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The paper introduces a computational framework that makes use of a novel Arbitrary Lagrangian 
Eulerian (ALE) conservation law formulation for nonlinear solid dynamics. In addition to the stan-
dard mass conservation law and the linear momentum conservation law, the framework extends its 
application to consider more general irreversible processes such as thermo-elasticity and thermo-
visco-plasticity. This requires the incorporation of the first law of thermodynamics, expressed in 
terms of the entropy density, as an additional conservation law. To disassociate material particles 
from mesh positions, the framework introduces an additional reference configuration, extending 
beyond conventional material and spatial descriptions. The determination of the mesh motion in-
volves the solution of a conservation-type momentum equation, ensuring optimal mesh movement 
and contributing to maintaining a high-quality mesh and improving solution accuracy, partic-
ularly in regions undergoing large plastic flows. To maintain equal convergence orders for all 
variables (strains/stresses, velocities/displacements and temperature/entropy), the standard de-
formation gradient tensor (measured from material to spatial configuration) is evaluated through 
a multiplicative decomposition into two auxiliary deformation gradient tensors. Both are obtained 
through additional first-order conservation laws. The exploitation of the hyperbolic nature of the 
underlying system, together with accurate wave speed bounds, ensures the stability of explicit 
time integrators. For spatial discretisation, a vertex-centred Godunov-type Finite Volume method 
is employed and suitably adapted to the formulation at hand. To guarantee stability from both the 
continuum and the semi-discretisation standpoints, a carefully designed numerical interface flux 
is presented. Lyapunov stability analysis is carried out by evaluating the time variation of the Bal-

listic energy of the system, aiming to ensure the positive production of numerical entropy. Finally, 
a variety of three dimensional benchmark problems are presented to illustrate the robustness and 
applicability of the framework.
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1. Introduction

The standard formulations in computational solid dynamics, such as purely Total or Updated Lagrangian descriptions, align the 
computational mesh (nodes) with the underlying material discretisation (particles) [1–5]. This concurrent motion simplifies the 
continuum formulation and the discrete solution of the algorithm, enabling direct tracking of evolving boundaries and interfaces. 
However, in scenarios involving large deformations, Lagrangian formulations may encounter mesh distortion, requiring the use of 
complex remeshing strategies [6] for accurate and reliable results. Motivated by these challenges, Arbitrary Lagrangian Eulerian 
(ALE) based techniques have emerged to combine the advantages of both Lagrangian and Eulerian approaches. The ALE formulation 
introduces a referential (fixed) domain for motion description, separate from the material and spatial domains [7–15]. The computa-
tional mesh neither attaches to the material (Lagrangian description) nor remains fixed in space (Eulerian description), but it partially 
follows the material points to reduce element distortion. The ALE formulation shows promise in addressing challenges in large strain 
solid dynamics, including hyper-velocity dynamic impact/contact [16] and crack propagation.

The ALE formulation for solid dynamics [17,18], initially designed for highly deformable hypoelastic-plastic and hyperelastic-
plastic processes, involves different approaches for stress computation. In hypoelastic-plastic models [16,19], stresses are described 
in a rate form, linking an objective stress rate with the rate of deformation tensor. Conversely, hyperelastic–plastic models [20–22]
compute stresses from the deformation gradient using a strain energy potential combined with a suitable plastic projection algorithm. 
Such procedure eliminates the need for stress rate equations. Regardless of the approach, a crucial aspect is the ALE convective term 
in the stress update equation, reflecting the relative motion between the computational mesh and material particles. To handle the 
convective term, one possible option is to split the ALE solution process into material and convection stages (remap stage [23–25]). 
The material stage neglects convection, making it identical to the standard Lagrangian updating process. Subsequently, stresses and 
plastic internal variables are convected in the remap stage to account for relative mesh motion. On a different note, Yamada et al. 
[22] proposed an ALE finite element method for hyperelastic model that circumvents the need to consider convective terms. This is 
achieved by establishing suitable mappings between the referential, material and spatial domains. The deformation gradient tensor, 
describing the fibre map between material and spatial domains (and thus, stresses), can be computed from the referential domain 
using the chain rule. However, even in this case, if large plastic strains are considered, the convection of internal plastic variables 
describing the plastic response is still needed [21].

Recently, a computational framework [26], formulated in terms of ALE first-order conservation laws, was introduced for hyperelas-
ticity. Specifically, both the mass conservation equation and linear momentum conservation equation were re-formulated and solved 
within the fixed referential domain. To ensure equal order of convergence for velocities/displacements and strains/stresses, the up-
date of the physical deformation gradient tensor (measured from material to spatial domains) was achieved through its multiplicative 
decomposition into two auxiliary deformation gradient tensors. These two deformations were computed using additional geometric 
conservation laws. A notable feature of this ALE formulation lies in its capability to degenerate into three different mixed-based sets 
of conservation equations: Total Lagrangian formulation [27–30], Eulerian formulation [31] and Updated Reference Lagrangian for-
mulation [32]. To illustrate the proof-of-concept of the formulation, numerical examples were carried out by utilising a hyperelastic 
model with prescribed mesh motion for the sake of simplicity.

To assess the potential benefits of the developed ALE formulation, the current paper broadens its range of application to consider 
more general irreversible processes, such as thermal effects [33] and rate- and/or path-dependent constitutive models [34–37]. 
A simple mesh motion strategy inspired by the work of [21] will be explored. This will be achieved by solving a conservation-
type momentum equation for the mesh motion. In this work, the proposed ALE formulation will be exclusively examined for a 
single material. However, when dealing with high-speed multi-material flows, it becomes crucial to develop more complex adaptive 
algorithms that can dynamically move the mesh to adapt to the evolving interface shape. One possible option is to relax constraints 
on mesh topology and allow reconnection, typically known as “ReALE - a reconnection-based ALE method” [12,23]. This would be 
the next step of our work.

A critical aspect requiring special attention is the stability of the proposed ALE formulation, from both the continuum and numeri-
cal standpoints. Concerning the former, the use of an internal energy potential satisfying rank-one convexity guarantees the existence 
of plane travelling waves within the solid and the propagation of strong discontinuities at physical shock speeds. Regarding spatial 
discretisation, a Godunov-type upwinding approach is pursued where appropriate numerical stabilisation is introduced, ensuring 
local production of numerical entropy. The latter is demonstrated by monitoring the time variation of the Ballistic of the coupled 
system, also known as Lyapunov stability analysis.

The paper is structured as follows. Section 2 provides a review of the fundamental kinematic relationships utilised in an Arbitrary 
Lagrangian Eulerian description. In Section 3, we begin by summarising the ALE conservation laws necessary for isothermal process, 
as previously presented in Reference [26]. We then extend this discussion to incorporate the ALE-type first law of thermodynamics 
expressed in terms of entropy density, accounting for thermal influences. Section 4 addresses finite strain plasticity, incorporating 
the nonlinear strain-rate and thermal-dependent Johnson-Cook hardening law. The ALE evolution equations for the plastic state 
variables are presented. Section 5 details the mesh smoothing procedure used in this work to address excessive mesh distortions, 
particularly in regions of large plastic flows. In Section 6, we explore the time variation of the Ballistic energy of the system, used as 
a preamble to formulate non-negative entropy-producing numerical dissipation. Section 7 discusses the vertex-based finite volume 
spatial discretisation procedure. Special attention is paid to deriving entropy-stable conservative and consistent numerical fluxes. 
Additionally, we discuss the explicit time integrator used to advance the semi-discrete equations in time. For implementation purposes, 
Section 8 summarises the algorithmic flowchart of the resulting computational framework. Section 9 presents a series of numerical 
2

examples to illustrate the capabilities of the proposed ALE numerical framework. Finally, Section 10 provides a summary of key 
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Fig. 1. ALE kinematic description.

conclusions and outlines lines of prospective research. Appendix A summarises the transformation of conservation laws from the 
Total Lagrangian to the ALE description, providing details on integral form, local differential equations and jump conditions.

2. ALE kinematical description

Consider the motion of a continuum initially defined by a domain Ω𝑿 ⊂ ℝ3 in its material configuration. This configuration is 
enclosed by a boundary, denoted as 𝜕Ω𝑿 , with a corresponding unit outward normal vector 𝑵𝑿 =

∑3
𝐼=1𝑁

𝐼
𝑿
𝑬𝐼 . As the continuum 

undergoes motion, it deforms into a spatial configuration defined by a domain Ω𝒙 ⊂ ℝ3 with a boundary 𝜕Ω𝒙 and a unit outward 
normal vector 𝒏𝒙 =

∑3
𝑖=1 𝑛

𝑖
𝒙
𝒆𝑖.

In an Arbitrary Lagrangian Eulerian (ALE) description, in addition to the usual material and spatial configurations described above, 
a third “referential” configuration is introduced. This configuration is occupied by the domain Ω𝝌 ⊂ℝ3 with a boundary 𝜕Ω𝝌 and an 
outward unit normal 𝑵𝝌 =

∑3
𝐼=1𝑁

𝐼
𝝌
𝐼 . Consequently, two new mappings are introduced, linking the referential coordinate 𝝌 ∈Ω𝝌

to: (1) the material configuration 𝑿 ∈Ω𝑿 via 𝑿 =𝚿(𝝌 , 𝑡) and (2) the spatial configuration 𝒙 ∈Ω𝒙 via 𝒙 =𝚽(𝝌 , 𝑡). Fig. 1 illustrates 
these domains and the one-to-one transformation relating the three configurations. We refer to 𝚽(𝝌 , 𝑡) as the spatial motion (the 
mapping from the referential domain to the spatial domain) and to 𝚿(𝝌 , 𝑡) as the material motion (the mapping from the referential 
domain to the material domain). With these definitions, the physical motion 𝝋(𝑿, 𝑡) at a fixed time is parametrised as 𝝋 =𝚽◦𝚿−1, 
emphasising that the three mappings {𝝋, 𝚿, 𝚽} are not independent. Utilising the relation 𝝋(𝑿, 𝑡) =𝚽(𝚿−1(𝝌 , 𝑡), 𝑡), the multiplicative 
decomposition of the physical deformation gradient tensor is expressed as

𝑭 = 𝑭𝚽𝑭
−1
𝚿 , (1)

with the respective deformation gradient tensors defined as

𝑭 (𝑿, 𝑡) =
𝜕𝝋(𝑿, 𝑡)

𝜕𝑿
; 𝑭𝚿(𝝌 , 𝑡) =

𝜕𝚿(𝝌 , 𝑡)
𝜕𝝌

; 𝑭𝚽(𝝌 , 𝑡) =
𝜕𝚽(𝝌 , 𝑡)

𝜕𝝌
. (2)

It is possible to introduce the corresponding cofactors and Jacobians as follows

𝑯 = 1
2
𝑭 𝑭 ; 𝑯𝚿 = 1

2
𝑭𝚿 𝑭𝚿; 𝑯𝚽 = 1

2
𝑭𝚽 𝑭𝚽, (3)

and

𝐽 = 1
3
𝑯 ∶ 𝑭 ; 𝐽𝚿 = 1

3
𝑯𝚿 ∶ 𝑭𝚿; 𝐽𝚽 = 1

3
𝑯𝚽 ∶ 𝑭𝚽. (4)

Here, denotes the tensor-cross-product between second order tensor as discussed in References [38,39]. Equations (2), (3) and (4)
establish line, area and volume mappings between differential elements of the different configurations as follows

𝑑𝑳𝑿 = 𝑭𝚿𝑑𝑳𝝌 ; 𝑑𝒍𝒙 = 𝑭𝚽𝑑𝑳𝝌 ; 𝑑𝒍𝒙 = 𝑭𝑑𝑳𝑿 ; (5a)
3

𝑑𝑨𝑿 =𝑯𝚿𝑑𝑨𝝌 ; 𝑑𝒂𝒙 =𝑯𝚽𝑑𝑨𝝌 ; 𝑑𝒂𝒙 =𝑯𝑑𝑨𝑿 ; (5b)
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𝑑Ω𝑿 = 𝐽𝚿𝑑Ω𝝌 ; 𝑑Ω𝒙 = 𝐽𝚽𝑑Ω𝝌 ; 𝑑Ω𝒙 = 𝐽𝑑Ω𝑿 . (5c)

Next, let us consider the time rates of the above mappings {𝝋, 𝚿, 𝚽} depicted in Fig. 1. For instance, the (physical) velocity 𝒗 of a 
particle 𝑿, the (spatial) velocity �̂� associated with the spatial map, and the (material) velocity 𝑾 associated with the material map 
are given by

𝒗 =
𝜕𝝋(𝑿, 𝑡)

𝜕𝑡
= 𝜕

𝜕𝑡

||||𝑿𝝋; �̂� =
𝜕𝚽(𝝌 , 𝑡)

𝜕𝑡
= 𝜕

𝜕𝑡

||||𝝌𝚽; 𝑾 =
𝜕𝚿(𝝌 , 𝑡)

𝜕𝑡
= 𝜕

𝜕𝑡

||||𝝌𝚿, (6)

with 
||||□ meaning “holding the coordinate □ fixed”. Recalling 𝑭 (2) together with the definitions of the various velocities (6), the 

relation between 𝒗, �̂� and 𝑾 now follows as

�̂� =
𝜕𝚽(𝝌 , 𝑡)

𝜕𝑡
=

𝜕𝝋(𝚿(𝝌 , 𝑡), 𝑡)
𝜕𝑡

=
𝜕𝝋(𝑿, 𝑡)

𝜕𝑡
+

𝜕𝝋(𝑿, 𝑡)
𝜕𝑿

𝜕𝚿(𝝌 , 𝑡)
𝜕𝑡

= 𝒗+ 𝑭𝑾 . (7)

3. ALE first-order conservation laws for solids

3.1. First-order conservation laws for non-thermal processes

In the preceding work by the authors [26], the motion of a deformable solid for non-thermal processes is described by a system 
of first-order conservation laws formulated within an ALE framework as follows

𝜕

𝜕𝑡

||||𝝌𝒑𝝌 − DIV𝝌
[(
𝑷 + 𝒑𝑿 ⊗𝑾

)
𝑯𝚿
]
= 𝒇𝝌 ; (8a)

𝜕

𝜕𝑡

||||𝝌𝑭𝚽 − DIV𝝌 (�̂�⊗ 𝑰) = 𝟎; (8b)

𝜕

𝜕𝑡

||||𝝌𝑭𝚿 − DIV𝝌 (𝑾 ⊗ 𝑰) = 𝟎; (8c)

𝜕

𝜕𝑡

||||𝝌𝐽𝚿 − DIV𝝌
(
𝑯𝑇

𝚿𝑾
)
= 0. (8d)

Here, 𝒑𝝌 = 𝜌𝝌𝒗 is the linear momentum per unit of reference volume, 𝒑𝑿 = 𝜌𝑅𝒗 is the linear momentum per unit of material volume, 
𝜌𝝌 = 𝐽𝚿𝜌𝑅 is the density of the reference configuration, 𝜌𝑅 is the material density, 𝒇𝝌 is the body force per unit of reference volume 
and 𝑷 is the first Piola Kirchhoff stress tensor. The operator DIV𝝌 represents the divergence operator carried out at the reference 
configuration.

Expressions (8a) and (8d) represent the fundamental physical conservation equations formulated in the ALE framework. The 
former corresponds to the standard linear momentum conservation equation, while the latter denotes the mass continuity equation 
with the assumption of uniform material density. Furthermore, expressions (8b) and (8c) constitute an additional set of geometric 
conservation equations, aiming to accurately monitor the deformation of a fibre from the reference configuration to both spatial and 
material configurations, respectively. An advantage of solving these additional geometric conservation equations lies in the fact that 
the evaluation of the fibre mappings {𝑭𝚽, 𝑭𝚿} is no longer dependent on both the spatial and material geometries. This aspect has 
demonstrated its benefits in both Total Lagrangian [40] and Updated Lagrangian approaches [32,41], especially when dealing with 
scenarios involving large deformations.

