0 ≤b n = true

(suc n) ≤b 0 = false

(suc n) ≤b (suc m) = n ≤b m

_≤_ : N → N → Set

n ≤ m = True (n ≤b m)

_==b_ : N → N → Bool

0 ==b 0 = true

suc n ==b suc m = n ==b m

_ ==b _ = false

nat2TrueFalse : N → N

nat2TrueFalse 0 = 0

nat2TrueFalse (suc n) = 1

boolToNat : Bool → N

boolToNat true = 1

boolToNat false = 0

_<b_ : N → N → Bool

n <b m = suc n ≤b m

isTrueNat : N → Set

isTrueNat zero = ⊥

isTrueNat (suc m) = >

compareNaturals : N → N → N

compareNaturals 0 0 = 1

compareNaturals 0 (suc m) = 0
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compareNaturals(suc n) 0 = 0

compareNaturals(suc n) (suc m)

= compareNaturals n m

compareNaturalsSet : N → N → Bool

compareNaturalsSet 0 0 = true

compareNaturalsSet 0 (suc m) = false

compareNaturalsSet (suc n) 0 = false

compareNaturalsSet (suc n) (suc m) = n ==b m

notFalse : N → Bool

notFalse zero = false

notFalse (suc x) = true

NotFalse : N → Set

NotFalse zero = ⊥

NotFalse (suc x) = >

compareNatToEq : (x y : N)

→ isTrueNat (compareNaturals x y)

→ x ≡ y

compareNatToEq zero zero t = refl

compareNatToEq (suc x) (suc y) t

= cong suc (compareNatToEq x y t)

lemmaCompareNat : ( x : N )

→ compareNaturals x x ≡ 1

lemmaCompareNat zero = refl

lemmaCompareNat (suc n)

= lemmaCompareNat n

boolToNatNotFalseLemma : (b : Bool) → True b

→ NotFalse (boolToNat b)

boolToNatNotFalseLemma true p = tt
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boolToNatNotFalseLemma2 : (b : Bool)

→ NotFalse (boolToNat b) → True b

boolToNatNotFalseLemma2 true p = tt

leqSucLemma : (n m : N) → n ≤ m → n ≤ suc m

leqSucLemma zero zero p = tt

leqSucLemma zero (suc m) p = tt

leqSucLemma (suc n) (suc m) p

= leqSucLemma n m p

module libraries.listLib where

open import Data.List hiding (_++_)

open import Data.Fin hiding (_+_)

open import Data.Nat

open import Data.Bool

open import Data.Empty

open import Data.Product

open import Level using (Level)

open import Data.Unit.Base

open import Function

open import Relation.Binary.PropositionalEquality

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

–open import Agda.Builtin.Equality.Rewrite

infixr 7 _::’_

infixl 6 _++_

_++_ : {a : Level}{A : Set a}

→ List A → List A → List A

[] ++ ys = ys
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(x :: xs) ++ ys = x :: (xs ++ ys)

_::’_ : {a : Level}{A : Set a}

→ A → List A → List A

a ::’ l = a :: l

lengthList : ∀ {A : Set} → List A → N

lengthList []

= zero

lengthList (x :: xs)

= suc (lengthList xs)

mapL : {X Y : Set}( f : X → Y)

(l : List X) → List Y

mapL f [] = []

mapL f (x :: l) = f x :: mapL f l

corLengthMapL : {X Y : Set}( f : X → Y)

(l : List X) → length (mapL f l) ≡ length l

corLengthMapL f [] = refl

corLengthMapL f (x :: l)

= cong suc (corLengthMapL f l)

nth : {X : Set}(l : List X) (i : Fin (length l))

→ X

nth [] ()

nth (x :: l) zero = x

nth (x :: l) (suc i) = nth l i

delFromList : {X : Set}(l : List X)

(i : Fin (length l)) → List X

delFromList [] ()

delFromList (x :: l) zero = l
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delFromList (x :: l) (suc i)

= x :: delFromList l i

– an index of (delFromList l i)
– is mapped to an index of l
delFromListIndexToOrigIndex : {X : Set}

(l : List X)(i : Fin (length l))

(j : Fin (length (delFromList l i)))

→ Fin (length l)

delFromListIndexToOrigIndex [] () j

delFromListIndexToOrigIndex (x :: l)

zero j = suc j

delFromListIndexToOrigIndex (x :: l)

(suc i) zero = zero

delFromListIndexToOrigIndex (x :: l)

(suc i) (suc j)

= suc (delFromListIndexToOrigIndex l i j)

correctNthDelFromList : {X : Set}(l : List X)

(i : Fin (length l))

(j : Fin (length (delFromList l i)))

→ nth (delFromList l i) j ≡

nth l (delFromListIndexToOrigIndex l i j)

correctNthDelFromList [] () j

correctNthDelFromList (x :: l) zero j = refl

correctNthDelFromList (x :: l) (suc i) zero = refl

correctNthDelFromList (x :: l) (suc i) (suc j)

= correctNthDelFromList l i j

concatListIndex2OriginIndices : {X Y : Set}(l l’ : List X)

( f : Fin (length l) → Y)

(f ’ : Fin (length l’) → Y)

(i : Fin (length (l ++ l’))) → Y

concatListIndex2OriginIndices [] l’ f f’ i = f ’ i
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concatListIndex2OriginIndices (x :: l) l’ f f’ zero = f zero

concatListIndex2OriginIndices (x :: l) l’ f f’ (suc i) =

concatListIndex2OriginIndices l l’ ( f ◦ suc) f ’ i

corCconcatListIndex2OriginIndices : {X Y : Set}

(l l’ : List X)

( f : X → Y)

(g : Fin (length l) → Y)

(g’ : Fin (length l’) → Y)

(cor1 : (i : Fin (length l))

→ f (nth l i) ≡ g i)

(cor2 : (i’ : Fin (length l’))

→ f (nth l’ i’) ≡ g’ i’)

(i : Fin (length (l ++ l’)))

→ f (nth (l ++ l’) i)

≡ concatListIndex2OriginIndices l l’ g g’ i

corCconcatListIndex2OriginIndices [] l’ f g g’

cor1 cor2 i = cor2 i

corCconcatListIndex2OriginIndices (x :: l) l’ f g g’

cor1 cor2 zero = cor1 zero

corCconcatListIndex2OriginIndices (x :: l) l’ f g g’

cor1 cor2 (suc i) =

corCconcatListIndex2OriginIndices l l’ f (g ◦ suc)

g’ (cor1 ◦ suc) cor2 i

listOfElementsOfFin : (n : N) → List (Fin n)

listOfElementsOfFin zero = []

listOfElementsOfFin (suc n) =

zero :: (mapL suc (listOfElementsOfFin n))

corListOfElementsOfFinLength : (n : N)

→ length (listOfElementsOfFin n) ≡ n

corListOfElementsOfFinLength zero = refl
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corListOfElementsOfFinLength (suc n) = cong suc cor3

where

cor1 : length (mapL {Y = Fin (suc n)} (λ i → suc i)

(listOfElementsOfFin n)) ≡ length (listOfElementsOfFin n)

cor1 = corLengthMapL suc (listOfElementsOfFin n)

cor2 : length (listOfElementsOfFin n) ≡ n

cor2 = corListOfElementsOfFinLength n

cor3 : length (mapL {Y = Fin (suc n)} (λ i → suc i)

(listOfElementsOfFin n)) ≡ n

cor3 = trans cor1 cor2

– subtract list consists of elements from
– the list which are about to
– be subtracted from it.
– every element of the list can be
– subtracted only once
– however since elements can occur multiple
– times they can still occur
– multiple times (as many times as
– they occur in the list) from the list

data SubList {X : Set} : (l : List X) → Set where

[] : {l : List X} → SubList l

cons : {l : List X}(i : Fin (length l))

(o : SubList (delFromList l i)) → SubList l

listMinusSubList : {X : Set}(l : List X)

(o : SubList l) → List X

listMinusSubList l []

= l

listMinusSubList l (cons i o)

= listMinusSubList (delFromList l i) o
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subList2List : {X : Set}{l : List X}

(sl : SubList l) → List X

subList2List []

= []

subList2List {l = l} (cons i sl)

= nth l i :: subList2List sl

data SubList+ {X : Set} (Y : Set) :

(l : List X) → Set where

[] : {l : List X} → SubList+ Y l

cons : {l : List X}(i : Fin (length l))

(y : Y)(o : SubList+ Y (delFromList l i))

→ SubList+ Y l

listMinusSubList+ : {X Y : Set}(l : List X)

(o : SubList+ Y l) → List X

listMinusSubList+ l [] = l

listMinusSubList+ l (cons i y o)

= listMinusSubList+ (delFromList l i) o

subList+2List : {X Y : Set}{l : List X}

(sl : SubList+ Y l) → List (X × Y)

subList+2List [] = []

subList+2List {X} {Y} {l} (cons i y sl)

= (nth l i , y) :: subList+2List sl

listMinusSubList+Index2OrgIndex : {X Y : Set}

(l : List X)(o : SubList+ Y l)

(i : Fin (length (listMinusSubList+ l o)))

→ Fin (length l)

listMinusSubList+Index2OrgIndex l [] i
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= i

listMinusSubList+Index2OrgIndex l (cons i1 y o) i =

delFromListIndexToOrigIndex l i1

(listMinusSubList+Index2OrgIndex

(delFromList l i1) o i)

corListMinusSubList+Index2OrgIndex : {X Y : Set}

(l : List X)(o : SubList+ Y l)

(i : Fin (length (listMinusSubList+ l o)))

→ nth (listMinusSubList+ l o) i

≡ nth l (listMinusSubList+Index2OrgIndex l o i)

corListMinusSubList+Index2OrgIndex l [] i = refl

corListMinusSubList+Index2OrgIndex [] (cons () y o) i

corListMinusSubList+Index2OrgIndex (x :: l) (cons zero y o) i

= corListMinusSubList+Index2OrgIndex l o i

corListMinusSubList+Index2OrgIndex (x :: l)

(cons (suc i1) y o) i

= trans eq1 eq2

where

eq1 : nth (listMinusSubList+ (x :: delFromList l i1) o) i ≡

nth (x :: delFromList l i1)

(listMinusSubList+Index2OrgIndex

(x :: delFromList l i1) o i)

eq1 = corListMinusSubList+Index2OrgIndex

(x :: delFromList l i1) o i

eq2 : nth (x :: delFromList l i1)

(listMinusSubList+Index2OrgIndex

(x :: delFromList l i1) o i)

≡ nth (x :: l)

(delFromListIndexToOrigIndex (x :: l)

(suc i1)

(listMinusSubList+Index2OrgIndex

(x :: delFromList l i1) o i))

eq2 = correctNthDelFromList (x :: l)
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(suc i1)

((listMinusSubList+Index2OrgIndex

(x :: delFromList l i1) o i))

subList+2IndicesOriginalList : {X Y : Set}(l : List X)

(sl : SubList+ Y l) → List (Fin (length l) × Y)

subList+2IndicesOriginalList l [] = []

subList+2IndicesOriginalList {X} {Y} l (cons i y sl) =

(i , y) :: mapL (λ {(j , y) →

(delFromListIndexToOrigIndex l i j , y)}) res1

where

res1 : List (Fin (length

(delFromList l i)) × Y)

res1 = subList+2IndicesOriginalList

(delFromList l i) sl

sumListViaf : {X : Set} ( f : X → N)

(l : List X) → N

sumListViaf f [] = 0

sumListViaf f (x :: l) = f x + sumListViaf f l

∀inList : {X : Set}(l : List X)

(P : X → Set) → Set

∀inList [] P = >

∀inList (x :: l) P = P x × ∀inList l P

nonNil : {X : Set}(l : List X) → Bool

nonNil [] = true

nonNil (_ :: _) = false

NonNil : {X : Set}(l : List X) → Set

NonNil l = T (nonNil l)
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list2ListWithIndexaux : {X : Set}(n : N)

(l : List X) → List (X × N)

list2ListWithIndexaux n [] = []

list2ListWithIndexaux n (x :: l) =

(x , n) :: list2ListWithIndexaux (suc n) l

list2ListWithIndex : {X : Set}(l : List X)

→ List (X × N)

list2ListWithIndex l =

list2ListWithIndexaux 0 l

lemma++[] : { A : Set}(l : List A)

→ l ++ [] ≡ l

lemma++[] {A} [] = refl

lemma++[] {A} (x :: l) =

cong (λ l’ → x :: l’) (lemma++[] l)

lemmaListAssoc : {A : Set}(l1 l2 l3 : List A)

→ l1 ++ (l2 ++ l3) ≡

(l1 ++ l2) ++ l3

lemmaListAssoc [] l2 l3 = refl

lemmaListAssoc (x :: l1) l2 l3 = cong (λ l → x :: l)

(lemmaListAssoc l1 l2 l3)

lemmaListAssoc4 : {A : Set}(l1 l2 l3 l4 : List A)

→ (l1 ++ (l2 ++ (l3 ++ l4)))

≡

(((l1 ++ l2) ++ l3) ++ l4)

lemmaListAssoc4 l1 l2 l3 l4 =

(l1 ++ (l2 ++ (l3 ++ l4)))

≡〈 cong (λ l → l1 ++ l)

651



B. Full Agda code for chapter Verifying Bitcoin Script with non-local instructions
(conditionals instructions)

(lemmaListAssoc l2 l3 l4) 〉

(l1 ++ ((l2 ++ l3) ++ l4))

≡〈 lemmaListAssoc l1

(l2 ++ l3) l4 〉

((l1 ++ (l2 ++ l3)) ++ l4)

≡〈 cong (λ l → l ++ l4)

(lemmaListAssoc l1 l2 l3) 〉

(((l1 ++ l2) ++ l3) ++ l4)

‚

module libraries.maybeLib where

open import Data.Maybe

open import Data.Bool

open import Data.Empty

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import Relation.Nullary

liftJustIsIdLem : {A : Set} → (B : Maybe A → Set)

→ (ma : Maybe A) → B ma → B (ma >>= just )

liftJustIsIdLem B nothing b = b

liftJustIsIdLem B (just x) b = b

liftJustIsIdLem2 : {A : Set} → (B : Maybe A → Set)

→ (ma : Maybe A) → B (ma >>= just) → B ma

liftJustIsIdLem2 B nothing b = b

liftJustIsIdLem2 B (just x) b = b

liftPred2Maybe : {A : Set}→ (A → Set)

→ Maybe A → Set
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liftPred2Maybe p nothing = ⊥

liftPred2Maybe p (just x) = p x

lemmaEqualLift2Maybe : {A : Set}

( f f ’ : A → Maybe A)(cor : (a : A) → f a ≡ f ’ a)

→ (a : Maybe A) → (a >>= f ) ≡ (a >>= f ’)

lemmaEqualLift2Maybe f f ’ p (just x) = p x

lemmaEqualLift2Maybe f f ’ p nothing = refl

liftJustEqLem : {A : Set}(s : Maybe A)

→ (s >>= just) ≡ s

liftJustEqLem nothing = refl

liftJustEqLem (just x) = refl

liftJustEqLem2 : {A : Set}(s : Maybe A)

→ s ≡ (s >>= just)

liftJustEqLem2 nothing = refl

liftJustEqLem2 (just x) = refl

_+ : {A : Set} → (A → Set)

→ Maybe A → Set

(P +) nothing = ⊥

(P +) (just x) = P x

_+b : {A : Set} → (A → Bool)

→ (Maybe A → Bool)

(p +b) nothing = false

(p +b) (just x) = p x

predicateLiftToMaybe : {A : Set}(P : A → Set)(s : A)

→ P s → (P +) (just s)

predicateLiftToMaybe P s a = a
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liftPredtransformerMaybe : {A : Set}

(φ ψ : A → Set)

( f : (s : A) → φ s → ψ s)

→ (s : Maybe A) → (φ +) s → (ψ +) s

liftPredtransformerMaybe φ ψ f (just s) p = f s p

liftToMaybeLemma⊥ : {S : Set}

→ (s : Maybe S) → ¬ ( (λ s → ⊥ ) +) s

liftToMaybeLemma⊥ nothing p = p

liftToMaybeLemma⊥ (just x) p = p
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Appendix C

Full Agda code for chapter Developing
two models of the Solidity-style smart
contracts

C.1 Simple model

C.1.1 Ledger, commands, responses, execution stack element (ExecStackEl),
Contract, state execution function (StateExecFun), and all functions and
data types and records in the simple model (Ledger-Simple-Model.agda)

module Simple-Model.ledgerversion.Ledger-Simple-Model where

open import Data.Nat

open import Agda.Builtin.Nat using (_-_)

open import Data.Unit

open import Data.List

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length)
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–library for simple model
open import Simple-Model.library-simple-model.basicDataStructureWithSimpleModel

– main library
open import libraries.natCompare

mutual

– smart contract-comands:
data CCommands : Set where

updatec : FunctionName → (Msg → SmartContractExec Msg)

→ CCommands

currentAddrLookupc : CCommands

callAddrLookupc : CCommands

callc : Address → FunctionName → Msg → CCommands

transferc : Amount → Address → CCommands

getAmountc : Address → CCommands

– smart contract response
CResponse : CCommands → Set

CResponse (updatec fname fdef) = >

CResponse currentAddrLookupc = Address

CResponse callAddrLookupc = Address

CResponse (getAmountc addr) = Amount

CResponse (callc addr fname msg) = Msg

CResponse (transferc amount addr) = >

–SmartContractExec is datatype of what happens when
– a function is applied to its arguments.

data SmartContractExec (A : Set) : Set where

return : A → SmartContractExec A

error : ErrorMsg → SmartContractExec A

exec : (c : CCommands) → (CResponse c → SmartContractExec A)
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→ SmartContractExec A

_>>=_ : {A B : Set} → SmartContractExec A → (A → SmartContractExec B) → SmartContractExec B

return x >>= q = q x

error x >>= q = error x

exec c x >>= q = exec c (λ r → x r >>= q)

_»_ : {A B : Set} → SmartContractExec A → SmartContractExec B → SmartContractExec B

return x » q = q

error x » q = error x

exec c x » q = exec c (λ r → x r » q)

– Definition of simple contract
record Contract : Set where

constructor contract

field

amount : Amount

fun : FunctionName → (Msg → SmartContractExec Msg)

open Contract public

– ledger
Ledger : Set

Ledger = Address → Contract

– the definition of execution stack elements
record ExecStackEl : Set where

constructor execStackEl

field
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callAddress : Address –address for the last call
currentAddress : Address –current address where we are in
continuation : (Msg → SmartContractExec Msg)

open ExecStackEl public

– the definition of the execution stack function function
ExecutionStack : Set

ExecutionStack = List ExecStackEl

{- StateExecFun is an intermediate state when
we are evaluating a function call
in a contract
it consists of

- the ledger (which might changed because of updates)
- executionStack contains partially evaluated calls

to other contracts together with their addresses
- the current address
- and the currently partially evaluated

function we are evaluating
-}
record StateExecFun : Set where

constructor stateEF

field

ledger : Ledger

executionStack : ExecutionStack

callAddress : Address

currentAddress : Address

nextstep : SmartContractExec Msg

open StateExecFun public

–update ledger
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updateLedger : Ledger → Address

→ FunctionName

→ (Msg → SmartContractExec Msg) → Ledger

updateLedger ledger changedAddr changedFname f a .amount

= ledger a .amount

updateLedger ledger changedAddr changedFname f a .fun fname

= if (a ≡b changedAddr) ∧ (fname ≡fun changedFname)

then f else ledger a .fun fname

–update ledger amount
updateLedgerAmount : (ledger : Ledger)

→ (currentAddr destinationAddr : Address) (amount’ : Amount)

→ (correctAmount : amount’ 5r ledger currentAddr .amount)

→ Ledger

updateLedgerAmount ledger currentAddr destinationAddr

amount’ correctAmount addr .amount

= if addr ≡b currentAddr

then subtract (ledger currentAddr .amount)

amount’ correctAmount

else (if addr ≡b destinationAddr

then ledger destinationAddr .amount + amount’

else ledger addr .amount)

updateLedgerAmount ledger currentAddr newAddr

amount’ correctAmount addr .fun

= ledger addr .fun

– execute transfer auxiliary

– execute transfer auxiliary
executeTransferAux : (oldLedger currentLedger : Ledger)

→ (executionStack : ExecutionStack)

→ (callAddr currentAddr : Address)

→ (amount’ : Amount)
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→ (destinationAddr : Address)

→ (cont : SmartContractExec Msg)

→ (cp : OrderingLeq amount’

(currentLedger currentAddr .amount))

→ StateExecFun

executeTransferAux oldLedger currentLedger executionStack callAddr

currentAddr amount’ destinationAddr cont (leq x) =

stateEF (updateLedgerAmount currentLedger currentAddr

destinationAddr amount’ x)

executionStack callAddr currentAddr cont

executeTransferAux oldLedger currentLedger executionStack callAddr

currentAddr amount destinationAddr cont (greater x) =

stateEF oldLedger executionStack callAddr currentAddr

(error (strErr "not enough money"))

– Execute transfer
executeTransfer : (oldLedger currentLedger : Ledger)

→ ExecutionStack

→ (callAddr currentAddr : Address)

→ (amount’ : Amount)

→ (destinationAddr : Address)

→ (cont : SmartContractExec Msg)

→ StateExecFun

executeTransfer oldLedger currentLedger exexecutionStack callAddr

currentAddr amount’ destinationAddr cont

= executeTransferAux oldLedger currentLedger

exexecutionStack callAddr currentAddr amount’

destinationAddr cont (compareLeq amount’ (currentLedger currentAddr .amount))

– definition of stepEF
stepEF : Ledger → StateExecFun → StateExecFun

stepEF oldLedger (stateEF currentLedger [] callAddr currentAddr (return result))

= stateEF currentLedger [] callAddr currentAddr (return result)

660



C.1. Simple model

stepEF oldLedger (stateEF currentLedger (execSEl :: executionStack)

callAddr currentAddr (return result))

= stateEF currentLedger executionStack callAddr

(execSEl .currentAddress) (execSEl .continuation result)

stepEF oldLedger (stateEF currentLedger executionStack

callAddr currentAddr (exec currentAddrLookupc cont))

= stateEF currentLedger executionStack callAddr currentAddr

(cont currentAddr)

stepEF oldLedger (stateEF currentLedger executionStack

callAddr currentAddr (exec callAddrLookupc cont))

= stateEF currentLedger executionStack callAddr currentAddr

(cont callAddr)

stepEF oldLedger (stateEF currentLedger executionStack

callAddr currentAddr (exec (updatec changedFname changedFdef) cont))

= stateEF (updateLedger currentLedger currentAddr changedFname changedFdef)

executionStack callAddr currentAddr (cont tt)

stepEF oldLedger (stateEF currentLedger executionStack

oldCalladdr oldCurrentAddr (exec (callc newaddr fname msg) cont))

= stateEF currentLedger (execStackEl oldCalladdr oldCurrentAddr cont :: executionStack)

oldCurrentAddr newaddr (currentLedger newaddr .fun fname msg)

stepEF oldLedger (stateEF currentLedger executionStack

callAddr currentAddr (exec (transferc amount destinationAddr) cont))

= executeTransfer oldLedger currentLedger executionStack

callAddr currentAddr amount destinationAddr (cont tt)

stepEF oldLedger (stateEF currentLedger executionStack

callAddr currentAddr (exec (getAmountc addrLookedUp) cont))

= stateEF currentLedger executionStack callAddr currentAddr

(cont (currentLedger addrLookedUp .amount))

stepEF oldLedger (stateEF currentLedger executionStack

callAddr currentAddr (error errorMsg))

= stateEF oldLedger executionStack callAddr currentAddr (error errorMsg)
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– definition of stepEFntimes
stepEFntimes : Ledger → StateExecFun → N → StateExecFun

stepEFntimes oldLedger ledgerstateexecfun 0

= ledgerstateexecfun

stepEFntimes oldLedger ledgerstateexecfun (suc n)

= stepEF oldLedger (stepEFntimes oldLedger ledgerstateexecfun n)

–define stepledgern times
stepLedgerFunntimes : Ledger → Address

→ Address → FunctionName

→ Msg → N → StateExecFun

stepLedgerFunntimes ledger callAddr currentAddr funname msg n

= stepEFntimes ledger (stateEF ledger [] callAddr currentAddr

(ledger currentAddr .fun funname msg)) n

stepLedgerFunntimesList : Ledger → Address

→ Address → FunctionName

→ Msg → N → List StateExecFun

stepLedgerFunntimesList ledger callAddr currentAddr funname msg 0 = []

stepLedgerFunntimesList ledger callAddr currentAddr funname msg (suc n)

= stepLedgerFunntimes ledger callAddr currentAddr funname msg n ::

stepLedgerFunntimesList ledger callAddr currentAddr funname msg n

{-# NON_TERMINATING #-}

evaluateNonTerminatingAux : Ledger → StateExecFun → NatOrError

evaluateNonTerminatingAux oldledger (stateEF currentLedger []

callAddr currentAddr (return (nat n))) = nat n

evaluateNonTerminatingAux oldledger (stateEF currentLedger []

callAddr currentAddr (return otherwise))

= err (strErr "result returned not nat")

evaluateNonTerminatingAux oldledger (stateEF currentLedger s

callAddr currentAddr (error msg)) = err msg

evaluateNonTerminatingAux oldledger evals
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= evaluateNonTerminatingAux oldledger (stepEF oldledger evals)

evaluateNonTerminating : Ledger → Address → Address

→ FunctionName → Msg → NatOrError

evaluateNonTerminating ledger callAddr currentAddr funname msg

= evaluateNonTerminatingAux ledger

(stateEF ledger [] callAddr currentAddr (ledger currentAddr .fun funname msg))

C.1.2 A count example for the simple model (examplecounter.agda)

module Simple-Model.example.examplecounter where

open import Data.Nat

open import Data.List

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length)

–simple model
open import Simple-Model.ledgerversion.Ledger-Simple-Model

–library
open import Simple-Model.library-simple-model.basicDataStructureWithSimpleModel

–Example of a simple counter
const : N → (Msg → SmartContractExec Msg)

const n msg = return (nat n)

mutual

contract0 : FunctionName → (Msg → SmartContractExec Msg)
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contract0 "f1" = const 0

contract0 "g1" = def-g1

contract0 ow ow’ = error (strErr " Error msg")

def-g1 : (Msg → SmartContractExec Msg)

def-g1 msg =

do

addr ← currentAddrLookup

(nat n) ← call 0 "f1" (nat 0)

where

(list l) → error (strErr " Error msg")

update "f1" (const (suc n))

return (nat n)

– test our ledger with our example

testLedger : Ledger

testLedger 0 .amount = 20

testLedger 0 .fun "f1" m = const 0 (nat 0)

testLedger 0 .fun "g1" m = def-g1(nat 0)

testLedger 0 .fun "k1" m =

exec (getAmountc 0) (λ n → return (nat n))

testLedger 0 .fun ow ow’ =

error (strErr "Undefined")

– the example belw we use it in our paper

testLedger 1 .amount = 40

testLedger 1 .fun "f1" m = const 0 (nat 0)

testLedger 1 .fun "g1" m =

exec currentAddrLookupc λ addr →

exec (callc addr "f1" (nat 0))

λ {(nat n) → exec (updatec "f1" (const (suc n)))
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λ _ → return (nat (suc n));

_ → error (strErr

"f1 returns not a number")}

testLedger 1 .fun ow’ ow” =

error (strErr "Undefined")

–otherwise
testLedger ow .amount = 0

testLedger ow .fun ow’ ow”

= error (strErr "Undefined")

– test cases below

– test the ledger above
test : NatOrError

test = evaluateNonTerminating testLedger 0 0 "f1" (nat 0)

–return nat 0

updatefunctionf1 : NatOrError

updatefunctionf1 = evaluateNonTerminating testLedger 0 1 "g1" (nat 0)

–return nat 1

C.1.3 Library for the simple model
(basicDataStructureWithSimpleModel.agda)

module Simple-Model.library-simple-model.basicDataStructureWithSimpleModel where

open import Data.Nat

open import Data.String hiding (length)

open import Data.List

open import Data.Bool

open import Agda.Builtin.String

– define function name as string
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FunctionName : Set

FunctionName = String

– Boolean valued equality on FunctionName
_≡fun_ : FunctionName → FunctionName → Bool

_≡fun_ = primStringEquality

Time : Set

Time = N

Amount : Set

Amount = N

Address : Set

Address = N

Signature : Set

Signature = N

PublicKey : Set

PublicKey = N

– Definition of message data type
data Msg : Set where

nat : (n : N) → Msg

list : (l : List Msg) → Msg

– Definition of error data types
data ErrorMsg : Set where

strErr : String → ErrorMsg

– Definition of natural or error
data NatOrError : Set where

nat : N → NatOrError

err : ErrorMsg → NatOrError
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C.2 Complex model

C.2.1 Ledger in the complex model (Ledger-Complex-Model.agda)

open import constantparameters

module Complex-Model.ledgerversion.Ledger-Complex-Model

(param : ConstantParameters) where

open import Data.Nat

open import Agda.Builtin.Nat using (_-_; _*_)

open import Data.Unit

open import Data.List

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length; show) renaming (_++_ to _++str_)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Show

open import Data.Empty

– our work
open import Complex-Model.ccomand.ccommands-cresponse

open import basicDataStructure

open import libraries.natCompare

open import libraries.Mainlibrary

– update view function in the ledger
updateLedgerviewfun : Ledger → Address

→ FunctionName

→ ((Msg → MsgOrError) → (Msg → MsgOrError))

→ ((Msg → MsgOrError) → (Msg → N) → Msg → N)
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→ Ledger

updateLedgerviewfun ledger changedAddr changedFname

f g a .amount = ledger a .amount

updateLedgerviewfun ledger changedAddr changedFname

f g a .fun = ledger a .fun

updateLedgerviewfun ledger changedAddr changedFname

f g a .viewFunction fname =

if (changedFname ≡fun fname)

then f (ledger a .viewFunction fname)

else ledger a .viewFunction fname

updateLedgerviewfun ledger changedAddr changedFname

f g a .viewFunctionCost fname =

if (changedFname ≡fun fname)

then g (ledger a .viewFunction fname)

(ledger a .viewFunctionCost fname)

else ledger a .viewFunctionCost fname

–update ledger amount
updateLedgerAmount : (ledger : Ledger)

→ (calledAddr destinationAddr : Address) (amount’ : Amount)

→ (correctAmount : amount’ 5r ledger calledAddr .amount)

→ Ledger

updateLedgerAmount ledger calledAddr destinationAddr

amount’ correctAmount addr .amount

= if addr ≡b calledAddr

then subtract (ledger calledAddr .amount)

amount’ correctAmount

else (if addr ≡b destinationAddr

then ledger destinationAddr .amount + amount’

else ledger addr .amount)

updateLedgerAmount ledger calledAddr newAddr

amount’ correctAmount addr .fun

= ledger addr .fun

668



C.2. Complex model

updateLedgerAmount ledger calledAddr newAddr

amount’ correctAmount addr .viewFunction

= ledger addr .viewFunction

updateLedgerAmount ledger calledAddr newAddr

amount’ correctAmount addr .viewFunctionCost

= ledger addr .viewFunctionCost

–This function we use it to update the gas
–by decucting from the ledger
–rename gasPrice to gascost
deductGasFromLedger : (ledger : Ledger)

→ (calledAddr : Address) (gascost : N)

→ (correctAmount : gascost 5r ledger calledAddr .amount)

→ Ledger

deductGasFromLedger ledger calledAddr gascost

correctAmount addr .amount

= if addr ≡b calledAddr

then subtract (ledger calledAddr .amount)

gascost correctAmount

else ledger addr .amount

deductGasFromLedger ledger calledAddr gascost

correctAmount addr .fun

= ledger addr .fun

deductGasFromLedger ledger calledAddr gascost

correctAmount addr .viewFunction

= ledger addr .viewFunction

deductGasFromLedger ledger calledAddr gascost

correctAmount addr .viewFunctionCost

= ledger addr .viewFunctionCost

– this function below we use it to refuend in two cases with stepEF
– 1) when finish (first case)
– 2) when we have error (the last case)
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addWeiToLedger : (ledger : Ledger)

→ (address : Address) (amount’ : Amount)

→ Ledger

addWeiToLedger ledger address amount’ addr .amount

= if addr ≡b address

then ledger address .amount + amount’

else ledger addr .amount

addWeiToLedger ledger address amount’ addr .fun

= ledger addr .fun

addWeiToLedger ledger address amount’ addr .viewFunction

= ledger addr .viewFunction

addWeiToLedger ledger address amount’ addr .viewFunctionCost

= ledger addr .viewFunctionCost

– execute transfer auxiliary
executeTransferAux : (oldLedger : Ledger)

→ (currentledger : Ledger)

→ (executionStack : ExecutionStack)

→ (initialAddr : Address)

→ (lastCallAddr calledAddr : Address)

→ (cont : SmartContractExec Msg) → (gasleft : N)

→ (funNameevalState : FunctionName)

→ (msgevalState : Msg)

→ (amount’ : Amount)

→ (destinationAddr : Address)

→ (cp : OrderingLeq amount’

(currentledger calledAddr .amount))

→ StateExecFun

executeTransferAux oldLedger currentledger executionStack

initialAddr lastCallAddr calledAddr cont gasleft

funNameevalState msgevalState amount’ destinationAddr (leq x)

= stateEF (updateLedgerAmount currentledger

calledAddr destinationAddr amount’ x)
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executionStack initialAddr lastCallAddr calledAddr cont

gasleft funNameevalState msgevalState

executeTransferAux oldLedger currentledger executionStack

initialAddr lastCallAddr calledAddr cont gasleft

funNameevalState msgevalState amount’

destinationAddr (greater x)

= stateEF oldLedger executionStack initialAddr lastCallAddr

calledAddr (error (strErr "not enough money")

〈 lastCallAddr » initialAddr · funNameevalState [ msgevalState ]〉)

gasleft funNameevalState msgevalState

– proof transfer Aux
lemmaExecuteTransferAuxGasEq : (oldLedger : Ledger)

→ (currentledger : Ledger)

→ (executionStack : ExecutionStack)

→ (initialAddr : Address)

→ (lastCallAddr calledAddr : Address)

→ (cont : SmartContractExec Msg) → (gasleft1 : N)

→ (funNameevalState : FunctionName)

→ (msgevalState : Msg)

→ (amount’ : Amount)

→ (destinationAddr : Address)

→ (cp : OrderingLeq amount’ (

currentledger calledAddr .amount))

→ gasleft1 ==r gasLeft

(executeTransferAux oldLedger currentledger

executionStack initialAddr lastCallAddr

calledAddr cont gasleft1 funNameevalState

msgevalState amount’ destinationAddr cp)

lemmaExecuteTransferAuxGasEq oldLedger currentledger

executionStack initialAddr lastCallAddr calledAddr

cont gasleft1 funNameevalState msgevalState amount’

destinationAddr (leq x) = refl==r gasleft1
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lemmaExecuteTransferAuxGasEq oldLedger currentledger

executionStack initialAddr lastCallAddr calledAddr

cont gasleft1 funNameevalState msgevalState amount’

destinationAddr (greater x) = refl==r gasleft1

– execute transfer
executeTransfer : (oldLedger : Ledger)

→ (currentledger : Ledger)

→ (execStack : ExecutionStack)

→ (initialAddr : Address)

→ (lastCallAddr calledAddr : Address)

→ (cont : SmartContractExec Msg)

→ (gasleft : N)

→ (funNameevalState : FunctionName)

→ (msgevalState : Msg)

→ (amount’ : Amount)

→ (destinationAddr : Address)

→ StateExecFun

executeTransfer oldLedger currentledger execStack

initialAddr lastCallAddr calledAddr

cont gasleft funNameevalState msgevalState

amount’ destinationAddr

= executeTransferAux oldLedger currentledger

execStack initialAddr lastCallAddr calledAddr

cont gasleft funNameevalState msgevalState amount’

destinationAddr (compareLeq amount’

(currentledger calledAddr .amount))

– the stepEF without deducting the gasLeft
stepEF : Ledger → StateExecFun → StateExecFun

stepEF oldLedger (stateEF currentLedger executionStack

initialAddr lastCallAddr calledAddr

(exec currentAddrLookupc costcomputecont cont)
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gasLeft funNameevalState msgevalState)

= stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr (cont calledAddr)

gasLeft funNameevalState msgevalState

stepEF oldLedger (stateEF currentLedger executionStack

initialAddr lastCallAddr calledAddr

(exec callAddrLookupc costcomputecont cont)

gasLeft funNameevalState msgevalState)

= stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr (cont lastCallAddr)

gasLeft funNameevalState msgevalState

stepEF oldLedger (stateEF currentLedger executionStack

initialAddr lastCallAddr calledAddr

(exec (updatec changedFname changedPFun cost)

costcomputecont cont) gasLeft

funNameevalState msgevalState)

= stateEF (updateLedgerviewfun currentLedger

calledAddr changedFname changedPFun cost)

executionStack initialAddr lastCallAddr

calledAddr (cont tt) gasLeft

funNameevalState msgevalState

stepEF oldLedger (stateEF currentLedger executionStack

initialAddr oldlastCallAddr oldcalledAddr

(exec (callc newaddr fname msg)

costcomputecont cont) gasLeft

funNameevalState msgevalState)

= stateEF currentLedger

(execStackEl oldlastCallAddr oldcalledAddr

cont costcomputecont funNameevalState

msgevalState :: executionStack)

initialAddr oldcalledAddr newaddr

(currentLedger newaddr .fun fname msg)

673



C. Full Agda code for chapter Developing two models of the Solidity-style smart contracts

gasLeft fname msg

stepEF oldLedger (stateEF currentLedger executionStack

initialAddr lastCallAddr calledAddr

(exec (transferc amount destinationAddr)

costcomputecont cont) gasLeft

funNameevalState msgevalState)

= executeTransfer oldLedger currentLedger

executionStack initialAddr lastCallAddr calledAddr

(cont tt) gasLeft funNameevalState msgevalState

amount destinationAddr

stepEF oldLedger (stateEF currentLedger executionStack

initialAddr lastCallAddr calledAddr

(exec (getAmountc addrLookedUp) costcomputecont cont)

gasLeft funNameevalState msgevalState)

= stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr

(cont (currentLedger addrLookedUp .amount)) gasLeft

funNameevalState msgevalState

——————— new for raiseException
stepEF oldLedger (stateEF ledger executionStack

initialAddr lastCallAddr calledAddr

(exec (raiseException cost str) costcomputecont cont)

gasLeft funNameevalState msgevalState)

= stateEF oldLedger executionStack initialAddr

lastCallAddr calledAddr

(error (strErr str)

〈 lastCallAddr » initialAddr · funNameevalState [ msgevalState ]〉)

gasLeft funNameevalState msgevalState

stepEF oldLedger (stateEF currentLedger executionStack

initialAddr lastCallAddr calledAddr

(error errorMsg debugInfo) gasLeft funNameevalState msgevalState)
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= stateEF oldLedger executionStack initialAddr

lastCallAddr calledAddr

(error errorMsg debugInfo) gasLeft

funNameevalState msgevalState

stepEF oldLedger (stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr

(exec (callView addr fname msg)

costcomputecont cont) gasLeft

funNameevalState msgevalState)

= stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr

(cont (currentLedger addr .viewFunction fname msg))

gasLeft fname msg

stepEF oldLedger (stateEF currentLedger []

initialAddr lastCallAddr calledAddr

(return cost result) gasLeft funNameevalState msgevalState)

= stateEF currentLedger [] initialAddr lastCallAddr calledAddr

(return cost result) gasLeft funNameevalState msgevalState

stepEF oldLedger (stateEF currentLedger

(execStackEl prevLastCallAddress prevCalledAddress prevContinuation

prevCostCont prevFunName prevMsgExec :: executionStack)

initialAddr lastCallAddr calledAddr (return cost result)

gasLeft funNameevalState msgevalState)

= stateEF currentLedger executionStack initialAddr

prevLastCallAddress prevCalledAddress

(prevContinuation result) gasLeft prevFunName prevMsgExec

–some lemmas to prove and we use them with our executevotingexample.agda

lemmaStepEFpreserveGas : (oldLedger : Ledger)

→ (state : StateExecFun)

→ gasLeft state ==r gasLeft (stepEF oldLedger state)
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lemmaStepEFpreserveGas oldLedger (stateEF ledger []

initialAddr lastCallAddr calledAddr (return x x1)

gasLeft1 funNameevalState msgevalState)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

(x2 :: executionStack1) initialAddr lastCallAddr

calledAddr (return x x1) gasLeft1

funNameevalState msgevalState)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(error x x1) gasLeft1 funNameevalState msgevalState)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (callView x2 x3 x4) x x1) gasLeft1

funNameevalState msgevalState)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (updatec x2 x3 x4) x x1) gasLeft1

funNameevalState msgevalState)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (raiseException x2 x3) x x1) gasLeft1

funNameevalState msgevalState)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (transferc amount destinationAddr)

costcomputecont cont) gasLeft1 funNameevalState

msgevalState)
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= lemmaExecuteTransferAuxGasEq oldLedger ledger

executionStack initialAddr lastCallAddr calledAddr

(cont tt) gasLeft1 funNameevalState msgevalState

amount destinationAddr

((compareLeq amount (ledger calledAddr .Contract.amount)))

