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1 Introduction

Formulating a QFT with fermions on a manifold with compact directions requires specifying
the spin structure. When the compact dimension is a circle, one needs to impose periodic
or anti-periodic boundary conditions for the fermions on the circle. In the context of
supersymmetric (SUSY) theories, and in particular SUSY Yang-Mills (SYM) theories, choosing
anti-periodic boundary conditions breaks SUSY by making all fermion modes massive at the
classical level and spoiling Bose-Fermi degeneracy. Any massless scalar superpartners of the
fermions then get masses through radiative corrections beginning at one-loop in perturbation
theory. At energies much lower than the scale set by the size of the circle, the effective theory
is pure Yang-Mills theory in one dimension less.

In this paper we consider the scenario described above, but with a twist, in theories
with extended supersymmetry in various dimensions. In particular, we will discuss circle
compactifications with SUSY breaking boundary conditions for fermions, simultaneously
switching on a constant abelian background gauge field for a global R-symmetry along the
compact dimension, in such a way that the low energy effective theory consists of a classically
massless SUSY Yang-Mills multiplet preserving at least four supercharges. Quantum effects
in the low energy theory can then generate a mass gap, which can be explored quantitatively
via a holographic description.
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A key motivation for this work is to understand the field theoretic implication of the
(holographic) supersymmetric soliton supergravity backgrounds found first in [1] (see [2] for a
precursor), and generalisations thereof [3–8]. What makes these backgrounds particularly
interesting is that, like holographic duals of SUSY field theories with SUSY-breaking spin
structure they contain a cigar-like geometry: shrinking of the circle coordinate along which the
boundary field theory is compactified. Canonical examples [9] of such backgrounds are double
Wick rotations of non-extremal Dp-brane geometries, dual to maximally SUSY Yang-Mills in
(p+1) dimensions compactified on a circle with anti-periodic (thermal) boundary conditions for
the fermions. Crucially however, while the latter backgrounds have vanishing Killing spinors
due to the anti-periodicity condition, those in [1, 3–8] have non-vanishing Killing spinors
satisfying anti-periodic boundary conditions around the circle. A further puzzling feature of
the supersymmetric soliton backgrounds of [1] is that unlike other known gravity duals of
SUSY field theories with a mass gap [10, 11], there are no additional fields turned on that
could correspond to field theory condensates accompanying a nontrivial vacuum structure.

The N = 4 SYM theory on R1,3 provides the most instructive example to focus attention
on. Compactifying on a spatial S1 with anti-periodic boundary conditions for fermions, we
first explain how the inclusion of a constant (real) background gauge field, with non-vanishing
component along the S1, for a diagonal combination of the maximal abelian subgroup of
the SO(6) R-symmetry, leaves behind a massless gauge supermultiplet corresponding to a
four supercharge theory.

Introducing a constant imaginary background temporal gauge field for a global abelian
symmetry corresponds to turning on a chemical potential for the associated global charge.
This has been extensively explored in the context of thermal N = 4 SYM with R-symmetry
chemical potentials on both R3 × S1

β [12] and S3 × S1
β [13] and holographic gravity duals

of maximally supersymmetric theories [14, 15]. The gravity duals involve R-charged black
holes [16–21]. The supersymmetric solitons we discuss result from analytically continuing
the R-charge chemical potentials in those backgrounds to imaginary values and taking the
limit of zero energy density in the dual QFT.

It is important to note that the analytic continuation alluded to above has a drastic
effect on the QFT. In particular, N = 4 SYM with a real R-charge chemical potential does
not have a well defined ground state, which is to say that the grand canonical ensemble
is ill defined due to the presence of a flat Coulomb branch moduli space of vacua, leading
to brane nucleation instabilities visible both at weak and strong coupling. On the other
hand, the theory we discuss here with a real background gauge field for an R-symmetry
is supersymmetric and hence, stable.

Our main observation is that the twisted compactification of N = 4 SYM can be viewed
as a 3D effective N = 2 theory with real mass deformation, which has gapped and ungapped
vacua. Crucially, the gapped vacuum results from the generation of Chern-Simons terms in
the 3D effective theory: the spectrum of KK harmonics in the twisted compactification is
not vectorlike as explained in [22], and integrating these out generates a Chern-Simons term
with level N in the SU(N) theory. The twisted compactification also allows at the classical
level, vacua where new light states appear and lead to Higgs branch moduli spaces. We
identify the root of one such branch as the ungapped phase, a quotient of Poincaré AdS5 ×S5

with non-shrinking S1, pointed out in [1]. We provide checks supporting the picture via
probe calculations in the dual backgrounds.
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This paper is organised as follows: we begin section 2 with a toy example that explains
the basic mechanism of the twisted compactification around the circle. We then extend this
procedure to N = 4 SYM, showing that the compactified theory preserves four Poincaré
supercharges in 3D. We further elucidate the vacuum structure of the 3D effective theory.
Section 3 is dedicated to the study of the supersymmetric soliton in AdS5 × S5 and the
accompanying quotiented AdS5×S5 geometry. We explain how these describe the compactified
field theory, and examine various probes of these backgrounds revealing aspects of the dual
field theory. Then, in section 4, we propose that it is possible to extend the SUSY preserving
mechanism to maximally SUSY Yang-Mills in even dimensions by looking at their holographic
duals, and conjecture that it is not possible to apply it in odd dimensions. Finally, section 5
contains a summary of our results, conclusions and ideas for future research.

2 N = 4 SYM on R2,1 × S1 with background gauge field

In this section we explain how coupling a SUSY theory to a constant background gauge
field for the maximal U(1) subgroups of the R-symmetry, allows to preserve some amount
of SUSY when imposing SUSY breaking boundary conditions on a spatial circle. We first
look at the illustrative example N = 1 SYM in four dimensions and subsequently move to
the maximally SUSY theory, which is the main objective of this note.

2.1 Toy example: N = 1 SYM on R2,1 × S1

Consider the N = 1 SYM theory in 4D with some gauge group G. The N = 1 vector multiplet
consists of the gauge field Aµ and its superpartner gaugino, a Weyl fermion λ transforming
in the adjoint representation. The Lagrangian of the theory is

SN=1 = 1
g2

YM

∫
d4xTr

(
−1
2FµνF

µν − 2iλσµDµλ̄

)
, (2.1)

where we define the gauge covariant derivative as Dµ ≡ ∂µ − i[Aµ, · ]. We now compactify the
theory on a circle of radius R along the x3 ≡ ϕ direction, identifying points under the shift,

ϕ ∼ ϕ+ 2πR, (2.2)

with anti-periodic boundary conditions for λ and periodic for Aµ. This yields mode expansions
for the fields around the circle,

Aµ(xj , ϕ) =
∑
n∈Z

ei n
R

ϕ
(
A

(n)
i (xj), Θ(n)(xj)

