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Abstract. Breast ultrasound imaging, due to its noninvasive nature and
cost-effectiveness, has become an indispensable instrument in the early
detection of breast cancer, highlighting the importance of early detec-
tion of lesions for timely intervention. In this study, we discuss possible
problems deriving from using deep learning techniques on such images
and propose novel solutions towards achieving a segmentation tool based
on a generative adversarial network architecture. As a proof-of-concept,
we build on existing methods to develop our system by modifying a
U-Net known as Residual-Dilated-Attention-Gate with the addition of
skip modules and dilated convolutional neural networks after the decoder
stage. Compared with other state-of-the-art methods in established eval-
uation metrics, the results indicate that the proposed model achieves the
highest accuracy of 98.11%, despite being trained on a limited number
of epochs. However, it still requires further tuning and optimisation to
enhance precision, ensuring that it is more balanced, robust, and thus
competitive with the state-of-the-art.
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1 Introduction

Breast cancer has a high global mortality rate. For instance, in China, iter con-
stitutes 7.82% of the total mortality associated with female malignant tumours,
establishing itself as one of the most lethal diseases.

Patients diagnosed with metastatic breast cancer typically face a poor prog-
nosis, characterised by an average 5-year survival rate of approximately 27%.
Upon metastasis (cancer that has spread to other parts of the body), the ma-
lignancy often progresses to a more severe tumour stage [19]. Although there
have been improvements in the methods used to detect breast cancer, patients
diagnosed with metastatic breast cancer still tend to have poor outcomes. This
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poor prognosis is largely due to the fact that cancer is often diagnosed at a
later stage, when it is more visible and painful, but also more difficult to treat
effectively. This situation underscores the critical need for early detection and
diagnosis for timely intervention and risk mitigation. The potential benefits of
using AI to aid in these processes are numerous.

The prospective advantages of employing artificial intelligence in these diag-
nostic and therapeutic processes are numerous, given advances in the manipula-
tion of medical images with AI-driven solutions in the last decades [13], [3]. Note
that non-invasive breast cancer diagnosis modalities include X-ray, and Magnetic
Resonance Imaging (MRI), etc., which results in imagery data. Among these di-
agnostic modalities, Breast Ultrasound (BUS) imaging, due to its noninvasive
nature, absence of ionising radiation, and cost effectiveness, has emerged as an
indispensable instrument in the early detection of breast cancer [5].

BUS segmentation facilitates the precise identification and analysis of tu-
mours, thereby increasing diagnostic accuracy. Although segmentation method-
ologies in various imaging modalities, such as MRI and computed tomography
(CT), often employ analogous techniques, BUS segmentation (i.e., the extrac-
tion of the tumour region from the image) presents significant challenges. These
challenges are primarily attributed to the inherently low quality of ultrasound
images, which are marred by speckle noise and low contrast.

In this project, we focus on tumour segmentation in BUS imaging by modify-
ing a GAN to employ U-Net within its architecture. We use dilated convolution
to enlarge the receptive field after multiple down-sampling in the encoder and
decoder, therefore boosting the classifier’s accuracy. In addition, the model uses
the residual block which replaces the basic neural units and an attention mech-
anism.

2 Background and Design Motivations

Segmentation constitutes a pivotal component of image analysis in the context
of breast cancer diagnosis, encompassing critical processes such as detection,
feature extraction, classification, and treatment. Nevertheless, BUS images are
characteristically low-resolution and monochromatic, in contrast to other imag-
ing modalities. Hence, ROIs of malignant regions are often uneven in shape,
blurred, and have an indistinct border [9].

Different Deep Learning (DL) methods have been proposed to address the
aforementioned challenges in the segmentation of BUS images, from semantic
segmentation models such as SegNet [20] to multiple kinds of GANs [8, 18, 16].
For example, the study in [17] introduces an improved conditional GAN seg-
mentation algorithm to learn tumour features, which employs an atrous convo-
lution layer. To equalise the influence of high-level encoded characteristics, they
adopted a channel-wise weighting block. The model undergoes training using a
composite loss function comprised of the Structural Similarity Index (SSIM), the
L1-norm, and adversarial loss. An interesting approach proposed in [1] uses the
You-Only-Look-Once (YOLO) model [14]. They segment large datasets using
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full-resolution convolutional networks (FrCN), and a deep convolutional neural
network (CNN) determines whether the mass is benign or cancerous. Notably,
the DeepLabv3+ semantic segmentation model from [4] is based on an encoder-
decoder architecture, wherein the encoder is responsible for extracting both shal-
low and high-level features, and the decoder integrates these low-level and high-
level features to enhance segmentation accuracy. DeepLabv3+ leverages ResNet
architectures as its foundational backbone, integrating Atrous Convolution and
the Atrous Spatial Pyramid Pooling (ASPP) module. The ASPP module encom-
passes a global average pooling operation and convolutional layers with varying
dilation rates (specifically 1, 6, 12, and 18).