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (callc x2 x3 x4) x x1) gasLeft1

funNameevalState msgevalState)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec currentAddrLookupc x x1) gasLeft1 funNameevalState

msgevalState) = refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec callAddrLookupc x x1) gasLeft1 funNameevalState

msgevalState) = refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (getAmountc x2) x x1) gasLeft1 funNameevalState

msgevalState) = refl==r gasLeft1

– prove the gas
lemmaStepEFpreserveGas2 : (oldLedger : Ledger)

→ (state : StateExecFun)

→ gasLeft (stepEF oldLedger state) ==r gasLeft state

lemmaStepEFpreserveGas2 oldLedger state

= sym== (gasLeft state) (gasLeft (stepEF oldLedger state))

(lemmaStepEFpreserveGas oldLedger state)

– stepEFgasAvailable which returns gasLeft
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stepEFgasAvailable : StateExecFun → N

stepEFgasAvailable (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

nextstep gasLeft funNameevalState msgevalState)

= gasLeft

–this function simliar to stepEF and deduct the gasleft
–which returns the gas deducted
–this function simliar to stepEF and deduct the gasleft
–which returns the gas deducted
stepEFgasNeeded : StateExecFun → N

stepEFgasNeeded (stateEF currentLedger []

initialAddr lastCallAddr calledAddr

(return cost result) gasLeft

funNameevalState msgevalState)

= cost

stepEFgasNeeded (stateEF currentLedger

(execSEl :: executionStack) initialAddr

lastCallAddr calledAddr

(return cost result) gasLeft

funNameevalState msgevalState)

= cost

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec currentAddrLookupc costcomputecont cont)

gasLeft funNameevalState msgevalState)

= costcomputecont calledAddr

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec callAddrLookupc costcomputecont cont)

gasLeft funNameevalState msgevalState)

= costcomputecont lastCallAddr
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stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec (updatec changedFname changedPufun cost)

costcomputecont cont) gasLeft

funNameevalState msgevalState)

= cost (currentLedger calledAddr .viewFunction changedFname)

(currentLedger calledAddr .viewFunctionCost changedFname)

msgevalState + (costcomputecont tt)

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr oldlastCallAddr oldcalledAddr

(exec (callc newaddr fname msg) costcomputecont cont)

gasLeft funNameevalState msgevalState)

= costcomputecont msg

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec (transferc amount destinationAddr) costcomputecont cont)

gasLeft funNameevalState msgevalState)

= costcomputecont tt

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec (getAmountc addrLookedUp)

costcomputecont cont) gasLeft

funNameevalState msgevalState)

= costcomputecont (currentLedger addrLookedUp .amount)

stepEFgasNeeded (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (raiseException cost str) costcomputecont cont)

gasLeft funNameevalState msgevalState)

= cost
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stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec (callView addr fname msg) costcompute cont)

gasLeft funNameevalState msgevalState)

= (currentLedger calledAddr .viewFunctionCost fname msg)

+ costcompute (currentLedger

calledAddr .viewFunction fname msg)

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(error errorMsg debuginfo)

gasLeft funNameevalState msgevalState)

= param .costerror errorMsg

–This function we use it to deduct gas from evalstate not ledger
deductGas : (statefun : StateExecFun) (gasDeducted : N)

→ StateExecFun

deductGas (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

nextstep gasLeft funNameevalState

msgevalState) gasDeducted

= stateEF ledger executionStack

initialAddr lastCallAddr calledAddr nextstep

(gasLeft - gasDeducted) funNameevalState msgevalState

– this function we use it to cpmare gas in stepEFgasNeeded
– with stepEFgasAvailable
stepEFAuxCompare : (oldLedger : Ledger)

→ (statefun : StateExecFun)

→ OrderingLeq (suc (stepEFgasNeeded statefun))

(stepEFgasAvailable statefun)

→ StateExecFun

stepEFAuxCompare oldLedger statefun (leq x)
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= deductGas (stepEF oldLedger statefun)

(suc (stepEFgasNeeded statefun))

stepEFAuxCompare oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr

calledAddr nextstep gasLeft

funNameevalState msgevalState) (greater x)

= stateEF oldLedger executionStack

initialAddr lastCallAddr calledAddr

(error outOfGasError

〈 lastCallAddr » initialAddr · funNameevalState [ msgevalState ]〉)

0 funNameevalState msgevalState

stepEFwithGasError : (oldLedger : Ledger)

→ (evals : StateExecFun)

→ StateExecFun

stepEFwithGasError oldLedger evals

= stepEFAuxCompare oldLedger evals

(compareLeq (suc (stepEFgasNeeded evals))

(stepEFgasAvailable evals))

– definition of stepEFntimes
stepEFntimes : Ledger → StateExecFun

→ (ntimes : N) → StateExecFun

stepEFntimes oldLedger ledgerstateexecfun 0

= ledgerstateexecfun

stepEFntimes oldLedger ledgerstateexecfun (suc n)

= stepEFwithGasError oldLedger

(stepEFntimes oldLedger ledgerstateexecfun n)

– definition of stepEFntimes list
stepEFntimesList : Ledger → StateExecFun

→ (ntimes : N) → List StateExecFun

stepEFntimesList oldLedger ledgerstateexecfun 0

= ledgerstateexecfun :: []
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stepEFntimesList oldLedger ledgerstateexecfun (suc n)

= stepEFntimes oldLedger ledgerstateexecfun (suc n)

:: stepEFntimesList oldLedger ledgerstateexecfun n

–this function below we use it to refund as a part of septEF
– we use stepEFwithGasError
– instead of stepEF in refund and stepEFntimesWithRefund
refund : StateExecFun → StateExecFun

refund (stateEF currentLedger [] initialAddr

lastCallAddr calledAddr (return cost result)

gasLeft funNameevalState msgevalState)

= stateEF (addWeiToLedger currentLedger

lastCallAddr (GastoWei param gasLeft))

[] initialAddr lastCallAddr calledAddr

(return cost result) gasLeft

funNameevalState msgevalState

refund (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(error errorMsg debugInfo) gasLeft

funNameevalState msgevalState)

= stateEF (addWeiToLedger currentLedger

lastCallAddr (GastoWei param gasLeft))

executionStack initialAddr lastCallAddr calledAddr

(error errorMsg debugInfo) gasLeft

funNameevalState msgevalState

refund (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

nextstep gasLeft funNameevalState msgevalState)

= stepEFwithGasError ledger (stateEF ledger executionStack

initialAddr lastCallAddr calledAddr nextstep gasLeft

funNameevalState msgevalState)

stepEFntimesWithRefund : Ledger → StateExecFun

→ (ntimes : N) → StateExecFun
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stepEFntimesWithRefund oldLedger ledgerstateexecfun 0

= ledgerstateexecfun

stepEFntimesWithRefund oldLedger ledgerstateexecfun (suc n)

= refund (stepEFntimes oldLedger ledgerstateexecfun n)

—## similar to above but we use it with
– the new version of stepEFwithGasError
–initialAddr lastCallAddr calledAddr
stepLedgerFunntimesAux : (ledger : Ledger)

→ (initialAddr : Address) → (lastCallAddr : Address)

→ (calledAddr : Address) → FunctionName

→ Msg → (gascost : N) → (ntimes : N)

→ (cp : OrderingLeq (GastoWei param gascost)

(ledger lastCallAddr .amount))

→ Maybe StateExecFun

stepLedgerFunntimesAux ledger initialAddr lastCallAddr

calledAddr funname msg gascost ntimes (leq leqpro)

= let

ledgerDeducted : Ledger

ledgerDeducted

= deductGasFromLedger ledger lastCallAddr

(GastoWei param gascost) leqpro

in just (stepEFntimes ledgerDeducted

(stateEF ledgerDeducted [] initialAddr

lastCallAddr calledAddr

(ledgerDeducted calledAddr .fun funname msg)

gascost funname msg) ntimes)

stepLedgerFunntimesAux ledger initialAddr lastCallAddr

calledAddr funname msg gascost ntimes (greater greaterpro)

= nothing

–stepLedgerFunntimesAux ledger callAddr
– currentAddr funname msg gasreserved ntimes
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– (compareLeq (GastoWei param gasreserved) (ledger callAddr .amount))
– NNN here we need before running stepEFntimes deduct the gas from ledger
– NNN it needs as argument just one gas parameter
– which is set to both oldgas and newgas
– NNN if there is not enough money in the account,
– then we should fail (not an error but fail)
– NNN so return type should be Maybe EvalState

stepLedgerFunntimes : (ledger : Ledger)

→ (initialAddr : Address)

→ (lastCallAddr : Address)

→ (calledAddr : Address)

→ FunctionName

→ Msg

→ (gasreserved : N)

→ (ntimes : N)

→ Maybe StateExecFun

stepLedgerFunntimes ledger initialAddr lastCallAddr

calledAddr funname msg gasreserved ntimes

= stepLedgerFunntimesAux ledger initialAddr

lastCallAddr calledAddr

funname msg gasreserved ntimes

(compareLeq (GastoWei param gasreserved)

(ledger lastCallAddr .amount))

–with list
stepLedgerFunntimesListAux : (ledger : Ledger)

→ (initialAddr : Address)

→ (lastCallAddr : Address)

→ (calledAddr : Address)

→ FunctionName

→ Msg

→ (gasreserved : N)

→ (ntimes : N)
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→ (cp : OrderingLeq (GastoWei param gasreserved)

(ledger lastCallAddr .amount))

→ Maybe (List StateExecFun)

stepLedgerFunntimesListAux ledger initialAddr

lastCallAddr calledAddr funname msg gasreserved

ntimes (leq leqpro)

= let

ledgerDeducted : Ledger

ledgerDeducted

= deductGasFromLedger ledger lastCallAddr

(GastoWei param gasreserved) leqpro

in

just (stepEFntimesList ledgerDeducted

(stateEF ledgerDeducted [] initialAddr lastCallAddr calledAddr

(ledgerDeducted calledAddr .fun funname msg)

gasreserved funname msg) ntimes)

stepLedgerFunntimesListAux ledger initialAddr lastCallAddr

calledAddr funname msg gasreserved ntimes

(greater greaterpro) = nothing

stepLedgerFunntimesList : (ledger : Ledger)

→ (initialAddr : Address)

→ (lastCallAddr : Address)

→ (calledAddr : Address)

→ (funname : FunctionName)

→ (msg : Msg)

→ (gasreserved : N)

→ (ntimes : N)

→ Maybe (List StateExecFun)

stepLedgerFunntimesList ledger initialAddr lastCallAddr

calledAddr funname msg gasreserved ntimes

= stepLedgerFunntimesListAux ledger initialAddr

lastCallAddr calledAddr funname msg gasreserved ntimes

(compareLeq (GastoWei param gasreserved) (ledger lastCallAddr .amount))
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–clear version of evaluateNonTerminating’
– the below is the final step and we use it to solve the return cost

evaluateAuxStep4 : (oldLedger : Ledger)

→ (currentLedger : Ledger)

→ (initialAddr : Address)

→ (lastCallAddr : Address)

→ (calledAddr : Address)

→ (cost : N)

→ (returnvalue : Msg)

→ (gasLeft : N)

→ (funNameevalState : FunctionName)

→ (msgevalState : Msg)

→ (cp : OrderingLeq cost gasLeft)

→ (Ledger × MsgOrErrorWithGas)

evaluateAuxStep4 oldLedger currentLedger

initialAddr lastCallAddr calledAddr

cost ms gasLeft funNameevalState msgevalState (leq x)

= (addWeiToLedger currentLedger initialAddr

(GastoWei param (gasLeft - cost))) „

(theMsg ms , (gasLeft - cost) gas)

evaluateAuxStep4 oldLedger currentLedger

initialAddr lastCallAddr calledAddr cost returnvalue

gasLeft funNameevalState msgevalState (greater x)

= oldLedger „ ((err (strErr " Out Of Gass ")

〈 lastCallAddr » initialAddr · funNameevalState [ msgevalState ]〉) ,

gasLeft gas)

mutual
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evaluateTerminatingAuxStep2 : Ledger

→ (stateEF : StateExecFun)

→ (numberOfSteps : N)

→ stepEFgasAvailable stateEF 5r numberOfSteps

→ Ledger × MsgOrErrorWithGas

evaluateTerminatingAuxStep2 oldLedger (stateEF currentLedger []

initialAddr lastCallAddr calledAddr (return cost ms)

gasLeft funNameevalState msgevalState)

numberOfSteps numberOfStepsLessGas

= evaluateAuxStep4 oldLedger currentLedger

initialAddr lastCallAddr calledAddr cost ms

gasLeft funNameevalState msgevalState

(compareLeq cost gasLeft)

evaluateTerminatingAuxStep2 oldLedger (stateEF currentLedger s

initialAddr lastCallAddr calledAddr (error msgg debugInfo)

gasLeft funNameevalState msgevalState)

numberOfSteps numberOfStepsLessGas

= addWeiToLedger oldLedger initialAddr

(GastoWei param gasLeft) „

(err msgg 〈 lastCallAddr » initialAddr ·

funNameevalState [ msgevalState ]〉 , gasLeft gas)

evaluateTerminatingAuxStep2 oldLedger evals

(suc numberOfSteps) numberOfStepsLessGas

= evaluateTerminatingAuxStep3 oldLedger

evals numberOfSteps numberOfStepsLessGas

(compareLeq (stepEFgasNeeded evals) (stepEFgasAvailable evals))

evaluateTerminatingAuxStep2 oldLedger

(stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr nextstep gasLeft

funNameevalState msgevalState) 0 numberOfStepsLessGas

= oldLedger „ (err outOfGasError

〈 lastCallAddr » initialAddr · funNameevalState [ msgevalState ]〉

, 0 gas)
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evaluateTerminatingAuxStep3 : Ledger

→ (stateEF : StateExecFun)

→ (numberOfSteps : N)

→ stepEFgasAvailable stateEF 5r suc numberOfSteps

→ OrderingLeq (stepEFgasNeeded stateEF)

(stepEFgasAvailable stateEF)

→ Ledger × MsgOrErrorWithGas

evaluateTerminatingAuxStep3 oldLedger state

numberOfSteps numberOfStepsLessgas (leq x)

= evaluateTerminatingAuxStep2 oldLedger

(deductGas (stepEF oldLedger state)

(suc (stepEFgasNeeded state))) numberOfSteps

(lemmaxSucY (gasLeft (stepEF oldLedger state))

numberOfSteps (stepEFgasNeeded state)

(lemma=5r (gasLeft (stepEF oldLedger state))

(gasLeft state) (suc numberOfSteps)

(lemmaStepEFpreserveGas2 oldLedger state)

numberOfStepsLessgas))

evaluateTerminatingAuxStep3 oldLedger

(stateEF ledger executionStack initialAddr

lastCallAddr calledAddr nextstep gasLeft1

funNameevalState msgevalState)

numberOfSteps numberOfStepsLessgas (greater x)

= oldLedger „ (err outOfGasError

〈 lastCallAddr » initialAddr · funNameevalState [ msgevalState ]〉

, 0 gas)

evaluateTerminatingAuxStep1 : (ledger : Ledger)

→ (initialAddr : Address)

→ (lastCallAddr : Address)
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→ (calledAddr : Address)

→ FunctionName

→ Msg

→ (gasreserved : N)

→ (cp : OrderingLeq

(GastoWei param gasreserved)

(ledger initialAddr .amount))

→ Ledger × MsgOrErrorWithGas

evaluateTerminatingAuxStep1 ledger initialAddr

lastCallAddr calledAddr funname msg gasreserved

(leq leqpr)

= let

ledgerDeducted : Ledger

ledgerDeducted

= deductGasFromLedger ledger

initialAddr (GastoWei param gasreserved)

leqpr

in evaluateTerminatingAuxStep2

ledgerDeducted

(stateEF ledgerDeducted []

initialAddr lastCallAddr calledAddr

(ledgerDeducted calledAddr .fun funname msg)

gasreserved funname msg)

gasreserved (refl5r gasreserved)

evaluateTerminatingAuxStep1 ledger initialAddr

lastCallAddr calledAddr funname msg gasreserved

(greater greaterpr)

= ledger „ (err outOfGasError

〈 lastCallAddr » initialAddr · funname [ msg ]〉 , 0 gas)

evaluateTerminatingfinal : (ledger : Ledger)

→ (initialAddr : Address)

– Initial address is the address from which the very
– first call was made
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→ (lastCallAddr : Address)

– lastCallAddr is the address from which
– the current call of a function in
– calledAddr is made
→ (calledAddr : Address)

– calledAddr is the address where a
– function call is currently executed
– it was called from calledAddr
→ FunctionName

→ Msg

→ (gasreserved : N)

→ Ledger × MsgOrErrorWithGas

evaluateTerminatingfinal ledger initialAddr

lastCallAddr calledAddr funname msg gasreserved

= evaluateTerminatingAuxStep1 ledger

initialAddr lastCallAddr calledAddr funname

msg gasreserved

(compareLeq (GastoWei param gasreserved)

(ledger initialAddr .amount))

C.2.2 Commands and responses (ccommands-cresponse.agda)

module Complex-Model.ccomand.ccommands-cresponse where

open import Data.Nat

open import Agda.Builtin.Nat using (_-_)

open import Data.Unit

open import Data.List

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length)
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open import Data.Empty

– libraries
open import basicDataStructure

open import libraries.natCompare

mutual

– contract-commands:
data CCommands : Set where

callView : Address → FunctionName → Msg → CCommands

updatec : FunctionName → ((Msg → MsgOrError)

→ (Msg → MsgOrError)) → ((Msg → MsgOrError)

→ (Msg → N) → Msg → N) → CCommands

raiseException : N → String → CCommands

transferc : Amount → Address → CCommands

callc : Address → FunctionName → Msg → CCommands

currentAddrLookupc : CCommands

callAddrLookupc : CCommands

getAmountc : Address → CCommands

– contract-responses
CResponse : CCommands → Set

CResponse (callView addr fname msg) = MsgOrError

CResponse (updatec fname fdef cost) = >

CResponse (raiseException _ str) = ⊥

CResponse (transferc amount addr) = >

CResponse (callc addr fname msg) = Msg

CResponse currentAddrLookupc = Address

CResponse callAddrLookupc = Address

CResponse (getAmountc addr) = Amount
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–SmartContractExec is datatype of what happens when
– a function is applied to its arguments.
–SmartContractExec –> SmartContractExec

data SmartContractExec (A : Set) : Set where

return : N → A → SmartContractExec A

error : ErrorMsg → DebugInfo → SmartContractExec A

exec : (c : CCommands) → (CResponse c → N)

→ (CResponse c → SmartContractExec A)

→ SmartContractExec A

_>>=_ : {A B : Set} → SmartContractExec A → (A → SmartContractExec B)

→ SmartContractExec B

return n x >>= q = q x

error x z >>= q = error x z

exec c n x >>= q = exec c n (λ r → x r >>= q)

_»_ : {A B : Set} → SmartContractExec A → SmartContractExec B

→ SmartContractExec B

return n x » q = q

error x z » q = error x z

exec c n x » q = exec c n (λ r → x r » q)

C.2.3 A voting example for single candidate
(votingexample-single-candidate.agda)

open import constantparameters

module Complex-Model.example.votingexample-single-candidate where

open import Data.List

open import Data.Bool.Base

open import Agda.Builtin.Unit

open import Data.Product renaming (_,_ to _„_ )

open import Data.Maybe hiding (_>>=_)
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open import Data.Nat.Base

open import Data.Nat.Show

open import Data.Fin.Base hiding (_+_; _-_)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_ ; refl ; sym ; cong)

open import Agda.Builtin.Nat using (_-_; _*_)

open import Data.String hiding (length; show) renaming (_++_ to _++str_)

–our work
open import libraries.natCompare

open import Complex-Model.ledgerversion.Ledger-Complex-Model exampleParameters

open import Complex-Model.ccomand.ccommands-cresponse

open import basicDataStructure

open import libraries.Mainlibrary

–initial function
initialfun : Msg → MsgOrError

initialfun (nat n)

= theMsg (nat 0)

initialfun owmsg

= err (strErr " The message is not a number ")

–increment function
incrementAux : MsgOrError → SmartContractExec Msg

incrementAux (theMsg (nat n))

= (exec (updatec "counter" (λ _ → λ msg

→ theMsg (nat (suc n))) λ oldFun oldcost msg → 1)

(λ n → 1)) λ x → return 1 (nat (suc n))

incrementAux ow

= error (strErr "counter returns not a number")

〈 0 » 0 · "increment" [ (nat 0) ]〉

693



C. Full Agda code for chapter Developing two models of the Solidity-style smart contracts

–add voter function
addVoterAux : Msg → (Msg → MsgOrError) → Msg → MsgOrError

addVoterAux (nat newaddr) oldCheckVoter (nat addr)

= if newaddr ≡b addr

then theMsg (nat 1)

else oldCheckVoter (nat addr)

addVoterAux ow ow’ ow”

= err (strErr " You cannot add voter ")

–delete voter function
deleteVoterAux : Msg → (Msg → MsgOrError) → (Msg → MsgOrError)

deleteVoterAux (nat newaddr) oldCheckVoter (nat addr)

= if newaddr ≡b addr

then theMsg (nat 0)

else oldCheckVoter (nat addr)

deleteVoterAux ow ow’ ow”

= err (strErr " You cannot delete voter ")

– the function below we use it
– in case to check voter is allowed to vote or not
– in case nat 0 or otherwise it will
– return error and not allow to vote
– in case suc (nat n) it will allow to vote
– and it will call incrementAux to increment the counter
voteAux : Address → MsgOrError → SmartContractExec Msg

voteAux addr (theMsg (nat zero))

= error (strErr "The voter is not allowed to vote")

〈 0 » 0 · "Voter is not allowed to vote" [ nat 0 ]〉

voteAux addr (theMsg (nat (suc n)))

= exec (updatec "checkVoter" (deleteVoterAux (nat addr))

λ oldFun oldcost msg → 1) (λ _ → 1)

(λ x → exec (callView 1 "counter" (nat 0))
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(λ result → 1) λ msg → incrementAux msg)

voteAux addr (theMsg ow)

= error (strErr "The message is not a number")

〈 0 » 0 · "Voter is not allowed to vote" [ nat 0 ]〉

voteAux addr (err x)

= error (strErr " Undefined ")

〈 0 » 0 · "The message is undefined" [ nat 0 ]〉

—–define our ledger

testLedger : Ledger

testLedger 1 .amount = 100

– in case to add voter
testLedger 1 .fun "addVoter" msg

= exec (updatec "checkVoter"
(addVoterAux msg) λ oldFun oldcost msg → 1)

(λ _ → 1) λ _ → return 1 msg

– in case to delete voter
testLedger 1 .fun "deleteVoter" msg

= exec (updatec "checkVoter" (deleteVoterAux msg)

λ oldFun oldcost msg → 1)

(λ _ → 1) λ _ → return 1 msg

– in case to vote
testLedger 1 .fun "vote" msg

= exec callAddrLookupc (λ _ → 1)

λ addr → exec (callView addr "checkVoter"
(nat addr))

(λ _ → 1) λ check → voteAux addr check

– in case to check voter
testLedger 1 .viewFunction "checkVoter" msg

= theMsg (nat 0)
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– in case to increment our counter
testLedger 1 .viewFunction "counter" msg

= theMsg (nat 0)

– the view function cost to checkvoter
testLedger 1 .viewFunctionCost "checkVoter" msg

= 1

– define a ledger for address 3 with amount only
testLedger 3 .amount = 100

– for other cases
testLedger ow .amount = 0

testLedger ow .fun ow’ ow”

= error (strErr "Undefined")

〈 ow » ow · ow’ [ ow” ]〉

testLedger ow .viewFunction ow’ ow”

= err (strErr "Undefined")

testLedger ow .viewFunctionCost ow’ ow”

= 1

C.2.4 Executed voting example for single candidate
(executedvotingexample-single-candidate.agda)

open import constantparameters

module Complex-Model.example.executedvotingexample-single-candidate where

open import Data.List

open import Data.Bool.Base

open import Agda.Builtin.Unit

open import Data.Product renaming (_,_ to _„_ )

open import Data.Maybe hiding (_>>=_)

open import Data.Nat.Base

open import Data.Nat.Show

open import Data.Fin.Base hiding (_+_; _-_)
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import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_ ; refl ; sym ; cong)

open import Agda.Builtin.Nat using (_-_; _*_)

open import Data.String hiding (length; show) renaming (_++_ to _++str_)

open import Data.Unit

open import Data.Empty

–our work
open import libraries.natCompare

open import Complex-Model.ledgerversion.Ledger-Complex-Model exampleParameters

open import Complex-Model.ccomand.ccommands-cresponse

open import basicDataStructure

open import libraries.Mainlibrary

open import Complex-Model.example.votingexample-single-candidate

IsJust : {A : Set} → Maybe A → Set

IsJust (just _) = >

IsJust nothing = ⊥

fromJust : {A : Set} → (p : Maybe A) → IsJust p → A

fromJust (just a) tt = a

————————— First test (adding voter)
– using function "AddVoter" with (nat 5) on testLedger

resultAfterAddVoter5 : Ledger × MsgOrErrorWithGas

resultAfterAddVoter5

= evaluateTerminatingfinal testLedger 1 1 1

"addVoter" (nat 5) 20

resultReturnedAddVoter5 : MsgOrErrorWithGas

resultReturnedAddVoter5 = proj2 resultAfterAddVoter5

{-
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evaluate to
theMsg (nat 5) , 16 gas
so executing addVoter (nat 5) returned (nat 5)
-}

ledgerAfterAdd5 : Ledger

ledgerAfterAdd5 = proj1 resultAfterAddVoter5

– check the view function with (nat 5)
– after adding voter to our ledger
checkVoter5afterAdd5 : MsgOrError

checkVoter5afterAdd5

= ledgerAfterAdd5 1 .viewFunction "checkVoter" (nat 5)

{-
evaluate to
theMsg (nat 1)
which means true
-}

checkVoter3AfterAdd5 : MsgOrError

checkVoter3AfterAdd5

= ledgerAfterAdd5 1 .viewFunction "checkVoter" (nat 3)

{-
evaluate to
theMsg (nat 0)
which means false
our ledger only includes (nat 5)
-}

—– Second test (adding voter)
– using function "addVoter"
– with (nat 3) on ledgerAfterAdd5

resultAfterAddVoter3 : Ledger × MsgOrErrorWithGas
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resultAfterAddVoter3

= evaluateTerminatingfinal ledgerAfterAdd5 1 1 1

"addVoter" (nat 3) 20

resultReturnedAddVoter3 : MsgOrErrorWithGas

resultReturnedAddVoter3 = proj2 resultAfterAddVoter3

{- evaluates to

theMsg (nat 3) , 16 gas

-}

ledgerAfterAdd3 : Ledger

ledgerAfterAdd3 = proj1 resultAfterAddVoter3

– check the view function with (nat 5)
– after adding voter to our ledger
checkVoter5afterAdd3 : MsgOrError

checkVoter5afterAdd3

= ledgerAfterAdd3 1 .viewFunction "checkVoter" (nat 5)

– evaluates to
– theMsg (nat 1) which means true

– check the view function with (nat 3)
– after adding voter to our ledger
checkVoter3afterAdd3 : MsgOrError

checkVoter3afterAdd3

= ledgerAfterAdd3 1 .viewFunction "checkVoter" (nat 3)

– evaluates to
– theMsg (nat 1) which means true

– check the view function with (nat 2)
– after adding voter to our ledger
checkVoter2afterAdd3 : MsgOrError

checkVoter2afterAdd3
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= ledgerAfterAdd3 1 .viewFunction "checkVoter" (nat 2)

– evaluates to
– theMsg (nat 0) which means false
– because our ledger only include (nat 5) and (nat 3)

—————————– Third test using "deletevoter"
– using function "deleteVoter" with (nat 5) on ledgerAfterAdd3

resultAfterDeleteVoter5 : Ledger × MsgOrErrorWithGas

resultAfterDeleteVoter5

= evaluateTerminatingfinal ledgerAfterAdd3 1 1 1

"deleteVoter" (nat 5) 20

resultReturnedDeleteVoter5 : MsgOrErrorWithGas

resultReturnedDeleteVoter5

= proj2 resultAfterDeleteVoter5

{- evaluates to

theMsg (nat 5) , 16 gas

-}

ledgerAfterDelete5 : Ledger

ledgerAfterDelete5

= proj1 resultAfterDeleteVoter5

– check the view function with (nat 5)
– after deleting voter from our ledger
checkVoter5afterDelete5 : MsgOrError

checkVoter5afterDelete5

= ledgerAfterDelete5 1 .viewFunction "checkVoter" (nat 5)

– evaluates to
– theMsg (nat 0) which means (nat 5) not in our ledger
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– check the view function with (nat 3)
– after deleting voter (nat 5) from our ledger
checkVoter3afterDelete5 : MsgOrError

checkVoter3afterDelete5

= ledgerAfterDelete5 1 .viewFunction "checkVoter" (nat 3)

– evaluates to
– theMsg (nat 1) which means our ledger only have (nat 3)

————————- Fourth test using "addVoter"
– using function "addVoter" with (nat 8)
– on ledgerAfterDelete5

resultAfterAddVoter8 : Ledger × MsgOrErrorWithGas

resultAfterAddVoter8

= evaluateTerminatingfinal ledgerAfterDelete5 1 1 1

"addVoter" (nat 8) 20

resultReturnedAddVoter8 : MsgOrErrorWithGas

resultReturnedAddVoter8 = proj2 resultAfterAddVoter8

{- evaluates to

theMsg (nat 8) , 16 gas

-}

ledgerAfterAdd8 : Ledger

ledgerAfterAdd8 = proj1 resultAfterAddVoter8

– check the view function with (nat 8)
– after adding voter to our ledger
checkVoter8afterAdd8 : MsgOrError

checkVoter8afterAdd8

= ledgerAfterAdd8 1 .viewFunction "checkVoter" (nat 8)
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– evaluates to
– theMsg (nat 1) which means true

– check the view function with (nat 3)
– after adding voter to our ledger
checkVoter3afterAdd8 : MsgOrError

checkVoter3afterAdd8

= ledgerAfterAdd8 1 .viewFunction "checkVoter" (nat 3)

– evaluates to
– theMsg (nat 1) which means true

– check the view function with (nat 5)
– after adding voter to our ledger
checkVoter5afterAdd8 : MsgOrError

checkVoter5afterAdd8

= ledgerAfterAdd8 1 .viewFunction "checkVoter" (nat 5)

– evaluates to
– theMsg (nat 0) which means false

– ******** Now our ledger only include (nat 3) and ( nat 8)

checkCounterAfterAdd8 : MsgOrError

checkCounterAfterAdd8

= ledgerAfterAdd8 1 .viewFunction "counter" (nat 0)

– evaluates to
– theMsg (nat 0)
– so the counter is zero

—– Fifth test using "vote" (who is not allowed to vote)
– using function "vote"

resultAfterVote5 : Ledger × MsgOrErrorWithGas

resultAfterVote5

= evaluateTerminatingfinal ledgerAfterAdd8 1 5 1 "vote" (nat 0) 50
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resultReturnedVote5 : MsgOrErrorWithGas

resultReturnedVote5 = proj2 resultAfterVote5

– returns
– err (strErr "The voter is not allowed to vote")
–〈 5 » 1 · "checkVoter" [ nat 5 ]〉 , 46 gas
– because 5 is not allowed to vote

ledgerAfterVote5 : Ledger

ledgerAfterVote5 = proj1 resultAfterVote5

checkCounterAfterVote5 : MsgOrError

checkCounterAfterVote5

= ledgerAfterVote5 1 .viewFunction "counter" (nat 0)

– evaluates to
– theMsg (nat 0)
– so the counter is still zero

— Sixth test using "vote" (who is allowed to vote)
– using function "vote"

resultAfterVote3 : Ledger × MsgOrErrorWithGas

resultAfterVote3

= evaluateTerminatingfinal ledgerAfterVote5 1 3 1 "vote" (nat 0) 50

resultReturnedVote3 : MsgOrErrorWithGas

resultReturnedVote3 = proj2 resultAfterVote3

– evaluates to
– theMsg (nat 1) , 37 gas

ledgerAfterVote3 : Ledger

ledgerAfterVote3 = proj1 resultAfterVote3

– check the view function with (nat 8) can vote for not
checkVoter3 : MsgOrError
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checkVoter3 = ledgerAfterVote3 1 .viewFunction "checkVoter" (nat 3)

– evaluates to
– theMsg (nat 0) which means
– false and can no longer vote because has voted

– check the view function with (nat 5) can vote or not
checkVoter5 : MsgOrError

checkVoter5

= ledgerAfterVote3 1 .viewFunction "checkVoter" (nat 5)

– evaluates to
– theMsg (nat 0) which means false and cannot vote

– check the view function with (nat 5) can vote or not
checkVoter8 : MsgOrError

checkVoter8

= ledgerAfterVote3 1 .viewFunction "checkVoter" (nat 8)

– evaluates to
– theMsg (nat 1) which means false and cannot vote

checkCounterAfterVote3 : MsgOrError

checkCounterAfterVote3

= ledgerAfterVote3 1 .viewFunction "counter" (nat 0)

– evaluates to
– theMsg (nat 1)
– so the counter is have 1

C.2.5 A more democratic one with multiple candidates: A voting example for
multiple candidates (votingexample-multi-candidates.agda)

open import constantparameters

module Complex-Model.example.votingexample-multi-candidates where
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open import Data.List

open import Data.Bool.Base

open import Agda.Builtin.Unit

open import Data.Product renaming (_,_ to _„_ )

open import Data.Maybe hiding (_>>=_)

open import Data.Nat.Base

open import Data.Nat.Show

open import Data.Fin.Base hiding (_+_; _-_)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_ ; refl ; sym ; cong)

open import Agda.Builtin.Nat using (_-_; _*_)

open import Data.String hiding (length; show) renaming (_++_ to _++str_)

–our work
open import libraries.natCompare

open import Complex-Model.ledgerversion.Ledger-Complex-Model exampleParameters

open import Complex-Model.ccomand.ccommands-cresponse

open import basicDataStructure

open import libraries.Mainlibrary

–initial function
initialfun : Msg → MsgOrError

initialfun (nat n) = theMsg (nat 0)

initialfun owmsg

= err (strErr " The message is not a number ")

mysuc : MsgOrError → MsgOrError

mysuc (theMsg (nat n)) = theMsg (nat (suc n))

mysuc (theMsg ow)

= err (strErr " You cannot increment ")

mysuc ow = ow
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– incrementAux for many candidates
–increment function
incrementcandidates : N → (Msg → MsgOrError) → Msg → MsgOrError

incrementcandidates candidateVotedFor oldCounter (nat candidate)

= if candidateVotedFor ≡b candidate

then mysuc (oldCounter (nat candidate))

else oldCounter (nat candidate)

incrementcandidates ow ow’ ow”

= err (strErr " You cannot delete voter ")

incrementAux : MsgOrError → SmartContractExec Msg

incrementAux (theMsg (nat candidate))

= (exec (updatec "counter" (incrementcandidates candidate)

λ oldFun oldcost msg → 1)

(λ n → 1)) λ x → return 1 (nat candidate)

incrementAux ow =

error (strErr "counter returns not a number")

〈 0 » 0 · "increment" [ (nat 0) ]〉

–add voter function
addVoterAux : Msg → (Msg → MsgOrError) → Msg → MsgOrError

addVoterAux (nat newaddr) oldCheckVoter (nat addr)

= if newaddr ≡b addr

then theMsg (nat 1)

else oldCheckVoter (nat addr)

addVoterAux ow ow’ ow”

= err (strErr " You cannot add voter ")

–delete voter function
deleteVoterAux : Msg → (Msg → MsgOrError) → (Msg → MsgOrError)

deleteVoterAux (nat newaddr) oldCheckVoter (nat addr)

= if newaddr ≡b addr

then theMsg (nat 0)
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else oldCheckVoter (nat addr)

deleteVoterAux ow ow’ ow”

= err (strErr " You cannot delete voter ")

– the function below we use it
– in case to check voter is allowed to vote or not
– in case nat 0 or otherwise it will
– return error and not allow to vote
– in case suc (nat n) it will allow
– to vote and it will call incrementAux to increment the counter
voteAux : Address → MsgOrError → (candidate : Msg)

→ SmartContractExec Msg

voteAux addr (theMsg (nat zero)) candidate

= error (strErr

"The voter is not allowed to vote")

〈 0 » 0 · "Voter is not allowed to vote" [ nat 0 ]〉

voteAux addr (theMsg (nat (suc n))) candidate

= exec (updatec "checkVoter"
(deleteVoterAux (nat addr)) λ oldFun oldcost msg → 1)

(λ _ → 1)

(λ x → (incrementAux (theMsg candidate)))

voteAux addr (theMsg ow) candidate

= error (strErr "The message is not a number")

〈 0 » 0 · "Voter is not allowed to vote" [ nat 0 ]〉

voteAux addr (err x) candidate

= error (strErr " Undefined ")

〈 0 » 0 · "The message is undefined" [ nat 0 ]〉

—–define our ledger

testLedger : Ledger

testLedger 1 .amount = 100
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– in case to add voter
testLedger 1 .fun "addVoter" msg

= exec (updatec "checkVoter"
(addVoterAux msg) λ oldFun oldcost msg → 1)

(λ _ → 1) λ _ → return 1 msg

– in case to delete voter
testLedger 1 .fun "deleteVoter" msg

= exec (updatec "checkVoter"
(deleteVoterAux msg) λ oldFun oldcost msg → 1)

(λ _ → 1) λ _ → return 1 msg

– in case to vote
testLedger 1 .fun "vote" msg

= exec callAddrLookupc (λ _ → 1)

λ addr →

exec (callView addr "checkVoter" (nat addr))

(λ _ → 1) λ check → voteAux addr check msg

– in case to check voter
testLedger 1 .viewFunction "checkVoter" msg

= theMsg (nat 0)

– in case to increment our counter
testLedger 1 .viewFunction "counter" msg

= theMsg (nat 0)

testLedger 1 .viewFunctionCost "checkVoter" msg

= 1

– define a ledger for address 3 with amount only
testLedger 3 .amount = 100

– for other cases
testLedger ow .amount = 0

testLedger ow .fun ow’ ow”

= error (strErr "Undefined")

〈 ow » ow · ow’ [ ow” ]〉

testLedger ow .viewFunction ow’ ow”
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= err (strErr "Undefined")

testLedger ow .viewFunctionCost ow’ ow”

= 1

C.2.6 A more democratic one with multiple candidates: Executed voting
example for multiple candidates
(executedvotingexample-multi-candidates.agda)

open import constantparameters

module Complex-Model.example.executedvotingexample-multi-candidates where

open import Data.List

open import Data.Bool.Base

open import Agda.Builtin.Unit

open import Data.Product renaming (_,_ to _„_ )

open import Data.Maybe hiding (_>>=_)

open import Data.Nat.Base

open import Data.Nat.Show

open import Data.Fin.Base hiding (_+_; _-_)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_ ; refl ; sym ; cong)

open import Agda.Builtin.Nat using (_-_; _*_)

open import Data.String hiding (length; show) renaming (_++_ to _++str_)

open import Data.Unit

open import Data.Empty

–our work
open import libraries.natCompare

open import Complex-Model.ledgerversion.Ledger-Complex-Model exampleParameters

open import Complex-Model.ccomand.ccommands-cresponse

open import basicDataStructure

open import libraries.Mainlibrary

open import Complex-Model.example.votingexample-multi-candidates
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IsJust : {A : Set} → Maybe A → Set

IsJust (just _) = >

IsJust nothing = ⊥

fromJust : {A : Set} → (p : Maybe A) → IsJust p → A

fromJust (just a) tt = a

———- First test (adding voter)
– using function "AddVoter"
– with (nat 1) on testLedger

resultAfterAddVoter1 : Ledger × MsgOrErrorWithGas

resultAfterAddVoter1

= evaluateTerminatingfinal testLedger 1 1 1 "addVoter" (nat 1) 20

resultReturnedAddVoter1 : MsgOrErrorWithGas

resultReturnedAddVoter1 = proj2 resultAfterAddVoter1

{-
evaluate to
theMsg (nat 1) , 16 gas
so executing addVoter (nat 1) returned (nat 1)
-}

ledgerAfterAdd1 : Ledger

ledgerAfterAdd1 = proj1 resultAfterAddVoter1

– check the view function with (nat 1)
– after adding voter to our ledger
checkVoter1afterAdd1 : MsgOrError

checkVoter1afterAdd1

= ledgerAfterAdd1 1 .viewFunction "checkVoter" (nat 1)

{-
evaluate to
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theMsg (nat 1)
which means true
-}

checkVoter3AfterAdd1 : MsgOrError

checkVoter3AfterAdd1

= ledgerAfterAdd1 1 .viewFunction "checkVoter" (nat 3)

{-
evaluate to
theMsg (nat 0)
which means false
our ledger only includes (nat 1)
-}