)
, λ(xj , ϕ) =

∑
n∈Z

e
i
R(n+ 1

2)ϕ λ(n)(xj), (2.3)

where Θ(n) are the Kaluza-Klein (KK) modes of Aϕ, appearing as scalars in the 3D effective
theory, and i, j = t, x1, x2, the (2+1) Minkowski coordinates. The fermion modes thus
acquire effective masses

mn,λ =
∣∣∣n+ 1

2

∣∣∣R−1 , n ∈ Z . (2.4)

Reducing on the circle, the 3D effective theory has a massless gauge field A(0)
i and a classically

massless 3D scalar Θ(0), with gauge and Yukawa interactions respectively to fermion modes
which are all massive, thus breaking SUSY.
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The splitting of the bosonic and fermionic perturbative spectrum can potentially be
undone by deforming the Lagrangian with a constant background U(1) gauge field Aµ with
only non-vanishing component along ϕ, and which couples only to the fermionic states.
This can of course be viewed as a background field for the U(1)R symmetry of the theory,
which is anomalous quantum mechanically. Introducing the background gauge potential
is achieved by the replacement

Dµ → Dµ = Dµ − iqAµ, Aµ = Qδϕ
µ , (2.5)

where q is the R-charge of λ, and the holonomy of the background gauge field around the S1 is,

ΦR ≡
∮

S1
dϕAϕ = 2πRQ . (2.6)

For the gaugino, q = +1, and hence the shifted covariant derivative leads to shifted masses
for the fermion modes in the 3D effective theory,

mn,λ →
∣∣∣∣ nR + 1

2R −Q

∣∣∣∣ . (2.7)

The background field induces a spectral flow, and by setting Q = 1/2R we restore the
Bose-Fermi degeneracy of the perturbative spectrum. In this situation the Wilson line around
the S1 is ΦR = π. The massless perturbative modes correspond to the four supercharge,
N = 2 SYM multiplet in 3D. Of course, in this case the full quantum theory has an anomaly
for the R-symmetry which one must worry about. In particular, the effect of the background
gauge field can be absorbed in the field redefinition

λ̃ = e−iqAϕϕλ, (2.8)

where choosing anti-periodic boundary conditions for λ leads to periodic boundary conditions
for λ̃, but this is then accompanied by a position (ϕ-)dependent θ-term in the 4D Lagrangian
due to the anomaly. In a theory with a non-anomalous R-symmetry, we can expect an
operation analogous to the above to lead to a supersymmetric effective 3D description.

2.2 N = 4 SYM on R2,1 × S1

Let us now consider the SU(N) N = 4 SYM theory in (3+1)-dimensions. The field content
consists of a gauge field Aµ, four Weyl fermions {λa} (a = 1, . . . , 4) and six real scalars
{XI} (I = 1, . . . , 6), all transforming in the adjoint representation of SU(N). The theory
is invariant under the SO(6) R-symmetry, under which the scalars transform in the vector
representation or 6 of SO(6), while the fermions transform in the spinor representation i.e.
in the fundamental representation 4 of SU(4).

The SO(6) ∼ SU(4) R-symmetry has SO(2)3 ∼ U(1)3 as its maximal abelian subgroup.
We pick a basis in which the action of each SO(2) corresponds to a rotation on a specific
pair of scalars, which can accordingly be grouped into 3 complex fields,

Y1 = X1 + iX2, Y2 = X3 + iX4, Y3 = X5 + iX6. (2.9)
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Each U(1) then acts on one of the complex fields {Yã} as a phase rotation. Assembling the
fields and their complex conjugates into the 6-vector,

Y⃗ = (Y1, Y
∗

1 , Y2, Y
∗

2 , Y3, Y
∗

3 ), (2.10)

the generators in the vector representation of the three U(1) subgroups are given by1

R6
1 = diag(1,−1, 0, 0, 0, 0), R6

2 = diag(0, 0, 1,−1, 0, 0), R6
3 = diag(0, 0, 0, 0, 1,−1),

(2.11)
while the generators in the spinor representation are2

R4
1 =

1
2diag(1,−1,−1,1), R4

2 =
1
2diag(−1,1,−1,1), R4

3 =
1
2diag(−1,−1,1,1). (2.12)

We take the theory to be compactified on a circle as before with SUSY breaking boundary
conditions, so we have the same mode expansions for the gauge field components Ai(xj , ϕ)
and the effective 3D scalar Θ(xj , ϕ) as in (2.3). In addition, the four fermions {λa} and six
scalars {XI} have Fourier expansions with half-integer and integer modings, respectively:

XI =
∑

n

ei n
R

ϕXI(n)(xi), λa =
∑

n

e
i
R(n+ 1

2)ϕλ(n)
a (xi) . (2.13)

We now couple the theory to a background gauge field Aµ for the diagonal combination of
the three U(1) generators discussed above, with non-vanishing component along the compact
ϕ coordinate, accordingly modifying the gauge-covariant derivatives as,

Dµ → Dµ = Dµ − iRdiag Aµ, Aµ = Qδϕ
µ . (2.14)

Here Rdiag is the generator of the diagonal U(1) symmetry and the generators are normalised
so the complex scalars have unit charge under phase rotations,

R6
diag =

3∑
n=1

R6
n = diag(1,−1, 1,−1, 1,−1), (2.15)

while for the fermions λ (the charge of λ̄ has the opposite sign)

R4
diag =

3∑
n=1

R4
n = 1

2diag(−1,−1,−1, 3). (2.16)

The shifted covariant derivatives for each of the fields now imply the following set of effective
masses for the charged fields, namely the 3D fermions,

mn,λ4 =
∣∣∣∣ nR + 1

2R − 3
2Q
∣∣∣∣ , mn,λã =

∣∣∣∣ nR + 1
2R + 1

2Q
∣∣∣∣ , ã = 1, 2, 3 , (2.17)

and scalars,

mn,Yã =
∣∣∣∣ nR −Q

∣∣∣∣ , ã = 1, 2, 3 , n ∈ Z . (2.18)

1In the real scalar frame, the infinitesimal transformation generated by, for example, R6
1 is δX1 = −θ X2,

δX2 = θ X1, with θ the infinitesimal parameter of the transformation.
2Under R4

1 , λ1 → ei θ
2 λ1, with θ the same parameter for the scalar transformation. The factor of 1/2

indicates the spinorial character under the R-symmetry.
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We observe that the antiperiodic fermionic field λ4 can now have a zero mode precisely when

Q = 1
3R , (2.19)

and can be identified as the gaugino for the 3D gauge multiplet. At this value it also follows
immediately that the spectra of modes of the three complex scalars {Yã} and their fermionic
partners {λã} are degenerate and massive. So the perturbative spectrum is supersymmetric.
Unlike the toy example discussed previously, the R-symmetry is non-anomalous. The
holonomy at the supersymmetric point is

ΦR =
∮

S1
dϕAϕ = 2πRQ = 2π

3 . (2.20)

The effect of the background gauge field can also be packaged as ϕ-dependent phases for
each of the fields,

η = e−i 3
2 Qϕλ4, ηã = e

i
2 Qϕλã, Zã = e−iQϕYã. (2.21)

With anti-periodic boundary conditions for all the fermions and periodic for Yã the mode
expansions for the redefined fields at the supersymmetric point are,

η =
∑

n

ei n
R

ϕη(n)(xi), (2.22)

ηã =
∑

n

e
i
R(n+ 2

3)ϕη
(n)
ã (xi),

Zã =
∑

n

e
i
R(n− 1

3)ϕZ
(n)
ã (xi).

