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Abstract 61 

Background:  62 

Self-monitoring of glucose is important to the successful management of diabetes; 63 

however, existing monitoring methods require a degree of invasive measurement 64 

which can be unpleasant for users. This study investigates the accuracy of a non-65 

invasive glucose monitoring system that analyses spectral variations in radio 66 

frequency/microwave signals. 67 

Methods: 68 

An open-label, pilot design study was conducted with four cohorts (N = 5/cohort). In 69 

each session, a dial-resonating sensor (DRS) attached to the wrist automatically 70 

collected data every 60 seconds, with a novel artificial intelligence (AI) model 71 

converting signal resonance output to a glucose prediction. Plasma glucose was 72 

measured in venous blood samples every 5 minutes for Cohorts 1-3 and every 10 73 

minutes for Cohort 4. Accuracy was evaluated by calculating the mean absolute 74 

relative difference (MARD) between the DRS and plasma glucose values. 75 

Results: 76 

Accurate plasma glucose predictions were obtained across all four cohorts using a 77 

global sampling procedure, with an average MARD of 10.3%. A statistical analysis 78 

demonstrates the quality of these predictions, with a Surveillance Error Grid (SEG) 79 

plot indicating no data pairs falling into the higher risk zones. 80 

Conclusions:  81 

These findings show that MARD values approaching accuracies comparable to current 82 

commercial alternatives can be obtained from a multi-participant pilot study with the 83 

application of AI. Microwave biosensors and AI models show promise for improving 84 
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the accuracy and convenience of glucose monitoring systems for people with 85 

diabetes. 86 

Clinical Trial Number: NCT05023798  87 
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Introduction 88 

Self-monitoring of blood glucose (SMBG) is an important part of managing diabetes 89 

(1). However, the invasiveness of standard finger-prick glucose tests, which must be 90 

taken several times a day, are a significant barrier to SMBG (2). Systems for continuous 91 

glucose monitoring (CGMs) – with wearable glucose sensors that provide continuous 92 

glucose readings from the interstitial fluid in the subcutaneous tissue – are therefore 93 

increasingly being utilised (3). The continuous data from such CGM systems provide 94 

insight into glycaemic patterns throughout the day, improving glycaemic control and 95 

increasing patient confidence in managing their diabetes (4). Nevertheless, CGMs 96 

require the insertion of a subcutaneous sensor which can compromise skin integrity 97 

(5). Interstitial glucose levels lag 5-10 minutes behind blood glucose levels, which may 98 

lead to underestimations of changes in glycaemic levels, particularly during activities 99 

such as exercise (6). There is thus great interest in the development of accurate, non-100 

invasive, wearable devices for CGM (7) (8). 101 

Many non-invasive glucose monitoring (NIGM) systems currently under investigation, 102 

such as photoacoustics (9) and near infra-red spectroscopy (10), utilise expensive 103 

instrumentation and are subject to error from physiological and environmental 104 

variables (11). Other methods such as transdermal or epidermal electrochemical 105 

sensors may still involve the use of microneedles (12), or involve monitoring glucose 106 

in sweat which can also be problematic (13). 107 

Studies have shown that employing microwave technology is a promising area of 108 

development for such devices. For example, one study has shown that a micro-109 

resonator using a metal-insulator-semiconductor provided a reliable indicator of 110 

glucose levels (14). Another reports promising tests of a highly sensitive resonator-111 

based microwave biosensor for real-time blood glucose detection (15). Nevertheless, 112 
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a recent review concluded that there is a need for increased sensitivity, accuracy and 113 

stability in such sensors, some of which could be achieved through AI and machine 114 

learning (16). 115 

The current study reports on an open-label, pilot design study of a novel, non-invasive, 116 

wrist-worn device which analyses resonance shifts in the microwave spectrum using 117 

AI. The dial-resonating sensor (DRS) uses a microwave sensor to measure bulk plasma 118 

glucose levels in the body, which are then converted to a glucose measurement. This 119 

study aims to determine the accuracy of the DRS device by comparing gold standard 120 

measures of plasma glucose to algorithmically derived measures of glucose from the 121 