The U-Net model is another widely recognised and favoured approach for
mammogram image segmentation. ERU-Net has U-shaped architecture, is de-
signed like an auto-encoder. It contains two pathes, an encoding path (con-
tracting) and a decoding path (expanding). Its capability in training on a rel-
atively limited dataset of annotated images, coupled with the capabilities of
high-performance GPU computing, renders it a viable and efficient option for
this application [6]. In [10], a novel deeply supervised U-Net model (DS U-Net)
integrated with dense conditional random fields (CRFs) is introduced, whereas
[23] delineates a Residual-Dilated-Attention-Gate-UNet (RDAU-NET) derived
from U-Net. This model substitutes neural units with residual units and incorpo-
rates an attention gate (AG) to enhance edge delineation and mitigate network
performance degradation issues. These examples show the success and versatility
of U-Net.

In this context, we investigate the use of a hybrid system that employs the
Wasserstein Generative Adversarial Network [2] to perform the segmentation
task. This variant ensures robust convergence and minimises the Wasserstein
distance between real and generated data distributions. We used RDA-NET as
the generator within the GAN architecture, as shown in Figure 1. It should be
noted that the RDA-NET employed, an improved variant of the fundamental
U-Net architecture referenced in [11], incorporates specific modifications to rec-
tify the limitations inherent in the U-Net model and increase the efficacy of the
generative framework. The generator aims to produce data with the same dis-
tribution as the original to deceive the discriminator, and these generated data
will be lesion-segmented maps of Breast Ultrasound Images in our system. With
reference to Figure 1, it can be observed a conventional encoder-decoder architec-
ture. The input is subjected to successive down-sampling stages until it attains
a bottleneck layer after which the process is inverted. Within this architecture,
information traverses each hierarchical level, encompassing the bottleneck, to
effectively capture both high-level and low-level features from the input data. It
is ideal to transfer this data directly through the network because many image
translation tasks share a significant amount of low-level information between the
input and output. To provide the Generator with a way to bypass the bottleneck,
we included skip-connections between layers of the same size in the encoder and
decoder.
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Fig. 1. RDA-U-Net architecture.

We implemented additional changes to the original architecture. Specifically,
the original six neural units along the encoder path are replaced with six resid-
ual units, employed to prevent accuracy saturation (vanishing gradients) during
training. However, smaller feature maps can reduce the accuracy of semantic
segmentation. To address this, the outputs of the encoder pipeline are fed into
a series of dilated convolution modules. These modules use 3 × 3 convolution
kernels and have dilation ratios of 1, 2, 4, 8, 16, and 32, respectively. The feature
maps from the dilated convolution are summed, forming the output of the di-
lated convolution which is added to the architecture to broaden the receptive
field. The output from this module is directed into the decoder pipeline, which
consists of an up-sampling mechanism and five residual networks. Each layer
within the decoder facilitates the upsampling process by integrating the intri-
cate feature outputs derived from the decoder with the corresponding semantic
information procured from the encoder. In contrast to the traditional U-Net’s
skip-connection components, we replaced the cropping and copying units with
attention-gate modules (one for each residual net in the decoder), thus enabling
the model to focus more on the lesion region and less on the unnecessary back-
ground.

Note that convolution and pooling in CNNs reduce spatial information, af-
fecting segmentation accuracy. A Fully Convolutional Network (FCN) executes
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these operations to reduce the spatial dimensions of the image and extract ab-
stract features, subsequently enlarging this output through upsampling. The
convolution-pooling phase can be conceptualised as a downsampling operation
that may induce information loss, thereby compromising the accuracy of the
process and substantially diminishing the transferability of data details.