—— Second test (vote)
– using function "vote" with (nat 4)
– on ledgerAfterAdd5

resultAfterVote : Ledger × MsgOrErrorWithGas

resultAfterVote =

evaluateTerminatingfinal ledgerAfterAdd1 1 1 1

"vote" (nat 4) 50

resultReturnedVote : MsgOrErrorWithGas

resultReturnedVote = proj2 resultAfterVote

{- evaluates to

theMsg (nat 4) , 39 gas

-}

ledgerAfterVote : Ledger

ledgerAfterVote = proj1 resultAfterVote
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– check the view function "counter" with (nat 4)
– after adding voter to our ledger
checkCounterAfterVote : MsgOrError

checkCounterAfterVote =

ledgerAfterVote 1 .viewFunction "counter" (nat 4)

– evaluates to
– theMsg (nat 1) which means our counter has one

– check the view function "counter" with (nat 3)
– after adding voter to our ledger
checkCounterWith3 : MsgOrError

checkCounterWith3 =

ledgerAfterVote 1 .viewFunction "counter" (nat 3)

– evaluates to
– theMsg (nat 0) which means
– we do not have (nat 3) in our counter

—— Third test (adding voter)
– using function "AddVoter" with (nat 1) on ledgerAfterVote

resultAfterAddVoter1’ : Ledger × MsgOrErrorWithGas

resultAfterAddVoter1’

= evaluateTerminatingfinal ledgerAfterVote 1 1 1 "addVoter" (nat 1) 20

resultReturnedAddVoter1’ : MsgOrErrorWithGas

resultReturnedAddVoter1’ = proj2 resultAfterAddVoter1’

{-
evaluate to
theMsg (nat 1) , 16 gas
so executing addVoter (nat 1) returned (nat 1)
-}
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ledgerAfterAdd1’ : Ledger

ledgerAfterAdd1’ = proj1 resultAfterAddVoter1’

– check the view function with (nat 1)
– after adding voter to our ledger
checkVoter1afterAdd1’ : MsgOrError

checkVoter1afterAdd1’ =

ledgerAfterAdd1’ 1 .viewFunction "checkVoter" (nat 1)

{-
evaluate to
theMsg (nat 1)
which means true
-}

checkVoter3AfterAdd1’ : MsgOrError

checkVoter3AfterAdd1’ =

ledgerAfterAdd1’ 1 .viewFunction "checkVoter" (nat 3)

{-
evaluate to
theMsg (nat 0)
which means false
our ledger only includes (nat 1)
-}

—— Fourth test (vote)
– using function "vote" with (nat 4) on ledgerAfterAdd5

resultAfterVote’ : Ledger × MsgOrErrorWithGas

resultAfterVote’ =

evaluateTerminatingfinal ledgerAfterAdd1’ 1 1 1

"vote" (nat 4) 50

resultReturnedVote’ : MsgOrErrorWithGas
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resultReturnedVote’ = proj2 resultAfterVote’

{- evaluates to

theMsg (nat 4) , 39 gas

-}

ledgerAfterVote’ : Ledger

ledgerAfterVote’ = proj1 resultAfterVote’

– check the view function "counter" with (nat 4)
– after adding voter to our ledger
checkCounterAfterVote’ : MsgOrError

checkCounterAfterVote’ =

ledgerAfterVote’ 1 .viewFunction "counter" (nat 4)

– evaluates to
– theMsg (nat 2) which means our counter have 2

– check the view function "counter" with (nat 3)
– after adding voter to our ledger
checkCounterWith3’ : MsgOrError

checkCounterWith3’ =

ledgerAfterVote’ 1 .viewFunction "counter" (nat 3)

– evaluates to
– theMsg (nat 0) which means
– we do not have (nat 3) in our counter

—— Fifith test (adding voter)
– using function "AddVoter" with (nat 1)
– on ledgerAfterAdd1’

resultAfterAddVoter1” : Ledger × MsgOrErrorWithGas
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resultAfterAddVoter1” =

evaluateTerminatingfinal ledgerAfterVote’ 1 1 1

"addVoter" (nat 1) 20

resultReturnedAddVoter1” : MsgOrErrorWithGas

resultReturnedAddVoter1” = proj2 resultAfterAddVoter1’

{-
evaluate to
theMsg (nat 1) , 16 gas
so executing addVoter (nat 1) returned (nat 1)
-}

ledgerAfterAdd1” : Ledger

ledgerAfterAdd1” = proj1 resultAfterAddVoter1”

– check the view function with (nat 1)
– after adding voter to our ledger
checkVoter1AfterAdd1” : MsgOrError

checkVoter1AfterAdd1” =

ledgerAfterAdd1” 1 .viewFunction "checkVoter" (nat 1)

{-
evaluate to
theMsg (nat 1)
which means true
-}

checkVoter3AfterAdd1” : MsgOrError

checkVoter3AfterAdd1” =

ledgerAfterAdd1” 1 .viewFunction "checkVoter" (nat 3)

{-
evaluate to
theMsg (nat 0)
which means false
our ledger only includes (nat 1)
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-}

——- Sixth test (vote)
– using function "vote" with (nat 4) on ledgerAfterAdd5

resultAfterVote” : Ledger × MsgOrErrorWithGas

resultAfterVote” =

evaluateTerminatingfinal ledgerAfterAdd1” 1 1 1

"vote" (nat 4) 50

resultReturnedVote” : MsgOrErrorWithGas

resultReturnedVote” = proj2 resultAfterVote”

{- evaluates to

theMsg (nat 4) , 39 gas

-}

ledgerAfterVote” : Ledger

ledgerAfterVote” = proj1 resultAfterVote”

– check the view function "counter" with (nat 4)
– after adding voter to our ledger
checkCounterAfterVote” : MsgOrError

checkCounterAfterVote” =

ledgerAfterVote” 1 .viewFunction "counter" (nat 4)

– evaluates to
– theMsg (nat 3) which means our counter have 3

– check the view function "counter" with (nat 3)
– after adding voter to our ledger
checkCounterWith3” : MsgOrError

checkCounterWith3” =
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ledgerAfterVote” 1 .viewFunction "counter" (nat 3)

– evaluates to
– theMsg (nat 0) which means
– we do not have (nat 3) in our counter

C.3 Constant parameters (constantparameters.agda)

module constantparameters where

open import Data.Nat

open import Data.String hiding (length)

open import Data.List

open import Data.Bool

open import basicDataStructure

open import Complex-Model.ccomand.ccommands-cresponse

record ConstantParameters : Set where

field

hash : N → N

costcurrentAddrLookupc : N

costcallAddrLookupc : N

costcallc : Msg → N

costtransfer : N

costgetAmount : N

costreturn : Msg → N

costerror : ErrorMsg → N

costofreturn : N

gasprice : N

GastoWei : N → N –
GastoWei n = n * gasprice
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open ConstantParameters public

exampleParameters : ConstantParameters

exampleParameters .hash n = 1

exampleParameters .costcurrentAddrLookupc = 1

exampleParameters .costcallAddrLookupc = 1

exampleParameters .costcallc n = 1

exampleParameters .costtransfer = 1

exampleParameters .costgetAmount = 1

exampleParameters .costreturn n = 1

exampleParameters .costerror n = 1

exampleParameters .costofreturn = 1

exampleParameters .gasprice = 1

C.4 Basic data strucure (basicDataStructure.agda)

module basicDataStructure where

open import Data.Nat

open import Data.String hiding (length)

open import Data.List

open import Data.Bool

open import Agda.Builtin.String

FunctionName : Set

FunctionName = String

– Boolean valued equality on FunctionName
_≡fun_ : FunctionName → FunctionName → Bool

_≡fun_ = primStringEquality

Time : Set

Time = N
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Amount : Set

Amount = N

Address : Set

Address = N

Signature : Set

Signature = N

PublicKey : Set

PublicKey = N

data Msg : Set where

nat : (n : N) → Msg

_+msg_ : (m m’ : Msg) → Msg

list : (l : List Msg) → Msg

data ErrorMsg : Set where

strErr : String → ErrorMsg

numErr : N → ErrorMsg

undefined : ErrorMsg

outOfGasError : ErrorMsg

–record (debuge) includes these info

record DebugInfo : Set where

constructor 〈_»_·_[_]〉

field

lastcalladdr : Address

curraddr : Address

lastfunname : FunctionName

lastmsg : Msg
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open DebugInfo public

data NatOrError : Set where

nat : N → NatOrError

err : ErrorMsg → DebugInfo → NatOrError

– notNatErr : String → NatOrError
invalidtransaction : NatOrError

–This definition we use it to
– display the gasleft with NatOrError
record NatOrErrorWithGas : Set where

constructor _,_gas

field

natOrError : NatOrError

gas : N

open NatOrErrorWithGas public

data MsgOrError : Set where

theMsg : Msg → MsgOrError

err : ErrorMsg → MsgOrError

– new definition

data MsgOrError’ : Set where

theMsg : Msg → MsgOrError’

err : ErrorMsg → DebugInfo → MsgOrError’

– notNatErr : String → MsgOrError’
invalidtransaction : MsgOrError’

record MsgOrErrorWithGas : Set where
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(ExecStackEl), and state execution function (StateExecFun) (Mainlibrary.agda)

constructor _,_gas

field

msgOrError : MsgOrError’

gas : N

open MsgOrErrorWithGas public

– new definition

data StringOrError’ : Set where

theString : String → StringOrError’

err : ErrorMsg → DebugInfo → StringOrError’

notNatErr : String → StringOrError’

invalidtransaction : StringOrError’

record StringOrErrorWithGas : Set where

constructor _,_gas

field

stringOrError : StringOrError’

gas : N

open StringOrErrorWithGas public

C.5 Main library for the complex model includes contract, ledger,

execution stack element (ExecStackEl), and state execution

function (StateExecFun) (Mainlibrary.agda)

open import constantparameters

module libraries.Mainlibrary where

open import Data.Nat

open import Data.List hiding (_++_)

open import Agda.Builtin.Nat using (_-_; _*_)

open import Data.Unit
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open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length;show)

open import Data.Nat.Show

open import Data.Maybe.Base as Maybe using (Maybe; nothing; _<|>_; when)

open import Data.Maybe.Effectful

open import Data.Product renaming (_,_ to _„_ )

open import Agda.Builtin.String

–our work
open import basicDataStructure

open import libraries.natCompare

open import Complex-Model.ccomand.ccommands-cresponse

–Definition of complex smart contract
record Contract : Set where

constructor contract

field

amount : Amount

fun : FunctionName

→ (Msg → SmartContractExec Msg)

viewFunction : FunctionName

→ Msg → MsgOrError

viewFunctionCost : FunctionName

→ Msg → N

open Contract public

–ledger
Ledger : Set
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C.5. Main library for the complex model includes contract, ledger, execution stack element
(ExecStackEl), and state execution function (StateExecFun) (Mainlibrary.agda)

Ledger = Address → Contract

– the execution stack element
record ExecStackEl : Set where

constructor execStackEl

field

– lastCallAddress is the address which made the
– call to the current function call

lastCallAddress : Address

– calledAddress is the address to which the last current
– function call was made from lastCallAddr

calledAddress : Address

– continuation how to proceed once a result is returned,
– which depends on that result which is an element of Msg

continuation : (Msg → SmartContractExec Msg)

– Cost for continuation depending on the msg
– returned when the current call is finished

costCont : Msg → N

– The following two elements are only for
– debugging purposes so that in case of an error
–functionanme is the name of the function which was called

funcNameexecStackEl : FunctionName

–msg is the arguments with which this funciton was called.
msgexecStackEl : Msg

open ExecStackEl public

– execution stack function
ExecutionStack : Set

ExecutionStack = List ExecStackEl
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– the state execution function
record StateExecFun : Set where

constructor stateEF

field

ledger : Ledger

executionStack : ExecutionStack

– the address which initiated everything
initialAddr : Address

– the address which made the call to the current function call
lastCallAddr : Address

– is the address to which the last current fucntion call was made from lastCallAddr
calledAddr : Address

– next step in the program to be executed when
nextstep : SmartContractExec Msg

– how much we have left in the next execution step
gasLeft : N

–these info regarding debug info :

funNameevalState : FunctionName

msgevalState : Msg

open StateExecFun public

C.6 Compare natural library (natCompare.agda)

module libraries.natCompare where

open import Data.Nat hiding (_≤_ ; _<_ )

open import Data.Bool hiding (_≤_ ; _<_)
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C.6. Compare natural library (natCompare.agda)

open import Data.Empty

open import Data.Unit

atom : Bool → Set

atom true = >

atom false = ⊥

_5b_ : N → N → Bool

0 5b m = true

suc n 5b zero = false

suc n 5b suc m = n 5b m

_==b_ : N → N → Bool

0 ==b 0 = true

0 ==b suc n = false

suc n ==b 0 = false

suc n ==b suc m = n ==b m

– 5r is a recursively defined 5

_5r_ : N → N → Set

n 5r m = atom (n 5b m)

_==r_ : N → N → Set

n ==r m = atom (n ==b m)

_<r_ : N → N → Set

n <r m = suc n 5r m

05n : {n : N} → 0 5r n

05n = tt

data OrderingLeq (n m : N) : Set where

leq : n 5r m → OrderingLeq n m

greater : m <r n → OrderingLeq n m
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C. Full Agda code for chapter Developing two models of the Solidity-style smart contracts

liftLeq : {n m : N} → OrderingLeq n m

→ OrderingLeq (suc n) (suc m)

liftLeq {n} {m} (leq x) = leq x

liftLeq {n} {m} (greater x) = greater x

compareLeq : (n m : N) → OrderingLeq n m

compareLeq zero n = leq tt

compareLeq (suc n) zero = greater tt

compareLeq (suc n) (suc m) = liftLeq (compareLeq n m)

data OrderingLess (n m : N) : Set where

less : n <r m → OrderingLess n m

geq : m 5r n → OrderingLess n m

liftLess : {n m : N} → OrderingLess n m

→ OrderingLess (suc n) (suc m)

liftLess {n} {m} (less x) = less x

liftLess {n} {m} (geq x) = geq x

compareLess : (n m : N) → OrderingLess n m

compareLess n zero = geq tt

compareLess zero (suc m) = less tt

compareLess (suc n) (suc m) = liftLess (compareLess n m)

subtract : (n m : N) → m 5r n → N

subtract n zero nm = n

subtract (suc n) (suc m) nm = subtract n m nm

refl5r : (n : N) → n 5r n

refl5r 0 = tt

refl5r (suc n) = refl5r n
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C.6. Compare natural library (natCompare.agda)

refl==r : (n : N) → n ==r n

refl==r zero = tt

refl==r (suc n) = refl==r n

lemmaxysuc : (x y : N) → x 5r y → x 5r suc y

lemmaxysuc zero y xy = tt

lemmaxysuc (suc x) (suc y) xy

= lemmaxysuc x y xy

lemmaxSucY : (x y z : N) → x 5r suc y

→ (x - (suc z)) 5r y

lemmaxSucY 0 y z xy = tt

lemmaxSucY (suc x) y zero xy = xy

lemmaxSucY (suc x) y (suc z) xy

= lemmaxSucY x y z (lemmaxysuc x y xy)

lemma=5r : (x y z : N) → x ==r y

→ y 5r z → x 5r z

lemma=5r zero y z x=y y5rz = tt

lemma=5r (suc x) (suc y) (suc z) x=y y5rz

= lemma=5r x y z x=y y5rz

sym== : (x y : N) → x ==r y → y ==r x

sym== zero zero xy = tt

sym== (suc x) (suc y) xy = sym== x y xy
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Appendix D

Full Agda code for chapter Simulating
two models of Solidity-style smart
contracts

D.1 Simulator of the simple model

D.1.1 Definition of Smart Contract (SmartContract), Ledger, Commands
(CCommands), and responses (CResponse) (Ledger-Simple-Model.agda)

module Simple-Model.ledgerversion.Ledger-Simple-Model where

open import Data.Nat

open import Agda.Builtin.Nat using (_-_)

open import Data.Unit

open import Data.List

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length)

–library for simple model
open import Simple-Model.library-simple-model.basicDataStructureWithSimpleModel
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D.1. Simulator of the simple model

– main library
open import libraries.natCompare

mutual

– smart contract-comands:
data CCommands : Set where

transferc : Amount → Address → CCommands

callc : Address → FunctionName → Msg → CCommands

updatec : FunctionName → (Msg → SmartContract Msg)

→ CCommands

currentAddrLookupc : CCommands

callAddrLookupc : CCommands

getAmountc : Address → CCommands

– smart contract response
CResponse : CCommands → Set

CResponse (transferc amount addr) = >

CResponse (callc addr fname msg) = Msg

CResponse (updatec fname fdef) = >

CResponse currentAddrLookupc = Address

CResponse callAddrLookupc = Address

CResponse (getAmountc addr) = Amount

–SmartContractExec is datatype of what happens when
– a function is applied to its arguments.

data SmartContract (A : Set) : Set where

return : A → SmartContract A

error : ErrorMsg → SmartContract A

exec : (c : CCommands) → (CResponse c → SmartContract A)

→ SmartContract A
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D. Full Agda code for chapter Simulating two models of Solidity-style smart contracts

_>>==_ : {A B : Set} → SmartContract A → (A → SmartContract B)

→ SmartContract B

return x >>== q = q x

error x >>== q = error x

exec c x >>== q = exec c (λ r → x r >>== q)

_»_ : {A B : Set} → SmartContract A → SmartContract B

→ SmartContract B

return x » q = q

error x » q = error x

exec c x » q = exec c (λ r → x r » q)

– Definition of simple contract
record Contract : Set where

constructor contract

field

amount : Amount

fun : FunctionName → (Msg → SmartContract Msg)

open Contract public

– ledger
Ledger : Set

Ledger = Address → Contract

— theses functions below we use them with do notation
call : Address → FunctionName → (Msg → SmartContract Msg)

call addr fname msg = exec (callc addr fname msg) return

update : FunctionName → (Msg → SmartContract Msg) → SmartContract >

update fname fdef = exec (updatec fname fdef) return
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D.1. Simulator of the simple model

currentAddrLookup : SmartContract Address

currentAddrLookup = exec currentAddrLookupc return

callAddrLookup : SmartContract Address

callAddrLookup = exec callAddrLookupc return

transfer : Amount → Address → SmartContract >

transfer amount addr = exec (transferc amount addr) return

– the definition of execution stack elements
record ExecStackEl : Set where

constructor execStackEl

field

lastCallAddress : Address

calledAddress : Address

continuation : Msg → SmartContract Msg

open ExecStackEl public

– the definition of the execution stack function function
ExecutionStack : Set

ExecutionStack = List ExecStackEl

{- StateExecFun is an intermediate state when
we are evaluating a function call
in a contract
it consists of

- the ledger (which might changed because of updates)
- executionStack contains partially evaluated calls

to other contracts together with their addresses
- the current address
- and the currently partially evaluated

function we are evaluating
-}
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D. Full Agda code for chapter Simulating two models of Solidity-style smart contracts

record StateExecFun : Set where

constructor stateEF

field

ledger : Ledger

executionStack : ExecutionStack

lastCallAddress : Address

currentAddress : Address

nextstep : SmartContract Msg

open StateExecFun public

–update ledger
updateLedger : Ledger → Address

→ FunctionName

→ (Msg → SmartContract Msg) → Ledger

updateLedger ledger changedAddr changedFname f a .amount

= ledger a .amount

updateLedger ledger changedAddr changedFname f a .fun fname

= if (a ≡b changedAddr) ∧ (fname ≡fun changedFname)

then f else ledger a .fun fname

–update ledger amount
updateLedgerAmount : (ledger : Ledger)

→ (currentAddr destinationAddr : Address) (amount’ : Amount)

→ (correctAmount : amount’ 5r ledger currentAddr .amount)

→ Ledger

updateLedgerAmount ledger currentAddr destinationAddr

amount’ correctAmount addr .amount

= if addr ≡b currentAddr

then subtract (ledger currentAddr .amount)

amount’ correctAmount

else (if addr ≡b destinationAddr

then ledger destinationAddr .amount + amount’

else ledger addr .amount)
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D.1. Simulator of the simple model

updateLedgerAmount ledger currentAddr newAddr

amount’ correctAmount addr .fun

= ledger addr .fun

– execute transfer auxiliary
executeTransferAux : (oldLedger currentLedger : Ledger)

→ (executionStack : ExecutionStack)

→ (callAddr currentAddr : Address)

→ (amount’ : Amount)

→ (destinationAddr : Address)

→ (cont : SmartContract Msg)

→ (cp : OrderingLeq amount’

(currentLedger currentAddr .amount))

→ StateExecFun

executeTransferAux oldLedger currentLedger executionStack callAddr

currentAddr amount’ destinationAddr cont (leq x) =

stateEF (updateLedgerAmount currentLedger currentAddr

destinationAddr amount’ x)

executionStack callAddr currentAddr cont

executeTransferAux oldLedger currentLedger executionStack callAddr

currentAddr amount destinationAddr cont (greater x) =

stateEF oldLedger executionStack callAddr currentAddr

(error (strErr "not enough money"))

– – execute transfer
executeTransfer : (oldLedger currentLedger : Ledger)

→ ExecutionStack

→ (callAddr currentAddr : Address)

→ (amount’ : Amount)

→ (destinationAddr : Address)

→ (cont : SmartContract Msg)

→ StateExecFun

executeTransfer oldLedger currentLedger exexecutionStack callAddr
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D. Full Agda code for chapter Simulating two models of Solidity-style smart contracts

currentAddr amount’ destinationAddr cont

= executeTransferAux oldLedger currentLedger

exexecutionStack callAddr currentAddr amount’

destinationAddr cont (compareLeq amount’ (currentLedger currentAddr .amount))

– definition of stepEF
stepEF : Ledger → StateExecFun → StateExecFun

stepEF oldLedger (stateEF currentLedger [] callAddr currentAddr (return result))

= stateEF currentLedger [] callAddr currentAddr (return result)

stepEF oldLedger (stateEF currentLedger (execSEl :: executionStack)

callAddr currentAddr (return result))

= stateEF currentLedger executionStack callAddr

(execSEl .calledAddress) (execSEl .continuation result)

stepEF oldLedger (stateEF currentLedger executionStack

callAddr currentAddr (exec currentAddrLookupc cont))

= stateEF currentLedger executionStack callAddr currentAddr

(cont currentAddr)

stepEF oldLedger (stateEF currentLedger executionStack

callAddr currentAddr (exec callAddrLookupc cont))

= stateEF currentLedger executionStack callAddr currentAddr

(cont callAddr)

stepEF oldLedger (stateEF currentLedger executionStack

callAddr currentAddr (exec (updatec changedFname changedFdef) cont))

= stateEF (updateLedger currentLedger currentAddr changedFname changedFdef)

executionStack callAddr currentAddr (cont tt)

stepEF oldLedger (stateEF currentLedger executionStack

oldCalladdr oldCurrentAddr (exec (callc newaddr fname msg) cont))

= stateEF currentLedger (execStackEl oldCalladdr oldCurrentAddr cont :: executionStack)

oldCurrentAddr newaddr (currentLedger newaddr .fun fname msg)

stepEF oldLedger (stateEF currentLedger executionStack

callAddr currentAddr (exec (transferc amount destinationAddr) cont))

= executeTransfer oldLedger currentLedger executionStack

callAddr currentAddr amount destinationAddr (cont tt)

stepEF oldLedger (stateEF currentLedger executionStack
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D.1. Simulator of the simple model

callAddr currentAddr (exec (getAmountc addrLookedUp) cont))

= stateEF currentLedger executionStack callAddr currentAddr

(cont (currentLedger addrLookedUp .amount))

stepEF oldLedger (stateEF currentLedger executionStack

callAddr currentAddr (error errorMsg))

= stateEF oldLedger executionStack callAddr currentAddr (error errorMsg)

– definition of stepEFntimes
stepEFntimes : Ledger → StateExecFun → N → StateExecFun

stepEFntimes oldLedger ledgerstateexecfun 0

= ledgerstateexecfun

stepEFntimes oldLedger ledgerstateexecfun (suc n)

= stepEF oldLedger (stepEFntimes oldLedger ledgerstateexecfun n)

–define stepledgern times
stepLedgerFunntimes : Ledger → Address

→ Address → FunctionName

→ Msg → N → StateExecFun

stepLedgerFunntimes ledger callAddr currentAddr funname msg n

= stepEFntimes ledger (stateEF ledger [] callAddr currentAddr

(ledger currentAddr .fun funname msg)) n

stepLedgerFunntimesList : Ledger → Address

→ Address → FunctionName

→ Msg → N → List StateExecFun

stepLedgerFunntimesList ledger callAddr currentAddr funname msg 0 = []

stepLedgerFunntimesList ledger callAddr currentAddr funname msg (suc n)

= stepLedgerFunntimes ledger callAddr currentAddr funname msg n ::

stepLedgerFunntimesList ledger callAddr currentAddr funname msg n

record MsgAndLedger : Set where

constructor msgAndLedger
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D. Full Agda code for chapter Simulating two models of Solidity-style smart contracts

field

theLedger : Ledger

msgOrError : MsgOrError

open MsgAndLedger public

{-# NON_TERMINATING #-}

evaluateNonTerminatingAuxWithLedger : Ledger → StateExecFun

→ MsgAndLedger

evaluateNonTerminatingAuxWithLedger oldledger

(stateEF currentLedger [] callAddr currentAddr (return m))

= msgAndLedger currentLedger (theMsg m)

evaluateNonTerminatingAuxWithLedger oldledger

(stateEF currentLedger s callAddr currentAddr (error e))

= msgAndLedger oldledger (err e)

evaluateNonTerminatingAuxWithLedger oldledger state

= evaluateNonTerminatingAuxWithLedger oldledger (stepEF oldledger state)

evaluateNonTerminatingWithLedger : Ledger → Address

→ Address → FunctionName → Msg → MsgAndLedger

evaluateNonTerminatingWithLedger ledger callAddr currentAddr funname msg

= evaluateNonTerminatingAuxWithLedger ledger (stateEF ledger []

callAddr currentAddr (ledger currentAddr .fun funname msg))

D.1.2 A count example for the simple model (examplecounter.agda)

module Simple-Model.example.examplecounter where

open import Data.Nat

open import Data.List

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)
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D.1. Simulator of the simple model

open import Data.String hiding (length)

–simple model
open import Simple-Model.ledgerversion.Ledger-Simple-Model

–library
open import Simple-Model.library-simple-model.basicDataStructureWithSimpleModel

open import interface.ConsoleLib

–IOledger
open import Simple-Model.IOledger.IOledger-counter

–Example of a simple counter
const : N → (Msg → SmartContract Msg)

const n msg = return (nat n)

mutual

contract0 : FunctionName → (Msg → SmartContract Msg)

contract0 "f1" = const 0

contract0 "g1" = def-g1

contract0 ow ow’ = error (strErr " Error msg")

def-g1 : Msg → SmartContract Msg

def-g1 (nat x)

= exec currentAddrLookupc

λ addr → call 0 "f1" (nat 0)

def-g1 (list x)

= exec currentAddrLookupc

(λ n → exec (updatec "f1" (const (suc n)))

λ _ → return (nat n))

– test our ledger with our example
testLedger : Ledger
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D. Full Agda code for chapter Simulating two models of Solidity-style smart contracts

testLedger 0 .amount = 20

testLedger 0 .fun "f1" m = const 0 (nat 0)

testLedger 0 .fun "g1" m = def-g1(nat 0)

testLedger 0 .fun "k1" m = exec (getAmountc 0)

(λ n → return (nat n))

testLedger 0 .fun ow ow’ = error (strErr "Undefined")

– the example belw we used in our paper
testLedger 1 .amount = 40

testLedger 1 .fun "counter" m = const 0 (nat 0)

testLedger 1 .fun "increment" m

= exec currentAddrLookupc λ addr →

exec (callc addr "counter" (nat 0))

λ {(nat n) → exec (updatec "counter" (const (suc n)))

λ _ → return (nat (suc n));

_ → error (strErr "counter returns not a number")}

testLedger 1 .fun "transfer" m

= exec (transferc 10 0) λ _ → return m

testLedger ow .amount = 0

testLedger ow .fun ow’ ow” = error (strErr "Undefined")

– To run IO
main : ConsoleProg

main = run (mainBody testLedger 0)

D.1.3 Interactive program in Agda for the simple simulator
(IOledger-counter.agda)

module Simple-Model.IOledger.IOledger-counter where

open import Data.Nat

open import Data.List hiding (_++_)

open import Data.Unit
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D.1. Simulator of the simple model

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length;show)

open import Data.Nat.Show

open import Simple-Model.ledgerversion.Ledger-Simple-Model

open import Simple-Model.library-simple-model.basicDataStructureWithSimpleModel

open import Data.Nat.Show

open import interface.Console hiding (main)

open import interface.Unit

open import interface.NativeIO

open import interface.Base

open import Data.Maybe.Base as Maybe using (Maybe; nothing; _<|>_; when)

open import Data.Maybe.Effectful

open import interface.ConsoleLib

– string to function name
string2FunctionName : String → Maybe FunctionName

string2FunctionName str =

if str == "counter"
then just "counter" else

(if str == "increment"
then just "increment" else

(if str == "transfer"
then just "transfer" else

nothing))

– define a function to convert error message to string
errorMsg2Str : ErrorMsg → String

errorMsg2Str (strErr s) = s
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errorMsg2Str (numErr n) = show n

errorMsg2Str undefined = "undefined"

mutual

– first program to execute a function of a contract
executeLedger : ∀{i} → Ledger

→ (callAddr : Address) → IOConsole i Unit

executeLedger ledger callAddr .force

= exec’ (putStrLn "Enter the calling address")

λ _ → IOexec getLine

λ line →

executeLedgerStep2 ledger callAddr (readMaybe 10 line)

executeLedgerStep2 : ∀{i} → Ledger → (callAddr : Address)

→ Maybe N → IOConsole i Unit

executeLedgerStep2 ledger callAddr nothing .force

= exec’ (putStrLn "Enter the calling cddress")

λ _ → IOexec getLine

λ _ → executeLedger ledger callAddr

executeLedgerStep2 ledger callAddr (just n) .force

= exec’ (putStrLn "Enter the function name
(e.g. counter, increment, transfer)")

λ _ → IOexec getLine

λ line → executeLedgerStep3 ledger callAddr n line

executeLedgerStep3 : ∀{i} → Ledger

→ (callAddr : Address) → N

→ FunctionName → IOConsole i Unit

executeLedgerStep3 ledger callAddr n f .force

= exec’ (putStrLn "Enter the argument of
the function as a natural number")

λ _ → IOexec getLine

λ line →
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executeLedgerStep4 ledger callAddr n f (readMaybe 10 line)

executeLedgerStep4 : ∀{i} → Ledger → (callAddr : Address)

→ N → FunctionName → Maybe N → IOConsole i Unit

executeLedgerStep4 ledger callAddr n f nothing .force

= exec’ (putStrLn "Please enter a natural number")

λ _ → executeLedgerStep3 ledger callAddr n f

executeLedgerStep4 ledger callAddr n f (just m) .force

= executeLedgerStep5 (evaluateNonTerminatingWithLedger

ledger callAddr n f (nat m)) callAddr

executeLedgerStep5 : ∀{i} → MsgAndLedger

→ (callAddr : Address) → IO’ consoleI i Unit

executeLedgerStep5 (msgAndLedger newLedger (theMsg (nat n))) callAddr

= exec’ (putStrLn ("The result of execution is nat " ++ (show n)))

λ _ → mainBody newLedger callAddr

executeLedgerStep5 (msgAndLedger newLedger (theMsg (list l))) callAddr

= exec’ (putStrLn "The result of execution is of the form list l ")

λ _ → mainBody newLedger callAddr

executeLedgerStep5 (msgAndLedger newLedger (err e)) callAddr

= exec’ (putStrLn "Error")

λ _ → IOexec (putStrLn (errorMsg2Str e))

λ _ → mainBody newLedger callAddr

– Second program to look up the balance of one contract
executeLedgercheckamount : ∀{i} → Ledger

→ (callAddr : Address) → IOConsole i Unit

executeLedgercheckamount ledger callAddr .force

= exec’ (putStrLn "Enter the address of the
contract you want to look up the balance")

λ _ → IOexec getLine
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λ line →

executeLedgercheckamountAux ledger callAddr (readMaybe 10 line)

executeLedgercheckamountAux : ∀{i} → Ledger

→ (callAddr : Address) → Maybe N → IOConsole i Unit

executeLedgercheckamountAux ledger callAddr nothing .force

= exec’ (putStrLn "Please enter a natural number")

λ _ → executeLedgercheckamount ledger callAddr

executeLedgercheckamountAux ledger callAddr (just calledAddr) .force

= exec’ (putStrLn

("The available money is " ++ show (ledger calledAddr .amount)

++ " wei in address " ++ show calledAddr))

λ line → mainBody ledger callAddr

— third program to change the calling address
executeLedgerChangeCallingAddress : ∀{i} → Ledger

→ (callAddr : Address) → IOConsole i Unit

executeLedgerChangeCallingAddress ledger callAddr .force

= exec’ (putStrLn "Enter the new calling address")

λ _ → IOexec getLine

λ line →

executeLedgerChangeCallingAddressAux ledger

callAddr (readMaybe 10 line)

executeLedgerChangeCallingAddressAux : ∀{i} → Ledger

→ (callAddr : Address) → Maybe Address → IOConsole i Unit

executeLedgerChangeCallingAddressAux ledger callAddr (just callingAddr)

= executeLedger ledger callAddr

executeLedgerChangeCallingAddressAux ledger callAddr nothing .force

= exec’ (putStrLn "Please enter a number")

λ _ → executeLedgerChangeCallingAddress ledger callAddr
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– define our interface
mainBody : ∀{i} → Ledger → (callAddr : Address)

→ IOConsole i Unit

mainBody ledger callAddr .force

= WriteString’

"Please choose one of the following options:
1- Execute a function of a contract.
2- Look up the balance of a contract.
3- Change the calling address.
4- Terminate the program." λ _ →

(GetLine >>= λ str →

if str == "1" then executeLedger ledger callAddr

else (if str == "2" then executeLedgercheckamount ledger callAddr

else (if str == "3" then executeLedgerChangeCallingAddress ledger callAddr

else (if str == "4" then WriteString "The program will be terminated"
else WriteStringWithCont "Please enter 1,2,3 or 4"
λ _ → mainBody ledger callAddr))))

– The main function is defined in the example files e.g.
– Agdacode/agda/Simple-Model/IOledger/IOledger-counter.agda

D.1.4 Library for the simple model
(basicDataStructureWithSimpleModel.agda)

module Simple-Model.library-simple-model.basicDataStructureWithSimpleModel where

open import Data.Nat

open import Data.String hiding (length)

open import Data.List

open import Data.Bool

open import Agda.Builtin.String
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– definition of function name
FunctionName : Set

FunctionName = String

_≡fun_ : FunctionName → FunctionName → Bool

_≡fun_ = primStringEquality

– definition of message
data Msg : Set where

nat : N → Msg

list : List Msg → Msg

– definition of time
Time : Set

Time = N

– define Amount of type N

Amount : Set

Amount = N

– definition of error message
data ErrorMsg : Set where

strErr : String → ErrorMsg

numErr : N → ErrorMsg

undefined : ErrorMsg

– define address of type N

Address : Set

Address = N

Signature : Set

Signature = N

PublicKey : Set

PublicKey = N
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– define NatOrError
data NatOrError : Set where

nat : N → NatOrError

err : ErrorMsg → NatOrError

– define MsgOrError
data MsgOrError : Set where

theMsg : Msg → MsgOrError

err : ErrorMsg → MsgOrError

D.2 Simulator of the complex model

D.2.1 Ledger in the complex model (Ledger-Complex-Model.agda and
Ledger-Complex-Model-improved-non-terminate.agda)

open import constantparameters

module Complex-Model.ledgerversion.Ledger-Complex-Model (param : ConstantParameters) where

open import Data.Nat

open import Agda.Builtin.Nat using (_-_; _*_)

open import Data.Unit

open import Data.List

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length; show) renaming (_++_ to _++str_)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Show

open import Data.Empty

– our work
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open import Complex-Model.ccomand.ccommands-cresponse

open import basicDataStructure

open import libraries.natCompare

–open import Complex-Model.ccomand.do-notation param
open import libraries.Mainlibrary

– update view function in the ledger
updateLedgerviewfun : Ledger → Address

→ FunctionName

→ ((Msg → MsgOrError) → (Msg → MsgOrError))

→ ((Msg → MsgOrError) → (Msg → N) → Msg → N)

→ Ledger

updateLedgerviewfun ledger changedAddr changedFname

f g a .amount = ledger a .amount

updateLedgerviewfun ledger changedAddr changedFname

f g a .fun = ledger a .fun

updateLedgerviewfun ledger changedAddr changedFname

f g a .viewFunction fname =

if (changedFname ≡fun fname)

then f (ledger a .viewFunction fname)

else ledger a .viewFunction fname

updateLedgerviewfun ledger changedAddr changedFname

f g a .viewFunctionCost fname =

if (changedFname ≡fun fname)

then g (ledger a .viewFunction fname)

(ledger a .viewFunctionCost fname)

else ledger a .viewFunctionCost fname

–update ledger amount
updateLedgerAmount : (ledger : Ledger)

→ (calledAddr destinationAddr : Address) (amount’ : Amount)

→ (correctAmount : amount’ 5r ledger calledAddr .amount)
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→ Ledger

updateLedgerAmount ledger calledAddr destinationAddr

amount’ correctAmount addr .amount

= if addr ≡b calledAddr

then subtract (ledger calledAddr .amount)

amount’ correctAmount

else (if addr ≡b destinationAddr

then ledger destinationAddr .amount + amount’

else ledger addr .amount)

updateLedgerAmount ledger calledAddr newAddr

amount’ correctAmount addr .fun

= ledger addr .fun

updateLedgerAmount ledger calledAddr newAddr

amount’ correctAmount addr .viewFunction

= ledger addr .viewFunction

updateLedgerAmount ledger calledAddr newAddr

amount’ correctAmount addr .viewFunctionCost

= ledger addr .viewFunctionCost

–This function we use it to update the gas by decucting from the ledger
–rename gasPrice to gascost
deductGasFromLedger : (ledger : Ledger)

→ (calledAddr : Address) (gascost : N)

→ (correctAmount : gascost 5r ledger calledAddr .amount)

→ Ledger

deductGasFromLedger ledger calledAddr gascost

correctAmount addr .amount

= if addr ≡b calledAddr

then subtract (ledger calledAddr .amount)

gascost correctAmount

else ledger addr .amount

deductGasFromLedger ledger calledAddr gascost
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correctAmount addr .fun

= ledger addr .fun

deductGasFromLedger ledger calledAddr gascost

correctAmount addr .viewFunction

= ledger addr .viewFunction

deductGasFromLedger ledger calledAddr gascost

correctAmount addr .viewFunctionCost

= ledger addr .viewFunctionCost

– this function below we use it to refuend
– in two cases with steEF
– 1) when finish (first case)
– 2) when we have error (the last case)
addWeiToLedger : (ledger : Ledger)

→ (address : Address) (amount’ : Amount)

→ Ledger

addWeiToLedger ledger address amount’ addr .amount

= if addr ≡b address

then ledger address .amount + amount’

else ledger addr .amount

addWeiToLedger ledger address amount’ addr .fun

= ledger addr .fun

addWeiToLedger ledger address amount’ addr .viewFunction

= ledger addr .viewFunction

addWeiToLedger ledger address amount’ addr .viewFunctionCost

= ledger addr .viewFunctionCost

– execute transfer auxiliary
executeTransferAux : (oldLedger : Ledger)

→ (currentledger : Ledger)

→ (executionStack : ExecutionStack)

→ (initialAddr : Address)

→ (lastCallAddr calledAddr : Address)
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→ (cont : SmartContract Msg) → (gasleft : N)

→ (funNameevalState : FunctionName)

→ (msgevalState : Msg)

→ (amount’ : Amount)

→ (destinationAddr : Address)

→ (cp : OrderingLeq amount’

(currentledger calledAddr .amount))

→ StateExecFun

executeTransferAux oldLedger currentledger executionStack

initialAddr lastCallAddr calledAddr cont gasleft

funNameevalState msgevalState amount’ destinationAddr (leq x)

= stateEF (updateLedgerAmount currentledger

calledAddr destinationAddr amount’ x)

executionStack initialAddr lastCallAddr calledAddr cont

gasleft funNameevalState msgevalState

executeTransferAux oldLedger currentledger executionStack

initialAddr lastCallAddr calledAddr cont gasleft

funNameevalState msgevalState amount’

destinationAddr (greater x)

= stateEF oldLedger executionStack initialAddr lastCallAddr

calledAddr (error (strErr "not enough money")

〈 lastCallAddr » initialAddr · funNameevalState [ msgevalState ]〉)

gasleft funNameevalState msgevalState

– proof transfer Aux
lemmaExecuteTransferAuxGasEq : (oldLedger : Ledger)

→ (currentledger : Ledger)

→ (executionStack : ExecutionStack)

→ (initialAddr : Address)

→ (lastCallAddr calledAddr : Address)

→ (cont : SmartContract Msg) → (gasleft1 : N)

→ (funNameevalState : FunctionName)

→ (msgevalState : Msg)

→ (amount’ : Amount)
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→ (destinationAddr : Address)

→ (cp : OrderingLeq amount’ (

currentledger calledAddr .amount))