DRS device. 122 

  123 
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Methods 124 

Ethics Statement 125 

Ethics committee approval was obtained (WoS reC4, 21/WS/0139), with all 126 

participants providing written informed consent. 127 

Study Design 128 

In this open-label, pilot design study, four cohorts (each comprising five participants) 129 

attended trials that were ≤7 days apart at the Joint Clinical Research Facility (JCRF) in 130 

Swansea, Wales. A total of four 2-hour sessions or two 8-hour sessions were organised 131 

for each participant from Cohorts 1-3 and Cohort 4, respectively. During each trial, 132 

DRS-derived glucose measurements were compared with plasma glucose levels 133 

measured using a YSI 2500 laboratory glucose analyser. A Random Forest algorithm 134 

applied to and trained on this DRS data was used to estimate the glucose levels on 135 

unseen subsets of this dataset. No major changes were made to the protocol during 136 

the study. 137 

Participants 138 

To be included in the study, participants needed to have documented Type 1 diabetes 139 

diagnosed before age 29 or have had documented Type 2 diabetes for more than one 140 

year with negative glutamic acid decarboxylase antibody test results. They were also 141 

required to be aged 18-80 years and to have a body mass index of 18-35 kg/m2. 142 

Potential participants were then excluded if: they had another active implantable 143 

medical device (e.g., a pacemaker); were currently participating in another clinical 144 

trial for a pharmaceutical product; had a history of allergies to any materials used in 145 

the study; were females who were pregnant or lactating; had clinically significant 146 

abnormal values in clinical chemistry; had a concurrent illness or condition that may 147 
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interfere with blood glucose levels; have had an episode of diabetic ketoacidosis, 148 

hyperglycaemic hyperosmolar non-ketotic coma, or severe hypoglycaemia within one 149 

month prior; were on pramlintide; had a wrist injury; or, had severe macrovascular 150 

disease. As this was a pilot study, a sample size calculation was not performed. 151 

Instead, the target was to recruit five participants to each cohort. 152 

DRS Device 153 

The DRS device comprises a planar split ring resonator fabricated on the top layer of 154 

a multi-layered printed circuit board (PCB). Other system components such as the 155 

oscillator, coupler, micro-controller unit (MCU) and detector are fabricated on the 156 

other side of the PCB to realise the wearable wrist-worn monitor, shown in Figure 1. 157 

The DRS is designed to radiate high-frequency, low-power electromagnetic waves into 158 

the patient’s wrist over a frequency band of 1-10 GHz. The electromagnetic signal 159 

transmitted into the wrist is susceptible to glucose induced dielectric changes in the 160 

arteries, veins, and interstitial fluid. These dielectric changes result in a shift of the 161 

absorption spectrum of the electromagnetic wave in the blood, which can then be 162 

algorithmically transformed into a prediction of the change in glucose concentration 163 

within blood. 164 

< Insert Figure 1 about here> 165 

Procedures 166 

After providing informed consent, screening for eligibility was conducted by a 167 

member of the clinical team at least seven days before the first trial visit. Patient 168 
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details were reviewed by a clinical team member before approval to take part in the 169 

study was given. Upon admittance to the study a second visit (Trial 1) was scheduled. 170 

Participants attended each session after a minimum four-hour fast to ensure low 171 

plasma glucose levels were recorded at the start of each session. Eligibility was re-172 

confirmed at the commencement of each session. At each visit the patient had the 173 

DRS device strapped to the same wrist for calibration and a venous cannula inserted 174 

into the participants’ arm. For a single patient trial, due to difficulty with inserting the 175 

cannula, the DRS device was strapped to the other wrist. Device operators were 176 

engineers who had been trained in usage of the DRS and on study procedures. 177 

Patients remained sitting or reclining on a bed throughout the trial period. 178 

Participants drank one 200 mL bottle of Ensure Plus to increase glucose levels (at T90 179 

for Cohorts 1 and 2, T30 for Cohort 3, and T120 for Cohort 4), and were permitted 180 

comfort breaks as needed. Time was added for comfort breaks to ensure a full trial 181 

period was completed for each participant. 182 

The first measurement from the DRS device was taken and recorded at time point 0 183 

(T0). Within one minute, a blood sample was taken via a venous cannula for plasma 184 

glucose measurement. Thereafter, DRS measurements were automatically triggered 185 

at 60-second intervals, with blood samples for glucose measurements taken every 5 186 

minutes throughout sessions involving Cohorts 1-3 and every 10 minutes for those 187 

with Cohort 4. Medical staff remained on hand to assist in case of any adverse 188 

reactions. At the end of the trial, participants were offered refreshments and 189 

discharged if their plasma glucose levels were acceptable. Trialling of each cohort took 190 

place over a period of approximately 5-6 weeks between July 2022 and June 2023.  191 

