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Abstract. To explore the formation and deterioration of cellular net-
works, we develop systems powered by Artificial Intelligence (AI) that
accurately distinguish and quantify the differential configuration of cells
in those networks (i.e. single cells, multicellular aggregates) as an ini-
tial proof-of-concept approach. We use image data acquired from self-
organised cardiac cell networks formed in vitro which are difficult to
segment using conventional methods. We used two data pre-processing
approaches prior to the application of four segmentation algorithms (in-
cluding two newly generated configurations of the Cellpose algorithm) for
a total of eight segmentation pipelines. We demonstrate the effectiveness
of a transfer learning capability in improving the accuracy of Cellpose
in identifying discrete cells within complex (heterogeneous) cardiac cell
network configurations. Our Cellposep13 segmentation pipeline displays
an F1-Score of 82.34%, a precision of 88.52% and an accuracy of 87.84%.
Furthermore, in addition to our new method performing best in its abil-
ity to detect discrete cells in each network, it also avoided the problem of
erroneously identifying cell boundaries in large multicellular aggregates.
This preliminary work shows the feasibility of describing the physical
and functional properties of cellular networks using accurate indices of
cellular arrangement and heterogeneity.
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1 Introduction

AI has revolutionised our daily lives by serving as a central component in nu-
merous contexts and fields, including the healthcare industry. There is increasing
interest in AI to advance diagnosis, treatment, and patient care [7, 28]. Despite
the new challenges and issues related to its use in these contexts [28], AI is
making significant progress in healthcare applications by detecting patterns in
large datasets in a way that humans alone cannot process or process efficiently.
Machine Learning algorithms (ML), natural language processing techniques, and
computer vision have greatly advanced the extraction of information from large
amounts of medical data and help healthcare practitioners in decision-making
processes. Typical applications include medical imaging (MRI, X-rays, etc.) [28],
drug discovery [17], and electronic health record management [21] to name a few.

In this article, we take a first step toward understanding the formation and
deterioration of cellular networks [27] with an AI-driven approach. We focus on
cardiac cell networks as an interesting case study since, under experimental con-
ditions in vitro, these networks comprise dynamic configurations of multi-cellular
aggregations that arise from physical and functional coupling of individual cells
(Fig. 1). At any given point in time, the temporal synchronisation of events
across the particular network (e.g., Ca2+ signaling) is determined by the organ-
isation and configuration of single cells with distinct boundaries (Fig. 1b, green
regions) and those larger structures where it is not possible to define cellular
boundaries (Fig. 1b, blue regions). It is therefore important that methods are
developed to enable the accurate discrimination and quantification of network
regions populated by discrete (boundarised) cells and larger multicellular struc-
tures. This initial step is key to understanding the influence and behaviour of
cellular configurations in spatially organised cellular networks, which could lead
to new knowledge on the link between cardiac cell network deterioration and the
progression of cardiovascular disease [12, 27]. This is an unexplored domain that
is ideally suited for the application of new AI-driven approaches.

(a) (b)

Fig. 1: An original greyscaled image (a) and its manually segregated image (b).

In this proof-of-concept study, we focus on improving the detection of dis-
crete single-cells. The remainder of this paper is structured as follows. Section 2
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provides background information on existing cell segmentation systems; Section
3 describes the dataset and introduces the methods used to develop and assess
the proposed segmentation pipelines to visualise and quantify the physical prop-
erties of discrete cells identified; Section 4 describes the experimental setup and
reports on the validation results; Section 5 provides a biological perspective on
the information acquired informed by our extensive experience in cardiac cell
network research; Section 6 concludes this work.