As the system of conservation laws presented above contains more equations than necessary, compatibility relationships, also 
known as involutions [42], become essential. Specifically,

CURL𝝌𝑭𝚽 = 𝟎; CURL𝝌𝑭𝚿 = 𝟎. (9)

In the presence of shocks or discontinuities across a surface, it is worth noticing that the evaluation of the divergence operator 
DIV𝝌 (8) becomes unfeasible. Consequently, the applicability of the system (8) in its differential form is no longer valid. In such 
instances, we must then resort to the utilisation of appropriate Rankine-Hugoniot jump conditions across a discontinuous surface. 
This surface is defined by a reference unit normal vector 𝑵𝝌 and propagates with a speed 𝑈𝝌 in the reference space [26]. These 
conditions can be expressed as

𝑈𝝌 �𝒑𝝌 � = −�
(
𝑷 + 𝒑𝑿 ⊗𝑾

)
𝑯𝚿�𝑵𝝌 ; (10a)

𝑈𝝌 �𝑭𝚽� = −��̂�� ⊗𝑵𝝌 ; (10b)

𝑈𝝌 �𝑭𝚿� = −�𝑾 � ⊗𝑵𝝌 ; (10c)

𝑈𝝌 �𝐽𝚿� = −�𝑯𝑇
𝚿𝑾 � ⋅𝑵𝝌 . (10d)
4

Here, �∙� = [∙]+ − [∙]− denotes the difference between the right state (+) and left state (−) of a discontinuous surface.
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3.2. Extension to consider thermal influence

The above system (8) extends to more general constitutive models incorporating thermal effects, such as thermo-elasticity [30]
and thermo-visco-plasticity [37]. These irreversible processes require an additional conservation law and variable to describe the 
total balance of energy in the system (known as the first law of thermodynamics). Referring to Reference [30,37] and employing the 
ALE transformation rule (A.2), the first law of thermodynamics in terms of entropy density 𝜂𝝌 per unit referential volume can be 
expressed as

𝜕

𝜕𝑡

||||𝝌𝜂𝝌 − DIV𝝌

(
𝜂𝑿𝑯

𝑇
𝚿𝑾 −

𝑸𝝌

𝜃

)
=

𝐽𝚿
𝜃

(
𝑠𝑿 + ̇Phy

)
− 1

𝜃2

(
𝛁𝝌𝜃
)
⋅𝑸𝝌 , (11)

where 𝜂𝝌 = 𝐽𝚿𝜂𝑿 and 𝜂𝑿 is the entropy density per unit of material volume. Note that the expression (11) for entropy assumes 
smooth solutions and remains a representation of the first law. In this equation (11), 𝜃 > 0 denotes the absolute temperature, 𝑸𝝌

represents the heat flux defined in the reference domain, 𝑠𝑿 is the heat source term in the material configuration and the term 
𝜂𝑿𝑯

𝑇
𝚿𝑾 arises due to ALE convective effects. The right-hand side terms comprise the entropy sources per unit reference volume, 

with ̇Phy representing the material time rate of physical dissipation introduced by constitutive models, such as plasticity. This is 
mathematically defined as

̇Phy = −
𝜕(𝑭 , 𝜂𝑿 ,𝜶)

𝜕𝜶
∶ 𝜕

𝜕𝑡

||||𝑿𝜶. (12)

This term is zero in the case of a reversible elastic model [26]. Here, (𝑭 , 𝜂𝑿 , 𝜶) is the internal energy per unit material volume and 
𝜶 represents a set of internal state variables measured with respect to the material configuration. The shorthand notation ̇[∙] denotes 

holding the material coordinate 𝑿 fixed, that is ̇[∙] = 𝜕

𝜕𝑡

||||𝑿 [∙]. This notation will be used throughout the entire manuscript.

Concerning the heat flux vector 𝑸𝝌 , we adopt Fourier’s law for isotropic materials in a reference configuration

𝑸𝝌 = −𝑲𝚽𝛁𝝌𝜃; 𝑲𝚽 = ℎ𝐽−1
𝚽 𝑯𝑇

𝚽𝑯𝚽, (13)

where ℎ represents the non-negative thermal conductivity coefficient calibrated in the spatial configuration.

Remark 1 Utilising the Calorimetry relationships relating internal energy density  , entropy density 𝜂𝑿 and temperature 𝜃, and taking 
into account the relation 𝜃 = 𝜕

𝜕𝜂𝑿
, we obtain a simple expression linking temperature and entropy [43]

Θ(𝑭 , 𝜂𝑿 ) = 𝜃𝑅 exp
(

𝜂𝑿 − �̃�𝑿 (𝐽 )
𝑐𝑣

)
= 𝜃(𝑿, 𝑡), (14)

where 𝜃𝑅 denotes the reference temperature, �̃�𝑿 (𝐽 ) represents an entropy function as a function of the Jacobian and evaluated at the 
reference temperature 𝜃𝑅, and 𝑐𝑣 = 𝜌𝑿𝐶𝑉 , with 𝐶𝑉 and 𝑐𝑣 denoting the specific heat per unit mass and per unit material volume, 
respectively, which have been assumed to be constant. The notation Θ and 𝜃 are used interchangeably to denote the same temperature 
with different functional dependencies.

3.3. Combined system of first-order conservation laws for solid dynamics

By combining the physical conservation equations, including the conservation of linear momentum (8a), conservation of mass 
(8d) and conservation of total energy (11), together with the supplementary geometric conservation equations, namely (8b) and (8c), 
a set of first-order conservation equations can be succinctly expressed as an ALE hyperbolic system (with respect to the referential 
domain) as

𝜕

𝜕𝑡

||||𝝌 𝝌 +
3∑

𝐼=1

𝜕 𝐼
𝝌

𝜕𝜒𝐼

= 𝝌 , (15)

with vector of conserved variables  𝝌 , flux vector  𝐼
𝝌

and source term 𝝌 described by

 𝝌 =

⎡⎢⎢⎢⎢⎢⎣

𝒑𝝌
𝑭𝚽
𝑭𝚿
𝐽𝚿
𝜂𝝌

⎤⎥⎥⎥⎥⎥⎦
; 

𝐼
𝝌
= −

⎡⎢⎢⎢⎢⎢⎣

𝑷𝝌𝐼

�̂�⊗ 𝐼

𝑾 ⊗ 𝐼

𝑯𝚿 ∶
(
𝑾 ⊗ 𝐼

)(
𝜂𝑿𝑯

𝑇
𝚿𝑾 − 𝑸𝝌

𝜃

)
⋅ 𝐼

⎤⎥⎥⎥⎥⎥⎦
; 𝝌 =

⎡⎢⎢⎢⎢⎢⎣

𝒇𝝌
𝟎
𝟎
0

𝐽𝚿
𝜃

(
𝑠𝑿 + ̇Phy

)
− 1

𝜃2
𝑸𝝌 ⋅

(
𝛁𝝌𝜃
)
⎤⎥⎥⎥⎥⎥⎦
, (16)

where, for the sake of compactness, we define( )

5

𝑷𝝌 = 𝑷 + 𝒑𝑿 ⊗𝑾 𝑯𝚿. (17)
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Table 1

Physical variables associated with generic conservation variables, fluxes and source terms.

Total Lagrangian Unknowns Fluxes Source terms

Mass 𝜌𝑿 0 0
Linear momentum 𝒑𝑿 −𝑷 𝒇𝑿
Deformation gradient 𝑭 −𝒗⊗ 𝑰 𝟎
Entropy 𝜂𝑿

𝑸𝑿

𝜃

1
𝜃
𝑠𝑿 − 1

𝜃2
𝑸𝑿 ⋅𝛁𝑿𝜃

Updated Reference Lagrangian

Mass 𝐽𝚿𝜌𝑿 0 0
Linear momentum 𝐽𝚿𝒑𝑿 −𝑷𝑯𝚿 𝐽𝚿𝒇𝑿
Deformation gradient 𝑭𝚽 −𝒗⊗ 𝑰 𝟎
Entropy 𝐽𝚿𝜂𝑿

𝑸𝝌

𝜃

𝐽𝚿
𝜃
𝑠𝑿 − 1

𝜃2
𝑸𝝌 ⋅𝛁𝝌𝜃

Eulerian

Mass 𝜌𝒙 𝜌𝒙𝒗 0
Linear momentum 𝒑𝒙 −

(
𝝈 − 𝒑𝒙 ⊗ 𝒗

)
𝐽−1𝒇𝑿

Deformation gradient 𝑭 −1 (
𝑭 −1𝒗

)
⊗ 𝑰 𝟎

Entropy 𝜂𝒙
𝒒

𝜃
+ 𝜂𝒙𝒗

𝐽−1

𝜃
𝑠𝑿 − 1

𝜃2
𝒒 ⋅𝛁𝒙𝜃

Notice that the variables per unit of spatial volume are 𝜌𝒙 = 𝐽−1𝜌𝑿 , 𝒑𝒙 = 𝐽−1𝒑𝑿 , 𝜂𝒙 = 𝐽−1𝜂𝑿
and the Cauchy stress tensor 𝝈 = 𝑷𝑯−1 .

In addition to the initial and boundary (essential and natural) conditions necessary for the complete definition of the initial bound-
ary value problem, the closure of the system (15) requires the incorporation of a suitable constitutive law that must satisfy various 
physical criteria, including thermodynamic consistency (as verified through the Coleman–Noll procedure [44,45]) and adherence 
to the principle of objectivity [4]. In the context of thermo-elasticity, achieving this involves introducing an appropriate internal 
energy potential, denoted as (𝑭 , 𝜂𝑿 ). This potential ensures that stress 𝑷 , deformation gradient tensor 𝑭 and entropy 𝜂𝑿 are re-

lated through the expression 𝑷 = 𝜕(𝑭 ,𝜂𝑿 )
𝜕𝑭

. Furthermore, to ensure stability, it is crucial that the internal energy potential  exhibits 
rank-one convexity (or ellipticity) in the sense of the Legendre-Hadamard condition [46,47]. Extension to consider path-dependent 
constitutive models will be explored in Section 4.

Interestingly, through the imposition of suitable kinematic conditions [26], the ALE system (15) can degenerate into three al-
ternative systems of first-order conservation equations. As shown in Table 1, these formulations include the well-established Total 
Lagrangian formulation [27,29,30,37,41,48–60], the Eulerian formulation and the recently proposed Updated Reference Lagrangian 
formulation [32,37], which incorporates the concept of incremental kinematics. Thus, the ALE system (15) emerges as an elegant 
generalisation of various existing continuum conservation laws descriptions.

Remark 2 The assessment of the hyperbolicity of the underlying system (15) is crucial to ensure the existence of real wave speeds 
for the entire range of deformation states. As detailed in References [26,30], the requirement of (rank-one) convex internal energy 
functional is sufficient to ensure hyperbolicity for a given material mesh motion, resulting in (1) the existence of plane travelling 
waves within the solid (through the use of flux derivatives) and (2) the propagation of strong discontinuities at physical shock speeds 
(through the use of the jump in fluxes). The relationship between the referential wave speed 𝑈𝝌 and the material wave speed 𝑈𝑿 is 
summarised below for completeness

𝑈𝝌 =
Λ𝑯𝚿

𝐽𝚿

(
𝑈𝑿 −𝑾 ⋅𝑵𝑿

)
; Λ𝑯𝚿

𝑵𝑿 =𝑯𝚿𝑵𝝌 . (18)

We refer the reader to Reference [26] for a detailed explanation.

4. Extension to finite strain plasticity

In various engineering applications, the presence of irreversible (or permanent) strain, coupled with thermal- and strain rate-
dependent plastic deformation, is a common phenomenon. To describe this behaviour, we employ a von Mises plasticity model 
utilising the nonlinear Johnson-Cook hardening law [37], which is summarised in this section for completeness. In the context of 
large strains, it is customary to multiplicatively decompose the deformation gradient tensor 𝑭 into an elastic component 𝑭 𝑒 and a 
permanent deformation component 𝑭 𝑝 as [4,61]

𝑭 = 𝑭 𝑒𝑭 𝑝. (19)

This decomposition leads to the evaluation of the elastic left Cauchy-Green tensor 𝒃𝑒, expressed in terms of the overall deformation 
gradient 𝑭 and an inelastic right Cauchy-Green tensor 𝑪𝑝, described by
6

𝒃𝑒 = 𝑭 𝑒𝑭
𝑇
𝑒 = 𝑭𝑪−1

𝑝 𝑭 𝑇 . (20)
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With this at hand, the state variable described in (12) corresponds to the inverse of the plastic right Cauchy-Green tensor, denoted 
as 𝜶 =𝑪−1

𝑝 .
To establish a physically meaningful flow rule, it is useful to apply the concept of work conjugacy. In the context of elasto-

plasticity, the material time derivative of plastic dissipation ̇Phy (per unit material volume) is given in terms of Kirchhoff stress 𝝉
and the plastic rate of deformation 𝒍𝑝 as [4]

̇Phy = 𝝉 ∶ 𝒍𝑝; 𝒍𝑝 = −1
2
𝑑𝒃𝑒
𝑑𝑡

||||𝑭=const
𝒃−1𝑒 = −1

2
𝑭

(
𝜕

𝜕𝑡

||||𝑿𝑪−1
𝑝

)
𝑪𝑝𝑭

−1, (21)

where 𝑑𝒃𝑒
𝑑𝑡

|||𝑭=const
describes the material time derivative of 𝒃𝑒 assuming 𝑭 constant. For an in-depth understanding, we recommend 

referring to Reference [4]. To adhere to the principle of maximum plastic dissipation, it is crucial to establish a correlation between 
the plastic rate of deformation and the flow rule, ensuring the material efficiently dissipates energy due to plastic deformation.

In this study, we employ the von Mises based Johnson-Cook hardening law, characterised by a yield function 𝑓 dependent on the 
deviatoric Kirchhoff stress 𝝉 ′ and a yield stress 𝜏𝑦. The yield stress is a function of the equivalent plastic strain �̄�𝑝, its plastic strain 
rate ̇̄𝜀𝑝 (involving the material time derivative) and temperature 𝜃, expressed as

𝑓
(
𝝉 ′, �̄�𝑝, ̇̄𝜀𝑝, 𝜃

)
=
√

3
2
(𝝉 ′ ∶ 𝝉 ′)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝜏

−𝜏𝑦
(
�̄�𝑝, ̇̄𝜀𝑝, 𝜃

) ≤ 0. (22)

Here, 𝜏 represents the generalised scalar von Mises equivalent stress. The Johnson-Cook hardening law is described by

𝜏𝑦
(
�̄�𝑝, ̇̄𝜀𝑝, 𝜃

)
=
(
𝜏0𝑦 +𝐻�̄�𝑁𝑝

)[
1 +𝐶 ln

(
̇̄𝜀𝑝

�̇�0

)][
1 − (𝑔(𝜃))𝑀

]
, (23)

where 𝑔(𝜃) is defined as

𝑔(𝜃) =
⎧⎪⎨⎪⎩
0 if 𝜃 < 𝜃transition
𝜃−𝜃transition
𝜃melting−𝜃𝑅

if 𝜃transition ≤ 𝜃 ≤ 𝜃melting

1 𝜃 > 𝜃melting.

(24)

In the above expression, 𝜃 denotes the current temperature, 𝜃melting is the melting temperature of the material and 𝜃transition is the 
temperature at or below which there is temperature dependence of the yield stress. Additionally, 𝜏0𝑦 represents the initial yield 
stress and �̇�0 is the reference strain rate calibrated based on the material. The remaining material constants include the material 
hardening parameter 𝐻 , hardening exponent 𝑁 , strain-rate coefficient 𝐶 and temperature exposure 𝑀 . Notably, when 𝜃 > 𝜃melting, 
the material is assumed to melt and behave like a fluid, offering no shear resistance since 𝜏𝑦 = 0. Interestingly, the rate-independent 
linear hardening law can be simply recovered by imposing the values 𝑁 = 1, 𝐶 = 0 and 𝜃transition ≈∞ (which in turn implies 𝑔(𝜃) = 0).