→ gasleft1 ==r gasLeft

(executeTransferAux oldLedger currentledger

executionStack initialAddr lastCallAddr

calledAddr cont gasleft1 funNameevalState

msgevalState amount’ destinationAddr cp)

lemmaExecuteTransferAuxGasEq oldLedger currentledger

executionStack initialAddr lastCallAddr calledAddr

cont gasleft1 funNameevalState msgevalState amount’

destinationAddr (leq x) = refl==r gasleft1

lemmaExecuteTransferAuxGasEq oldLedger currentledger

executionStack initialAddr lastCallAddr calledAddr

cont gasleft1 funNameevalState msgevalState amount’

destinationAddr (greater x) = refl==r gasleft1

– execute transfer
executeTransfer : (oldLedger : Ledger)

→ (currentledger : Ledger)

→ (execStack : ExecutionStack)

→ (initialAddr : Address)

→ (lastCallAddr calledAddr : Address)

→ (cont : SmartContract Msg)

→ (gasleft : N)

→ (funNameevalState : FunctionName)

→ (msgevalState : Msg)

→ (amount’ : Amount)

→ (destinationAddr : Address)

→ StateExecFun

executeTransfer oldLedger currentledger execStack

initialAddr lastCallAddr calledAddr

cont gasleft funNameevalState msgevalState

amount’ destinationAddr
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= executeTransferAux oldLedger currentledger

execStack initialAddr lastCallAddr calledAddr

cont gasleft funNameevalState msgevalState amount’

destinationAddr (compareLeq amount’

(currentledger calledAddr .amount))

– the stepEF without deducting the gasLeft
stepEF : Ledger → StateExecFun → StateExecFun

stepEF oldLedger (stateEF currentLedger executionStack

initialAddr lastCallAddr calledAddr

(exec currentAddrLookupc costcomputecont cont)

gasLeft funNameevalState msgevalState)

= stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr (cont calledAddr)

gasLeft funNameevalState msgevalState

stepEF oldLedger (stateEF currentLedger executionStack

initialAddr lastCallAddr calledAddr

(exec callAddrLookupc costcomputecont cont)

gasLeft funNameevalState msgevalState)

= stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr (cont lastCallAddr)

gasLeft funNameevalState msgevalState

stepEF oldLedger (stateEF currentLedger executionStack

initialAddr lastCallAddr calledAddr

(exec (updatec changedFname changedPFun cost)

costcomputecont cont)

gasLeft funNameevalState msgevalState)

= stateEF (updateLedgerviewfun currentLedger calledAddr

changedFname changedPFun cost)

executionStack initialAddr lastCallAddr calledAddr

(cont tt) gasLeft funNameevalState msgevalState
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stepEF oldLedger (stateEF currentLedger executionStack

initialAddr oldlastCallAddr oldcalledAddr

(exec (callc newaddr fname msg) costcomputecont cont)

gasLeft funNameevalState msgevalState)

= stateEF currentLedger

(execStackEl oldlastCallAddr oldcalledAddr cont costcomputecont

funNameevalState msgevalState :: executionStack)

initialAddr oldcalledAddr newaddr

(currentLedger newaddr .fun fname msg) gasLeft fname msg

stepEF oldLedger (stateEF currentLedger executionStack

initialAddr lastCallAddr calledAddr

(exec (transferc amount destinationAddr)

costcomputecont cont) gasLeft funNameevalState msgevalState)

= executeTransfer oldLedger currentLedger executionStack

initialAddr lastCallAddr calledAddr

(cont tt) gasLeft funNameevalState

msgevalState amount destinationAddr

stepEF oldLedger (stateEF currentLedger executionStack

initialAddr lastCallAddr calledAddr

(exec (getAmountc addrLookedUp) costcomputecont cont)

gasLeft funNameevalState msgevalState)

= stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr (cont (currentLedger addrLookedUp .amount))

gasLeft funNameevalState msgevalState

stepEF oldLedger (stateEF ledger executionStack

initialAddr lastCallAddr calledAddr

(exec (raiseException cost str) costcomputecont cont)

gasLeft funNameevalState msgevalState)

= stateEF oldLedger executionStack initialAddr

lastCallAddr calledAddr

(error (strErr str)
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〈 lastCallAddr » initialAddr · funNameevalState [ msgevalState ]〉)

gasLeft funNameevalState msgevalState

stepEF oldLedger (stateEF currentLedger executionStack

initialAddr lastCallAddr calledAddr

(error errorMsg debugInfo) gasLeft funNameevalState msgevalState)

= stateEF oldLedger executionStack initialAddr

lastCallAddr calledAddr (error errorMsg debugInfo)

gasLeft funNameevalState msgevalState

stepEF oldLedger (stateEF currentLedger executionStack

initialAddr lastCallAddr calledAddr

(exec (callView addr fname msg) costcomputecont cont)

gasLeft funNameevalState msgevalState)

= stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr

(cont (currentLedger addr .viewFunction fname msg))

gasLeft fname msg

stepEF oldLedger (stateEF currentLedger [] initialAddr

lastCallAddr calledAddr (return cost result)

gasLeft funNameevalState msgevalState)

= stateEF currentLedger [] initialAddr

lastCallAddr calledAddr (return cost result)

gasLeft funNameevalState msgevalState

stepEF oldLedger (stateEF currentLedger

(execStackEl prevLastCallAddress prevCalledAddress

prevContinuation prevCostCont

prevFunName prevMsgExec :: executionStack)

initialAddr lastCallAddr calledAddr

(return cost result) gasLeft

funNameevalState msgevalState)

= stateEF currentLedger executionStack
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initialAddr prevLastCallAddress prevCalledAddress

(prevContinuation result) gasLeft prevFunName prevMsgExec

–some lemmas to prove and we use them with our executevotingexample.agda
lemmaStepEFpreserveGas : (oldLedger : Ledger)

→ (state : StateExecFun)

→ gasLeft state ==r gasLeft (stepEF oldLedger state)

lemmaStepEFpreserveGas oldLedger (stateEF ledger []

initialAddr lastCallAddr calledAddr

(return x x1) gasLeft1 funNameevalState msgevalState)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

(x2 :: executionStack1) initialAddr lastCallAddr

calledAddr (return x x1) gasLeft1

funNameevalState msgevalState) = refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(error x x1) gasLeft1 funNameevalState msgevalState)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (callView x2 x3 x4) x x1) gasLeft1 funNameevalState msgevalState)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (updatec x2 x3 x4) x x1) gasLeft1 funNameevalState msgevalState)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (raiseException x2 x3) x x1) gasLeft1

funNameevalState msgevalState) = refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (transferc amount destinationAddr)
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costcomputecont cont) gasLeft1 funNameevalState msgevalState)

= lemmaExecuteTransferAuxGasEq oldLedger ledger

executionStack initialAddr lastCallAddr calledAddr

(cont tt) gasLeft1 funNameevalState msgevalState amount

destinationAddr ((compareLeq amount (ledger calledAddr .Contract.amount)))

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (callc x2 x3 x4) x x1) gasLeft1 funNameevalState msgevalState)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec currentAddrLookupc x x1) gasLeft1 funNameevalState msgevalState)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec callAddrLookupc x x1) gasLeft1 funNameevalState msgevalState)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (getAmountc x2) x x1) gasLeft1 funNameevalState msgevalState)

= refl==r gasLeft1

lemmaStepEFpreserveGas2 : (oldLedger : Ledger)

→ (state : StateExecFun)

→ gasLeft (stepEF oldLedger state) ==r gasLeft state

lemmaStepEFpreserveGas2 oldLedger state

= sym== (gasLeft state) (gasLeft (stepEF oldLedger state))

(lemmaStepEFpreserveGas oldLedger state)

– stepEFgasAvailable which returns gasLeft
stepEFgasAvailable : StateExecFun → N

stepEFgasAvailable (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr
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nextstep gasLeft funNameevalState msgevalState)

= gasLeft

–this function simliar to stepEF and deduct the gasleft
–which returns the gas deducted
stepEFgasNeeded : StateExecFun → N

stepEFgasNeeded (stateEF currentLedger []

initialAddr lastCallAddr calledAddr

(return cost result) gasLeft

funNameevalState msgevalState)

= cost

stepEFgasNeeded (stateEF currentLedger

(execSEl :: executionStack) initialAddr

lastCallAddr calledAddr

(return cost result) gasLeft

funNameevalState msgevalState)

= cost

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec currentAddrLookupc costcomputecont cont)

gasLeft funNameevalState msgevalState)

= costcomputecont calledAddr

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec callAddrLookupc costcomputecont cont)

gasLeft funNameevalState msgevalState)

= costcomputecont lastCallAddr

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec (updatec changedFname changedPufun cost)

costcomputecont cont) gasLeft

funNameevalState msgevalState)
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= cost (currentLedger calledAddr .viewFunction changedFname)

(currentLedger calledAddr .viewFunctionCost changedFname)

msgevalState + (costcomputecont tt)

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr oldlastCallAddr oldcalledAddr

(exec (callc newaddr fname msg) costcomputecont cont)

gasLeft funNameevalState msgevalState)

= costcomputecont msg

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec (transferc amount destinationAddr) costcomputecont cont)

gasLeft funNameevalState msgevalState)

= costcomputecont tt

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec (getAmountc addrLookedUp)

costcomputecont cont) gasLeft

funNameevalState msgevalState)

= costcomputecont (currentLedger addrLookedUp .amount)

stepEFgasNeeded (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (raiseException cost str) costcomputecont cont)

gasLeft funNameevalState msgevalState)

= cost

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec (callView addr fname msg) costcompute cont)

gasLeft funNameevalState msgevalState)

= (currentLedger calledAddr .viewFunctionCost fname msg)

+ costcompute (currentLedger
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calledAddr .viewFunction fname msg)

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(error errorMsg debuginfo)

gasLeft funNameevalState msgevalState)

= param .costerror errorMsg

–This function we use it to deduct gas from evalstate not ledger
deductGas : (statefun : StateExecFun) (gasDeducted : N)

→ StateExecFun

deductGas (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

nextstep gasLeft funNameevalState

msgevalState) gasDeducted

= stateEF ledger executionStack

initialAddr lastCallAddr calledAddr nextstep

(gasLeft - gasDeducted) funNameevalState msgevalState

– this function we use it to cpmare gas in stepEFgasNeeded
– with stepEFgasAvailable
stepEFAuxCompare : (oldLedger : Ledger)

→ (statefun : StateExecFun)

→ OrderingLeq (suc (stepEFgasNeeded statefun))

(stepEFgasAvailable statefun)

→ StateExecFun

stepEFAuxCompare oldLedger statefun (leq x)

= deductGas (stepEF oldLedger statefun)

(suc (stepEFgasNeeded statefun))

stepEFAuxCompare oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr

calledAddr nextstep gasLeft

funNameevalState msgevalState) (greater x)
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= stateEF oldLedger executionStack

initialAddr lastCallAddr calledAddr

(error outOfGasError

〈 lastCallAddr » initialAddr · funNameevalState [ msgevalState ]〉)

0 funNameevalState msgevalState

stepEFwithGasError : (oldLedger : Ledger)

→ (evals : StateExecFun)

→ StateExecFun

stepEFwithGasError oldLedger evals

= stepEFAuxCompare oldLedger evals

(compareLeq (suc (stepEFgasNeeded evals))

(stepEFgasAvailable evals))

– definition of stepEFntimes
stepEFntimes : Ledger → StateExecFun

→ (ntimes : N) → StateExecFun

stepEFntimes oldLedger ledgerstateexecfun 0

= ledgerstateexecfun

stepEFntimes oldLedger ledgerstateexecfun (suc n)

= stepEFwithGasError oldLedger

(stepEFntimes oldLedger ledgerstateexecfun n)

– definition of stepEFntimes list
stepEFntimesList : Ledger → StateExecFun

→ (ntimes : N) → List StateExecFun

stepEFntimesList oldLedger ledgerstateexecfun 0

= ledgerstateexecfun :: []

stepEFntimesList oldLedger ledgerstateexecfun (suc n)

= stepEFntimes oldLedger ledgerstateexecfun (suc n)

:: stepEFntimesList oldLedger ledgerstateexecfun n

–this function below we use it to refund as a part of septEF
– we use stepEFwithGasError
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– instead of stepEF in refund and stepEFntimesWithRefund
refund : StateExecFun → StateExecFun

refund (stateEF currentLedger [] initialAddr

lastCallAddr calledAddr (return cost result)

gasLeft funNameevalState msgevalState)

= stateEF (addWeiToLedger currentLedger

lastCallAddr (GastoWei param gasLeft))

[] initialAddr lastCallAddr calledAddr

(return cost result) gasLeft

funNameevalState msgevalState

refund (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(error errorMsg debugInfo) gasLeft

funNameevalState msgevalState)

= stateEF (addWeiToLedger currentLedger

lastCallAddr (GastoWei param gasLeft))

executionStack initialAddr lastCallAddr calledAddr

(error errorMsg debugInfo) gasLeft

funNameevalState msgevalState

refund (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

nextstep gasLeft funNameevalState msgevalState)

= stepEFwithGasError ledger (stateEF ledger executionStack

initialAddr lastCallAddr calledAddr nextstep gasLeft

funNameevalState msgevalState)

stepEFntimesWithRefund : Ledger → StateExecFun

→ (ntimes : N) → StateExecFun

stepEFntimesWithRefund oldLedger ledgerstateexecfun 0

= ledgerstateexecfun

stepEFntimesWithRefund oldLedger ledgerstateexecfun (suc n)

= refund (stepEFntimes oldLedger ledgerstateexecfun n)
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—## similar to above but we use it with
– the new version of stepEFwithGasError
–initialAddr lastCallAddr calledAddr
stepLedgerFunntimesAux : (ledger : Ledger)

→ (initialAddr : Address) → (lastCallAddr : Address)

→ (calledAddr : Address) → FunctionName

→ Msg → (gascost : N) → (ntimes : N)

→ (cp : OrderingLeq (GastoWei param gascost)

(ledger lastCallAddr .amount))

→ Maybe StateExecFun

stepLedgerFunntimesAux ledger initialAddr lastCallAddr

calledAddr funname msg gascost ntimes (leq leqpro)

= let

ledgerDeducted : Ledger

ledgerDeducted

= deductGasFromLedger ledger lastCallAddr

(GastoWei param gascost) leqpro

in just (stepEFntimes ledgerDeducted

(stateEF ledgerDeducted [] initialAddr

lastCallAddr calledAddr

(ledgerDeducted calledAddr .fun funname msg)

gascost funname msg) ntimes)

stepLedgerFunntimesAux ledger initialAddr lastCallAddr

calledAddr funname msg gascost ntimes (greater greaterpro)

= nothing

–stepLedgerFunntimesAux ledger callAddr
– currentAddr funname msg gasreserved ntimes
– (compareLeq (GastoWei param gasreserved) (ledger callAddr .amount))
– NNN here we need before running stepEFntimes deduct the gas from ledger
– NNN it needs as argument just one gas parameter
– which is set to both oldgas and newgas
– NNN if there is not enough money in the account,
– then we should fail (not an error but fail)
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– NNN so return type should be Maybe EvalState

stepLedgerFunntimes : (ledger : Ledger)

→ (initialAddr : Address)

→ (lastCallAddr : Address)

→ (calledAddr : Address)

→ FunctionName

→ Msg

→ (gasreserved : N)

→ (ntimes : N)

→ Maybe StateExecFun

stepLedgerFunntimes ledger initialAddr lastCallAddr

calledAddr funname msg gasreserved ntimes

= stepLedgerFunntimesAux ledger initialAddr

lastCallAddr calledAddr

funname msg gasreserved ntimes

(compareLeq (GastoWei param gasreserved)

(ledger lastCallAddr .amount))

–with list
stepLedgerFunntimesListAux : (ledger : Ledger)

→ (initialAddr : Address)

→ (lastCallAddr : Address)

→ (calledAddr : Address)

→ FunctionName

→ Msg

→ (gasreserved : N)

→ (ntimes : N)

→ (cp : OrderingLeq (GastoWei param gasreserved)

(ledger lastCallAddr .amount))

→ Maybe (List StateExecFun)

stepLedgerFunntimesListAux ledger initialAddr

lastCallAddr calledAddr funname msg gasreserved

ntimes (leq leqpro)
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= let

ledgerDeducted : Ledger

ledgerDeducted

= deductGasFromLedger ledger lastCallAddr

(GastoWei param gasreserved) leqpro

in

just (stepEFntimesList ledgerDeducted

(stateEF ledgerDeducted [] initialAddr lastCallAddr calledAddr

(ledgerDeducted calledAddr .fun funname msg)

gasreserved funname msg) ntimes)

stepLedgerFunntimesListAux ledger initialAddr lastCallAddr

calledAddr funname msg gasreserved ntimes

(greater greaterpro) = nothing

stepLedgerFunntimesList : (ledger : Ledger)

→ (initialAddr : Address)

→ (lastCallAddr : Address)

→ (calledAddr : Address)

→ (funname : FunctionName)

→ (msg : Msg)

→ (gasreserved : N)

→ (ntimes : N)

→ Maybe (List StateExecFun)

stepLedgerFunntimesList ledger initialAddr lastCallAddr

calledAddr funname msg gasreserved ntimes

= stepLedgerFunntimesListAux ledger initialAddr

lastCallAddr calledAddr funname msg gasreserved ntimes

(compareLeq (GastoWei param gasreserved) (ledger lastCallAddr .amount))

–clear version of evaluateNonTerminating’
– the below is the final step and we use it to solve the return cost
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evaluateAuxfinal0’ : (oldLedger : Ledger)

→ (currentLedger : Ledger)

→ (initialAddr : Address)

→ (lastCallAddr : Address)

→ (calledAddr : Address)

→ (cost : N)

→ (returnvalue : Msg)

→ (gasLeft : N)

→ (funNameevalState : FunctionName)

→ (msgevalState : Msg)

→ (cp : OrderingLeq cost gasLeft)

→ (Ledger × MsgOrErrorWithGas)

evaluateAuxfinal0’ oldLedger currentLedger

initialAddr lastCallAddr calledAddr

cost ms gasLeft funNameevalState msgevalState (leq x)

= (addWeiToLedger currentLedger initialAddr

(GastoWei param (gasLeft - cost))) „

(theMsg ms , (gasLeft - cost) gas)

evaluateAuxfinal0’ oldLedger currentLedger

initialAddr lastCallAddr calledAddr cost returnvalue

gasLeft funNameevalState msgevalState (greater x)

= oldLedger „ ((err (strErr " Out Of Gass ")

〈 lastCallAddr » initialAddr · funNameevalState [ msgevalState ]〉) ,

gasLeft gas)

open import constantparameters

module Complex-Model.ledgerversion.Ledger-Complex-Model-improved-non-terminate

(param : ConstantParameters) where

open import Data.Nat

open import Agda.Builtin.Nat using (_-_; _*_)

open import Data.Unit
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open import Data.List

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length; show) renaming (_++_ to _++str_)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Show

open import Data.Empty

– our work
open import Complex-Model.ccomand.ccommands-cresponse

open import basicDataStructure

open import libraries.natCompare

open import libraries.Mainlibrary

open import Complex-Model.ledgerversion.Ledger-Complex-Model

{-# NON_TERMINATING #-}

evaluateNonTerminatingAuxfinal0 : Ledger → StateExecFun

→ (Ledger × MsgOrErrorWithGas)

evaluateNonTerminatingAuxfinal0 oldLedger

(stateEF currentLedger [] initialAddr lastCallAddr

calledAddr (return cost ms)

gasLeft funNameevalState msgevalState)

= evaluateAuxfinal0’ param oldLedger currentLedger

initialAddr lastCallAddr calledAddr cost ms

gasLeft funNameevalState msgevalState (compareLeq cost gasLeft)

evaluateNonTerminatingAuxfinal0 oldLedger

(stateEF currentLedger s initialAddr lastCallAddr calledAddr

(error msgg debugInfo) gasLeft

funNameevalState msgevalState)

= addWeiToLedger param oldLedger
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initialAddr (GastoWei param gasLeft) „

(err msgg 〈 lastCallAddr » initialAddr ·

funNameevalState [ msgevalState ]〉 , gasLeft gas)

evaluateNonTerminatingAuxfinal0 oldLedger evals

= evaluateNonTerminatingAuxfinal0 oldLedger

(stepEFwithGasError param oldLedger evals)

evaluateNonTerminatingAuxfinal : (ledger : Ledger)

→ (initialAddr : Address)

→ (lastCallAddr : Address)

→ (calledAddr : Address)

→ FunctionName

→ Msg

→ (gasreserved : N)

→ (cp : OrderingLeq (GastoWei param gasreserved)

(ledger initialAddr .amount))

→ Maybe (Ledger × MsgOrErrorWithGas)

evaluateNonTerminatingAuxfinal ledger initialAddr

lastCallAddr calledAddr funname msg gasreserved

(leq leqpr)

= let

ledgerDeducted : Ledger

ledgerDeducted =

deductGasFromLedger param ledger initialAddr

(GastoWei param gasreserved) leqpr

in just (evaluateNonTerminatingAuxfinal0 ledgerDeducted

(stateEF ledgerDeducted [] initialAddr

lastCallAddr calledAddr

(ledgerDeducted calledAddr .fun funname msg)

gasreserved funname msg))

evaluateNonTerminatingAuxfinal ledger initialAddr

lastCallAddr calledAddr funname msg gasreserved

(greater greaterpr) = nothing
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evaluateNonTerminatingfinal : (ledger : Ledger)

→ (initialAddr : Address)

– Initial address is the address from
– which the very first call was made
→ (lastCallAddr : Address)

– lastCallAddr is the address from
– which the current call of a function in
– calledAddr is made
→ (calledAddr : Address)

– calledAddr is the address where
– a function call is currently executed
– it was called from calledAddr
→ FunctionName

→ Msg

→ (gasreserved : N)

→ Maybe (Ledger × MsgOrErrorWithGas)

evaluateNonTerminatingfinal ledger initialAddr

lastCallAddr calledAddr funname msg gasreserved

= evaluateNonTerminatingAuxfinal ledger initialAddr

lastCallAddr calledAddr funname msg gasreserved

(compareLeq (GastoWei param gasreserved)

(ledger initialAddr .amount))

D.2.2 Definition of Smart Contract (SmartContract), Commands
(CCommands), and respones (CResponse) in the complex model
(ccommands-cresponse.agda)

module Complex-Model.ccomand.ccommands-cresponse where

open import Data.Nat

open import Agda.Builtin.Nat using (_-_)

open import Data.Unit
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open import Data.List

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length)

open import Data.Empty

– libraries
open import basicDataStructure

open import libraries.natCompare

mutual

–smart contract commands
data CCommands : Set where

callView : Address → FunctionName → Msg → CCommands

updatec : FunctionName → ((Msg → MsgOrError)

→ (Msg → MsgOrError)) → ((Msg → MsgOrError)

→ (Msg → N) → Msg → N) → CCommands

raiseException : N → String → CCommands

transferc : Amount → Address → CCommands

callc : Address → FunctionName → Msg → CCommands

currentAddrLookupc : CCommands

callAddrLookupc : CCommands

getAmountc : Address → CCommands

–smart contract responses
CResponse : CCommands → Set

CResponse (callView addr fname msg) = MsgOrError

CResponse (updatec fname fdef cost) = >

CResponse (raiseException _ str) = ⊥
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CResponse (transferc amount addr) = >

CResponse (callc addr fname msg) = Msg

CResponse currentAddrLookupc = Address

CResponse callAddrLookupc = Address

CResponse (getAmountc addr) = Amount

–SmartContractExec is datatype of what happens when
– a function is applied to its arguments.
–SmartContractExec –> SmartContractExec

data SmartContract (A : Set) : Set where

return : N → A → SmartContract A

error : ErrorMsg → DebugInfo → SmartContract A

exec : (c : CCommands) → (CResponse c → N)

→ (CResponse c → SmartContract A) → SmartContract A

_>>=_ : {A B : Set} → SmartContract A → (A → SmartContract B)

→ SmartContract B

return n x >>= q = q x

error x z >>= q = error x z

exec c n x >>= q = exec c n (λ r → x r >>= q)

_»_ : {A B : Set} → SmartContract A → SmartContract B

→ SmartContract B

return n x » q = q

error x z » q = error x z

exec c n x » q = exec c n (λ r → x r » q)

D.2.3 A voting example for complex model (votingexample-complex.agda)

open import constantparameters
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module Complex-Model.example.votingexample-complex where

open import Data.List

open import Data.Bool.Base

open import Agda.Builtin.Unit

open import Data.Product renaming (_,_ to _„_ )

open import Data.Maybe hiding (_>>=_)

open import Data.Nat.Base

open import Data.Nat.Show

open import Data.Fin.Base hiding (_+_; _-_)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_ ; refl ; sym ; cong)

open import Agda.Builtin.Nat using (_-_; _*_)

–our work
open import libraries.natCompare

open import Complex-Model.ledgerversion.Ledger-Complex-Model exampleParameters

open import Complex-Model.ccomand.ccommands-cresponse

open import basicDataStructure

open import interface.ConsoleLib

open import libraries.IOlibrary

open import Complex-Model.IOledger.IOledger-votingexample

open import libraries.Mainlibrary

–define increment aux
incrementAux : MsgOrError → SmartContract Msg

incrementAux (theMsg (nat n))

= (exec (updatec "counter" (λ _ → λ msg → theMsg (nat (suc n)))

λ f _ _ → 1) (λ n → 1)) λ x → return 1 (nat (suc n))

incrementAux ow

= error (strErr "counter returns not a number")

〈 0 » 0 · "increment" [ (nat 0) ]〉
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–add voter function
addVoterAux : Msg → (Msg → MsgOrError) → Msg → MsgOrError

addVoterAux (nat newaddr) oldCheckVoter (nat addr) =

if newaddr ≡b addr

then theMsg (nat 1) – return 1 for true
else oldCheckVoter (nat addr)

addVoterAux ow ow’ ow” =

err (strErr " You cannot add voter ")

–delete voter function
deleteVoterAux : Msg → (Msg → MsgOrError) → (Msg → MsgOrError)

deleteVoterAux (nat newaddr) oldCheckVoter (nat addr) =

if newaddr ≡b addr

then theMsg (nat 0) –return 0 for true (means delete)
else oldCheckVoter (nat addr)

deleteVoterAux ow ow’ ow”

= err (strErr " You cannot delete voter ")

– mysuc is stand for successor (increment)
mysuc : MsgOrError → MsgOrError

mysuc (theMsg (nat n)) = theMsg (nat (suc n))

mysuc (theMsg ow)= err (strErr " You cannot increment ")

mysuc ow = ow

– incrementAux for many candidates
incrementcandidates : N → (Msg → MsgOrError) → Msg → MsgOrError

incrementcandidates candidateVotedFor oldCounter (nat candidate)

= if candidateVotedFor ≡b candidate

then mysuc (oldCounter (nat candidate))

else oldCounter (nat candidate)

incrementcandidates ow ow’ ow”

= err (strErr " You cannot delete voter ")
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incrementAux1 : MsgOrError → SmartContract Msg

incrementAux1 (theMsg (nat candidate))

= (exec (updatec "counter"
(incrementcandidates candidate) λ f _ _ → 1)

(λ n → 1)) λ x → return 1 (nat candidate)

incrementAux1 ow =

error (strErr "counter returns not a number")

〈 0 » 0 · "increment" [ (nat 0) ]〉

– the function below we use it in case to
– check voter is allowed to vote or not
– in case nat 0 or otherwise it will return
– error and not allow to vote
– in case suc (nat n) it will allow to vote
– and it will call incrementAux to increment the counter
voteAux : Address → MsgOrError → (candidate : Msg) → SmartContract Msg

voteAux addr (theMsg (nat zero)) candidate

= error (strErr "The voter is not allowed to vote")

〈 0 » 0 · "Voter is not allowed to vote" [ nat 0 ]〉

voteAux addr (theMsg (nat (suc n))) candidate

= exec (updatec "checkVoter" (deleteVoterAux (nat addr))

λ _ _ _ → 1) (λ _ → 1)

(λ x → (incrementAux1 (theMsg candidate)))

voteAux addr (theMsg ow) candidate

= error (strErr "The message is not a number")

〈 0 » 0 · "Voter is not allowed to vote" [ nat 0 ]〉

voteAux addr (err x) candidate

= error (strErr " Undefined ")

〈 0 » 0 · "The message is undefined" [ nat 0 ]〉

– Example
testLedger : Ledger
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testLedger 1 .amount = 100

testLedger 1 .fun "addVoter" msg

= exec (updatec "checkVoter" (addVoterAux msg)

λ _ _ _ → 1)

(λ _ → 1) λ _ → return 1 msg

testLedger 1 .fun "deleteVoter" msg

= exec (updatec "checkVoter" (deleteVoterAux msg)

λ _ _ _ → 1)

(λ _ → 1) λ _ → return 1 msg

testLedger 1 .fun "vote" msg

= exec callAddrLookupc (λ _ → 1)

λ addr →

exec (callView addr "checkVoter" (nat addr))

(λ _ → 1) λ check → voteAux addr check msg

testLedger 1 .viewfunction "counter" msg

= theMsg (nat 0)

testLedger 1 .viewfunction "checkVoter" msg

= theMsg (nat 0)

testLedger 1 .viewfunctionCost "checkVoter" msg

= 1

testLedger 0 .amount = 100

testLedger 3 .amount = 100

testLedger ow .amount = 0

testLedger ow .fun ow’ ow”

= error (strErr "Undefined")

〈 ow » ow · ow’ [ ow” ]〉

testLedger ow .viewfunction ow’ ow”

= err (strErr "Undefined")

testLedger ow .viewfunctionCost ow’ ow”

= 1

–main program IO
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main : ConsoleProg

main = run (mainBody (〈 testLedger ledger, 0 initialAddr, 20 gas〉))

D.2.4 Interactive program in Agda for the complex simulator
(IOledger-votingexample.agda)

open import constantparameters

module Complex-Model.IOledger.IOledger-votingexample where

open import Data.Nat

open import Data.List hiding (_++_)

open import Agda.Builtin.Nat using (_-_; _*_)

open import Data.Unit

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length;show)

open import Data.Nat.Show

open import interface.Console hiding (main)

open import interface.Unit

open import interface.NativeIO

open import interface.Base

open import Data.Maybe.Base as Maybe using (Maybe; nothing; _<|>_; when)

open import Data.Maybe.Effectful

open import Data.Product renaming (_,_ to _„_ )

open import Agda.Builtin.String

– our work
open import interface.ConsoleLib

open import libraries.natCompare

open import libraries.IOlibrary
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open import libraries.Mainlibrary

open import basicDataStructure

open import Complex-Model.ledgerversion.Ledger-Complex-Model exampleParameters

open import

Complex-Model.ledgerversion.Ledger-Complex-Model-improved-non-terminate exampleParameters

–convert message to natural number
msg2N : Msg → N

msg2N (nat n) = n

msg2N otherwise = 0

– convert to string
initialfun2Str : MsgOrError → String

initialfun2Str (theMsg (nat n1))

= "(theMsg " ++ show n1 ++ ")"
initialfun2Str (theMsg othermsg)

= " The message is not a number "
initialfun2Str (err x)

= " The message is not a number "

mutual

–Program 1: Execute a function of a contract

executeLedger : ∀{i} → StateIO → IOConsole i Unit

executeLedger stIO .force =

exec’ (putStrLn "Enter the called address as a natural number")

λ _ → IOexec getLine λ line →

executeLedgerStep1-2 stIO (readMaybe 10 line)

executeLedgerStep1-2 : ∀{i} → StateIO → Maybe N → IOConsole i Unit

executeLedgerStep1-2 stIO (just calledAddr) .force =

exec’ (putStrLn "Enter the function name
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(e.g. addVoter, deleteVoter, vote)")

λ _ → IOexec getLine

λ line → executeLedgerStep1-3 stIO calledAddr line

executeLedgerStep1-2 stIO nothing .force =

exec’ (putStrLn "Please enter an address as a natural number")

λ _ → executeLedger stIO

executeLedgerStep1-3 : ∀{i} → StateIO → N

→ FunctionName → IOConsole i Unit

executeLedgerStep1-3 stIO calledAddr f .force =

exec’ (putStrLn "Enter the argument of
the function name as a natural number")

λ _ → IOexec getLine λ line →

executeLedgerStep1-4 stIO calledAddr f (readMaybe 10 line)

executeLedgerStep1-4 : ∀{i} → StateIO → N

→ FunctionName → Maybe N → IOConsole i Unit

executeLedgerStep1-4 〈 ledger ledger, initialAddr initialAddr, gas gas〉

calledAddr f (just m) .force

= exec’ (putStrLn (" The result is as follows: \n" ++

" \n The initial address is " ++ show initialAddr ++

" \n The called address is " ++ show calledAddr)) λ _ →

executeLedgerFinalStep ((evaluateNonTerminatingfinal

ledger initialAddr initialAddr calledAddr f (nat m) gas))

(〈 ledger ledger, initialAddr initialAddr, gas gas〉)

executeLedgerStep1-4 stIO calledAddr f nothing .force

= exec’ (putStrLn "Enter the argument of the function name
as a natural number")

λ _ → executeLedgerStep1-3 stIO calledAddr f

executeLedgerFinalStep : ∀{i} → Maybe (Ledger × MsgOrErrorWithGas)

→ StateIO → IO consoleI i Unit

executeLedgerFinalStep (just (newledger „ (theMsg ms , gas1 gas)))
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〈 ledger ledger, initialAddr initialAddr, gas gas〉 .force

= exec’ (putStrLn (" The argument of the function name is "
++ msg2string ms))

λ _ → IOexec (putStrLn (" The remaining gas is "
++ (show gas1) ++ " wei"
++ " , The function returned "
++ initialfun2Str (theMsg ms)))

λ _ → mainBody

(〈 newledger ledger, initialAddr initialAddr, gas gas〉)

executeLedgerFinalStep (just (newledger „

(err e 〈 lastCallAddress » curraddr · lastfunname [ lastmsg ]〉 ,

gas1 gas)))

〈 ledger ledger, initialAddr initialAddr, gas gas〉 .force

= exec’ (putStrLn "Debug information")

λ _ → IOexec (putStrLn

(errorMsg2Str (err e

〈 lastCallAddress » curraddr · lastfunname [ lastmsg ]〉)))

λ _ → IOexec (putStrLn ("Address "
++ show lastCallAddress ++

" is trying to call the address " ++ show curraddr ++

" with Function Name " ++

funname2string lastfunname ++

" with Message " ++ msg2string lastmsg))

λ _ → IOexec (putStrLn ("The remaining gas is "
++ show gas1 ++ " wei"))

λ _ → mainBody (

〈 newledger ledger, initialAddr initialAddr, gas gas〉)

executeLedgerFinalStep (just (newledger „ (invalidtransaction , gas1 gas)))

〈 ledger ledger, initialAddr initialAddr, gas gas〉 .force

= exec’ (putStrLn "Invalid transaction")

λ _ → IOexec (putStrLn (errorMsg2Str invalidtransaction))

λ _ → IOexec (putStrLn ("The remaining gas is "
++ (show gas1) ++ " wei"))
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λ _ → mainBody (

〈 newledger ledger, initialAddr initialAddr, gas gas〉)

executeLedgerFinalStep nothing 〈 ledger ledger, initialAddr initialAddr, gas gas〉 .force

= exec’ (putStrLn "Nothing and the ledger will change to old ledger")

λ _ → mainBody (〈 ledger ledger, initialAddr initialAddr, gas gas〉)

– program 2: Look up the balance of one contract

executeLedger-CheckBalance : ∀{i} → StateIO → IOConsole i Unit

executeLedger-CheckBalance stIO .force

= exec’ (putStrLn "Enter the called address
as a natural number")

λ _ → IOexec getLine λ line →

executeLedgerStep-CheckBalanceAux stIO (readMaybe 10 line)

executeLedgerStep-CheckBalanceAux : ∀{i} → StateIO → Maybe N → IOConsole i Unit

executeLedgerStep-CheckBalanceAux stIO nothing .force

= exec’ (putStrLn "Please enter an address
as a natural number")

λ _ → IOexec getLine

λ _ → executeLedger-CheckBalance stIO

executeLedgerStep-CheckBalanceAux

〈 ledger ledger, initialAddr initialAddr, gas gas〉 (just calledAddr) .force

= exec’ (putStrLn "The information you get is below: ")

λ line → IOexec (putStrLn

("The available money is " ++ show (ledger calledAddr .amount)

++ " wei in address " ++ show calledAddr))

(λ line → mainBody (

〈 ledger ledger, initialAddr initialAddr, gas gas〉))

– program 3: Change the calling address
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executeLedger-ChangeCallingAddress : ∀{i} → StateIO → IOConsole i Unit

executeLedger-ChangeCallingAddress stIO .force

= exec’ (putStrLn "Enter a new calling address
as a natural number")

λ _ → IOexec getLine

λ line → executeLedger-ChangeCallingAddressAux

stIO (readMaybe 10 line)

executeLedger-ChangeCallingAddressAux : ∀{i} → StateIO → Maybe Address

→ IOConsole i Unit

executeLedger-ChangeCallingAddressAux

〈 ledger1 ledger, initialAddr1 initialAddr, gas1 gas〉

(just callingAddr)

= executeLedger 〈 ledger1 ledger, callingAddr initialAddr, gas1 gas〉

executeLedger-ChangeCallingAddressAux stIO nothing .force

= exec’ (putStrLn "Please enter the calling address
as a natural number")

λ _ → executeLedger-ChangeCallingAddress stIO

– program 4: Update the gas limit
executeLedger-updateGas : ∀{i} → StateIO → IOConsole i Unit

executeLedger-updateGas stIO .force

= exec’ (putStrLn "Enter the new gas amount
as a natural number")

λ _ → IOexec getLine λ line →

executeLedgerStep-updateGasAux stIO (readMaybe 10 line)

executeLedgerStep-updateGasAux : ∀{i} → StateIO → Maybe N → IOConsole i Unit

executeLedgerStep-updateGasAux stIO nothing .force

= exec’ (putStrLn "Please enter a gas as a natural number")

λ _ → executeLedger-updateGas stIO
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executeLedgerStep-updateGasAux

〈 ledger ledger, initialAddr initialAddr, gas gas〉

(just gass) .force

= exec’ (putStrLn ("The gas amount has been updated successfully.
\n The new gas amount is " ++ show gass ++ " wei"
++ " and the old gas amount is " ++ show gas ++ " wei" ))

λ line → mainBody

〈 ledger ledger, initialAddr initialAddr, gass gas〉

– program 5: Check the gas limit

executeLedger-checkGas : ∀{i} → StateIO → IOConsole i Unit

executeLedger-checkGas 〈 ledger ledger, initialAddr initialAddr, gas gas〉 .force

= exec’ (putStrLn (" The gas limit is " ++ show gas ++ " wei" ))

λ line → mainBody

〈 ledger ledger, initialAddr initialAddr, gas gas〉

– program 6: Check the view function

executeLedger-viewfunction : ∀{i} → StateIO → IOConsole i Unit

executeLedger-viewfunction stIO .force

= exec’ (putStrLn "Enter the Calling Address as a natural number")

λ _ → IOexec getLine

λ line → executeLedger-viewfunction0 stIO

(readMaybe 10 line)

executeLedger-viewfunction0 : ∀{i} → StateIO → Maybe Address

→ IOConsole i Unit

executeLedger-viewfunction0

〈 ledger1 ledger, initialAddr1 initialAddr, gas1 gas〉

(just callingAddr)

= executeLedger-viewfunction1

780



D.2. Simulator of the complex model

〈 ledger1 ledger, callingAddr initialAddr, gas1 gas〉

executeLedger-viewfunction0 stIO nothing .force

= exec’ (putStrLn "Please enter as a natural number")

λ _ → executeLedger-viewfunction stIO

executeLedger-viewfunction1 : ∀{i} → StateIO → IOConsole i Unit

executeLedger-viewfunction1 stIO .force =

exec’ (putStrLn "Enter the Called Address
as a natural number")

λ _ → IOexec getLine λ line →

executeLedger-viewfunStep1-2 stIO (readMaybe 10 line)

executeLedger-viewfunStep1-2 : ∀{i} → StateIO → Maybe Address

→ IOConsole i Unit

executeLedger-viewfunStep1-2 stIO (just calledAddr) .force =

exec’ (putStrLn "Enter the function name
(e.g. checkVoter, counter) ")

λ _ → IOexec getLine λ line →

executeLedger-viewfunStep1-3 stIO

calledAddr (string2FunctionName line)

executeLedger-viewfunStep1-2 stIO nothing .force =

exec’ (putStrLn "Please enter an address
as a natural number")

λ _ → executeLedger-viewfunction1 stIO

executeLedger-viewfunStep1-3 : ∀{i} → StateIO → (calledAddr : Address)

→ Maybe FunctionName → IOConsole i Unit

executeLedger-viewfunStep1-3 stIO calledAddr (just f ) .force

= exec’ (putStrLn "Enter the argument of the function
name as a natural number")
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λ _ → IOexec getLine λ line →

executeLedger-viewfunStep1-4 stIO calledAddr f (readMaybe 10 line)

executeLedger-viewfunStep1-3 stIO calledAddr nothing .force

= exec’ (putStrLn "Please enter a function name as string")

λ _ → executeLedger-viewfunStep1-2 stIO (just calledAddr)

executeLedger-viewfunStep1-4 : ∀{i} → StateIO → (calledAddr : Address)