2 Background

The primary goal in 2D cell segmentation is to identify the boundaries that de-
mark cell edges. The expected result is a binary-valued mask showing a region
of cells. In traditional computer vision, it is common to apply thresholding to
convert a greyscale image to a binary image before segmenting it. This requires
setting an intensity value, i.e. the threshold, that discriminates cells from the
background by assigning only two possible values to pixels, whether their values
are greater or smaller than the threshold. Several variants have been proposed
to perform this task optimally, as the wrong choice of threshold value can lead to
erroneous identification that introduces analytical artefacts. The Otsu method
[18] is an iterative thresholding method that seeks an optimal threshold value by
minimising intraclass variance, that is, the weighted variance between foreground
and background, and appears to be suitable for white blood cell segmentation
[24]. On the contrary, grid search thresholding compares the results of prefixed
threshold values with the true label and selects the one that shows the best
performance, e.g., in terms of F1-Score [29]. Active contours, see [1], is another
‘energy-based’ model for cell detection and segmentation that iteratively min-
imise an energy function while deforming a curve to fit the cell boundary.

In the last decade, Deep Learning (DL) has emerged as a new area of ML
that takes advantage of multiple layers of non-linear information processing units
for (supervised or unsupervised) feature extraction, pattern analysis, and clas-
sification. A Convolutional Neural Network (CNN) is a DL approach suitable
for classification problems and image manipulation. Recently, CNNs have been
adopted for semantic-based image segmentation tasks by exploiting their clas-
sification capabilities to binarily label each pixel of an image and thus segment
it [4, 5]. Initially, CNNs were used in patch-based methods in biomedical image
processing, classifying pixels based on their neighbourhood attributes to address
segmentation challenges in, e.g., neural cell imagery. Methods such as the ‘multi-
task learning with a similarity interface’ [22] were proposed to make them more
suitable for segmentation tasks in microscopy images.

The U-net model proposed in [23] is another DL algorithm that features up-
and down-sampling layers and the corresponding skip connections and is well
known for its efficiency in segmentation tasks. U-net processes the entire image
and directly generates a segmentation map that takes advantage of all contex-
tual information from the image. This method offers advantages over patch-based
CNNs. Since its publication, the literature has been populated with variants of
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U-net, such as the V-net proposed in [16]. The latter improves upon U-net by
including 3D convolution units that make it suitable for 3D segmentation. More
complex structures are, e.g., those in [15], where a fully convolutional network is
used to enable end-to-end semantic segmentation at the pixel level, and the M-
Net model presented in [8], which features a multiscale input layer, a U-shaped
convolutional network, a side output layer, and a multi-label loss function. An
attentive cell instance segmentation method that uses the joint action of U-
net and a single-shot multi-box detector is available in [31], while a versatile
algorithm suitable for multiple tasks, including target classification, detection,
semantic segmentation, instance segmentation, and recognition of human pose,
among others, is known as the mask recurrent-CNN model [14].

Cellpose [26], is a widely used versatile DL algorithm with a U-Net-style
architecture and residual blocks for cell and nucleus segmentation that was de-
signed to process various types of images without requiring extensive training
data or parameter tuning. Cellpose stands out for its adaptability (even to 3D
images without needing specific 3D-labelled data) and ease of use. Cellpose de-
velopers trained this model using a variety of images sourced from the Internet
from different datasets, including images of red and white blood cells, plasma
cells, hanseniaspora, and animal tissue cells, by searching for keywords such
as ‘cytoplasm’, ‘cellular microscopy,’ and ‘fluorescent cells’. This vast training
dataset gives Cellpose broad applicability and it is expected to work well even
with noise, excessively bright fluorescence, insufficient brightness, or subopti-
mal stain quality. For the same reasons, it represents an obvious choice for many
healthcare professionals in the analysis of clinical imaging data. However, despite
its numerous advantages and rich featureset, Cellpose was developed to detect
discrete cellular units clearly demarked by boundaries. As described above and
shown explicitly in Fig. 1, these discrete cells are not the only component of
physically and functionally coupled cardiac cell networks in vitro. The utility of
cellular identification tools in this context needs to be rigorously evaluated, and
in this preliminary work, we report on our findings to date.