The associated flow rule, where the direction of the plastic strain rate coincides with the gradient of the yield function 
𝑓
(
𝝉 ′, �̄�𝑝, ̇̄𝜀𝑝, 𝜃

)
, can be defined as follows

𝒍𝑝 = −1
2
𝑑𝒃𝑒
𝑑𝑡

||||𝑭=const
𝒃−1𝑒 = �̇�

𝜕𝑓
(
𝝉 ′, �̄�𝑝, ̇̄𝜀𝑝, 𝜃

)
𝜕𝝉

, (25)

where �̇� , a proportionality factor, is referred to as the consistency parameter (or plastic multiplier). It is expressed as a rate to maintain 
dimensional consistency with the plastic rate of deformation 𝒍𝑝. By comparing and rearranging expressions (21) and (25), the material 
time derivative of the inelastic right Cauchy-Green tensor after some simple algebra can be obtained

𝜕

𝜕𝑡

||||𝑿𝑪−1
𝑝 = −2�̇�𝑭 −1

(
𝜕𝑓
(
𝝉 ′, �̄�𝑝, ̇̄𝜀𝑝, 𝜃

)
𝜕𝝉

𝒃𝑒

)
𝑭 −𝑇 . (26)

The next step involves establishing the relationship between the consistency parameter �̇� and the evolution of the internal hard-
ening variable �̄�𝑝. This can be achieved through a traditional work-hardening approach. By recalling the von-Mises equivalent stress 
𝜏 from (22), the material time rate of �̄�𝑝 is defined to be the work conjugate to 𝜏

𝜏
𝜕

𝜕𝑡

||||𝑿 �̄�𝑝 = ̇Phy = 𝝉 ∶

(
�̇�
𝜕𝑓 (𝝉 ′, �̄�𝑝, ̇̄𝜀𝑝, 𝜃)

𝜕𝝉

)
= 𝝉 ∶ �̇�

𝝉 ′√
2
3 (𝝉

′ ∶ 𝝉 ′)
= 𝜏�̇�. (27)

Comparing the first term and the last term yields

𝜕 |

7

𝜕𝑡
|||𝑿 �̄�𝑝 = �̇� . (28)
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Finally, using the local transformation rule described in (A.4), the ALE evolution equations for 𝑪−1
𝑝 and �̄�𝑝 are given by

𝐽𝚿
𝜕

𝜕𝑡

||||𝝌𝑪−1
𝑝 −

(
𝛁𝝌𝑪−1

𝑝

)(
𝑯𝑇

𝚿𝑾
)
= −2𝐽𝚿�̇�𝑭−1

(
𝜕𝑓
(
𝝉 ′, �̄�𝑝, ̇̄𝜀𝑝, 𝜃

)
𝜕𝝉

𝒃𝑒

)
𝑭 −𝑇 ; (29a)

𝐽𝚿
𝜕

𝜕𝑡

||||𝝌 �̄�𝑝 − (𝛁𝝌 �̄�𝑝) ⋅ (𝑯𝑇
𝚿𝑾

)
= 𝐽𝚿�̇� , (29b)

respectively.

Remark 3 It is possible to derive the appropriate conjugate variable for the material time rate of the inverse of the inelastic right 
Cauchy-Green tensor. To begin, recall the relation

̇Phy = − 𝜕
𝜕𝑪−1

𝑝

∶ 𝜕

𝜕𝑡

||||𝑿𝑪−1
𝑝 = 𝝉 ∶ 𝒍𝑝. (30)

Utilising the expression 𝝉 = 𝑷𝑭 𝑇 and the plastic rate of deformation as described in (21), the last term in (30) can be alternatively 
expressed as

𝝉 ∶ 𝒍𝑝 = −
[1
2
𝑭 𝑇𝑷𝑪𝑝

]
∶ 𝜕

𝜕𝑡

||||𝑿𝑪−1
𝑝 . (31)

Substituting (31) into (30) and comparing them leads to
𝜕

𝜕𝑪−1
𝑝

= 1
2
𝑭 𝑇𝑷𝑪𝑝. (32)

5. Mesh smoothing procedure

In general, the purpose of the ALE formulation is to serve as an adaptive mesh movement technique, aiming to minimise spatial 
mesh distortion for improved solution accuracy at potentially lower computational costs. Building on the work of Armero and Love 
[21], the material-based linear momentum 𝒑𝑊 (per unit reference volume) is determined through a conservation-type of law, with 
the corresponding jump condition, resulting in

𝜕

𝜕𝑡

||||𝝌𝒑𝑾 − DIV𝝌𝑷𝑾 = 𝟎; 𝑈𝝌 �𝒑𝑾 � = −�𝑷𝑾 �𝑵𝝌 . (33)

Here, 𝒑𝑾 = 𝜌𝑅𝑾 and 𝑷𝑾 represents the first Piola Kirchhoff stress associated with the material motion. This conservation equation 
tracks the material velocity 𝑾 from the referential domain to the material domain.

The remaining unknown in the above expression is the definition of the stress tensor, a measure of material force per unit area 
acting on a surface in the reference configuration. This is achieved by introducing the scalar potential function Π through a convex 
combination between the potential function based on 𝑭𝚿 and �̄�𝚽, defined as

Π(𝑭𝚿,𝑭𝚽) = (1 − 𝛼)Ψ̂(𝑭𝚿) + 𝛼Ψ̂(�̄�𝚽), (34)

where the distortion of the spatial mesh relative to the reference mesh is characterised by �̄�𝚽 = �̄� (𝑭 )𝑭𝚿. Here, the function �̄� (𝑭 ) is 
designed to selectively incorporate certain aspects of deformation pertinent to the specific problem being addressed. We refer to the 
numerical examples presented in Section 9 that demonstrate this concept. In the equation above, the terms on the right-hand side 
depend on the deviatoric component of a constitutive model Ψ̂. The non-dimensional parameter 𝛼 ranges from 0 to 1.

Differentiating expression (34) in time for a given deformation gradient 𝑭 provides

𝑷𝑾 ∶ 𝜕

𝜕𝑡

||||𝝌𝑭𝚿 = 𝜕

𝜕𝑡

||||𝝌Π(𝑭𝚿, �̄�𝚽)

=

[
(1 − 𝛼)

𝜕Ψ̂(𝑭𝚿)
𝜕𝑭𝚿

]
∶ 𝜕

𝜕𝑡

||||𝝌𝑭𝚿 + 𝛼
𝜕Ψ̂(�̄�𝚽)
𝜕�̄�𝚽

∶
(
�̄�

𝜕

𝜕𝑡

||||𝝌𝑭𝚿

)

=

[
(1 − 𝛼)

𝜕Ψ̂(𝑭𝚿)
𝜕𝑭𝚿

+ 𝛼�̄�
𝑇 𝜕Ψ̂(�̄�𝚽)

𝜕�̄�𝚽

]
∶ 𝜕

𝜕𝑡

||||𝝌𝑭𝚿,

(35)

from which gives

𝑷𝑾 = (1 − 𝛼)
𝜕Ψ̂(𝑭𝚿)
𝜕𝑭𝚿

+ 𝛼�̄�
𝑇 𝜕Ψ̂(�̄�𝚽)

𝜕�̄�𝚽
. (36)

Remark 4 To suppress unwanted oscillations resulting from the mesh motion, a simple technique is to incorporate Rayleigh type of 
8

damping. This damping force can be integrated into the material-based linear momentum conservation equation (33), yielding
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𝜕

𝜕𝑡

||||𝝌𝒑𝑾 − DIV𝝌𝑷𝑾 = −𝜁𝒑𝑾 . (37)

Here, the coefficient 𝜁 (per second) controls the amount of numerical artificial viscosity introduced to the material mesh motion.

6. Ballistic energy and second law of thermodynamics

To provide a meaningful physical interpretation to the conjugate fields of the underlying system (15), consider the Ballistic energy 
𝝌 per unit of referential volume defined by

𝝌 (𝝌 , 𝑡) = ̂𝝌 (𝒑𝝌 ,𝑭𝚽,𝑭𝚿, 𝐽𝚿, 𝜂𝝌 ,𝑪
−1
𝑝 ) = 1

2𝜌𝝌
𝒑𝝌 ⋅ 𝒑𝝌 + 𝐽𝚿

(
𝑭
(
𝑭𝚽,𝑭𝚿

)
, 𝐽−1

𝚿 𝜂𝝌 ,𝑪
−1
𝑝

)
− 𝜃𝑅𝜂𝝌 , (38)

with 𝜌𝝌 = 𝐽𝚿𝜌𝑅 and 𝝌 (𝝌 , 𝑡) and ̂𝝌 (𝒑𝝌 , 𝑭𝚽, 𝑭𝚿, 𝐽𝚿, 𝜂𝝌 , 𝑪−1
𝑝 ) represent alternative functional representations of the same magni-

tude. In this equation, the first term of the right-hand side denotes kinetic energy, the second term represents internal energy and the 
third term represents thermal energy.

With appropriate energy conjugate fields for the two deformation measures {𝑭𝚽, 𝑭𝚿} defined as

𝑷𝚽 = 𝐽𝚿
𝜕(𝑭 (𝑭𝚽,𝑭𝚿), 𝐽−1

𝚿 𝜂𝝌 ,𝑪
−1
𝑝 )

𝜕𝑭𝚽
; 𝑷𝚿 = 𝐽𝚿

𝜕(𝑭 (𝑭𝚽,𝑭𝚿), 𝐽−1
𝚿 𝜂𝝌 ,𝑪

−1
𝑝 )

𝜕𝑭𝚿
, (39)

along with the energy conjugate to the entropy density 𝜂𝝌

𝜃 = 𝐽𝚿
𝜕(𝑭 (𝑭𝚽,𝑭𝚿), 𝐽−1

𝚿 𝜂𝝌 ,𝑪
−1
𝑝 )

𝜕𝜂𝝌
, (40)

the associated work conjugates 𝝌 become

𝝌 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕̂𝝌
𝜕𝒑𝝌

𝜕̂𝝌
𝜕𝑭𝚽

𝜕̂𝝌
𝜕𝑭𝚿

𝜕̂𝝌
𝜕𝐽𝚿

𝜕̂𝝌
𝜕𝜂𝝌

𝜕̂𝝌
𝜕𝑪−1

𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒗

𝑷𝚽

𝑷𝚿

−
𝜗

𝐽𝚿
𝜕

𝜕𝑪−1
𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒗

𝑷𝑯𝚿

−𝑭 𝑇𝑷𝑯𝚿

−
𝜗

1
2𝐽𝚿𝑭

𝑇𝑷𝑪𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (41)

Use is made of (32). Here, 𝜗 = 𝜃 − 𝜃𝑅 represents the temperature difference and  =  −
((𝑭 , 𝜂𝑿 ) − 𝜃𝜂𝑿

)
denotes the (thermal-

mechanical based) Lagrangian function, defined as a combination of the kinetic energy  = 1
2𝜌𝑅 (𝒗 ⋅ 𝒗) and the Helmholtz’s free 

energy functional (𝑭 , 𝜂𝑿 ) − 𝜃𝜂𝑿 .
It is instructive to revisit the global version of the second law of thermodynamics expressed in terms of the Ballistic energy density 

̂. In this work, we examine the second law particularised to the case of a prescribed material mesh motion, that is, 𝒑𝑾 will be 
assumed to be known ab initio or prescribed. This implies that the corresponding conservation law (33) can be removed from the 
analysis presented below. By employing expression (41), we can obtain the time derivative of the Ballistic energy using the chain rule

𝑑

𝑑𝑡 ∫
Ω𝝌

𝝌 𝑑Ω𝝌 = ∫
Ω𝝌

𝜕

𝜕𝑡

||||𝝌 ̂𝝌 (𝒑𝝌 ,𝑭𝚽,𝑭𝚿, 𝐽𝚿, 𝜂𝝌 ,𝑪
−1
𝑝 )𝑑Ω𝝌

= ∫
Ω𝝌

(
𝒗 ⋅

𝜕

𝜕𝑡

||||𝝌𝒑𝝌 + 𝑷𝚽 ∶ 𝜕

𝜕𝑡

||||𝝌𝑭𝚽 + 𝑷𝚿 ∶ 𝜕

𝜕𝑡

||||𝝌𝑭𝚿 − 𝜕

𝜕𝑡

||||𝝌𝐽𝚿
)

𝑑Ω𝝌

+ ∫
Ω𝝌

(
𝜗
𝜕

𝜕𝑡

||||𝝌𝜂𝝌 + 𝐽𝚿
𝜕

𝜕𝑪−1
𝑝

∶ 𝜕

𝜕𝑡

||||𝝌𝑪−1
𝑝

)
𝑑Ω𝝌 .

(42)
9

Further expanding this expression yields
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𝑑

𝑑𝑡 ∫
Ω𝝌

𝝌 𝑑Ω𝝌 = ∫
Ω𝝌

(
𝒗 ⋅

𝜕

𝜕𝑡

||||𝝌𝒑𝝌 +
(
𝑷𝑯𝚿

)
∶ 𝜕

𝜕𝑡

||||𝝌𝑭𝚽 +
(
𝚺𝑯𝚿

)
∶ 𝜕

𝜕𝑡

||||𝝌𝑭𝚿

)
𝑑Ω𝝌

+ ∫
Ω𝝌

(
𝜗
𝜕

𝜕𝑡

||||𝝌𝜂𝝌 + 𝐽𝚿
𝜕

𝜕𝑪−1
𝑝

∶ 𝜕

𝜕𝑡

||||𝝌𝑪−1
𝑝

)
𝑑Ω𝝌 .

(43)

Pairs such as 
{
𝒗, 𝜕

𝜕𝑡

||||𝝌𝒑𝝌
}

, 
{
𝑷𝑯𝚿, 𝜕

𝜕𝑡

||||𝝌𝑭𝚽

}
, 
{
𝚺𝑯𝚿, 𝜕

𝜕𝑡

||||𝝌𝑭𝚿

}
and 

{
𝜗, 𝜕

𝜕𝑡

||||𝝌𝜂𝝌
}

are said to be dual or work conjugate with 

respect to the referential volume, yielding work rate per unit of referential volume. For instance, the energy conjugate field to the time 
rate of the material-based deformation gradient is the classical (material-based) Eshelby stress tensor defined as 𝚺 = − 

(
𝑭 𝑇𝑷 +𝑰).

Note that the last term in the integrand in above equation (43), referred to as the rate of the plastic dissipation introduced by the 
plasticity model can be expressed in various alternative ways as

𝜕

𝜕𝑡

||||𝝌𝝌

Phy
= −

𝜕̂𝝌
𝜕𝑪−1

𝑝

∶ 𝜕

𝜕𝑡

||||𝝌𝑪−1
𝑝 = −𝐽𝚿

𝜕
𝜕𝑪−1

𝑝

∶ 𝜕

𝜕𝑡

||||𝝌𝑪−1
𝑝 . (44)

Consequently, by substituting the linear momentum equation (8a) and the geometric conservation equations (8b) and (8c) into 
expression (43), we arrive at

𝑑

𝑑𝑡 ∫
Ω𝝌

𝝌 𝑑Ω𝝌 = ∫
Ω𝝌

[
DIV𝝌

((
𝑷𝑯𝚿

)𝑇
𝒗+ 2𝑯𝑇

𝚿𝑾
)
+ 𝒗 ⋅ 𝒇𝝌 −𝛁𝝌 ⋅

(
𝑯𝑇

𝚿𝑾
)]

𝑑Ω𝝌

+ ∫
Ω𝝌

[
−
(
𝑷𝑯𝚿

)
∶ 𝛁𝝌𝒗+

(
𝑷𝑯𝚿

)
∶𝛁𝝌 �̂�+

(
𝚺𝑯𝚿

)
∶𝛁𝝌𝑾

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟(

𝜕
𝜕𝑭

∶ 𝜕𝑭
𝜕𝝌

)
⋅
(
𝑯𝑇

𝚿𝑾
)
−𝑯𝚿∶𝛁𝝌𝑾

𝑑Ω𝝌

+ ∫
Ω𝝌

𝜗
𝜕

𝜕𝑡

||||𝝌𝜂𝝌𝑑Ω𝝌 − ∫
Ω𝝌

𝜕

𝜕𝑡

||||𝝌𝝌

Phy
𝑑Ω𝝌 .