Since the U-Net encoder is a Fully Connected CNN (FC-CNN), dilated con-
volutions are used to insert ‘holes’ (i.e., zeros) into the kernel to achieve a larger
receptive field than traditional convolution without a loss of resolution [22]. By
design, they are suitable for dense prediction tasks, differing structurally from
image classification by computing a label for each pixel. Their use enables us to
obtain high-level multiscale contextual information while reducing the number
of parameters and computational costs while performing segmentation.

The dilated convolution operator is characterised by a hyperparameter known
as the dilation rate, which specifies the extent to which the kernel intervals are
expanded3. Figure 2 (a) and (b) illustrate the visual field of a 3× 3 convolution
kernel with r = 1 and r = 2, respectively. When r = 2, the receptive field
increases to 7 × 7 (shown as the orange and blue parts in (b)) compared to
traditional convolution (r = 1, as shown in the blue part of (a)). Therefore, the
dilation process increases the size of the receptive field and compensates for the
subsampling.

Fig. 2. Illustration of receptive field for r = 1 and r = 2 [23].

In the RDAU-NET model, the feature maps of size 4×4 obtained at the end
of the encoder pipeline are fed into a series of dilated convolution modules with
r = 1, 2, 4, 8, 16, 32 and N = 3× 3, 7× 7, 15× 15, 31× 31, 63× 63 and 127× 127
respectively. The outputs of the six convolutions are added, upsampled (by a

3 A dilation rate of 1 results in a classic convolution.
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factor of 2), and then fed into the decoder pipeline as shown in Figure 1. In the
dilated convolution module, output feature maps match input sizes but capture
information from a wide range of receptive fields, enhancing feature learning.

The proposed system incorporates a greater number of layers to enhance
learning capability. Given that this may result in decelerated or halted learning,
attributed to the phenomenon known as the ‘vanishing gradient’, we implement
the residual learning correction technique as delineated in [7] to sustain the
efficacy of gradient updates throughout the training process. Furthermore, to
address common CNN issues like reduced spatial awareness from shared weights
and redundant channels in U-Net-like networks [15], we add an attention mod-
ule in the skip connection and concatenate low-level and high-level features to
emphasise relevant channels and suppress irrelevant ones. The inclusion of at-
tention modules in our model is motivated by successful studies, such as the one
presented in [12], which integrates an Attention Gate (AG) module into a U-Net
framework to facilitate spatial location and subsequent segmentation.

To enhance stability, we have selecetd a pre-trained model from [11] and used
Adam to optimise the loss function with a learning rate of 1− e4.

3 Resources & Methods

3.1 Dataset

The experimental dataset is the BUS images in [21], containing a total of 645
low-contrast breast ultrasound images with evenly distributed benign and ma-
lignant lesions. Samples in this dataset are partitioned into training, validation,
and test subsets. The training and validation subsets comprised 538 and 50 sam-
ples, respectively. The test subset included 57 samples, each with corresponding
ground truth masks. The model’s segmentation performance was evaluated us-
ing the test subset. Figure 3 illustrates several sample images along with their
ground truth annotations.

3.2 Training the Model

The training procedure is delineated in Algorithm 1. It consists of iteratively
alternating training phases for the discriminator and the generator over e epochs
until the total allowed number of epochs is reached.

Initially, the discriminator is rendered trainable, whereas the generator re-
mains untrainable. The generator is employed to produce image predictions,
enabling the discriminator to classify these images and subsequently update
its parameters accordingly. Conversely, the second phase is performed similarly
but with an untenable discriminator and a trainable generator. This completes
one training iteration and multiple iterations are performed according to the
prefixed computation budget (total number of epochs). Following each train-
ing iteration, the model undergoes evaluation on the validation dataset. With
each successive cycle, the segmentation accuracy in relation to the ground truth
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Fig. 3. Sample images from the dataset with their corresponding ground truth directly
under

is expected to demonstrate improvement. Optimal performances are achieved
when the discriminator’s accuracy asymptotically approaches 50%. Indeed, as
the generator’s performance enhances (i.e., it produces increasingly realistic im-
ages), the discriminator’s efficacy deteriorates, because it becomes incapable of
differentiating between authentic and synthetic data.