In this picture we have one periodic fermion, identified as the gaugino, and the rest of the
fermions and the scalars have non-trivial winding around the circle, such that we only have
periodicity under ϕ → ϕ + 6πi shifts.

2.3 4D N = 1 picture

It is useful to revisit the argument above in the 4D N = 1 language which is natural in this
setting. The N = 4 theory can be viewed as an N = 1 vector multiplet coupled to three
adjoint chiral multiplets {Yã} where we denote the chiral multiplets with the same symbol
as their lowest scalar component, along with the superpotential,

W = 1
g2

YM
Tr (Y1[Y2, Y3]) . (2.23)

In this language, the N = 1 theory has a manifest U(1)R symmetry under which the gaugino
λ4 has charge +1, and the superpotential transforms with charge +2. The two other abelian
R-symmetries of N = 4 appear as additional independent global U(1) symmetries which
leave W invariant, corresponding to simultaneous and opposite phase rotations of a pair of
the three chiral multiplets. If we choose U(1)R to act democratically on the three multiplets,
they each must have R-charge +2

3 in order for W to have R-charge 2, and the corresponding
fermions have R-charge −1

3 . Notice that these charge assignments are, up to an overall
rescaling of 2

3 , precisely the assignments in (2.15) and (2.16).

– 6 –
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Introducing a background gauge field, Âµ = 1
2R δϕ

µ, for the R-symmetry kills the half-
integer moding of the gaugino λ4, yields the same spectra3 and phase redefinitions for the
chiral multiplets as discussed above.

Note that we can reach the same supersymmetric point by compactifying 4D N = 4
SYM on the S1 with SUSY preserving boundary conditions and subsequently turning on
a background gauge field for a global U(1) global symmetry which is not an R-symmetry.
Consider the global U(1) which acts on the chiral multiplets as

Y1,2 → Y1,2 e
2iα/3 , Y3 → Y3 e

−4iα/3 (2.24)

leaving the superpotential invariant. Picking a background gauge field Âµ = δϕ
µ/2R for

this U(1) yields the same theory we obtained above with degenerate masses for all matter
fields and their harmonics.

Of the four sets of SUSY transformations, the one that is manifest in the N = 1 picture
respects the natural pairing that follows from the boundary conditions (2.22). Indeed, the
SUSY transformations are compatible with the boundary conditions following from the phase
redefinitions (2.22). This can be seen explicitly from the boundary term obtained from
the N = 1 SUSY variation:4

δϵS =
∫
R2,1×S1

d4x ∂µTr
(
Dµ(Z ã)†ϵ ηã −Dν(Z ã)†ϵ σν σ̄µηã

)
(2.25)

=
∫
R2,1

d3xTr
(
Dµ(Z ã)†ϵ ηã −Dν(Z ã)†ϵ σν σ̄µηã

) ∣∣∣∣ϕ=2π

ϕ=0
= 0.

2.4 Connection to refined index

On S3 × S1, the procedure described above mirrors the definition of the refined Witten
index [22] with complexified chemical potentials (ω1, ω2) which can be thought of as complex
structure parameters on S1 × S3. The refined index for N = 4 SYM is only periodic
under shifts of ω1,2 → ω1,2 + 6πi and lives on a three-sheeted cover of the space of complex
structures. In the notation of [22], we are setting ω2 → 0 and ω1 → 2πi which can be viewed
as a Cardy-like limit on the second sheet, so that the partition function takes the form

ZS3×S1 = Tr e−{Q,Q†}+iπR , (2.26)

where fermions are antiperiodic around the S1 and R the R-charge of the states.5

2.5 Effective 3D N = 2 SYM with real masses

Masses obtained by turning on background gauge fields for global U(1)’s correspond to real
mass deformations of 3D N = 2 theories [22, 23]. The lightest KK harmonics in the setup

3The rescaled charge assignment means that Âµ and Aµ (defined in (2.19)), are related as Aϕ = 2
3 Âϕ

so the holonomy of the background gauge field, and consequently, the spectrum is indeed the same as
encountered previously.

4Note that for anti-periodic boundary conditions without the background gauge field, this boundary term
would not vanish, signalling the breaking of SUSY.

5A chiral multiplet with R-charge Rb contains a fermion with charge Rf = Rb − 1. This shift cancels
the half-integer moding of the fermions, precisely at the special value of the complexified chemical potential
in (2.26).
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described above fill out the massless N = 2 vector multiplet coupled to three adjoint chiral
multiplets with identical real masses

m1 = m2 = m3 = 1
3R . (2.27)

The higher harmonics are however important and their presence has a nontrivial effect on
the IR physics as argued below.

The real scalar Θ(0) in the 3D gauge multiplet is massless and can have a VEV classically.
We can always use gauge transformations to diagonalise Θ(0) so that,

Θ(0) = diag(a1, a2, . . . aN ) , (2.28)

where the {ai} are compact scalars, with identification under shifts6 by multiples of 1/R,

ai ∼ ai +
1
R
, 2πR

N∑
i=1

ai = 0 mod 2π , (2.29)

as such a shift can be absorbed in a relabelling of the Kaluza-Klein harmonics from the
compact direction [24]. A VEV for Θ(0) thus breaks SU(N) to U(1)N−1, assuming all Yã = 0,
and there is a classical Coulomb branch moduli space.

2.5.1 Gapped vacuum: SU(N)N N = 2 SYM

Near the origin of the classical Coulomb branch where Θ(0) = 0, the SU(N) gauge symmetry
is unbroken and fluctuations of all chiral multiplets are massive. We might then expect that
the low energy theory is effectively pure N = 2 SYM in 3D which has a nonperturbatively
generated superpotential [23, 24] and potentially runaway vacua in the decoupling limit
for massive matter. However, as argued in [22], the physics is subtler. The twist with the
R-symmetry yields a spectrum for the fermions in the chiral multiplets, mn,λã = |n+ 2

3 |
1
R ,

n ∈ Z, which is not vector-like. Integrating out all the fermion KK harmonics produces
a Chern-Simons term with a level given formally by an alternating infinite sum. When
regulated, the sum leaves behind a residual Chern-Simons interaction at level N [22, 25] for
the massless N = 2 vector multiplet. The vacuum is trivially gapped.