3 Methodology

Conventional ML and complex DL approaches have strengths and weaknesses.
The former methods generally exhibit inferior accuracy in segmenting microscopy
images with complex backgrounds, especially in the presence of very small, atyp-
ically ‘bright’ elements; they are difficult to design; they face difficulties in han-
dling extensive datasets. However, they have less demand for large training data;
they are more explainable and computationally cheaper than the latter. Most
CNNs typically require a significantly larger amount of manually-labelled train-
ing data and involve more computations than traditional ML approaches [2], all
in search of superior performance.

We address the problem of segmenting heterogeneous cell configurations
comprising 2D cardiac cell networks in vitro which comprise our foundational
dataset. We focus on the application of the Cellpose algorithm, recognising it as
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a state-of-the-art platform for cellular identification/quantification and due to
its promising results in semantic segmentation [26, 19, 25].

We present the results obtained with the three best algorithmic configurations
we found. We refer to them as Cellposei, with i ∈ {1, 2, 3}, and compare among
themselves with another widely used segmentation model. We present two data
preparation methods, which we apply to all models under study, thus obtaining
eight possible segmentation strategies following the pipeline in Fig. 2. More
details are provided in the following sections.

HL-1
images

(Section 3.1)

Data
preparation

(Section 3.2)

Cell
annotation

(Section 3.3)

Model
training

(Section 3.4)

output

Evaluation
(Section 3.5)
Validation
(Section 4)

Fig. 2: General segmentation pipeline.

3.1 The HL-1 cardiac cell network imaging dataset

HL-1 cardiomyocytes are an immortalised mouse atrial-derived cell line that
has been extensively characterised by us [6, 9, 3, 10]. Since HL-1 cells retain a
remarkable proliferative capacity, the cellular density and interactions formed
by these cells in vitro reflect ‘random’ self-organised network configurations.
We analyse an image dataset comprising 92 HL-1 cell networks in which cells
had been loaded with the fluorescent calcium reporter dye, fluo-3. The intense
fluorescence of fluo-3 retained inside cells allows for a robust assessment of ‘single’
cellular boundaries although its distribution across all cells in the network is
heterogeneous (Fig. 1a) which can make discrete cellular identification difficult.
Each network was visualised using 180 images collected in 60 seconds (i.e., a
frame capture rate of 0.3Hz). Each image had dimensions of 512 × 512 pixels
and defined a physical area of 61, 504µm2.

3.2 Data preparation

To perform segmentation, it is required to produce a composite image from the
image stack. We do this by 1) isolating frames for greyscale conversion and, if
necessary, preprocessing them to improve the quality of the segmented result (as
indicated in the next paragraph); 2) stacking them to compute their average;
and 3) scaling the intensities of the average composite image within 0− 2554.

4 This value is imposed by the employed acquisition system.
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After trying multiple approaches for Step 1), we empirically found two simple
suitable methods that produced satisfactory results. The first approach is to use
the greyscaled images and proceed directly to Step 2) (no further processing
is needed). In the second method, histogram equalisation is performed on the
greyscaled images. This is a technique used in image processing to enhance
the contrast of an image by redistributing pixel intensities to cover the entire
dynamic range evenly. This process helps to improve the visual appearance of
images by making details more visible in both dark and bright areas [30]. Steps
2) and 3) are self-explanatory.

Note that averaging the images is a simple but beneficial approach, which
helps filter out noise from (unprocessed) images. As can be seen in Fig. 3a, the
unprocessed source experimental images are noisy. However, see Fig.s 3b and 3c,
the effect of noise is mitigated after averaging the frames.

(a) Frame. (b) Greyscale (c) Histogram equalisation.

Fig. 3: Data (image) preparation - an example of a raw single-image frame (a)
and its greyscale version without (b) and with (c) histogram equalisation.