→ FunctionName → Maybe N → IOConsole i Unit

executeLedger-viewfunStep1-4

〈 ledger ledger, initialAddr initialAddr, gas gas〉

calledAddr f (just m) .force

= exec’ (putStrLn "The information you get is below: ")

λ _ → IOexec (putStrLn (

"\n The initial address is "
++ show initialAddr ++

"\n The called address is " ++ show calledAddr ++

"\n The view function returns " ++ initialfun2Str

(ledger calledAddr .viewFunction f (nat m)) ++

"\n The view function cost returns " ++ show

(ledger calledAddr .viewFunctionCost f (nat m))))

λ _ → mainBody (

〈 ledger ledger, initialAddr initialAddr, gas gas〉)

executeLedger-viewfunStep1-4 stIO calledAddr f nothing .force

= exec’ (putStrLn "Please enter the argument
of the function name as a natural number") λ _ →

executeLedger-viewfunStep1-3 stIO calledAddr (just f )

– define our interface
mainBody : ∀{i} → StateIO → IOConsole i Unit

mainBody stIO .force

= WriteString’ ("Please choose one of the following:
1- Execute a function of a contract.
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2- Look up the balance of a contract.
3- Change the calling address.
4- Update the gas limit.
5- Check the gas limit.
6- Evaluate a view function.
7- Terminate the program.") λ _ →

GetLine >>= λ str →

if str == "1" then executeLedger stIO

else (if str == "2" then executeLedger-CheckBalance stIO

else (if str == "3" then executeLedger-ChangeCallingAddress stIO

else (if str == "4" then executeLedger-updateGas stIO

else (if str == "5" then executeLedger-checkGas stIO

else (if str == "6" then executeLedger-viewfunction stIO

else (if str == "7" then WriteString "The program will be terminated"
else WriteStringWithCont "Please enter a number 1 - 7"
λ _ → mainBody stIO ))))))

– The main function is defined in the example files e.g.
– Agdacode/agda/Complex-Model/example/votingexample-complex.agda

D.3 Translation from Solidity language inot Agda

D.3.1 Simple Simulator (solidityToagdaInsimplemodel-counterexample.agda)

module Simple-Model.example.solidityToagdaInsimplemodel-counterexample where

open import Data.Nat hiding (_<_)

open import Data.List

open import Data.Bool hiding (_<_) –hiding (_<_)
open import Data.Bool.Base hiding (_<_)

open import Data.Nat.Base hiding (_<_)

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length; show; _<_)

783



D. Full Agda code for chapter Simulating two models of Solidity-style smart contracts

open import Data.Nat.Show

–simple model
open import Simple-Model.ledgerversion.Ledger-Simple-Model

open import Simple-Model.IOledger.IOledger-counter

open import interface.ConsoleLib

–library
open import Simple-Model.library-simple-model.basicDataStructureWithSimpleModel

–compare function
_<_ : N → N → Bool

zero < m = true

suc n < zero = false

suc n < suc m = n < m

–Example of a simple counter

– constant variable
const : N → (Msg → SmartContract Msg)

const n msg = return (nat n)

– define uint as in Solidity
Max_Uint : N

Max_Uint = 65535

– test our ledger with our example
testLedger : Ledger

testLedger 1 .amount = 40

testLedger 1 .fun "counter" m = const 0 (nat 0)

testLedger 1 .fun "increment" m =

exec currentAddrLookupc λ addr →

exec (callc addr "counter" (nat 0))

λ {(nat oldcounter) →

(if oldcounter < Max_Uint
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then exec (updatec "counter" (const (suc oldcounter)))

(λ _ → return (nat (suc oldcounter)))

else

error (strErr "out of range error"));

_ → error (strErr "counter returns not a number")}

testLedger ow .amount = 0

testLedger ow .fun ow’ ow”

= error (strErr "Undefined")

– To run interface
main : ConsoleProg

main = run (mainBody testLedger 0)

D.3.2 Complex simulator
(solidityToagdaIncomplexmodel-votingexample.agda)

open import constantparameters

module Complex-Model.example.solidityToagdaIncomplexmodel-votingexample where

open import Data.List

open import Data.Bool.Base hiding (_<_)

open import Agda.Builtin.Unit

open import Data.Product renaming (_,_ to _„_ )

open import Data.Maybe hiding (_>>=_)

open import Data.Nat.Base hiding (_<_; _>_)

open import Data.Nat.Show

open import Data.Fin.Base hiding (_+_; _-_; _<_; _>_)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_ ; refl ; sym ; cong)

open import Agda.Builtin.Nat using (_-_; _*_)

–our work
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open import libraries.natCompare

open import Complex-Model.ledgerversion.Ledger-Complex-Model exampleParameters

open import Complex-Model.ccomand.ccommands-cresponse

open import basicDataStructure

open import interface.ConsoleLib

open import libraries.IOlibrary

open import Complex-Model.IOledger.IOledger-votingexample

open import libraries.Mainlibrary

open import libraries.ComplexModelLibrary

–add voter function
addVoterAux : N → (Msg → MsgOrError)

→ Msg → MsgOrError

addVoterAux newaddr oldCheckVoter (nat addr) =

if newaddr ≡b addr

then theMsg (nat 1) – return 1 for true
else oldCheckVoter (nat addr)

addVoterAux ow ow’ ow” =

err (strErr "The argument of checkVoter is not a number")

–delete voter function
deleteVoterAux : N → (Msg → MsgOrError)

→ (Msg → MsgOrError)

deleteVoterAux newaddr oldCheckVoter (nat addr) =

if newaddr ≡b addr

then theMsg (nat 0) – return 1 for true
else oldCheckVoter (nat addr)

deleteVoterAux ow ow’ ow” =

err (strErr " You cannot delete voter ")

mysuc : MsgOrError → MsgOrError

mysuc (theMsg (nat n)) = theMsg (nat (suc n))
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mysuc (theMsg ow)= err (strErr " You cannot increment ")

mysuc ow = ow

– incrementAux for many candidates
incrementcandidates : N → (Msg → MsgOrError) → Msg → MsgOrError

incrementcandidates candidateVotedFor oldVoteResult (nat candidate) =

if candidateVotedFor ≡b candidate

then mysuc (oldVoteResult (nat candidate))

else oldVoteResult (nat candidate)

incrementcandidates ow ow’ ow” =

err (strErr " You cannot delete voter ")

incrementAux : N → SmartContract Msg

incrementAux candidate =

(exec (updatec "voteResult" (incrementcandidates candidate)

λ oldFun oldcost msg → 1)(λ n → 1))

λ x → return 1 (nat candidate)

–define voteaux solidity
voteAux : Address → N → (candidate : N)

→ SmartContract Msg

voteAux addr 0 candidate

= error (strErr "The voter is not allowed to vote")

〈 0 » 0 · "Voter is not allowed to vote" [ nat 0 ]〉

voteAux addr (suc _) candidate

= exec (updatec "checkVoter" (deleteVoterAux addr)

λ oldFun oldcost msg → 1)(λ _ → 1)

(λ x → (incrementAux candidate))

— testLedger example
testLedger : Ledger

testLedger 1 .amount = 100
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testLedger 1 .viewFunction "checkVoter" msg

= checkMsgInRangeView Max_Address msg

λ voter → theMsg (nat 0)

testLedger 1 .viewFunction "voteResult" msg

= checkMsgInRangeView Max_Uint msg λ voter → theMsg (nat 0)

testLedger 1 .viewFunctionCost "checkVoter" msg

= 1

testLedger 1 .viewFunctionCost "voterResult" msg

= 1

testLedger 1 .fun "addVoter" msg

= checkMsgInRange Max_Address msg λ user →

exec (callView 1 "checkVoter" (nat user))

(λ _ → 1) λ msgResult →

checkMsgOrErrorInRange Max_Bool msgResult

λ {0 → exec (updatec "checkVoter" (addVoterAux user)

λ oldFun oldcost msg → 1)

(λ _ → 1) (λ _ → return 1 (nat 1));

(suc _) → exec (raiseException 1 "Voter already exists")

(λ _ → 1)(λ ())}

testLedger 1 .fun "deleteVoter" msg

= checkMsgInRange Max_Address msg λ user →

exec (callView 1 "checkVoter" (nat user))

(λ _ → 1) λ msgResult →

checkMsgOrErrorInRange Max_Bool msgResult

λ {0 → exec (raiseException 1 "Voter does not exist")

(λ _ → 1)(λ ());

(suc _) → exec (updatec "checkVoter" (deleteVoterAux user)

λ oldFun oldcost msg → 1)

(λ _ → 1) (λ _ → return 1 (nat 0))}

testLedger 1 .fun "vote" msg =

checkMsgInRange Max_Uint msg

λ candidate →
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exec callAddrLookupc (λ _ → 1)

λ addr → exec (callView 1 "checkVoter" (nat addr))

(λ _ → 1) λ msgResult →

checkMsgOrErrorInRange Max_Bool msgResult

λ b → voteAux addr b candidate

– for purpuse testing we define address 0, 3, and 5
testLedger 0 .amount = 100

testLedger 3 .amount = 100

testLedger 5 .amount = 100

testLedger ow .amount = 0

testLedger ow .fun ow’ ow” =

error (strErr "Undefined") 〈 ow » ow · ow’ [ ow” ]〉

testLedger ow .viewFunction ow’ ow” = err (strErr "Undefined")

testLedger ow .viewFunctionCost ow’ ow” = 1

–main program IO
main : ConsoleProg

main = run (mainBody (〈 testLedger ledger, 0 initialAddr, 20 gas〉))

D.3.3 Library of the Complex simulator (ComplexModelLibrary.agda)

module libraries.ComplexModelLibrary where

open import Data.Nat hiding (_>_; _≤_ ; _<_ )

open import Data.Bool hiding (_≤_ ; _<_)

open import basicDataStructure

open import Complex-Model.ccomand.ccommands-cresponse

open import libraries.IOlibrary

–define less
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_<_ : N → N → Bool

zero < m = true

suc n < zero = false

suc n < suc m = n < m

–define greater
_>_ : N → N → Bool

zero > m = false

suc n > zero = true

suc n > suc m = n > m

–define equal
_==_ : N → N → Bool

zero == zero = true

zero == suc m = false

suc n == zero = false

suc n == suc m = n == m

– define uint16 as in Solidity
Max_Uint : N

Max_Uint = 65535

–define max boolean with default 1 (true)
Max_Bool : N

Max_Bool = 1

– define max address as in Solidity
Max_Address : N

Max_Address

= 4631683569492647816942839400347516314130799386625622561578303360316525185597

–define check message in range view
checkMsgInRangeView : (bound : N) → Msg

→ (N → MsgOrError) → MsgOrError

checkMsgInRangeView bound (nat n) fn =
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if n < bound

then (fn n)

else err (strErr "View function result out of range")

checkMsgInRangeView bound (msg +msg msg1) fun =

err (strErr "View function didn’t return a number")

checkMsgInRangeView bound (list l) fun =

err (strErr "View function didn’t return a number")

–define check message in range
checkMsgInRange : (bound : N) → Msg

→ (N → SmartContract Msg) → SmartContract Msg

checkMsgInRange bound (nat n) sc =

if n < Max_Uint

then (sc n)

else exec (raiseException 1 "out of range error") (λ _ → 1)(λ ())

checkMsgInRange bound (msg +msg msg1) sc =

exec (raiseException 1 "out of range error")(λ _ → 1)(λ ())

checkMsgInRange bound (list l) sc =

exec (raiseException 1 "out of range error")(λ _ → 1)(λ ())

–define check message or error in range
checkMsgOrErrorInRange : (bound : N) → MsgOrError

→ (N → SmartContract Msg)

→ SmartContract Msg

checkMsgOrErrorInRange bound (theMsg (nat n)) sc =

if n < Max_Uint

then (sc n)

else exec (raiseException 1 "out of range error") (λ _ → 1)(λ ())

checkMsgOrErrorInRange bound (theMsg (_ +msg _)) sc =

exec (raiseException 1 "out of range error")(λ _ → 1)(λ ())

checkMsgOrErrorInRange bound (theMsg (list _)) sc =

exec (raiseException 1 "Not a number error")(λ _ → 1)(λ ())

checkMsgOrErrorInRange bound (err x) sc =

exec (raiseException 1 (error2Str x))(λ _ → 1)(λ ())
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D.4 Other libraries: (IOlibrary.agda, Mainlibrary.agda, and

natCompare.agda)

D.4.1 Main library (Mainlibrary.agda)

open import constantparameters

module libraries.Mainlibrary where

open import Data.Nat

open import Data.List hiding (_++_)

open import Agda.Builtin.Nat using (_-_; _*_)

open import Data.Unit

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length;show)

open import Data.Nat.Show

open import Data.Maybe.Base as Maybe using (Maybe; nothing; _<|>_; when)

open import Data.Maybe.Effectful

open import Data.Product renaming (_,_ to _„_ )

open import Agda.Builtin.String

–our work
open import interface.ConsoleLib

open import basicDataStructure

open import libraries.natCompare

open import Complex-Model.ccomand.ccommands-cresponse

–Definition of complex smart contract
record Contract : Set where

constructor contract

field
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amount : Amount

fun : FunctionName

→ (Msg → SmartContract Msg)

viewFunction : FunctionName

→ Msg → MsgOrError

viewFunctionCost : FunctionName

→ Msg → N

open Contract public

–ledger
Ledger : Set

Ledger = Address → Contract

– the execution stack element
record ExecStackEl : Set where

constructor execStackEl

field

– lastCallAddress is the address which made the
– call to the current function call

lastCallAddress : Address

– calledAddress is the address to which the last current
– function call was made from lastCallAddr

calledAddress : Address

– continuation how to proceed once a result is returned,
– which depends on that result which is an element of Msg

continuation : (Msg → SmartContract Msg)

– Cost for continuation depending on the msg
– returned when the current call is finished

costCont : Msg → N
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– The following two elements are only for
– debugging purposes so that in case of an error
–functionanme is the name of the function which was called

funcNameexecStackEl : FunctionName

–msg is the arguments with which this funciton was called.
msgexecStackEl : Msg

open ExecStackEl public

– execution stack function
ExecutionStack : Set

ExecutionStack = List ExecStackEl

– the state execution function
record StateExecFun : Set where

constructor stateEF

field

ledger : Ledger

executionStack : ExecutionStack

– the address which initiated everything
initialAddr : Address

– the address which made the call to the current function call
lastCallAddr : Address

– is the address to which the last current fucntion call was made from lastCallAddr
calledAddr : Address

– next step in the program to be executed when
nextstep : SmartContract Msg

– how much we have left in the next execution step
gasLeft : N

–these info regarding debug info :
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funNameevalState : FunctionName

msgevalState : Msg

open StateExecFun public

D.4.2 IO library (IOlibrary.agda)

open import constantparameters

module libraries.IOlibrary where

open import Data.Nat

open import Data.List hiding (_++_)

open import Agda.Builtin.Nat using (_-_; _*_)

open import Data.Unit

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length;show)

open import Data.Nat.Show

open import Data.Maybe.Base as Maybe using (Maybe; nothing; _<|>_; when)

open import Data.Maybe.Effectful

open import Data.Product renaming (_,_ to _„_ )

open import Agda.Builtin.String

–our work
open import libraries.natCompare

open import libraries.Mainlibrary

open import interface.ConsoleLib

open import Complex-Model.ccomand.ccommands-cresponse

open import basicDataStructure

string2FunctionName : String → Maybe FunctionName
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string2FunctionName str = just str

funname2string : FunctionName → String

funname2string x = x

mutual

msgList2String : List Msg → String

msgList2String [] = ""
msgList2String (msg :: []) = msg2string msg

msgList2String (msg :: rest)

= msg2string msg ++ " , " ++ msgList2String rest

msg2string : Msg → String

msg2string (nat n)

= "(nat " ++ show n ++ ")"
msg2string (msg +msg msg1)

= "(" ++ msg2string msg ++ " , " ++ msg2string msg1 ++ ")"
msg2string (list l)

= "[" ++ msgList2String l ++ "]"

– Test cases
– msg2string (nat 5)
– "(nat 5)""(nat 5)"
– msg2string (list ((nat 3) :: (nat 7) :: []))
– "[(nat 3) , (nat 7) ]"
– msg2string (list ((nat 3) :: ((nat 7) +msg (nat 8) ) :: []))
– "[(nat 3) , ((nat 7) , (nat 8))]"

–Error to String
error2Str : ErrorMsg → String

error2Str (strErr s) = s

error2Str (numErr n) = "Number error (" ++ show n ++ ")"
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error2Str undefined = "Error undefined"
error2Str outOfGasError = "Out of gas error"

–ErrorMsg to String
errorMsg2Str : NatOrError → String

errorMsg2Str (nat n) = show n

errorMsg2Str (err e

〈 lastcalladdr » curraddr · lastfunname [ lastmsg ]〉)

= error2Str e

errorMsg2Str invalidtransaction = "invalidtransaction"

– this function below only for testing the amount at each address
checkamount : Ledger → Address → N

checkamount ledger addr = ledger addr .amount

– define state for IO
record StateIO : Set where

constructor 〈_ledger,_initialAddr,_gas〉

field

ledger : Ledger

initialAddr : Address

gas : N

open StateIO public

D.4.3 Compare natural library (natCompare.agda)

module libraries.natCompare where

open import Data.Nat hiding (_≤_ ; _<_ )

open import Data.Bool hiding (_≤_ ; _<_)

open import Data.Empty

open import Data.Unit
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– define aton
atom : Bool → Set

atom true = >

atom false = ⊥

_5b_ : N → N → Bool

zero 5b m = true

suc n 5b zero = false

suc n 5b suc m = n 5b m

–define equal boolean
_==b_ : N → N → Bool

zero ==b zero = true

zero ==b suc n = false

suc n ==b zero = false

suc n ==b suc m = n ==b m

– 5r is a recursively defined 5

_5r_ : N → N → Set

n 5r m = atom (n 5b m)

_==r_ : N → N → Set

n ==r m = atom (n ==b m)

_<r_ : N → N → Set

n <r m = suc n 5r m

05n : {n : N} → zero 5r n

05n = tt

data OrderingLeq (n m : N) : Set where

leq : n 5r m → OrderingLeq n m

greater : m <r n → OrderingLeq n m

liftLeq : {n m : N} → OrderingLeq n m
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→ OrderingLeq (suc n) (suc m)

liftLeq {n} {m} (leq x) = leq x

liftLeq {n} {m} (greater x) = greater x

compareLeq : (n m : N) → OrderingLeq n m

compareLeq zero n = leq tt

compareLeq (suc n) zero = greater tt

compareLeq (suc n) (suc m)

= liftLeq (compareLeq n m)

data OrderingLess (n m : N) : Set where

less : n <r m → OrderingLess n m

geq : m 5r n → OrderingLess n m

liftLess : {n m : N} → OrderingLess n m

→ OrderingLess (suc n) (suc m)

liftLess {n} {m} (less x) = less x

liftLess {n} {m} (geq x) = geq x

compareLess : (n m : N) → OrderingLess n m

compareLess n zero = geq tt

compareLess zero (suc m) = less tt

compareLess (suc n) (suc m)

= liftLess (compareLess n m)

subtract : (n m : N) → m 5r n → N

subtract n zero nm = n

subtract (suc n) (suc m) nm = subtract n m nm

refl5r : (n : N) → n 5r n

refl5r 0 = tt

refl5r (suc n) = refl5r n
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refl==r : (n : N) → n ==r n

refl==r zero = tt

refl==r (suc n) = refl==r n

lemmaxysuc : (x y : N) → x 5r y → x 5r suc y

lemmaxysuc zero y xy = tt

lemmaxysuc (suc x) (suc y) xy = lemmaxysuc x y xy

lemma=5r : (x y z : N) → x ==r y

→ y 5r z → x 5r z

lemma=5r zero y z x=y y5rz = tt

lemma=5r (suc x) (suc y) (suc z) x=y y5rz

= lemma=5r x y z x=y y5rz

sym== : (x y : N) → x ==r y → y ==r x

sym== zero zero xy = tt

sym== (suc x) (suc y) xy = sym== x y xy
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Appendix E

Full Agda code for chapter Verifying
Solidity-style Smart Contracts

E.1 Verifying simple model

E.1.1 Defining Hoare triples and library in simple verification

module libraries.hoareTripleLibSimple where

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_;and)

open import Data.Sum

open import Data.Maybe

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_)

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning
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open import Agda.Builtin.Equality

open import Simple-Model.ledgerversion.Ledger-Simple-Model

open import Simple-Model.library-simple-model.basicDataStructureWithSimpleModel

open import libraries.natCompare

open import libraries.logic

–define Remaining Program
record RemainingProgram : Set where

constructor remainingProgram

field

prog : SmartContract Msg

stack : ExecutionStack

calledAddress : Address

open RemainingProgram public

–define end program
endProg : Msg → RemainingProgram

endProg x = remainingProgram (return x) [] 0

–define hoare logic state
record HLState : Set where

constructor stateEF

field

ledger : Ledger

callingAddress : Address

open HLState public

–define combine hoare logic
combineHLprog : RemainingProgram → HLState → StateExecFun

combineHLprog (remainingProgram prg st calledAddr)(stateEF led callingAddr ) =

stateEF led st callingAddr calledAddr prg
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–define Hoare Logic predicate
HLPred : Set1

HLPred = HLState → Set

–define not terminate
NotTerminated : StateExecFun → Set

NotTerminated (stateEF led eStack

callingAddr calledAddr (return x)) = ⊥

NotTerminated (stateEF led eStack

callingAddr calledAddr (error x)) = ⊥

NotTerminated (stateEF led eStack

callingAddr calledAddr (exec c x)) = >

–define evalute function relation
data EFrel (l : Ledger) : StateExecFun

→ StateExecFun → Set where

reflex : (s : StateExecFun) → EFrel l s s

step : {s s” : StateExecFun}

→ NotTerminated s

→ EFrel l (stepEF l s) s” → EFrel l s s”

–define solidity precondition
– simple model
<_>solpresimplemodel_<_> : (φ : HLPred) → (p : RemainingProgram)(ψ : HLPred) → Set

<_>solpresimplemodel_<_> φ p ψ =

(s s’ : HLState) → (x : Msg) → φ s

→ EFrel (s .ledger)(combineHLprog p s) (combineHLprog (endProg x) s’) → ψ s’

–define solidity weakestprecondition
– simple model
<_>solweakestsimplemodel_<_> : (φ : HLPred) → (p : RemainingProgram) → (ψ : HLPred) → Set

<_>solweakestsimplemodel_<_> φ p ψ =
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(s s’ : HLState) → (x : Msg) → ψ s’

→ EFrel (s .ledger)(combineHLprog p s)(combineHLprog (endProg x) s’) → φ s

–define solidity recored
record <_>sol_<_> (φ : HLPred)(p : RemainingProgram)(ψ : HLPred) : Set where

field

precond : < φ >solpresimplemodel p < ψ >

weakest : < φ >solweakestsimplemodel p < ψ >

open <_>sol_<_> public

— the below functions proves some properties

efrelLemCallingAddr : {l l1 l2 : Ledger}

{callingAddr calledAddr callingAddr’ calledAddr’ : Address}

{msg msg’ : Msg}

(p : EFrel l (stateEF l1 [] callingAddr calledAddr

(return msg))

(stateEF l2 [] callingAddr’ calledAddr’ (return msg’)))

→ callingAddr ≡ callingAddr’

efrelLemCallingAddr {l} {l1} {.l1} {callingAddr} {calledAddr}

{.callingAddr} {.calledAddr} {msg} {.msg}

(reflex .(stateEF l1 [] callingAddr calledAddr (return msg)))

= refl

efrelLemCallingAddr’ : {l l1 l2 : Ledger}

{callingAddr calledAddr callingAddr’ calledAddr’ : Address}

{msg msg’ : Msg}

(p : EFrel l (stateEF l1 [] callingAddr calledAddr

(return msg))

(stateEF l2 [] callingAddr’ calledAddr’ (return msg’)))

→ callingAddr’ ≡ callingAddr

efrelLemCallingAddr’ {l} {l1} {.l1} {callingAddr} {calledAddr}

{.callingAddr} {.calledAddr} {msg} {.msg}

(reflex .(stateEF l1 [] callingAddr calledAddr (return msg)))
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= refl

efrelLemCalledAddr : {l l1 l2 : Ledger}

{callingAddr calledAddr callingAddr’ calledAddr’ : Address}

{msg msg’ : Msg}

(p : EFrel l (stateEF l1 [] callingAddr calledAddr (return msg))

(stateEF l2 [] callingAddr’ calledAddr’ (return msg’)))

→ calledAddr ≡ calledAddr’

efrelLemCalledAddr {l} {l1} {.l1} {callingAddr} {calledAddr}

{.callingAddr} {.calledAddr} {msg} {.msg} (reflex .(stateEF l1 []

callingAddr calledAddr (return msg))) = refl

efrelLemCalledAddr’ : {l l1 l2 : Ledger}

{callingAddr calledAddr callingAddr’ calledAddr’ : Address}

{msg msg’ : Msg}

(p : EFrel l (stateEF l1 [] callingAddr calledAddr (return msg))

(stateEF l2 [] callingAddr’ calledAddr’ (return msg’)))

→ calledAddr’ ≡ calledAddr

efrelLemCalledAddr’ {l} {l1} {.l1} {callingAddr} {calledAddr}

{.callingAddr} {.calledAddr} {msg} {.msg}

(reflex .(stateEF l1 [] callingAddr calledAddr (return msg)))

= refl

efrelLemMsg : (l l1 l2 : Ledger)

(callingAddr calledAddr callingAddr’ calledAddr’ : Address)

(msg msg’ : Msg)

(p : EFrel l (stateEF l1 [] callingAddr calledAddr (return msg))

(stateEF l2 [] callingAddr’ calledAddr’ (return msg’)))

→ msg ≡ msg’

efrelLemMsg l l1 .l1 callingAddr calledAddr .callingAddr .calledAddr

msg .msg (reflex .(stateEF l1 [] callingAddr calledAddr (return msg)))

= refl
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efrelLemMsg’ : (l l1 l2 : Ledger)

(callingAddr calledAddr callingAddr’ calledAddr’ : Address)

(msg msg’ : Msg)

(p : EFrel l (stateEF l1 [] callingAddr calledAddr (return msg))

(stateEF l2 [] callingAddr’ calledAddr’ (return msg’)))

→ msg’ ≡ msg

efrelLemMsg’ l l1 .l1 callingAddr calledAddr .callingAddr

.calledAddr msg .msg (reflex .(stateEF l1 [] callingAddr calledAddr

(return msg))) = refl

efrelLemLedger : {l l1 l2 : Ledger}

{callingAddr calledAddr callingAddr’ calledAddr’ : Address}

{msg msg’ : Msg}

(p : EFrel l (stateEF l1 [] callingAddr calledAddr

(return msg))

(stateEF l2 [] callingAddr’ calledAddr’ (return msg’)))

→ l1 ≡ l2

efrelLemLedger {l} {l1} {.l1} {callingAddr} {calledAddr}

{.callingAddr} {.calledAddr} {msg} {.msg}

(reflex .(stateEF l1 [] callingAddr calledAddr

(return msg))) = refl

efrelLemLedger’ : {l l1 l2 : Ledger}

{callingAddr calledAddr callingAddr’ calledAddr’ : Address}

{msg msg’ : Msg}

(p : EFrel l (stateEF l1 [] callingAddr calledAddr

(return msg))

(stateEF l2 [] callingAddr’ calledAddr’ (return msg’)))

→ l2 ≡ l1

efrelLemLedger’ {l} {l1} {.l1} {callingAddr} {calledAddr}

{.callingAddr} {.calledAddr} {msg} {.msg} (reflex

.(stateEF l1 [] callingAddr calledAddr (return msg)))

= refl
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efrelLemNotErrorReturn : {l l1 l2 : Ledger}

{callingAddr calledAddr callingAddr’ calledAddr’ : Address}

{errorMsg : ErrorMsg} {msg’ : Msg}

(p : EFrel l (stateEF l1 [] callingAddr calledAddr

(error errorMsg))

(stateEF l2 [] callingAddr’ calledAddr’ (return msg’)))

→ ⊥

efrelLemNotErrorReturn {l} {l1} {l2} {callingAddr}

{calledAddr} {callingAddr’} {calledAddr’}

{errorMsg} {msg’} (step () x1)

efrelLemNotErrorReturnr : {l l1 l2 : Ledger}

{callingAddr calledAddr callingAddr’ calledAddr’ : Address}

{msg : Msg}{errorMsg’ : ErrorMsg}

(p : EFrel l (stateEF l1 [] callingAddr calledAddr

(return msg))

(stateEF l2 [] callingAddr’ calledAddr’ (error errorMsg’)))

→ ⊥

efrelLemNotErrorReturnr {l} {l1} {l2} {callingAddr}

{calledAddr} {callingAddr’} {calledAddr’} {msg}

{errorMsg} (step () x1)

updateLedgerAmountLem1 : (led : Ledger)

(calledAddr destinationAddr : Address)(amount’ : Amount)

(diff : ¬ (destinationAddr ≡ calledAddr))

(correctAmount : amount’ 5r led calledAddr .amount)

→ updateLedgerAmount led calledAddr destinationAddr

amount’ correctAmount destinationAddr

.amount ≡ led destinationAddr .amount + amount’

updateLedgerAmountLem1 led calledAddr destinationAddr

diff amount’ corrrectAmount rewrite not≡lem1

amount’ | refl≡b
1 destinationAddr = refl
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E.1.2 First example in the simple verification

module Simple-Verification.hoareTripleVersfirstprogram where

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_;and)

open import Data.Sum

open import Data.Maybe

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import Simple-Model.ledgerversion.Ledger-Simple-Model

open import Simple-Model.library-simple-model.basicDataStructureWithSimpleModel

open import libraries.natCompare

open import libraries.logic

open import libraries.hoareTripleLibSimple

open import libraries.emptyLib

open import libraries.boolLib

– simple program transfer 10 ether from address 0 to address 6
transferProg : RemainingProgram

transferProg .prog =

exec (transferc 10 6)

λ _ → return (nat 0)
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transferProg .stack = []

transferProg .calledAddress = 0

– definition of postcondition
PostTransfer : HLPred

PostTransfer (stateEF led callingAddress) =

(led 6 .amount ≡ 10) ∧ (callingAddress ≡ 0)

– definition of precondition
PreTransfer : HLPred

PreTransfer (stateEF led callingAddress) =

(led 6 .amount ≡ 0) ∧

((10 5r led 0 .amount ) ∧

(callingAddress ≡ 0))

—— first direction (forward direction)

proofPreTransferaux1 : (led1 : Ledger)(msg : Msg)

(105led1-0amount : 10 5r led1 0 .amount)

(s’ : HLState)(x : led1 6 .amount ≡ 0)

(eq : updateLedgerAmount led1 0 6 10 105led1-0amount ≡ HLState.ledger s’)

→ HLState.ledger s’ 6 .amount ≡ 10

proofPreTransferaux1 led1 msg 105led1-0amount s’ x eq rewrite sym eq | x = refl

– prove first direction for precondition

proofPreTransfer : < PreTransfer >solpresimplemodel transferProg < PostTransfer >

proofPreTransfer (stateEF led1 .0) s’ msg (and x (and 105led1-0amount refl))

(step tt x3) rewrite compareleq1 10 (led1 0 .amount) 105led1-0amount

= and (proofPreTransferaux1 led1 msg 105led1-0amount

s’ x (efrelLemLedger x3)) (efrelLemCallingAddr’ x3)

—— second direction (backward direction)

proofPreTransfer-solweakestaux : (led1 led2 : Ledger)(msg : Msg)(callingAddress : N)
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(led2==10 : led2 6 .amount ≡ 10) (leqp : OrderingLeq 10 (led1 0 .amount))

(x2 : EFrel led1

(executeTransferAux led1 led1 [] callingAddress 0 10 6 (return (nat 0)) leqp)

(stateEF led2 [] 0 0 (return msg)))

→ (led1 6 .amount ≡ 0) ∧ ((10 5r led1 0 .amount) ∧ (callingAddress ≡ 0))

proofPreTransfer-solweakestaux led1 .(updateLedgerAmount led1 0 6 10 x) msg .0

led2==10 (leq x) (reflex .(stateEF (updateLedgerAmount led1 0 6 10 x) [] 0 0

(return (nat 0))))

= and (0+lem= (led1 6 .amount) 10 led2==10) (and x refl)

proofPreTransfer-solweakestaux led1 led2 msg callingAddress led2==10

(greater x) (step () x2)

– prove second direction for weakestprecondition
proofPreTransfer-solweakest :

< PreTransfer >solweakestsimplemodel transferProg < PostTransfer >

proofPreTransfer-solweakest (stateEF led1 callingAddress) (stateEF led2 .0)

msg (and x refl) (step tt x2)

= proofPreTransfer-solweakestaux led1 led2 msg callingAddress x

(compareLeq 10 (led1 0 .amount)) x2

– prove both direction precondition and weakestprecondition
proofTransfer : < PreTransfer >sol transferProg < PostTransfer >

proofTransfer .precond = proofPreTransfer

proofTransfer .weakest = proofPreTransfer-solweakest

E.1.3 Second example

module Simple-Verification.hoareTripleVerssecondprogram where

open import Data.Nat hiding (_≥_) renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_;and)

open import Data.Sum

open import Data.Maybe
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open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≥_ ; _≤_)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

– our work
open import Simple-Model.ledgerversion.Ledger-Simple-Model

open import Simple-Model.library-simple-model.basicDataStructureWithSimpleModel

open import libraries.natCompare

open import libraries.logic

open import libraries.hoareTripleLibSimple

open import libraries.emptyLib

open import libraries.boolLib

— Second program transfer 10 from address 0 to address 6

–define second program
transferSec-Prog : RemainingProgram

transferSec-Prog .prog =

exec (getAmountc 0) λ amount →

if 10 5b amount

then exec (transferc 10 6) (λ _ → return (nat 0))

else return (nat 0)

transferSec-Prog .stack = []

transferSec-Prog .calledAddress = 0

811



E. Full Agda code for chapter Verifying Solidity-style Smart Contracts

–define postcondition for second program
PostTransfer : HLPred

PostTransfer (stateEF led callingAddress)

= (led 6 .amount ≡ 10) ∧ (callingAddress ≡ 0)

–define precondition for second program
PreTransfer : HLPred

PreTransfer (stateEF led callingAddress)

= (((led 6 .amount ≡ 0) ∧ (10 5r led 0 .amount)) ∨

((led 6 .amount ≡ 10) ∧ (¬ (10 5r led 0 .amount)))) ∧ (callingAddress ≡ 0)

—– first direction (forward direction)

proofPreTransferaux : (led1 : Ledger)(105led1-0amount : 10 5r led1 0 .amount)

(l : Ledger)(s’ : HLState)(x : led1 6 .amount ≡ 0)

(eq : updateLedgerAmount led1 0 6 10 105led1-0amount ≡ HLState.ledger s’)

→ HLState.ledger s’ 6 .amount ≡ 10

proofPreTransferaux led1 105led1-0amount l s’ x eq

rewrite sym eq | x = refl

proofPreTransferaux’ : (led1 : Ledger)

(105led1-0amount : 10 5r led1 0 .amount)

(l : Ledger)(s’ : HLState)

(x : led1 6 .amount ≡ 0)

(eq : updateLedgerAmount led1 0 6 10

105led1-0amount 6 .amount ≡ HLState.ledger s’ 6 .amount)

→ HLState.ledger s’ 6 .amount ≡ 10

proofPreTransferaux’ led1 105led1-0amount l s’ x eq

rewrite sym eq | x = refl

– prove first direction (forward direction) for precondition
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proofPreTransfer :

< PreTransfer >solpresimplemodel transferSec-Prog < PostTransfer >

proofPreTransfer (stateEF led1 .0) s’ msg (and (or1 (and x x1)) refl)

(step tt x2) with 10 5b led1 0 .amount in eq1

proofPreTransfer (stateEF led1 _) s’ msg (and (or1 (and x tt)) refl)

(step tt (step tt x2)) | true rewrite compareleq3 10 (led1 0 .amount) eq1

= let

eq2 : HLState.ledger s’ ≡ updateLedgerAmount led1 0 6 10 (transfer≡r atom eq1 tt)

eq2 = efrelLemLedger’ x2

eq2b : HLState.ledger s’ 6 .amount ≡

updateLedgerAmount led1 0 6 10 (transfer≡r atom eq1 tt) 6 .amount

eq2b = cong’ (λ x → x 6 .amount) eq2

eq3 : updateLedgerAmount led1 0 6 10 (transfer≡r atom eq1 tt) 6 .amount ≡

led1 6 .amount + 10

eq3 = updateLedgerAmountLem1 led1 0 6 10 (λ {()})

(atomLemTrue (10 5b led1 0 .amount) eq1)

eq4 : HLState.ledger s’ 6 .amount ≡ led1 6 .amount + 10

eq4 = trans≡ eq2b eq3

in and (proofPreTransferaux’ led1 (compareleq2 10 (led1 0 .amount) eq1)

led1 s’ x (sym≡ eq4)) (efrelLemCallingAddr’ x2)

proofPreTransfer (stateEF led1 .0) s’ msg (and (or2 (and x x3)) refl) (step tt x2)

with 10 5b led1 0 .amount

proofPreTransfer (stateEF led1 _) (stateEF .led1 .0) msg (and (or2 (and x x3)) refl)

(step tt (reflex .(stateEF led1 [] 0 0 (return (nat 0))))) | false = and x refl

proofPreTransfer (stateEF led1 _) s’ msg (and (or2 (and x x3)) refl)

(step tt (step tt x2)) | true with (x3 tt)

... | ()
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— second direction (backward direction)

proofled1-6-amount+10≡10 : (led1 led2 : Ledger)(msg : Msg)

→ (callingAddress : N)(x : led2 6 .amount ≡ 10)

(eq1 : (10 5b led1 0 .amount) ≡ true)

(p : EFrel led1 (stateEF (updateLedgerAmount led1 0 6 10

(transfer≡r atom eq1 tt))

[] callingAddress 0 (return (nat 0)))

(stateEF led2 [] 0 0 (return msg)))

→ led1 6 .amount + 10 ≡ 10

proofled1-6-amount+10≡10 led1 .(updateLedgerAmount

led1 0 6 10 (transfer≡r atom eq1 tt)) msg .0 x eq1

(reflex .(stateEF (updateLedgerAmount led1 0 6 10

(transfer≡r atom eq1 tt)) [] 0 0 (return (nat 0))))

= x

proofPreTransfer-solweakstaux : (led1 led2 : Ledger)(msg : Msg)

→ (callingAddress : N)(x : led2 6 .amount ≡ 10)

(eq1 : (10 5b led1 0 .amount) ≡ true)

(p : EFrel led1 (executeTransferAux led1 led1 []

callingAddress 0 10 6

(return (nat 0)) (compareLeq 10 (led1 0 .amount)))

(stateEF led2 [] 0 0 (return msg)))

→ (((led1 6 .amount ≡ 0) ∧ >) ∨

((led1 6 .amount ≡ 10) ∧ (>→ ⊥))) ∧

(callingAddress ≡ 0)

proofPreTransfer-solweakstaux led1 led2 msg callingAddress x eq1 p rewrite

(compareleq3 10 (led1 0 .amount) eq1)

= let

eq1a : callingAddress ≡ 0

eq1a = efrelLemCallingAddr p

814



E.1. Verifying simple model

eq2a : updateLedgerAmount led1 0 6 10

(transfer≡r atom eq1 tt) 6 .amount ≡ 10

eq2a = proofled1-6-amount+10≡10 led1 led2 msg callingAddress x eq1 p

eq3a : led1 6 .amount + 10 ≡ 10

eq3a = eq2a

eq4a : led1 6 .amount ≡ 0

eq4a = 0+lem= (led1 6 .amount) 10 eq3a

in and (or1 (and eq4a tt)) eq1a

– second direction
– prove second direction (backward direction)
– for weakestprecondition
proofPreTransfer-solweakest :

< PreTransfer >solweakestsimplemodel transferSec-Prog < PostTransfer >

proofPreTransfer-solweakest (stateEF led1 callingAddress) (stateEF led2 .0) msg

(and x refl) (step tt x2) with 10 5b led1 0 .amount in eq1

proofPreTransfer-solweakest (stateEF led1 .0) (stateEF .led1 _) msg

(and x refl) (step tt (reflex .(stateEF led1 [] 0 0 (return (nat 0))))) | false

= and (or2 (and x (λ x1 → x1))) refl

proofPreTransfer-solweakest (stateEF led1 callingAddress) (stateEF led2 _) msg

(and x refl) (step tt (step tt x2)) | true

= proofPreTransfer-solweakstaux led1 led2 msg callingAddress x eq1 x2

– prove both direction precondition and
– weakestprecondition
proofTransfer :

< PreTransfer >sol transferSec-Prog < PostTransfer >

proofTransfer .precond = proofPreTransfer

proofTransfer .weakest = proofPreTransfer-solweakest
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E.2 Verifying complex model

E.2.1 Defining Hoare triples and library in the complex verification

open import constantparameters

module libraries.hoareTripleLibComplex

(param : ConstantParameters) where

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_;and)

open import Data.Sum

open import Data.Maybe

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_)