At the perturbative level, the N = 2 vector multiplet (which includes the scalar Θ(0))
acquires a mass ∼ g2

YMN , lifting the Coulomb branch. As discussed below, we expect N such
vacua owing to spontaneous breaking of the ZN symmetry for the theory on R2,1 × S1.

2.5.2 Higgs branches and massless vacua

The theory potentially has additional interesting vacua, visible classically, where the gauge
group is Higgsed i.e. the unbroken gauge group has rank r < N − 1. Such branches appear as
a result of the scalars in the chiral multiplets acquiring non-commuting VEVs. At the roots
of such branches, new light states appear for particular values of the 3D scalar Θ(0). This

6The normalisation of the shift is fixed by the definition Θ(0) =
∮

S1 Aϕdϕ/2πR.
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follows upon examining the form of the 3D scalar potential for Θ(0) and the chiral multiplets,

V (Θ(0), Yã) =
1

g2
YM

3∑
ã=1

∑
n

Tr
∣∣∣[Θ0, Y

(n)
ã ] + 1

R

(
1
3 − n

)
Y

(n)
ã

∣∣∣2 (2.30)

+ 1
g2

YM

∮
S1

Tr
(
|[Y1, Y2]|2 + |[Y1, Y3]|2 + |[Y2, Y3]|2

)
,

where, in the first term, we have made explicit the sum over the KK modes of the chiral
multiplet scalars, Yã = ∑

n Y
(n)

ã einϕ/R.

Case N = 3. Keeping in mind that eigenvalues of 2πRΘ(0) must lie in the interval [−π, π],
we point out that something interesting happens for SU(3) gauge group, when the VEV
takes the form,

2πRΘ(0) = diag
(2π

3 , 0,−
2π
3

)
≡ 2π

3 J3 , (2.31)

where J3 = diag(1, 0,−1). For this choice, there is a precise cancellation of the real mass for
some of the fluctuations with n = 0 or 1 in Y

(n)
ã . Each of the three Yã yield three massless

chiral multiplets at this point. In fact, it is fairly easy to show that the scalar potential
vanishes with the following VEVs for both the n = 0 and n = 1 harmonics of the scalar fields,

Y
(0)

ã =

 0 0 0
Yã,21 0 0
0 Yã,32 0

 Y
(1)

ã =

0 0 Yã,13
0 0 0
0 0 0

 , (2.32)

when the VEVs are constrained to satisfy

Y2,ij = γ Y1,ij Y3,ij = γ̃ Y1,ij , γ, γ̃ ∈ C , (2.33)

and the bifundamental labels (ij) = (21), (32) or (13), matching the non-zero entries in (2.36).
In the SU(3) theory, generic non-zero VEVs of this type completely Higgs the gauge group.
At the origin of this Higgs branch SU(3) is broken to U(1) × U(1). The matrix of VEVs
Yã = Y

(0)
ã + eiϕY

(1)
ã has eigenvalues proportional to the cube roots of unity,

spec(Y ) = (Y13Y32Y21)1/3 eiϕ/3R
{
1, ω, ω2

}
, Y 3 = 13×3 (Y13Y32Y21) eiϕ/R . (2.34)

Here we have omitted the subscript ã for clarity. Relatedly, single trace gauge-invariant
operators with non-vanishing classical VEVs are at least cubic in the {Yã}, e.g. TrY 3

ã ,
TrY1Y2Y3 etc. In general, traces of monomials of Yã are non-vanishing only when the number
of terms is a multiple of 3. This indicates that states which are not left invariant by the
simultaneous phase rotations and shift of the ϕ coordinate

Yã → e−2πi/3Yã , ϕ→ ϕ+ 2πR , (2.35)

are projected out.
A natural interpretation of the VEVs, (2.32) and (2.34), as three dimensional matrices

on the Higgs branch, is in terms of the locations of whole D-branes, which can fractionate
at the origin of the Higgs branch [26].
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General N . There are two ways of generalising the N = 3 example.
First, consider the theory with N = 3k, k ∈ Z, where the Yã,ij are now k × k blocks and

2πRΘ(0) = 2π
3 J3⊗1k×k . (2.36)

At the root of this Higgs branch (H1), the massless states constitute a 3D N = 2, S(U(k)×
U(k) × U(k)) quiver gauge theory with 3 sets of massless bifundamental chiral multiplets
Yã,ij , (ã = 1, 2, 3), for the pair of nodes (ij) in the quiver.

Exploring the Higgs branch with bifundamental VEVs proportional to the identity,
Yã,ij = yã 1k×k, only the diagonal SU(k) N = 2 gauge multiplet is unbroken, and we find
precisely 3 massless chiral multiplets transforming in the adjoint representation in the low
energy theory. Since KK harmonics of the massless fields on the Higgs branch have integer
modings no CS terms will be generated, and we expect this theory to then flow to the 3D
N = 8 SCFT in the IR. When N is not a multiple of 3, i.e. when N = 3k + 1 or 3k + 2, we
can still consider classical vacua which consist of k blocks of the kind discussed above, with
the remaining entries set to zero. Such vacua would have an additional unbroken U(1) or
U(2) factor which we expect to get gapped due to induced Chern-Simons terms.

There is a second generalisation (H2), of the Higgs vacuum seen above for the SU(3)
gauge group. Consider again the case with N = 3k, but with the real scalar VEV of the form

2πRΘ(0) = 2π
3k diag

(3k − 1
2 ,

3k − 3
2 , . . . ,−3k − 1

2

)
. (2.37)

For N = 3k+1 or N = 3k+2 we add one or two vanishing entries, respectively, to (2.37). In
general we find 3k massless perturbative modes for each member of a chiral multiplet Yã. 2k
of these arise from off-diagonal entries ∼ (Y (0)

ã )k+i,i for 1 ≤ i ≤ 2k. The remaining massless
fluctuations are those of the n = 1 harmonic ∼ (Y (1)

ã )i,i+2k with 1 ≤ i ≤ k.
Matrices with these entries non-vanishing, naturally split into k three-dimensional irre-

ducible blocks which each have eigenvalues proportional to the cube roots of unity. These
correspond to k whole D-branes exploring the Higgs branch.

2.6 Polyakov loop

The Wilson loop of the SU(N) gauge field around the S1 is a natural gauge-invariant
observable in the compactified theory. We will refer to this as the “Polyakov loop”, in a
slight abuse of terminology since the Polyakov loop usually denotes the Wilson loop around
the thermal circle:7

P = 1
N

TrU , U = exp
(
i

∮
S1
Aϕ dϕ

)
, (2.38)

with expectation value,

⟨P ⟩ = 1
N

⟨Tr e2πiRΘ(0)⟩ . (2.39)

7In the Euclidean thermal setting on R3 × S1, the Polyakov loop will have a non-zero expectation value
which cannot be computed analytically, although it can be computed holographically [9]. Consistent weak
coupling [27] and even zero coupling calculations [28] can be performed on S3 × S1 at large-N revealing
competing phases with vanishing and non-vanishing expectation values of the Polyakov loop.
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The Polyakov loop is an order parameter for ZN center symmetry of the theory on R1,2 × S1.
In the classically trivial vacuum where Θ(0) = 0, the Polyakov loop is non-vanishing and
spontaneous breaking of centre symmetry then implies N distinct quantum vacua.