For convenience, we refer to the first data preparation pipeline (without
equalisation) as p1 and to the second (with equalisation) as p2.

3.3 Cell Annotation

The Cellpose Graphical User Interface (GUI) allows drawing Ground-Truth
(GT) masks. We used it to label individual cells, as shown in Fig. 4.

In the present work, we focus exclusively on the segmentation/annotation
of those cells with a clearly visible boundary (Fig. 1b, green outlines). All 92
composite images previously obtained following the processing described in 3.2
are annotated, and the corresponding masks are saved for the training process.

3.4 Segmentation algorithms and training

We employ Cellpose in three different configurations.
The first, Cellpose1, simply refers to the built-in pre-trained Cyto2 model
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Fig. 4: Using Cellpose GUI to annotate the composite cellular network images.

available from the CellPose repository [26].
Cellpose2 is instead obtained by retraining the Cellpose architecture from

scratch with our dataset. This allows us to see the performance when the model
is highly specialised in HL-1 cells.

Cellpose3 is obtained by fine-tuning a pre-trained Cellpose model (i.e.,
Cellpose1). In summary, we used existing Cyto2 weights to train a new model
with our HL-1 data, thus adopting a particular kind of transfer learning [13].

We randomly divide the dataset into training and testing sets using a division
ratio of 60 / 40%. With a total of 92 cell images available, 55 of these images are
allocated to the training set and 37 to the test set, ensuring a robust evaluation
of the model’s performance on unseen data. The algorithms require image masks
for training, and we use our annotations for this purpose. Each model is trained
for 100 epochs. For optimal training performance and stability, all three versions
of Cellpose are empirically optimised with the best configuration featuring a
ReLu activation function, a learning rate of 10−3, and a batch size of 8.

We also produce segmentation results with StarDist [25] for comparison.
This is another widely used model based on the CNN architecture that de-
tects individual cells by simultaneously generating a distance map and an object
probability map. The success of this algorithm is due to the joint use of the
maps that enables a precise delineation of cell boundaries for cells with irregular
shapes and complex arrangements. StarDist represents cell boundaries using
star-convex polygons, offering flexibility in capturing various cellular morpholo-
gies. This model also requires annotated data for the training data, typically
comprising images paired with manually segmented cell outlines, which facili-
tates the network’s ability to predict cell segmentations accurately. We used a
StarDist pre-trained model on a subset of 497 fluorescence microscopy images.

3.5 Evaluation metrics

We use the five established evaluation metrics described in Table 1, which are
calculated in terms of ‘pixel-wise’ True Positive (TP), False Positive (FP), False
Negative (FN), and True Negative (TN), in the context of segmentation [11, 20].
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Table 1: Performance Metrics in Image Segmentation

Metric Description Formula

Accuracy
Proportion of correctly TP+TN

TP+TN+FP+FNclassified samples

Precision
Proportion of TP predictions TP

TP+FPamong all positive predictions

Recall
Proportion of TP predictions TP

TP+FNamong all actual positives

F1-Score
Measure of overlap between 2×TP

2×TP+FP+FNpredicted and GT regions

Intersection Measure of overlap between TP
TP+FP+FNover Union (IoU) predicted and GT regions

Note that the accuracy metric is often also commonly misused and over-
emphasised. F1-Score (also known as Dice similarity) can be of greater signifi-
cance in segmentation problems, as it allows us to understand alignments with
the GT, similarly, for IoU (also known as the Jaccard similarity index).

4 Validation results

Using the p1 and p2 data preparation methods outlined in Section 3.2, and
applying the four models described in Section 3.4, we obtain eight algorithmic
setups for the segmentation task. Some graphical results (validation) are shown
in Fig. 5 and 6 for the preparation methods p1 and p2, respectively.