Algorithm 1 Training process

1: Fetch X ▷ Training set of BUS images
2: Initialise e ▷ Number of epochs (e = 50)
3: Initialise n ▷ Batch size (n = 32)

4: σ = |X|
n

▷ Steps per epoch
5: for e times do
6: for σ times do
7: Make the discriminator trainable and the generator untrainable
8: Use the Generator to predict an image
9: Prepare batches and train the discriminator
10: end for
11: for σ times do
12: Make the discriminator untrainable and the generator trainable
13: Train the Generator
14: end for
15: end for
16: return Trained GAN model
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3.3 Experimental Setup

Owing to computational constraints, the experimental phase is conducted with
a limitation of 50 epochs to train the model. The results are compared with
those derived from state-of-the-art methodologies. Specifically, we have chosen
the U-Net, SegNet, and RDAU-NET models for comparative analysis. The input
images for all models are standardised to a resolution of 128 × 128, and the
segmentation outputs are generated at the same resolution.

3.4 Results

Consistent with the design principles articulated in Section 2, we refer to our
model as the RDA-NET-GAN. The segmentation outcomes obtained with the
setup in Section 3.3 are evaluated using established metrics, as detailed in Table
1.

Model Loss Acc Dice Precision Sensitivity Specificity M-IOU F1

U-Net 17.95 97.57 82.04 81.85 84.66 98.91 79.83 82.11
SEGNET 18.29 97.52 81.70 81.41 83.95 98.83 79.14 81.71

RDAU-NET 15.30 97.91 84.69 88.58 83.19 99.34 80.67 84.78
RDA-NET-GAN 25.03 98.11 85.84 84.78 75.14 99.07 79.97 66.16
Table 1. Segmentation performance of models across multiple evaluation metrics.

Overall, RDAU-NET appears to offer the most balanced and robust perfor-
mance across multiple metrics, while RDA-NET-GAN, despite a high accuracy
of 98.11, may need further tuning to improve sensitivity and M-IOU. U-Net
and SEGNET offer decent performance but are outperformed by RDAU-NET
in key areas. The fact that our model improves the accuracy as well as perceived
qualitative analysis of the segmented images (show an example of the results in
figure 4) shows that the idea behind the algorithm is promising, even though it
required more investigation to make it competitive with RDAU-NET.

The proposed model has more loss as this is a combined system and the
adversarial losses is from the combination of the generator and the discrimina-
tor. Below are the outputs while testing the segmentation performance of the
proposed model during training.

The suboptimal precision observed for the proposed model can be attributed
to the limited number of epochs for which the model was trained, especially
in comparison to other models. To a certain degree, this result was foreseeable
given the low number of epochs used during the training phase. Strategies to
increase the number of epochs without precipitating overfitting will be a focal
point of future research activities.
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Fig. 4. Segmentation results of the proposed model

4 Conclusion

This study summarises relevant problems and literature gaps in using GAN for
segmentation tasks and proposes ways to overcome these problems. When ap-
plied to the BUS images at dashed, it shows good visual results and displays the
highest accuracy. It can be inferred that the GAN architecture holds significant
promise for the segmentation of noisy datasets, and our proof-of-concept study
indicates substantial potential for future advancements. Specifically, the incorpo-
ration of dilated CNNs after the decoder stage represents a novel methodology
for the segmentation of breast lesions. This approach enhances the receptive
field, thereby increasing the accuracy compared to directly applying the U-Net
architecture. By comparing the model with the state-of-the-art, we are aware
that there is room for improvement and that the model is not yet competitive
with established methods such as RDAU-NET which is more rosubst and per-
forming across various metrics, while our model performs very poorly in terms
of pr precision. This aspect needs to be significantly improved.

During the training phase, the vanishing gradient problem manifested despite
the algorithmic design precautions implemented to address the complexities in-
herent in the deep learning architecture of the proposed method. Therefore, the
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model requires further optimisation to be more competitive with the state-of-
the-art.

It is worth noting that despite the suboptimal precision of the model, this
outcome was somehow expected due to the limited number of epochs employed.
This also demonstrates that acceptable results can still be achieved with a re-
duced number of training iterations (which can be advantageous in preventing
overfitting) and with low-resolution images.

Next, the model will be subjected to additional optimisation to enhance its
precision. Furthermore, an extended and more rigorous training phase will be
conducted and we will apply this model to various datasets, thereby validat-
ing its segmentation capabilities. Additionally, considering that speckle noise is
an intrinsic characteristic of ultrasound images, we will examine the impact of
filtering techniques to refine our segmentation pipeline.
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