When N = 3k, we can consider vacua where the VEVs consist of k copies of the three
dimensional representations, (2.36), and then the Polyakov loop in this Higgs phase is:

⟨P ⟩H1 = 0 , N = 3k, k ∈ Z+ . (2.40)

But since the eigenvalues of the holonomy matrix U lie clumped at the cube roots of unity,
1
N ⟨TrU3⟩H1 = 1. When N = 3k + 1 or 3k + 1, the vacuum with k three dimensional blocks
has additional unbroken gauge symmetries and ⟨P ⟩H1 = O(1/N).

More interesting is the classical vacuum H2 with the arrangement (2.37). For N = 3k,
the Polyakov loop and its multiply wound versions vanish identically in this vacuum,

1
N

⟨TrUm⟩H2 = 0 , 1 ≤ m < 3k . (2.41)

For N = 3k + 1 and 3k + 2, there will be non-vanishing pieces ∼ 1/N . In the large-N
limit, this vacuum is ZN invariant.

3 Holographic description

The holographic dual of N = 4 SYM compactified on a circle with SUSY breaking spin
structure along with a background gauge field was studied in [1]. The key observation of [1]
was that two competing non-singular, asymptotically AdS5 × S5 dual backgrounds exist, one
containing a cigar-like geometry (AdS soliton) with a shrinking circle and another where
the circle always remains finite (quotiented Poincaré-AdS). Both backgrounds consist of an
S5 fibration over the circle direction. Importantly, the two geometries become degenerate
when the asymptotic value of the background gauge field is tuned so that some amount of
SUSY is preserved. As we will review below, it is the nontrivial fibration of the S5 that
allows to preserve some amount of SUSY.

3.1 SUSY AdS5 soliton and Poincaré-AdS quotient

AdS soliton. The supersymmetric AdS5 soliton background in type IIB supergravity is
specified by the following form for the metric and five-form flux8

ds2 = r2

ℓ2

(
dx2

2,1 + f(r)dϕ2
)
+ dr2

r2

ℓ2 f(r)
+ ℓ2

3∑
i=1

[dµ2
i + µ2

i

(
dϕi +Q3ℓ4ζ(r)dϕ

)2
] ,

F5 = G5 + ⋆G5 , (3.1)

G5 = −4
ℓ

Vol(M5) +Q3ℓ4
3∑

i=1
d(µ2

i ) ∧
(
dϕi +Q3ℓ4ζ(r)dϕ

)
∧ dt ∧ dx1 ∧ dx2

where µi satisfy ∑i µ
2
i = 1, Vol(M5) = r3

ℓ3 dt ∧ dx1 ∧ dx2 ∧ dϕ ∧ dr and

f(r) = 1− Q6ℓ12

r6 , ζ(r) = 1
r2 − 1

Q2ℓ4
, ℓ = (4πgsN)1/4 . (3.2)

8Our parametrisation of the solution differs from that of [1].
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Here ℓ is the AdS radius and that of the S5, and as usual there are N units of five-form flux
through the S5. Q is a dimensionful constant with mass dimension +1. In this parametrisation,
the three U(1) abelian subgroups of the SO(6) symmetry are manifest in the metric via
the angular coordinates ϕi. The fibration does not introduce extra brane charges. This
solution preserves four real supersymmetries.

The function f(r) has one positive root at r0 = Qℓ2. In the limit r → r0, the ϕ cycle
shrinks to zero size. In order for it to shrink smoothly the circumference 2πR of the circle
is fixed in terms of Q,

2πR = 4π
f ′(r0)

ℓ2

r2
0

=⇒ Q = 1
3R . (3.3)

This is precisely the field theory relation (2.19) between the magnitude of the background
gauge field and the radius of the S1.

AdS quotient. For a given Q, there is another background with identical asymptopia,
which can be viewed as a smooth quotient of AdS5 × S5 in the presence of a Wilson line
in the ϕ direction,

ds2 = ds2
AdS5 + ℓ2

3∑
i=1

[dµ2
i + µ2

i (dϕi −Qdϕ)2] . (3.4)

The metric and five-form flux have the general form of (3.1) but with f(r) = 1 and ζ(r) =
−1/Q2ℓ4. The ten dimensional metric is a quotient of AdS5 × S5 with the identifications,

(ϕ, ϕ̃i) ∼ (ϕ+ 2πR, ϕ̃i − 2π/3) , ϕ̃i ≡ ϕi −Qϕ , (3.5)

where the shift of the ϕ̃i coordinates is by the background Wilson line Φ = 2π/3 along
the S1. Note that this quotienting precisely mirrors the dual field theory description (2.35)
in the Higgs branch (2.32).

Therefore, both backgrounds above in the limit, r → +∞, are asymptotically AdS5 × S5,
with two key differences. First, the coordinate ϕ is compact with period 2πR. The second
difference is that in both cases there is a non-vanishing fibration of the S5 over the field
theory S1:

ds2(S5)
∣∣
r→∞ = ℓ2

3∑
i=1

[dµ2
i + µ2

i (dϕi −Qdϕ)2]. (3.6)

This fibration cannot be undone by a gauge transformation of ϕi since the 1-form A = Qdϕ

has a non-trivial holonomy around the S1. This is precisely the gauge field used to cancel the
SUSY breaking spin structure in the boundary field theory, namely N = 4 SYM on R1,2 ×S1.
Each of the three fibrations corresponds to deforming the boundary theory by three equal
background gauge fields A = Qdϕ for the three U(1) subgroups of the R-symmetry. The
holonomy ΦR of this gauge field has to be tuned to 2π/3 to preserve four supercharges. We
briefly review how this works below.
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3.2 SUSY preservation in supergravity

How the supersymmetric soliton preserves SUSY was already explained in [1] and [5]. We now
schematically review the mechanism for the solution presented here. In type IIB supergravity
with only the F5 flux turned on, the condition for vanishing SUSY variations of the gravitino
leads to the Killing spinor equation for the SUSY transformation parameter ϵ,

δψM = DM ϵ+ i

16
/F 5ΓM ϵ = 0 . (3.7)

Here {xM}M=0,1...9 are spacetime coordinates and /F p = 1
p!Fa1...apΓa1...ap (a = 0, . . . , 9 are

tangent space indices). In pure AdS5 × S5 the solution is [29],

ϵ =
(
1
0

)
⊗ ϵAdS5 ⊗ ϵS5 , (3.8)

where ϵAdS5 and ϵS5 are the Killing spinors on AdS5 and S5 respectively. The AdS5 spinor is,

ϵAdS5 =
√
r

ℓ
ϵ+ +

√
r

ℓ

(
ℓ

r
+ 1
ℓ
xµΓµ

)
ϵ− , (3.9)

where ϵ± are constant spinors satisfying Γr̂ϵ± = ±ϵ±, so that each of them have two
independent complex constants. Here, ϵ+ corresponds to field theory Poincaré supercharges,
while ϵ− to super-conformal transformations. On the other hand the Killing spinor on the
S5 is of the form

ϵS5 = e
i
2 (ϕ1+ϕ2+ϕ3)ϵ1(θ1, θ2) +

3∑
i=1

e−iϕie
i
2 (ϕ1+ϕ2+ϕ3)ϵi+1(θ1, θ2) (3.10)

where ϵ1, . . . , ϵ4 are the four independent complex spinors and θ1,2 are the polar angles
on the S5.