Data Analysis 192 
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An AI model was built using the Random Forest algorithm, which was chosen due to 193 

its better predictive accuracies and ability to limit overfitting than has been observed 194 

from other algorithms (17). A global sampling procedure was applied to the full 4-195 

cohort dataset involving Monte Carlo (MC) resampling with an inner 5-fold cross-196 

validation loop. A total of 50 MC resamples were generated using a 70%/30% 197 

train/test split of the full dataset, with the final statistics obtained as an average of all 198 

MC resamples. Within each resample, the training set was separated into 5 folds for 199 

use in the cross-validation process, with model hyperparameters optimised using a 200 

full grid search of all possible parameter combinations.  201 

Accuracy of the glucose measurement using the DRS device was calculated by 202 

obtaining the MARD (primary outcome) of the DRS device vs venous plasma glucose. 203 

The MARD is a commonly used metric for assessing the performance of glucose 204 

monitoring systems (18), and refers to the mean absolute relative deviation of the 205 

glucose value calculated by the model from the reference glucose levels. Surveillance 206 

error grids (SEGs) were used according to the methodology described by Klonoff et al. 207 

(19), to display the clinical risk of errors in the DRS generated data. 208 

  209 
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Results 210 

Sample Characteristics 211 

Each cohort included five participants, with one participant included in both Cohort 1 212 

and Cohort 3 and another in Cohorts 1, 3, and 4. In each cohort, 60.0% of participants 213 

had Type 1 diabetes and 40.0% had Type 2 diabetes. Table 1 provides a breakdown of 214 

participant demographics across each cohort. 215 

In total, there were 63 trials conducted across the 20 participants. Each trial had 31 – 216 

50 glucose measurements taken with associated device readings. From a total of 217 

2,370 readings across all trials, YSI plasma glucose measurements ranging from 3.2 218 

mmol/L to 19.6 mmol/L were obtained, with a mean and median of 9.3 mmol/L and 219 

8.8 mmol/L, respectively. Figure 2 gives the distribution of these reference glucose 220 

measurements. 221 

< Insert Table 1 and Figure 2 about here> 222 

Accuracy 223 

An average MARD of 10.3% was obtained from glucose predictions across all trials for 224 

Cohorts 1-4, with individual MARDs of 10.3%, 10.1%, 9%, and 12.1% for Cohorts 1, 2, 225 

3, and 4, respectively. Table 2 provides a breakdown of these results alongside the 226 

average median ARD and individual cohort median ARD values. The distribution of 227 

MARD values across trials is given in Figure 3, which shows a clustering of MARD 228 

values below 20% and a long-tailed distribution. A plot of reference glucose values 229 

against predictions for all test set data is given in Figure 4. Additional statistical 230 

measures of the quality of these predictions are also given in Figure 4: coefficient of 231 

determination (R2), root mean square deviation (RMSD), bias, and standard deviation 232 

(SD). These statistics are taken as averages across all 50 MC resamples.   233 
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< Insert Table 2, Figure 3 and Figure 4 about here> 234 

SEG analysis (Figure 5) shows that the measurements obtained were primarily (89.4%, 235 

10.3%) within the deep green (no risk) zone and the light green (slight, low risk) zone, 236 

with small numbers (0.2%) within the yellow zones (moderate risk). No measurements 237 

were in the orange (great risk) or red (extreme risk) zones. Table 3 highlights the 238 

percentage of each data pair within these risk factor ranges. 239 

< Insert Figure 5 and Table 3 about here> 240 

Safety 241 

There were no adverse events reported. 242 

  243 
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Discussion 244 

This study compared the accuracy of a non-invasive, wearable glucose measurement 245 

system using microwave resonance technology, to standard plasma glucose 246 

monitoring. Several prior studies have established the possibility for detecting plasma 247 

glucose levels (14) (16) (20) (21). The most recent of these studies demonstrated that 248 

a MARD of 28% could be obtained from trial-specific multiple regression models 249 

trained on DRS device measurements (21). Here, it has been shown that the accuracy 250 

of the DRS device has been improved upon with a decline in MARD from 28% to the 251 