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

open import Complex-Model.ledgerversion.Ledger-Complex-Model param

open import libraries.natCompare

open import libraries.logic

open import Complex-Model.ccomand.ccommands-cresponse

open import basicDataStructure

open import libraries.Mainlibrary

– define remaining program
record RemainingProgram : Set where
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constructor remainingProgram

field

prog : SmartContract Msg

stack : ExecutionStack

calledAddress : Address

gasUsed : N

funName : FunctionName

msg : Msg

open RemainingProgram public

– define end program
endProg : Msg → RemainingProgram

endProg x = remainingProgram (return 1 x) [] 0 100 "f" (nat 0)

– define hoare logic state
record HLState : Set where

constructor stateEF

field

ledger : Ledger

initialAddress : Address

callingAddress : Address

open HLState public

– define combine hoare logic program
combineHLprog : RemainingProgram → HLState → StateExecFun

combineHLprog

(remainingProgram prg st calledAddr gasUsed funName msg)

(stateEF led initialAddr callingAddr)

= stateEF led st initialAddr callingAddr calledAddr

prg gasUsed funName msg

– define hoare logic predicate
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HLPred : Set1

HLPred = HLState → Set

–define not terminate
NotTerminated : StateExecFun → Set

NotTerminated (stateEF led eStack initialAddr callingAddr

calledAddr (return x x1) gasLeft funNameevalState msgevalState)

= ⊥

NotTerminated (stateEF led eStack initialAddr callingAddr

calledAddr (error x x1) gasLeft funNameevalState msgevalState)

= ⊥

NotTerminated (stateEF led eStack initialAddr callingAddr

calledAddr (exec c x x1) gasLeft funNameevalState msgevalState)

= >

– define evaluate function relation
data EFrel (l : Ledger) : StateExecFun

→ StateExecFun → Set where

reflex : (s : StateExecFun) → EFrel l s s

step : {s s” : StateExecFun}

→ NotTerminated s

→ EFrel l (stepEF l s ) s” → EFrel l s s”

– define a syntax to prove the precondition
– solidity precondtion for complex model
<_>solprecomplexmodel_<_> : (φ : HLPred)(p : RemainingProgram)(ψ : HLPred)

→ Set

<_>solprecomplexmodel_<_> φ p ψ = (s s’ : HLState)→ (x : Msg)

→ φ s → EFrel (s .ledger)

(combineHLprog p s) (combineHLprog (endProg x) s’)

→ ψ s’

– define a syntax to prove weakest precondition
– solidity weakest precondtion for complex model
<_>solweakestcomplexmodel_<_> : (φ : HLPred)(p : RemainingProgram)
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(ψ : HLPred) → Set

<_>solweakestcomplexmodel_<_> φ p ψ = (s s’ : HLState) → (x : Msg)

→ ψ s’ → EFrel (s .ledger)

(combineHLprog p s) (combineHLprog (endProg x) s’)

→ φ s

–define solidity
– to prove hoare triple for both directions
record <_>sol_<_> (φ : HLPred)(p : RemainingProgram)(ψ : HLPred)

: Set where

field

precond : < φ >solprecomplexmodel p < ψ >

weakest : < φ >solweakestcomplexmodel p < ψ >

open <_>sol_<_> public

— the below functions prove properties
– (ledger, msg, initial address and calling address)
efrelLeminitialAddr : {l l1 l2 : Ledger}

{initialAddress callingAddr calledAddr

initialAddress’ callingAddr’ calledAddr’ : Address}

{costgas costgas’ : N}

{gasUsed gasUsed’ : N}

{funName funName’ : FunctionName}{msg msg’ : Msg}

(p : EFrel l (stateEF l1 [] initialAddress

callingAddr calledAddr (return costgas msg) gasUsed funName msg)

(stateEF l2 [] initialAddress’ callingAddr’

calledAddr’ (return costgas’ msg’) gasUsed’ funName’ msg))

→ initialAddress ≡ initialAddress’

efrelLeminitialAddr {l} {l1} {.l1} {initialAddress}

{callingAddr} {calledAddr} {.(initialAddress)} {.callingAddr}

{.(calledAddr)} {costgas} {costgas’} {gasUsed}

{.(gasUsed)} {funName} {.(funName)} {msg} {.(msg)}

(reflex .(stateEF l1 [] initialAddress callingAddr calledAddr
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(return costgas msg) gasUsed funName msg)) = refl

efrelLeminitialAddr’ : {l l1 l2 : Ledger}

{initialAddress callingAddr calledAddr initialAddress’

callingAddr’ calledAddr’ : Address}

{costgas costgas’ : N}{gasUsed gasUsed’ : N}

{funName funName’ : FunctionName}{msg msg’ : Msg}

(p : EFrel l (stateEF l1 [] initialAddress callingAddr

calledAddr (return costgas msg) gasUsed funName msg)

(stateEF l2 [] initialAddress’ callingAddr’

calledAddr’ (return costgas’ msg’) gasUsed’ funName’ msg))

→ initialAddress’ ≡ initialAddress

efrelLeminitialAddr’ {l} {l1} {.l1} {initialAddress}

{callingAddr} {calledAddr} {.(initialAddress)} {.callingAddr}

{.(calledAddr)} {costgas} {costgas’} {gasUsed}

{.(gasUsed)} {funName} {.(funName)} {msg} {.(msg)}

(reflex .(stateEF l1 [] initialAddress callingAddr calledAddr

(return costgas msg) gasUsed funName msg)) = refl

efrelLemCallingAddr : {l l1 l2 : Ledger}

{initialAddress callingAddr calledAddr

initialAddress’ callingAddr’ calledAddr’ : Address}

{costgas costgas’ : N}{gasUsed gasUsed’ : N}

{funName funName’ : FunctionName}{msg msg’ : Msg}

(p : EFrel l (stateEF l1 [] initialAddress

callingAddr calledAddr (return costgas msg) gasUsed funName msg)

(stateEF l2 [] initialAddress’ callingAddr’

calledAddr’ (return costgas’ msg’) gasUsed’ funName’ msg))

→ callingAddr ≡ callingAddr’

efrelLemCallingAddr {l} {l1} {.l1} {initialAddress}

{callingAddr} {calledAddr} {.(initialAddress)} {.callingAddr}

{.(calledAddr)} {costgas} {costgas’} {gasUsed}

{.(gasUsed)} {funName} {.(funName)} {msg} {.(msg)}
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(reflex .(stateEF l1 [] initialAddress callingAddr calledAddr

(return costgas msg) gasUsed funName msg)) = refl

efrelLemCallingAddr’ : {l l1 l2 : Ledger}

{initialAddress callingAddr calledAddr

initialAddress’ callingAddr’ calledAddr’ : Address}

{costgas costgas’ : N}{gasUsed gasUsed’ : N}

{funName funName’ : FunctionName}{msg msg’ : Msg}

(p : EFrel l (stateEF l1 [] initialAddress

callingAddr calledAddr (return costgas msg) gasUsed funName msg)

(stateEF l2 [] initialAddress’ callingAddr’

calledAddr’ (return costgas’ msg’) gasUsed’ funName’ msg))

→ callingAddr’ ≡ callingAddr

efrelLemCallingAddr’ {l} {l1} {.l1}

{initialAddress} {callingAddr} {calledAddr} {.(initialAddress)}

{.callingAddr}{.(calledAddr)} {costgas}

{costgas’} {gasUsed} {.(gasUsed)} {funName}

{.(funName)} {msg} {.(msg)}

(reflex .(stateEF l1 [] initialAddress callingAddr calledAddr

(return costgas msg) gasUsed funName msg)) = refl

efrelLemCalledAddr : {l l1 l2 : Ledger}

{initialAddress callingAddr calledAddr initialAddress’

callingAddr’ calledAddr’ : Address}

{costgas costgas’ : N}{gasUsed gasUsed’ : N}

{funName funName’ : FunctionName}{msg msg’ : Msg}

(p : EFrel l (stateEF l1 [] initialAddress callingAddr

calledAddr (return costgas msg) gasUsed funName msg)

(stateEF l2 [] initialAddress’ callingAddr’ calledAddr’

(return costgas’ msg’) gasUsed’ funName’ msg))

→ calledAddr ≡ calledAddr’

efrelLemCalledAddr {l} {l1} {.l1} {initialAddress}

{callingAddr} {calledAddr} {.(initialAddress)}
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{.callingAddr}{.(calledAddr)} {costgas} {costgas’}

{gasUsed} {.(gasUsed)} {funName}

{.(funName)} {msg} {.(msg)}

(reflex .(stateEF l1 [] initialAddress callingAddr calledAddr

(return costgas msg) gasUsed funName msg)) = refl

efrelLemCalledAddr’ : {l l1 l2 : Ledger}

{initialAddress callingAddr calledAddr

initialAddress’ callingAddr’ calledAddr’ : Address}

{costgas costgas’ : N}{gasUsed gasUsed’ : N}

{funName funName’ : FunctionName}{msg msg’ : Msg}

(p : EFrel l (stateEF l1 [] initialAddress

callingAddr calledAddr (return costgas msg)

gasUsed funName msg)

(stateEF l2 [] initialAddress’ callingAddr’

calledAddr’ (return costgas’ msg’) gasUsed’ funName’ msg))

→ calledAddr’ ≡ calledAddr

efrelLemCalledAddr’ {l} {l1} {.l1} {initialAddress}

{callingAddr} {calledAddr} {.(initialAddress)} {.callingAddr}

{.(calledAddr)} {costgas} {costgas’} {gasUsed}

{.(gasUsed)} {funName} {.(funName)} {msg} {.(msg)}

(reflex .(stateEF l1 [] initialAddress callingAddr calledAddr

(return costgas msg) gasUsed funName msg)) = refl

efrelLemMsg : {l l1 l2 : Ledger}

{initialAddress callingAddr calledAddr

initialAddress’ callingAddr’ calledAddr’ : Address}

{costgas costgas’ : N}{gasUsed gasUsed’ : N}

{funName funName’ : FunctionName}{msg msg’ : Msg}

(p : EFrel l (stateEF l1 [] initialAddress

callingAddr calledAddr (return costgas msg)

gasUsed funName msg)

(stateEF l2 [] initialAddress’ callingAddr’
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calledAddr’ (return costgas’ msg’) gasUsed’ funName’ msg))

→ msg ≡ msg’

efrelLemMsg {l} {l1} {.l1} {initialAddress}

{callingAddr} {calledAddr} {.(initialAddress)}

{.callingAddr}

{.(calledAddr)} {costgas} {costgas’} {gasUsed}

{.(gasUsed)} {funName} {.(funName)} {msg} {.(msg)}

(reflex .(stateEF l1 [] initialAddress callingAddr calledAddr

(return costgas msg) gasUsed funName msg)) = refl

efrelLemMsg’ : {l l1 l2 : Ledger}

{initialAddress callingAddr calledAddr

initialAddress’ callingAddr’ calledAddr’ : Address}

{costgas costgas’ : N}{gasUsed gasUsed’ : N}

{funName funName’ : FunctionName}{msg msg’ : Msg}

(p : EFrel l (stateEF l1 [] initialAddress callingAddr

calledAddr (return costgas msg) gasUsed funName msg)

(stateEF l2 [] initialAddress’ callingAddr’ calledAddr’

(return costgas’ msg’) gasUsed’ funName’ msg))

→ msg’ ≡ msg

efrelLemMsg’ {l} {l1} {.l1} {initialAddress}

{callingAddr} {calledAddr} {.(initialAddress)} {.callingAddr}

{.(calledAddr)} {costgas} {costgas’} {gasUsed}

{.(gasUsed)} {funName} {.(funName)} {msg}

{.(msg)} (reflex .(stateEF l1 [] initialAddress callingAddr calledAddr

(return costgas msg) gasUsed funName msg)) = refl

efrelLemLedger : {l l1 l2 : Ledger}

{initialAddress callingAddr calledAddr

initialAddress’ callingAddr’ calledAddr’ : Address}

{costgas costgas’ : N}{gasUsed gasUsed’ : N}

{funName funName’ : FunctionName}{msg msg’ : Msg}

(p : EFrel l (stateEF l1 [] initialAddress

callingAddr calledAddr (return costgas msg)
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gasUsed funName msg)

(stateEF l2 [] initialAddress’ callingAddr’

calledAddr’ (return costgas’ msg’) gasUsed’ funName’ msg))

→ l1 ≡ l2

efrelLemLedger {l} {l1} {.l1} {initialAddress}

{callingAddr} {calledAddr} {.(initialAddress)} {.callingAddr}

{.(calledAddr)} {costgas} {costgas’} {gasUsed}

{.(gasUsed)} {funName} {.(funName)} {msg} {.(msg)}

(reflex .(stateEF l1 [] initialAddress callingAddr calledAddr

(return costgas msg) gasUsed funName msg)) = refl

efrelLemLedger’ : {l l1 l2 : Ledger}

{initialAddress callingAddr calledAddr

initialAddress’ callingAddr’ calledAddr’ : Address}

{costgas costgas’ : N}{gasUsed gasUsed’ : N}

{funName funName’ : FunctionName}{msg msg’ : Msg}

(p : EFrel l (stateEF l1 [] initialAddress

callingAddr calledAddr (return costgas msg) gasUsed funName msg)

(stateEF l2 [] initialAddress’ callingAddr’

calledAddr’ (return costgas’ msg’) gasUsed’ funName’ msg))

→ l2 ≡ l1

efrelLemLedger’ {l} {l1} {.l1} {initialAddress}

{callingAddr} {calledAddr} {.(initialAddress)} {.callingAddr}

{.(calledAddr)} {costgas} {costgas’} {gasUsed}

{.(gasUsed)} {funName} {.(funName)} {msg} {.(msg)}

(reflex .(stateEF l1 [] initialAddress callingAddr calledAddr

(return costgas msg) gasUsed funName msg)) = refl

efrelLemNotErrorReturn : {l l1 l2 : Ledger}

{initialAddress callingAddr calledAddr initialAddress’

callingAddr’ calledAddr’ : Address}{errorMsg : ErrorMsg}

{debug : DebugInfo}

{costgas’ : N}{gasUsed gasUsed’ : N}
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{funName funName’ : FunctionName}{msg msg’ : Msg}

(p : EFrel l (stateEF l1 [] initialAddress

callingAddr calledAddr (error errorMsg debug) gasUsed funName msg)

(stateEF l2 [] initialAddress’ callingAddr’

calledAddr’ (return costgas’ msg’) gasUsed’ funName’ msg’))

→ ⊥

efrelLemNotErrorReturn {l} {l1} {l2}

{initialAddress} {callingAddr} {calledAddr}

{initialAddress’} {callingAddr’} {calledAddr’}

{errorMsg} {debug} {costgas’}

{gasUsed} {gasUsed’} {funName} {funName’}

{msg} {msg’} (step () p)

efrelLemNotErrorReturnr : {l l1 l2 : Ledger}

{initialAddress callingAddr calledAddr

initialAddress’ callingAddr’ calledAddr’ : Address}

{errorMsg : ErrorMsg}{debug : DebugInfo}

{costgas’ : N}{gasUsed gasUsed’ : N}

{funName funName’ : FunctionName}{msg msg’ : Msg}

(p : EFrel l (stateEF l1 [] initialAddress callingAddr

calledAddr (return costgas’ msg) gasUsed funName msg)

(stateEF l2 [] initialAddress’ callingAddr’

calledAddr’ (error errorMsg debug) gasUsed’ funName’ msg’))

→ ⊥

efrelLemNotErrorReturnr {l} {l1} {l2} {initialAddress}

{callingAddr} {calledAddr} {initialAddress’} {callingAddr’}

{calledAddr’} {errorMsg} {debug} {costgas’} {gasUsed}

{gasUsed’} {funName} {funName’} {msg} {msg’} (step () p)

E.2.2 First example in the complex verification

open import constantparameters
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module Complex-Verification.hoareTripleVersfirstprogramcomplex

(param : ConstantParameters) where

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_;and)

open import Data.Sum

open import Data.Maybe

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

– our work
open import Complex-Model.ledgerversion.Ledger-Complex-Model param

open import Complex-Model.ccomand.ccommands-cresponse

open import basicDataStructure

open import libraries.natCompare

open import libraries.Mainlibrary

open import libraries.boolLib

open import libraries.hoareTripleLibComplex param

open import libraries.logic

open import libraries.emptyLib

–firsr program
–transfer 10 from address 0 to address 6
transferProg : RemainingProgram
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transferProg .prog = exec (transferc 10 6) (λ gasused → 1)

λ x → return 1 (nat 0)

transferProg .stack = []

transferProg .calledAddress = 0

transferProg .gasUsed = 100

transferProg .funName = "f"
transferProg .msg = nat 0

–postcondition
PostTransfer : HLPred

PostTransfer (stateEF led initialAddress callingAddress)

= (led 6 .amount ≡ 10) ∧ ((initialAddress ≡ 0) ∧ (callingAddress ≡ 0))

–precondition
PreTransfer : HLPred

PreTransfer (stateEF led initialAddress callingAddress)

= (led 6 .amount ≡ 0) ∧ ((10 5r led 0 .amount) ∧

((initialAddress ≡ 0) ∧ (callingAddress ≡ 0)))

–first direction (forward direction)
proofPreTransfer-precondAux : (led : Ledger)(msg : Msg)

(105led1-0amount : 10 5r led 0 .amount)

(s’ : HLState)(x : led 6 .amount ≡ 0)

(eq : updateLedgerAmount led 0 6 10 105led1-0amount

≡ ledger s’)

→ ledger s’ 6 .amount ≡ 10

proofPreTransfer-precondAux led msg

105led1-0amount s’ x eq rewrite sym eq | x = refl

– prove first direction (forward direction)
– for precondition
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proofPreTransfer-precond :

< PreTransfer >solprecomplexmodel transferProg < PostTransfer >

proofPreTransfer-precond (stateEF led .0 .0) s’ msg (and x

(and 105led1-0amount (and refl refl)))

(step tt x3) rewrite compareleq1 10 (led 0 .amount) 105led1-0amount

= and (proofPreTransfer-precondAux led msg

105led1-0amount s’ x (efrelLemLedger x3))

(and (efrelLeminitialAddr’ x3)(efrelLemCallingAddr’ x3))

–second direction (backward direction)
proofPreTransfer-solweakestAux : (led : Ledger)(s : HLState)

(msg : Msg)(x : led 6 .amount ≡ 10)

(leqp : OrderingLeq 10 (ledger s 0 .amount))

(x2 : EFrel (s .ledger)

(executeTransferAux (s .ledger)

(ledger s) [] (initialAddress s)

(callingAddress s) 0 (return 1 (nat 0)) 100

"f" (nat 0) 10 6 leqp)

(stateEF led [] 0 0 0 (return 1 msg)

100 "f" (nat 0)))

→ (ledger s 6 .amount ≡ 0) ∧

(atom (10 5b ledger s 0 .amount) ∧

((initialAddress s ≡ 0) ∧ (callingAddress s ≡ 0)))

proofPreTransfer-solweakestAux

.(updateLedgerAmount led 0 6 10 x1)

(stateEF led .0 .0) msg x (leq x1)

(reflex .(stateEF (updateLedgerAmount led 0 6 10 x1)

[] 0 0 0 (return 1 (nat 0)) 100 "f" (nat 0)))

= and (0+lem= (led 6 .amount) 10 x)

(and x1 (and refl refl))

proofPreTransfer-solweakestAux led s msg x

(greater x1) (step () x3)
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–prove second direction (backward direction)
– for weakestprecondition
proofPreTransfer-solweakest :

< PreTransfer >solweakestcomplexmodel transferProg < PostTransfer >

proofPreTransfer-solweakest s (stateEF led .0 .0)

msg (and x (and refl refl)) (step tt x2)

= proofPreTransfer-solweakestAux led s msg x

(compareLeq 10 (ledger s 0 .amount)) x2

–prove both direction for hoare triple
proofTransfer : < PreTransfer >sol transferProg < PostTransfer >

proofTransfer .precond = proofPreTransfer-precond

proofTransfer .weakest = proofPreTransfer-solweakest

E.2.3 Second example in the complex verification

open import constantparameters

module Complex-Verification.hoareTripleVersSecondprogramcomplex

(param : ConstantParameters) where

open import Data.Nat renaming (_≤_ to _≤’_ ; _<_ to _<’_)

open import Data.List hiding (_++_;and)

open import Data.Sum

open import Data.Maybe

open import Data.Unit

open import Data.Empty

open import Data.Bool hiding (_≤_ ; if_then_else_ )

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Bool.Base hiding (_≤_)

renaming (_∧_ to _∧b_ ; _∨_ to _∨b_ ; T to True)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Base hiding (_≤_)
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import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

open ≡-Reasoning

open import Agda.Builtin.Equality

–our work
open import Complex-Model.ledgerversion.Ledger-Complex-Model param

open import Complex-Model.ccomand.ccommands-cresponse

open import basicDataStructure

open import libraries.natCompare

open import libraries.Mainlibrary

open import libraries.boolLib

open import libraries.hoareTripleLibComplex param

open import libraries.logic

open import libraries.emptyLib

–second progran
–transfer 10 from address 0 to address 6
transferSec-Prog : RemainingProgram

transferSec-Prog .prog =

exec (getAmountc 0)(λ gasused → 1)

λ amount → if 10 5b amount

then exec (transferc 10 6)(λ gasused → 1) (λ _ → return 1 (nat 0))

else return 1 (nat 0)

transferSec-Prog .stack = []

transferSec-Prog .calledAddress = 0

transferSec-Prog .gasUsed = 100

transferSec-Prog .funName = "f"
transferSec-Prog .msg = nat 0

–define postcondition
PostTransfer : HLPred

PostTransfer (stateEF led initialAddress callingAddress)
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= (10 5r led 6 .amount) ∧ ((initialAddress ≡ 0) ∧ (callingAddress ≡ 0))

–define precondition
PreTransfer : HLPred

PreTransfer (stateEF led initialAddress callingAddress)

= ((10 5r led 0 .amount ) ∨ (10 5r led 6 .amount)) ∧

((initialAddress ≡ 0) ∧ (callingAddress ≡ 0))

– first direction (forward direction)
proofatom10<=bledger6amount : (led ledger : Ledger)(msg : Msg)

(initialAddress callingAddress : N)(x : atom (10 5b led 6 .amount))

→ (x2 : EFrel led (executeTransferAux led led [] 0 0 0

(return 1 (nat 0)) 100 "f" (nat 0) 10 6 (compareLeq 10 (led 0 .amount)))

(stateEF ledger [] initialAddress callingAddress 0

(return 1 msg) 100 "f" (nat 0)))

→ atom (10 5b ledger 6 .amount)

proofatom10<=bledger6amount led ledger msg initialAddress

callingAddress x x2 with compareLeq 10 (led 0 .amount)

proofatom10<=bledger6amount led

.(updateLedgerAmount led 0 6 10 x1) msg

.0 .0 x (reflex .(stateEF

(updateLedgerAmount led 0 6 10 x1)

[] 0 0 0 (return 1 (nat 0)) 100 "f" (nat 0))) | leq x1

= atomN<=bM+N 10 (led 6 .amount)

proofatom10<=bledger6amount led ledger msg

initialAddress callingAddress

x (step () x3) | greater x1

proofinitialAddress≡0Leq1 : (led1 led2 : Ledger)(msg : Msg)

(initialAddress callingAddress : N)

(x : atom (10 5b led1 6 .amount))
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(x2 : EFrel led1

(executeTransferAux led1 led1 [] 0 0 0

(return 1 (nat 0)) 100 "f"
(nat 0) 10 6 (compareLeq 10 (led1 0 .amount)))

(stateEF led2 [] initialAddress callingAddress 0

(return 1 msg) 100 "f" (nat 0)))

→ initialAddress ≡ 0

proofinitialAddress≡0Leq1 led1 led2 msg initialAddress

callingAddress x x2 with compareLeq 10 (led1 0 .amount)

proofinitialAddress≡0Leq1 led1

.(updateLedgerAmount led1 0 6 10 x1) msg

.0 .0 x (reflex .(stateEF

(updateLedgerAmount led1 0 6 10 x1) []

0 0 0

(return 1 (nat 0)) 100 "f" (nat 0))) | leq x1 = refl

proofinitialAddress≡0Leq1 led1 led2 msg

initialAddress callingAddress x (step () x3) | greater x1

proofcallingAddress≡0Leq1 : (led1 led2 : Ledger)(msg : Msg)

(initialAddress callingAddress : N)

(x : atom (10 5b led1 6 .amount))

(x2 : EFrel led1

(executeTransferAux led1 led1 [] 0 0 0

(return 1 (nat 0)) 100 "f"
(nat 0) 10 6 (compareLeq 10 (led1 0 .amount)))

(stateEF led2 [] initialAddress callingAddress 0

(return 1 msg) 100 "f" (nat 0)))

→ callingAddress ≡ 0

proofcallingAddress≡0Leq1 led1 led2 msg

initialAddress callingAddress

x x2 with compareLeq 10 (led1 0 .amount)

proofcallingAddress≡0Leq1 led1

.(updateLedgerAmount led1 0 6 10 x1) msg
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.0 .0 x (reflex .(stateEF

(updateLedgerAmount led1 0 6 10 x1) []

0 0 0 (return 1 (nat 0)) 100 "f" (nat 0)))

| leq x1 = refl

proofcallingAddress≡0Leq1 led1 led2 msg

initialAddress callingAddress x (step () x3) | greater x1

proofPreTransfer-precondAux1 : (led : Ledger)

(s’ : HLState)(msg : Msg)

(eq1 : (10 5b led 0 .amount) ≡ true)

(x2 : EFrel led

(stateEF (updateLedgerAmount led 0 6 10

(transfer≡r atom eq1 tt))

[] 0 0 0 (return 1 (nat 0)) 100 "f" (nat 0))

(stateEF (ledger s’) [] (initialAddress s’)

(callingAddress s’) 0

(return 1 msg) 100 "f" (nat 0)))

→ atom (10 5b ledger s’ 6 .amount)

proofPreTransfer-precondAux1 led (stateEF

.(updateLedgerAmount led 0 6 10

(transfer≡r atom eq1 tt)) .0 .0) msg eq1

(reflex .(stateEF (updateLedgerAmount led 0 6 10

(transfer≡r atom eq1 tt)) [] 0 0 0

(return 1 (nat 0)) 100 "f" (nat 0)))

= atomN<=bM+N 10 (led 6 .amount)

–prove first direction (forward direction)
–for precondition
proofPreTransfer-precond :

< PreTransfer >solprecomplexmodel transferSec-Prog < PostTransfer >

proofPreTransfer-precond (stateEF led .0 .0) s’ msg (and (or1 x)

(and refl refl)) (step tt x2) with 10 5b led 0 .amount in eq1

833



E. Full Agda code for chapter Verifying Solidity-style Smart Contracts

proofPreTransfer-precond (stateEF led _ _) s’ msg (and (or1 tt)

(and refl refl)) (step tt (step tt x2)) | true

rewrite compareleq3 10 (led 0 .amount) eq1

= and (proofPreTransfer-precondAux1 led s’ msg eq1 x2)

(and (efrelLeminitialAddr’ x2) (efrelLemCallingAddr’ x2))

proofPreTransfer-precond (stateEF led .0 .0) s’ msg (and (or2 x)

(and refl refl)) (step tt x2) with 10 5b led 0 .amount

proofPreTransfer-precond (stateEF led _ _) (stateEF .led .0 .0) msg

(and (or2 x) (and refl refl)) (step tt

(reflex .(stateEF led [] 0 0 0 (return 1 (nat 0)) 100 "f" (nat 0))))

| false = and x (and refl refl)

proofPreTransfer-precond (stateEF led _ _)

(stateEF ledger initialAddress callingAddress) msg

(and (or2 x) (and refl refl)) (step tt (step tt x2)) | true

= and ((proofatom10<=bledger6amount led ledger msg

initialAddress callingAddress x x2))

(and (proofinitialAddress≡0Leq1 led ledger msg

initialAddress callingAddress x x2)

(proofcallingAddress≡0Leq1 led ledger msg

initialAddress callingAddress x x2))

—- second direction (backward direction)
proof>OrAtom10<=led6amount : (led1 led2 : Ledger)(msg : Msg)

(initialAddress callingAddress : N)

→ (x2 : EFrel led1

(executeTransferAux led1 led1 [] initialAddress

callingAddress 0

(return 1 (nat 0)) 100 "f" (nat 0) 10 6

(compareLeq 10 (led1 0 .amount)))

(stateEF led2 [] 0 0 0 (return 1 msg)

100 "f" (nat 0)))

→ (> ∨ atom (10 5b led1 6 .amount)) ∧

((initialAddress ≡ 0) ∧ (callingAddress ≡ 0))
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proof>OrAtom10<=led6amount led1 led2 msg initialAddress

callingAddress x2 with compareLeq 10 (led1 0 .amount)

proof>OrAtom10<=led6amount led1

.(updateLedgerAmount led1 0 6 10 x) msg .0 .0

(reflex .(stateEF (updateLedgerAmount led1 0 6 10 x)

[] 0 0 0 (return 1 (nat 0)) 100 "f" (nat 0)))

| leq x

= and (or1 tt) (and refl refl)

proof>OrAtom10<=led6amount led1 led2 msg initialAddress

callingAddress (step () x2) | greater x

proofinitialAddress≡0 : (led1 led2 : Ledger)(msg : Msg)

(initialAddress1 callingAddress1 : N)

(eq1 : (10 5b led2 0 .amount) ≡ false)

→ (x : atom (10 5b led2 6 .amount))

→ (x2 : EFrel led1

(stateEF led1 [] initialAddress1 callingAddress1 0

(exec (transferc 10 6) (λ gasused → 1)

(λ _ → return 1 (nat 0))) 100 "f" (nat 0))

(stateEF led2 [] 0 0 0 (return 1 msg) 100

"f" (nat 0)))

→ initialAddress1 ≡ 0

proofinitialAddress≡0 led1 led2 msg initialAddress1

callingAddress1 eq1 x (step tt x2)

with compareLeq 10 (led1 0 .amount)

proofinitialAddress≡0 led1

.(updateLedgerAmount led1 0 6 10 x1) msg .0 .0

eq1 x (step tt (reflex .(stateEF

(updateLedgerAmount led1 0 6 10 x1) [] 0 0 0

(return 1 (nat 0)) 100 "f" (nat 0)))) | leq x1

= refl

proofinitialAddress≡0 led1 led2 msg initialAddress1

callingAddress1 eq1 x (step tt (step () x3))
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| greater x1

proofcallingAddress≡0 : (led1 led2 : Ledger)(msg : Msg)

(initialAddress1 callingAddress1 : N)

(eq1 : (10 5b led2 0 .amount) ≡ false)

→ (x : atom (10 5b led2 6 .amount))

→ (x2 : EFrel led1

(stateEF led1 [] initialAddress1 callingAddress1 0

(exec (transferc 10 6) (λ gasused → 1)

(λ _ → return 1 (nat 0))) 100 "f" (nat 0))

(stateEF led2 [] 0 0 0 (return 1 msg) 100

"f" (nat 0)))

→ callingAddress1 ≡ 0

proofcallingAddress≡0 led1 led2 msg initialAddress1

callingAddress1 eq1 x (step tt x2)

with compareLeq 10 (led1 0 .amount)

proofcallingAddress≡0 led1

.(updateLedgerAmount led1 0 6 10 x1) msg .0 .0 eq1 x

(step tt (reflex .(stateEF (updateLedgerAmount

led1 0 6 10 x1)

[] 0 0 0 (return 1 msg) 100 "f" (nat 0))))

| leq x1 = refl

proofcallingAddress≡0 led1 led2 msg initialAddress1

callingAddress1 eq1 x (step tt (step () x3)) | greater x1

–prove second direction (backward direction)
– for weakest precondition
proofPreTransfer-solweakest :

< PreTransfer >solweakestcomplexmodel transferSec-Prog < PostTransfer >

proofPreTransfer-solweakest (stateEF led1 initialAddress1 callingAddress1)

(stateEF led2 .0 .0) msg (and x (and refl refl)) (step tt x2)

with 10 5b led2 0 .amount in eq1
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proofPreTransfer-solweakest (stateEF led1 initialAddress1 callingAddress1)

(stateEF led2 _ _) msg (and x (and refl refl))

(step tt x2) | false with 10 5b led1 0 .amount

proofPreTransfer-solweakest (stateEF led1 .0 .0) (stateEF .led1 _ _) msg

(and x (and refl refl)) (step tt (reflex .(stateEF led1 [] 0 0 0

(return 1 (nat 0)) 100 "f" (nat 0)))) | false | false

= and (or2 x) (and refl refl)

proofPreTransfer-solweakest (stateEF led1 initialAddress1 callingAddress1)

(stateEF led2 _ _) msg (and x (and refl refl))

(step tt (step () x2)) | false | false

proofPreTransfer-solweakest (stateEF led1 initialAddress1 callingAddress1)

(stateEF led2 _ _) msg (and x (and refl refl)) (step tt x2) | false | true

= and (or1 tt) (and

(proofinitialAddress≡0 led1 led2 msg initialAddress1 callingAddress1 eq1 x x2)

(proofcallingAddress≡0 led1 led2 msg initialAddress1 callingAddress1 eq1 x x2))

proofPreTransfer-solweakest (stateEF led1 initialAddress1 callingAddress1)

(stateEF led2 _ _) msg (and x (and refl refl)) (step tt x2)

| true with 10 5b led1 0 .amount

proofPreTransfer-solweakest (stateEF led1 .0 .0) (stateEF .led1 _ _) msg

(and x (and refl refl)) (step tt (reflex .(stateEF led1 [] 0 0 0

(return 1 (nat 0)) 100 "f" (nat 0)))) | true | false

= and (or2 x) (and refl refl)

proofPreTransfer-solweakest (stateEF led1 initialAddress1 callingAddress1)

(stateEF led2 _ _) msg (and x (and refl refl)) (step tt (step tt x2)) | true | true

= proof>OrAtom10<=led6amount led1 led2 msg initialAddress1 callingAddress1 x2

–prove both directions for hoare tripl
proofTransfer : < PreTransfer >sol transferSec-Prog < PostTransfer >

proofTransfer .precond = proofPreTransfer-precond

proofTransfer .weakest = proofPreTransfer-solweakest
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E.3 Compare natural numbers (library) in the complex

verification

module libraries.natCompare where

open import Data.Nat hiding (_≤_ ; _<_ )

open import Data.Bool hiding (_≤_ ; _<_)

open import Data.Empty

open import Data.Unit

open import libraries.boolLib

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_; refl; cong; module ≡-Reasoning; sym)

– our work
open import libraries.emptyLib

open import libraries.logic

–define less or equal boolean
_5b_ : N → N → Bool

zero 5b m = true

suc n 5b zero = false

suc n 5b suc m = n 5b m

–define equal boolean
_==b_ : N → N → Bool

zero ==b zero = true

zero ==b suc n = false

suc n ==b zero = false

suc n ==b suc m = n ==b m
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– 5r is a recursively defined 5

_5r_ : N → N → Set

n 5r m = atom (n 5b m)

_==r_ : N → N → Set

n ==r m = atom (n ==b m)

_<r_ : N → N → Set

n <r m = suc n 5r m

<r->¬5r : (n m : N) -> n 5r m

-> ¬ (suc m 5r n)

<r->¬5r zero (suc m) p q = q

<r->¬5r (suc n) (suc m) p q =

<r->¬5r n m p q

_>r_ : N → N → Set

n >r m = m <r n

05n : {n : N} → zero 5r n

05n = tt

data OrderingLeq (n m : N) : Set where

leq : n 5r m → OrderingLeq n m

greater : m <r n → OrderingLeq n m

refl≡b : (n : N) -> atom (n ≡b n)

refl≡b zero = tt

refl≡b (suc n) = refl≡b n

refl≡b
1 : (n : N) -> (n ≡b n) ≡ true

refl≡b
1 zero = refl

refl≡b
1 (suc n) = refl≡b

1 n

839



E. Full Agda code for chapter Verifying Solidity-style Smart Contracts

cong’ : {A B : Set}{a a’ : A}( f : A -> B)

-> a ≡ a’ -> f a ≡ f a’

cong’ f refl = refl

sucInj : {x y : N} -> suc x ≡ suc y -> x ≡ y

sucInj = cong’ pred

≡b->≡ : {x y : N} -> atom (x ≡b y) -> x ≡ y

≡b->≡ {zero} {zero} p = refl

≡b->≡ {suc x} {suc y} p = cong suc (≡b->≡ p)

≡->≡b : {x y : N} -> x ≡ y -> atom (x ≡b y)

≡->≡b {zero} {zero} p = tt

≡->≡b {suc x} {suc y} p = ≡->≡b (sucInj p)

not≡lem2 : {x y : N} -> (x ≡b y) ≡

false -> ¬ (atom (x ≡b y))

not≡lem2 {x} {y} = atomLemFalse (x ≡b y)

not≡lem3 : {x y : N} -> (x ≡b y) ≡

true -> atom (x ≡b y)

not≡lem3 {x} {y} = atomLemTrue (x ≡b y)

not≡lem1 : {x y : N} (p : ¬ (x ≡ y))

-> (x ≡b y) ≡ false

not≡lem1 {x} {y} p with (x ≡b y) in eq

... | false = refl

... | true = efq (p (≡b->≡

(atomLemTrue (x ≡b y) eq)))

liftLeq : {n m : N} → OrderingLeq n m

→ OrderingLeq (suc n) (suc m)

liftLeq {n} {m} (leq x) = leq x
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liftLeq {n} {m} (greater x) = greater x

compareLeq : (n m : N) → OrderingLeq n m

compareLeq zero n = leq tt

compareLeq (suc n) zero = greater tt

compareLeq (suc n) (suc m) = liftLeq

(compareLeq n m)

– a useful lemma
compareleq1 : (x y : N)(xy : x 5r y)

→ compareLeq x y ≡ leq xy

compareleq1 zero zero tt = refl

compareleq1 zero (suc y) tt = refl

compareleq1 (suc x) (suc y) xy

rewrite compareleq1 x y xy = refl

transfer≡r : {A : Set}(B : A -> Set)

{a a’ : A} -> a

≡ a’ -> B a’ -> B a

transfer≡r {A} B {a} {.a} refl b = b

transfer≡ : {A : Set}(B : A -> Set)

{a a’ : A} -> a

≡ a’ -> B a -> B a’

transfer≡ {A} B {a} {.a} refl b = b

compareleq2 : (x y : N)(xy : (x 5b y) ≡ true)

→ atom (x 5b y)

compareleq2 x y xy = transfer≡r {Bool}

(λ x -> atom x) xy tt

compareleq3 : (x y : N)(xy : (x 5b y) ≡ true)

→ compareLeq x y ≡ leq (compareleq2 x y xy)

compareleq3 x y xy =

compareleq1 x y (compareleq2 x y xy)
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data OrderingLess (n m : N) : Set where

less : n <r m → OrderingLess n m

geq : m 5r n → OrderingLess n m

liftLess : {n m : N} → OrderingLess n m

→ OrderingLess (suc n) (suc m)

liftLess {n} {m} (less x) = less x

liftLess {n} {m} (geq x) = geq x

compareLess : (n m : N) → OrderingLess n m

compareLess n zero = geq tt

compareLess zero (suc m) = less tt

compareLess (suc n) (suc m) =

liftLess (compareLess n m)

subtract : (n m : N) → m 5r n → N

subtract n zero nm = n

subtract (suc n) (suc m) nm = subtract n m nm

refl5r : (n : N) → n 5r n

refl5r 0 = tt

refl5r (suc n) = refl5r n

refl==r : (n : N) → n ==r n

refl==r zero = tt

refl==r (suc n) = refl==r n

lemmaxysuc : (x y : N) → x 5r y

→ x 5r suc y

lemmaxysuc zero y xy = tt

lemmaxysuc (suc x) (suc y) xy =
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lemmaxysuc x y xy

lemmaxSucY : (x y z : N)

→ x 5r suc y → (x - (suc z)) 5r y

lemmaxSucY 0 y z xy = tt

lemmaxSucY (suc x) y zero xy = xy

lemmaxSucY (suc x) y (suc z) xy

= lemmaxSucY x y z (lemmaxysuc x y xy)

lemma=5r : (x y z : N)

→ x ==r y → y 5r z → x 5r z

lemma=5r zero y z x=y y5rz = tt

lemma=5r (suc x) (suc y) (suc z)

x=y y5rz = lemma=5r x y z x=y y5rz

trans<=r : (x y z : N)

→ x 5r y → y 5r z → x 5r z

trans<=r zero y z xy yz = tt

trans<=r (suc x) (suc y) (suc z) xy yz

= trans<=r x y z xy yz

sym== : (x y : N) → x ==r y → y ==r x

sym== zero zero xy = tt

sym== (suc x) (suc y) xy = sym== x y xy

x<=sucx : (x : N) → x 5r suc x

x<=sucx zero = tt

x<=sucx (suc x) = x<=sucx x

0+lem> : (x y : N) → (suc x + y) >r y

0+lem> zero y = refl5r y

0+lem> (suc x) y = trans<=r y (x + y)

(suc (x + y)) (0+lem> x y) (x<=sucx (x + y))