Periodically identifying the spatial coordinate x3 = ϕ with ϕ ∼ ϕ + 2πR, with R as
in (2.2), and imposing anti-periodic boundary conditions for the Killing spinor along ϕ

completely breaks SUSY, so there are no non-vanishing solutions.
We can now see how SUSY is preserved by including the constant part of the fibering

function ζ(r) and setting f(r) = 1 in (3.2), whilst considering the identification ϕ ∼ ϕ+ 2πR.
This is equivalent to coupling the theory on R2,1 × S1 to the background gauge field A and
picking an ungapped IR phase (corresponding to the Poincaré-AdS quotient geometry). The
inclusion of A makes the spinor charged under shifts of the ϕ coordinate which appear as
phase shifts. One can obtain the resulting spinor by the replacement ϕi → ϕi −Qϕ in (3.10)

ϵS5 = e−i 3Q
2 ϕe

i
2 (ϕ1+ϕ2+ϕ3)ϵ1(θ1, θ2) + e−i Q

2 ϕ
3∑

i=1
e−iϕie

i
2 (ϕ1+ϕ2+ϕ3)ϵi+1(θ1, θ2) , (3.11)

with Q = 1/3R. The coefficients of the spinors ϵ2, . . . , ϵ4 still do not satisfy anti-periodic
boundary conditions around the ϕ, so these must vanish. Similarly the piece of the AdS5
spinor that depends on ϵ− in (3.9), contains the term ϕΓϕ which does not respect boundary
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conditions under shifts of ϕ. The Killing spinor which does satisfy the boundary conditions
is of the form

ϵ = e−i 3Q
2 ϕe

i
2 (ϕ1+ϕ2+ϕ3)

(
1
0

)
⊗ ϵ+ ⊗ ϵ1(θ1, θ2), (3.12)

wherein we count four real independent spinors, hence the background preserves four super-
charges, matching the field theoretic expectation from weak coupling.

In order to obtain the spinor in the supersymmetric soliton background which is dual
to the gapped phase of N = 4 SYM with a background gauge field on a circle, we modify
the previous expression to have an r-dependant spinor in the AdS part ϵ+ → ϵ+(r). This
solution also preserves four supercharges.

The fact that we can we can preserve SUSY by only introducing the constant part of
the fibering gauge field is related to the fact that the mechanism by which the AdS-soliton
preserves SUSY is very similar to a twisting procedure, as was explained in [5]. There is a twist
between the R-symmetry with the spin structure on the shrinking circle ϕ, realised by the
non-vanishing fibration of the S5 over the S1, which allows for the existence of anti-periodic
spinors. The r-dependent part of the fibration and the function f(r) allow the space to end
smoothly at r = r0, and the one-form Q3ℓ4ζ(r)dϕ to vanish smoothly at the end of the space.

3.3 Polyakov loop

The two supersymmetric backgrounds, namely the AdS5 soliton and the (smooth) quotient
of Poincaré-AdS, are distinguished by two main features. The first difference is that the
ϕ-circle shrinks smoothly in the soliton background, whereas it remains finite sized for
all r in the Poincaré-AdS quotient. The second, related difference is that the non-trival
fibration function ζ(r) in the AdS-soliton background leads to a normalisable mode for the
5D effective gauge field [1] which implies a non-zero, constant expectation value for the
ϕ-component of the R-current,

AdS soliton : ⟨Jϕ⟩ =
λ

27R3 , (3.13)

Poincaré AdS quotient : ⟨Jϕ⟩ = 0 ,

where λ = g2
YMN ≫ 1 is the ’t Hooft coupling of N = 4 SYM. Both backgrounds yield

vanishing expectation value for the QFT stress tensor. This is natural from the point of
view of the dual field theory. Unlike ordinary masses, real masses through the background
gauge field deformation naturally act as a source for the zero mode of the ϕ component of
the U(1)R current, so we generically expect

1
2πR

〈∫
S1
dϕ Jϕ

R

〉
̸= 0 . (3.14)

The shrinking cycle in the AdS-soliton geometry means that we should be able to deduce
a non-zero expectation value for the Polyakov-Maldacena loop [30], by wrapping a Euclidean
string worldsheet on the cigar geometry [9]. We can always choose the worldsheet coordinates
(τ, σ) such that the string embedding is,

r(σ) = σ, ϕ(τ) = τ, (3.15)
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with all other coordinates set to constant. The induced metric on the worldsheet is then

ds2
ind = dr2

r2

ℓ2 f(r)
+
(
r2

ℓ2
f(r) + r6

0
ℓ2
ζ(r)2

)
dϕ2 , (3.16)

and the on-shell worldsheet action (setting α′ = 1),

SF1 = 1
2π

∫ +∞

r0
dr

∫ 2πR

0
dϕ

√
1 + r6

0
r2f(r)ζ(r)

2 . (3.17)

Using (3.2), r0 = Qℓ2, Q = 1/3R and the change of variables u = r/r0, we find

SF1 =
√
λQR

∫ +∞

1
du

√
1 + (u2 − 1)2

(u6 − 1) . (3.18)

The integral is regular at u = 1, but divergent when u→ +∞. As is standard in holography,
the action of extended probes must be regulated by adding suitable boundary terms [31].
In effect, we regulate the integral by cutting it off at u = Λ, then subtracting the leading
divergence, and taking the limit Λ → ∞,

S
(reg)
F1 =

√
λ

3 lim
Λ→∞

∫ Λ

1
du

√
1 + (u2 − 1)2

(u6 − 1) − Λ

 ≈ −0.243
√
λ , (3.19)

valid at large ’tHooft coupling λ. The Polyakov-Maldacena loop is then P = exp(−S(reg)
F1 ).

The numerical value of the holographic Polyakov loop is not so important. The main
observation is that it is non-zero and therefore the ZN symmetry associated to large gauge
transformations around the ϕ circle is broken.9 This further implies that there should be N
vacua following identical arguments to those presented in the thermal context in [9]. The
domain walls between adjacent vacua correspond to D1-branes along a noncompact spatial
direction in the field theory. Such a D1-brane will want to minimise its tension and sit at
the tip of the cigar where its tension is TD1 = 2NQ2/

√
λ.