It can be immediately noticed that the original Cellpose algorithm, i.e.,
Cellpose1, presents challenges in accurately distinguishing certain cell borders,
particularly irregular ones, and when cellular density is visibly higher, leading to
difficulties in correctly detecting cells. Furthermore, it occasionally identifies two
separate cells instead of a single cell, which adds to its limitations in precise cell
detection (Fig. 5b). Cellpose2, see Fig. 5c, shows improved detection capabili-
ties in cases with non-discernible boundaries compared to Cellpose1, but suffers
from undersegmentation in certain regions. On visual inspection, Cellpose3 ap-
pears to be more accurate than the other Cellpose setups (Fig. 5d) and than
StarDist (Fig. 5e), which seems to perform worse than all other models.

Numerically, the segmentation results are validated by the metrics in Table 1
computed throughout the test set, which comprises 37 images. Each evaluation
metric is calculated for each cell, and then the average value (avg) and standard
deviation (std) are calculated to provide an overall assessment of the performance
of the model. Validation results are reported in Table 2, where the best value
(i.e., highest avg and smallest std) per model and for each evaluation metric is
reported in bold (except for cases with nonsignificant differences). The asterisk
shows the algorithmic setup that performs best per metric.

Interestingly, the simpler p1 data preparation method leads to better perfor-
mance than p2 in most cases. Cellpose3 always outperforms the other methods
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(a) GT (b) Cellpose1 (c) Cellpose2 (d) Cellpose3 (e) StarDist

Fig. 5: Segmentation results with the p1 image preparation strategy.

(a) GT (b) Cellpose1 (c) Cellpose2 (d) Cellpose3 (e) StarDist

Fig. 6: Segmentation results with the p2 image preparation strategy.

except in terms of recall, where Cellpose2 displays marginally superior perfor-
mance (of 1.19%). The results for Cellpose3 are satisfactory, with an average
precision of 87.84% with p1 and an average precision of 87.84% with p2. The IoU
and F1-Score are also good, with an average of 71.98% and 82.34%, respectively.
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Table 2: Models evaluation results.

Algorithmic Evaluation metrics
setup IoU (%) F1-Score(%) Precision(%) Recall(%) Accuracy(%)

Cellpose1
p1 55.44± 22.58 67.94± 23.67 71.21± 24.60 72.96± 24.12 78.34± 9.77
p2 49.15± 23.10 62.11± 24.84 71.24± 24.08 63.66± 27.80 75.78± 10.58

Cellpose2
p1 68.43± 17.91 79.42± 17.63 79.29± 19.16 ∗82.43± 17.90 85.53± 6.93
p2 65.82± 18.77 77.40± 17.94 86.05± 16.99 72.38± 21.16 84.56± 8.16

Cellpose3
p1

∗71.98± 16.25 ∗82.34± 14.76 ∗88.52± 9.45 80.24± 17.09 ∗87.84± 5.69
p2 71.15± 16.62 81.79± 14.18 88.41± 11.88 79.16± 16.71 87.21± 6.38

StarDist
p1 43.75± 16.42 58.86± 17.84 81.74± 23.46 50.01± 19.80 73.19± 13.48
p2 40.21± 20.84 53.94± 23.27 67.79± 22.57 49.70± 26.60 70.62± 12.22

The StarDist algorithm is always outperformed by the three Cellpose con-
figurations, regardless of the preparation of input data. This algorithm displays
the best results on round-shaped cells, which is not always the case. In addi-
tion, roundness is often a consequence of cell death, which introduces the risk
of defining networks by the extent of death. However, the latter appears to be
more ‘precise’ than Cellpose1, as it is StarDist

p1 than Cellpose
p2
2 (the super-

script denotes the data preparation method to simplify notation). Due to the
high values of std, it can be argued that StarDistp1 is similar to Cellpose

p2
1 in

terms of IoU and F1-Score.
Hence, the segmentation pipeline that stands out is Cellposep1

3 , despite his-
togram equalisation visually resulting in clearer images, and graphical results
may also favour p2 for this reason. This suggests that Cellposep1

3 detects fea-
tures that we cannot easily see and which equalisation cannot reveal. It is impor-
tant to note that the latter enhances contrast when there is a limited range of
intensity values. However, in cases where spatial correlation is more significant
than intensity, it may result in unrealistic effects that alter the shape of cells.