– test : (x y : N) → suc (x + y) >r y
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– test = 0+lem>

notsux<=x : (x : N) -> suc x 5r x -> ⊥

notsux<=x (suc x) p = notsux<=x x p

>impliesNotEq : (x y : N) -> x >r y

-> x ≡ y -> ⊥

>impliesNotEq (suc x) (suc .x) x>y refl

= notsux<=x x x>y

sucx+yNot=y : (x y : N)

-> suc x + y ≡ y -> ⊥

sucx+yNot=y x y =

>impliesNotEq (suc x + y) y (0+lem> x y)

0+lem= : (x y : N) → x + y ≡ y -> x ≡ 0

0+lem= zero y refl = refl

0+lem= (suc x) y p = efq (sucx+yNot=y x y p)

trans≡ : {A : Set} {a b c : A}

-> a ≡ b -> b ≡ c -> a ≡ c

trans≡ refl refl = refl

sym≡ : {A : Set} {a b : A}

-> a ≡ b -> b ≡ a

sym≡ refl = refl

atomN<=N : ∀ (n : N) → atom (n 5b n)

atomN<=N zero = tt

atomN<=N (suc n) = atomN<=N n

proof : ∀ ( n m : N) →

atom ((m + suc n) 5b suc (m + suc n))

proof zero zero = tt
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proof zero (suc m) = proof zero m

proof (suc n) zero = proof n zero

proof (suc n) (suc m) = proof (suc n) m

trans<=b : (n k : N) → atom (n 5b k )

→ atom (k 5b suc k) → atom (n 5b suc k)

trans<=b zero zero tt tt = tt

trans<=b zero (suc k) tt x1 = tt

trans<=b (suc n) (suc k) x x1 = trans<=b n k x x1

atomN<=sucM+sucN : ∀ (n m : N)

→ atom (n 5b suc (m + n))

atomN<=sucM+sucN zero m = tt

atomN<=sucM+sucN (suc n) zero

= atomN<=sucM+sucN n zero

atomN<=sucM+sucN (suc n) (suc m) =

trans<=b n (m + suc n)

(atomN<=sucM+sucN (suc n) m) (proof n m)

atomN<=bM+N : ∀ (n m : N) → atom (n 5b (m + n))

atomN<=bM+N n zero = atomN<=N n

atomN<=bM+N n (suc m) = atomN<=sucM+sucN n m
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Appendix F

Full Agda code for chapter
Implementing the reentrancy attack of
Solidity in Agda

F.1 Definitions of Contract, Ledger, ExecStackEl, and StateExecFun in the

complex model version 2

open import constantparameters

module libraries.Mainlibrary-new-version where

open import Data.Nat

open import Data.List hiding (_++_)

open import Agda.Builtin.Nat using (_-_; _*_)

open import Data.Unit

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length;show)

open import Data.Nat.Show

open import Data.Maybe.Base as Maybe using (Maybe; nothing; _<|>_; when)
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version 2

import Data.Maybe.Effectful

open import Data.Product renaming (_,_ to _„_ )

open import Agda.Builtin.String

–our work
open import interface.ConsoleLib

open import basicDataStructure

open import libraries.natCompare

open import Complex-Model.ccomand.ccommands-cresponse-with-reentrancy-attack-v2

record Contract : Set where

constructor contract

field

amount : Amount

fun : FunctionName → (Msg → SmartContractExec Msg)

viewFunction : FunctionName → Msg → MsgOrError

viewFunctionCost : FunctionName → Msg → N

open Contract public

Ledger : Set

Ledger = Address → Contract

record ExecStackEl : Set where

constructor execStackEl

field

lastCallAddress : Address

calledAddress : Address

continuation : (Msg → SmartContractExec Msg)

costCont : Msg → N
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funcNameexecStackEl : FunctionName

msgexecStackEl : Msg

amountReceived : Amount

open ExecStackEl public

ExecutionStack : Set

ExecutionStack = List ExecStackEl

record StateExecFun : Set where

constructor stateEF

field

ledger : Ledger

executionStack : ExecutionStack

initialAddr : Address

lastCallAddr : Address

calledAddr : Address

nextstep : SmartContractExec Msg

gasLeft : N

funNameevalState : FunctionName

msgevalState : Msg

amountReceived : Amount

listEvent : List String

open StateExecFun public

F.2 Complex ledger in reentrancy attack

open import constantparameters

module Complex-Model.ledgerversion.Ledger-Complex-Model-with-reentrancy-attack

(param : ConstantParameters) where
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open import Data.Nat

open import Agda.Builtin.Nat using (_-_; _*_)

open import Data.Unit

open import Data.List

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length; show)

renaming (_++_ to _++str_)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Show

open import Data.Empty

– our work
open import Complex-Model.ccomand.ccommands-cresponse

open import basicDataStructure

open import libraries.natCompare

open import libraries.Mainlibrary-new-version

– update view function in the ledger
updateLedgerviewfun : Ledger → Address → FunctionName

→ ((Msg → MsgOrError) → (Msg → MsgOrError))

→ ((Msg → MsgOrError) → (Msg → N) → Msg → N)

→ Ledger

updateLedgerviewfun ledger changedAddr

changedFname f g a .amount = ledger a .amount

updateLedgerviewfun ledger changedAddr

changedFname f g a .fun = ledger a .fun

updateLedgerviewfun ledger changedAddr

changedFname f g a .ViewFunction fname =

if (changedFname ≡fun fname)

then f (ledger a .ViewFunction fname)
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else ledger a .ViewFunction fname

updateLedgerviewfun ledger changedAddr

changedFname f g a .ViewFunctionCost fname =

if (changedFname ≡fun fname)

then g (ledger a .ViewFunction fname)

(ledger a .ViewFunctionCost fname)

else ledger a .ViewFunctionCost fname

–update ledger amount
updateLedgerAmount : (ledger : Ledger)

→ (calledAddr destinationAddr : Address)

(amount’ : Amount)

→ (correctAmount : amount’ 5r

ledger calledAddr .amount)

→ Ledger

updateLedgerAmount ledger calledAddr

destinationAddr amount’ correctAmount addr .amount

= if addr ≡b calledAddr

then subtract (ledger calledAddr .amount)

amount’ correctAmount

else (if addr ≡b destinationAddr

then ledger destinationAddr .amount + amount’

else ledger addr .amount)

updateLedgerAmount ledger calledAddr newAddr

amount’ correctAmount addr .fun

= ledger addr .fun

updateLedgerAmount ledger calledAddr newAddr

amount’ correctAmount addr .ViewFunction

= ledger addr .ViewFunction

updateLedgerAmount ledger calledAddr newAddr

amount’ correctAmount addr .ViewFunctionCost

= ledger addr .ViewFunctionCost
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–This function we use it to update the gas
– by decucting from the ledger
deductGasFromLedger : (ledger : Ledger)

→ (calledAddr : Address) (gascost : N)

→ (correctAmount :

gascost 5r ledger calledAddr .amount)

→ Ledger

deductGasFromLedger ledger calledAddr

gascost correctAmount addr .amount

= if addr ≡b calledAddr

then subtract (ledger calledAddr .amount)

gascost correctAmount

else ledger addr .amount

deductGasFromLedger ledger calledAddr

gascost correctAmount addr .fun

= ledger addr .fun

deductGasFromLedger ledger calledAddr

gascost correctAmount addr .ViewFunction

= ledger addr .ViewFunction

deductGasFromLedger ledger calledAddr

gascost correctAmount addr .ViewFunctionCost

= ledger addr .ViewFunctionCost

– this function below we use it to
– refuend in two cases with stepEF
– 1) when finish (first case)
– 2) when we have error (the last case)
addWeiToLedger : (ledger : Ledger)

→ (address : Address) (amount’ : Amount)

→ Ledger

addWeiToLedger ledger address amount’

addr .amount

= if addr ≡b address
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then ledger address .amount + amount’

else ledger addr .amount

addWeiToLedger ledger address amount’

addr .fun

= ledger addr .fun

addWeiToLedger ledger address amount’

addr .ViewFunction

= ledger addr .ViewFunction

addWeiToLedger ledger address amount’

addr .ViewFunctionCost =

ledger addr .ViewFunctionCost

— we define execute transfer
– Aux with one more parameter (bool)
– if it true it will execute it
– without using fallback function
– if it false it will use fallback function
executeTransferAux : (oldLedger : Ledger)

→ (currentledger : Ledger)

→ (executionStack : ExecutionStack)

→ (initialAddr : Address)

→ (lastCallAddr calledAddr : Address)

→ (cont : Msg → SmartContract Msg)

→ (gasleft : N)

→ (gascost : Msg → N)

→ (funNameevalState : FunctionName)

→ (msgevalState : Msg)

→ (amountSent : Amount)

→ (destinationAddr : Address)

→ (prevAmountReceived : Amount)

→ (events : List String)

→ (runfallback : Bool)
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→ (cp : OrderingLeq amountSent

(currentledger calledAddr .amount))

→ StateExecFun

executeTransferAux oldLedger currentledger executionStack

initialAddr lastCallAddr calledAddr cont gasleft gascost

funNameevalState msgevalState amountSent

destinationAddr prevAmountReceived events false (leq x)

= stateEF (updateLedgerAmount currentledger

calledAddr destinationAddr amountSent x)

executionStack

initialAddr lastCallAddr calledAddr (cont msgevalState )

gasleft funNameevalState msgevalState amountSent events

executeTransferAux oldLedger currentledger executionStack

initialAddr lastCallAddr calledAddr cont gasleft gascost

funNameevalState msgevalState amountSent destinationAddr

prevAmountReceived events true (leq x)

= stateEF (updateLedgerAmount currentledger

calledAddr destinationAddr amountSent x)

(execStackEl lastCallAddr calledAddr cont gascost

funNameevalState msgevalState prevAmountReceived

:: executionStack)

initialAddr calledAddr destinationAddr

(currentledger destinationAddr .fun fallback

(nat amountSent) )

gasleft fallback (nat amountSent) amountSent events

executeTransferAux oldLedger currentledger executionStack

initialAddr lastCallAddr calledAddr cont gasleft gascost

funNameevalState msgevalState amountSent destinationAddr

prevAmountReceived events runfallback (greater x)

= stateEF oldLedger executionStack initialAddr lastCallAddr

calledAddr (error (strErr "not enough money")

〈 lastCallAddr » initialAddr ·

funNameevalState [ msgevalState ]· events 〉)
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gasleft funNameevalState msgevalState amountSent events

– lemmaExecuteTransferAuxGasEq function we added
– a bool parameter and we use it to prove gas
lemmaExecuteTransferAuxGasEq : (oldLedger : Ledger)

→ (currentledger : Ledger)

→ (executionStack : ExecutionStack)

→ (initialAddr : Address)

→ (lastCallAddr calledAddr : Address)

→ (cont : Msg → SmartContract Msg)

→ (gasleft1 : N)

→ (gascost : Msg → N)

→ (funNameevalState : FunctionName)

→ (msgevalState : Msg)

→ (amountSent : Amount)

→ (destinationAddr : Address)

→ (prevAmountReceived : Amount)

→ (events : List String)

→ (runfallback : Bool)

→ (cp : OrderingLeq amountSent

(currentledger calledAddr .amount))

→ gasleft1 ==r gasLeft

(executeTransferAux oldLedger currentledger

executionStack initialAddr

lastCallAddr calledAddr cont gasleft1

gascost funNameevalState

msgevalState amountSent destinationAddr

prevAmountReceived events runfallback cp)

lemmaExecuteTransferAuxGasEq oldLedger currentledger

executionStack initialAddr lastCallAddr calledAddr

cont gasleft1 gascost

funNameevalState msgevalState amount’ destinationAddr

amountSent events false (leq x) = refl==r gasleft1
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lemmaExecuteTransferAuxGasEq oldLedger currentledger

executionStack initialAddr lastCallAddr calledAddr

cont gasleft1 gascost

funNameevalState msgevalState amount’

destinationAddr amountSent events true (leq x)

= refl==r gasleft1

lemmaExecuteTransferAuxGasEq oldLedger currentledger

executionStack initialAddr lastCallAddr calledAddr

cont gasleft1

gascost funNameevalState msgevalState amount’

destinationAddr amountSent events false (greater x)

= refl==r gasleft1

lemmaExecuteTransferAuxGasEq oldLedger currentledger

executionStack initialAddr lastCallAddr calledAddr

cont gasleft1

gascost funNameevalState msgevalState amount’

destinationAddr amountSent events true (greater x)

= refl==r gasleft1

– execute transfer we added
– an extra element (bool value)
executeTransfer : (oldLedger : Ledger)

→ (currentledger : Ledger)

→ (execStack : ExecutionStack)

→ (initialAddr : Address)

→ (lastCallAddr calledAddr : Address)

→ (cont : Msg → SmartContract Msg)

→ (gasleft : N)

→ (gascost : Msg → N)

→ (funNameevalState : FunctionName)

→ (msgevalState : Msg)

→ (amountTransferred : Amount)

→ (destinationAddr : Address)

→ (prevAmountReceived : Address)
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→ (events : List String)

→ (runfallback : Bool)

→ StateExecFun

executeTransfer oldLedger currentledger

execStack initialAddr lastCallAddr calledAddr

cont gasleft gascost funNameevalState msgevalState

amountTransferred destinationAddr prevAmountReceived

events runfallback

= executeTransferAux oldLedger currentledger execStack

initialAddr lastCallAddr calledAddr

cont gasleft gascost funNameevalState

msgevalState amountTransferred

destinationAddr prevAmountReceived events

runfallback (compareLeq amountTransferred

(currentledger calledAddr .amount))

– the stepEF without deducting the gasLeft
stepEF : Ledger → StateExecFun → StateExecFun

stepEF oldLedger (stateEF currentLedger

executionStack

initialAddr lastCallAddr calledAddr

(exec (callView addr fname msg)

costcomputecont cont) gasLeft

funNameevalState msgevalState amountSent listEvent)

= stateEF currentLedger executionStack

initialAddr lastCallAddr calledAddr

(cont (currentLedger addr .ViewFunction fname msg))

gasLeft fname msg amountSent listEvent

stepEF oldLedger (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec currentAddrLookupc costcomputecont cont) gasLeft

funNameevalState msgevalState amountSent listEvent)
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= stateEF currentLedger executionStack

initialAddr lastCallAddr calledAddr

(cont calledAddr) gasLeft funNameevalState

msgevalState amountSent listEvent

stepEF oldLedger (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec callAddrLookupc costcomputecont cont) gasLeft

funNameevalState msgevalState amountSent listEvent)

= stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr (cont lastCallAddr)

gasLeft funNameevalState msgevalState

amountSent listEvent

stepEF oldLedger (stateEF currentLedger

executionStack

initialAddr lastCallAddr calledAddr

(exec (updatec changedFname changedPFun cost)

costcomputecont cont)

gasLeft funNameevalState msgevalState

amountSent listEvent)

= stateEF (updateLedgerviewfun currentLedger

calledAddr changedFname changedPFun cost)

executionStack initialAddr lastCallAddr calledAddr

(cont tt) gasLeft

funNameevalState msgevalState amountSent listEvent

stepEF oldLedger (stateEF currentLedger

executionStack

initialAddr oldlastCallAddr oldcalledAddr

(exec (callc newaddr fname msg amountSent)

costcomputecont cont)

gasLeft funNameevalState msgevalState

prevAmountReceived listEvent)
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= (stateEF currentLedger executionStack

initialAddr oldlastCallAddr oldcalledAddr

(exec (transfercWithoutFallBack amountSent newaddr)

(λ _ → 0)

λ _ → exec (callcAssumingTransferc newaddr

fname msg amountSent) costcomputecont cont)

gasLeft funNameevalState msgevalState

prevAmountReceived listEvent)

stepEF oldLedger (stateEF currentLedger

executionStack initialAddr oldlastCallAddr

oldcalledAddr

(exec (callcAssumingTransferc newaddr fname

msg amountTransferred) costcomputecont cont)

gasLeft funNameevalState msgevalState

prevAmountReceived listEvent)

= stateEF currentLedger

(execStackEl oldlastCallAddr oldcalledAddr

cont costcomputecont funNameevalState

msgevalState prevAmountReceived :: executionStack)

initialAddr oldcalledAddr newaddr

(currentLedger newaddr .fun fname msg)

gasLeft fname msg amountTransferred listEvent

stepEF oldLedger (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec (transferc amountSent

destinationAddr) costcomputecont cont)

gasLeft funNameevalState msgevalState

prevAmountReceived listEvent)

= executeTransfer oldLedger currentLedger

executionStack initialAddr lastCallAddr calledAddr

cont gasLeft costcomputecont

funNameevalState msgevalState

amountSent destinationAddr
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prevAmountReceived listEvent true

stepEF oldLedger (stateEF currentLedger

executionStack initialAddr

lastCallAddr calledAddr

(exec (transfercWithoutFallBack amountSent

destinationAddr) costcomputecont cont)

gasLeft funNameevalState msgevalState

prevAmountReceived listEvent)

= executeTransfer oldLedger currentLedger

executionStack initialAddr lastCallAddr calledAddr

cont gasLeft costcomputecont

funNameevalState msgevalState

amountSent destinationAddr

prevAmountReceived listEvent false

stepEF oldLedger (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec (getAmountc addrLookedUp)

costcomputecont cont) gasLeft

funNameevalState msgevalState

amountSent listEvent)

= stateEF currentLedger executionStack

initialAddr lastCallAddr calledAddr

(cont (currentLedger addrLookedUp .amount))

gasLeft

funNameevalState msgevalState

amountSent listEvent

stepEF oldLedger (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec getTransferAmount costcomputecont cont)

gasLeft funNameevalState msgevalState

amountReceived listEvent)

= stateEF currentLedger executionStack
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initialAddr lastCallAddr calledAddr

(cont amountReceived) gasLeft funNameevalState

msgevalState amountReceived listEvent

stepEF oldLedger (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(error errorMsg debugInfo) gasLeft

funNameevalState msgevalState amountSent listEvent)

= stateEF oldLedger executionStack

initialAddr lastCallAddr calledAddr

(error errorMsg debugInfo) gasLeft

funNameevalState msgevalState amountSent listEvent

stepEF oldLedger (stateEF currentLedger

[] initialAddr lastCallAddr calledAddr

(return result) gasLeft funNameevalState

msgevalState amountSent listEvent)

= stateEF currentLedger [] initialAddr

lastCallAddr calledAddr

(return result) gasLeft funNameevalState

msgevalState amountSent listEvent

stepEF oldLedger (stateEF currentLedger

(execStackEl prevLastCallAddress prevCalledAddress

prevContinuation

prevCostCont prevFunName prevMsgExec

prevamountSent :: executionStack)

initialAddr lastCallAddr calledAddr

(return result) gasLeft funNameevalState

msgevalState amountSent listEvent)

= stateEF currentLedger executionStack

initialAddr prevLastCallAddress

prevCalledAddress

(prevContinuation result) gasLeft

prevFunName prevMsgExec prevamountSent listEvent
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stepEF oldLedger (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec (eventc str) costcomputecont cont) gasLeft

funNameevalState msgevalState amountSent listEvent)

= stateEF currentLedger executionStack

initialAddr lastCallAddr calledAddr (cont tt)

gasLeft funNameevalState msgevalState amountSent

(str :: listEvent)

lemmaStepEFpreserveGas : (oldLedger : Ledger)

→ (state : StateExecFun) →

gasLeft state ==r gasLeft (stepEF oldLedger state)

lemmaStepEFpreserveGas oldLedger (stateEF ledger []

initialAddr lastCallAddr calledAddr

(return x) gasLeft1 funNameevalState

msgevalState amountSent listEvent) = refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

(x2 :: executionStack1) initialAddr lastCallAddr

calledAddr

(return x) gasLeft1 funNameevalState

msgevalState amountSent listEvent) = refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(error x x1) gasLeft1 funNameevalState

msgevalState amountSent listEvent) = refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (callView x2 x3 x4) x x1) gasLeft1

funNameevalState msgevalState amountSent listEvent)

= refl==r gasLeft1
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lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (updatec x2 x3 x4) x x1) gasLeft1

funNameevalState msgevalState amountSent listEvent)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (transferc amount destinationAddr)

costcomputecont cont) gasLeft1 funNameevalState

msgevalState prevAmountReceived listEvent)

= lemmaExecuteTransferAuxGasEq oldLedger

ledger executionStack

initialAddr lastCallAddr calledAddr

cont gasLeft1 costcomputecont funNameevalState

msgevalState amount destinationAddr prevAmountReceived

listEvent true ((compareLeq amount

(ledger calledAddr .Contract.amount)))

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (transfercWithoutFallBack amount destinationAddr)

costcomputecont cont) gasLeft1 funNameevalState

msgevalState prevAmountReceived listEvent)

= lemmaExecuteTransferAuxGasEq oldLedger ledger

executionStack

initialAddr lastCallAddr calledAddr

cont gasLeft1 costcomputecont funNameevalState

msgevalState amount destinationAddr prevAmountReceived

listEvent false ((compareLeq amount

(ledger calledAddr .Contract.amount)))

lemmaStepEFpreserveGas oldLedger (stateEF ledger
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executionStack initialAddr lastCallAddr calledAddr

(exec (callc newaddr fname msg amountSent)

cost cont) gasLeft1 funNameevalState

msgevalState prevAmountReceived listEvent)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (callcAssumingTransferc newaddr fname msg

amountSent) cost cont) gasLeft1 funNameevalState

msgevalState prevAmountReceived listEvent)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec currentAddrLookupc x x1) gasLeft1

funNameevalState msgevalState amountSent listEvent)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec callAddrLookupc x x1) gasLeft1

funNameevalState msgevalState amountSent listEvent)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (getAmountc x2) x x1) gasLeft1

funNameevalState msgevalState amountSent listEvent)

= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec getTransferAmount x x1) gasLeft1

funNameevalState msgevalState amountSent listEvent)
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= refl==r gasLeft1

lemmaStepEFpreserveGas oldLedger (stateEF ledger

executionStack initialAddr lastCallAddr calledAddr

(exec (eventc x2) x x1) gasLeft1

funNameevalState msgevalState amountSent listEvent)

= refl==r gasLeft1

lemmaStepEFpreserveGas2 : (oldLedger : Ledger)

→ (state : StateExecFun) →

gasLeft (stepEF oldLedger state) ==r gasLeft state

lemmaStepEFpreserveGas2 oldLedger state

= sym== (gasLeft state) (gasLeft (stepEF oldLedger state))

(lemmaStepEFpreserveGas oldLedger state)

– stepEFgasAvailable which returns gasLeft
stepEFgasAvailable : StateExecFun → N

stepEFgasAvailable (stateEF ledger executionStack

initialAddr

lastCallAddr calledAddr

nextstep gasLeft funNameevalState

msgevalState amountSent listEvent)

= gasLeft

–this function simliar to stepEF
– and deduct the gasleft
–which returns the gas deducted
stepEFgasNeeded : StateExecFun → N

stepEFgasNeeded (stateEF currentLedger

[] initialAddr lastCallAddr calledAddr

(return result) gasLeft funNameevalState

msgevalState amountSent listEvent)

= param .costreturn msgevalState
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stepEFgasNeeded (stateEF currentLedger

(execSEl :: executionStack) initialAddr

lastCallAddr calledAddr

(return result) gasLeft funNameevalState

msgevalState amountSent listEvent)

= param .costreturn msgevalState

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr

calledAddr (exec currentAddrLookupc

costcomputecont cont)

gasLeft funNameevalState

msgevalState amountSent listEvent)

= costcomputecont calledAddr

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr

calledAddr

(exec callAddrLookupc costcomputecont cont)

gasLeft funNameevalState msgevalState amountSent

listEvent)

= costcomputecont lastCallAddr

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr

calledAddr

(exec (updatec changedFname changedPufun cost)

costcomputecont cont)

gasLeft funNameevalState msgevalState

amountSent listEvent)

= cost (currentLedger calledAddr

.ViewFunction changedFname)

(currentLedger calledAddr .ViewFunctionCost

changedFname) msgevalState + (costcomputecont tt)
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stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr oldlastCallAddr

oldcalledAddr

(exec (callc newaddr fname msg amount)

costcomputecont cont)

gasLeft funNameevalState msgevalState

amountSent listEvent)

= costcomputecont msg

stepEFgasNeeded (stateEF currentLedger executionStack

initialAddr oldlastCallAddr oldcalledAddr

(exec (callcAssumingTransferc newaddr

fname msg amount) costcomputecont cont)

gasLeft funNameevalState msgevalState

amountSent listEvent)

= costcomputecont msg

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr

calledAddr

(exec (transferc amount destinationAddr)

costcomputecont cont)

gasLeft funNameevalState msgevalState

amountSent listEvent)

= costcomputecont emptymsg

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr calledAddr

(exec (transfercWithoutFallBack

amount destinationAddr) costcomputecont cont)

gasLeft funNameevalState msgevalState

amountSent listEvent)

= costcomputecont emptymsg

stepEFgasNeeded (stateEF currentLedger
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executionStack initialAddr lastCallAddr calledAddr

(exec (getAmountc addrLookedUp)

costcomputecont cont)

gasLeft funNameevalState msgevalState

amountSent listEvent)

= costcomputecont (currentLedger addrLookedUp .amount)

stepEFgasNeeded (stateEF ledger

executionStack initialAddr lastCallAddr

calledAddr

(exec getTransferAmount costcomputecont cont)

gasLeft funNameevalState msgevalState amountSent

listEvent)

= costcomputecont amountSent

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr

calledAddr

(exec (callView addr fname msg)

costcompute cont)

gasLeft funNameevalState

msgevalState amountSent listEvent)

= (currentLedger calledAddr

.ViewFunctionCost fname msg)

+ costcompute (currentLedger

calledAddr .ViewFunction fname msg)

stepEFgasNeeded (stateEF currentLedger

executionStack initialAddr lastCallAddr

calledAddr

(error errorMsg debuginfo) gasLeft

funNameevalState msgevalState amountSent listEvent)

= param .costerror errorMsg

stepEFgasNeeded (stateEF currentLedger
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executionStack initialAddr lastCallAddr calledAddr

(exec (eventc str) costcomputecont cont)

gasLeft funNameevalState msgevalState

amountSent listEvent)

= costcomputecont tt

–This function we use it to deduct gas
– from evalstate not ledger
deductGas : (statefun : StateExecFun)

(gasDeducted : N) → StateExecFun

deductGas (stateEF ledger executionStack

initialAddr lastCallAddr calledAddr nextstep

gasLeft funNameevalState msgevalState

amountSent listEvent) gasDeducted

= stateEF ledger executionStack

initialAddr lastCallAddr calledAddr

nextstep

(gasLeft - gasDeducted)

funNameevalState msgevalState amountSent listEvent

– this function we use it to cpmare gas
– in stepEFgasNeeded with stepEFgasAvailable
stepEFAuxCompare : (oldLedger : Ledger)

→ (statefun : StateExecFun)

→ OrderingLeq (suc (stepEFgasNeeded statefun))

(stepEFgasAvailable statefun)

→ StateExecFun

stepEFAuxCompare oldLedger statefun (leq x)

= deductGas (stepEF oldLedger statefun)

(suc (stepEFgasNeeded statefun))

stepEFAuxCompare oldLedger

(stateEF ledger executionStack initialAddr

lastCallAddr calledAddr nextstep
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gasLeft funNameevalState msgevalState

amountSent listEvent) (greater x)

= stateEF oldLedger executionStack

initialAddr lastCallAddr calledAddr

(error outOfGasError

〈 lastCallAddr » initialAddr ·

funNameevalState [ msgevalState ]· listEvent 〉)

0 funNameevalState msgevalState amountSent listEvent

– definition of stepEFwithGasError
stepEFwithGasError : (oldLedger : Ledger)

→ (evals : StateExecFun) → StateExecFun

stepEFwithGasError oldLedger evals =

stepEFAuxCompare oldLedger evals

(compareLeq (suc (stepEFgasNeeded evals))

(stepEFgasAvailable evals))

– definition of stepEFntimes
stepEFntimes : Ledger → StateExecFun

→ (ntimes : N) → StateExecFun

stepEFntimes oldLedger ledgerstateexecfun 0

= ledgerstateexecfun

stepEFntimes oldLedger ledgerstateexecfun (suc n)

= stepEFwithGasError oldLedger

(stepEFntimes oldLedger ledgerstateexecfun n)

– definition of stepEFntimes list
stepEFntimesList : Ledger → StateExecFun

→ (ntimes : N) → List StateExecFun

stepEFntimesList oldLedger ledgerstateexecfun 0

= ledgerstateexecfun :: []

stepEFntimesList oldLedger ledgerstateexecfun

(suc n)
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= stepEFntimes oldLedger ledgerstateexecfun

(suc n)

:: stepEFntimesList oldLedger ledgerstateexecfun n

–this function below we use it to
– refund as a part of septEF
—- we use stepEFwithGasError instead of
– stepEF in refund and
– stepEFntimesWithRefund
refund : StateExecFun → StateExecFun

refund (stateEF currentLedger

[] initialAddr lastCallAddr calledAddr

(return result)

gasLeft funNameevalState

msgevalState amountSent listEvent)

= stateEF (addWeiToLedger

currentLedger lastCallAddr

(GastoWei param gasLeft))

[] initialAddr lastCallAddr

calledAddr (return result)

gasLeft funNameevalState msgevalState

amountSent listEvent

refund (stateEF ledger

executionStack initialAddr

lastCallAddr calledAddr

nextstep gasLeft

funNameevalState msgevalState

amountSent listEvent)

= stepEFwithGasError ledger

(stateEF ledger executionStack

initialAddr lastCallAddr

calledAddr nextstep gasLeft

funNameevalState msgevalState
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amountSent listEvent)

stepEFntimesWithRefund : Ledger → StateExecFun

→ (ntimes : N) → StateExecFun

stepEFntimesWithRefund oldLedger

ledgerstateexecfun 0

= ledgerstateexecfun

stepEFntimesWithRefund oldLedger

ledgerstateexecfun (suc n)

= refund (stepEFntimes oldLedger

ledgerstateexecfun n)

—## similar to above but we use it
– with the new version of stepEFwithGasError
–initialAddr lastCallAddr calledAddr
stepLedgerFunntimesAux : (ledger : Ledger)

→ (initialAddr : Address)

→ (lastCallAddr : Address)

→ (calledAddr : Address)

→ FunctionName

→ Msg → Amount

→ (listEvent : List String)

→ (gascost : N) → (ntimes : N)

→ (cp : OrderingLeq

(GastoWei param gascost)

(ledger lastCallAddr .amount))

→ Maybe StateExecFun

stepLedgerFunntimesAux ledger initialAddr

lastCallAddr calledAddr funname msg

amounttransfered listEvent gascost ntimes

(leq leqpro)

= let

ledgerDeducted : Ledger

871



F. Full Agda code for chapter Implementing the reentrancy attack of Solidity in Agda

ledgerDeducted = deductGasFromLedger

ledger lastCallAddr (GastoWei param gascost)

leqpro

in just ((stepEFntimes ledgerDeducted

(stateEF ledgerDeducted []

initialAddr lastCallAddr calledAddr

(ledgerDeducted calledAddr .fun funname msg)

gascost funname msg amounttransfered listEvent)

ntimes))

stepLedgerFunntimesAux ledger initialAddr

lastCallAddr calledAddr funname msg

amounttransfered listEvent gascost ntimes

(greater greaterpro) = nothing

–stepLedgerFunntimesAux ledger callAddr
–currentAddr funname msg gasreserved ntimes
– (compareLeq (GastoWei param gasreserved)
–(ledger callAddr .amount))
– NNN here we need before running
– stepEFntimes
–deduct the gas from ledger
– it needs as argument just one gas
–parameter which is set to both oldgas
– and newgas
–if there is not enough money
– in the account,
–then we should fail
– (not an error but fail)
– so return type should be
– Maybe StateExecFun

stepLedgerFunntimes : (ledger : Ledger)

→ (initialAddr : Address)
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→ (lastCallAddr : Address)

→ (calledAddr : Address)

→ FunctionName

→ Msg

→ Amount

→ (listEvent : List String)

→ (gasreserved : N)

→ (ntimes : N)

→ Maybe StateExecFun

stepLedgerFunntimes ledger initialAddr

lastCallAddr calledAddr funname msg

amounttransfered listEvent gasreserved

ntimes

= stepLedgerFunntimesAux ledger

initialAddr lastCallAddr calledAddr

funname msg amounttransfered

listEvent gasreserved ntimes

(compareLeq (GastoWei param gasreserved)

(ledger lastCallAddr .amount))

–with list
stepLedgerFunntimesListAux : (ledger : Ledger)

→ (initialAddr : Address)

→ (lastCallAddr : Address)

→ (calledAddr : Address)

→ FunctionName

→ Msg

→ Amount

→ (listEvent : List String)

→ (gasreserved : N)

→ (ntimes : N)

→ (cp : OrderingLeq

(GastoWei param gasreserved)

(ledger lastCallAddr .amount))
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→ Maybe (List StateExecFun)

stepLedgerFunntimesListAux ledger initialAddr

lastCallAddr calledAddr funname msg

amounttransfered listEvent gasreserved

ntimes (leq leqpro)

= let

ledgerDeducted : Ledger

ledgerDeducted = deductGasFromLedger

ledger lastCallAddr (GastoWei param gasreserved)

leqpro

in

just ((stepEFntimesList ledgerDeducted

(stateEF ledgerDeducted [] initialAddr

lastCallAddr calledAddr

(ledgerDeducted calledAddr .fun funname msg)

gasreserved funname msg amounttransfered

listEvent) ntimes))

stepLedgerFunntimesListAux ledger initialAddr

lastCallAddr calledAddr funname msg

amounttransfered listEvent gasreserved ntimes

(greater greaterpro)

= nothing

stepLedgerFunntimesList : (ledger : Ledger)

→ (initialAddr : Address)

→ (lastCallAddr : Address)

→ (calledAddr : Address)

→ (funname : FunctionName)

→ (msg : Msg)

→ (amounttransfered : Amount)

→ (listEvent : List String)

→ (gasreserved : N)

→ (ntimes : N)

→ Maybe (List StateExecFun)
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stepLedgerFunntimesList ledger initialAddr lastCallAddr

calledAddr funname msg amounttransfered listEvent

gasreserved ntimes

= stepLedgerFunntimesListAux ledger initialAddr

lastCallAddr calledAddr funname msg

amounttransfered listEvent gasreserved ntimes

(compareLeq (GastoWei param gasreserved)

(ledger lastCallAddr .amount))

– the below is the final step and we
– use it to solve the return cost

evaluateAuxStep4 : (oldLedger : Ledger)

→ (currentLedger : Ledger)

→ (initialAddr : Address)

→ (lastCallAddr : Address)

→ (calledAddr : Address)

→ (cost : N)

→ (returnvalue : Msg)

→ (gasLeft : N)

→ (funNameevalState : FunctionName)

→ (msgevalState : Msg)

→ (amountReceived : Amount)

→ (listEvent : List String)

→ (cp : OrderingLeq cost gasLeft)

→ (Ledger × MsgOrErrorWithGas)

evaluateAuxStep4 oldLedger currentLedger initialAddr

lastCallAddr calledAddr cost ms gasLeft

funNameevalState msgevalState amountReceived

listEvent (leq x)

= (addWeiToLedger currentLedger initialAddr

(GastoWei param (gasLeft - cost)))

„ ((theMsg ms) , ((gasLeft - cost)) gas, listEvent)
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evaluateAuxStep4 oldLedger currentLedger

initialAddr lastCallAddr calledAddr cost returnvalue

gasLeft funNameevalState msgevalState amountReceived listEvent (greater x)

= oldLedger „ (((err (strErr " Out Of Gass ")

〈 lastCallAddr » initialAddr ·

funNameevalState [ msgevalState ]· listEvent 〉)

, gasLeft gas, listEvent))

F.3 Defintion of commands and responses in reentrancy attack

module Complex-Model.ccomand.ccommands-cresponse where

open import Data.Nat

open import Agda.Builtin.Nat using (_-_)

open import Data.Unit

open import Data.List

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length)

open import Data.Empty

– libraries
open import basicDataStructure

open import libraries.natCompare

mutual

– contract-commands:

data CCommands : Set where
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callc : Address → FunctionName → Msg → Amount → CCommands

getTransferAmount : CCommands

eventc : String → CCommands

callView : Address → FunctionName → Msg → CCommands

updatec : FunctionName → ((Msg → MsgOrError)

→ (Msg → MsgOrError)) → ((Msg → MsgOrError)

→ (Msg → N) → Msg → N) → CCommands

transferc : Amount → Address → CCommands

transfercWithoutFallBack : Amount → Address → CCommands

callcAssumingTransferc : Address → FunctionName → Msg → Amount

→ CCommands

currentAddrLookupc : CCommands

callAddrLookupc : CCommands

getAmountc : Address → CCommands

– contract-response:
CResponse : CCommands → Set

CResponse (callc addr fname msg amount) = Msg

CResponse getTransferAmount = Amount

CResponse (eventc s) = >

CResponse (transferc amount addr) = Msg

CResponse (transfercWithoutFallBack amount addr) = Msg

CResponse (callcAssumingTransferc addr fname msg amount) = Msg

CResponse currentAddrLookupc = Address

CResponse callAddrLookupc = Address

CResponse (getAmountc addr) = Amount

CResponse (callView addr fname msg) = MsgOrError

CResponse (updatec fname fdef cost) = >

–SmartContract is datatype of what
– happens when a function
– is applied to its arguments.
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data SmartContract (A : Set) : Set where

return : A → SmartContract A

error : ErrorMsg → DebugInfo → SmartContract A

exec : (c : CCommands) → (CResponse c → N)

→ (CResponse c → SmartContract A) → SmartContract A

emptymsg : Msg

emptymsg = list []

fallback : String

fallback = "fallback"

F.4 Example of the complex model version 2

open import constantparameters

module Complex-Model.example.reentrancy-attack.reentrancy-attack where

open import Data.List hiding ( _++_; reverse)

open import Data.List.Reverse

open import Data.Bool.Base hiding (_<_; _≤_)

open import Agda.Builtin.Unit

open import Data.Product renaming (_,_ to _„_ )

open import Data.Maybe hiding (_>>=_)

open import Data.Nat.Base hiding (_<_)

open import Data.Nat.Show

open import Data.Fin.Base hiding (_+_; _-_; _<_; _≤_)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_ ; refl ; sym ; cong)

open import Agda.Builtin.Nat using (_-_; _*_; _<_)

open import Data.Nat using (_≤_; z≤n; s≤s)

open import Data.String.Base hiding (show)
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open import Agda.Builtin.String

open import Data.String.Properties

–our work and libraries
open import libraries.natCompare

open import Complex-Model.ledgerversion.Ledger-Complex-Model-with-reentrancy-attack

open import Complex-Model.ccomand.ccommands-cresponse

open import basicDataStructure

open import interface.ConsoleLib

open import libraries.IOlibrary-new-version

open import Complex-Model.IOledger.IOledgerReentrancyAttack

open import libraries.Mainlibrary-new-version

open import Complex-Model.ledgerversion.Ledger-Complex-Model-improved-non-terminate

– convert message or error to natural number
MsgorErrortoN : MsgOrError → N

MsgorErrortoN (theMsg (nat n)) = n

MsgorErrortoN (theMsg (ow)) = 0

MsgorErrortoN (err x) = 0

– myadd function to comupte two numbers
– in case if nat will compute two
– number and return it
– otherwise will return error
myadd : (amount : N) → (oldValue : MsgOrError) → MsgOrError

myadd amount (theMsg (nat oldval)) = theMsg (nat (oldval + amount))

myadd amount (theMsg ow’) = err (strErr " Not a number")

myadd amount err’ = err’

– incrementViewFunction function
– first check these addresses
– if equal it will call myadd function
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– if not it will return old value
incrementViewFunction : (address : N) → (amount : N)

→ (oldFun : Msg → MsgOrError) → Msg → MsgOrError

incrementViewFunction addrChecking

amount oldFun (nat addr) =

if addrChecking ≡b addr

then myadd amount (oldFun (nat addr))

else (oldFun (nat addr))

incrementViewFunction address amount oldFun msg = oldFun msg

–mysubtract function to
– subtract two numbers
– in case if nat will subtract
– these numbers
– otherwise it will return error message
mysubtract : (oldValue : MsgOrError) → N → MsgOrError

mysubtract (theMsg (nat oldval)) m = theMsg (nat (oldval - m))

mysubtract (theMsg ow’) m = err (strErr " Not a number")

mysubtract err’ m = err’

–decrementViewFunction function
– if these number are equal it
– will call mysubtract
– otherwise it will return old value
decrementViewFunction : (address : N) → (amount : N)

→ (oldFun : Msg → MsgOrError) → Msg → MsgOrError

decrementViewFunction addrChecking

amount oldFun (nat addr) =

if addrChecking ≡b addr

then mysubtract (oldFun (nat addr)) amount

else oldFun (nat addr)

decrementViewFunction address amount oldFun msg
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= oldFun msg

– or example
testLedger : Ledger

testLedger 0 .amount = 100000

testLedger 0 .fun "deposit" msg =

exec callAddrLookupc (λ _ → 1)

λ lastcallAddr

→ exec getTransferAmount (λ _ → 1)

λ transfAmount →

exec (getAmountc 0) (λ _ → 1)