It is natural to identify this phase as the IR description of the classical vacuum of the
compactified theory with unbroken SU(N) gauge symmetry and a level N Chern-Simons
term that trivially gaps the theory. This is consistent with the bulk picture where no
additional fields corresponding to gauge theory condensates are turned on, apart from the
zero mode of the R-current.

For the AdS quotient geometry, the ϕ-circle is non-shrinking and there is no finite action
static string worldsheet configuation wrapping the circle and extended in the radial AdS
direction. The Polyakov loop must therefore vanish. From the gauge theory viewpoint,
the candidate for this vacuum is at the root of the Higgs branch H2, characterised by the
VEVs (2.37), where the expectation value of the Polyakov loop is always vanishing in the
large-N limit (2.41).

9Note that spontaneous breaking of this ZN is not relevant for determining whether the effective 3D theory
confines or not.
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3.4 Coulomb branch probes

We expect that the Coulomb branch of N = 4 SYM is completely lifted in the gauge theory due
to real masses for the chiral multiplets, since this deformation only preserves four supercharges.

D3-brane in the AdS-soliton. To verify this we introduce a probe D3-brane extended in
the field theory directions xµ = (t, x1, x2, ϕ). The induced metric on the D3-brane is

ds2
D3 = r2

ℓ2
dx2

2,1 +
(
r2

ℓ2
f(r) + r6

0
ℓ2
ζ(r)2

)
dϕ2,

√
− det gD3 = r4

ℓ4

√
f(r) + r6

0
r2 ζ(r)2 (3.20)

while the pullback of the C4 potential is

C∗
4 = −

(
r4

ℓ4
− r4

0
ℓ4

)
dt ∧ dx1 ∧ dx2 ∧ dϕ. (3.21)

Then, the action of the D3-brane probe at fixed radial coordinate has the form,

SD3 = TD3

∫
d4x

r4

ℓ4


√√√√(1− r2

0
r2

)(
1 + 2r2

0
r2

)
−
(
1− r4

0
r4

) ≥ 0 . (3.22)

In the AdS5 soliton geometry, the probe D3-branes are therefore attracted to the origin at
r = r0, and the Coulomb branch is lifted.

D3-brane in the AdS quotient. One may naively expect the D3-brane probe potential to
vanish in the Poincaré AdS quotient geometry. However, this turns out not to be the case
since the effect of the twisting is always present and the probe action in this background is

SD3 = TD3

∫
d4x

r4

ℓ4

√1 + r2
0
r2 − 1

 ≥ 0 . (3.23)

Probe D3-branes of the type considered above have a potential that drags them to the origin.

3.4.1 D3′-brane probe with moduli space

Now let us consider a D3-brane probe extended in xµ = (t, x1, x2, ϕ) but such that ϕi = Qϕ,
that is, the D3-brane wraps the three U(1) subgroups of the R-symmetry directions. The
metric and four-form potential pulled back onto this D3-brane worldvolume,

ds2
D3′ =

r2

ℓ2
dx2

3,1, C∗
4 = −r

4

ℓ4
dt ∧ dx1 ∧ dx2 ∧ dϕ, (3.24)

exhibit perfect cancellation so that there is a probe moduli space

SD3′ = TD3

∫
d4x

√
−gD3′ − TD3

∫
C∗

4 = TD3

∫
d4x

r4

ℓ4
(1− 1) = 0. (3.25)

This is a particularly interesting configuration, as it effectively undoes the twisting procedure
for both the soliton and quotiented Poincaré AdS backgrounds. The untwisting is immediately
obvious in the latter case, but less trivial for the soliton background.
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We now explain how these additional moduli are consistent with the dual field theory
picture presented in section 2.5. Consider a classical vacuum of the SU(N) theory where the
gauge symmetry is broken to SU(N − 3) × U(1)3 with a VEV of the form,

2πRΘ(0) = diag
(
0, 0, . . . 0︸ ︷︷ ︸

N−3

, 2π
3 , 0,−

2π
3
)
. (3.26)

The final three entries follow the arrangement (2.31) at the root of a Higgs branch. We can
now explore the Higgs branch moduli space emanating from this vacuum by turning on block
diagonal VEVs for the remaining scalars {Yã} comprising of a vanishing (N − 3)-dimensional
block, and non-vanishing 3-dimensional block with entries given as in (2.32). This pattern of
VEVs breaks the gauge group to SU(N − 3)× U(1). The unbroken SU(N − 3) is gapped by
the induced Chern-Simons terms, while the leftover U(1) yields a modulus. In the large-N
theory, the unbroken U(1) factor and its modulus should be realised naturally via a probe
brane with vanishing potential in the dual geometry. This is precisely what we have seen
for the AdS-soliton above.

The argument can be extended very similarly to the case of the ZN -symmetric phase (2.37).
This is achieved by considering a block diagonal representation of scalar VEVs consisting
of the ZN−3-symmetric block at large-N and a three dimensional probe block of the type
described above, dual to a probe D3′-brane in the AdS-Poincaré quotient background.

4 Extension to Dp-brane theories (p = 1, 5)

Given the simple realisation of the twisted circle compactification for the N = 4 theory and
its gravity dual, it is natural ask if it is possible to extend this SUSY preserving procedure to
different maximally SUSY Dp-brane theories, particularly those in even dimensions. Consider
maximally supersymmetric Yang-Mills theory in 2(l + 1) dimensions (l = 0, 1, 2), formulated
on R1,2l × S1 with SUSY breaking boundary conditions for the fermions. The R-symmetry
group of the theory is SO(8− 2l) with maximal abelian group U(1)r, where r = 4− l, the rank
of the R-symmetry group. In such cases we expect the background gauge field holonomy to be
ΦR = 2π/r. In this paper, we limit ourselves to the holographic descriptions of corresponding
field theories, pointing out that the procedure for obtaining the gravity duals to the even
dimensional field theories is a straightforward generalisation of the four-dimensional case.