(45)

Moreover, considering the referential gradient of the Lagrangian function represented by 𝛁𝝌 = 𝛁𝝌 −𝛁𝝌
( (𝑭 , 𝜂𝑿 ,𝑪−1

𝑝

)
− 𝜃𝜂𝑿

)
, 

and utilising the relationship 𝑯𝚿 ∶𝛁𝝌𝑾 = DIV𝝌
(𝑯𝑇

𝚿𝑾
)
−
(
𝛁𝝌) ⋅ (𝑯𝑇

𝚿𝑾
)
, the above expression, after some careful algebraic 

manipulation, reduces to

𝑑

𝑑𝑡 ∫
Ω𝝌

𝝌 𝑑Ω𝝌 = ∫
Ω𝝌

(
DIV𝝌

((
𝑷𝑯𝚿

)𝑇
𝒗+ (2−)𝑯𝑇

𝚿𝑾
)
+ 𝒗 ⋅ 𝒇𝝌 +𝛁𝝌𝜃 ⋅

(
𝜂𝑯𝑇

𝚿𝑾
))

𝑑Ω𝝌

+ ∫
Ω𝝌

𝜗
𝜕

𝜕𝑡

||||𝝌𝜂𝝌𝑑Ω𝝌 − ∫
Ω𝝌

𝐽𝚿

[
− 𝜕
𝜕𝑪−1

𝑝

∶ 𝜕

𝜕𝑡

||||𝑿𝑪−1
𝑝

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

̇Phy

𝑑Ω𝝌 ,
(46)

with the physical dissipation term ̇Phy featuring in the integrand of the last term of above equation. Furthermore, by substituting 
the entropy density equation (11) into (46), and noting that 𝜗DIV𝝌

(
𝜂𝑯𝑇

𝚿𝑾
)
= DIV𝝌

(
𝜗𝜂𝑯𝑇

𝚿𝑾
)
− 𝛁𝝌𝜃

(
𝜂𝑯𝑇

𝚿𝑾
)
, equation (46)

becomes

𝑑

𝑑𝑡 ∫
Ω𝝌

𝝌 𝑑Ω𝝌 − Π̇ext
𝝌

−ext
𝝌

= ∫
Ω𝝌

𝜃𝑅
𝜃2
𝑸𝝌 ⋅𝛁𝝌𝜃 𝑑Ω𝝌 − ∫

Ω𝝌

𝜃𝑅
𝜃

𝐽𝚿̇Phy

⏟⏞⏞⏞⏟⏞⏞⏞⏟
≥0

𝑑Ω𝝌 .
(47)

Observing that in the above expression, the material time rate of physical plastic dissipation is always non-negative (that is, ̇Phy ≥ 0). 
Here, Π̇ext

𝝌
being the mechanical power associated with external forces as

Π̇ext
𝝌

= ∫
Ω𝝌

𝒗 ⋅ 𝒇𝝌 𝑑Ω𝝌 + ∫
𝜕Ω𝝌

𝒗𝐵 ⋅ 𝒕𝐵 𝑑𝐴𝝌 ; 𝒕𝐵 = 𝑷𝑯𝚿𝑵𝝌 , (48)

and ext
𝝌

being the heat source and heat flux added (removed) to (from) the system as

ext
𝝌

= ∫
𝜗
𝑟𝝌 𝑑Ω𝝌 − ∫

𝜗
𝑞𝐵 𝑑𝐴𝝌 . (49)
10

Ω𝝌
𝜃

𝜕Ω𝝌
𝜃



Journal of Computational Physics 518 (2024) 113322T.B.J. Di Giusto, C.H. Lee, A.J. Gil et al.

𝑎

𝑏1

𝑏2

𝑏3

𝑏4

𝑏5

𝑏6

𝑵 𝑖
𝝌𝑵 𝑗

𝝌

𝑪
𝑎𝑏3
𝝌

Ω𝝌 ,𝑎

𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6 ∈ Λ𝑎

𝜕Ω𝝌

(a) Interior nodes.

𝑵 𝑖
𝝌

𝑵 𝑗
𝝌

𝑪
𝑎𝑏2
𝝌

𝑎

𝑏1

𝑏2

𝑏3

𝑏4

Ω𝝌 ,𝑎

𝑏1, 𝑏2, 𝑏3, 𝑏4 ∈ Λ𝑎
𝑏1, 𝑏4 ∈ Λ𝐵

𝑎

𝜕Ω𝝌

(b) Boundary nodes.

Fig. 2. Control volumes for (a) an interior node and (b) a boundary node for a median dual tessellation visualised in 2D.

Recalling Fourier’s law of heat conduction (13), the first term on the right-hand side of expression (47) is non-positive, as demon-
strated below

𝑸𝝌 ⋅𝛁𝝌𝜃 = −
(
𝑲𝝌𝛁𝝌𝜃

)
⋅𝛁𝝌𝜃 = −𝑲𝝌 ∶

(
𝛁𝝌𝜃 ⊗𝛁𝝌𝜃

) ≤ 0. (50)

With this at hand, equation (47) can finally be transformed into the following inequality

𝑑

𝑑𝑡 ∫
Ω𝝌

𝝌 𝑑Ω𝝌 − Π̇ext
𝝌

−ext
𝝌

≤ 0. (51)

This inequality represents a valid expression for the second law of thermodynamics of a system. Satisfaction of inequality (51) is 
a necessary ab initio condition to ensure stability, commonly known as the classical Coleman–Noll procedure. This concept will be 
further exploited in Section 7.2 when introducing Godunov-type numerical dissipation to the finite volume spatial discretisation.

7. Numerical scheme

7.1. Vertex-centred finite volume spatial discretisation

The vertex centred finite volume spatial discretisation presented in this work requires the introduction of a median dual mesh 
[41,55,62,63] for defining control volumes (see Fig. 2). With this in mind and employing Gauss divergence theorem, expression (15)
can be spatially discretised over a fixed referential control volume Ω𝑎

𝝌
to give

Ω𝑎
𝝌

𝑑

𝑑𝑡


𝑎
𝝌
= − ∫

𝜕Ω𝑎
𝝌

𝑵𝝌
𝑑𝐴𝝌 +Ω𝑎

𝝌


𝑎
𝝌
. (52)

Here,  𝑎
𝝌

and 𝑎
𝝌

are the average values of both the conservation variables and source term vector within the fixed referential 
control volume, respectively. Moreover, the surface integral of (52) is approximated through a second-order central difference scheme, 
resulting in

Ω𝑎
𝝌

𝑑

𝑑𝑡


𝑎
𝝌
= −
⎛⎜⎜⎝
∑
𝑏∈Λ𝑎


𝐼

𝑵𝑎𝑏
𝝌

||𝑪𝑎𝑏
𝝌
||+ ∑

𝛾∈Λ𝐵
𝑎


𝐵
𝝌 ,𝑎𝑪

𝛾
𝝌

⎞⎟⎟⎠+Ω𝑎
𝝌


𝑎
𝝌
, (53)

where 𝑏 ∈Λ𝑎 represents the set of neighbouring control volumes 𝑏 associated with the control volume 𝑎 and 𝑪𝛾
𝝌
= 𝐴𝛾

3 𝑵𝛾 represents 
the (tributary) boundary area vector. For a given edge connecting nodes 𝑎 and 𝑏, the mean referential area vector 𝑪𝑎𝑏

𝝌
satisfies the 

reciprocal relation, for instance 𝑪𝑎𝑏
𝝌

= −𝑪𝑏𝑎
𝝌

. The terms within the parenthesis in (53) correspond to the evaluation of both internal 
interface fluxes  𝐼

𝑵𝑎𝑏
𝝌

and boundary fluxes 𝐵
𝝌 ,𝑎. This evaluation comprises a summation over edges (first term in the parenthesis) 

and a summation over boundary faces (second term in the parenthesis). The internal flux  𝐼

𝑵𝑎𝑏
𝝌

= 12
[
𝑵𝝌

( 𝑎) + 𝑵𝝌
( 𝑏)

]
denotes 

the average states of the left and the right control volumes of a given edge 𝑎𝑏. The boundary flux 𝐵
𝑎 is enforced through either 

Dirichlet or Neumann boundaries.
Expression (53) is now particularised to the specific variables addressed in this paper, resulting in the following semi-discrete 
11

equations
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Ω𝑎
𝝌

𝑑

𝑑𝑡
𝒑𝑎
𝝌
= 𝑻 𝑎

𝝌
+
∑
𝛾∈Λ𝐵

𝑎

𝒕𝐵𝑎 ||𝑪𝛾
𝝌
||+Ω𝑎

𝝌
𝒇 𝑎
𝝌
; (54a)

Ω𝑎
𝝌

𝑑

𝑑𝑡
𝑭 𝑎

𝚽 =
∑
𝑏∈Λ𝑎

1
2
(
�̂�𝑎 + �̂�𝑏

)
⊗𝑪𝑎𝑏

𝝌
+
∑
𝛾∈Λ𝐵

𝑎

�̂�𝐵𝑎 ⊗𝑪𝛾
𝝌
; (54b)

Ω𝑎
𝝌

𝑑

𝑑𝑡
𝑭 𝑎

𝚿 =
∑
𝑏∈Λ𝑎

1
2
(
𝑾 𝑎 +𝑾 𝑏

)
⊗𝑪𝑎𝑏

𝝌
+
∑
𝛾∈Λ𝐵

𝑎

𝑾 𝐵
𝑎 ⊗𝑪𝛾

𝝌
; (54c)

Ω𝑎
𝝌

𝑑

𝑑𝑡
𝐽𝑎
𝚿 =

∑
𝑏∈Λ𝑎

1
2

[(
𝑯

𝑎,𝑇
𝚿 𝑾 𝑎

)
+
(
𝑯

𝑏,𝑇
𝚿 𝑾 𝑏

)]
⋅𝑪𝑎𝑏

𝝌
+
∑
𝛾∈Λ𝐵

𝑎

𝑾 𝐵
𝑎 ⋅
(
𝑯𝑎

𝚿𝑪
𝛾
𝝌

)
; (54d)

Ω𝑎
𝝌

𝑑

𝑑𝑡
𝜂𝑎
𝝌
=
∑
𝑏∈Λ𝑎

1
2

(
𝜂𝑎
𝑿
𝑯

𝑎,𝑇
𝚿 𝑾 𝑎 + 𝜂𝑏

𝑿
𝑯

𝑏,𝑇
𝚿 𝑾 𝑏

)
⋅𝑪𝑎𝑏

𝝌
−
∑
𝑏∈Λ𝑎

1
2

(
𝑸𝑎
𝝌

𝜃𝑎
+
𝑸𝑏
𝝌

𝜃𝑏

)
⋅𝑪𝑎𝑏

𝝌

−
∑
𝛾∈Λ𝐵

𝑎

𝑄𝑎
𝐵

𝜃𝑎
𝐵

‖𝑪𝛾
𝝌
‖− 1

𝜃2𝑎
𝑸𝑎
𝝌
⋅

[∑
𝑏∈Λ𝑎

1
2
(
𝜃𝑎 + 𝜃𝑏

)
𝑪𝑎𝑏
𝝌

]
+Ω𝑎

𝝌

𝐽𝑎
𝚿
𝜃𝑎

(
𝑠𝑎
𝑿
+ ̇𝑎

Phy

)
; (54e)

Ω𝑎
𝝌

𝑑

𝑑𝑡
𝒑𝑎
𝑾

= 𝑻 𝑎
𝑾

+
∑
𝛾∈Λ𝐵

𝑎

𝒕𝑊𝑎 ||𝑪𝛾
𝝌
||− 𝜁𝒑𝑎

𝑾
. (54f)

In expression (54a), 𝑻 𝑎
𝝌

represents the internal nodal force defined as 𝑻 𝑎
𝝌
=
∑

𝑏∈Λ𝑎

1
2

(
𝑷 𝑎
𝝌
+ 𝑷 𝑏

𝝌

)
𝑪𝑎𝑏
𝝌

. The boundary traction, denoted 
as 𝒕𝐵𝑎 , is described by the expression 𝒕𝐵𝑎 = 𝑷 𝑎

𝝌
𝑵𝑎
𝝌

. Likewise, the term 𝑻 𝑎
𝑾

in (54f) represents the node-based material force and is 
defined as 𝑻 𝑎

𝑾
=
∑

𝑏∈Λ𝑎

1
2

(
𝑷 𝑎
𝑾

+ 𝑷 𝑏
𝑾

)
𝑪𝑎𝑏
𝝌

.
Equations (54a), (54d) and (54e) correspond to the conservation of linear momentum, mass and total energy, respectively. Com-

plementing these physical principles, Equations (54b) and (54c) introduce an additional set of geometric conservation equations. 
Lastly, equation (54f) characterises the ALE material mesh motion, providing a full representation of the physical and geometric 
aspects within the system.

For the case of thermo-elasticity, the motion of solids is sufficiently described by the expressions from (54a) to (54f), along 
with the condition ̇𝑎

Phy
= 0. However, exploring plasticity within the framework of first-order system requires further incorporation 

of evolution expressions for the associated plastic state variables, expressed in (29a) and (29b). The corresponding semi-discrete 
equations are

𝐽𝑎
𝚿

𝜕

𝜕𝑡

||||𝝌 𝑪−1,𝑎
𝑝 = 1

Ω𝑎
𝝌

∑
𝑏∈Λ𝑎

[1
2

(
𝑪−1,𝑎

𝑝 +𝑪−1,𝑏
𝑝

)
⊗𝑪𝑎𝑏

𝝌

](
𝑯

𝑎,𝑇
𝚿 𝑾 𝑎

)
− 2𝐽𝑎

𝚿�̇�𝑎𝑭
−1
𝑎

𝜕𝑓

𝜕𝝉

||||𝑎𝒃𝑎𝑒𝑭 −𝑇
𝑎 ; (55a)

𝐽𝑎
𝚿

𝜕

𝜕𝑡

||||𝝌 �̄�𝑎𝑝 =
1
Ω𝑎
𝝌

∑
𝑏∈Λ𝑎

[1
2

(
�̄�𝑎𝑝 + �̄�𝑏𝑝

)
𝑪𝑎𝑏
𝝌

]
⋅
(
𝑯

𝑎,𝑇
𝚿 𝑾 𝑎

)
+ 𝐽𝑎

𝚿�̇�𝑎, (55b)

respectively.
Additionally, monitoring both spatial and material geometries is useful to assess the effectiveness of the material mesh movement. 

With that in mind, it is convenient to integrate both the spatial velocity �̂� and the material velocity 𝑾 over time by noticing that

𝑑

𝑑𝑡
𝚽𝑎 = �̂�𝑎;

𝑑

𝑑𝑡
𝚿𝑎 =𝑾 𝑎. (56a)

As it is well known, the above mixed-based system (54) is prone to exhibit non-physical numerical instabilities [10,34,35,64–68]
when attempting to model large strain solid dynamics problems [1,69,70]. To address this issue, a Godunov-type stabilisation term 
must be suitably introduced to both the internal nodal force 𝑻 𝑎

𝝌
and the material force 𝑻 𝑎

𝑾
, as presented below

𝑻 𝑎
𝝌
=
∑
𝑏∈Λ𝑎

1
2

(
𝑷 𝑎
𝝌
+ 𝑷 𝑏

𝝌

)
𝑪𝑎𝑏
𝝌
+
∑
𝑏∈Λ𝑎


𝑎𝑏
𝒑𝝌

and 𝑻 𝑎
𝑾

=
∑
𝑏∈Λ𝑎

1
2
(
𝑷 𝑎
𝑾

+ 𝑷 𝑏
𝑾

)
𝑪𝑎𝑏
𝝌
+
∑
𝑏∈Λ𝑎


𝑎𝑏
𝒑𝑾

. (57)

These stabilisation terms, namely {𝑎𝑏
𝒑𝝌

, 𝑎𝑏
𝒑𝑾

}, will be obtained through the semi-discrete version of the classical Coleman–Noll 
procedure [71], which will be discussed in the following section.