λ amountaddr0 →

exec (eventc (("deposit +"
++ show transfAmount ++ " wei"
++ " at address 0 for address "
++ show lastcallAddr

++ "\n New balance at address 0 is "
++ show amountaddr0 ++ "wei \n")))(λ _ → 1)

λ _ → exec (updatec "balance" (λ olFun → incrementViewFunction

lastcallAddr transfAmount olFun) (λ oldFun oldcost msg → 1))

(λ n → 1) λ _ → return (nat 0)

testLedger 0 .fun "withdraw" (nat Amount) =

exec (getAmountc 0) (λ _ → 1)

λ getresult →

exec (eventc (("Balance at address 0 = "
++ show getresult

++ " wei.\n" ++ " withdraw -"
++ show Amount ++ " wei.")))(λ _ → 1)

λ _ → (exec callAddrLookupc (λ _ → 1)

λ lastcallAddr → exec (callView 0 "balance" (nat lastcallAddr)) (λ _ → 1)

λ BalanceViewfunction →
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if Amount 5b MsgorErrortoN BalanceViewfunction

then (exec (transferc Amount lastcallAddr) (λ _ → 0)

λ _ → exec (updatec "balance" (λ oldFun → decrementViewFunction

lastcallAddr Amount oldFun) (λ oldFun oldcost msg → 1))(λ n → 1)

λ x → return (nat 0))

else error (strErr (" The balacne is zero and lastcallAddr = "
++ (show lastcallAddr))) 〈 1 » 1 · "withdraw" [ nat 0 ]· [] 〉)

testLedger 0 .fun "withdraw" ow =

error (strErr (" withdraw function called with msg not being a nat number"
++ (show 0))) 〈 1 » 1 · "withdraw" [ nat 0 ]· [] 〉

testLedger 0 .viewFunction "balance" msg

= theMsg (nat 0)

testLedger 1 .amount = 0

testLedger 1 .fun "fallback" msg =

exec getTransferAmount (λ _ → 1)

λ transfAmount →

exec callAddrLookupc (λ _ → 1)

λ lastcallAddr →

exec (getAmountc 0) (λ _ → 1)

(λ balance → if transfAmount 5b balance

then exec (callc 0 "withdraw" (nat transfAmount) 0)

(λ _ → 1) (λ resultofcallc → return (nat 0))

else return (nat 0))

testLedger 1 .fun "attack" msg =

exec callAddrLookupc (λ _ → 0)

λ lastcallAddr →

exec getTransferAmount (λ _ → 0)

λ transferAmount →

if 1 5b transferAmount

then (exec (callc 0 "deposit" (nat 0) transferAmount) (λ _ → 0)
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λ resultofdeposit → exec (callc 0 "withdraw" (nat transferAmount) 0) (λ _ → 1)

λ resultofwithdraw →

exec currentAddrLookupc (λ _ → 0)

λ curraddr →

exec (getAmountc curraddr) (λ _ → 1)

λ amountofcurrntaddr →

if 0 5b amountofcurrntaddr

then (exec (transferc amountofcurrntaddr lastcallAddr)

(λ _ → 0) λ _ → exec (getAmountc 0) (λ _ → 1)

λ amountofbankaddr → exec (getAmountc curraddr) (λ _ → 1)

λ amountoflastcalladd → exec (getAmountc lastcallAddr) (λ _ → 1)

λ amountoflastcalladdr →

exec (eventc (("\n" ++ "Current balance at address 0 = "
++ show amountofbankaddr ++ " wei"))) (λ _ → 1)

λ _ → exec (eventc (( "Current balance at address 1 = "
++ show amountoflastcalladd ++ " wei")))

(λ _ → 1) λ _ → exec (eventc (( "Current balance at address 2 = "
++ show amountoflastcalladdr ++ " wei")))

(λ _ → 1) λ _ → return (nat 0))

else error (strErr " The amount is zero ")

〈 1 » 1 · "attack" [ msg ]· [] 〉)

else error (strErr " There is no money sent ")

〈 1 » 1 · "attack" [ msg ]· [] 〉

testLedger 2 .amount = 26000

testLedger ow .amount = 0

testLedger ow .fun "fallback" ow” = return ow”

testLedger ow .fun ow’ ow” = error (strErr "Undefined") 〈 ow » ow · ow’ [ ow” ]· [] 〉

testLedger ow .viewFunction ow’ ow” = theMsg (nat 0)

testLedger ow .viewFunctionCost ow’ ow” = 1

–main program IO
main : ConsoleProg

main = run (mainBody 〈 testLedger ledger, 0 initialAddr, 100 gas, 0 amountR〉)
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F.5 Definition of interfaces in reentrancy attack

open import constantparameters

module Complex-Model.IOledger.IOledgerReentrancyAttack where

open import Data.Nat

open import Data.List hiding (reverse) renaming (_++_ to _++lstr_)

open import Agda.Builtin.Nat using (_-_; _*_)

open import Data.Unit

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length;show)

open import Data.Nat.Show

open import interface.Console hiding (main)

open import interface.Unit

open import interface.NativeIO

open import interface.Base

open import Data.Maybe.Base as Maybe using (Maybe; nothing; _<|>_; when)

open import Data.Maybe.Effectful

open import Data.Product renaming (_,_ to _„_ )

open import Agda.Builtin.String

– our work
open import interface.ConsoleLib

open import libraries.natCompare

open import libraries.IOlibrary-new-version

open import libraries.Mainlibrary-new-version

open import basicDataStructure

open import Complex-Model.ledgerversion.Ledger-Complex-Model-with-reentrancy-attack

exampleParameters
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open import Complex-Model.ledgerversion.Ledger-Complex-Model-improved-non-terminate

exampleParameters

–convert msg to natural number
msg2N : Msg → N

msg2N (nat n) = n

msg2N otherwise = 0

initialfun2Str : MsgOrError → String

initialfun2Str (theMsg (nat n1)) = "(theMsg " ++ show n1 ++ ")"
initialfun2Str (theMsg othermsg) = " The message is not a number "
initialfun2Str (err x) = " The message is not a number "

reverse : List String → List String

reverse [] = []

reverse (x :: ls) = reverse ls ++lstr (x :: [])

listsreting2string : List String → String

listsreting2string [] = ""
listsreting2string (x :: l) = x ++ "\n" ++ listsreting2string l

mutual

– option one
– ask user to enter an address

executeLedger : ∀{i} → StateIO → IOConsole i Unit

executeLedger stIO .force =

exec’ (putStrLn "Enter the called address as a natural number")

λ _ → IOexec getLine λ line → executeLedgerStep1-2 stIO (readMaybe 10 line)

– check the address is a number or not
executeLedgerStep1-2 : ∀{i} → StateIO → Maybe N → IOConsole i Unit

executeLedgerStep1-2 stIO (just calledAddr) .force =

exec’ (putStrLn "Enter the function name") λ _ → IOexec getLine
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λ line → executeLedgerStep1-3 stIO calledAddr line

executeLedgerStep1-2 stIO nothing .force

= exec’ (putStrLn "Please enter an address as a natural number")

λ _ → executeLedger stIO

– asking user to enter a function name
executeLedgerStep1-3 : ∀{i} → StateIO → N → FunctionName → IOConsole i Unit

executeLedgerStep1-3 stIO calledAddr f .force =

exec’ (putStrLn "Enter the argument of the function
name as a natural number")

λ _ → IOexec getLine

λ line → executeLedgerStep1-4 stIO calledAddr f (readMaybe 10 line)

– check is the input for the function name is a string
– if yes it will applies all information

executeLedgerStep1-4 : ∀{i} → StateIO → N → FunctionName → Maybe N → IOConsole i Unit

executeLedgerStep1-4

〈 ledger ledger, initialAddr initialAddr, gas gas, amountR amountR〉 calledAddr f (just m) .force

= exec’ (putStrLn (" The result is as follows: \n" ++

" \n The inital address is " ++ show initialAddr ++

" \n The called address is " ++ show calledAddr ++

" \n The amount sent is " ++ show amountR ++ " wei"))

λ _ → executeLedgerFinalStep (evaluateNonTerminatingfinalstep

ledger initialAddr initialAddr calledAddr gas f (nat m) amountR [])

〈 ledger ledger, initialAddr initialAddr, gas gas, amountR amountR〉

executeLedgerStep1-4 stIO calledAddr f nothing .force

= exec’ (putStrLn "Enter the argument of the
function name as a natural number")

λ _ → executeLedgerStep1-3 stIO calledAddr f

executeLedgerFinalStep : ∀{i} → Maybe (Ledger × MsgOrErrorWithGas)

→ StateIO → IO consoleI i Unit

executeLedgerFinalStep (just (newledger „ (theMsg ms , gas1 gas, listevents)))

〈 ledger ledger, initialAddr initialAddr, gas gas, amountR amountR〉 .force

= exec’ (putStrLn (" The argument of the function name is "
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++ msg2string (nat amountR)))

λ _ → IOexec (putStrLn (" The remaining gas is " ++ (show gas1) ++ " wei"
++ " and the gas used is " ++ (show (gas - gas1)) ++ " wei" ++

" , \n The function returned " ++ initialfun2Str (theMsg ms) ++

" , \n The list of events : \n" ++ listsreting2string (reverse listevents)))

λ _ → mainBody (〈 newledger ledger, initialAddr initialAddr, gas gas, amountR amountR〉)

executeLedgerFinalStep (just (newledger „ (err e 〈 lastCallAddress » curraddr ·

lastfunname [ lastmsg ]· event 〉 ,

gas1 gas, listevents))) 〈 ledger ledger, initialAddr initialAddr, gas gas,

amountR amountR〉 .force = exec’ (putStrLn "Debug information")

λ _ → IOexec (putStrLn (errorMsg2Str (err e 〈 lastCallAddress » curraddr ·

lastfunname [ lastmsg ]· listevents 〉)))

λ _ → IOexec (putStrLn ("Address " ++ show lastCallAddress ++

" is trying to call the address " ++ show curraddr ++ " with Function Name "
++ funname2string lastfunname ++ " with Message " ++ msg2string lastmsg

++ " , \n The list of events : \n" ++ listsreting2string (reverse listevents)))

λ _ → IOexec (putStrLn ("The remaining gas is " ++ show gas1 ++ " wei"
++ " and the gas used is " ++ (show (gas - gas1))))

λ _ → mainBody (〈 newledger ledger, initialAddr initialAddr, gas gas, amountR amountR〉)

executeLedgerFinalStep (just (newledger „ (invalidtransaction , gas1 gas, listevents)))

〈 ledger ledger, initialAddr initialAddr, gas gas, amountR amountR〉 .force

= exec’ (putStrLn "Invalid transaction")

λ _ → IOexec (putStrLn (errorMsg2Str invalidtransaction))

λ _ → IOexec (putStrLn ("The remaining gas is " ++ (show gas1) ++ " wei"
++ " and the gas used is " ++ (show (gas - gas1))))

λ _ → mainBody

(〈 newledger ledger, initialAddr initialAddr, gas gas, amountR amountR〉)

executeLedgerFinalStep nothing 〈 ledger ledger, initialAddr initialAddr, gas gas, amountR amountR〉

.force = exec’ (putStrLn "Nothing and the ledger will change to old ledger")

λ _ → mainBody (〈 ledger ledger, initialAddr initialAddr, gas gas, amountR amountR〉)

–To change calling address
executeLedger-ChangeCallingAddress : ∀{i} → StateIO → IOConsole i Unit
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executeLedger-ChangeCallingAddress stIO .force = exec’ (putStrLn "Enter a new
calling address as a natural number") λ _ → IOexec getLine

λ line → executeLedger-ChangeCallingAddressAux stIO (readMaybe 10 line)

executeLedger-ChangeCallingAddressAux : ∀{i} → StateIO → Maybe Address → IOConsole i Unit

executeLedger-ChangeCallingAddressAux

〈 ledger1 ledger, initialAddr1 initialAddr, gas1 gas, amountR amountR〉

(just callingAddr) = executeLedger

〈 ledger1 ledger, callingAddr initialAddr, gas1 gas, amountR amountR〉

executeLedger-ChangeCallingAddressAux stIO nothing .force

= exec’ (putStrLn "Please enter the calling
address as a natural number") λ _ → executeLedger-ChangeCallingAddress stIO

– To update the amount sent
executeLedger-updateAmountReceive : ∀{i} → StateIO → IOConsole i Unit

executeLedger-updateAmountReceive stIO .force = exec’ (putStrLn "Enter the new
amount to be sent as a natural number") λ _ → IOexec getLine

λ line → executeLedgerStep-updateAmountReceiveAux stIO (readMaybe 10 line)

executeLedgerStep-updateAmountReceiveAux : ∀{i} → StateIO → Maybe N → IOConsole i Unit

executeLedgerStep-updateAmountReceiveAux stIO nothing .force

= exec’ (putStrLn "Please enter the amount to be sent as a natural number")

λ _ → executeLedger-updateAmountReceive stIO

executeLedgerStep-updateAmountReceiveAux 〈 ledger ledger, initialAddr initialAddr,

gas gas, amountR amountR〉 (just amountrecive) .force = exec’ (putStrLn

("The amount to be sent has been updated successfully.
\n The new amount to be sent is "
++ show amountrecive ++ " wei" ++ "\n and the old amount to
be sent was " ++ show amountR ++ " wei" ))

λ line → mainBody 〈 ledger ledger, initialAddr initialAddr, gas gas, amountrecive amountR〉

– To check the amount recive
executeLedger-checkAmountReceive : ∀{i} → StateIO → IOConsole i Unit
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executeLedger-checkAmountReceive 〈 ledger ledger, initialAddr initialAddr,

gas gas, amountR amountR〉 .force = exec’ (putStrLn (" The amount sent is "
++ show amountR ++ " wei" ))

λ line → mainBody 〈 ledger ledger, initialAddr initialAddr, gas gas, amountR amountR〉

— To check the balance for ecah contract
executeLedger-CheckBalance : ∀{i} → StateIO → IOConsole i Unit

executeLedger-CheckBalance stIO .force = exec’ (putStrLn "Enter the
called address as a natural number") λ _ → IOexec getLine

λ line → executeLedgerStep-CheckBalanceAux stIO (readMaybe 10 line)

executeLedgerStep-CheckBalanceAux : ∀{i} → StateIO → Maybe N → IOConsole i Unit

executeLedgerStep-CheckBalanceAux stIO nothing .force = exec’ (putStrLn

"Please enter an address as a natural number") λ _ → IOexec getLine

λ _ → executeLedger-CheckBalance stIO

executeLedgerStep-CheckBalanceAux 〈 ledger ledger, initialAddr

initialAddr, gas gas, amountR amountR〉 (just calledAddr) .force

= exec’ (putStrLn "The information you get is below: ")

λ line → IOexec (putStrLn ("The available money is " ++ show (ledger calledAddr .amount)

++ " wei in address " ++ show calledAddr)) (λ line → mainBody

(〈 ledger ledger, initialAddr initialAddr, gas gas, amountR amountR〉))

– To update the gas
executeLedger-updateGas : ∀{i} → StateIO → IOConsole i Unit

executeLedger-updateGas stIO .force = exec’ (putStrLn "Enter the new gas amount
as a natural number") λ _ → IOexec getLine

λ line → executeLedgerStep-updateGasAux stIO (readMaybe 10 line)

executeLedgerStep-updateGasAux : ∀{i} → StateIO → Maybe N → IOConsole i Unit

executeLedgerStep-updateGasAux stIO nothing .force = exec’ (putStrLn "Please
enter a gas as a natural number")

λ _ → executeLedger-updateGas stIO
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executeLedgerStep-updateGasAux 〈 ledger ledger, initialAddr

initialAddr, gas gas, amountR amountR〉 (just gass) .force

= exec’ (putStrLn ("The gas amount has been updated successfully.
\n The new gas amount is " ++ show gass ++ " wei" ++

" and the old gas amount is " ++ show gas ++ " wei" ))

λ line → mainBody 〈 ledger ledger, initialAddr initialAddr, gass gas, amountR amountR〉

– To check the gas available
executeLedger-checkGas : ∀{i} → StateIO → IOConsole i Unit

executeLedger-checkGas 〈 ledger ledger, initialAddr initialAddr, gas gas, amountR amountR〉

.force = exec’ (putStrLn (" The gas limit is " ++ show gas ++ " wei" ))

λ line → mainBody 〈 ledger ledger, initialAddr initialAddr, gas gas, amountR amountR〉

—-To check the view function
executeLedger-viewfunction1 : ∀{i} → StateIO → IOConsole i Unit

executeLedger-viewfunction1 stIO .force = exec’ (putStrLn "Enter the
Called Address as a natural number") λ _ → IOexec getLine

λ line → executeLedger-viewfunStep1-2 stIO (readMaybe 10 line)

executeLedger-viewfunStep1-2 : ∀{i} → StateIO → Maybe Address → IOConsole i Unit

executeLedger-viewfunStep1-2 stIO (just calledAddr) .force

= exec’ (putStrLn "Enter the Function name") λ _ → IOexec getLine

λ line → executeLedger-viewfunStep1-3 stIO calledAddr (string2FunctionName line)

executeLedger-viewfunStep1-2 stIO nothing .force

= exec’ (putStrLn "Please enter an address as a natural number")

λ _ → executeLedger-viewfunction1 stIO

executeLedger-viewfunStep1-3 : ∀{i} → StateIO → (calledAddr : Address)

→ Maybe FunctionName → IOConsole i Unit

executeLedger-viewfunStep1-3 stIO calledAddr (just f ) .force =

exec’ (putStrLn "Enter the argument of the function name as
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a natural number") λ _ → IOexec getLine

λ line → executeLedger-viewfunStep1-4 stIO calledAddr f (readMaybe 10 line)

executeLedger-viewfunStep1-3 stIO calledAddr nothing .force =

exec’ (putStrLn "Please enter a functionname as string")

λ _ → executeLedger-viewfunStep1-2 stIO (just calledAddr)

executeLedger-viewfunStep1-4 : ∀{i} → StateIO → (calledAddr : Address)

→ FunctionName → Maybe N → IOConsole i Unit

executeLedger-viewfunStep1-4 〈 ledger ledger, initialAddr initialAddr,

gas gas, amountR amountR〉 calledAddr f (just m) .force

= exec’ (putStrLn "The information you get is below: ")

λ _ → IOexec (putStrLn ("The inital address = " ++ show initialAddr ++

" , The called address = " ++ show calledAddr ++

" The view function returns "
++ initialfun2Str (ledger calledAddr .viewFunction f (nat m)) ++

"\n The view function cost returns " ++ show (ledger calledAddr

.viewFunctionCost f (nat m))))

λ _ → mainBody (〈 ledger ledger, initialAddr initialAddr, gas gas, amountR amountR〉)

executeLedger-viewfunStep1-4 stIO calledAddr f nothing .force

= exec’ (putStrLn "Please enter the argument of the
function name as a natural number")

λ _ → executeLedger-viewfunStep1-3 stIO calledAddr (just f )

– main menu
mainBody : ∀{i} → StateIO → IOConsole i Unit

mainBody stIO .force

= WriteString’

("Please choose one of the following:
1- Execute a function of a contract.
2- Execute a function with new calling address.
3- Update the amount sent in function call.
4- Check the amount sent in function call.
5- Look up the amount of a contract.
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6- Update the gas limit.
7- Check the gas limit.
8- Evaluate a view function.
9- Terminate the program.") λ _ →

GetLine >>= λ str → if str == "1" then executeLedger stIO

else (if str == "2" then executeLedger-ChangeCallingAddress stIO

else (if str == "3" then executeLedger-updateAmountReceive stIO

else (if str == "4" then executeLedger-checkAmountReceive stIO

else (if str == "5" then executeLedger-CheckBalance stIO

else (if str == "6" then executeLedger-updateGas stIO

else (if str == "7" then executeLedger-checkGas stIO

else (if str == "8" then executeLedger-viewfunction1 stIO

else (if str == "9" then WriteString "The program will be terminated"
else WriteStringWithCont "Please enter a number 1 - 9"

λ _ → mainBody stIO ))))))))

F.6 Definition of the library for the interface for the reentrancy

attack

open import constantparameters

module libraries.IOlibrary-new-version where

open import Data.Nat

open import Data.List hiding (_++_)

open import Agda.Builtin.Nat using (_-_; _*_)

open import Data.Unit

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length;show)

open import Data.Nat.Show
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open import Data.Maybe.Base as Maybe using (Maybe; nothing; _<|>_; when)

open import Data.Maybe.Effectful

open import Data.Product renaming (_,_ to _„_ )

open import Agda.Builtin.String

–our work
open import libraries.natCompare

open import libraries.Mainlibrary-new-version

open import interface.ConsoleLib

open import Complex-Model.ccomand.ccommands-cresponse

open import basicDataStructure

– convert string to maybe function
string2FunctionName : String → Maybe FunctionName

string2FunctionName str = just str

– convert function to string
funname2string : FunctionName → String

funname2string x = x

mutual

– convert msg to list of strings
msgList2String : List Msg → String

msgList2String [] = ""
msgList2String (msg :: []) = msg2string msg

msgList2String (msg :: rest) = msg2string msg ++ " , " ++ msgList2String rest

msg2string : Msg → String

msg2string (nat n) = "(nat " ++ show n ++ ")"
msg2string (msg +msg msg1) = "(" ++ msg2string msg ++ " , " ++ msg2string msg1 ++ ")"
msg2string (list l) = "[" ++ msgList2String l ++ "]"
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– convert error to string
errorMsg2Str : NatOrError → String

errorMsg2Str (nat n) = show n

errorMsg2Str (err (strErr s) 〈 lastcalladdr » curraddr · lastfunname [ lastmsg ]· events 〉) = s

errorMsg2Str (err (numErr n) 〈 lastcalladdr » curraddr · lastfunname [ lastmsg ]· events 〉) = show n

errorMsg2Str (err undefined 〈 lastcalladdr » curraddr · lastfunname [ lastmsg ]· events 〉)

= "Error undefined"
errorMsg2Str (err outOfGasError 〈 lastcalladdr » curraddr · lastfunname [ lastmsg ]· events 〉)

= "Out of gas error"
errorMsg2Str invalidtransaction = "invalidtransaction"

– defin State for IO
record StateIO : Set where

constructor

〈_ledger,_initialAddr,_gas,_amountR〉

field

ledger : Ledger

initialAddr : Address

gas : N

amountReceive : N

open StateIO public

F.7 Non-Termination version of the reentrancy attack (improved

with our interface)

open import constantparameters

module Complex-Model.ledgerversion.Ledger-Complex-Model-improved-non-terminate

(param : ConstantParameters) where
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open import Data.Nat

open import Agda.Builtin.Nat using (_-_; _*_)

open import Data.Unit

open import Data.List

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length; show) renaming (_++_ to _++str_)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Show

open import Data.Empty

– our work
open import Complex-Model.ccomand.ccommands-cresponse

open import basicDataStructure

open import libraries.natCompare

open import libraries.Mainlibrary-new-version

open import Complex-Model.ledgerversion.Ledger-Complex-Model-with-reentrancy-attack

{-# NON_TERMINATING #-}

evaluateNonTerminatingStep2 : Ledger → StateExecFun

→ (Ledger × MsgOrErrorWithGas)

evaluateNonTerminatingStep2 oldLedger (stateEF currentLedger [] initialAddr

lastCallAddr calledAddr (return msg) gasLeft funNameevalState msgevalState

amountReceived listEvent)

= evaluateAuxStep4 param oldLedger currentLedger initialAddr lastCallAddr calledAddr

(param .costofreturn) msg gasLeft funNameevalState msgevalState amountReceived

listEvent (compareLeq (param .costofreturn) gasLeft)

evaluateNonTerminatingStep2 oldLedger (stateEF currentLedger s initialAddr

lastCallAddr calledAddr (error msgg debugInfo) gasLeft funNameevalState
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msgevalState amountReceived listEvent)

= addWeiToLedger param oldLedger initialAddr (GastoWei param gasLeft) „

((err msgg 〈 lastCallAddr » initialAddr · funNameevalState [ msgevalState ]·

listEvent 〉) , gasLeft gas, listEvent)

evaluateNonTerminatingStep2 oldLedger evals

= evaluateNonTerminatingStep2 oldLedger (stepEFwithGasError param oldLedger evals)

evaluateNonTerminatingStep1 : (ledger : Ledger)

→ (initialAddr : Address)

→ (lastCallAddr : Address)

→ (calledAddr : Address)

→ (gasreserved : N)

→ FunctionName

→ Msg

→ (amountReceived : Amount)

→ (listEvent : List String)

→ (cp : OrderingLeq

(GastoWei param gasreserved)

(ledger initialAddr .amount))

→ Maybe (Ledger × MsgOrErrorWithGas)

evaluateNonTerminatingStep1 ledger initialAddr lastCallAddr calledAddr gasreserved

funname msg amountReceived listEvent (leq leqpr)

= let

ledgerDeducted : Ledger

ledgerDeducted = deductGasFromLedger param ledger initialAddr (GastoWei param gasreserved) leqpr

in just (evaluateNonTerminatingStep2

ledgerDeducted (stateEF ledgerDeducted [] initialAddr initialAddr lastCallAddr

(exec (callc calledAddr funname msg amountReceived) (λ _ → 1) return)

gasreserved funname msg amountReceived listEvent))

evaluateNonTerminatingStep1 ledger initialAddr lastCallAddr calledAddr gasreserved

funname msg amountReceived listEvent (greater greaterpr) = nothing
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evaluateNonTerminatingfinalstep : (ledger : Ledger)

→ (initialAddr : Address)

– Initial address is the address
–from which the very first call was made
→ (lastCallAddr : Address)

– lastCallAddr is the address
– from which the current call of
–a function in
– calledAddr is made
→ (calledAddr : Address)

– calledAddr is the address
– where a function call is
– currently executed
– it was called from calledAddr
→ (gasreserved : N)

→ FunctionName

→ Msg

→ (amountReceived : Amount)

→ (listEvent : List String)

→ Maybe (Ledger × MsgOrErrorWithGas)

evaluateNonTerminatingfinalstep ledger initialAddr lastCallAddr calledAddr gasreserved

funname msg amountReceived listEvent

= evaluateNonTerminatingStep1 ledger initialAddr lastCallAddr calledAddr

gasreserved funname msg amountReceived listEvent (compareLeq (GastoWei param gasreserved)

(ledger initialAddr .amount))

F.8 Execute Termination version of the reentrancy attack

(improved with examples below)

open import constantparameters
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module Complex-Model.ledgerversion.Ledger-Complex-Model-improved-terminate

(param : ConstantParameters) where

open import Data.Nat

open import Agda.Builtin.Nat using (_-_; _*_)

open import Data.Unit

open import Data.List

open import Data.Bool

open import Data.Bool.Base

open import Data.Nat.Base

open import Data.Maybe hiding (_>>=_)

open import Data.String hiding (length; show) renaming (_++_ to _++str_)

open import Data.Product renaming (_,_ to _„_ )

open import Data.Nat.Show

open import Data.Empty

– our work
open import Complex-Model.ccomand.ccommands-cresponse

open import basicDataStructure

open import libraries.natCompare

open import libraries.Mainlibrary-new-version

open import Complex-Model.ledgerversion.Ledger-Complex-Model-with-reentrancy-attack

{-
TERMINATING VERSION OF THE Below
in evaluateTerminatingAuxfinal0
we have additional parameter
numberOfSteps : N

which is initialised
with gasLeft
and we add a proof that
numberOfSteps <= gasLeft
in addition we make sure
that gas is in each step
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reduced by 1 more than what
is specified
that shows that numberOfSteps
<= gasLeft is an invariant

-}

mutual

evaluateTerminatingAuxStep2 : Ledger

→ (stateEF : StateExecFun)

→ (numberOfSteps : N)

→ stepEFgasAvailable param stateEF 5r numberOfSteps

→ Ledger × MsgOrErrorWithGas

evaluateTerminatingAuxStep2 oldLedger

(stateEF currentLedger []

initialAddr lastCallAddr

calledAddr (return ms) gasLeft funNameevalState msgevalState amountReceived listEvent)

numberOfSteps numberOfStepsLessGas

= evaluateAuxStep4 param oldLedger currentLedger

initialAddr lastCallAddr calledAddr (param .costofreturn) ms gasLeft funNameevalState

msgevalState amountReceived listEvent (compareLeq (param .costofreturn) gasLeft)

evaluateTerminatingAuxStep2 oldLedger (stateEF currentLedger s initialAddr

lastCallAddr calledAddr (error msgg debugInfo) gasLeft funNameevalState msgevalState

amountReceived listEvent) numberOfSteps numberOfStepsLessGas

= addWeiToLedger param oldLedger initialAddr (GastoWei param gasLeft) „

(err msgg 〈 lastCallAddr » initialAddr · funNameevalState [ msgevalState ]·

listEvent 〉 , gasLeft gas, listEvent)

evaluateTerminatingAuxStep2 oldLedger evals (suc numberOfSteps) numberOfStepsLessGas

= evaluateTerminatingAuxStep3 oldLedger evals numberOfSteps numberOfStepsLessGas

(compareLeq (stepEFgasNeeded param evals) (stepEFgasAvailable param evals))

evaluateTerminatingAuxStep2 oldLedger (stateEF currentLedger executionStack initialAddr

lastCallAddr calledAddr nextstep gasLeft funNameevalState msgevalState amountReceived listEvent)
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0 numberOfStepsLessGas

= oldLedger „ (err outOfGasError 〈 lastCallAddr » initialAddr ·

funNameevalState [ msgevalState ]· listEvent 〉 , 0 gas, listEvent)

evaluateTerminatingAuxStep3 : Ledger

→ (evals : StateExecFun)

→ (numberOfSteps : N)

→ stepEFgasAvailable param evals 5r suc numberOfSteps

→ OrderingLeq (stepEFgasNeeded param evals) (stepEFgasAvailable param evals)

→ Ledger × MsgOrErrorWithGas

evaluateTerminatingAuxStep3 oldLedger state numberOfSteps

numberOfStepsLessgas (leq x)

= evaluateTerminatingAuxStep2 oldLedger

(deductGas param (stepEF param oldLedger state)

(suc (stepEFgasNeeded param state))) numberOfSteps

(lemmaxSucY (gasLeft (stepEF param oldLedger state)) numberOfSteps

(stepEFgasNeeded param state) (lemma=5r (gasLeft (stepEF param oldLedger state))

(gasLeft state) (suc numberOfSteps) (lemmaStepEFpreserveGas2 param

oldLedger state) numberOfStepsLessgas))

evaluateTerminatingAuxStep3 oldLedger (stateEF ledger executionStack initialAddr

lastCallAddr calledAddr nextstep gasLeft1 funNameevalState msgevalState

amountReceived listEvent) numberOfSteps numberOfStepsLessgas (greater x)

= oldLedger „ (err outOfGasError 〈 lastCallAddr » initialAddr ·

funNameevalState [ msgevalState ]· listEvent 〉 , 0 gas, listEvent)

evaluateTerminatingAuxStep1 : (ledger : Ledger)

→ (initialAddr : Address)

→ (lastCallAddr : Address)

→ (calledAddr : Address)

→ FunctionName

→ Msg

→ (amountReceived : Amount)
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→ (listEvent : List String)

→ (gasreserved : N)

→ (cp : OrderingLeq

(GastoWei param gasreserved)

(ledger initialAddr .amount))

→ Ledger × MsgOrErrorWithGas

evaluateTerminatingAuxStep1 ledger

initialAddr lastCallAddr calledAddr

funname msg amountReceived

listEvent gasreserved (leq leqpr)

= let

ledgerDeducted : Ledger

ledgerDeducted =

deductGasFromLedger param ledger initialAddr (GastoWei param gasreserved) leqpr

in evaluateTerminatingAuxStep2

ledgerDeducted (stateEF ledgerDeducted [] initialAddr initialAddr lastCallAddr

(exec (callc calledAddr funname msg amountReceived) (λ _ → 1) return)

gasreserved funname msg amountReceived listEvent) gasreserved (refl5r gasreserved)

evaluateTerminatingAuxStep1 ledger initialAddr lastCallAddr calledAddr funname msg

amountReceived listEvent gasreserved (greater greaterpr)

= ledger „ (err outOfGasError 〈 lastCallAddr » initialAddr ·

funname [ msg ]· listEvent 〉 , 0 gas, listEvent)

evaluateTerminatingfinal : (ledger : Ledger)

→ (initialAddr : Address)

– Initial address is the
– address from which the
– very first call was made
→ (lastCallAddr : Address)

– lastCallAddr is the
– address from which
– the current call of a function in
– calledAddr is made
→ (calledAddr : Address)
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– calledAddr is the address
– where a function call
– is currently executed
– it was called from calledAddr
→ FunctionName

→ Msg

→ (amountReceived : Amount)

→ (listEvent : List String)

→ (gasreserved : N)

→ Ledger × MsgOrErrorWithGas

evaluateTerminatingfinal ledger initialAddr lastCallAddr calledAddr funname msg

amountReceived listEvent gasreserved = evaluateTerminatingAuxStep1 ledger

initialAddr lastCallAddr calledAddr funname msg amountReceived listEvent

gasreserved (compareLeq (GastoWei param gasreserved)

(ledger initialAddr .amount))

F.9 Test cases for the reentrancy attack

open import constantparameters

module Complex-Model.example.reentrancy-attack.executed-reentrancy-aatack where

open import Data.List

open import Data.Bool.Base

open import Agda.Builtin.Unit

open import Data.Product renaming (_,_ to _„_ )

open import Data.Maybe hiding (_>>=_)

open import Data.Nat.Base

open import Data.Nat.Show

open import Data.Fin.Base hiding (_+_; _-_)

import Relation.Binary.PropositionalEquality as Eq

open Eq using (_≡_ ; refl ; sym ; cong)

open import Agda.Builtin.Nat using (_-_; _*_)

open import Data.String hiding (length; show) renaming (_++_ to _++str_)
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open import Data.Unit

open import Data.Empty

–our work
open import Complex-Model.example.reentrancy-attack.reentrancy-attack

open import libraries.natCompare

open import Complex-Model.ledgerversion.Ledger-Complex-Model-with-reentrancy-attack-v2

exampleParameters

open import basicDataStructure

open import libraries.Mainlibrary-new-version

open import Complex-Model.ledgerversion.Ledger-Complex-Model-improved-terminate

exampleParameters

open import Complex-Model.ccomand.ccommands-cresponse-with-reentrancy-attack-v2

————————— First test (deposit 25000 wei)
—- deposit 25000 wei at address 0 for address 2
– the test case is correct.
— and same as the other one
– using function "deposit" with (nat 0) on testLedger

resultAfterdeposit : Ledger × MsgOrErrorWithGas

resultAfterdeposit =

evaluateTerminatingfinal testLedger 2 2 0 "deposit"
(nat 0) 25000 ("deposit function" :: []) 250

— resultReturneddeposit return the result
resultReturneddeposit : MsgOrErrorWithGas

resultReturneddeposit = proj2 resultAfterdeposit

{-
theMsg (nat 0) , 231 gas,
("deposit +25000 wei at address 0 for address 2
\n New balance at address 0 is 125000wei \n"
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:: "deposit function" :: [])
-}

– obtain our ledger to get our amount for each contract
ledgerAfterdeposit : Ledger

ledgerAfterdeposit = proj1 resultAfterdeposit

— check amount after deposit 25000 wei at address 0
checkamountAfterdepositAtadd0 : N

checkamountAfterdepositAtadd0 = ledgerAfterdeposit 0 .amount

{- result amount at address 0 after
deposit 25000 wei and before was 100000 wei

125000
-}

–check amount after deposit 25000 wei at address 0 for address 2
checkamountAfterdepositAtadd2 : N

checkamountAfterdepositAtadd2 = ledgerAfterdeposit 2 .amount

{- result amount at address 2, before was 26000 wei
981
-}

– check view function after deposit 25000 wei
– at address 0 for address 2 (nat 2)
checkviewFunctionAfterdeposit : MsgOrError

checkviewFunctionAfterdeposit

= ledgerAfterdeposit 0 .viewFunction "balance" (nat 2)

{-
theMsg (nat 25000)

-}
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————————— Second test (withdraw 25000 wei)
—- In first case we depositted 25000 wei at address 0 for address 2
– Now we need to use withdraw 25000 wei
– from address 0 and transfer it to address 2
– using function "withdraw" with (nat 25000) on ledgerAfterdeposit

resultAfterwithdraw : Ledger × MsgOrErrorWithGas

resultAfterwithdraw =

evaluateTerminatingfinal ledgerAfterdeposit 2 2 0 "withdraw"
(nat 25000) 0 ([]) 250

— resultReturnedwithdraw return the result
resultReturnedwithdraw : MsgOrErrorWithGas

resultReturnedwithdraw = proj2 resultAfterwithdraw

{-
theMsg (nat 0) , 227 gas,
("Balance at address 0 = 125000 wei.\n withdraw -25000 wei." :: [])
-}

ledgerAfterwithdraw : Ledger

ledgerAfterwithdraw = proj1 resultAfterwithdraw

–checkamountforAddr0Afterwithdraw to check amount
– at address 0 after withdraw 25000 wei
checkamountforAddr0Afterwithdraw : N

checkamountforAddr0Afterwithdraw = ledgerAfterwithdraw 0 .amount

{- result amount at address 0 after withdraw 25000 wei,
before was 125000 wei

100000
-}

–checkamountforAddr1Afterwithdraw to check amount
– at address 2 after withdraw 25000 wei from addr 0

905



F. Full Agda code for chapter Implementing the reentrancy attack of Solidity in Agda

checkamountforAddr1Afterwithdraw : N

checkamountforAddr1Afterwithdraw = ledgerAfterwithdraw 2 .amount

{- result amount at address 2 after withdraw 25000 wei
and transfer money to addr 2, before was 981 wei

25958
-}

–check view function after withdraw 25000 wei from
– address 0 for address 2 (nat 2)
checkviewFunctionAfterwithdraw : MsgOrError

checkviewFunctionAfterwithdraw

= ledgerAfterwithdraw 0 .viewFunction "balance" (nat 2)

{-
theMsg (nat 0)
-}

————————— third test (attack with 10000)
—- using attack function with amount sent 10000 wei

resultAfterattack : Ledger × MsgOrErrorWithGas

resultAfterattack = evaluateTerminatingfinal testLedger 2 2 1 "attack"
(nat 0) 25000 ("deposit function" :: []) 250

— resultReturneddeposit return the result
resultReturnedattack : MsgOrErrorWithGas

resultReturnedattack = proj2 resultAfterattack

{- result after attack

theMsg (nat 0) , 66 gas,
("Current balance at address 2 = 125750 wei" ::

"Current balance at address 1 = 0 wei" ::

"\nCurrent balance at address 0 = 0 wei" ::

"Balance at address 0 = 25000 wei.\n withdraw -25000 wei." ::

"Balance at address 0 = 50000 wei.\n withdraw -25000 wei." ::
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"Balance at address 0 = 75000 wei.\n withdraw -25000 wei." ::

"Balance at address 0 = 100000 wei.\n withdraw -25000 wei." ::

"Balance at address 0 = 125000 wei.\n withdraw -25000 wei." ::

"deposit +25000 wei at address 0 for address 1\n
New balance at address 0 is 125000wei \n"

:: "deposit function" :: [])
-}

F.10 Bank contract in Solidity

1 // SPDX-License-Identifier: MIT
2 pragma solidity ^0.8.12;
3 import "./BankContract.sol";
4

5 contract AttackContract {
6

7 //declares a public variable called bankcontract that will store a
reference to the BankContract contract.

8 BankContract public bankcontract ;
9

10 //declares the contract's constructor and takes one argument, the address
of the BankContract contract

11 constructor ( address _bankcontractAddress ) {
12 //initializes the bankcontract variable with a reference to the

BankContract contract
13 bankcontract = BankContract ( _bankcontractAddress ) ;}
14

15 // receive is called when BankContract sends Ether to this contract .
16 receive () external payable {
17 if ( address (bankcontract) .balance >= 1 ether) {
18 bankcontract .withdraw_fun() ;}}
19

20 //When a user calls the attack() function, the contract will withdraw all
of the Ether

21 //from the BankContract contract and send it to the attacker's address.
22 function attack () external payable {
23 require (msg .value >= 1 ether) ;
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24 bankcontract.deposit_fun { value : 1 ether }() ;
25 bankcontract.withdraw_fun();}
26

27 // function to check the balance of this contract
28 function getBalance () public view returns ( uint ) {
29 return address(this).balance; }}

F.11 Attack contract in Solidity

1 // SPDX-License-Identifier: MIT
2 pragma solidity ^0.8.12;
3

4 contract BankContract {
5 mapping(address => int) public balances;
6

7 //deposit function allows users to deposit Ether into the contract.
8 function deposit_fun() public payable {
9 balances[msg.sender] += int(msg.value);}

10

11 //withdraw function allows users to withdraw Ether from the contract.
12 function withdraw_fun() public {
13 require(balances[msg.sender] > 0);
14 (bool sent, ) = msg.sender.call{value: 1 ether}("");
15 require(sent, "Failed to send Ether");
16 balances[msg.sender] -= 1 ether; }
17

18 // getBalance() function to check the balance of this contract
19 function getBalance() public view returns (uint) {
20 return address(this).balance;}}
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