4.1 Maximally SUSY Yang-Mills in (1+1)

The supersymmetric soliton background produced by a large number of D1-branes has not
does appeared in previous works to the best of our knowledge. We present the result for
this obtained by the twisting procedure:

ds2 = r3

ℓ3

(
−dt2 + f(r)dϕ2

)
+ dr2

r3

ℓ3 f(r)
+ ℓ3

r

[ 4∑
i=1

dµ2
i + µ2

i

(
dϕi +Q2ℓ3ζ(r)dϕ

)2
]
,

F3 = 6r5

ℓ6
dr ∧ dt ∧ dϕ−Q2ℓ3

4∑
i=1

d(µ2
i ) ∧

(
dϕi +Q2ℓ3ζ(r)dϕ

)
∧ dt,

Φ = 1
2 log

(
ℓ6

r6

)
,

(4.1)
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where Φ is the dilaton, and µi satisfy ∑i µ
2
i = 1,

f(r) = 1− Q4ℓ12

r8 , ζ(r) = 1
r2 − 1

Qℓ3
, (4.2)

and ℓ = (32π2N)1/6 such that there are N units of F7 = − ⋆ F3 flux through the S7. This
solution preserves four supercharges. As in the AdS5×S5 case, we have used a parametrisation
of the S7 that makes manifest the U(1)4 maximal abelian subgroup via the coordinates ϕi.
At r0 =

√
Qℓ3 the cycle ϕ shrinks to zero size. The period of ϕ is

2πR = π

2Q ⇒ R = 1
4Q, (4.3)

with R the radius of the S1 at r → +∞. Asymptotically the fibration of the S7 on the
shrinking cycle does not vanish and cannot be undone by a gauge transformation. It
corresponds to the introduction of a background gauge field for the diagonal U(1) of the U(1)4

Cartan subalgebra of the SO(8) R-symmetry in the boundary field theory. The holonomy of
this background field is ΦR = π/2. We defer the discussion of the dual (0 + 1) dimensional
effective four-supercharge theory to future work.

4.2 Maximally SUSY Yang-Mills in (5+1)

The supersymmetric soliton geometry dual to the six dimensional theory on D5-branes
compactified on a circle with a twist, was obtained in [5]. Here we present the configuration
in a set of variables more suited to the discussion in this paper, and where the maximal
abelian subgroup of the SO(4) R-symmetry is manifest:

ds2 = r

ℓ

(
dx2

4,1 + f(r)dϕ2
)
+ dr2

r
ℓf(r)

+ r ℓ

[ 2∑
i=1

dµ2
i + µ2

i

(
dϕi +Q4ℓ5ζ(r)dϕ

)]
,

F7 = −2r
ℓ2
dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dϕ ∧ dr

+Q4ℓ5
2∑

i=1
d(µi)2 ∧

(
dϕi +Q4ℓ5ζ(r)dϕ

)
∧ dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 ,

Φ = 1
2 log

(
r2

ℓ2

)
.

(4.4)

Here ℓ =
√
N such that there are N units of F3 = − ⋆ F7 through the S3 and

f(r) = 1− Q8ℓ12

r4 , ζ(r) = 1
r2 − 1

Q4ℓ6
. (4.5)

As discussed in [5] the period of the shrinking cycle ϕ is independent of Q ,

2πR = πℓ . (4.6)

This is traceable to the linear term in rf(r) and the corresponding linear dilaton growth
for large r, and that the effective theory on the D5-brane is UV-completed by Little String
Theory. The value of Q is fixed by the requirement that we have non-vanishing Killing spinors
satisfying the antiperiodic boundary conditions around the ϕ-circle.
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The dual field theory is maximally SUSY Yang-Mills in 6D with SU(N) gauge group,
compactified on a circle with a SUSY preserving background gauge field. Curiously, and
differently to the other examples, this solution actually preserves eight supercharges. This
is because the dual field theory in the IR is five-dimensional, and minimal SUSY in 5D
has eight Poincaré supercharges.

So far, we have only focussed attention on maximally SUSY gauge theories in even
dimensions. Holographic duals to these theories, (3.1), (4.1) and (4.4) realising the twist, can
be obtained by truncating the maximal SO(8− 2l) gauged SUGRA in (2l + 3) dimensions
down to the minimal U(1) gauged SUGRA10 (comprising of Einstein-Maxwell theory and
possibly a dilaton, originating from the 10D dilaton), where the U(1) gauge field in lower
dimensions corresponds to the fibration of the sphere over the shrinking S1.

From the gravity dual perspective, it is not entirely clear how the procedure described
above would work for odd dimensional field theories. It appears that a simple truncation of
the maximal gauged SUGRA in even dimensions to the Einstein-Maxwell-dilaton sector might
not be possible, after turning on the U(1) gauge field which implements the twisting/fibering
procedure. We leave more detailed investigation of these issues and their dual field theories
to future work.

5 Conclusion and open questions

Motivated by the gravity backgrounds found in [1], in this paper we investigated the com-
pactification of N = 4 SYM on a circle with SUSY breaking boundary conditions, including
a constant background gauge field for the maximal abelian subgroup of the R-symmetry. We
understood how this procedure allows to preserve four supersymmetries, and how the IR
physics of the 3D effective N = 2 SYM is in accord with expectation from the holographic
dual description in terms of the supersymmetric AdS soliton and the quotiented AdS5 × S5

geometries. We also pointed out that it should be possible to extend this mechanism to
maximally SUSY theories in other dimensions. For even dimensions, the corresponding dual
gravity backgrounds can be readily obtained. For odd dimensional field theories however,
we expect the corresponding dual geometries to be more complicated.

There are several interesting directions to explore:

• The IR physics of the 3D effective N = 2 SYM theory is rich. It would be interesting to
explore and verify aspects of this through probes in the AdS soliton background which
we expect to correspond to a “mostly gapped” phase with probe Higgs branch flat
directions. This is certainly visible in weakly coupled field theory, and we have identified
a candidate probe (D3′-brane) that appears to explore such flat directions. There are
potentially other “twisted sector” probes of interest at the roots of Higgs branches.
Another interesting class of observables are Wilson loops in various representions, both
around the compact and noncompact directions.

• We have not discussed in detail the weak coupling physics of the 6D and 2D theories
upon compactification with twisting. It seems reasonable that the gapped phase in the

10This does not apply for the supersymmetric soliton in the D1-brane background, which was found by
directly solving the 10D supergravity equations.
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6D example must arise from the effective 5D Chern-Simons term, but it is less clear
what happens when we compactify the 2D SYM. The holographic duals in each case
clearly show that there can be both gapped and ungapped phases.

• In [5] it was suggested that the submanifold (ϕ, r, S3) of (4.4) preserves an SU(2)
structure. It would be interesting to check whether the submanifolds (ϕ, r, S5) of (3.1)
and (ϕ, r, S7) of (4.1) also preserve some structure. This could provide more evidence
to support the claim that it is not possible to consider a supersymmetric soliton in a
D2 or D4-brane background without exciting more fields.

• In the toy model of section 2, we argued that for 4D N = 1 theories, it is possible
to preserve all the SUSY through the twisting procedure. This is questionable when
the R-symmetry is anomalous. It would be interesting to try to find supersymmetric
solitons on backgrounds dual to theories preserving four Poincaré supercharges, and
non-anomalous R-symmetry, for example AdS5 × T 1,1, and check whether the resulting
background also preserves four SUSY. New families of Type II backgrounds, based
on uplifts of the AdS5 soliton of [1], dual to field theories preserving four or more
supercharges where studied in [32, 33].

• We have already touched upon a potential difficulty in obtaining supersymmetric solitons
in Dp-brane backgrounds for p even. A more careful analysis of the field theory for
these cases may open a route to obtaining such solitons.
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