10.3% obtained from this study. This improvement in MARD suggests the use of a 252 

more complex algorithm, combined with a global sampling procedure, offers superior 253 

results to previous device tests. Results also suggest that the DRS device under 254 

consideration here is approaching a level of accuracy comparable to commercially 255 

available glucose monitoring systems when applied within a controlled environment. 256 

In general, a system with a MARD < 10% is regarded to have good analytical 257 

performance (22). Other commercially available CGM systems such as the Freestyle 258 

Libre (Abbott Diabetes Care, Witney, UK), Minimed Enlite (Medtronic, Dublin, 259 

Ireland), and Dexcom (Dexcom Inc., California, USA) have published MARDs of 11.4% 260 

(23), 13.6% (24) and 9.3% (25) respectively. 261 

Results also showed that no data pairs were in the higher risk categories of clinical 262 

error in SEG. The DRS device considered herein has the advantage of being non-263 

invasive, which can be assumed to improve patient adherence to self-monitoring 264 

procedures (2), thus leading to better health outcomes (26). 265 

A current limitation of this approach is that the AI model was built after all trial data 266 

had been collected, and not generated as data collection was occurring. It is expected 267 

that additional clinical trials involving a wider range of participants and longer test 268 
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periods will result in valuable data with which to support the development of AI 269 

models capable of real time predictions.   270 

The study is limited by the fact that accuracy of the device was assessed under the 271 

hands of trained engineers within a controlled environment, and so may not reflect 272 

any settling period observed for an individual user with diabetes under daily life 273 

conditions. Nevertheless, the controlled, lab-based nature of the study adds to the 274 

body of evidence supporting the use of AI and machine learning to improve the 275 

accuracy of NIGM systems. The development of NIGM wearable systems that provide 276 

an accurate and sensitive glucose measurement are of great relevance given the 277 

increasing popularity of CGM systems which are frequently replacing SMBG in a 278 

variety of therapeutic situations (18). 279 

Conclusions 280 

This study demonstrates that a novel, non-invasive, wearable DRS device could 281 

estimate glucose levels in the body with reasonable accuracy compared with venous 282 

plasma glucose measurements. Future studies will continue to test the accuracy of 283 

subsequent iterations of the device as well as provide further data to improve the AI 284 

model. 285 
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Table 1 – Patient demographics for Cohorts 1, 2, 3, and 4. 389 

Demographics Cohort 1 Cohort 2 Cohort 3 Cohort 4 

Male/Female Ratio 3/2 4/1 2/3 (1)4/1 

Age - Mean 54.4 58.8 58.6 45.4 

Age - Standard Deviation 7.5 20.8 14.6 23.4 

Age - Range 42 - 62 33 - 79 42 - 75 21 - 72 

390 
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Table 2 – Mean ARD and median ARDs for Cohorts 1, 2, 3, and 4. 391 

Accuracy  Average Cohort 1 Cohort 2 Cohort 3 Cohort 4 

Mean ARD 10.3% 10.3% 10.1% 9.0% 12.1% 

Median ARD 7.4% 9.0% 8.8% 7.7% 10.0% 

Abbreviations: ARD, Absolute Relative Difference 392 
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Table 3 – Percentage of Pairs in each Risk Grade from SEG plot 394 

Risk Grade Cohorts 1-4 Risk Factor 
None 89.4% 0 – 0.5 
Slight 10.3% >0.5 - 1.5 

Moderate 0.2% >1.5 – 2.5 
High N/A >2.5 – 3.5 

Extreme N/A >3.5 
  395 
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Figure 1 – DRS Device 396 

 397 

  398 

 399 

 400 

Wearable device (left) and exploded view (right)  401 
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Figure 2 – Distribution of reference glucose values measured using a YSI 2500 402 

laboratory glucose analyser. 403 

  404 
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Figure 3 – Distribution of MARD values. 405 

 406 
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Figure 4 – Reference glucose values against predictions. 408 

  409 

Abbreviations: R2, Coefficient of determination; RMSD, Root Mean Square Deviation; 410 

SD, Standard Deviation; ARD, Absolute Relative Difference 411 
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Figure 5 – SEG for Cohorts 1-4. 413 

 414 
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