7.2. Numerical entropy production

Based upon the second law of thermodynamics presented in Section 6, we now turn our attention to the semi-discrete form of 
12

inequality (51) under the assumption that 𝒑𝑾 is known or has been prescribed. This stability analysis is demonstrated below.
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𝑎

Ω𝑎
𝝌

𝑑

𝑑𝑡
𝑎
𝝌
=
∑
𝑎

Ω𝑎
𝝌

[
𝒗𝑎 ⋅

𝑑

𝑑𝑡
𝒑𝑎
𝝌
+ 𝑷 𝑎

𝚽 ∶ 𝑑

𝑑𝑡
𝑭 𝑎

𝚽 + 𝑷 𝑎
𝚿 ∶ 𝑑

𝑑𝑡
𝑭 𝑎

𝚿 −𝑎
𝑑

𝑑𝑡
𝐽𝑎
𝚿 + 𝜗𝑎

𝑑

𝑑𝑡
𝜂𝑎
𝝌
− 𝑑

𝑑𝑡
𝑎

Phy

]
=
∑
𝑎

Ω𝑎
𝝌

[
𝒗𝑎 ⋅

𝑑

𝑑𝑡
𝒑𝑎
𝝌
+
(
𝑷 𝑎𝑯

𝑎
𝚿
)
∶ 𝑑

𝑑𝑡
𝑭 𝑎

𝚽 −
(
𝑭 𝑇

𝑎 𝑷 𝑎𝑯
𝑎
𝚿
)
∶ 𝑑

𝑑𝑡
𝑭 𝑎

𝚿 −𝑎
𝑑

𝑑𝑡
𝐽𝑎
𝚿 + 𝜗𝑎

𝑑

𝑑𝑡
𝜂𝑎
𝝌
− 𝑑

𝑑𝑡
𝑎

Phy

]
.

(58)

Here, we have incorporated suitable conjugate fields (41) into the first line of (58). Subsequently, we substitute the linear momentum 
equation (54a), the geometric conservation equation for both spatial and material deformation gradient tensors (54b) and (54c), the 
mass conservation equation (54d), the first law of thermodynamics (54e) and the evolution equation for the inverse of the inelastic 
right Cauchy-Green tensor (55a) into the second line of (58). Following some algebraic manipulation, we arrive at

∑
𝑎

Ω𝑎
𝝌

𝑑

𝑑𝑡
𝑎
𝝌
− Π̇ext −ext = −

∑
𝑎

∑
𝑏∈Λ𝑎

𝜗𝑎

Θ𝑎

(
𝑸𝑎
𝝌
+𝑸𝑏

𝝌

2

)
⋅𝑪𝑎𝑏

𝝌

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟∑
𝑎
∑

𝑏∈Λ𝑎
Ω𝑎
𝝌

𝜃𝑅
Θ𝑎Θ𝑏

𝑸𝑎
𝝌 ⋅𝛁𝝌 𝜃

(
𝝌𝑎,𝑡
)≤0

−
∑
𝑎

𝐽𝑎
𝚿Ω

𝑎
𝝌

𝜃𝑅
Θ𝑎

̇𝑎
Phy

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
≥0

−
∑
𝑎

∑
𝑏∈Λ𝑎

(
−𝒗𝑎 ⋅𝑎𝑏

𝒑𝝌

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

total

.

(59)

Here, Π̇ext and ext represent the semi-discrete versions of power contribution and total heat contribution, expressed as

Π̇ext =
∑
𝑎

Ω𝑎
𝝌
𝒗𝑎 ⋅ 𝒇

𝑎
𝝌
+
∑
𝑎

∑
𝛾∈Λ𝐵

𝑎

𝒗𝐵𝑎 ⋅ 𝒕𝐵𝑎 ‖𝑪𝛾
𝝌
‖; ext =

∑
𝑎

Ω𝑎
𝝌

𝜗𝑎

Θ𝑎

𝐽𝑎
𝚿𝑠𝑎𝑅 −

∑
𝑎

∑
𝛾∈Λ𝐵

𝑎

𝜗𝐵
𝑎

Θ𝐵
𝑎

𝑄𝐵
𝑎 ‖𝑪𝛾

𝝌
‖. (60)

To adhere to the second law of thermodynamics (51) at semi-discrete level, it is important to prove all the three terms on the right-
hand side of (59) are non-negative. Regarding the heat conduction term (first term on the right-hand side of (59)), the inequality is 
naturally satisfied due to the inherent properties of the conductive heat flux. As for the physical model dissipation term (second term 
on the right-hand side of (59)), its non-positivity arises from the definition of the material time rate of physical plastic dissipation.

Our subsequent objective is to demonstrate the non-negativity of the numerical dissipation term, denoted as total ≥ 0. This can 
be achieved by equivalently swapping indices 𝑎 and 𝑏 to give

total = −
∑
𝑎

∑
𝑏∈Λ𝑎

(
𝒗𝑎 ⋅

𝑎𝑏
𝒑𝝌

)
= −
∑
𝑎

∑
𝑏∈Λ𝑎

(
𝒗𝑏 ⋅

𝑏𝑎
𝒑𝝌

)
. (61)

By simply averaging the first term and the second term of the expression above, and noting the anti-symmetric nature of the stabili-
sation term as 𝑏𝑎

𝒑𝝌
= −𝑎𝑏

𝒑𝝌
, an alternative expression for total is shown below

total =
1
2
∑
𝑎

∑
𝑏∈Λ𝑏

𝑎

𝑎𝑏
total; 𝑎𝑏

total =
(
𝒗𝑏 − 𝒗𝑎

)
⋅𝑎𝑏

𝒑𝝌
. (62)

Sufficient conditions for total ≥ 0 are given by


𝑎𝑏
𝒑𝝌

= 𝑺𝑎𝑏
𝒑𝝌

(
𝒗𝑏 − 𝒗𝑎

)
, (63)

where 𝑺𝑎𝑏
𝒑𝝌

is a positive semi-definite stabilisation matrix. Following previous work of the authors [26], the dissipation term is chosen 
as

𝑺𝑎𝑏
𝒑𝝌

= 1
2
𝜌Ave
𝝌
‖𝑪𝑎𝑏

𝝌
‖[𝑐𝝌 ,Ave

𝑝 𝒏𝑎𝑏
𝒙

⊗ 𝒏𝑎𝑏
𝒙
+ 𝑐𝝌 ,Ave

𝑠

(
𝑰 − 𝒏𝑎𝑏

𝒙
⊗ 𝒏𝑎𝑏

𝒙

)]
, (64)

where [∙]Ave = 1
2

(
[∙]𝑎 + [∙]𝑏

)
. It is noteworthy how the dissipation term is related to the jump in velocity between interacting nodes, 

a characteristic feature of Godunov-type upwinding terms [59,72–74].

Remark 5 Given that, in general, the ALE mesh motion is not known a priori but it will be defined via the first order conservative-type 
equation (54f), the introduction of an appropriate stabilisation term is necessary to stabilise the convective nature inherent to the 
equation. In this context, and for simplicity, we propose a stabilisation term 𝑎𝑏

𝒑𝑾
with a mathematical structure similar to that of 

expression (63) as


𝑎𝑏
𝒑𝑾

= 𝑺𝑎𝑏
𝒑𝑾

(
𝑾 𝑏 −𝑾 𝑎

)
. (65)

Here, the positive-definite stabilisation tensor is defined as

𝑺𝑎𝑏
𝒑𝑾

= 1
2
𝜌Ave
𝑾
‖𝑪𝑎𝑏

𝝌
‖[𝑐𝑿,Ave

𝑝 𝑵𝑎𝑏
𝑿

⊗𝑵𝑎𝑏
𝑿
+ 𝑐𝑿,Ave

𝑠

(
𝑰 −𝑵𝑎𝑏

𝑿
⊗𝑵𝑎𝑏

𝑿

)]
. (66)
13
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7.3. Time integrator

Given the size of the resulting set of semi-discrete equations, the use of an explicit type of time integrator becomes appropriate. In 
this study, a three stage Runge-Kutta explicit time integrator [32] is employed. This is described by the time update equations from 
time step 𝑡𝑛 to 𝑡𝑛+1 stated below


⋆
𝝌 ,𝑎 =

𝑛
𝝌 ,𝑎 +Δ𝑡 ̇

𝑛
𝝌 ,𝑎

(


𝑛
𝝌 ,𝑎

)
,


⋆⋆
𝝌 ,𝑎 =

3
4


𝑛
𝝌 ,𝑎 +

1
4

(


⋆
𝝌 ,𝑎 +Δ𝑡 ̇

⋆
𝝌 ,𝑎

(


⋆
𝝌 ,𝑎

))
,


𝑛+1
𝝌 ,𝑎 = 1

3


𝑛
𝝌 ,𝑎 +

2
3

(


⋆⋆
𝝌 ,𝑎 +Δ𝑡 ̇

⋆⋆
𝝌 ,𝑎

(


⋆⋆
𝝌 ,𝑎

))
.

(67)

Additionally, both material and spatial geometries are also updated using the same time integrator, resulting in a monolithic time up-

date procedure. The unknowns  𝝌 =
(
𝒑𝝌 ,𝑭𝚽,𝑭𝚿, 𝐽𝚿, 𝜂𝝌

)𝑇
are updated alongside the material geometry 𝚿 and the spatial geometry 

𝚽 through equation (67).
Furthermore, the determination of the maximum time step, denoted as Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛, adheres to the standard Courant–

Friedrichs–Lewy (CFL) [75] criterion. This criterion is defined by the following relation

Δ𝑡 = 𝛼𝐶𝐹𝐿min

(
ℎmin

𝑐
𝝌
𝑝

)
. (68)

Here, 𝛼𝐶𝐹𝐿 represents the CFL stability number, 𝑐𝝌𝑝 denotes the pressure wave speed measured in referential domain and ℎmin stands 
for the minimum (or characteristic) length within the computational domain. The relationship between the referential pressure wave 
speed 𝑐,𝝌𝑝 and the material pressure wave speed 𝑐,𝑿𝑝 is presented in expression (18). Unless specified otherwise, a value of 𝛼𝐶𝐹𝐿 = 0.9
has been selected in the subsequent examples to ensure a balance between accuracy and stability.

7.3.1. Plasticity

When addressing the irrecoverable elasto-plastic model presented in this paper, we employ the implicit backward Euler time 
integrator to advance in time the semi-discrete equations governing the plastic state variables, namely 𝑪−1

𝑝 and �̄�𝑝 (refer to (55)). 
This specific choice of time integration is in accordance with the conventional return mapping algorithm for plasticity models [4,61], 
ensuring numerical stability. The resulting time-discrete equations are presented below

𝑪−1,𝑛+1
𝑝 =𝑪−1,𝑛

𝑝 + Δ𝑡

Ω𝑎
𝝌

∑
𝑏∈Λ𝑎

[
1
2

(
𝑪−1,𝑛

𝑝,𝑎 +𝑪−1,𝑛
𝑝,𝑏

)( 1
𝐽𝑎,𝑛+1
𝚿

𝑾 𝑛+1
𝑎 ⋅

(
𝑯

𝑎,𝑛+1
𝚿 𝑪𝑎𝑏

𝝌

))]

− 2Δ𝑡�̇�𝑛+1𝑎 𝑭 −1,𝑛+1
𝑎

𝜕𝑓

𝜕𝝉

||||𝑛+1𝑎
𝒃𝑎,𝑛+1𝑒 𝑭 −𝑇 ,𝑛+1

𝑎 ; (69a)

�̄�𝑛+1𝑝 = �̄�𝑛𝑝 +
Δ𝑡

Ω𝑎
𝝌

∑
𝑏∈Λ𝑎

[
1
2

(
�̄�𝑛𝑝,𝑎 + �̄�𝑛𝑝,𝑏

)( 1
𝐽𝑎,𝑛+1
𝚿

𝑾 𝑛+1
𝑎 ⋅

(
𝑯

𝑎,𝑛+1
𝚿 𝑪𝑎𝑏

𝝌

))]
+Δ𝑡�̇�𝑛+1𝑎 . (69b)

To solve equations (69a) and (69b), a predictor-corrector algorithm is used. In the predictor step (Lagrangian phase), the algorithm 
advances explicitly without considering the ALE convective effect, yielding intermediate variables {𝑪−1,int

𝑝 , ̄𝜀int
𝑝 }. In the corrector 

step (remapping phase), the intermediate variables are then projected to new positions after applying the ALE material motion. 
Mathematically, the predictor step of the scheme over a time step Δ𝑡 is defined as

𝑪−1,int
𝑝 =𝑪−1,𝑛

𝑝 − 2Δ𝑡�̇�𝑛+1𝑎 𝑭 −1,𝑛+1
𝑎

𝜕𝑓

𝜕𝝉

||||𝑛+1𝑎
𝒃𝑎,𝑛+1𝑒 𝑭 −𝑇 ,𝑛+1

𝑎 ; (70a)

�̄�int
𝑝 = �̄�𝑛𝑝 +Δ𝑡�̇�𝑛+1𝑎 . (70b)

The corrector step becomes

𝑪−1,𝑛+1
𝑝 =𝑪−1,int

𝑝 + Δ𝑡

Ω𝑎
𝝌

∑
𝑏∈Λ𝑎

[
1
2

(
𝑪−1,𝑛

𝑝,𝑎 +𝑪−1,𝑛
𝑝,𝑏

)( 1
𝐽𝑎,𝑛+1
𝚿

𝑾 𝑛+1
𝑎 ⋅

(
𝑯

𝑎,𝑛+1
𝚿 𝑪𝑎𝑏

𝝌

))]
; (71a)

�̄�𝑛+1𝑝 = �̄�int
𝑝 + Δ𝑡

Ω𝑎
𝝌

∑
𝑏∈Λ𝑎

[
1
2

(
�̄�𝑛𝑝,𝑎 + �̄�𝑛𝑝,𝑏

)( 1
𝐽𝑎,𝑛+1
𝚿

𝑾 𝑛+1
𝑎 ⋅

(
𝑯

𝑎,𝑛+1
𝚿 𝑪𝑎𝑏

𝝌

))]
. (71b)

In the case of Total Lagrangian framework (that is, by setting 𝑾 = 𝟎), the time update of the plasticity model exclusively relies on 
the predictor step (Lagrangian phase). This update for plastic variables follows the implicit Backward Euler method, a technique 
14

well-established in earlier works [4,40,51,55].
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8. Algorithmic description

Algorithm 1 provides a summary of the ALE vertex-based finite volume method for nonlinear solid dynamics in irreversible 
processes. A key advantage of the ALE approach is its capability to effectively manage excessive element distortion through dynamic 
mesh movement, especially in areas experiencing significant plastic deformation. This benefit is illustrated in the example section, 
demonstrating its superior efficiency in comparison to traditional Lagrangian approaches.

Algorithm 1: Total ALE vertex-based finite volume algorithm.