From the produced segmented images, we extrapolate5 the area and eccen-
tricity of each identified discrete cell. The first parameter is calculated as the
total pixel count within a defined cellular boundary, while the second, indicating
cell elongation or roundness, is calculated as the ratio of the best-fit ellipse’s
focal distance to the cell’s shape. These are discussed in the next section.

5 Cellular Network Analysis

Extending some of the qualitative information provided by model validation
(Section 3.5), we systematically evaluate the quantitative outputs of each model
relating to three key metrics (cell number, cell area, and cell eccentricity) in
30 randomly selected networks. We find that StarDist is the algorithm most
influenced by the preprocessing mode and performs poorly on all metrics when
p1 and p2 were directly compared (R2 < 0.35 in all instances) (Fig. 7).

5 This is done in Python with measure.regionprops from skimage.
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(a) Cell number

(b) RCell area (pixels)

(c) Cell eccentricity (normalised)

Fig. 7: Regression analysis of 30 chosen networks on the effect of P1 and P2 for
(left to right) Cellpose1 , Cellpose2 , Cellpose3 and StarDist .

Cellpose2 and Cellpose3 are much less influenced by the preprocessing
mode, and Cellpose3 overall exhibits a better performance (R2 > 0.8 for all
metrics). Benchmarking the performance of all methods against Cellpose1, we
found that Cellpose2 and Cellpose3 identified many fewer discrete cells (Fig.
8) that are physically larger cells (Fig. 7).

However, upon closer scrutiny of the segmented composite images of each
of the 30 networks, we found that while Cellpose1 identifies more ‘cells’, this
algorithm tended to erroneously identify many ‘discrete’ cells (i.e., nucleated
structures) within the multi-cellular aggregates (Figure 1, blue regions) result-
ing in the gross over-estimation of the number of discrete cells in the network.
Cellpose2 and Cellpose3 does not reproduce this error, and visual inspection
of the segmentation done by these methods reveals that their identification of
single (discretely boundarised) cells in the network was remarkably accurate.
Preliminary data suggest Cellpose3 is the best algorithm for our purpose. The
data also show that StarDist identifies numerous elements that are too small to
be plausibly considered as cells (i.e., have pixel dimensions < 100; Table 3) and
this undesirable feature, together with other limitations (Fig. 7 and 8) highlights
that StarDist is not useful for our purposes.
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(a) Results with data preparation p1

(b) Results with data preparation p2

Fig. 8: Number of discrete cells segmented with Cellpose1 , Cellpose2 ,

Cellpose3 and StarDist , normalised to Cellpose1.

Table 3: Proportion of segregated non-cellular elements.

Cellpose1 Cellpose2 Cellpose3 StarDist

p1 p2 p1 p2 p1 p2 p1 p2
0.104% 0.213% 0.051% 0.117% 0.052% 0.053% 24.130% 10.597%

6 Conclusion

In this proof-of-concept work, we have shown the utility of a transfer learning al-
gorithm to improve the accuracy of Cellpose to identify discrete cells in complex
(heterogeneous) cardiac cell networks. This work should now be extended to the
development of parallel methods that can quantify key features that describe
the larger multicellular aggregates that are a hallmark feature of in vitro formed
cardiac cell networks (e.g., HL-1 and induced pluripotent stem cell-derived car-
diomyocyte networks). Pending this outcome, we will then be able to describe
cardiac cell networks in terms of ‘single cellularity’ and ‘multicellularity’ and
begin reconciling these indices with new information on the functional compe-
tency of the networks under test (e.g., normal ‘healthy’ networks or deteriorating
‘disease-like’ networks).
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