Input : initial geometry 𝝌𝑎 and initial states of 𝒑𝑎
𝝌

, 𝑭 𝑎
𝚽 , 𝑭 𝑎

𝚿 , 𝐽𝑎
𝚿 , 𝜂𝑎

𝝌
, 𝒑𝑎

𝑾
, 𝜃𝑎 and 𝑾 𝑎 for all vertices

Output : current material geometry 𝚿𝑎 , current spatial geometry 𝚽𝑎 , physical velocity 𝒗𝑎 , material velocity 𝑾 𝑎 , and current states of 𝑭 𝑎 , 𝑷 𝑎 , 𝑪−1,𝑎
𝑝 , �̄�𝑎𝑝 and 

𝜂𝑎
𝑿

(1) INITIALISE 𝑭 𝑎
𝚿 =𝑪−1,𝑎

𝑝 = 𝑰 , 𝐽𝑎
𝚿 = 1, 𝑾 𝑎 = 𝟎 and �̄�𝑎𝑝 = 0

for Time 𝑡0 to Time 𝑡 do

(2) EVALUATE pressure and shear wave speeds: 𝑐𝝌𝑝 , 𝑐𝝌𝑠
(3) COMPUTE time increment: Δ𝑡

for TVD-RK time integrator = 1 to 2 do

(4) COMPUTE slope of linear reconstruction procedure

(5) EVALUATE the right-hand-side of 𝑑

𝑑𝑡


𝑎
𝝌

, 𝑑

𝑑𝑡
𝒑𝑎
𝑾

, 𝑑

𝑑𝑡
𝚿𝑎 and 𝑑

𝑑𝑡
𝚽𝑎

(6) UPDATE 𝒑𝑎
𝝌

, 𝑭 𝑎
𝚽 , 𝑭 𝑎

𝚿 , 𝐽𝑎
𝚿 , 𝜂𝑎

𝝌
, 𝒑𝑎

𝑾
, 𝚿𝑎 and 𝚽𝑎 via TVD-RK

(7) COMPUTE intermediate variables: 𝑭 𝑎 = 𝑭 𝑎
𝚽𝑭

−1,𝑎
𝚿 , 𝒗𝑎 =

𝒑𝑎
𝝌

𝐽𝑎
𝚿𝜌𝑿

, �̂�𝑎 = 𝒗𝑎 + 𝑭 𝑎𝑾 𝑎 , 𝜂𝑎
𝑿
=

𝜂𝑎
𝝌

𝐽𝑎
𝚿

and 𝜃𝑎 =Θ(𝑭 𝑎, 𝜂𝑎
𝑿
)

(8) ENFORCE strong boundary conditions on velocities {𝒗𝑎, ̂𝒗𝑎} and entropy 𝜂𝑎
𝑿

(9) EVALUATE first Piola 𝑷 𝑎 (and 𝑪−1,𝑎
𝑝 and �̄�𝑎𝑝 if plasticity model is used)

end

(10) INCORPORATE entropy source related to plastic dissipation ̇Phy

(11) UPDATE internal plastic state variables 𝑪−1,𝑎
𝑝 and �̄�𝑎𝑝 (if plasticity model is used)

(12) EXPORT results for this time step

(13) ADVANCE in time

end

In the current ALE approach, we utilise a predictor-corrector strategy, also known as a fractional-step approach [29,56], for 
updating the plastic variables. Within the Runge-Kutta stages, we iteratively compute the predicted expressions (70a) and (70b) for 
the first Piola-Kirchoff stress tensor, with the plastic variables held constant throughout the iterative process. The corrector step 
for expressions (71a) and (71b) is performed only outside the Runge-Kutta stage. This approach has been previously explored in 
the context of Total Lagrangian descriptions in our previous publications [37]. Furthermore, another possible option is to introduce 
the variational update of thermo-mechanical constitutive models without employing the predictor-corrector strategy, as detailed in 
Reference [76]. This will be further explored in our forthcoming publications.

9. Numerical examples

In this section, a number of benchmarked problems are examined in order to illustrate the performance and applicability of the 
proposed ALE algorithm. The aim of these examples is to demonstrate that the overall ALE algorithm

• ensures the satisfaction of the Geometric Conservation Law (GCL) condition [10,16,63,77,78], even when fictitiously moving the 
material mesh,

• achieves equal second order convergence for velocities/displacements, stresses/strains and also temperature/entropy (applicable 
in thermal-mechanical constitutive models),

• guarantees a non-negative rate of production of both numerical (i.e. Godunov-type stabilisation) and physical (e.g. plastic dissi-
pation and irreversible heat conduction process) entropy within an isolated system, and

• displaying advantages in handling large plastic flow compared to traditional Lagrangian approaches, particularly in scenarios 
15

involving high-speed impact and fast stretching.
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Table 2

Translation with heat: material properties and parameters of material 
mesh motion.

Young’s modulus E [MPa] 17
Material density 𝜌𝑿 [kg/m3] 1100
Poisson’s ratio 𝜈 0.45
Thermal conductivity ℎ [W.m−1K−1] 10
Specific heat capacity 𝐶𝑣 [J kg−1K−1 ] 1
Thermal expansion coefficient 𝛼 [K−1] 4.95 × 10−7
Reference temperature 𝜃𝑅 [K] 293.15
Period of mesh motion 𝑇 [s] 0.5
Magnitude of mesh motion 𝛽 [ms−1] 0.02

In the following plasticity examples, we address material mesh motion by solving the conservation-type equation, as expressed in 
(33). However, in the context of thermo-elastic problems, this approach tends to results in minimal mesh movement. To achieve more 
substantial mesh movement in these cases, we instead prescribe a sinusoidal-type material mesh motion. This expression, specifically 
designed for a cuboid, is detailed in Reference [26] and is presented here for completeness

𝚿(𝝌 , 𝑡) = 𝝌 +

⎡⎢⎢⎢⎢⎢⎣
𝛽 sin2

(
𝜋𝑡

𝑇

)
sin
(

𝜒1
2𝜋𝐿

)[
cos
(

𝜒2
2𝜋𝐻

)
+ sin

(
𝜒2
2𝜋𝐻

)]
𝛽 𝐻

𝐿
sin2
(

𝜋𝑡

2𝑇

)
sin
(

𝜒2
2𝜋𝐻

)[
cos
(

𝜒1
2𝜋𝐿

)
+ sin

(
𝜒1
2𝜋𝐿

)]
0

⎤⎥⎥⎥⎥⎥⎦
, (72)

where 𝜒1 = 𝜒1 +𝜒𝐶
1 and 𝜒2 = 𝜒2 +𝜒𝐶

2 represent the coordinates shifted with respect to the centroid of the domain 𝝌𝐶 . The parameter 
𝛽 determines the magnitude of the mesh motion and 𝑇 denotes the period of the sinusoidal functions. Employing this sinusoidal 
mesh motion approach enables more pronounced and controlled movement in the material mesh. This is particularly beneficial for 
examining the robustness of the ALE algorithm in thermo-elastic scenarios, as it allows for an assessment of the performance of the 
algorithm under varying degrees of mesh deformation. Differentiating expression (72) in time gives the material mesh velocity 𝑾
expressed as

𝑾 (𝝌 , 𝑡) =
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. (73)

Both material mesh motion (72) and material mesh velocity (73) are carefully designed to only allow movement tangentially on the 
material boundary surface in order to avoid changes in physical volume.

To analyse large thermo-elastic deformations, a Mie-Gruneisen thermo-elastic is employed. The corresponding internal energy 
density  as a function of deformation gradient 𝑭 and entropy density 𝜂𝑿 (per unit of material volume) is given by

(𝑭 , 𝜂𝑿 ) = ̃𝑿 (𝑭 ) + 𝑐𝑣𝜃𝑅

(
𝑒

𝜂𝑿−�̃�𝑿 (𝐽 )
𝑐𝑉

−1
)

. (74)

In this work, the internal energy density at reference temperature is formulated as

̃𝑿 (𝑭 ) = ̃ ′
𝑿
(𝐽−1∕3𝑭 ) +𝑈 (𝐽 ). (75)

Both the deviatoric ̃ ′
𝑿
(𝐽−1∕3𝑭 ) and the volumetric 𝑈 (𝐽 ) contributions are

̃ ′
𝑿
(𝐽−1∕3𝑭 ) = 1

2
𝜇
[
𝐽−2∕3 (𝑭 ∶ 𝑭 ) − 3

]
; 𝑈 (𝐽 ) = 1

2
𝜅(𝐽 − 1)2 + 𝑐𝑣Γ0𝜃𝑅(𝐽 − 1), (76)

where 𝜇 and 𝜅 are the shear modulus and bulk modulus and Γ0 is a positive material constant. In addition, we also incorporate a 
simple volumetric-based Mie-Grüneisen model [43,57] described by [43]

�̃�𝑿 (𝐽 ) = 𝑐𝑣Γ0
(

𝐽𝑞 − 1
𝑞

)
, (77)

where 𝑞 is a dimensionless parameter varying from zero (i.e. a perfect gas) to one (i.e. solid materials). Previous work [30] has 
demonstrated the polyconvexity (and thus, rank-one convexity) of this coupled model.

9.1. Satisfaction of geometric conservation laws: patch test

This example involves a patch test that illustrates the performance of the proposed ALE algorithm in rigid body motion, an 
16

example similar to that described in [26]. A column of unit 1 m squared cross section and of length 𝐻 = 6 m is initially prescribed by 



Journal of Computational Physics 518 (2024) 113322T.B.J. Di Giusto, C.H. Lee, A.J. Gil et al.

Fig. 3. Problem setup for the translation test case: geometry and its dimension.

Fig. 4. Translation: Time evolution of the prescribed mesh motion at times 𝑡 = {0,40,80,120,160,200} ms (from left to right).

a uniform velocity field 𝒗0 = [3, 1, 0]𝑇 ms−1 across the entire domain. All the boundaries of the structure are left free. See Fig. 3 for 
the problem setup. The primary objective of this example is to assess the capability of the algorithm in reliably capturing rigid body 
translation behaviour by arbitrarily moving the mesh, while still adhering to the so-called discrete Geometric Conservation Law (GCL) 
conditions. Additionally, a Mie-Grüneisen model is incorporated to account for the effects of thermal variations. The corresponding 
material properties and the mesh motion parameters are presented in Table 2. It is interesting to show graphically how the mesh 
moves in time according to the expression described in (73). This is displayed in Fig. 4.

Given that the column undergoes rigid body translation, it is expected to move through space in the direction of the initial velocity, 
maintaining both a constant speed and uniform temperature distribution. For qualitative evaluation, Fig. 5 illustrates the temporal 
evolution of global errors. These errors include the deviation of the current temperature 𝜃 from the reference temperature 𝜃𝑅 , and 
the differences between the current and initial velocity components. As expected, when employing the complete ALE algorithm as 
presented in (54), these errors fluctuate around machine precision levels. Conversely, a simplified model that excludes the solution 
for 𝐽𝚿 results in significantly larger errors, failing to meet the discrete GCL conditions associated with the volumetric strain. This 
17

discrepancy is visually evident in Fig. 6. For instance, the reduced model exhibits non-smooth contour profile, whereas smooth 
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Fig. 5. Translation: time evolution of the 𝐿2 global errors in (a) ||𝜃 − 𝜃𝑅||𝐿2 and (b) ||𝑣𝑖 − 𝑣0,𝑖||𝐿2 (with 𝑖 = 𝑥, 𝑦) when using (red) the complete ALE system, (green) 
the system without solving 𝐽𝚽 and (blue) the further reduced system without solving {𝑭𝚽, 𝐽𝚿}. A discretisation of 4 × 24 × 4 linear tetrahedral elements. A Mie-
Grüneisen equation of state is used with parameters listed in Table 2. (For interpretation of the colours in the figure(s), the reader is referred to the web version of 
this article.)

Table 3

Swinging cube: material properties and parameters of material mesh 
motion.

Young’s modulus E [MPa] 17
Material density 𝜌𝑿 [kg/m3] 1100
Poisson’s ratio 𝜈 0.45
Thermal conductivity ℎ [W/m−1K−1] 10
Specific heat capacity 𝐶𝑣 [J kg−1K−1] 1
Thermal expansion coefficient 𝛼 [K−1] 4.95 × 10−7
Reference temperature 𝜃𝑅 [K] 293.15
Magnitude 𝑈0 [m] 5 × 10−4
Lame first parameter 𝜆 [MPa] 9.8077
Lame shear modulus 𝜇 [MPa] 6.5385
Mie-Grüneisen coefficient 8.5889
Period of mesh motion 𝑇 [s] 1 × 10−3
Magnitude of mesh motion 𝛽 [ms−1] 1 × 10−4

contours are obtained with the complete ALE system. Furthermore, an even more simplified model that disregard both 𝑭𝚿 and 𝐽𝚿
solutions unreliably tracks the deformation trajectory and eventually leads to the breakdown of the numerical algorithm.

9.2. Mesh convergence: low dispersion swinging cube

As previously investigated in References [30,37], a cubic domain with unit length sides is used for analysis. The objective of this 
example is to examine the order of convergence of the proposed ALE framework. The physical mapping and the temperature fields 
are specifically chosen as

𝜑ex(𝑿, 𝑡) =𝑿 +𝑈0 cos
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3
2
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𝐶 cos( 𝜋𝑋1

2 ) cos( 𝜋𝑋2
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⎤⎥⎥⎥⎦ ; 𝑐𝑑 =

√
2𝜇 + 𝜆

𝜌𝑿
+

𝜃𝑅Γ20𝑐𝑣
𝜌𝑿

, (78)

where the parameters 𝐴 = 𝐵 = 𝐶 = 1. When the value of 𝑈0 is below 0.0001 m, the solution is considered linear. Consequently, the 
exact velocity field 𝒗, deformation gradient tensor 𝑭 and temperature field 𝜃 can be computed as

𝜕𝜑ex(𝑿, 𝑡) 𝜕𝜑ex(𝑿, 𝑡)
18

𝒗ex(𝑿, 𝑡) =
𝜕𝑡

; 𝑭 ex(𝑿, 𝑡) = 𝑰 +
𝜕𝑿

(79)
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Fig. 6. Translation: a sequence of deformed states at times 𝑡 = {0, 0.8, ..., 4.8} s (from left to right for each row) when using (a) the complete ALE system and (b) the 
reduced system without solving 𝐽𝚿 . Colour contour indicates the error in ||𝜃−𝜃𝑅||𝐿2 . A discretisation of 4 ×24 ×4 liner tetrahedral elements. A Mie-Grüneisen equation 
of state is used with parameters listed in Table 2.

Table 4

Swinging cube: numerical values for the 𝐿1 norm error of the velocity compo-
nents 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 , the temperature 𝜃 and the diagonal components of the first Piola 
Kirchhoff stress 𝑃𝑥𝑋, 𝑃𝑦𝑌 , 𝑃𝑧𝑍 . Convergence rates are calculated using the results 
of the two finest meshes. A Mie-Grüneisen model is used with parameters sum-
marised in Table 3.

𝐿1 error 𝑣𝑥 𝑣𝑦 𝑣𝑧 𝜃

1∕6 3.184 × 10−2 3.171 × 10−2 3.053 × 10−2 8.211 × 10−5
1∕12 7.692 × 10−3 7.851 × 10−3 7.550 × 10−3 2.134 × 10−5
1∕24 1.886 × 10−3 1.916 × 10−3 1.863 × 10−3 5.276 × 10−6
1∕48 4.492 × 10−4 4.491 × 10−4 4.487 × 10−4 1.197 × 10−6

conv. rate 2.070 2.093 2.054 2.141

𝐿1 error 𝑃𝑥𝑋 𝑃𝑦𝑌 𝑃𝑧𝑍

1∕6 1.861 × 10−2 1.861 × 10−2 1.860 × 10−2
1∕12 4.847 × 10−3 4.847 × 10−3 4.845 × 10−3
1∕24 1.206 × 10−3 1.207 × 10−3 1.206 × 10−3
1∕48 2.817 × 10−4 2.817 × 10−4 2.816 × 10−4

conv. rate 2.098 2.098 2.098
19
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Fig. 7. Swinging cube: 𝐿1 and 𝐿2 global convergence analysis at time 𝑡 = 1 ×10−3 s for (first row) the components of velocity, (second row) the components of the first 
Piola Kirchhoff stress tensor and (third row) the temperature field. Results obtained using a Mie-Grüneisen model and the material properties used are summarised in 
Table 3.

and

𝜃ex = 𝜃𝑅

(
1 − 3𝜋

2
𝑈0 cos(𝑐𝑑𝜋𝑡) cos

(
𝜋𝑋1
2

)
cos
(

𝜋𝑋2
2

)
cos
(

𝜋𝑋3
2

))
. (80)

Dirichlet boundary conditions compatible with equation (78) are applied on the boundary of the domain. In particular, the cube 
features symmetry boundary conditions on the faces 𝑋1 = 0, 𝑋2 = 0 and 𝑋3 = 0 and skew-symmetric boundary conditions on the 
faces 𝑋1 = 1, 𝑋2 = 1 and 𝑋3 = 1. The parameters used in this simulation are summarised in Table 3.

Fig. 7 illustrate the 𝐿1 and 𝐿2 norm convergence analysis conducted at time 𝑡 = 1 × 10−3 s. These analyses comprise the velocity 
components 𝒗, the components of the first Piola Kirchhoff stress tensor 𝑷 and the temperature field 𝜃. Consistent with expectations, 
the proposed algorithm demonstrates second-order convergence in space and time for all the solved variables. This equal conver-
20

gence rate for all variables, especially in the accurate representation of stresses/strains and temperature/entropy, marks a substantial 
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Fig. 8. Twisting column: time evolution of the components of the 𝐿2 norm of curl-free errors: (a) ‖ℎ [CURL𝝌𝑭𝚿
]
𝑋𝜒
‖𝐿2

, (b) ‖ℎ [CURL𝝌𝑭𝚽
]
𝑥𝜒
‖𝐿2

, (c) ‖ℎ [CURL𝝌𝑭𝚿
]
𝑋 ‖𝐿2

, (d) ‖ℎ [CURL𝝌𝑭𝚽
]
𝑥 ‖𝐿2

, (e) ‖ℎ [CURL𝝌𝑭𝚿
]
𝑌 ‖𝐿2

, and (f) ‖ℎ [CURL𝝌𝑭𝚽
]
𝑦 ‖𝐿2

. Notice that ℎ represents the characteristic length of each 
control volume. ALE results are obtained using three different meshes. An isothermal neo-Hookean model is used. Parameters related to material properties and the 
21

mesh motion are summarised in Table 6.
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Fig. 9. Problem setup for L-shaped block: geometry and its dimension.

Fig. 10. L-shaped block: for visualisation purposes, we display the two-dimensional view of a series of material mesh deformation described in (73) at time 𝑡 = 0.1 s, 
… 0.4 s (from left to right).

enhancement over the classical ALE framework [21].1 In the interest of completeness, results for both norm errors are detailed in 
Tables 4 and 5.

9.3. Assessment of curl-free involution modes

This example was previously investigated in Reference [26]. The column, with a unit square cross-section and a length of 𝐿 = 6
m, is twisted with an initial sinusoidal velocity field relative to the origin, given by

𝒗0 =
⎡⎢⎢⎢⎣

0
Ω0 sin

(
𝜋𝑌

2𝐿

)
0

⎤⎥⎥⎥⎦ m∕s, (81)

where Ω0 = 105 rad 𝑠−1 represents the magnitude of initial angular velocity. The isothermal neo-Hookean hyperelastic model is 
used. Material properties and mesh motion parameters are presented in Table 6. The main objective of this example is to illustrate the 
22

1 Typically, a reduced order of convergence is observed for the derived variables, such as stresses and strains.
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Fig. 11. L-shaped block: comparison of deformed shapes at time 𝑡 = 23 s. The first three columns (left to right) show the mesh refinement of a structure simulated using 
the proposed ALE algorithm, whereas the last column (on the right) shows results via an alternative in-house Total Lagrangian vertex-based finite volume algorithm 
[41]. Colour indicates the pressure and temperature profiles. The Mie-Grüneisen model is used. The parameters related to material properties and mesh motion are 
summarised in Table 7.

Table 5

Swinging cube: numerical values for the 𝐿2 norm error of the velocity compo-
nents 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 , the temperature 𝜃 and the diagonal components of the first Piola 
Kirchhoff stress 𝑃𝑥𝑋, 𝑃𝑦𝑌 , 𝑃𝑧𝑍 . Convergence rates are calculated using the results 
of the two finest meshes. A Mie-Grüneisen model is used with parameters sum-
marised in Table 3.

𝐿2 error 𝑣𝑥 𝑣𝑦 𝑣𝑧 𝜃

1∕6 2.711 × 10−2 2.704 × 10−2 2.640 × 10−2 1.071 × 10−4
1∕12 6.654 × 10−3 6.746 × 10−3 6.544 × 10−3 2.755 × 10−5
1∕24 1.638 × 10−3 1.660 × 10−3 1.625 × 10−3 6.683 × 10−6
1∕48 3.917 × 10−4 3.916 × 10−4 3.909 × 10−4 1.465 × 10−6

conv. rate 2.064 2.084 2.056 2.189

𝐿2 error 𝑃𝑥𝑋 𝑃𝑦𝑌 𝑃𝑧𝑍

1∕6 1.777 × 10−2 1.777 × 10−2 1.776 × 10−2
1∕12 4.574 × 10−3 4.574 × 10−3 4.574 × 10−3
1∕24 1.119 × 10−3 1.119 × 10−3 1.119 × 10−3
1∕48 2.536 × 10−4 2.536 × 10−4 2.536 × 10−4

conv. rate 2.141 2.141 2.141

Table 6

Twisting column: material properties and parameters of the mesh 
motion.

Young’s modulus 𝐸 [MPa] 17
density 𝜌𝑅 [kg/m3] 1100
Poisson’s ratio 𝜈 0.45
Thermal conductivity ℎ [W/m−1K−1] 0
Specific heat capacity 𝐶𝑣 [J kg−1K−1] 1
Thermal expansion coefficient 𝛼 [K−1] 0
Reference temperature 𝜃𝑅 [K] 293.15
Period of mesh motion 𝑇 [s] 1
Magnitude of mesh motion 𝛽 [m/s] 1 × 10−2

performance of the proposed algorithm in controlling the accumulation of curl-free errors, thereby preventing the breakdown of the 
numerical algorithm over long-term response. Since the central difference approximation is used to approximate both the material 
and spatial velocity gradient fields, it is expected that the tangential jump of both deformation gradient tensors across the interface 
are continuous. Fig. 8 demonstrates the time evolution of the components of the 𝐿2 norm of curl-free errors. It is observed that 
the involution errors are bounded throughout the entire simulation and, more importantly, the time-accumulated errors are reduced 
23

through mesh refinement.
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Fig. 12. L-shaped block: time evolution of (a) global linear momentum, (b) global angular momentum, (c) different energy measures and (d) total numerical dissipation 
(%) introduced in the algorithm. A Mie-Grüneisen model is used. Parameters related to the material properties and the mesh motion are tabulated in Table 7.

9.4. Conservation properties and the discrete satisfaction of second law: L-shaped block

In this thermo-elastic example, an L-shaped block is subjected to a pair of time-varying boundary forces applied to two of its 
boundary faces, as depicted in Fig. 9. The boundary forces are described by the expression given below

𝑭 1(𝑡) = −𝑭 2(𝑡) =
⎡⎢⎢⎣
150
300
450

⎤⎥⎥⎦𝑓 (𝑡), 𝑓 (𝑡) =
⎧⎪⎨⎪⎩
𝑡 if 0 ≤ 𝑡 < 2.5
𝑡− 5 if 2.5 ≤ 𝑡 < 𝑡

0 else

. (82)
24

The initial temperature distribution is defined by the following expression
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Fig. 13. L-shaped block: time evolution of the velocity components at (a) position 𝑿 = (0, 10, 0)𝑇 and (b) at position 𝑿 = (6, 0, 0)𝑇 , and temperature at (c) position 
𝑿 = (0, 10, 0)𝑇 and (d) at position 𝑿 = (6, 0, 0)𝑇 . ALE results are obtained using three different meshes (namely M1, M2 and M3), comparing against alternative Total 
Lagrangian vertex-based finite volume algorithm [41]. A Mie-Grüneisen model is used. Parameters related to material properties and the mesh motion are summarised 
in Table 7.

𝜃(𝑿, 𝑡 = 0) =

{
−(43.15∕3)𝑋 + 336.3 if 3 <𝑋 ≤ 6
(6.85∕7)𝑌 + 290.21 if 3 < 𝑌 ≤ 10.

(83)

The primary aim of this study is to assess the capability of the ALE algorithm in (1) preserving both linear and angular momenta 
and (2) ensuring adherence with the second law of thermodynamics by monitoring the total numerical dissipation introduced by the 
Godunov-type algorithm. A similar numerical example, but in an isothermal context, was previously reported in [26]. Simulation 
parameters employed in this example are detailed in Table 7. To analyse mesh convergence, three different levels of mesh refinement 
are employed. For instance, {M1, M2, M3} comprise {5616, 18954, 44928} linear tetrahedral elements, respectively. To facilitate 
varying degrees of mesh movement, we prescribe the mapping function described in expression (73). A series of mesh movement 
25

snapshots are shown graphically in Fig. 10.
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Fig. 14. L-shaped block: a sequence of deformed structures with temperature distribution at times 𝑡 = 0,1,2, ...,19 s (from left to right and top to bottom), respectively. 

Results obtained using a Mie-Grüneisen model with M3 mesh. Parameters related to material properties and the mesh motion are summarised in Table 7.
26
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Fig. 15. Problem setup for Taylor impact bar: geometry and its dimension.

Table 7

L-shaped block: material properties and parameters of material mesh mo-
tion.

Young’s modulus 𝐸 [kPa] 50.05
Material density 𝜌𝑿 [kg/m3] 1000
Poisson’s ratio 𝜈 0.3
Thermal conductivity ℎ [W/m−1K−1] 10
Specific heat capacity 𝐶𝑣 [J kg−1K−1] 1
Thermal expansion coefficient 𝛼 [K−1] 2.223 × 10−4
Reference temperature 𝜃𝑅 [K] 293.15
Period of mesh motion 𝑇 [s] 1
Magnitude of mesh motion 𝛽 [ms−1] 2 × 10−2

First, a mesh refinement study is carried out, as illustrated in the first three columns (from left to right) of Fig. 11. The deformation 
pattern, as well as the pressure and temperature profiles, simulated using a relatively coarse mesh (M1) shows good agreement 
with those results obtained using finer meshes (M2 and M3 models). For benchmarking purposes, results from an in-house Total 
Lagrangian vertex centred Godunov-type finite volume algorithm [41], using the M3 discretisation, are also included for comparison. 
The proposed ALE algorithm demonstrates near-identical results to those of the Total Lagrangian counterpart, as evidenced in Fig. 11.

Second, the capability of the proposed algorithm to ensure the conservation of global linear and angular momenta is depicted 
in Figs. 12a and 12b. The global linear momentum,  = ∫Ω𝝌 𝒑𝝌 𝑑Ω𝝌 , is expected to oscillate around zero value (within machine 
error) at all times. The global angular momentum,  = ∫Ω𝝌 𝒙 × 𝒑𝝌 𝑑Ω𝝌 , is not exactly preserved, but it experiences a very minimal 
reduction after the loading phase 𝑡 > 5 s. Additionally, Fig. 12c presents the evolution of various energy measures, including kinetic 
energy  = ∫Ω𝝌 1

2𝜌𝝌
𝒑𝝌 ⋅ 𝒑𝝌 𝑑Ω𝝌 , internal energy associated with mechanical contribution mech = ∫Ω𝝌 𝐽𝚿̃𝑿 𝑑Ω𝝌 , internal energy 

associated with thermal effects ther = ∫Ω𝝌 𝐽𝚿𝑐𝑣𝜃𝑅

(
𝑒

𝜂−�̃�𝑿
𝑐𝑣 − 1

)
𝑑Ω𝝌 , and external power Π̇ext = ∫𝜕Ω𝝌 𝒕𝐵 ⋅ 𝒗𝐵 𝑑𝐴𝝌 . These facilitate 

the computation of the total energy 𝐸 = + mech + ther −Πext, leading to an alternative measure known as Ballistic energy, that is 
 = 𝐸 − 𝜃𝑅𝜂 (with 𝜂 = ∫Ω𝝌 𝜂𝝌𝑑Ω𝝌 ). A slight decrease in total and Ballistic energies after the loading phase is noted, which must be 
attributed to the incorporation of Godunov-type numerical dissipation and irreversible heat dissipation in the system.

Third, Fig. 13 monitors the time evolution of the velocity component 𝑣𝑥 and the temperature at two positions, namely 𝑿 =
(0, 10, 0)𝑇 and 𝑿 = (6, 0, 0)𝑇 . The solution demonstrates convergence with successive levels of refinement. Finally, Fig. 14 depicts a 
sequence of deformed states, with the colour contour indicating temperature profile. Stable solutions are observed, highlighting the 
robustness of the algorithm for long-term responses.

9.5. Robustness in high-speed impact problem

This example presents a benchmark problem in which a copper bar, initially measuring 𝐿 = 0.0324 m in length and 𝑟 = 0.0032 m 
in radius, impacts against a rigid wall with a velocity of 227 m/s. The geometry of the problem is depicted in Fig. 15. In this context, 
a Hencky-based von Mises material with rate-independent linear hardening law is first employed. The parameters of this material 
model used in the simulation are included in Table 8. For computational efficiency, the simulation of the bar impact considers only a 
27

quarter of the domain by applying appropriate symmetry boundary condition, such as roller support. Its main goal is to demonstrate 
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Fig. 16. Taylor bar impact: two-dimensional view of a series of material mesh deformation at time {𝑡 = 20,40,60,80} μs (from left to right).

Table 8

Simulation parameters for isothermal Taylor bar 
impact.

Young’s modulus 𝐸 [MPa] 117
Material density 𝜌𝑿 [kg/m3] 8930
Poisson’s ratio 𝜈 0.35
Initial Yield Stress 𝜏0𝑦 [GPa] 0.4
Hardening Modulus 𝐻 [GPa] 0.1
ALE parameter 1 𝛼ALE 1
ALE parameter 2 𝜇ALE 0.02𝜇
28
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Fig. 17. Taylor bar impact: comparison of the deformed shapes at time 𝑡 = 80 μs. The first three columns (left to right) show the mesh refinement of a structure 
simulated using the proposed ALE algorithm, whereas the last column (at the rightmost position) shows a deformed structure via an alternative in-house Total 
Lagrangian vertex-based finite volume algorithm [41]. Colour indicates both von Mises (left portion of the subfigure) and equivalent plastic strain (right portion of 
the subfigure) profiles. A von Mises plasticity model using isotropic linear hardening rule is used. The parameters related to material properties are summarised in 
Table 8.

Table 9

Simulation parameters for Taylor bar impact with thermal 
coupling.

Young’s modulus E [MPa] 124
Material density 𝜌𝑿 [kg/m3] 8960
Poisson’s ratio 𝜈 0.34
Yield stress 𝐴 [MPa] 90
Hardening modulus 𝐵 [MPa] 292
Hardening exponent 𝑞 0.31
Melting temperature 𝜃melt [K] 1356
Transition temperature 𝜃transition [K] 298.15
Strain rate coefficient 𝐶 0.025
Initial strain rate �̇�0 [s−1] 1
Temperature exponent 𝑚 1.09
Reference temperature 𝜃ref [K] 298.15
Thermal conductivity ℎ [W m−1K−1] 286
Specific heat capacity 𝐶𝑣 [J kg−1 K−1] 383
Thermal expansion rate 𝛼 [K−1] 5 × 10−5

the advantages of the proposed ALE algorithm compared to traditional Lagrangian methods in scenarios involving large plastic 
flow near the contact region. When using classical Lagrangian approaches, severe distortions in elements are often encountered. To 
mitigate the significant compression of elements around the contact area, it would be beneficial to consider ALE mesh motion. This 
ALE smoothing procedure would stretch the meshes in those regions vertically upwards, thereby maintaining a high quality of the 
spatial mesh. This indeed can be achieved by solving the conservation-type law, as described in (33). The function �̄� is specifically 
selected to be

�̄� =
⎡⎢⎢⎣
1 0 0
0 𝐹22 0
0 0 1

⎤⎥⎥⎦ . (84)

A sequence of snapshots illustrating the evolving material mesh motion is shown in Fig. 16.
To validate the consistency of our ALE algorithm, we discretise a quarter section of the bar using three different levels of mesh 

refinement, namely (M1) 1887, (M2) 3721 and (M3) 17280 number of linear tetrahedral elements. The deformation patterns of the 
structures at time 𝑡 = 80 μs are shown in Fig. 17. Remarkably, these patterns and plastic strain distributions exhibit excellent agreement 
across all the levels of mesh refinement. Additionally, in Fig. 18, we compare the results obtained using the ALE algorithm (based on
29

M3) with those simulated using the Total Lagrangian Godunov-type finite volume algorithm [41]. The top row of this figure presents 
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Fig. 18. Taylor bar impact: a series of snapshots at times 𝑡 = {20, 40, 60, 80} μs (from left to right). Colour indicates (first row) the equivalent plastic strain and (second 
row) the pressure distribution, along with their zoomed-in plots. Each subfigure is divided into two parts: the left side represents the results of ALE, and the right side 
illustrates those of the Total Lagrangian approach [41]. Results obtained using a von-Mises plasticity model and the corresponding material parameters are summarised 
30

in Table 8.
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Fig. 19. Taylor bar impact: time evolution of (a) different energy measures and (b) total energy. Results obtained using a von-Mises plasticity model with isotropic 
linear hardening rule. Parameters related to the material properties are tabulated in Table 8.

Fig. 20. Taylor bar impact: time evolution of (a) radius at 𝑿 = [0.0032, 0, 0.0324]𝑇 and (b) time increment Δ𝑡. Results obtained using a von-Mises plasticity model 
with isotropic linear hardening rule. Parameters related to the material properties and the mesh motion are summarised in Table 8.

a series of snapshots illustrating the equivalent plastic strain distribution, while the bottom row focuses on the pressure profile. 
Each subfigure is divided into two parts: the left side represents the results of ALE, and the right side illustrates those of the Total 
Lagrangian approach. It is evident that both approaches yield similar results. However, the ALE algorithm demonstrates a notable 
advantage in maintaining more regular elements around the contact area. This improvement is particularly evident in the zoomed-in 
31

plots presented in Fig. 18, highlighting the capability of ALE algorithm in handling of element distortions in high-impact scenarios.
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Fig. 21. Taylor bar impact with thermal coupling: comparison of the deformed shapes at time 𝑡 = 80 μs. The first three columns (left to right) show the mesh refinement 
of a structure simulated using the proposed ALE algorithm, whereas the last column (at the rightmost position) shows a deformed structure via an alternative in-house 
Total Lagrangian vertex-based finite volume algorithm [41]. Colour indicates both von Mises and temperature profiles. A von Mises plasticity model using nonlinear 
Johnson-Cook hardening rule is used. The parameters related to material properties are summarised in Table 9.

In Fig. 19a, we present the time evolution of various energy measures during impact simulation. As the impact occurs, a significant 
portion of the kinetic energy is transformed into physical plastic dissipation, while a small fraction is converted into elastic strain 
energy. This shows the dynamic energy transfer that occurs during the impact process. Fig. 19b illustrates how the total energy of the 
system decreases with mesh refinement. Notably, the global total energy consistently decreases over time throughout the simulation. 
This trend indicates the long-term stability of the system and aligns with the second law of thermodynamics, ensuring the physical 
credibility of the simulation. We also monitor the radius evolution at position 𝑿 = [0.0032, 0, 0.0324]𝑇 . This is seen in Fig. 20a. Our 
results show excellent agreement with those obtained using the Total Lagrangian approach, as referenced in [41]. An important 
advantage of the ALE method is its ability to alleviate element distortion, which is a significant benefit in simulations involving high-
speed impact. Due to this advantage, the ALE method typically allows for larger time increments compared to the Total Lagrangian 
counterpart, as depicted in Fig. 20b. This aspect enhances computational efficiency and contributes to the robustness of the algorithm 
under challenging conditions.

To further demonstrate the robustness of the algorithm in coupled physics, we incorporate temperature effects into our simulation. 
Initially, we set a uniform temperature profile across the bar, defined as 𝜃(𝝌 , 𝑡 = 0) = 573.15 K. This high initial temperature introduces 
a thermal softening behaviour, noticeable at the contact plane where temperature accumulates rapidly during impact. To assess the 
efficiency of this approach, we performed a comparative analysis between the results obtained using the ALE algorithm and those 
obtained from the Total Lagrangian method. The comparison revealed excellent agreement between the two, with the ALE algorithm 
maintaining more regular mesh shapes in the vicinity of the contact region. These results are shown in Figs. 21 and 22. Moreover, 
Fig. 23 denotes the evolution of various energy measures through the simulation. Again, as anticipated, the global energy of the 
system decreases over time, strictly adherence to the second law of thermodynamics. For a more visual representation of the impact 
process, Fig. 24 showcases a series of snapshots displaying the temperature profile of the bar.

9.6. Accuracy in the necking plastic region

Based on the problem setup previously discussed in the Taylor bar problem, we now modify the scenario by reversing the initial 
velocity field of the bar, causing it to stretch on both sides. The primary focus of this fast stretching problem is to demonstrate the 
effectiveness of the proposed ALE methodology, particularly in its ability to accurately and reliably capture the plastic flow around 
the necking region. Classical Lagrangian approaches may struggle in accurately resolving plastic deformation because the elements 
around the necking region become highly stretched [37]. A possible solution to address this issue is to perform non-uniform refinement 
by placing more elements in the necking region to better capture its deformation behaviour.

In this simulation, we employ a Hencky-based von-Mises plasticity model coupled with a nonlinear Johnson-Cook hardening law. 
The material properties used are identical to those in the previously explored Taylor bar example (with thermal coupling) and are 
detailed in Table 9. To consider the influence of thermal effects, the initial temperature profile of the bar is set at 𝜃(𝝌 , 𝑡 = 0) = 573.15 K. 
The mesh motion in this scenario is driven by solving expression (33), using the same function �̄� as in the Taylor bar. Fig. 25 displays 
a sequence of material mesh motions, focusing particularly around the necking region. Due to the extensive stretching involved in 
this problem, the material mesh motion tends to compress, thereby ensuring that the spatial mesh elements remain regular and of 
high quality, which is crucial for capturing the behaviour of the material under such extreme conditions.

First, we carried out a mesh refinement analysis using the proposed ALE formulation, as shown in Fig. 26. Three levels of mesh 
32

refinements are used, namely (M1) 1887, (M2) 3721 and (M3) 17280 linear tetrahedral elements. Both von-Mises stress and tem-
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Fig. 22. Taylor bar impact with thermal coupling: a series of snapshots at times 𝑡 = {20, 40, 60, 80} μs (from left to right). Colour indicates (first row) the temperature 
and (second row) the pressure distribution, along with their zoomed-in plots. Each subfigure is divided into two parts: the left side represents the results of ALE, 
and the right side illustrates those of the Total Lagrangian approach [41]. Results obtained using a von-Mises plasticity model coupled with nonlinear Johnson-Cook 
33

hardening rule. The corresponding material parameters are summarised in Table 9.
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Fig. 23. Taylor bar impact with thermal coupling: time evolution of (a) different energy measures and (b) total energy. Results obtained using a von-Mises plasticity 
model with nonlinear Johnson-Cook hardening rule. Parameters related to the material properties and the mesh motion are tabulated in Table 9.

perature results display convergence with increased mesh refinement. In comparison with the Total Lagrangian approach, a notable 
advantage of using the ALE approach is the improved resolution in temperature. This improvement is attributed to a relatively larger 
number of elements concentrated around the necking region. In the Total Lagrangian approach, the elements in this area tend to 
become distorted, which negatively impacts the accuracy of the simulation.

Fig. 27 presents the deformation of the bar at different times 𝑡 = {15, 20, 25, 30} ms. In this figure, we compare the contours of von 
Mises stress and equivalent plastic strain for both the ALE formulation (on the left side) and the Total Lagrangian formulation (on the 
right side). As anticipated, the ALE approach demonstrates an improved resolution in capturing plastic strain in the areas proximal to 
necking. Furthermore, the evolution of various energy components, including Ballistic energy, shows excellent agreement between the 
two formulations. As seen in Fig. 28, the reduction in total energy throughout the simulation confirms adherence to the second law 
of thermodynamics, ensuring long-term stability of the simulation results. For additional comparative analysis, Fig. 29a monitors the 
evolution of the necking radius. The ALE approach yields a larger radius value due to a more accurate representation of temperature 
effects. The evolution of the time increment is monitored in Fig. 29b for completeness. To enhance visual understanding, Fig. 30
includes a series of snapshots, showcasing the contours of plastic strain together with temperature distribution. Stable solutions are 
observed.

10. Conclusions

This paper presents a first-order hyperbolic Arbitrary Lagrangian Eulerian (ALE) conservation system tailored for simulating 
solid dynamics in irreversible processes, such as thermal effects and/or inelastic constitutive models. The system integrates essential 
physical conservation laws, including the mass continuity equation, linear momentum conservation equation and the first law of ther-
modynamics expressed in terms of the entropy density. Furthermore, the simulation accuracy is enhanced by solving two auxiliary 
geometric conservation laws for the multiplicative computation of the physical deformation gradient tensor. To handle plasticity mod-
els, our approach includes additional ALE evolution equations for the precise tracking of internal state variables. Taking inspiration 
from the principles of conservation laws, our formulation adopts a conservation-based strategy for the update of the mesh motion. 
This approach is particularly advantageous for overcoming plasticity-related challenges that are prevalent in classical Lagrangian 
approaches, such as those encountered during high-speed impact and rapid stretching (necking) scenarios. By enforcing suitable con-
ditions on kinematics, the proposed ALE framework can be degenerated into alternative mixed-based systems for irreversible solid 
dynamics, including Total Lagrangian, Updated Reference Lagrangian, and Eulerian formulations.

From a discretisation perspective, we employ an entropy-stable vertex-centred Finite Volume algorithm. This approach ensures 
non-negative numerical entropy production over time through the careful approximation of both internal and boundary interface 
fluxes using an acoustic Riemann solver. The effectiveness of this methodology is validated by monitoring the discrete variation of 
the Ballistic energy of the system across several numerical examples. A three-stage Runge-Kutta explicit time integrator is used to 
integrate the system of discrete equations in time. Through a series of numerical examples presented in this paper, we demonstrate the 
34

capability of the algorithm in ensuring (1) geometric conservation condition for a rigid translation test, (2) proper order of convergence 
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Fig. 24. Taylor bar impact with thermal coupling: a sequence of deformed structures with temperature distribution at times (left column, top to bottom) 
𝑡 = {0, 10, 20, 30} μs and (right column, from top to bottom) 𝑡 = {40, 50, 60, 70} μs, respectively. Results obtained using a von Mises based Johnson-Cook plastic-
35

ity model with M3 mesh. Parameters related to material properties and the mesh motion are summarised in Table 9.
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Fig. 25. Necking bar with thermal coupling: zoomed-in view of a series of material mesh deformation at time 𝑡 = {5, 10, 15, 20, 25, 30} μs (from left to right and top to 
bottom).

of the overall algorithm and (3) global production of both physical (such as, plastic dissipation and irrecoverable thermal effects) and 
numerical entropy (due to the involvement of numerical stabilisation) throughout the entire simulation. Additionally, the benefits of 
using an ALE approach are illustrated in plasticity scenarios, such as preventing element distortions near impact zones in high-speed 
Taylor impact situations and improving resolution accuracy during the process of plastic necking by dynamically adjusting meshes 
to better capture significant deformations. Future work will aim to refine and extend the framework to efficiently tackle challenges 
associated with single and multiple evolving interfaces.
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Fig. 26. Necking bar with thermal coupling: comparison of the deformed shapes at time 𝑡 = 30 μs. The first three columns (left to right) show the mesh refinement of 
a structure simulated using the proposed ALE algorithm, whereas the last column (at the rightmost position) shows a deformed structure via an alternative in-house 
Total Lagrangian vertex-based finite volume algorithm [41]. Colour indicates both von Mises (left of each subfigure) and temperature (right of each subfigure) profiles. 
A von Mises plasticity model using nonlinear Johnson-Cook hardening rule is used. The parameters related to material properties are summarised in Table 9.

Acknowledgements

The first, second and third authors would like to acknowledge the financial support received through the project Marie Skłodowska-
Curie ITN-EJD ProTechTion, funded by the European Union Horizon 2020 research and innovation program with grant number 
764636. CHL acknowledges the support provided by FIFTY2 Technology GmbH via project reference 322835. AJG acknowledges 
the support provided by UK AWE via project PO 40062030. JB acknowledges the financial support received via project POTENTIAL 
(PID2022-141957OB-C21) funded by MICIU/AEI/10.13039/501100011033/FEDER, UE. MG acknowledges the Spanish Ministry of 
Science, Innovation and Universities and Spanish State Research Agency MICIU/AEI/10.13039/501100011033 (Grants No. PID2020-
113463RB-C33 and CEX2018-000797-S) and the Generalitat de Catalunya (Grant No. 2021-SGR-01049). MG is Fellow of the Serra 
37

Húnter Programme of the Generalitat de Catalunya.



Journal of Computational Physics 518 (2024) 113322T.B.J. Di Giusto, C.H. Lee, A.J. Gil et al.

Fig. 27. Necking with thermal coupling: a series of snapshots at times 𝑡 = {15, 20, 25, 30} μs (from left to right). Colour indicates (first row) the von Mises stress and 
(second row) the plastic strain distribution. Each subfigure is divided into two parts: the left side represents the results of ALE, and the right side illustrates those of 
the Total Lagrangian approach [41]. Results obtained using a von-Mises plasticity model coupled with nonlinear Johnson-Cook hardening rule. The corresponding 
38

material parameters are summarised in Table 9.
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Fig. 28. Necking bar with thermal coupling: time evolution of (a) different energy measures and (b) total energy. Results obtained using a von Mises plasticity model 
coupled with nonlinear Johnson-Cook hardening rule. Parameters related to the material properties are tabulated in Table 9.

Fig. 29. Necking bar with thermal coupling: time evolution of (a) radius at 𝑿 = [0.0032, 0, 0.0324]𝑇 and (b) time increment Δ𝑡. Results obtained using a von Mises 
plasticity model coupled with nonlinear Johnson-Cook hardening rule. Parameters related to the material properties are summarised in Table 9.

Appendix A. The ALE transformation

To derive the ALE conservation form from the Total Lagrangian conservation laws, we first relate the Total Lagrangian laws, 
typically defined in the material domain, to their ALE counterparts in the fixed referential domain. This involves transforming the 
global Total Lagrangian conservation law by applying the Jacobian transformation (on the volume integral), Nanson’s rule (on the 
39

surface integral), and the Reynolds transport theorem to the material time derivative, which eventually results in [26]
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Fig. 30. Necking bar with thermal coupling: a sequence of deformed structures at times (left column, top to bottom) 𝑡 = {0, 5, 10, 15} ms and (right column, from top to 
bottom) 𝑡 = {20, 25, 28, 30} ms, respectively. Colour contour indicates temperature (top of each subfigure) and plastic strain (bottom of each subfigure) distributions. 
Results obtained using a von Mises based Johnson-Cook plasticity model with M3 mesh. Parameters related to material properties are summarised in Table 9.

𝑑

𝑑𝑡 ∫
Ω𝝌

 𝝌 𝑑Ω𝝌 + ∫
𝜕Ω𝝌

𝝌 𝑑𝑨𝝌 = ∫
Ω𝝌

𝝌 𝑑Ω𝝌 . (A.1)

Equivalently, the associated ALE local differential equation and its jump condition are

𝜕

𝜕𝑡

||||𝝌 𝝌 + DIV𝝌𝝌 = 𝝌 , 𝑈𝝌 � 𝝌 � = �𝝌 �𝑵𝝌 . (A.2)

The transformed conservation variables, fluxes and source terms are given by

 𝝌 = 𝐽𝚿 𝑿 ; 𝝌 = 𝐽𝚿𝑿 ; 𝝌 =
(
𝑿 − 𝑿 ⊗𝑾

)
𝑯𝚿, (A.3)

where { 𝑿 , 𝑿 , 𝑿} are defined as the conservation variables, fluxes and source term in the material domain, respectively.

Moreover, noticing 𝜕

𝜕𝑡

||||𝝌𝐽𝚿 = DIV𝝌
(
𝑯𝑇

𝚿𝑾
)

(8d), a non-conservative local conservation equation emerges as

𝐽𝚿
𝜕

𝜕𝑡

||||𝝌 𝑿 −
(
𝛁𝝌 𝑿

)(
𝑯𝑇

𝚿𝑾
)
+ DIV𝝌

(
𝑿𝑯𝚿

)
= 𝐽𝚿𝑺𝑿 . (A.4)
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